]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr.c
hw: Add compat machines for 7.0
[mirror_qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 */
26
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qemu/datadir.h"
30 #include "qapi/error.h"
31 #include "qapi/qapi-events-machine.h"
32 #include "qapi/qapi-events-qdev.h"
33 #include "qapi/visitor.h"
34 #include "sysemu/sysemu.h"
35 #include "sysemu/hostmem.h"
36 #include "sysemu/numa.h"
37 #include "sysemu/qtest.h"
38 #include "sysemu/reset.h"
39 #include "sysemu/runstate.h"
40 #include "qemu/log.h"
41 #include "hw/fw-path-provider.h"
42 #include "elf.h"
43 #include "net/net.h"
44 #include "sysemu/device_tree.h"
45 #include "sysemu/cpus.h"
46 #include "sysemu/hw_accel.h"
47 #include "kvm_ppc.h"
48 #include "migration/misc.h"
49 #include "migration/qemu-file-types.h"
50 #include "migration/global_state.h"
51 #include "migration/register.h"
52 #include "migration/blocker.h"
53 #include "mmu-hash64.h"
54 #include "mmu-book3s-v3.h"
55 #include "cpu-models.h"
56 #include "hw/core/cpu.h"
57
58 #include "hw/ppc/ppc.h"
59 #include "hw/loader.h"
60
61 #include "hw/ppc/fdt.h"
62 #include "hw/ppc/spapr.h"
63 #include "hw/ppc/spapr_vio.h"
64 #include "hw/qdev-properties.h"
65 #include "hw/pci-host/spapr.h"
66 #include "hw/pci/msi.h"
67
68 #include "hw/pci/pci.h"
69 #include "hw/scsi/scsi.h"
70 #include "hw/virtio/virtio-scsi.h"
71 #include "hw/virtio/vhost-scsi-common.h"
72
73 #include "exec/ram_addr.h"
74 #include "hw/usb.h"
75 #include "qemu/config-file.h"
76 #include "qemu/error-report.h"
77 #include "trace.h"
78 #include "hw/nmi.h"
79 #include "hw/intc/intc.h"
80
81 #include "hw/ppc/spapr_cpu_core.h"
82 #include "hw/mem/memory-device.h"
83 #include "hw/ppc/spapr_tpm_proxy.h"
84 #include "hw/ppc/spapr_nvdimm.h"
85 #include "hw/ppc/spapr_numa.h"
86 #include "hw/ppc/pef.h"
87
88 #include "monitor/monitor.h"
89
90 #include <libfdt.h>
91
92 /* SLOF memory layout:
93 *
94 * SLOF raw image loaded at 0, copies its romfs right below the flat
95 * device-tree, then position SLOF itself 31M below that
96 *
97 * So we set FW_OVERHEAD to 40MB which should account for all of that
98 * and more
99 *
100 * We load our kernel at 4M, leaving space for SLOF initial image
101 */
102 #define FDT_MAX_ADDR 0x80000000 /* FDT must stay below that */
103 #define FW_MAX_SIZE 0x400000
104 #define FW_FILE_NAME "slof.bin"
105 #define FW_FILE_NAME_VOF "vof.bin"
106 #define FW_OVERHEAD 0x2800000
107 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
108
109 #define MIN_RMA_SLOF (128 * MiB)
110
111 #define PHANDLE_INTC 0x00001111
112
113 /* These two functions implement the VCPU id numbering: one to compute them
114 * all and one to identify thread 0 of a VCORE. Any change to the first one
115 * is likely to have an impact on the second one, so let's keep them close.
116 */
117 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
118 {
119 MachineState *ms = MACHINE(spapr);
120 unsigned int smp_threads = ms->smp.threads;
121
122 assert(spapr->vsmt);
123 return
124 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
125 }
126 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
127 PowerPCCPU *cpu)
128 {
129 assert(spapr->vsmt);
130 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
131 }
132
133 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
134 {
135 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
136 * and newer QEMUs don't even have them. In both cases, we don't want
137 * to send anything on the wire.
138 */
139 return false;
140 }
141
142 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
143 .name = "icp/server",
144 .version_id = 1,
145 .minimum_version_id = 1,
146 .needed = pre_2_10_vmstate_dummy_icp_needed,
147 .fields = (VMStateField[]) {
148 VMSTATE_UNUSED(4), /* uint32_t xirr */
149 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
150 VMSTATE_UNUSED(1), /* uint8_t mfrr */
151 VMSTATE_END_OF_LIST()
152 },
153 };
154
155 static void pre_2_10_vmstate_register_dummy_icp(int i)
156 {
157 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
158 (void *)(uintptr_t) i);
159 }
160
161 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
162 {
163 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
164 (void *)(uintptr_t) i);
165 }
166
167 int spapr_max_server_number(SpaprMachineState *spapr)
168 {
169 MachineState *ms = MACHINE(spapr);
170
171 assert(spapr->vsmt);
172 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
173 }
174
175 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
176 int smt_threads)
177 {
178 int i, ret = 0;
179 uint32_t servers_prop[smt_threads];
180 uint32_t gservers_prop[smt_threads * 2];
181 int index = spapr_get_vcpu_id(cpu);
182
183 if (cpu->compat_pvr) {
184 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
185 if (ret < 0) {
186 return ret;
187 }
188 }
189
190 /* Build interrupt servers and gservers properties */
191 for (i = 0; i < smt_threads; i++) {
192 servers_prop[i] = cpu_to_be32(index + i);
193 /* Hack, direct the group queues back to cpu 0 */
194 gservers_prop[i*2] = cpu_to_be32(index + i);
195 gservers_prop[i*2 + 1] = 0;
196 }
197 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
198 servers_prop, sizeof(servers_prop));
199 if (ret < 0) {
200 return ret;
201 }
202 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
203 gservers_prop, sizeof(gservers_prop));
204
205 return ret;
206 }
207
208 static void spapr_dt_pa_features(SpaprMachineState *spapr,
209 PowerPCCPU *cpu,
210 void *fdt, int offset)
211 {
212 uint8_t pa_features_206[] = { 6, 0,
213 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
214 uint8_t pa_features_207[] = { 24, 0,
215 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
216 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
217 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
218 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
219 uint8_t pa_features_300[] = { 66, 0,
220 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
221 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
222 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
223 /* 6: DS207 */
224 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
225 /* 16: Vector */
226 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
227 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
228 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
229 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
230 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
231 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
232 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
233 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
234 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
235 /* 42: PM, 44: PC RA, 46: SC vec'd */
236 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
237 /* 48: SIMD, 50: QP BFP, 52: String */
238 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
239 /* 54: DecFP, 56: DecI, 58: SHA */
240 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
241 /* 60: NM atomic, 62: RNG */
242 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
243 };
244 uint8_t *pa_features = NULL;
245 size_t pa_size;
246
247 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
248 pa_features = pa_features_206;
249 pa_size = sizeof(pa_features_206);
250 }
251 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
252 pa_features = pa_features_207;
253 pa_size = sizeof(pa_features_207);
254 }
255 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
256 pa_features = pa_features_300;
257 pa_size = sizeof(pa_features_300);
258 }
259 if (!pa_features) {
260 return;
261 }
262
263 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
264 /*
265 * Note: we keep CI large pages off by default because a 64K capable
266 * guest provisioned with large pages might otherwise try to map a qemu
267 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
268 * even if that qemu runs on a 4k host.
269 * We dd this bit back here if we are confident this is not an issue
270 */
271 pa_features[3] |= 0x20;
272 }
273 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
274 pa_features[24] |= 0x80; /* Transactional memory support */
275 }
276 if (spapr->cas_pre_isa3_guest && pa_size > 40) {
277 /* Workaround for broken kernels that attempt (guest) radix
278 * mode when they can't handle it, if they see the radix bit set
279 * in pa-features. So hide it from them. */
280 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
281 }
282
283 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
284 }
285
286 static hwaddr spapr_node0_size(MachineState *machine)
287 {
288 if (machine->numa_state->num_nodes) {
289 int i;
290 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
291 if (machine->numa_state->nodes[i].node_mem) {
292 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
293 machine->ram_size);
294 }
295 }
296 }
297 return machine->ram_size;
298 }
299
300 static void add_str(GString *s, const gchar *s1)
301 {
302 g_string_append_len(s, s1, strlen(s1) + 1);
303 }
304
305 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
306 hwaddr start, hwaddr size)
307 {
308 char mem_name[32];
309 uint64_t mem_reg_property[2];
310 int off;
311
312 mem_reg_property[0] = cpu_to_be64(start);
313 mem_reg_property[1] = cpu_to_be64(size);
314
315 sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
316 off = fdt_add_subnode(fdt, 0, mem_name);
317 _FDT(off);
318 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
319 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
320 sizeof(mem_reg_property))));
321 spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
322 return off;
323 }
324
325 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
326 {
327 MemoryDeviceInfoList *info;
328
329 for (info = list; info; info = info->next) {
330 MemoryDeviceInfo *value = info->value;
331
332 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
333 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
334
335 if (addr >= pcdimm_info->addr &&
336 addr < (pcdimm_info->addr + pcdimm_info->size)) {
337 return pcdimm_info->node;
338 }
339 }
340 }
341
342 return -1;
343 }
344
345 struct sPAPRDrconfCellV2 {
346 uint32_t seq_lmbs;
347 uint64_t base_addr;
348 uint32_t drc_index;
349 uint32_t aa_index;
350 uint32_t flags;
351 } QEMU_PACKED;
352
353 typedef struct DrconfCellQueue {
354 struct sPAPRDrconfCellV2 cell;
355 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
356 } DrconfCellQueue;
357
358 static DrconfCellQueue *
359 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
360 uint32_t drc_index, uint32_t aa_index,
361 uint32_t flags)
362 {
363 DrconfCellQueue *elem;
364
365 elem = g_malloc0(sizeof(*elem));
366 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
367 elem->cell.base_addr = cpu_to_be64(base_addr);
368 elem->cell.drc_index = cpu_to_be32(drc_index);
369 elem->cell.aa_index = cpu_to_be32(aa_index);
370 elem->cell.flags = cpu_to_be32(flags);
371
372 return elem;
373 }
374
375 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
376 int offset, MemoryDeviceInfoList *dimms)
377 {
378 MachineState *machine = MACHINE(spapr);
379 uint8_t *int_buf, *cur_index;
380 int ret;
381 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
382 uint64_t addr, cur_addr, size;
383 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
384 uint64_t mem_end = machine->device_memory->base +
385 memory_region_size(&machine->device_memory->mr);
386 uint32_t node, buf_len, nr_entries = 0;
387 SpaprDrc *drc;
388 DrconfCellQueue *elem, *next;
389 MemoryDeviceInfoList *info;
390 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
391 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
392
393 /* Entry to cover RAM and the gap area */
394 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
395 SPAPR_LMB_FLAGS_RESERVED |
396 SPAPR_LMB_FLAGS_DRC_INVALID);
397 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
398 nr_entries++;
399
400 cur_addr = machine->device_memory->base;
401 for (info = dimms; info; info = info->next) {
402 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
403
404 addr = di->addr;
405 size = di->size;
406 node = di->node;
407
408 /*
409 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
410 * area is marked hotpluggable in the next iteration for the bigger
411 * chunk including the NVDIMM occupied area.
412 */
413 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
414 continue;
415
416 /* Entry for hot-pluggable area */
417 if (cur_addr < addr) {
418 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
419 g_assert(drc);
420 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
421 cur_addr, spapr_drc_index(drc), -1, 0);
422 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
423 nr_entries++;
424 }
425
426 /* Entry for DIMM */
427 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
428 g_assert(drc);
429 elem = spapr_get_drconf_cell(size / lmb_size, addr,
430 spapr_drc_index(drc), node,
431 (SPAPR_LMB_FLAGS_ASSIGNED |
432 SPAPR_LMB_FLAGS_HOTREMOVABLE));
433 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
434 nr_entries++;
435 cur_addr = addr + size;
436 }
437
438 /* Entry for remaining hotpluggable area */
439 if (cur_addr < mem_end) {
440 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
441 g_assert(drc);
442 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
443 cur_addr, spapr_drc_index(drc), -1, 0);
444 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
445 nr_entries++;
446 }
447
448 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
449 int_buf = cur_index = g_malloc0(buf_len);
450 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
451 cur_index += sizeof(nr_entries);
452
453 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
454 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
455 cur_index += sizeof(elem->cell);
456 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
457 g_free(elem);
458 }
459
460 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
461 g_free(int_buf);
462 if (ret < 0) {
463 return -1;
464 }
465 return 0;
466 }
467
468 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
469 int offset, MemoryDeviceInfoList *dimms)
470 {
471 MachineState *machine = MACHINE(spapr);
472 int i, ret;
473 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
474 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
475 uint32_t nr_lmbs = (machine->device_memory->base +
476 memory_region_size(&machine->device_memory->mr)) /
477 lmb_size;
478 uint32_t *int_buf, *cur_index, buf_len;
479
480 /*
481 * Allocate enough buffer size to fit in ibm,dynamic-memory
482 */
483 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
484 cur_index = int_buf = g_malloc0(buf_len);
485 int_buf[0] = cpu_to_be32(nr_lmbs);
486 cur_index++;
487 for (i = 0; i < nr_lmbs; i++) {
488 uint64_t addr = i * lmb_size;
489 uint32_t *dynamic_memory = cur_index;
490
491 if (i >= device_lmb_start) {
492 SpaprDrc *drc;
493
494 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
495 g_assert(drc);
496
497 dynamic_memory[0] = cpu_to_be32(addr >> 32);
498 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
499 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
500 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
501 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
502 if (memory_region_present(get_system_memory(), addr)) {
503 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
504 } else {
505 dynamic_memory[5] = cpu_to_be32(0);
506 }
507 } else {
508 /*
509 * LMB information for RMA, boot time RAM and gap b/n RAM and
510 * device memory region -- all these are marked as reserved
511 * and as having no valid DRC.
512 */
513 dynamic_memory[0] = cpu_to_be32(addr >> 32);
514 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
515 dynamic_memory[2] = cpu_to_be32(0);
516 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
517 dynamic_memory[4] = cpu_to_be32(-1);
518 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
519 SPAPR_LMB_FLAGS_DRC_INVALID);
520 }
521
522 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
523 }
524 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
525 g_free(int_buf);
526 if (ret < 0) {
527 return -1;
528 }
529 return 0;
530 }
531
532 /*
533 * Adds ibm,dynamic-reconfiguration-memory node.
534 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
535 * of this device tree node.
536 */
537 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
538 void *fdt)
539 {
540 MachineState *machine = MACHINE(spapr);
541 int ret, offset;
542 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
543 uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
544 cpu_to_be32(lmb_size & 0xffffffff)};
545 MemoryDeviceInfoList *dimms = NULL;
546
547 /*
548 * Don't create the node if there is no device memory
549 */
550 if (machine->ram_size == machine->maxram_size) {
551 return 0;
552 }
553
554 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
555
556 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
557 sizeof(prop_lmb_size));
558 if (ret < 0) {
559 return ret;
560 }
561
562 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
563 if (ret < 0) {
564 return ret;
565 }
566
567 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
568 if (ret < 0) {
569 return ret;
570 }
571
572 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
573 dimms = qmp_memory_device_list();
574 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
575 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
576 } else {
577 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
578 }
579 qapi_free_MemoryDeviceInfoList(dimms);
580
581 if (ret < 0) {
582 return ret;
583 }
584
585 ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
586
587 return ret;
588 }
589
590 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
591 {
592 MachineState *machine = MACHINE(spapr);
593 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
594 hwaddr mem_start, node_size;
595 int i, nb_nodes = machine->numa_state->num_nodes;
596 NodeInfo *nodes = machine->numa_state->nodes;
597
598 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
599 if (!nodes[i].node_mem) {
600 continue;
601 }
602 if (mem_start >= machine->ram_size) {
603 node_size = 0;
604 } else {
605 node_size = nodes[i].node_mem;
606 if (node_size > machine->ram_size - mem_start) {
607 node_size = machine->ram_size - mem_start;
608 }
609 }
610 if (!mem_start) {
611 /* spapr_machine_init() checks for rma_size <= node0_size
612 * already */
613 spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
614 mem_start += spapr->rma_size;
615 node_size -= spapr->rma_size;
616 }
617 for ( ; node_size; ) {
618 hwaddr sizetmp = pow2floor(node_size);
619
620 /* mem_start != 0 here */
621 if (ctzl(mem_start) < ctzl(sizetmp)) {
622 sizetmp = 1ULL << ctzl(mem_start);
623 }
624
625 spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
626 node_size -= sizetmp;
627 mem_start += sizetmp;
628 }
629 }
630
631 /* Generate ibm,dynamic-reconfiguration-memory node if required */
632 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
633 int ret;
634
635 g_assert(smc->dr_lmb_enabled);
636 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
637 if (ret) {
638 return ret;
639 }
640 }
641
642 return 0;
643 }
644
645 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
646 SpaprMachineState *spapr)
647 {
648 MachineState *ms = MACHINE(spapr);
649 PowerPCCPU *cpu = POWERPC_CPU(cs);
650 CPUPPCState *env = &cpu->env;
651 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
652 int index = spapr_get_vcpu_id(cpu);
653 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
654 0xffffffff, 0xffffffff};
655 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
656 : SPAPR_TIMEBASE_FREQ;
657 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
658 uint32_t page_sizes_prop[64];
659 size_t page_sizes_prop_size;
660 unsigned int smp_threads = ms->smp.threads;
661 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
662 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
663 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
664 SpaprDrc *drc;
665 int drc_index;
666 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
667 int i;
668
669 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
670 if (drc) {
671 drc_index = spapr_drc_index(drc);
672 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
673 }
674
675 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
676 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
677
678 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
679 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
680 env->dcache_line_size)));
681 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
682 env->dcache_line_size)));
683 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
684 env->icache_line_size)));
685 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
686 env->icache_line_size)));
687
688 if (pcc->l1_dcache_size) {
689 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
690 pcc->l1_dcache_size)));
691 } else {
692 warn_report("Unknown L1 dcache size for cpu");
693 }
694 if (pcc->l1_icache_size) {
695 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
696 pcc->l1_icache_size)));
697 } else {
698 warn_report("Unknown L1 icache size for cpu");
699 }
700
701 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
702 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
703 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
704 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
705 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
706 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
707
708 if (ppc_has_spr(cpu, SPR_PURR)) {
709 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
710 }
711 if (ppc_has_spr(cpu, SPR_PURR)) {
712 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
713 }
714
715 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
716 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
717 segs, sizeof(segs))));
718 }
719
720 /* Advertise VSX (vector extensions) if available
721 * 1 == VMX / Altivec available
722 * 2 == VSX available
723 *
724 * Only CPUs for which we create core types in spapr_cpu_core.c
725 * are possible, and all of those have VMX */
726 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
727 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
728 } else {
729 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
730 }
731
732 /* Advertise DFP (Decimal Floating Point) if available
733 * 0 / no property == no DFP
734 * 1 == DFP available */
735 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
736 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
737 }
738
739 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
740 sizeof(page_sizes_prop));
741 if (page_sizes_prop_size) {
742 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
743 page_sizes_prop, page_sizes_prop_size)));
744 }
745
746 spapr_dt_pa_features(spapr, cpu, fdt, offset);
747
748 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
749 cs->cpu_index / vcpus_per_socket)));
750
751 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
752 pft_size_prop, sizeof(pft_size_prop))));
753
754 if (ms->numa_state->num_nodes > 1) {
755 _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
756 }
757
758 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
759
760 if (pcc->radix_page_info) {
761 for (i = 0; i < pcc->radix_page_info->count; i++) {
762 radix_AP_encodings[i] =
763 cpu_to_be32(pcc->radix_page_info->entries[i]);
764 }
765 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
766 radix_AP_encodings,
767 pcc->radix_page_info->count *
768 sizeof(radix_AP_encodings[0]))));
769 }
770
771 /*
772 * We set this property to let the guest know that it can use the large
773 * decrementer and its width in bits.
