]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr.c
spapr: implement nested-hv capability for the virtual hypervisor
[mirror_qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 */
26
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qemu/datadir.h"
30 #include "qapi/error.h"
31 #include "qapi/qapi-events-machine.h"
32 #include "qapi/qapi-events-qdev.h"
33 #include "qapi/visitor.h"
34 #include "sysemu/sysemu.h"
35 #include "sysemu/hostmem.h"
36 #include "sysemu/numa.h"
37 #include "sysemu/qtest.h"
38 #include "sysemu/reset.h"
39 #include "sysemu/runstate.h"
40 #include "qemu/log.h"
41 #include "hw/fw-path-provider.h"
42 #include "elf.h"
43 #include "net/net.h"
44 #include "sysemu/device_tree.h"
45 #include "sysemu/cpus.h"
46 #include "sysemu/hw_accel.h"
47 #include "kvm_ppc.h"
48 #include "migration/misc.h"
49 #include "migration/qemu-file-types.h"
50 #include "migration/global_state.h"
51 #include "migration/register.h"
52 #include "migration/blocker.h"
53 #include "mmu-hash64.h"
54 #include "mmu-book3s-v3.h"
55 #include "cpu-models.h"
56 #include "hw/core/cpu.h"
57
58 #include "hw/ppc/ppc.h"
59 #include "hw/loader.h"
60
61 #include "hw/ppc/fdt.h"
62 #include "hw/ppc/spapr.h"
63 #include "hw/ppc/spapr_vio.h"
64 #include "hw/qdev-properties.h"
65 #include "hw/pci-host/spapr.h"
66 #include "hw/pci/msi.h"
67
68 #include "hw/pci/pci.h"
69 #include "hw/scsi/scsi.h"
70 #include "hw/virtio/virtio-scsi.h"
71 #include "hw/virtio/vhost-scsi-common.h"
72
73 #include "exec/ram_addr.h"
74 #include "hw/usb.h"
75 #include "qemu/config-file.h"
76 #include "qemu/error-report.h"
77 #include "trace.h"
78 #include "hw/nmi.h"
79 #include "hw/intc/intc.h"
80
81 #include "hw/ppc/spapr_cpu_core.h"
82 #include "hw/mem/memory-device.h"
83 #include "hw/ppc/spapr_tpm_proxy.h"
84 #include "hw/ppc/spapr_nvdimm.h"
85 #include "hw/ppc/spapr_numa.h"
86 #include "hw/ppc/pef.h"
87
88 #include "monitor/monitor.h"
89
90 #include <libfdt.h>
91
92 /* SLOF memory layout:
93 *
94 * SLOF raw image loaded at 0, copies its romfs right below the flat
95 * device-tree, then position SLOF itself 31M below that
96 *
97 * So we set FW_OVERHEAD to 40MB which should account for all of that
98 * and more
99 *
100 * We load our kernel at 4M, leaving space for SLOF initial image
101 */
102 #define FDT_MAX_ADDR 0x80000000 /* FDT must stay below that */
103 #define FW_MAX_SIZE 0x400000
104 #define FW_FILE_NAME "slof.bin"
105 #define FW_FILE_NAME_VOF "vof.bin"
106 #define FW_OVERHEAD 0x2800000
107 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
108
109 #define MIN_RMA_SLOF (128 * MiB)
110
111 #define PHANDLE_INTC 0x00001111
112
113 /* These two functions implement the VCPU id numbering: one to compute them
114 * all and one to identify thread 0 of a VCORE. Any change to the first one
115 * is likely to have an impact on the second one, so let's keep them close.
116 */
117 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
118 {
119 MachineState *ms = MACHINE(spapr);
120 unsigned int smp_threads = ms->smp.threads;
121
122 assert(spapr->vsmt);
123 return
124 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
125 }
126 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
127 PowerPCCPU *cpu)
128 {
129 assert(spapr->vsmt);
130 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
131 }
132
133 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
134 {
135 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
136 * and newer QEMUs don't even have them. In both cases, we don't want
137 * to send anything on the wire.