774 */
775 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
776 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
777 pcc->lrg_decr_bits)));
778 }
779
780 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
781 {
782 CPUState **rev;
783 CPUState *cs;
784 int n_cpus;
785 int cpus_offset;
786 int i;
787
788 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
789 _FDT(cpus_offset);
790 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
791 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
792
793 /*
794 * We walk the CPUs in reverse order to ensure that CPU DT nodes
795 * created by fdt_add_subnode() end up in the right order in FDT
796 * for the guest kernel the enumerate the CPUs correctly.
797 *
798 * The CPU list cannot be traversed in reverse order, so we need
799 * to do extra work.
800 */
801 n_cpus = 0;
802 rev = NULL;
803 CPU_FOREACH(cs) {
804 rev = g_renew(CPUState *, rev, n_cpus + 1);
805 rev[n_cpus++] = cs;
806 }
807
808 for (i = n_cpus - 1; i >= 0; i--) {
809 CPUState *cs = rev[i];
810 PowerPCCPU *cpu = POWERPC_CPU(cs);
811 int index = spapr_get_vcpu_id(cpu);
812 DeviceClass *dc = DEVICE_GET_CLASS(cs);
813 g_autofree char *nodename = NULL;
814 int offset;
815
816 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
817 continue;
818 }
819
820 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
821 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
822 _FDT(offset);
823 spapr_dt_cpu(cs, fdt, offset, spapr);
824 }
825
826 g_free(rev);
827 }
828
829 static int spapr_dt_rng(void *fdt)
830 {
831 int node;
832 int ret;
833
834 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
835 if (node <= 0) {
836 return -1;
837 }
838 ret = fdt_setprop_string(fdt, node, "device_type",
839 "ibm,platform-facilities");
840 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
841 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
842
843 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
844 if (node <= 0) {
845 return -1;
846 }
847 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
848
849 return ret ? -1 : 0;
850 }
851
852 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
853 {
854 MachineState *ms = MACHINE(spapr);
855 int rtas;
856 GString *hypertas = g_string_sized_new(256);
857 GString *qemu_hypertas = g_string_sized_new(256);
858 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
859 memory_region_size(&MACHINE(spapr)->device_memory->mr);
860 uint32_t lrdr_capacity[] = {
861 cpu_to_be32(max_device_addr >> 32),
862 cpu_to_be32(max_device_addr & 0xffffffff),
863 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
864 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
865 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
866 };
867
868 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
869
870 /* hypertas */
871 add_str(hypertas, "hcall-pft");
872 add_str(hypertas, "hcall-term");
873 add_str(hypertas, "hcall-dabr");
874 add_str(hypertas, "hcall-interrupt");
875 add_str(hypertas, "hcall-tce");
876 add_str(hypertas, "hcall-vio");
877 add_str(hypertas, "hcall-splpar");
878 add_str(hypertas, "hcall-join");
879 add_str(hypertas, "hcall-bulk");
880 add_str(hypertas, "hcall-set-mode");
881 add_str(hypertas, "hcall-sprg0");
882 add_str(hypertas, "hcall-copy");
883 add_str(hypertas, "hcall-debug");
884 add_str(hypertas, "hcall-vphn");
885 if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) {
886 add_str(hypertas, "hcall-rpt-invalidate");
887 }
888
889 add_str(qemu_hypertas, "hcall-memop1");
890
891 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
892 add_str(hypertas, "hcall-multi-tce");
893 }
894
895 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
896 add_str(hypertas, "hcall-hpt-resize");
897 }
898
899 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
900 hypertas->str, hypertas->len));
901 g_string_free(hypertas, TRUE);
902 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
903 qemu_hypertas->str, qemu_hypertas->len));
904 g_string_free(qemu_hypertas, TRUE);
905
906 spapr_numa_write_rtas_dt(spapr, fdt, rtas);
907
908 /*
909 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
910 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
911 *
912 * The system reset requirements are driven by existing Linux and PowerVM
913 * implementation which (contrary to PAPR) saves r3 in the error log
914 * structure like machine check, so Linux expects to find the saved r3
915 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
916 * does not look at the error value).
917 *
918 * System reset interrupts are not subject to interlock like machine
919 * check, so this memory area could be corrupted if the sreset is
920 * interrupted by a machine check (or vice versa) if it was shared. To
921 * prevent this, system reset uses per-CPU areas for the sreset save
922 * area. A system reset that interrupts a system reset handler could
923 * still overwrite this area, but Linux doesn't try to recover in that
924 * case anyway.
925 *
926 * The extra 8 bytes is required because Linux's FWNMI error log check
927 * is off-by-one.
928 *
929 * RTAS_MIN_SIZE is required for the RTAS blob itself.
930 */
931 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE +
932 RTAS_ERROR_LOG_MAX +
933 ms->smp.max_cpus * sizeof(uint64_t) * 2 +
934 sizeof(uint64_t)));
935 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
936 RTAS_ERROR_LOG_MAX));
937 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
938 RTAS_EVENT_SCAN_RATE));
939
940 g_assert(msi_nonbroken);
941 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
942
943 /*
944 * According to PAPR, rtas ibm,os-term does not guarantee a return
945 * back to the guest cpu.
946 *
947 * While an additional ibm,extended-os-term property indicates
948 * that rtas call return will always occur. Set this property.
949 */
950 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
951
952 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
953 lrdr_capacity, sizeof(lrdr_capacity)));
954
955 spapr_dt_rtas_tokens(fdt, rtas);
956 }
957
958 /*
959 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
960 * and the XIVE features that the guest may request and thus the valid
961 * values for bytes 23..26 of option vector 5:
962 */
963 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
964 int chosen)
965 {
966 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
967
968 char val[2 * 4] = {
969 23, 0x00, /* XICS / XIVE mode */
970 24, 0x00, /* Hash/Radix, filled in below. */
971 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
972 26, 0x40, /* Radix options: GTSE == yes. */
973 };
974
975 if (spapr->irq->xics && spapr->irq->xive) {
976 val[1] = SPAPR_OV5_XIVE_BOTH;
977 } else if (spapr->irq->xive) {
978 val[1] = SPAPR_OV5_XIVE_EXPLOIT;
979 } else {
980 assert(spapr->irq->xics);
981 val[1] = SPAPR_OV5_XIVE_LEGACY;
982 }
983
984 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
985 first_ppc_cpu->compat_pvr)) {
986 /*
987 * If we're in a pre POWER9 compat mode then the guest should
988 * do hash and use the legacy interrupt mode
989 */
990 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
991 val[3] = 0x00; /* Hash */
992 spapr_check_mmu_mode(false);
993 } else if (kvm_enabled()) {
994 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
995 val[3] = 0x80; /* OV5_MMU_BOTH */
996 } else if (kvmppc_has_cap_mmu_radix()) {
997 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
998 } else {
999 val[3] = 0x00; /* Hash */
1000 }
1001 } else {
1002 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1003 val[3] = 0xC0;
1004 }
1005 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1006 val, sizeof(val)));
1007 }
1008
1009 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1010 {
1011 MachineState *machine = MACHINE(spapr);
1012 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1013 int chosen;
1014
1015 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1016
1017 if (reset) {
1018 const char *boot_device = spapr->boot_device;
1019 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1020 size_t cb = 0;
1021 char *bootlist = get_boot_devices_list(&cb);
1022
1023 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1024 _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1025 machine->kernel_cmdline));
1026 }
1027
1028 if (spapr->initrd_size) {
1029 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1030 spapr->initrd_base));
1031 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1032 spapr->initrd_base + spapr->initrd_size));
1033 }
1034
1035 if (spapr->kernel_size) {
1036 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1037 cpu_to_be64(spapr->kernel_size) };
1038
1039 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1040 &kprop, sizeof(kprop)));
1041 if (spapr->kernel_le) {
1042 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1043 }
1044 }
1045 if (boot_menu) {
1046 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1047 }
1048 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1049 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1050 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1051
1052 if (cb && bootlist) {
1053 int i;
1054
1055 for (i = 0; i < cb; i++) {
1056 if (bootlist[i] == '\n') {
1057 bootlist[i] = ' ';
1058 }
1059 }
1060 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1061 }
1062
1063 if (boot_device && strlen(boot_device)) {
1064 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1065 }
1066
1067 if (!spapr->has_graphics && stdout_path) {
1068 /*
1069 * "linux,stdout-path" and "stdout" properties are
1070 * deprecated by linux kernel. New platforms should only
1071 * use the "stdout-path" property. Set the new property
1072 * and continue using older property to remain compatible
1073 * with the existing firmware.
1074 */
1075 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1076 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1077 }
1078
1079 /*
1080 * We can deal with BAR reallocation just fine, advertise it
1081 * to the guest
1082 */
1083 if (smc->linux_pci_probe) {
1084 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1085 }
1086
1087 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1088
1089 g_free(stdout_path);
1090 g_free(bootlist);
1091 }
1092
1093 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1094 }
1095
1096 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1097 {
1098 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1099 * KVM to work under pHyp with some guest co-operation */
1100 int hypervisor;
1101 uint8_t hypercall[16];
1102
1103 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1104 /* indicate KVM hypercall interface */
1105 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1106 if (kvmppc_has_cap_fixup_hcalls()) {
1107 /*
1108 * Older KVM versions with older guest kernels were broken
1109 * with the magic page, don't allow the guest to map it.
1110 */
1111 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1112 sizeof(hypercall))) {
1113 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1114 hypercall, sizeof(hypercall)));
1115 }
1116 }
1117 }
1118
1119 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1120 {
1121 MachineState *machine = MACHINE(spapr);
1122 MachineClass *mc = MACHINE_GET_CLASS(machine);
1123 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1124 uint32_t root_drc_type_mask = 0;
1125 int ret;
1126 void *fdt;
1127 SpaprPhbState *phb;
1128 char *buf;
1129
1130 fdt = g_malloc0(space);
1131 _FDT((fdt_create_empty_tree(fdt, space)));
1132
1133 /* Root node */
1134 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1135 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1136 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1137
1138 /* Guest UUID & Name*/
1139 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1140 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1141 if (qemu_uuid_set) {
1142 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1143 }
1144 g_free(buf);
1145
1146 if (qemu_get_vm_name()) {
1147 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1148 qemu_get_vm_name()));
1149 }
1150
1151 /* Host Model & Serial Number */
1152 if (spapr->host_model) {
1153 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1154 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1155 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1156 g_free(buf);
1157 }
1158
1159 if (spapr->host_serial) {
1160 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1161 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1162 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1163 g_free(buf);
1164 }
1165
1166 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1167 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1168
1169 /* /interrupt controller */
1170 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1171
1172 ret = spapr_dt_memory(spapr, fdt);
1173 if (ret < 0) {
1174 error_report("couldn't setup memory nodes in fdt");
1175 exit(1);
1176 }
1177
1178 /* /vdevice */
1179 spapr_dt_vdevice(spapr->vio_bus, fdt);
1180
1181 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1182 ret = spapr_dt_rng(fdt);
1183 if (ret < 0) {
1184 error_report("could not set up rng device in the fdt");
1185 exit(1);
1186 }
1187 }
1188
1189 QLIST_FOREACH(phb, &spapr->phbs, list) {
1190 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1191 if (ret < 0) {
1192 error_report("couldn't setup PCI devices in fdt");
1193 exit(1);
1194 }
1195 }
1196
1197 spapr_dt_cpus(fdt, spapr);
1198
1199 /* ibm,drc-indexes and friends */
1200 if (smc->dr_lmb_enabled) {
1201 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB;
1202 }
1203 if (smc->dr_phb_enabled) {
1204 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB;
1205 }
1206 if (mc->nvdimm_supported) {
1207 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM;
1208 }
1209 if (root_drc_type_mask) {
1210 _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask));
1211 }
1212
1213 if (mc->has_hotpluggable_cpus) {
1214 int offset = fdt_path_offset(fdt, "/cpus");
1215 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1216 if (ret < 0) {
1217 error_report("Couldn't set up CPU DR device tree properties");
1218 exit(1);
1219 }
1220 }
1221
1222 /* /event-sources */
1223 spapr_dt_events(spapr, fdt);
1224
1225 /* /rtas */
1226 spapr_dt_rtas(spapr, fdt);
1227
1228 /* /chosen */
1229 spapr_dt_chosen(spapr, fdt, reset);
1230
1231 /* /hypervisor */
1232 if (kvm_enabled()) {
1233 spapr_dt_hypervisor(spapr, fdt);
1234 }
1235
1236 /* Build memory reserve map */
1237 if (reset) {
1238 if (spapr->kernel_size) {
1239 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1240 spapr->kernel_size)));
1241 }
1242 if (spapr->initrd_size) {
1243 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1244 spapr->initrd_size)));
1245 }
1246 }
1247
1248 /* NVDIMM devices */
1249 if (mc->nvdimm_supported) {
1250 spapr_dt_persistent_memory(spapr, fdt);
1251 }
1252
1253 return fdt;
1254 }
1255
1256 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1257 {
1258 SpaprMachineState *spapr = opaque;
1259
1260 return (addr & 0x0fffffff) + spapr->kernel_addr;
1261 }
1262
1263 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1264 PowerPCCPU *cpu)
1265 {
1266 CPUPPCState *env = &cpu->env;
1267
1268 /* The TCG path should also be holding the BQL at this point */
1269 g_assert(qemu_mutex_iothread_locked());
1270
1271 if (msr_pr) {
1272 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1273 env->gpr[3] = H_PRIVILEGE;
1274 } else {
1275 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1276 }
1277 }
1278
1279 struct LPCRSyncState {
1280 target_ulong value;
1281 target_ulong mask;
1282 };
1283
1284 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1285 {
1286 struct LPCRSyncState *s = arg.host_ptr;
1287 PowerPCCPU *cpu = POWERPC_CPU(cs);
1288 CPUPPCState *env = &cpu->env;
1289 target_ulong lpcr;
1290
1291 cpu_synchronize_state(cs);
1292 lpcr = env->spr[SPR_LPCR];
1293 lpcr &= ~s->mask;
1294 lpcr |= s->value;
1295 ppc_store_lpcr(cpu, lpcr);
1296 }
1297
1298 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1299 {
1300 CPUState *cs;
1301 struct LPCRSyncState s = {
1302 .value = value,
1303 .mask = mask
1304 };
1305 CPU_FOREACH(cs) {
1306 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1307 }
1308 }
1309
1310 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1311 {
1312 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1313
1314 /* Copy PATE1:GR into PATE0:HR */
1315 entry->dw0 = spapr->patb_entry & PATE0_HR;
1316 entry->dw1 = spapr->patb_entry;
1317 }
1318
1319 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1320 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1321 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1322 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1323 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1324
1325 /*
1326 * Get the fd to access the kernel htab, re-opening it if necessary
1327 */
1328 static int get_htab_fd(SpaprMachineState *spapr)
1329 {
1330 Error *local_err = NULL;
1331
1332 if (spapr->htab_fd >= 0) {
1333 return spapr->htab_fd;
1334 }
1335
1336 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1337 if (spapr->htab_fd < 0) {
1338 error_report_err(local_err);
1339 }
1340
1341 return spapr->htab_fd;
1342 }
1343
1344 void close_htab_fd(SpaprMachineState *spapr)
1345 {
1346 if (spapr->htab_fd >= 0) {
1347 close(spapr->htab_fd);
1348 }
1349 spapr->htab_fd = -1;
1350 }
1351
1352 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1353 {
1354 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1355
1356 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1357 }
1358
1359 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1360 {
1361 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1362
1363 assert(kvm_enabled());
1364
1365 if (!spapr->htab) {
1366 return 0;
1367 }
1368
1369 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1370 }
1371
1372 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1373 hwaddr ptex, int n)
1374 {
1375 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1376 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1377
1378 if (!spapr->htab) {
1379 /*
1380 * HTAB is controlled by KVM. Fetch into temporary buffer
1381 */
1382 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1383 kvmppc_read_hptes(hptes, ptex, n);
1384 return hptes;
1385 }
1386
1387 /*
1388 * HTAB is controlled by QEMU. Just point to the internally
1389 * accessible PTEG.
1390 */
1391 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1392 }
1393
1394 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1395 const ppc_hash_pte64_t *hptes,
1396 hwaddr ptex, int n)
1397 {
1398 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1399
1400 if (!spapr->htab) {
1401 g_free((void *)hptes);
1402 }
1403
1404 /* Nothing to do for qemu managed HPT */
1405 }
1406
1407 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1408 uint64_t pte0, uint64_t pte1)
1409 {
1410 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1411 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1412
1413 if (!spapr->htab) {
1414 kvmppc_write_hpte(ptex, pte0, pte1);
1415 } else {
1416 if (pte0 & HPTE64_V_VALID) {
1417 stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1418 /*
1419 * When setting valid, we write PTE1 first. This ensures
1420 * proper synchronization with the reading code in
1421 * ppc_hash64_pteg_search()
1422 */
1423 smp_wmb();
1424 stq_p(spapr->htab + offset, pte0);
1425 } else {
1426 stq_p(spapr->htab + offset, pte0);
1427 /*
1428 * When clearing it we set PTE0 first. This ensures proper
1429 * synchronization with the reading code in
1430 * ppc_hash64_pteg_search()
1431 */
1432 smp_wmb();
1433 stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1434 }
1435 }
1436 }
1437
1438 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1439 uint64_t pte1)
1440 {
1441 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C;
1442 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1443
1444 if (!spapr->htab) {
1445 /* There should always be a hash table when this is called */
1446 error_report("spapr_hpte_set_c called with no hash table !");
1447 return;
1448 }
1449
1450 /* The HW performs a non-atomic byte update */
1451 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1452 }
1453
1454 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1455 uint64_t pte1)
1456 {
1457 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R;
1458 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1459
1460 if (!spapr->htab) {
1461 /* There should always be a hash table when this is called */
1462 error_report("spapr_hpte_set_r called with no hash table !");
1463 return;
1464 }
1465
1466 /* The HW performs a non-atomic byte update */
1467 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1468 }
1469
1470 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1471 {
1472 int shift;
1473
1474 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1475 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1476 * that's much more than is needed for Linux guests */
1477 shift = ctz64(pow2ceil(ramsize)) - 7;
1478 shift = MAX(shift, 18); /* Minimum architected size */
1479 shift = MIN(shift, 46); /* Maximum architected size */
1480 return shift;
1481 }
1482
1483 void spapr_free_hpt(SpaprMachineState *spapr)
1484 {
1485 g_free(spapr->htab);
1486 spapr->htab = NULL;
1487 spapr->htab_shift = 0;
1488 close_htab_fd(spapr);
1489 }
1490
1491 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp)
1492 {
1493 ERRP_GUARD();
1494 long rc;
1495
1496 /* Clean up any HPT info from a previous boot */
1497 spapr_free_hpt(spapr);
1498
1499 rc = kvmppc_reset_htab(shift);
1500
1501 if (rc == -EOPNOTSUPP) {
1502 error_setg(errp, "HPT not supported in nested guests");
1503 return -EOPNOTSUPP;
1504 }
1505
1506 if (rc < 0) {
1507 /* kernel-side HPT needed, but couldn't allocate one */
1508 error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
1509 shift);
1510 error_append_hint(errp, "Try smaller maxmem?\n");
1511 return -errno;
1512 } else if (rc > 0) {
1513 /* kernel-side HPT allocated */
1514 if (rc != shift) {
1515 error_setg(errp,
1516 "Requested order %d HPT, but kernel allocated order %ld",
1517 shift, rc);
1518 error_append_hint(errp, "Try smaller maxmem?\n");
1519 return -ENOSPC;
1520 }
1521
1522 spapr->htab_shift = shift;
1523 spapr->htab = NULL;
1524 } else {
1525 /* kernel-side HPT not needed, allocate in userspace instead */
1526 size_t size = 1ULL << shift;
1527 int i;
1528
1529 spapr->htab = qemu_memalign(size, size);
1530 memset(spapr->htab, 0, size);
1531 spapr->htab_shift = shift;
1532
1533 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1534 DIRTY_HPTE(HPTE(spapr->htab, i));
1535 }
1536 }
1537 /* We're setting up a hash table, so that means we're not radix */
1538 spapr->patb_entry = 0;
1539 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1540 return 0;
1541 }
1542
1543 void spapr_setup_hpt(SpaprMachineState *spapr)
1544 {
1545 int hpt_shift;
1546
1547 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1548 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1549 } else {
1550 uint64_t current_ram_size;
1551
1552 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1553 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1554 }
1555 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1556
1557 if (kvm_enabled()) {
1558 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1559
1560 /* Check our RMA fits in the possible VRMA */
1561 if (vrma_limit < spapr->rma_size) {
1562 error_report("Unable to create %" HWADDR_PRIu
1563 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1564 spapr->rma_size / MiB, vrma_limit / MiB);
1565 exit(EXIT_FAILURE);
1566 }
1567 }
1568 }
1569
1570 void spapr_check_mmu_mode(bool guest_radix)
1571 {
1572 if (guest_radix) {
1573 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1574 error_report("Guest requested unavailable MMU mode (radix).");
1575 exit(EXIT_FAILURE);
1576 }
1577 } else {
1578 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1579 && !kvmppc_has_cap_mmu_hash_v3()) {
1580 error_report("Guest requested unavailable MMU mode (hash).");
1581 exit(EXIT_FAILURE);
1582 }
1583 }
1584 }
1585
1586 static void spapr_machine_reset(MachineState *machine)
1587 {
1588 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1589 PowerPCCPU *first_ppc_cpu;
1590 hwaddr fdt_addr;
1591 void *fdt;
1592 int rc;
1593
1594 pef_kvm_reset(machine->cgs, &error_fatal);
1595 spapr_caps_apply(spapr);
1596
1597 first_ppc_cpu = POWERPC_CPU(first_cpu);
1598 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1599 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1600 spapr->max_compat_pvr)) {
1601 /*
1602 * If using KVM with radix mode available, VCPUs can be started
1603 * without a HPT because KVM will start them in radix mode.
1604 * Set the GR bit in PATE so that we know there is no HPT.
1605 */
1606 spapr->patb_entry = PATE1_GR;
1607 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1608 } else {
1609 spapr_setup_hpt(spapr);
1610 }
1611
1612 qemu_devices_reset();
1613
1614 spapr_ovec_cleanup(spapr->ov5_cas);
1615 spapr->ov5_cas = spapr_ovec_new();
1616
1617 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1618
1619 /*
1620 * This is fixing some of the default configuration of the XIVE
1621 * devices. To be called after the reset of the machine devices.
1622 */
1623 spapr_irq_reset(spapr, &error_fatal);
1624
1625 /*
1626 * There is no CAS under qtest. Simulate one to please the code that
1627 * depends on spapr->ov5_cas. This is especially needed to test device
1628 * unplug, so we do that before resetting the DRCs.
1629 */
1630 if (qtest_enabled()) {
1631 spapr_ovec_cleanup(spapr->ov5_cas);
1632 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1633 }
1634
1635 /* DRC reset may cause a device to be unplugged. This will cause troubles
1636 * if this device is used by another device (eg, a running vhost backend
1637 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1638 * situations, we reset DRCs after all devices have been reset.
1639 */
1640 spapr_drc_reset_all(spapr);
1641
1642 spapr_clear_pending_events(spapr);
1643
1644 /*
1645 * We place the device tree just below either the top of the RMA,
1646 * or just below 2GB, whichever is lower, so that it can be
1647 * processed with 32-bit real mode code if necessary
1648 */
1649 fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE;
1650
1651 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1652 if (spapr->vof) {
1653 spapr_vof_reset(spapr, fdt, &error_fatal);
1654 /*
1655 * Do not pack the FDT as the client may change properties.
1656 * VOF client does not expect the FDT so we do not load it to the VM.
1657 */
1658 } else {
1659 rc = fdt_pack(fdt);
1660 /* Should only fail if we've built a corrupted tree */
1661 assert(rc == 0);
1662
1663 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT,
1664 0, fdt_addr, 0);
1665 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1666 }
1667 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1668
1669 g_free(spapr->fdt_blob);
1670 spapr->fdt_size = fdt_totalsize(fdt);
1671 spapr->fdt_initial_size = spapr->fdt_size;
1672 spapr->fdt_blob = fdt;
1673
1674 /* Set up the entry state */
1675 first_ppc_cpu->env.gpr[5] = 0;
1676
1677 spapr->fwnmi_system_reset_addr = -1;
1678 spapr->fwnmi_machine_check_addr = -1;
1679 spapr->fwnmi_machine_check_interlock = -1;
1680
1681 /* Signal all vCPUs waiting on this condition */
1682 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1683
1684 migrate_del_blocker(spapr->fwnmi_migration_blocker);
1685 }
1686
1687 static void spapr_create_nvram(SpaprMachineState *spapr)
1688 {
1689 DeviceState *dev = qdev_new("spapr-nvram");
1690 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1691
1692 if (dinfo) {
1693 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1694 &error_fatal);
1695 }
1696
1697 qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1698
1699 spapr->nvram = (struct SpaprNvram *)dev;
1700 }
1701
1702 static void spapr_rtc_create(SpaprMachineState *spapr)
1703 {
1704 object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1705 sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1706 &error_fatal, NULL);
1707 qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1708 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1709 "date");
1710 }
1711
1712 /* Returns whether we want to use VGA or not */
1713 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1714 {
1715 switch (vga_interface_type) {
1716 case VGA_NONE:
1717 return false;
1718 case VGA_DEVICE:
1719 return true;
1720 case VGA_STD:
1721 case VGA_VIRTIO:
1722 case VGA_CIRRUS:
1723 return pci_vga_init(pci_bus) != NULL;
1724 default:
1725 error_setg(errp,
1726 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1727 return false;
1728 }
1729 }
1730
1731 static int spapr_pre_load(void *opaque)
1732 {
1733 int rc;
1734
1735 rc = spapr_caps_pre_load(opaque);
1736 if (rc) {
1737 return rc;
1738 }
1739
1740 return 0;
1741 }
1742
1743 static int spapr_post_load(void *opaque, int version_id)
1744 {
1745 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1746 int err = 0;
1747
1748 err = spapr_caps_post_migration(spapr);
1749 if (err) {
1750 return err;
1751 }
1752
1753 /*
1754 * In earlier versions, there was no separate qdev for the PAPR
1755 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1756 * So when migrating from those versions, poke the incoming offset
1757 * value into the RTC device
1758 */
1759 if (version_id < 3) {
1760 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1761 if (err) {
1762 return err;
1763 }
1764 }
1765
1766 if (kvm_enabled() && spapr->patb_entry) {
1767 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1768 bool radix = !!(spapr->patb_entry & PATE1_GR);
1769 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1770
1771 /*
1772 * Update LPCR:HR and UPRT as they may not be set properly in
1773 * the stream
1774 */
1775 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1776 LPCR_HR | LPCR_UPRT);
1777
1778 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1779 if (err) {
1780 error_report("Process table config unsupported by the host");
1781 return -EINVAL;
1782 }
1783 }
1784
1785 err = spapr_irq_post_load(spapr, version_id);
1786 if (err) {
1787 return err;
1788 }
1789
1790 return err;
1791 }
1792
1793 static int spapr_pre_save(void *opaque)
1794 {
1795 int rc;
1796
1797 rc = spapr_caps_pre_save(opaque);
1798 if (rc) {
1799 return rc;
1800 }
1801
1802 return 0;
1803 }
1804
1805 static bool version_before_3(void *opaque, int version_id)
1806 {
1807 return version_id < 3;
1808 }
1809
1810 static bool spapr_pending_events_needed(void *opaque)
1811 {
1812 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1813 return !QTAILQ_EMPTY(&spapr->pending_events);
1814 }
1815
1816 static const VMStateDescription vmstate_spapr_event_entry = {
1817 .name = "spapr_event_log_entry",
1818 .version_id = 1,
1819 .minimum_version_id = 1,
1820 .fields = (VMStateField[]) {
1821 VMSTATE_UINT32(summary, SpaprEventLogEntry),
1822 VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1823 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1824 NULL, extended_length),
1825 VMSTATE_END_OF_LIST()
1826 },
1827 };
1828
1829 static const VMStateDescription vmstate_spapr_pending_events = {
1830 .name = "spapr_pending_events",
1831 .version_id = 1,
1832 .minimum_version_id = 1,
1833 .needed = spapr_pending_events_needed,
1834 .fields = (VMStateField[]) {
1835 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1836 vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1837 VMSTATE_END_OF_LIST()
1838 },
1839 };
1840
1841 static bool spapr_ov5_cas_needed(void *opaque)
1842 {
1843 SpaprMachineState *spapr = opaque;
1844 SpaprOptionVector *ov5_mask = spapr_ovec_new();
1845 bool cas_needed;
1846
1847 /* Prior to the introduction of SpaprOptionVector, we had two option
1848 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1849 * Both of these options encode machine topology into the device-tree
1850 * in such a way that the now-booted OS should still be able to interact
1851 * appropriately with QEMU regardless of what options were actually
1852 * negotiatied on the source side.
1853 *
1854 * As such, we can avoid migrating the CAS-negotiated options if these
1855 * are the only options available on the current machine/platform.
1856 * Since these are the only options available for pseries-2.7 and
1857 * earlier, this allows us to maintain old->new/new->old migration
1858 * compatibility.
1859 *
1860 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1861 * via default pseries-2.8 machines and explicit command-line parameters.
1862 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1863 * of the actual CAS-negotiated values to continue working properly. For
1864 * example, availability of memory unplug depends on knowing whether
1865 * OV5_HP_EVT was negotiated via CAS.
1866 *
1867 * Thus, for any cases where the set of available CAS-negotiatable
1868 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1869 * include the CAS-negotiated options in the migration stream, unless
1870 * if they affect boot time behaviour only.
1871 */
1872 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1873 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1874 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1875
1876 /* We need extra information if we have any bits outside the mask
1877 * defined above */
1878 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1879
1880 spapr_ovec_cleanup(ov5_mask);
1881
1882 return cas_needed;
1883 }
1884
1885 static const VMStateDescription vmstate_spapr_ov5_cas = {
1886 .name = "spapr_option_vector_ov5_cas",
1887 .version_id = 1,
1888 .minimum_version_id = 1,
1889 .needed = spapr_ov5_cas_needed,
1890 .fields = (VMStateField[]) {
1891 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1892 vmstate_spapr_ovec, SpaprOptionVector),
1893 VMSTATE_END_OF_LIST()
1894 },
1895 };
1896
1897 static bool spapr_patb_entry_needed(void *opaque)
1898 {
1899 SpaprMachineState *spapr = opaque;
1900
1901 return !!spapr->patb_entry;
1902 }
1903
1904 static const VMStateDescription vmstate_spapr_patb_entry = {
1905 .name = "spapr_patb_entry",
1906 .version_id = 1,
1907 .minimum_version_id = 1,
1908 .needed = spapr_patb_entry_needed,
1909 .fields = (VMStateField[]) {
1910 VMSTATE_UINT64(patb_entry, SpaprMachineState),
1911 VMSTATE_END_OF_LIST()
1912 },
1913 };
1914
1915 static bool spapr_irq_map_needed(void *opaque)
1916 {
1917 SpaprMachineState *spapr = opaque;
1918
1919 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1920 }
1921
1922 static const VMStateDescription vmstate_spapr_irq_map = {
1923 .name = "spapr_irq_map",
1924 .version_id = 1,
1925 .minimum_version_id = 1,
1926 .needed = spapr_irq_map_needed,
1927 .fields = (VMStateField[]) {
1928 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1929 VMSTATE_END_OF_LIST()
1930 },
1931 };
1932
1933 static bool spapr_dtb_needed(void *opaque)
1934 {
1935 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1936
1937 return smc->update_dt_enabled;
1938 }
1939
1940 static int spapr_dtb_pre_load(void *opaque)
1941 {
1942 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1943
1944 g_free(spapr->fdt_blob);
1945 spapr->fdt_blob = NULL;
1946 spapr->fdt_size = 0;
1947
1948 return 0;
1949 }
1950
1951 static const VMStateDescription vmstate_spapr_dtb = {
1952 .name = "spapr_dtb",
1953 .version_id = 1,
1954 .minimum_version_id = 1,
1955 .needed = spapr_dtb_needed,
1956 .pre_load = spapr_dtb_pre_load,
1957 .fields = (VMStateField[]) {
1958 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
1959 VMSTATE_UINT32(fdt_size, SpaprMachineState),
1960 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
1961 fdt_size),
1962 VMSTATE_END_OF_LIST()
1963 },
1964 };
1965
1966 static bool spapr_fwnmi_needed(void *opaque)
1967 {
1968 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1969
1970 return spapr->fwnmi_machine_check_addr != -1;
1971 }
1972
1973 static int spapr_fwnmi_pre_save(void *opaque)
1974 {
1975 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1976
1977 /*
1978 * Check if machine check handling is in progress and print a
1979 * warning message.