138 */
139 return false;
140 }
141
142 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
143 .name = "icp/server",
144 .version_id = 1,
145 .minimum_version_id = 1,
146 .needed = pre_2_10_vmstate_dummy_icp_needed,
147 .fields = (VMStateField[]) {
148 VMSTATE_UNUSED(4), /* uint32_t xirr */
149 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
150 VMSTATE_UNUSED(1), /* uint8_t mfrr */
151 VMSTATE_END_OF_LIST()
152 },
153 };
154
155 static void pre_2_10_vmstate_register_dummy_icp(int i)
156 {
157 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
158 (void *)(uintptr_t) i);
159 }
160
161 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
162 {
163 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
164 (void *)(uintptr_t) i);
165 }
166
167 int spapr_max_server_number(SpaprMachineState *spapr)
168 {
169 MachineState *ms = MACHINE(spapr);
170
171 assert(spapr->vsmt);
172 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
173 }
174
175 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
176 int smt_threads)
177 {
178 int i, ret = 0;
179 uint32_t servers_prop[smt_threads];
180 uint32_t gservers_prop[smt_threads * 2];
181 int index = spapr_get_vcpu_id(cpu);
182
183 if (cpu->compat_pvr) {
184 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
185 if (ret < 0) {
186 return ret;
187 }
188 }
189
190 /* Build interrupt servers and gservers properties */
191 for (i = 0; i < smt_threads; i++) {
192 servers_prop[i] = cpu_to_be32(index + i);
193 /* Hack, direct the group queues back to cpu 0 */
194 gservers_prop[i*2] = cpu_to_be32(index + i);
195 gservers_prop[i*2 + 1] = 0;
196 }
197 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
198 servers_prop, sizeof(servers_prop));
199 if (ret < 0) {
200 return ret;
201 }
202 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
203 gservers_prop, sizeof(gservers_prop));
204
205 return ret;
206 }
207
208 static void spapr_dt_pa_features(SpaprMachineState *spapr,
209 PowerPCCPU *cpu,
210 void *fdt, int offset)
211 {
212 uint8_t pa_features_206[] = { 6, 0,
213 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
214 uint8_t pa_features_207[] = { 24, 0,
215 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
216 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
217 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
218 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
219 uint8_t pa_features_300[] = { 66, 0,
220 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
221 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
222 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
223 /* 6: DS207 */
224 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
225 /* 16: Vector */
226 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
227 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
228 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
229 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
230 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
231 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
232 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
233 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
234 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
235 /* 42: PM, 44: PC RA, 46: SC vec'd */
236 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
237 /* 48: SIMD, 50: QP BFP, 52: String */
238 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
239 /* 54: DecFP, 56: DecI, 58: SHA */
240 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
241 /* 60: NM atomic, 62: RNG */
242 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
243 };
244 uint8_t *pa_features = NULL;
245 size_t pa_size;
246
247 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
248 pa_features = pa_features_206;
249 pa_size = sizeof(pa_features_206);
250 }
251 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
252 pa_features = pa_features_207;
253 pa_size = sizeof(pa_features_207);
254 }
255 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
256 pa_features = pa_features_300;
257 pa_size = sizeof(pa_features_300);
258 }
259 if (!pa_features) {
260 return;
261 }
262
263 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
264 /*
265 * Note: we keep CI large pages off by default because a 64K capable
266 * guest provisioned with large pages might otherwise try to map a qemu
267 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
268 * even if that qemu runs on a 4k host.