1980 */
1981 if (spapr->fwnmi_machine_check_interlock != -1) {
1982 warn_report("A machine check is being handled during migration. The"
1983 "handler may run and log hardware error on the destination");
1984 }
1985
1986 return 0;
1987 }
1988
1989 static const VMStateDescription vmstate_spapr_fwnmi = {
1990 .name = "spapr_fwnmi",
1991 .version_id = 1,
1992 .minimum_version_id = 1,
1993 .needed = spapr_fwnmi_needed,
1994 .pre_save = spapr_fwnmi_pre_save,
1995 .fields = (VMStateField[]) {
1996 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
1997 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
1998 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
1999 VMSTATE_END_OF_LIST()
2000 },
2001 };
2002
2003 static const VMStateDescription vmstate_spapr = {
2004 .name = "spapr",
2005 .version_id = 3,
2006 .minimum_version_id = 1,
2007 .pre_load = spapr_pre_load,
2008 .post_load = spapr_post_load,
2009 .pre_save = spapr_pre_save,
2010 .fields = (VMStateField[]) {
2011 /* used to be @next_irq */
2012 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2013
2014 /* RTC offset */
2015 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2016
2017 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2018 VMSTATE_END_OF_LIST()
2019 },
2020 .subsections = (const VMStateDescription*[]) {
2021 &vmstate_spapr_ov5_cas,
2022 &vmstate_spapr_patb_entry,
2023 &vmstate_spapr_pending_events,
2024 &vmstate_spapr_cap_htm,
2025 &vmstate_spapr_cap_vsx,
2026 &vmstate_spapr_cap_dfp,
2027 &vmstate_spapr_cap_cfpc,
2028 &vmstate_spapr_cap_sbbc,
2029 &vmstate_spapr_cap_ibs,
2030 &vmstate_spapr_cap_hpt_maxpagesize,
2031 &vmstate_spapr_irq_map,
2032 &vmstate_spapr_cap_nested_kvm_hv,
2033 &vmstate_spapr_dtb,
2034 &vmstate_spapr_cap_large_decr,
2035 &vmstate_spapr_cap_ccf_assist,
2036 &vmstate_spapr_cap_fwnmi,
2037 &vmstate_spapr_fwnmi,
2038 &vmstate_spapr_cap_rpt_invalidate,
2039 NULL
2040 }
2041 };
2042
2043 static int htab_save_setup(QEMUFile *f, void *opaque)
2044 {
2045 SpaprMachineState *spapr = opaque;
2046
2047 /* "Iteration" header */
2048 if (!spapr->htab_shift) {
2049 qemu_put_be32(f, -1);
2050 } else {
2051 qemu_put_be32(f, spapr->htab_shift);
2052 }
2053
2054 if (spapr->htab) {
2055 spapr->htab_save_index = 0;
2056 spapr->htab_first_pass = true;
2057 } else {
2058 if (spapr->htab_shift) {
2059 assert(kvm_enabled());
2060 }
2061 }
2062
2063
2064 return 0;
2065 }
2066
2067 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2068 int chunkstart, int n_valid, int n_invalid)
2069 {
2070 qemu_put_be32(f, chunkstart);
2071 qemu_put_be16(f, n_valid);
2072 qemu_put_be16(f, n_invalid);
2073 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2074 HASH_PTE_SIZE_64 * n_valid);
2075 }
2076
2077 static void htab_save_end_marker(QEMUFile *f)
2078 {
2079 qemu_put_be32(f, 0);
2080 qemu_put_be16(f, 0);
2081 qemu_put_be16(f, 0);
2082 }
2083
2084 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2085 int64_t max_ns)
2086 {
2087 bool has_timeout = max_ns != -1;
2088 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2089 int index = spapr->htab_save_index;
2090 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2091
2092 assert(spapr->htab_first_pass);
2093
2094 do {
2095 int chunkstart;
2096
2097 /* Consume invalid HPTEs */
2098 while ((index < htabslots)
2099 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2100 CLEAN_HPTE(HPTE(spapr->htab, index));
2101 index++;
2102 }
2103
2104 /* Consume valid HPTEs */
2105 chunkstart = index;
2106 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2107 && HPTE_VALID(HPTE(spapr->htab, index))) {
2108 CLEAN_HPTE(HPTE(spapr->htab, index));
2109 index++;
2110 }
2111
2112 if (index > chunkstart) {
2113 int n_valid = index - chunkstart;
2114
2115 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2116
2117 if (has_timeout &&
2118 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2119 break;
2120 }
2121 }
2122 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2123
2124 if (index >= htabslots) {
2125 assert(index == htabslots);
2126 index = 0;
2127 spapr->htab_first_pass = false;
2128 }
2129 spapr->htab_save_index = index;
2130 }
2131
2132 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2133 int64_t max_ns)
2134 {
2135 bool final = max_ns < 0;
2136 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2137 int examined = 0, sent = 0;
2138 int index = spapr->htab_save_index;
2139 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2140
2141 assert(!spapr->htab_first_pass);
2142
2143 do {
2144 int chunkstart, invalidstart;
2145
2146 /* Consume non-dirty HPTEs */
2147 while ((index < htabslots)
2148 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2149 index++;
2150 examined++;
2151 }
2152
2153 chunkstart = index;
2154 /* Consume valid dirty HPTEs */
2155 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2156 && HPTE_DIRTY(HPTE(spapr->htab, index))
2157 && HPTE_VALID(HPTE(spapr->htab, index))) {
2158 CLEAN_HPTE(HPTE(spapr->htab, index));
2159 index++;
2160 examined++;
2161 }
2162
2163 invalidstart = index;
2164 /* Consume invalid dirty HPTEs */
2165 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2166 && HPTE_DIRTY(HPTE(spapr->htab, index))
2167 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2168 CLEAN_HPTE(HPTE(spapr->htab, index));
2169 index++;
2170 examined++;
2171 }
2172
2173 if (index > chunkstart) {
2174 int n_valid = invalidstart - chunkstart;
2175 int n_invalid = index - invalidstart;
2176
2177 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2178 sent += index - chunkstart;
2179
2180 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2181 break;
2182 }
2183 }
2184
2185 if (examined >= htabslots) {
2186 break;
2187 }
2188
2189 if (index >= htabslots) {
2190 assert(index == htabslots);
2191 index = 0;
2192 }
2193 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2194
2195 if (index >= htabslots) {
2196 assert(index == htabslots);
2197 index = 0;
2198 }
2199
2200 spapr->htab_save_index = index;
2201
2202 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2203 }
2204
2205 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2206 #define MAX_KVM_BUF_SIZE 2048
2207
2208 static int htab_save_iterate(QEMUFile *f, void *opaque)
2209 {
2210 SpaprMachineState *spapr = opaque;
2211 int fd;
2212 int rc = 0;
2213
2214 /* Iteration header */
2215 if (!spapr->htab_shift) {
2216 qemu_put_be32(f, -1);
2217 return 1;
2218 } else {
2219 qemu_put_be32(f, 0);
2220 }
2221
2222 if (!spapr->htab) {
2223 assert(kvm_enabled());
2224
2225 fd = get_htab_fd(spapr);
2226 if (fd < 0) {
2227 return fd;
2228 }
2229
2230 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2231 if (rc < 0) {
2232 return rc;
2233 }
2234 } else if (spapr->htab_first_pass) {
2235 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2236 } else {
2237 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2238 }
2239
2240 htab_save_end_marker(f);
2241
2242 return rc;
2243 }
2244
2245 static int htab_save_complete(QEMUFile *f, void *opaque)
2246 {
2247 SpaprMachineState *spapr = opaque;
2248 int fd;
2249
2250 /* Iteration header */
2251 if (!spapr->htab_shift) {
2252 qemu_put_be32(f, -1);
2253 return 0;
2254 } else {
2255 qemu_put_be32(f, 0);
2256 }
2257
2258 if (!spapr->htab) {
2259 int rc;
2260
2261 assert(kvm_enabled());
2262
2263 fd = get_htab_fd(spapr);
2264 if (fd < 0) {
2265 return fd;
2266 }
2267
2268 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2269 if (rc < 0) {
2270 return rc;
2271 }
2272 } else {
2273 if (spapr->htab_first_pass) {
2274 htab_save_first_pass(f, spapr, -1);
2275 }
2276 htab_save_later_pass(f, spapr, -1);
2277 }
2278
2279 /* End marker */
2280 htab_save_end_marker(f);
2281
2282 return 0;
2283 }
2284
2285 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2286 {
2287 SpaprMachineState *spapr = opaque;
2288 uint32_t section_hdr;
2289 int fd = -1;
2290 Error *local_err = NULL;
2291
2292 if (version_id < 1 || version_id > 1) {
2293 error_report("htab_load() bad version");
2294 return -EINVAL;
2295 }
2296
2297 section_hdr = qemu_get_be32(f);
2298
2299 if (section_hdr == -1) {
2300 spapr_free_hpt(spapr);
2301 return 0;
2302 }
2303
2304 if (section_hdr) {
2305 int ret;
2306
2307 /* First section gives the htab size */
2308 ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2309 if (ret < 0) {
2310 error_report_err(local_err);
2311 return ret;
2312 }
2313 return 0;
2314 }
2315
2316 if (!spapr->htab) {
2317 assert(kvm_enabled());
2318
2319 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2320 if (fd < 0) {
2321 error_report_err(local_err);
2322 return fd;
2323 }
2324 }
2325
2326 while (true) {
2327 uint32_t index;
2328 uint16_t n_valid, n_invalid;
2329
2330 index = qemu_get_be32(f);
2331 n_valid = qemu_get_be16(f);
2332 n_invalid = qemu_get_be16(f);
2333
2334 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2335 /* End of Stream */
2336 break;
2337 }
2338
2339 if ((index + n_valid + n_invalid) >
2340 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2341 /* Bad index in stream */
2342 error_report(
2343 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2344 index, n_valid, n_invalid, spapr->htab_shift);
2345 return -EINVAL;
2346 }
2347
2348 if (spapr->htab) {
2349 if (n_valid) {
2350 qemu_get_buffer(f, HPTE(spapr->htab, index),
2351 HASH_PTE_SIZE_64 * n_valid);
2352 }
2353 if (n_invalid) {
2354 memset(HPTE(spapr->htab, index + n_valid), 0,
2355 HASH_PTE_SIZE_64 * n_invalid);
2356 }
2357 } else {
2358 int rc;
2359
2360 assert(fd >= 0);
2361
2362 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid,
2363 &local_err);
2364 if (rc < 0) {
2365 error_report_err(local_err);
2366 return rc;
2367 }
2368 }
2369 }
2370
2371 if (!spapr->htab) {
2372 assert(fd >= 0);
2373 close(fd);
2374 }
2375
2376 return 0;
2377 }
2378
2379 static void htab_save_cleanup(void *opaque)
2380 {
2381 SpaprMachineState *spapr = opaque;
2382
2383 close_htab_fd(spapr);
2384 }
2385
2386 static SaveVMHandlers savevm_htab_handlers = {
2387 .save_setup = htab_save_setup,
2388 .save_live_iterate = htab_save_iterate,
2389 .save_live_complete_precopy = htab_save_complete,
2390 .save_cleanup = htab_save_cleanup,
2391 .load_state = htab_load,
2392 };
2393
2394 static void spapr_boot_set(void *opaque, const char *boot_device,
2395 Error **errp)
2396 {
2397 SpaprMachineState *spapr = SPAPR_MACHINE(opaque);
2398
2399 g_free(spapr->boot_device);
2400 spapr->boot_device = g_strdup(boot_device);
2401 }
2402
2403 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2404 {
2405 MachineState *machine = MACHINE(spapr);
2406 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2407 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2408 int i;
2409
2410 for (i = 0; i < nr_lmbs; i++) {
2411 uint64_t addr;
2412
2413 addr = i * lmb_size + machine->device_memory->base;
2414 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2415 addr / lmb_size);
2416 }
2417 }
2418
2419 /*
2420 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2421 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2422 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2423 */
2424 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2425 {
2426 int i;
2427
2428 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2429 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2430 " is not aligned to %" PRIu64 " MiB",
2431 machine->ram_size,
2432 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2433 return;
2434 }
2435
2436 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2437 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2438 " is not aligned to %" PRIu64 " MiB",
2439 machine->ram_size,
2440 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2441 return;
2442 }
2443
2444 for (i = 0; i < machine->numa_state->num_nodes; i++) {
2445 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2446 error_setg(errp,
2447 "Node %d memory size 0x%" PRIx64
2448 " is not aligned to %" PRIu64 " MiB",
2449 i, machine->numa_state->nodes[i].node_mem,
2450 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2451 return;
2452 }
2453 }
2454 }
2455
2456 /* find cpu slot in machine->possible_cpus by core_id */
2457 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2458 {
2459 int index = id / ms->smp.threads;
2460
2461 if (index >= ms->possible_cpus->len) {
2462 return NULL;
2463 }
2464 if (idx) {
2465 *idx = index;
2466 }
2467 return &ms->possible_cpus->cpus[index];
2468 }
2469
2470 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2471 {
2472 MachineState *ms = MACHINE(spapr);
2473 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2474 Error *local_err = NULL;
2475 bool vsmt_user = !!spapr->vsmt;
2476 int kvm_smt = kvmppc_smt_threads();
2477 int ret;
2478 unsigned int smp_threads = ms->smp.threads;
2479
2480 if (!kvm_enabled() && (smp_threads > 1)) {
2481 error_setg(errp, "TCG cannot support more than 1 thread/core "
2482 "on a pseries machine");
2483 return;
2484 }
2485 if (!is_power_of_2(smp_threads)) {
2486 error_setg(errp, "Cannot support %d threads/core on a pseries "
2487 "machine because it must be a power of 2", smp_threads);
2488 return;
2489 }
2490
2491 /* Detemine the VSMT mode to use: */
2492 if (vsmt_user) {
2493 if (spapr->vsmt < smp_threads) {
2494 error_setg(errp, "Cannot support VSMT mode %d"
2495 " because it must be >= threads/core (%d)",
2496 spapr->vsmt, smp_threads);
2497 return;
2498 }
2499 /* In this case, spapr->vsmt has been set by the command line */
2500 } else if (!smc->smp_threads_vsmt) {
2501 /*
2502 * Default VSMT value is tricky, because we need it to be as
2503 * consistent as possible (for migration), but this requires
2504 * changing it for at least some existing cases. We pick 8 as
2505 * the value that we'd get with KVM on POWER8, the
2506 * overwhelmingly common case in production systems.
2507 */
2508 spapr->vsmt = MAX(8, smp_threads);
2509 } else {
2510 spapr->vsmt = smp_threads;
2511 }
2512
2513 /* KVM: If necessary, set the SMT mode: */
2514 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2515 ret = kvmppc_set_smt_threads(spapr->vsmt);
2516 if (ret) {
2517 /* Looks like KVM isn't able to change VSMT mode */
2518 error_setg(&local_err,
2519 "Failed to set KVM's VSMT mode to %d (errno %d)",
2520 spapr->vsmt, ret);
2521 /* We can live with that if the default one is big enough
2522 * for the number of threads, and a submultiple of the one
2523 * we want. In this case we'll waste some vcpu ids, but
2524 * behaviour will be correct */
2525 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2526 warn_report_err(local_err);
2527 } else {
2528 if (!vsmt_user) {
2529 error_append_hint(&local_err,
2530 "On PPC, a VM with %d threads/core"
2531 " on a host with %d threads/core"
2532 " requires the use of VSMT mode %d.\n",
2533 smp_threads, kvm_smt, spapr->vsmt);
2534 }
2535 kvmppc_error_append_smt_possible_hint(&local_err);
2536 error_propagate(errp, local_err);
2537 }
2538 }
2539 }
2540 /* else TCG: nothing to do currently */
2541 }
2542
2543 static void spapr_init_cpus(SpaprMachineState *spapr)
2544 {
2545 MachineState *machine = MACHINE(spapr);
2546 MachineClass *mc = MACHINE_GET_CLASS(machine);
2547 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2548 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2549 const CPUArchIdList *possible_cpus;
2550 unsigned int smp_cpus = machine->smp.cpus;
2551 unsigned int smp_threads = machine->smp.threads;
2552 unsigned int max_cpus = machine->smp.max_cpus;
2553 int boot_cores_nr = smp_cpus / smp_threads;
2554 int i;
2555
2556 possible_cpus = mc->possible_cpu_arch_ids(machine);
2557 if (mc->has_hotpluggable_cpus) {
2558 if (smp_cpus % smp_threads) {
2559 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2560 smp_cpus, smp_threads);
2561 exit(1);
2562 }
2563 if (max_cpus % smp_threads) {
2564 error_report("max_cpus (%u) must be multiple of threads (%u)",
2565 max_cpus, smp_threads);
2566 exit(1);
2567 }
2568 } else {
2569 if (max_cpus != smp_cpus) {
2570 error_report("This machine version does not support CPU hotplug");
2571 exit(1);
2572 }
2573 boot_cores_nr = possible_cpus->len;
2574 }
2575
2576 if (smc->pre_2_10_has_unused_icps) {
2577 int i;
2578
2579 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2580 /* Dummy entries get deregistered when real ICPState objects
2581 * are registered during CPU core hotplug.
2582 */
2583 pre_2_10_vmstate_register_dummy_icp(i);
2584 }
2585 }
2586
2587 for (i = 0; i < possible_cpus->len; i++) {
2588 int core_id = i * smp_threads;
2589
2590 if (mc->has_hotpluggable_cpus) {
2591 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2592 spapr_vcpu_id(spapr, core_id));
2593 }
2594
2595 if (i < boot_cores_nr) {
2596 Object *core = object_new(type);
2597 int nr_threads = smp_threads;
2598
2599 /* Handle the partially filled core for older machine types */
2600 if ((i + 1) * smp_threads >= smp_cpus) {
2601 nr_threads = smp_cpus - i * smp_threads;
2602 }
2603
2604 object_property_set_int(core, "nr-threads", nr_threads,
2605 &error_fatal);
2606 object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2607 &error_fatal);
2608 qdev_realize(DEVICE(core), NULL, &error_fatal);
2609
2610 object_unref(core);
2611 }
2612 }
2613 }
2614
2615 static PCIHostState *spapr_create_default_phb(void)
2616 {
2617 DeviceState *dev;
2618
2619 dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2620 qdev_prop_set_uint32(dev, "index", 0);
2621 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2622
2623 return PCI_HOST_BRIDGE(dev);
2624 }
2625
2626 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2627 {
2628 MachineState *machine = MACHINE(spapr);
2629 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2630 hwaddr rma_size = machine->ram_size;
2631 hwaddr node0_size = spapr_node0_size(machine);
2632
2633 /* RMA has to fit in the first NUMA node */
2634 rma_size = MIN(rma_size, node0_size);
2635
2636 /*
2637 * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2638 * never exceed that
2639 */
2640 rma_size = MIN(rma_size, 1 * TiB);
2641
2642 /*
2643 * Clamp the RMA size based on machine type. This is for
2644 * migration compatibility with older qemu versions, which limited
2645 * the RMA size for complicated and mostly bad reasons.
2646 */
2647 if (smc->rma_limit) {
2648 rma_size = MIN(rma_size, smc->rma_limit);
2649 }
2650
2651 if (rma_size < MIN_RMA_SLOF) {
2652 error_setg(errp,
2653 "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2654 "ldMiB guest RMA (Real Mode Area memory)",
2655 MIN_RMA_SLOF / MiB);
2656 return 0;
2657 }
2658
2659 return rma_size;
2660 }
2661
2662 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
2663 {
2664 MachineState *machine = MACHINE(spapr);
2665 int i;
2666
2667 for (i = 0; i < machine->ram_slots; i++) {
2668 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
2669 }
2670 }
2671
2672 /* pSeries LPAR / sPAPR hardware init */
2673 static void spapr_machine_init(MachineState *machine)
2674 {
2675 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2676 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2677 MachineClass *mc = MACHINE_GET_CLASS(machine);
2678 const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME;
2679 const char *bios_name = machine->firmware ?: bios_default;
2680 const char *kernel_filename = machine->kernel_filename;
2681 const char *initrd_filename = machine->initrd_filename;
2682 PCIHostState *phb;
2683 int i;
2684 MemoryRegion *sysmem = get_system_memory();
2685 long load_limit, fw_size;
2686 char *filename;
2687 Error *resize_hpt_err = NULL;
2688
2689 /*
2690 * if Secure VM (PEF) support is configured, then initialize it
2691 */
2692 pef_kvm_init(machine->cgs, &error_fatal);
2693
2694 msi_nonbroken = true;
2695
2696 QLIST_INIT(&spapr->phbs);
2697 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2698
2699 /* Determine capabilities to run with */
2700 spapr_caps_init(spapr);
2701
2702 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2703 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2704 /*
2705 * If the user explicitly requested a mode we should either
2706 * supply it, or fail completely (which we do below). But if
2707 * it's not set explicitly, we reset our mode to something
2708 * that works
2709 */
2710 if (resize_hpt_err) {
2711 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2712 error_free(resize_hpt_err);
2713 resize_hpt_err = NULL;
2714 } else {
2715 spapr->resize_hpt = smc->resize_hpt_default;
2716 }
2717 }
2718
2719 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2720
2721 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2722 /*
2723 * User requested HPT resize, but this host can't supply it. Bail out
2724 */
2725 error_report_err(resize_hpt_err);
2726 exit(1);
2727 }
2728 error_free(resize_hpt_err);
2729
2730 spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2731
2732 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2733 load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD;
2734
2735 /*
2736 * VSMT must be set in order to be able to compute VCPU ids, ie to
2737 * call spapr_max_server_number() or spapr_vcpu_id().
2738 */
2739 spapr_set_vsmt_mode(spapr, &error_fatal);
2740
2741 /* Set up Interrupt Controller before we create the VCPUs */
2742 spapr_irq_init(spapr, &error_fatal);
2743
2744 /* Set up containers for ibm,client-architecture-support negotiated options
2745 */
2746 spapr->ov5 = spapr_ovec_new();
2747 spapr->ov5_cas = spapr_ovec_new();
2748
2749 if (smc->dr_lmb_enabled) {
2750 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2751 spapr_validate_node_memory(machine, &error_fatal);
2752 }
2753
2754 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2755
2756 /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */
2757 if (!smc->pre_6_2_numa_affinity) {
2758 spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY);
2759 }
2760
2761 /* advertise support for dedicated HP event source to guests */
2762 if (spapr->use_hotplug_event_source) {
2763 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2764 }
2765
2766 /* advertise support for HPT resizing */
2767 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2768 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2769 }
2770
2771 /* advertise support for ibm,dyamic-memory-v2 */
2772 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2773
2774 /* advertise XIVE on POWER9 machines */
2775 if (spapr->irq->xive) {
2776 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2777 }
2778
2779 /* init CPUs */
2780 spapr_init_cpus(spapr);
2781
2782 spapr->gpu_numa_id = spapr_numa_initial_nvgpu_numa_id(machine);
2783
2784 /* Init numa_assoc_array */
2785 spapr_numa_associativity_init(spapr, machine);
2786
2787 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2788 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2789 spapr->max_compat_pvr)) {
2790 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2791 /* KVM and TCG always allow GTSE with radix... */
2792 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2793 }
2794 /* ... but not with hash (currently). */
2795
2796 if (kvm_enabled()) {
2797 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2798 kvmppc_enable_logical_ci_hcalls();
2799 kvmppc_enable_set_mode_hcall();
2800
2801 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2802 kvmppc_enable_clear_ref_mod_hcalls();
2803
2804 /* Enable H_PAGE_INIT */
2805 kvmppc_enable_h_page_init();
2806 }
2807
2808 /* map RAM */
2809 memory_region_add_subregion(sysmem, 0, machine->ram);
2810
2811 /* always allocate the device memory information */
2812 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2813
2814 /* initialize hotplug memory address space */
2815 if (machine->ram_size < machine->maxram_size) {
2816 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2817 /*
2818 * Limit the number of hotpluggable memory slots to half the number
2819 * slots that KVM supports, leaving the other half for PCI and other
2820 * devices. However ensure that number of slots doesn't drop below 32.
2821 */
2822 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2823 SPAPR_MAX_RAM_SLOTS;
2824
2825 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2826 max_memslots = SPAPR_MAX_RAM_SLOTS;
2827 }
2828 if (machine->ram_slots > max_memslots) {
2829 error_report("Specified number of memory slots %"
2830 PRIu64" exceeds max supported %d",
2831 machine->ram_slots, max_memslots);
2832 exit(1);
2833 }
2834
2835 machine->device_memory->base = ROUND_UP(machine->ram_size,
2836 SPAPR_DEVICE_MEM_ALIGN);
2837 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2838 "device-memory", device_mem_size);
2839 memory_region_add_subregion(sysmem, machine->device_memory->base,
2840 &machine->device_memory->mr);
2841 }
2842
2843 if (smc->dr_lmb_enabled) {
2844 spapr_create_lmb_dr_connectors(spapr);
2845 }
2846
2847 if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2848 /* Create the error string for live migration blocker */
2849 error_setg(&spapr->fwnmi_migration_blocker,
2850 "A machine check is being handled during migration. The handler"
2851 "may run and log hardware error on the destination");
2852 }
2853
2854 if (mc->nvdimm_supported) {
2855 spapr_create_nvdimm_dr_connectors(spapr);
2856 }
2857
2858 /* Set up RTAS event infrastructure */
2859 spapr_events_init(spapr);
2860
2861 /* Set up the RTC RTAS interfaces */
2862 spapr_rtc_create(spapr);
2863
2864 /* Set up VIO bus */
2865 spapr->vio_bus = spapr_vio_bus_init();
2866
2867 for (i = 0; serial_hd(i); i++) {
2868 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2869 }
2870
2871 /* We always have at least the nvram device on VIO */
2872 spapr_create_nvram(spapr);
2873
2874 /*
2875 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2876 * connectors (described in root DT node's "ibm,drc-types" property)
2877 * are pre-initialized here. additional child connectors (such as
2878 * connectors for a PHBs PCI slots) are added as needed during their
2879 * parent's realization.
2880 */
2881 if (smc->dr_phb_enabled) {
2882 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2883 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2884 }
2885 }
2886
2887 /* Set up PCI */
2888 spapr_pci_rtas_init();
2889
2890 phb = spapr_create_default_phb();
2891
2892 for (i = 0; i < nb_nics; i++) {
2893 NICInfo *nd = &nd_table[i];
2894
2895 if (!nd->model) {
2896 nd->model = g_strdup("spapr-vlan");
2897 }
2898
2899 if (g_str_equal(nd->model, "spapr-vlan") ||
2900 g_str_equal(nd->model, "ibmveth")) {
2901 spapr_vlan_create(spapr->vio_bus, nd);
2902 } else {
2903 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2904 }
2905 }
2906
2907 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2908 spapr_vscsi_create(spapr->vio_bus);
2909 }
2910
2911 /* Graphics */
2912 if (spapr_vga_init(phb->bus, &error_fatal)) {
2913 spapr->has_graphics = true;
2914 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2915 }
2916
2917 if (machine->usb) {
2918 if (smc->use_ohci_by_default) {
2919 pci_create_simple(phb->bus, -1, "pci-ohci");
2920 } else {
2921 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2922 }
2923
2924 if (spapr->has_graphics) {
2925 USBBus *usb_bus = usb_bus_find(-1);
2926
2927 usb_create_simple(usb_bus, "usb-kbd");
2928 usb_create_simple(usb_bus, "usb-mouse");
2929 }
2930 }
2931
2932 if (kernel_filename) {
2933 spapr->kernel_size = load_elf(kernel_filename, NULL,
2934 translate_kernel_address, spapr,
2935 NULL, NULL, NULL, NULL, 1,
2936 PPC_ELF_MACHINE, 0, 0);
2937 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2938 spapr->kernel_size = load_elf(kernel_filename, NULL,
2939 translate_kernel_address, spapr,
2940 NULL, NULL, NULL, NULL, 0,
2941 PPC_ELF_MACHINE, 0, 0);
2942 spapr->kernel_le = spapr->kernel_size > 0;
2943 }
2944 if (spapr->kernel_size < 0) {
2945 error_report("error loading %s: %s", kernel_filename,
2946 load_elf_strerror(spapr->kernel_size));
2947 exit(1);
2948 }
2949
2950 /* load initrd */
2951 if (initrd_filename) {
2952 /* Try to locate the initrd in the gap between the kernel
2953 * and the firmware. Add a bit of space just in case
2954 */
2955 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
2956 + 0x1ffff) & ~0xffff;
2957 spapr->initrd_size = load_image_targphys(initrd_filename,
2958 spapr->initrd_base,
2959 load_limit
2960 - spapr->initrd_base);
2961 if (spapr->initrd_size < 0) {
2962 error_report("could not load initial ram disk '%s'",
2963 initrd_filename);
2964 exit(1);
2965 }
2966 }
2967 }
2968
2969 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2970 if (!filename) {
2971 error_report("Could not find LPAR firmware '%s'", bios_name);
2972 exit(1);
2973 }
2974 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2975 if (fw_size <= 0) {
2976 error_report("Could not load LPAR firmware '%s'", filename);
2977 exit(1);
2978 }
2979 g_free(filename);
2980
2981 /* FIXME: Should register things through the MachineState's qdev
2982 * interface, this is a legacy from the sPAPREnvironment structure
2983 * which predated MachineState but had a similar function */
2984 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2985 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
2986 &savevm_htab_handlers, spapr);
2987
2988 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
2989
2990 qemu_register_boot_set(spapr_boot_set, spapr);
2991
2992 /*
2993 * Nothing needs to be done to resume a suspended guest because
2994 * suspending does not change the machine state, so no need for
2995 * a ->wakeup method.
2996 */
2997 qemu_register_wakeup_support();
2998
2999 if (kvm_enabled()) {
3000 /* to stop and start vmclock */
3001 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3002 &spapr->tb);
3003
3004 kvmppc_spapr_enable_inkernel_multitce();
3005 }
3006
3007 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3008 if (spapr->vof) {
3009 spapr->vof->fw_size = fw_size; /* for claim() on itself */
3010 spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client);
3011 }
3012 }
3013
3014 #define DEFAULT_KVM_TYPE "auto"
3015 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3016 {
3017 /*
3018 * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3019 * accomodate the 'HV' and 'PV' formats that exists in the
3020 * wild. The 'auto' mode is being introduced already as
3021 * lower-case, thus we don't need to bother checking for
3022 * "AUTO".
3023 */
3024 if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) {
3025 return 0;
3026 }
3027
3028 if (!g_ascii_strcasecmp(vm_type, "hv")) {
3029 return 1;
3030 }
3031
3032 if (!g_ascii_strcasecmp(vm_type, "pr")) {
3033 return 2;
3034 }
3035
3036 error_report("Unknown kvm-type specified '%s'", vm_type);
3037 exit(1);
3038 }
3039
3040 /*
3041 * Implementation of an interface to adjust firmware path
3042 * for the bootindex property handling.
3043 */
3044 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3045 DeviceState *dev)
3046 {
3047 #define CAST(type, obj, name) \
3048 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3049 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3050 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3051 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3052 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3053
3054 if (d) {
3055 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3056 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3057 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3058
3059 if (spapr) {
3060 /*
3061 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3062 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3063 * 0x8000 | (target << 8) | (bus << 5) | lun
3064 * (see the "Logical unit addressing format" table in SAM5)
3065 */
3066 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3067 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3068 (uint64_t)id << 48);
3069 } else if (virtio) {
3070 /*
3071 * We use SRP luns of the form 01000000 | (target << 8) | lun
3072 * in the top 32 bits of the 64-bit LUN
3073 * Note: the quote above is from SLOF and it is wrong,
3074 * the actual binding is:
3075 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3076 */
3077 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3078 if (d->lun >= 256) {
3079 /* Use the LUN "flat space addressing method" */
3080 id |= 0x4000;
3081 }
3082 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3083 (uint64_t)id << 32);
3084 } else if (usb) {
3085 /*
3086 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3087 * in the top 32 bits of the 64-bit LUN
3088 */
3089 unsigned usb_port = atoi(usb->port->path);
3090 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3091 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3092 (uint64_t)id << 32);
3093 }
3094 }
3095
3096 /*
3097 * SLOF probes the USB devices, and if it recognizes that the device is a
3098 * storage device, it changes its name to "storage" instead of "usb-host",
3099 * and additionally adds a child node for the SCSI LUN, so the correct
3100 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3101 */
3102 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3103 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3104 if (usb_device_is_scsi_storage(usbdev)) {
3105 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3106 }
3107 }
3108
3109 if (phb) {
3110 /* Replace "pci" with "pci@800000020000000" */
3111 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3112 }
3113
3114 if (vsc) {
3115 /* Same logic as virtio above */
3116 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3117 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3118 }
3119
3120 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3121 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3122 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3123 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3124 }
3125
3126 if (pcidev) {
3127 return spapr_pci_fw_dev_name(pcidev);
3128 }
3129
3130 return NULL;
3131 }
3132
3133 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3134 {
3135 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3136
3137 return g_strdup(spapr->kvm_type);
3138 }
3139
3140 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3141 {
3142 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3143
3144 g_free(spapr->kvm_type);
3145 spapr->kvm_type = g_strdup(value);
3146 }
3147
3148 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3149 {
3150 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3151
3152 return spapr->use_hotplug_event_source;
3153 }
3154
3155 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3156 Error **errp)
3157 {
3158 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3159
3160 spapr->use_hotplug_event_source = value;
3161 }
3162
3163 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3164 {
3165 return true;
3166 }
3167
3168 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3169 {
3170 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3171
3172 switch (spapr->resize_hpt) {
3173 case SPAPR_RESIZE_HPT_DEFAULT:
3174 return g_strdup("default");
3175 case SPAPR_RESIZE_HPT_DISABLED:
3176 return g_strdup("disabled");
3177 case SPAPR_RESIZE_HPT_ENABLED:
3178 return g_strdup("enabled");
3179 case SPAPR_RESIZE_HPT_REQUIRED:
3180 return g_strdup("required");
3181 }
3182 g_assert_not_reached();
3183 }
3184
3185 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3186 {
3187 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3188
3189 if (strcmp(value, "default") == 0) {
3190 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3191 } else if (strcmp(value, "disabled") == 0) {
3192 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3193 } else if (strcmp(value, "enabled") == 0) {
3194 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3195 } else if (strcmp(value, "required") == 0) {
3196 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3197 } else {
3198 error_setg(errp, "Bad value for \"resize-hpt\" property");
3199 }
3200 }
3201
3202 static bool spapr_get_vof(Object *obj, Error **errp)
3203 {
3204 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3205
3206 return spapr->vof != NULL;
3207 }
3208
3209 static void spapr_set_vof(Object *obj, bool value, Error **errp)
3210 {
3211 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3212
3213 if (spapr->vof) {
3214 vof_cleanup(spapr->vof);
3215 g_free(spapr->vof);
3216 spapr->vof = NULL;
3217 }
3218 if (!value) {
3219 return;
3220 }
3221 spapr->vof = g_malloc0(sizeof(*spapr->vof));
3222 }
3223
3224 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3225 {
3226 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3227
3228 if (spapr->irq == &spapr_irq_xics_legacy) {
3229 return g_strdup("legacy");
3230 } else if (spapr->irq == &spapr_irq_xics) {
3231 return g_strdup("xics");
3232 } else if (spapr->irq == &spapr_irq_xive) {
3233 return g_strdup("xive");
3234 } else if (spapr->irq == &spapr_irq_dual) {
3235 return g_strdup("dual");
3236 }
3237 g_assert_not_reached();
3238 }
3239
3240 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3241 {
3242 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3243
3244 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3245 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3246 return;
3247 }
3248
3249 /* The legacy IRQ backend can not be set */
3250 if (strcmp(value, "xics") == 0) {
3251 spapr->irq = &spapr_irq_xics;
3252 } else if (strcmp(value, "xive") == 0) {
3253 spapr->irq = &spapr_irq_xive;
3254 } else if (strcmp(value, "dual") == 0) {
3255 spapr->irq = &spapr_irq_dual;
3256 } else {
3257 error_setg(errp, "Bad value for \"ic-mode\" property");
3258 }
3259 }
3260
3261 static char *spapr_get_host_model(Object *obj, Error **errp)
3262 {
3263 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3264
3265 return g_strdup(spapr->host_model);
3266 }
3267
3268 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3269 {
3270 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3271
3272 g_free(spapr->host_model);
3273 spapr->host_model = g_strdup(value);
3274 }
3275
3276 static char *spapr_get_host_serial(Object *obj, Error **errp)
3277 {
3278 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3279
3280 return g_strdup(spapr->host_serial);
3281 }
3282
3283 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3284 {
3285 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3286
3287 g_free(spapr->host_serial);
3288 spapr->host_serial = g_strdup(value);
3289 }
3290
3291 static void spapr_instance_init(Object *obj)
3292 {
3293 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3294 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3295 MachineState *ms = MACHINE(spapr);
3296 MachineClass *mc = MACHINE_GET_CLASS(ms);
3297
3298 /*
3299 * NVDIMM support went live in 5.1 without considering that, in
3300 * other archs, the user needs to enable NVDIMM support with the
3301 * 'nvdimm' machine option and the default behavior is NVDIMM
3302 * support disabled. It is too late to roll back to the standard
3303 * behavior without breaking 5.1 guests.