269 * We dd this bit back here if we are confident this is not an issue
270 */
271 pa_features[3] |= 0x20;
272 }
273 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
274 pa_features[24] |= 0x80; /* Transactional memory support */
275 }
276 if (spapr->cas_pre_isa3_guest && pa_size > 40) {
277 /* Workaround for broken kernels that attempt (guest) radix
278 * mode when they can't handle it, if they see the radix bit set
279 * in pa-features. So hide it from them. */
280 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
281 }
282
283 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
284 }
285
286 static hwaddr spapr_node0_size(MachineState *machine)
287 {
288 if (machine->numa_state->num_nodes) {
289 int i;
290 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
291 if (machine->numa_state->nodes[i].node_mem) {
292 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
293 machine->ram_size);
294 }
295 }
296 }
297 return machine->ram_size;
298 }
299
300 static void add_str(GString *s, const gchar *s1)
301 {
302 g_string_append_len(s, s1, strlen(s1) + 1);
303 }
304
305 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
306 hwaddr start, hwaddr size)
307 {
308 char mem_name[32];
309 uint64_t mem_reg_property[2];
310 int off;
311
312 mem_reg_property[0] = cpu_to_be64(start);
313 mem_reg_property[1] = cpu_to_be64(size);
314
315 sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
316 off = fdt_add_subnode(fdt, 0, mem_name);
317 _FDT(off);
318 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
319 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
320 sizeof(mem_reg_property))));
321 spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
322 return off;
323 }
324
325 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
326 {
327 MemoryDeviceInfoList *info;
328
329 for (info = list; info; info = info->next) {
330 MemoryDeviceInfo *value = info->value;
331
332 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
333 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
334
335 if (addr >= pcdimm_info->addr &&
336 addr < (pcdimm_info->addr + pcdimm_info->size)) {
337 return pcdimm_info->node;
338 }
339 }
340 }
341
342 return -1;
343 }
344
345 struct sPAPRDrconfCellV2 {
346 uint32_t seq_lmbs;
347 uint64_t base_addr;
348 uint32_t drc_index;
349 uint32_t aa_index;
350 uint32_t flags;
351 } QEMU_PACKED;
352
353 typedef struct DrconfCellQueue {
354 struct sPAPRDrconfCellV2 cell;
355 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
356 } DrconfCellQueue;
357
358 static DrconfCellQueue *
359 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
360 uint32_t drc_index, uint32_t aa_index,
361 uint32_t flags)
362 {
363 DrconfCellQueue *elem;
364
365 elem = g_malloc0(sizeof(*elem));
366 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
367 elem->cell.base_addr = cpu_to_be64(base_addr);
368 elem->cell.drc_index = cpu_to_be32(drc_index);
369 elem->cell.aa_index = cpu_to_be32(aa_index);
370 elem->cell.flags = cpu_to_be32(flags);
371
372 return elem;
373 }
374
375 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
376 int offset, MemoryDeviceInfoList *dimms)
377 {
378 MachineState *machine = MACHINE(spapr);
379 uint8_t *int_buf, *cur_index;
380 int ret;
381 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
382 uint64_t addr, cur_addr, size;
383 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
384 uint64_t mem_end = machine->device_memory->base +
385 memory_region_size(&machine->device_memory->mr);
386 uint32_t node, buf_len, nr_entries = 0;
387 SpaprDrc *drc;
388 DrconfCellQueue *elem, *next;
389 MemoryDeviceInfoList *info;
390 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
391 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
392
393 /* Entry to cover RAM and the gap area */
394 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
395 SPAPR_LMB_FLAGS_RESERVED |
396 SPAPR_LMB_FLAGS_DRC_INVALID);
397 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
398 nr_entries++;
399
400 cur_addr = machine->device_memory->base;
401 for (info = dimms; info; info = info->next) {
402 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
403
404 addr = di->addr;
405 size = di->size;
406 node = di->node;
407
408 /*
409 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
410 * area is marked hotpluggable in the next iteration for the bigger
411 * chunk including the NVDIMM occupied area.