3304 */
3305 if (mc->nvdimm_supported) {
3306 ms->nvdimms_state->is_enabled = true;
3307 }
3308
3309 spapr->htab_fd = -1;
3310 spapr->use_hotplug_event_source = true;
3311 spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE);
3312 object_property_add_str(obj, "kvm-type",
3313 spapr_get_kvm_type, spapr_set_kvm_type);
3314 object_property_set_description(obj, "kvm-type",
3315 "Specifies the KVM virtualization mode (auto,"
3316 " hv, pr). Defaults to 'auto'. This mode will use"
3317 " any available KVM module loaded in the host,"
3318 " where kvm_hv takes precedence if both kvm_hv and"
3319 " kvm_pr are loaded.");
3320 object_property_add_bool(obj, "modern-hotplug-events",
3321 spapr_get_modern_hotplug_events,
3322 spapr_set_modern_hotplug_events);
3323 object_property_set_description(obj, "modern-hotplug-events",
3324 "Use dedicated hotplug event mechanism in"
3325 " place of standard EPOW events when possible"
3326 " (required for memory hot-unplug support)");
3327 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3328 "Maximum permitted CPU compatibility mode");
3329
3330 object_property_add_str(obj, "resize-hpt",
3331 spapr_get_resize_hpt, spapr_set_resize_hpt);
3332 object_property_set_description(obj, "resize-hpt",
3333 "Resizing of the Hash Page Table (enabled, disabled, required)");
3334 object_property_add_uint32_ptr(obj, "vsmt",
3335 &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3336 object_property_set_description(obj, "vsmt",
3337 "Virtual SMT: KVM behaves as if this were"
3338 " the host's SMT mode");
3339
3340 object_property_add_bool(obj, "vfio-no-msix-emulation",
3341 spapr_get_msix_emulation, NULL);
3342
3343 object_property_add_uint64_ptr(obj, "kernel-addr",
3344 &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3345 object_property_set_description(obj, "kernel-addr",
3346 stringify(KERNEL_LOAD_ADDR)
3347 " for -kernel is the default");
3348 spapr->kernel_addr = KERNEL_LOAD_ADDR;
3349
3350 object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof);
3351 object_property_set_description(obj, "x-vof",
3352 "Enable Virtual Open Firmware (experimental)");
3353
3354 /* The machine class defines the default interrupt controller mode */
3355 spapr->irq = smc->irq;
3356 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3357 spapr_set_ic_mode);
3358 object_property_set_description(obj, "ic-mode",
3359 "Specifies the interrupt controller mode (xics, xive, dual)");
3360
3361 object_property_add_str(obj, "host-model",
3362 spapr_get_host_model, spapr_set_host_model);
3363 object_property_set_description(obj, "host-model",
3364 "Host model to advertise in guest device tree");
3365 object_property_add_str(obj, "host-serial",
3366 spapr_get_host_serial, spapr_set_host_serial);
3367 object_property_set_description(obj, "host-serial",
3368 "Host serial number to advertise in guest device tree");
3369 }
3370
3371 static void spapr_machine_finalizefn(Object *obj)
3372 {
3373 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3374
3375 g_free(spapr->kvm_type);
3376 }
3377
3378 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3379 {
3380 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3381 PowerPCCPU *cpu = POWERPC_CPU(cs);
3382 CPUPPCState *env = &cpu->env;
3383
3384 cpu_synchronize_state(cs);
3385 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3386 if (spapr->fwnmi_system_reset_addr != -1) {
3387 uint64_t rtas_addr, addr;
3388
3389 /* get rtas addr from fdt */
3390 rtas_addr = spapr_get_rtas_addr();
3391 if (!rtas_addr) {
3392 qemu_system_guest_panicked(NULL);
3393 return;
3394 }
3395
3396 addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3397 stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3398 stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3399 env->gpr[3] = addr;
3400 }
3401 ppc_cpu_do_system_reset(cs);
3402 if (spapr->fwnmi_system_reset_addr != -1) {
3403 env->nip = spapr->fwnmi_system_reset_addr;
3404 }
3405 }
3406
3407 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3408 {
3409 CPUState *cs;
3410
3411 CPU_FOREACH(cs) {
3412 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3413 }
3414 }
3415
3416 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3417 void *fdt, int *fdt_start_offset, Error **errp)
3418 {
3419 uint64_t addr;
3420 uint32_t node;
3421
3422 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3423 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3424 &error_abort);
3425 *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3426 SPAPR_MEMORY_BLOCK_SIZE);
3427 return 0;
3428 }
3429
3430 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3431 bool dedicated_hp_event_source)
3432 {
3433 SpaprDrc *drc;
3434 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3435 int i;
3436 uint64_t addr = addr_start;
3437 bool hotplugged = spapr_drc_hotplugged(dev);
3438
3439 for (i = 0; i < nr_lmbs; i++) {
3440 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3441 addr / SPAPR_MEMORY_BLOCK_SIZE);
3442 g_assert(drc);
3443
3444 /*
3445 * memory_device_get_free_addr() provided a range of free addresses
3446 * that doesn't overlap with any existing mapping at pre-plug. The
3447 * corresponding LMB DRCs are thus assumed to be all attachable.
3448 */
3449 spapr_drc_attach(drc, dev);
3450 if (!hotplugged) {
3451 spapr_drc_reset(drc);
3452 }
3453 addr += SPAPR_MEMORY_BLOCK_SIZE;
3454 }
3455 /* send hotplug notification to the
3456 * guest only in case of hotplugged memory
3457 */
3458 if (hotplugged) {
3459 if (dedicated_hp_event_source) {
3460 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3461 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3462 g_assert(drc);
3463 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3464 nr_lmbs,
3465 spapr_drc_index(drc));
3466 } else {
3467 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3468 nr_lmbs);
3469 }
3470 }
3471 }
3472
3473 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3474 {
3475 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3476 PCDIMMDevice *dimm = PC_DIMM(dev);
3477 uint64_t size, addr;
3478 int64_t slot;
3479 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3480
3481 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3482
3483 pc_dimm_plug(dimm, MACHINE(ms));
3484
3485 if (!is_nvdimm) {
3486 addr = object_property_get_uint(OBJECT(dimm),
3487 PC_DIMM_ADDR_PROP, &error_abort);
3488 spapr_add_lmbs(dev, addr, size,
3489 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT));
3490 } else {
3491 slot = object_property_get_int(OBJECT(dimm),
3492 PC_DIMM_SLOT_PROP, &error_abort);
3493 /* We should have valid slot number at this point */
3494 g_assert(slot >= 0);
3495 spapr_add_nvdimm(dev, slot);
3496 }
3497 }
3498
3499 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3500 Error **errp)
3501 {
3502 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3503 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3504 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3505 PCDIMMDevice *dimm = PC_DIMM(dev);
3506 Error *local_err = NULL;
3507 uint64_t size;
3508 Object *memdev;
3509 hwaddr pagesize;
3510
3511 if (!smc->dr_lmb_enabled) {
3512 error_setg(errp, "Memory hotplug not supported for this machine");
3513 return;
3514 }
3515
3516 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3517 if (local_err) {
3518 error_propagate(errp, local_err);
3519 return;
3520 }
3521
3522 if (is_nvdimm) {
3523 if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
3524 return;
3525 }
3526 } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3527 error_setg(errp, "Hotplugged memory size must be a multiple of "
3528 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3529 return;
3530 }
3531
3532 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3533 &error_abort);
3534 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3535 if (!spapr_check_pagesize(spapr, pagesize, errp)) {
3536 return;
3537 }
3538
3539 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3540 }
3541
3542 struct SpaprDimmState {
3543 PCDIMMDevice *dimm;
3544 uint32_t nr_lmbs;
3545 QTAILQ_ENTRY(SpaprDimmState) next;
3546 };
3547
3548 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3549 PCDIMMDevice *dimm)
3550 {
3551 SpaprDimmState *dimm_state = NULL;
3552
3553 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3554 if (dimm_state->dimm == dimm) {
3555 break;
3556 }
3557 }
3558 return dimm_state;
3559 }
3560
3561 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3562 uint32_t nr_lmbs,
3563 PCDIMMDevice *dimm)
3564 {
3565 SpaprDimmState *ds = NULL;
3566
3567 /*
3568 * If this request is for a DIMM whose removal had failed earlier
3569 * (due to guest's refusal to remove the LMBs), we would have this
3570 * dimm already in the pending_dimm_unplugs list. In that
3571 * case don't add again.
3572 */
3573 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3574 if (!ds) {
3575 ds = g_malloc0(sizeof(SpaprDimmState));
3576 ds->nr_lmbs = nr_lmbs;
3577 ds->dimm = dimm;
3578 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3579 }
3580 return ds;
3581 }
3582
3583 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3584 SpaprDimmState *dimm_state)
3585 {
3586 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3587 g_free(dimm_state);
3588 }
3589
3590 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3591 PCDIMMDevice *dimm)
3592 {
3593 SpaprDrc *drc;
3594 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3595 &error_abort);
3596 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3597 uint32_t avail_lmbs = 0;
3598 uint64_t addr_start, addr;
3599 int i;
3600
3601 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3602 &error_abort);
3603
3604 addr = addr_start;
3605 for (i = 0; i < nr_lmbs; i++) {
3606 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3607 addr / SPAPR_MEMORY_BLOCK_SIZE);
3608 g_assert(drc);
3609 if (drc->dev) {
3610 avail_lmbs++;
3611 }
3612 addr += SPAPR_MEMORY_BLOCK_SIZE;
3613 }
3614
3615 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3616 }
3617
3618 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev)
3619 {
3620 SpaprDimmState *ds;
3621 PCDIMMDevice *dimm;
3622 SpaprDrc *drc;
3623 uint32_t nr_lmbs;
3624 uint64_t size, addr_start, addr;
3625 g_autofree char *qapi_error = NULL;
3626 int i;
3627
3628 if (!dev) {
3629 return;
3630 }
3631
3632 dimm = PC_DIMM(dev);
3633 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3634
3635 /*
3636 * 'ds == NULL' would mean that the DIMM doesn't have a pending
3637 * unplug state, but one of its DRC is marked as unplug_requested.
3638 * This is bad and weird enough to g_assert() out.
3639 */
3640 g_assert(ds);
3641
3642 spapr_pending_dimm_unplugs_remove(spapr, ds);
3643
3644 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3645 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3646
3647 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3648 &error_abort);
3649
3650 addr = addr_start;
3651 for (i = 0; i < nr_lmbs; i++) {
3652 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3653 addr / SPAPR_MEMORY_BLOCK_SIZE);
3654 g_assert(drc);
3655
3656 drc->unplug_requested = false;
3657 addr += SPAPR_MEMORY_BLOCK_SIZE;
3658 }
3659
3660 /*
3661 * Tell QAPI that something happened and the memory
3662 * hotunplug wasn't successful. Keep sending
3663 * MEM_UNPLUG_ERROR even while sending
3664 * DEVICE_UNPLUG_GUEST_ERROR until the deprecation of
3665 * MEM_UNPLUG_ERROR is due.
3666 */
3667 qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest "
3668 "for device %s", dev->id);
3669
3670 qapi_event_send_mem_unplug_error(dev->id ? : "", qapi_error);
3671
3672 qapi_event_send_device_unplug_guest_error(!!dev->id, dev->id,
3673 dev->canonical_path);
3674 }
3675
3676 /* Callback to be called during DRC release. */
3677 void spapr_lmb_release(DeviceState *dev)
3678 {
3679 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3680 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3681 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3682
3683 /* This information will get lost if a migration occurs
3684 * during the unplug process. In this case recover it. */
3685 if (ds == NULL) {
3686 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3687 g_assert(ds);
3688 /* The DRC being examined by the caller at least must be counted */
3689 g_assert(ds->nr_lmbs);
3690 }
3691
3692 if (--ds->nr_lmbs) {
3693 return;
3694 }
3695
3696 /*
3697 * Now that all the LMBs have been removed by the guest, call the
3698 * unplug handler chain. This can never fail.
3699 */
3700 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3701 object_unparent(OBJECT(dev));
3702 }
3703
3704 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3705 {
3706 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3707 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3708
3709 /* We really shouldn't get this far without anything to unplug */
3710 g_assert(ds);
3711
3712 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3713 qdev_unrealize(dev);
3714 spapr_pending_dimm_unplugs_remove(spapr, ds);
3715 }
3716
3717 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3718 DeviceState *dev, Error **errp)
3719 {
3720 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3721 PCDIMMDevice *dimm = PC_DIMM(dev);
3722 uint32_t nr_lmbs;
3723 uint64_t size, addr_start, addr;
3724 int i;
3725 SpaprDrc *drc;
3726
3727 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3728 error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3729 return;
3730 }
3731
3732 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3733 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3734
3735 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3736 &error_abort);
3737
3738 /*
3739 * An existing pending dimm state for this DIMM means that there is an
3740 * unplug operation in progress, waiting for the spapr_lmb_release
3741 * callback to complete the job (BQL can't cover that far). In this case,
3742 * bail out to avoid detaching DRCs that were already released.
3743 */
3744 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3745 error_setg(errp, "Memory unplug already in progress for device %s",
3746 dev->id);
3747 return;
3748 }
3749
3750 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3751
3752 addr = addr_start;
3753 for (i = 0; i < nr_lmbs; i++) {
3754 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3755 addr / SPAPR_MEMORY_BLOCK_SIZE);
3756 g_assert(drc);
3757
3758 spapr_drc_unplug_request(drc);
3759 addr += SPAPR_MEMORY_BLOCK_SIZE;
3760 }
3761
3762 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3763 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3764 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3765 nr_lmbs, spapr_drc_index(drc));
3766 }
3767
3768 /* Callback to be called during DRC release. */
3769 void spapr_core_release(DeviceState *dev)
3770 {
3771 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3772
3773 /* Call the unplug handler chain. This can never fail. */
3774 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3775 object_unparent(OBJECT(dev));
3776 }
3777
3778 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3779 {
3780 MachineState *ms = MACHINE(hotplug_dev);
3781 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3782 CPUCore *cc = CPU_CORE(dev);
3783 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3784
3785 if (smc->pre_2_10_has_unused_icps) {
3786 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3787 int i;
3788
3789 for (i = 0; i < cc->nr_threads; i++) {
3790 CPUState *cs = CPU(sc->threads[i]);
3791
3792 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3793 }
3794 }
3795
3796 assert(core_slot);
3797 core_slot->cpu = NULL;
3798 qdev_unrealize(dev);
3799 }
3800
3801 static
3802 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3803 Error **errp)
3804 {
3805 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3806 int index;
3807 SpaprDrc *drc;
3808 CPUCore *cc = CPU_CORE(dev);
3809
3810 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3811 error_setg(errp, "Unable to find CPU core with core-id: %d",
3812 cc->core_id);
3813 return;
3814 }
3815 if (index == 0) {
3816 error_setg(errp, "Boot CPU core may not be unplugged");
3817 return;
3818 }
3819
3820 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3821 spapr_vcpu_id(spapr, cc->core_id));
3822 g_assert(drc);
3823
3824 if (!spapr_drc_unplug_requested(drc)) {
3825 spapr_drc_unplug_request(drc);
3826 }
3827
3828 /*
3829 * spapr_hotplug_req_remove_by_index is left unguarded, out of the
3830 * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ
3831 * pulses removing the same CPU. Otherwise, in an failed hotunplug
3832 * attempt (e.g. the kernel will refuse to remove the last online
3833 * CPU), we will never attempt it again because unplug_requested
3834 * will still be 'true' in that case.