412 */
413 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
414 continue;
415
416 /* Entry for hot-pluggable area */
417 if (cur_addr < addr) {
418 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
419 g_assert(drc);
420 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
421 cur_addr, spapr_drc_index(drc), -1, 0);
422 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
423 nr_entries++;
424 }
425
426 /* Entry for DIMM */
427 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
428 g_assert(drc);
429 elem = spapr_get_drconf_cell(size / lmb_size, addr,
430 spapr_drc_index(drc), node,
431 (SPAPR_LMB_FLAGS_ASSIGNED |
432 SPAPR_LMB_FLAGS_HOTREMOVABLE));
433 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
434 nr_entries++;
435 cur_addr = addr + size;
436 }
437
438 /* Entry for remaining hotpluggable area */
439 if (cur_addr < mem_end) {
440 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
441 g_assert(drc);
442 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
443 cur_addr, spapr_drc_index(drc), -1, 0);
444 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
445 nr_entries++;
446 }
447
448 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
449 int_buf = cur_index = g_malloc0(buf_len);
450 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
451 cur_index += sizeof(nr_entries);
452
453 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
454 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
455 cur_index += sizeof(elem->cell);
456 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
457 g_free(elem);
458 }
459
460 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
461 g_free(int_buf);
462 if (ret < 0) {
463 return -1;
464 }
465 return 0;
466 }
467
468 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
469 int offset, MemoryDeviceInfoList *dimms)
470 {
471 MachineState *machine = MACHINE(spapr);
472 int i, ret;
473 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
474 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
475 uint32_t nr_lmbs = (machine->device_memory->base +
476 memory_region_size(&machine->device_memory->mr)) /
477 lmb_size;
478 uint32_t *int_buf, *cur_index, buf_len;
479
480 /*
481 * Allocate enough buffer size to fit in ibm,dynamic-memory
482 */
483 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
484 cur_index = int_buf = g_malloc0(buf_len);
485 int_buf[0] = cpu_to_be32(nr_lmbs);
486 cur_index++;
487 for (i = 0; i < nr_lmbs; i++) {
488 uint64_t addr = i * lmb_size;
489 uint32_t *dynamic_memory = cur_index;
490
491 if (i >= device_lmb_start) {
492 SpaprDrc *drc;
493
494 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
495 g_assert(drc);
496
497 dynamic_memory[0] = cpu_to_be32(addr >> 32);
498 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
499 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
500 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
501 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
502 if (memory_region_present(get_system_memory(), addr)) {
503 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
504 } else {
505 dynamic_memory[5] = cpu_to_be32(0);
506 }
507 } else {
508 /*
509 * LMB information for RMA, boot time RAM and gap b/n RAM and
510 * device memory region -- all these are marked as reserved
511 * and as having no valid DRC.
512 */
513 dynamic_memory[0] = cpu_to_be32(addr >> 32);
514 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
515 dynamic_memory[2] = cpu_to_be32(0);
516 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
517 dynamic_memory[4] = cpu_to_be32(-1);
518 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
519 SPAPR_LMB_FLAGS_DRC_INVALID);
520 }
521
522 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
523 }
524 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
525 g_free(int_buf);
526 if (ret < 0) {
527 return -1;
528 }
529 return 0;
530 }
531
532 /*
533 * Adds ibm,dynamic-reconfiguration-memory node.
534 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
535 * of this device tree node.
536 */
537 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
538 void *fdt)
539 {
540 MachineState *machine = MACHINE(spapr);
541 int ret, offset;
542 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
543 uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
544 cpu_to_be32(lmb_size & 0xffffffff)};
545 MemoryDeviceInfoList *dimms = NULL;
546
547 /*
548 * Don't create the node if there is no device memory
549 */
550 if (machine->ram_size == machine->maxram_size) {
551 return 0;
552 }
553
554 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
555
556 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
557 sizeof(prop_lmb_size));
558 if (ret < 0) {
559 return ret;
560 }
561
562 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
563 if (ret < 0) {
564 return ret;
565 }
566
567 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
568 if (ret < 0) {
569 return ret;
570 }
571
572 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
573 dimms = qmp_memory_device_list();
574 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
575 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
576 } else {
577 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
578 }
579 qapi_free_MemoryDeviceInfoList(dimms);
580
581 if (ret < 0) {
582 return ret;
583 }
584
585 ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
586
587 return ret;
588 }
589
590 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
591 {
592 MachineState *machine = MACHINE(spapr);
593 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
594 hwaddr mem_start, node_size;
595 int i, nb_nodes = machine->numa_state->num_nodes;
596 NodeInfo *nodes = machine->numa_state->nodes;
597
598 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
599 if (!nodes[i].node_mem) {
600 continue;
601 }
602 if (mem_start >= machine->ram_size) {
603 node_size = 0;
604 } else {
605 node_size = nodes[i].node_mem;
606 if (node_size > machine->ram_size - mem_start) {
607 node_size = machine->ram_size - mem_start;
608 }
609 }
610 if (!mem_start) {
611 /* spapr_machine_init() checks for rma_size <= node0_size