3835 */
3836 spapr_hotplug_req_remove_by_index(drc);
3837 }
3838
3839 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3840 void *fdt, int *fdt_start_offset, Error **errp)
3841 {
3842 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3843 CPUState *cs = CPU(core->threads[0]);
3844 PowerPCCPU *cpu = POWERPC_CPU(cs);
3845 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3846 int id = spapr_get_vcpu_id(cpu);
3847 g_autofree char *nodename = NULL;
3848 int offset;
3849
3850 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3851 offset = fdt_add_subnode(fdt, 0, nodename);
3852
3853 spapr_dt_cpu(cs, fdt, offset, spapr);
3854
3855 /*
3856 * spapr_dt_cpu() does not fill the 'name' property in the
3857 * CPU node. The function is called during boot process, before
3858 * and after CAS, and overwriting the 'name' property written
3859 * by SLOF is not allowed.
3860 *
3861 * Write it manually after spapr_dt_cpu(). This makes the hotplug
3862 * CPUs more compatible with the coldplugged ones, which have
3863 * the 'name' property. Linux Kernel also relies on this
3864 * property to identify CPU nodes.
3865 */
3866 _FDT((fdt_setprop_string(fdt, offset, "name", nodename)));
3867
3868 *fdt_start_offset = offset;
3869 return 0;
3870 }
3871
3872 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3873 {
3874 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3875 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3876 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3877 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3878 CPUCore *cc = CPU_CORE(dev);
3879 CPUState *cs;
3880 SpaprDrc *drc;
3881 CPUArchId *core_slot;
3882 int index;
3883 bool hotplugged = spapr_drc_hotplugged(dev);
3884 int i;
3885
3886 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3887 g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */
3888
3889 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3890 spapr_vcpu_id(spapr, cc->core_id));
3891
3892 g_assert(drc || !mc->has_hotpluggable_cpus);
3893
3894 if (drc) {
3895 /*
3896 * spapr_core_pre_plug() already buys us this is a brand new
3897 * core being plugged into a free slot. Nothing should already
3898 * be attached to the corresponding DRC.
3899 */
3900 spapr_drc_attach(drc, dev);
3901
3902 if (hotplugged) {
3903 /*
3904 * Send hotplug notification interrupt to the guest only
3905 * in case of hotplugged CPUs.
3906 */
3907 spapr_hotplug_req_add_by_index(drc);
3908 } else {
3909 spapr_drc_reset(drc);
3910 }
3911 }
3912
3913 core_slot->cpu = OBJECT(dev);
3914
3915 /*
3916 * Set compatibility mode to match the boot CPU, which was either set
3917 * by the machine reset code or by CAS. This really shouldn't fail at
3918 * this point.
3919 */
3920 if (hotplugged) {
3921 for (i = 0; i < cc->nr_threads; i++) {
3922 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3923 &error_abort);
3924 }
3925 }
3926
3927 if (smc->pre_2_10_has_unused_icps) {
3928 for (i = 0; i < cc->nr_threads; i++) {
3929 cs = CPU(core->threads[i]);
3930 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3931 }
3932 }
3933 }
3934
3935 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3936 Error **errp)
3937 {
3938 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3939 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3940 CPUCore *cc = CPU_CORE(dev);
3941 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3942 const char *type = object_get_typename(OBJECT(dev));
3943 CPUArchId *core_slot;
3944 int index;
3945 unsigned int smp_threads = machine->smp.threads;
3946
3947 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3948 error_setg(errp, "CPU hotplug not supported for this machine");
3949 return;
3950 }
3951
3952 if (strcmp(base_core_type, type)) {
3953 error_setg(errp, "CPU core type should be %s", base_core_type);
3954 return;
3955 }
3956
3957 if (cc->core_id % smp_threads) {
3958 error_setg(errp, "invalid core id %d", cc->core_id);
3959 return;
3960 }
3961
3962 /*
3963 * In general we should have homogeneous threads-per-core, but old
3964 * (pre hotplug support) machine types allow the last core to have
3965 * reduced threads as a compatibility hack for when we allowed
3966 * total vcpus not a multiple of threads-per-core.
3967 */
3968 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3969 error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
3970 smp_threads);
3971 return;
3972 }
3973
3974 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3975 if (!core_slot) {
3976 error_setg(errp, "core id %d out of range", cc->core_id);
3977 return;
3978 }
3979
3980 if (core_slot->cpu) {
3981 error_setg(errp, "core %d already populated", cc->core_id);
3982 return;
3983 }
3984
3985 numa_cpu_pre_plug(core_slot, dev, errp);
3986 }
3987
3988 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3989 void *fdt, int *fdt_start_offset, Error **errp)
3990 {
3991 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3992 int intc_phandle;
3993
3994 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3995 if (intc_phandle <= 0) {
3996 return -1;
3997 }
3998
3999 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
4000 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
4001 return -1;
4002 }
4003
4004 /* generally SLOF creates these, for hotplug it's up to QEMU */
4005 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
4006
4007 return 0;
4008 }
4009
4010 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4011 Error **errp)
4012 {
4013 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4014 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4015 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4016 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
4017 SpaprDrc *drc;
4018
4019 if (dev->hotplugged && !smc->dr_phb_enabled) {
4020 error_setg(errp, "PHB hotplug not supported for this machine");
4021 return false;
4022 }
4023
4024 if (sphb->index == (uint32_t)-1) {
4025 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
4026 return false;
4027 }
4028
4029 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4030 if (drc && drc->dev) {
4031 error_setg(errp, "PHB %d already attached", sphb->index);
4032 return false;
4033 }
4034
4035 /*
4036 * This will check that sphb->index doesn't exceed the maximum number of
4037 * PHBs for the current machine type.
4038 */
4039 return
4040 smc->phb_placement(spapr, sphb->index,
4041 &sphb->buid, &sphb->io_win_addr,
4042 &sphb->mem_win_addr, &sphb->mem64_win_addr,
4043 windows_supported, sphb->dma_liobn,
4044 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
4045 errp);
4046 }
4047
4048 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4049 {
4050 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4051 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4052 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4053 SpaprDrc *drc;
4054 bool hotplugged = spapr_drc_hotplugged(dev);
4055
4056 if (!smc->dr_phb_enabled) {
4057 return;
4058 }
4059
4060 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4061 /* hotplug hooks should check it's enabled before getting this far */
4062 assert(drc);
4063
4064 /* spapr_phb_pre_plug() already checked the DRC is attachable */
4065 spapr_drc_attach(drc, dev);
4066
4067 if (hotplugged) {
4068 spapr_hotplug_req_add_by_index(drc);
4069 } else {
4070 spapr_drc_reset(drc);
4071 }
4072 }
4073
4074 void spapr_phb_release(DeviceState *dev)
4075 {
4076 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4077
4078 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4079 object_unparent(OBJECT(dev));
4080 }
4081
4082 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4083 {
4084 qdev_unrealize(dev);
4085 }
4086
4087 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4088 DeviceState *dev, Error **errp)
4089 {
4090 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4091 SpaprDrc *drc;
4092
4093 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4094 assert(drc);
4095
4096 if (!spapr_drc_unplug_requested(drc)) {
4097 spapr_drc_unplug_request(drc);
4098 spapr_hotplug_req_remove_by_index(drc);
4099 } else {
4100 error_setg(errp,
4101 "PCI Host Bridge unplug already in progress for device %s",
4102 dev->id);
4103 }
4104 }
4105
4106 static
4107 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4108 Error **errp)
4109 {
4110 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4111
4112 if (spapr->tpm_proxy != NULL) {
4113 error_setg(errp, "Only one TPM proxy can be specified for this machine");
4114 return false;
4115 }
4116
4117 return true;
4118 }
4119
4120 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4121 {
4122 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4123 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4124
4125 /* Already checked in spapr_tpm_proxy_pre_plug() */
4126 g_assert(spapr->tpm_proxy == NULL);
4127
4128 spapr->tpm_proxy = tpm_proxy;
4129 }
4130
4131 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4132 {
4133 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4134
4135 qdev_unrealize(dev);
4136 object_unparent(OBJECT(dev));
4137 spapr->tpm_proxy = NULL;
4138 }
4139
4140 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4141 DeviceState *dev, Error **errp)
4142 {
4143 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4144 spapr_memory_plug(hotplug_dev, dev);
4145 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4146 spapr_core_plug(hotplug_dev, dev);
4147 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4148 spapr_phb_plug(hotplug_dev, dev);
4149 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4150 spapr_tpm_proxy_plug(hotplug_dev, dev);
4151 }
4152 }
4153
4154 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4155 DeviceState *dev, Error **errp)
4156 {
4157 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4158 spapr_memory_unplug(hotplug_dev, dev);
4159 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4160 spapr_core_unplug(hotplug_dev, dev);
4161 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4162 spapr_phb_unplug(hotplug_dev, dev);
4163 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4164 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4165 }
4166 }
4167
4168 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr)
4169 {
4170 return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) ||
4171 /*
4172 * CAS will process all pending unplug requests.
4173 *
4174 * HACK: a guest could theoretically have cleared all bits in OV5,
4175 * but none of the guests we care for do.
4176 */
4177 spapr_ovec_empty(spapr->ov5_cas);
4178 }
4179
4180 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4181 DeviceState *dev, Error **errp)
4182 {
4183 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4184 MachineClass *mc = MACHINE_GET_CLASS(sms);
4185 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4186
4187 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4188 if (spapr_memory_hot_unplug_supported(sms)) {
4189 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4190 } else {
4191 error_setg(errp, "Memory hot unplug not supported for this guest");
4192 }
4193 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4194 if (!mc->has_hotpluggable_cpus) {
4195 error_setg(errp, "CPU hot unplug not supported on this machine");
4196 return;
4197 }
4198 spapr_core_unplug_request(hotplug_dev, dev, errp);
4199 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4200 if (!smc->dr_phb_enabled) {
4201 error_setg(errp, "PHB hot unplug not supported on this machine");
4202 return;
4203 }
4204 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4205 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4206 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4207 }
4208 }
4209
4210 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4211 DeviceState *dev, Error **errp)
4212 {
4213 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4214 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4215 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4216 spapr_core_pre_plug(hotplug_dev, dev, errp);
4217 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4218 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4219 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4220 spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp);
4221 }
4222 }
4223
4224 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4225 DeviceState *dev)
4226 {
4227 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4228 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4229 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4230 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4231 return HOTPLUG_HANDLER(machine);
4232 }
4233 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4234 PCIDevice *pcidev = PCI_DEVICE(dev);
4235 PCIBus *root = pci_device_root_bus(pcidev);
4236 SpaprPhbState *phb =
4237 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4238 TYPE_SPAPR_PCI_HOST_BRIDGE);
4239
4240 if (phb) {
4241 return HOTPLUG_HANDLER(phb);
4242 }
4243 }
4244 return NULL;
4245 }
4246
4247 static CpuInstanceProperties
4248 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4249 {
4250 CPUArchId *core_slot;
4251 MachineClass *mc = MACHINE_GET_CLASS(machine);
4252
4253 /* make sure possible_cpu are intialized */
4254 mc->possible_cpu_arch_ids(machine);
4255 /* get CPU core slot containing thread that matches cpu_index */
4256 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4257 assert(core_slot);
4258 return core_slot->props;
4259 }
4260
4261 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4262 {
4263 return idx / ms->smp.cores % ms->numa_state->num_nodes;
4264 }
4265
4266 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4267 {
4268 int i;
4269 unsigned int smp_threads = machine->smp.threads;
4270 unsigned int smp_cpus = machine->smp.cpus;
4271 const char *core_type;
4272 int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4273 MachineClass *mc = MACHINE_GET_CLASS(machine);
4274
4275 if (!mc->has_hotpluggable_cpus) {
4276 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4277 }
4278 if (machine->possible_cpus) {
4279 assert(machine->possible_cpus->len == spapr_max_cores);
4280 return machine->possible_cpus;
4281 }
4282
4283 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4284 if (!core_type) {
4285 error_report("Unable to find sPAPR CPU Core definition");
4286 exit(1);
4287 }
4288
4289 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4290 sizeof(CPUArchId) * spapr_max_cores);
4291 machine->possible_cpus->len = spapr_max_cores;
4292 for (i = 0; i < machine->possible_cpus->len; i++) {
4293 int core_id = i * smp_threads;
4294
4295 machine->possible_cpus->cpus[i].type = core_type;
4296 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4297 machine->possible_cpus->cpus[i].arch_id = core_id;
4298 machine->possible_cpus->cpus[i].props.has_core_id = true;
4299 machine->possible_cpus->cpus[i].props.core_id = core_id;
4300 }
4301 return machine->possible_cpus;
4302 }
4303
4304 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4305 uint64_t *buid, hwaddr *pio,
4306 hwaddr *mmio32, hwaddr *mmio64,
4307 unsigned n_dma, uint32_t *liobns,
4308 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4309 {
4310 /*
4311 * New-style PHB window placement.
4312 *
4313 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4314 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4315 * windows.
4316 *
4317 * Some guest kernels can't work with MMIO windows above 1<<46
4318 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4319 *
4320 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4321 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4322 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4323 * 1TiB 64-bit MMIO windows for each PHB.
4324 */
4325 const uint64_t base_buid = 0x800000020000000ULL;
4326 int i;
4327
4328 /* Sanity check natural alignments */
4329 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4330 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4331 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4332 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4333 /* Sanity check bounds */
4334 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4335 SPAPR_PCI_MEM32_WIN_SIZE);
4336 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4337 SPAPR_PCI_MEM64_WIN_SIZE);
4338
4339 if (index >= SPAPR_MAX_PHBS) {
4340 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4341 SPAPR_MAX_PHBS - 1);
4342 return false;
4343 }
4344
4345 *buid = base_buid + index;
4346 for (i = 0; i < n_dma; ++i) {
4347 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4348 }
4349
4350 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4351 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4352 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4353
4354 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4355 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4356 return true;
4357 }
4358
4359 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4360 {
4361 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4362
4363 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4364 }
4365
4366 static void spapr_ics_resend(XICSFabric *dev)
4367 {
4368 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4369
4370 ics_resend(spapr->ics);
4371 }
4372
4373 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4374 {
4375 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4376
4377 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4378 }
4379
4380 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4381 Monitor *mon)
4382 {
4383 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4384
4385 spapr_irq_print_info(spapr, mon);
4386 monitor_printf(mon, "irqchip: %s\n",
4387 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4388 }
4389
4390 /*
4391 * This is a XIVE only operation
4392 */
4393 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4394 uint8_t nvt_blk, uint32_t nvt_idx,
4395 bool cam_ignore, uint8_t priority,
4396 uint32_t logic_serv, XiveTCTXMatch *match)
4397 {
4398 SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4399 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4400 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4401 int count;
4402
4403 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4404 priority, logic_serv, match);
4405 if (count < 0) {
4406 return count;
4407 }
4408
4409 /*
4410 * When we implement the save and restore of the thread interrupt
4411 * contexts in the enter/exit CPU handlers of the machine and the
4412 * escalations in QEMU, we should be able to handle non dispatched
4413 * vCPUs.
4414 *
4415 * Until this is done, the sPAPR machine should find at least one
4416 * matching context always.
4417 */
4418 if (count == 0) {
4419 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4420 nvt_blk, nvt_idx);
4421 }
4422
4423 return count;
4424 }
4425
4426 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4427 {
4428 return cpu->vcpu_id;
4429 }
4430
4431 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4432 {
4433 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4434 MachineState *ms = MACHINE(spapr);
4435 int vcpu_id;
4436
4437 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4438
4439 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4440 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4441 error_append_hint(errp, "Adjust the number of cpus to %d "
4442 "or try to raise the number of threads per core\n",
4443 vcpu_id * ms->smp.threads / spapr->vsmt);
4444 return false;
4445 }
4446
4447 cpu->vcpu_id = vcpu_id;
4448 return true;
4449 }
4450
4451 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4452 {
4453 CPUState *cs;
4454
4455 CPU_FOREACH(cs) {
4456 PowerPCCPU *cpu = POWERPC_CPU(cs);
4457
4458 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4459 return cpu;
4460 }
4461 }
4462
4463 return NULL;
4464 }
4465
4466 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4467 {
4468 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4469
4470 /* These are only called by TCG, KVM maintains dispatch state */
4471
4472 spapr_cpu->prod = false;
4473 if (spapr_cpu->vpa_addr) {
4474 CPUState *cs = CPU(cpu);
4475 uint32_t dispatch;
4476
4477 dispatch = ldl_be_phys(cs->as,
4478 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4479 dispatch++;
4480 if ((dispatch & 1) != 0) {
4481 qemu_log_mask(LOG_GUEST_ERROR,
4482 "VPA: incorrect dispatch counter value for "
4483 "dispatched partition %u, correcting.\n", dispatch);
4484 dispatch++;
4485 }
4486 stl_be_phys(cs->as,
4487 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4488 }
4489 }
4490
4491 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4492 {
4493 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4494
4495 if (spapr_cpu->vpa_addr) {
4496 CPUState *cs = CPU(cpu);
4497 uint32_t dispatch;
4498
4499 dispatch = ldl_be_phys(cs->as,
4500 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4501 dispatch++;
4502 if ((dispatch & 1) != 1) {
4503 qemu_log_mask(LOG_GUEST_ERROR,
4504 "VPA: incorrect dispatch counter value for "
4505 "preempted partition %u, correcting.\n", dispatch);
4506 dispatch++;
4507 }
4508 stl_be_phys(cs->as,
4509 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4510 }
4511 }
4512
4513 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4514 {
4515 MachineClass *mc = MACHINE_CLASS(oc);
4516 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4517 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4518 NMIClass *nc = NMI_CLASS(oc);
4519 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4520 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4521 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4522 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4523 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4524 VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc);
4525
4526 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4527 mc->ignore_boot_device_suffixes = true;
4528
4529 /*
4530 * We set up the default / latest behaviour here. The class_init
4531 * functions for the specific versioned machine types can override
4532 * these details for backwards compatibility
4533 */
4534 mc->init = spapr_machine_init;
4535 mc->reset = spapr_machine_reset;
4536 mc->block_default_type = IF_SCSI;
4537
4538 /*
4539 * Setting max_cpus to INT32_MAX. Both KVM and TCG max_cpus values
4540 * should be limited by the host capability instead of hardcoded.