612 * already */
613 spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
614 mem_start += spapr->rma_size;
615 node_size -= spapr->rma_size;
616 }
617 for ( ; node_size; ) {
618 hwaddr sizetmp = pow2floor(node_size);
619
620 /* mem_start != 0 here */
621 if (ctzl(mem_start) < ctzl(sizetmp)) {
622 sizetmp = 1ULL << ctzl(mem_start);
623 }
624
625 spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
626 node_size -= sizetmp;
627 mem_start += sizetmp;
628 }
629 }
630
631 /* Generate ibm,dynamic-reconfiguration-memory node if required */
632 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
633 int ret;
634
635 g_assert(smc->dr_lmb_enabled);
636 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
637 if (ret) {
638 return ret;
639 }
640 }
641
642 return 0;
643 }
644
645 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
646 SpaprMachineState *spapr)
647 {
648 MachineState *ms = MACHINE(spapr);
649 PowerPCCPU *cpu = POWERPC_CPU(cs);
650 CPUPPCState *env = &cpu->env;
651 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
652 int index = spapr_get_vcpu_id(cpu);
653 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
654 0xffffffff, 0xffffffff};
655 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
656 : SPAPR_TIMEBASE_FREQ;
657 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
658 uint32_t page_sizes_prop[64];
659 size_t page_sizes_prop_size;
660 unsigned int smp_threads = ms->smp.threads;
661 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
662 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
663 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
664 SpaprDrc *drc;
665 int drc_index;
666 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
667 int i;
668
669 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
670 if (drc) {
671 drc_index = spapr_drc_index(drc);
672 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
673 }
674
675 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
676 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
677
678 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
679 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
680 env->dcache_line_size)));
681 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
682 env->dcache_line_size)));
683 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
684 env->icache_line_size)));
685 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
686 env->icache_line_size)));
687
688 if (pcc->l1_dcache_size) {
689 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
690 pcc->l1_dcache_size)));
691 } else {
692 warn_report("Unknown L1 dcache size for cpu");
693 }
694 if (pcc->l1_icache_size) {
695 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
696 pcc->l1_icache_size)));
697 } else {
698 warn_report("Unknown L1 icache size for cpu");
699 }
700
701 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
702 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
703 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
704 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
705 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
706 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
707
708 if (ppc_has_spr(cpu, SPR_PURR)) {
709 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
710 }
711 if (ppc_has_spr(cpu, SPR_PURR)) {
712 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
713 }
714
715 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
716 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
717 segs, sizeof(segs))));
718 }
719
720 /* Advertise VSX (vector extensions) if available
721 * 1 == VMX / Altivec available
722 * 2 == VSX available
723 *
724 * Only CPUs for which we create core types in spapr_cpu_core.c
725 * are possible, and all of those have VMX */
726 if (env->insns_flags & PPC_ALTIVEC) {
727 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
728 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
729 } else {
730 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
731 }
732 }
733
734 /* Advertise DFP (Decimal Floating Point) if available
735 * 0 / no property == no DFP
736 * 1 == DFP available */
737 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
738 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
739 }
740
741 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
742 sizeof(page_sizes_prop));
743 if (page_sizes_prop_size) {
744 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
745 page_sizes_prop, page_sizes_prop_size)));
746 }
747
748 spapr_dt_pa_features(spapr, cpu, fdt, offset);
749
750 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
751 cs->cpu_index / vcpus_per_socket)));
752
753 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
754 pft_size_prop, sizeof(pft_size_prop))));
755
756 if (ms->numa_state->num_nodes > 1) {
757 _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
758 }
759
760 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
761
762 if (pcc->radix_page_info) {
763 for (i = 0; i < pcc->radix_page_info->count; i++) {
764 radix_AP_encodings[i] =
765 cpu_to_be32(pcc->radix_page_info->entries[i]);
766 }
767 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
768 radix_AP_encodings,
769 pcc->radix_page_info->count *
770 sizeof(radix_AP_encodings[0]))));
771 }
772
773 /*
774 * We set this property to let the guest know that it can use the large
775 * decrementer and its width in bits.
776 */
777 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
778 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
779 pcc->lrg_decr_bits)));
780 }
781
782 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
783 {
784 CPUState **rev;
785 CPUState *cs;
786 int n_cpus;
787 int cpus_offset;
788 int i;
789
790 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
791 _FDT(cpus_offset);
792 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
793 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
794
795 /*
796 * We walk the CPUs in reverse order to ensure that CPU DT nodes
797 * created by fdt_add_subnode() end up in the right order in FDT
798 * for the guest kernel the enumerate the CPUs correctly.