4541 * max_cpus for KVM guests will be checked in kvm_init(), and TCG
4542 * guests are welcome to have as many CPUs as the host are capable
4543 * of emulate.
4544 */
4545 mc->max_cpus = INT32_MAX;
4546
4547 mc->no_parallel = 1;
4548 mc->default_boot_order = "";
4549 mc->default_ram_size = 512 * MiB;
4550 mc->default_ram_id = "ppc_spapr.ram";
4551 mc->default_display = "std";
4552 mc->kvm_type = spapr_kvm_type;
4553 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4554 mc->pci_allow_0_address = true;
4555 assert(!mc->get_hotplug_handler);
4556 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4557 hc->pre_plug = spapr_machine_device_pre_plug;
4558 hc->plug = spapr_machine_device_plug;
4559 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4560 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4561 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4562 hc->unplug_request = spapr_machine_device_unplug_request;
4563 hc->unplug = spapr_machine_device_unplug;
4564
4565 smc->dr_lmb_enabled = true;
4566 smc->update_dt_enabled = true;
4567 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4568 mc->has_hotpluggable_cpus = true;
4569 mc->nvdimm_supported = true;
4570 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4571 fwc->get_dev_path = spapr_get_fw_dev_path;
4572 nc->nmi_monitor_handler = spapr_nmi;
4573 smc->phb_placement = spapr_phb_placement;
4574 vhc->hypercall = emulate_spapr_hypercall;
4575 vhc->hpt_mask = spapr_hpt_mask;
4576 vhc->map_hptes = spapr_map_hptes;
4577 vhc->unmap_hptes = spapr_unmap_hptes;
4578 vhc->hpte_set_c = spapr_hpte_set_c;
4579 vhc->hpte_set_r = spapr_hpte_set_r;
4580 vhc->get_pate = spapr_get_pate;
4581 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4582 vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4583 vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4584 xic->ics_get = spapr_ics_get;
4585 xic->ics_resend = spapr_ics_resend;
4586 xic->icp_get = spapr_icp_get;
4587 ispc->print_info = spapr_pic_print_info;
4588 /* Force NUMA node memory size to be a multiple of
4589 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4590 * in which LMBs are represented and hot-added
4591 */
4592 mc->numa_mem_align_shift = 28;
4593 mc->auto_enable_numa = true;
4594
4595 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4596 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4597 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4598 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4599 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4600 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4601 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4602 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4603 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4604 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4605 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4606 smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF;
4607 spapr_caps_add_properties(smc);
4608 smc->irq = &spapr_irq_dual;
4609 smc->dr_phb_enabled = true;
4610 smc->linux_pci_probe = true;
4611 smc->smp_threads_vsmt = true;
4612 smc->nr_xirqs = SPAPR_NR_XIRQS;
4613 xfc->match_nvt = spapr_match_nvt;
4614 vmc->client_architecture_support = spapr_vof_client_architecture_support;
4615 vmc->quiesce = spapr_vof_quiesce;
4616 vmc->setprop = spapr_vof_setprop;
4617 }
4618
4619 static const TypeInfo spapr_machine_info = {
4620 .name = TYPE_SPAPR_MACHINE,
4621 .parent = TYPE_MACHINE,
4622 .abstract = true,
4623 .instance_size = sizeof(SpaprMachineState),
4624 .instance_init = spapr_instance_init,
4625 .instance_finalize = spapr_machine_finalizefn,
4626 .class_size = sizeof(SpaprMachineClass),
4627 .class_init = spapr_machine_class_init,
4628 .interfaces = (InterfaceInfo[]) {
4629 { TYPE_FW_PATH_PROVIDER },
4630 { TYPE_NMI },
4631 { TYPE_HOTPLUG_HANDLER },
4632 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4633 { TYPE_XICS_FABRIC },
4634 { TYPE_INTERRUPT_STATS_PROVIDER },
4635 { TYPE_XIVE_FABRIC },
4636 { TYPE_VOF_MACHINE_IF },
4637 { }
4638 },
4639 };
4640
4641 static void spapr_machine_latest_class_options(MachineClass *mc)
4642 {
4643 mc->alias = "pseries";
4644 mc->is_default = true;
4645 }
4646
4647 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4648 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4649 void *data) \
4650 { \
4651 MachineClass *mc = MACHINE_CLASS(oc); \
4652 spapr_machine_##suffix##_class_options(mc); \
4653 if (latest) { \
4654 spapr_machine_latest_class_options(mc); \
4655 } \
4656 } \
4657 static const TypeInfo spapr_machine_##suffix##_info = { \
4658 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4659 .parent = TYPE_SPAPR_MACHINE, \
4660 .class_init = spapr_machine_##suffix##_class_init, \
4661 }; \
4662 static void spapr_machine_register_##suffix(void) \
4663 { \
4664 type_register(&spapr_machine_##suffix##_info); \
4665 } \
4666 type_init(spapr_machine_register_##suffix)
4667
4668 /*
4669 * pseries-7.0
4670 */
4671 static void spapr_machine_7_0_class_options(MachineClass *mc)
4672 {
4673 /* Defaults for the latest behaviour inherited from the base class */
4674 }
4675
4676 DEFINE_SPAPR_MACHINE(7_0, "7.0", true);
4677
4678 /*
4679 * pseries-6.2
4680 */
4681 static void spapr_machine_6_2_class_options(MachineClass *mc)
4682 {
4683 spapr_machine_7_0_class_options(mc);
4684 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
4685 }
4686
4687 DEFINE_SPAPR_MACHINE(6_2, "6.2", false);
4688
4689 /*
4690 * pseries-6.1
4691 */
4692 static void spapr_machine_6_1_class_options(MachineClass *mc)
4693 {
4694 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4695
4696 spapr_machine_6_2_class_options(mc);
4697 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
4698 smc->pre_6_2_numa_affinity = true;
4699 mc->smp_props.prefer_sockets = true;
4700 }
4701
4702 DEFINE_SPAPR_MACHINE(6_1, "6.1", false);
4703
4704 /*
4705 * pseries-6.0
4706 */
4707 static void spapr_machine_6_0_class_options(MachineClass *mc)
4708 {
4709 spapr_machine_6_1_class_options(mc);
4710 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
4711 }
4712
4713 DEFINE_SPAPR_MACHINE(6_0, "6.0", false);
4714
4715 /*
4716 * pseries-5.2
4717 */
4718 static void spapr_machine_5_2_class_options(MachineClass *mc)
4719 {
4720 spapr_machine_6_0_class_options(mc);
4721 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
4722 }
4723
4724 DEFINE_SPAPR_MACHINE(5_2, "5.2", false);
4725
4726 /*
4727 * pseries-5.1
4728 */
4729 static void spapr_machine_5_1_class_options(MachineClass *mc)
4730 {
4731 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4732
4733 spapr_machine_5_2_class_options(mc);
4734 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4735 smc->pre_5_2_numa_associativity = true;
4736 }
4737
4738 DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4739
4740 /*
4741 * pseries-5.0
4742 */
4743 static void spapr_machine_5_0_class_options(MachineClass *mc)
4744 {
4745 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4746 static GlobalProperty compat[] = {
4747 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4748 };
4749
4750 spapr_machine_5_1_class_options(mc);
4751 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4752 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4753 mc->numa_mem_supported = true;
4754 smc->pre_5_1_assoc_refpoints = true;
4755 }
4756
4757 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4758
4759 /*
4760 * pseries-4.2
4761 */
4762 static void spapr_machine_4_2_class_options(MachineClass *mc)
4763 {
4764 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4765
4766 spapr_machine_5_0_class_options(mc);
4767 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4768 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4769 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4770 smc->rma_limit = 16 * GiB;
4771 mc->nvdimm_supported = false;
4772 }
4773
4774 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4775
4776 /*
4777 * pseries-4.1
4778 */
4779 static void spapr_machine_4_1_class_options(MachineClass *mc)
4780 {
4781 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4782 static GlobalProperty compat[] = {
4783 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4784 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4785 };
4786
4787 spapr_machine_4_2_class_options(mc);
4788 smc->linux_pci_probe = false;
4789 smc->smp_threads_vsmt = false;
4790 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4791 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4792 }
4793
4794 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4795
4796 /*
4797 * pseries-4.0
4798 */
4799 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4800 uint64_t *buid, hwaddr *pio,
4801 hwaddr *mmio32, hwaddr *mmio64,
4802 unsigned n_dma, uint32_t *liobns,
4803 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4804 {
4805 if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma,
4806 liobns, nv2gpa, nv2atsd, errp)) {
4807 return false;
4808 }
4809
4810 *nv2gpa = 0;
4811 *nv2atsd = 0;
4812 return true;
4813 }
4814 static void spapr_machine_4_0_class_options(MachineClass *mc)
4815 {
4816 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4817
4818 spapr_machine_4_1_class_options(mc);
4819 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4820 smc->phb_placement = phb_placement_4_0;
4821 smc->irq = &spapr_irq_xics;
4822 smc->pre_4_1_migration = true;
4823 }
4824
4825 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4826
4827 /*
4828 * pseries-3.1
4829 */
4830 static void spapr_machine_3_1_class_options(MachineClass *mc)
4831 {
4832 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4833
4834 spapr_machine_4_0_class_options(mc);
4835 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4836
4837 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4838 smc->update_dt_enabled = false;
4839 smc->dr_phb_enabled = false;
4840 smc->broken_host_serial_model = true;
4841 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4842 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4843 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4844 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4845 }
4846
4847 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4848
4849 /*
4850 * pseries-3.0
4851 */
4852
4853 static void spapr_machine_3_0_class_options(MachineClass *mc)
4854 {
4855 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4856
4857 spapr_machine_3_1_class_options(mc);
4858 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4859
4860 smc->legacy_irq_allocation = true;
4861 smc->nr_xirqs = 0x400;
4862 smc->irq = &spapr_irq_xics_legacy;
4863 }
4864
4865 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4866
4867 /*
4868 * pseries-2.12
4869 */
4870 static void spapr_machine_2_12_class_options(MachineClass *mc)
4871 {
4872 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4873 static GlobalProperty compat[] = {
4874 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4875 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4876 };
4877
4878 spapr_machine_3_0_class_options(mc);
4879 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4880 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4881
4882 /* We depend on kvm_enabled() to choose a default value for the
4883 * hpt-max-page-size capability. Of course we can't do it here
4884 * because this is too early and the HW accelerator isn't initialzed
4885 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4886 */
4887 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4888 }
4889
4890 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4891
4892 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4893 {
4894 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4895
4896 spapr_machine_2_12_class_options(mc);
4897 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4898 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4899 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4900 }
4901
4902 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4903
4904 /*
4905 * pseries-2.11
4906 */
4907
4908 static void spapr_machine_2_11_class_options(MachineClass *mc)
4909 {
4910 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4911
4912 spapr_machine_2_12_class_options(mc);
4913 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4914 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4915 }
4916
4917 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4918
4919 /*
4920 * pseries-2.10
4921 */
4922
4923 static void spapr_machine_2_10_class_options(MachineClass *mc)
4924 {
4925 spapr_machine_2_11_class_options(mc);
4926 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4927 }
4928
4929 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4930
4931 /*
4932 * pseries-2.9
4933 */
4934
4935 static void spapr_machine_2_9_class_options(MachineClass *mc)
4936 {
4937 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4938 static GlobalProperty compat[] = {
4939 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4940 };
4941
4942 spapr_machine_2_10_class_options(mc);
4943 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4944 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4945 smc->pre_2_10_has_unused_icps = true;
4946 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4947 }
4948
4949 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4950
4951 /*
4952 * pseries-2.8
4953 */
4954
4955 static void spapr_machine_2_8_class_options(MachineClass *mc)
4956 {
4957 static GlobalProperty compat[] = {
4958 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4959 };
4960
4961 spapr_machine_2_9_class_options(mc);
4962 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4963 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4964 mc->numa_mem_align_shift = 23;
4965 }
4966
4967 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4968
4969 /*
4970 * pseries-2.7
4971 */
4972
4973 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4974 uint64_t *buid, hwaddr *pio,
4975 hwaddr *mmio32, hwaddr *mmio64,
4976 unsigned n_dma, uint32_t *liobns,
4977 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4978 {
4979 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4980 const uint64_t base_buid = 0x800000020000000ULL;
4981 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4982 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4983 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4984 const uint32_t max_index = 255;
4985 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4986
4987 uint64_t ram_top = MACHINE(spapr)->ram_size;
4988 hwaddr phb0_base, phb_base;
4989 int i;
4990
4991 /* Do we have device memory? */
4992 if (MACHINE(spapr)->maxram_size > ram_top) {
4993 /* Can't just use maxram_size, because there may be an
4994 * alignment gap between normal and device memory regions
4995 */
4996 ram_top = MACHINE(spapr)->device_memory->base +
4997 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4998 }
4999
5000 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
5001
5002 if (index > max_index) {
5003 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
5004 max_index);
5005 return false;
5006 }
5007
5008 *buid = base_buid + index;
5009 for (i = 0; i < n_dma; ++i) {
5010 liobns[i] = SPAPR_PCI_LIOBN(index, i);
5011 }
5012
5013 phb_base = phb0_base + index * phb_spacing;
5014 *pio = phb_base + pio_offset;
5015 *mmio32 = phb_base + mmio_offset;
5016 /*
5017 * We don't set the 64-bit MMIO window, relying on the PHB's
5018 * fallback behaviour of automatically splitting a large "32-bit"
5019 * window into contiguous 32-bit and 64-bit windows
5020 */
5021
5022 *nv2gpa = 0;
5023 *nv2atsd = 0;
5024 return true;
5025 }
5026
5027 static void spapr_machine_2_7_class_options(MachineClass *mc)
5028 {
5029 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5030 static GlobalProperty compat[] = {
5031 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
5032 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
5033 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
5034 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
5035 };
5036
5037 spapr_machine_2_8_class_options(mc);
5038 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
5039 mc->default_machine_opts = "modern-hotplug-events=off";
5040 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
5041 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5042 smc->phb_placement = phb_placement_2_7;
5043 }
5044
5045 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
5046
5047 /*
5048 * pseries-2.6
5049 */
5050
5051 static void spapr_machine_2_6_class_options(MachineClass *mc)
5052 {
5053 static GlobalProperty compat[] = {
5054 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
5055 };
5056
5057 spapr_machine_2_7_class_options(mc);
5058 mc->has_hotpluggable_cpus = false;
5059 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
5060 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5061 }
5062
5063 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
5064
5065 /*
5066 * pseries-2.5
5067 */
5068
5069 static void spapr_machine_2_5_class_options(MachineClass *mc)
5070 {
5071 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5072 static GlobalProperty compat[] = {
5073 { "spapr-vlan", "use-rx-buffer-pools", "off" },
5074 };
5075
5076 spapr_machine_2_6_class_options(mc);
5077 smc->use_ohci_by_default = true;
5078 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
5079 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5080 }
5081
5082 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
5083
5084 /*
5085 * pseries-2.4
5086 */
5087
5088 static void spapr_machine_2_4_class_options(MachineClass *mc)
5089 {
5090 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5091
5092 spapr_machine_2_5_class_options(mc);
5093 smc->dr_lmb_enabled = false;
5094 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
5095 }
5096
5097 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
5098
5099 /*
5100 * pseries-2.3
5101 */
5102
5103 static void spapr_machine_2_3_class_options(MachineClass *mc)
5104 {
5105 static GlobalProperty compat[] = {
5106 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
5107 };
5108 spapr_machine_2_4_class_options(mc);
5109 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
5110 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5111 }
5112 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
5113
5114 /*
5115 * pseries-2.2
5116 */
5117
5118 static void spapr_machine_2_2_class_options(MachineClass *mc)
5119 {
5120 static GlobalProperty compat[] = {
5121 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
5122 };
5123
5124 spapr_machine_2_3_class_options(mc);
5125 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
5126 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5127 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
5128 }
5129 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
5130
5131 /*
5132 * pseries-2.1
5133 */
5134
5135 static void spapr_machine_2_1_class_options(MachineClass *mc)
5136 {
5137 spapr_machine_2_2_class_options(mc);
5138 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
5139 }
5140 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
5141
5142 static void spapr_machine_register_types(void)
5143 {
5144 type_register_static(&spapr_machine_info);
5145 }
5146
5147 type_init(spapr_machine_register_types)