799 *
800 * The CPU list cannot be traversed in reverse order, so we need
801 * to do extra work.
802 */
803 n_cpus = 0;
804 rev = NULL;
805 CPU_FOREACH(cs) {
806 rev = g_renew(CPUState *, rev, n_cpus + 1);
807 rev[n_cpus++] = cs;
808 }
809
810 for (i = n_cpus - 1; i >= 0; i--) {
811 CPUState *cs = rev[i];
812 PowerPCCPU *cpu = POWERPC_CPU(cs);
813 int index = spapr_get_vcpu_id(cpu);
814 DeviceClass *dc = DEVICE_GET_CLASS(cs);
815 g_autofree char *nodename = NULL;
816 int offset;
817
818 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
819 continue;
820 }
821
822 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
823 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
824 _FDT(offset);
825 spapr_dt_cpu(cs, fdt, offset, spapr);
826 }
827
828 g_free(rev);
829 }
830
831 static int spapr_dt_rng(void *fdt)
832 {
833 int node;
834 int ret;
835
836 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
837 if (node <= 0) {
838 return -1;
839 }
840 ret = fdt_setprop_string(fdt, node, "device_type",
841 "ibm,platform-facilities");
842 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
843 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
844
845 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
846 if (node <= 0) {
847 return -1;
848 }
849 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
850
851 return ret ? -1 : 0;
852 }
853
854 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
855 {
856 MachineState *ms = MACHINE(spapr);
857 int rtas;
858 GString *hypertas = g_string_sized_new(256);
859 GString *qemu_hypertas = g_string_sized_new(256);
860 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
861 memory_region_size(&MACHINE(spapr)->device_memory->mr);
862 uint32_t lrdr_capacity[] = {
863 cpu_to_be32(max_device_addr >> 32),
864 cpu_to_be32(max_device_addr & 0xffffffff),
865 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
866 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
867 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
868 };
869
870 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
871
872 /* hypertas */
873 add_str(hypertas, "hcall-pft");
874 add_str(hypertas, "hcall-term");
875 add_str(hypertas, "hcall-dabr");
876 add_str(hypertas, "hcall-interrupt");
877 add_str(hypertas, "hcall-tce");
878 add_str(hypertas, "hcall-vio");
879 add_str(hypertas, "hcall-splpar");
880 add_str(hypertas, "hcall-join");
881 add_str(hypertas, "hcall-bulk");
882 add_str(hypertas, "hcall-set-mode");
883 add_str(hypertas, "hcall-sprg0");
884 add_str(hypertas, "hcall-copy");
885 add_str(hypertas, "hcall-debug");
886 add_str(hypertas, "hcall-vphn");
887 if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) {
888 add_str(hypertas, "hcall-rpt-invalidate");
889 }
890
891 add_str(qemu_hypertas, "hcall-memop1");
892
893 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
894 add_str(hypertas, "hcall-multi-tce");
895 }
896
897 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
898 add_str(hypertas, "hcall-hpt-resize");
899 }
900
901 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
902 hypertas->str, hypertas->len));
903 g_string_free(hypertas, TRUE);
904 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
905 qemu_hypertas->str, qemu_hypertas->len));
906 g_string_free(qemu_hypertas, TRUE);
907
908 spapr_numa_write_rtas_dt(spapr, fdt, rtas);
909
910 /*
911 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
912 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
913 *
914 * The system reset requirements are driven by existing Linux and PowerVM
915 * implementation which (contrary to PAPR) saves r3 in the error log
916 * structure like machine check, so Linux expects to find the saved r3
917 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
918 * does not look at the error value).
919 *
920 * System reset interrupts are not subject to interlock like machine
921 * check, so this memory area could be corrupted if the sreset is
922 * interrupted by a machine check (or vice versa) if it was shared. To
923 * prevent this, system reset uses per-CPU areas for the sreset save
924 * area. A system reset that interrupts a system reset handler could
925 * still overwrite this area, but Linux doesn't try to recover in that
926 * case anyway.
927 *
928 * The extra 8 bytes is required because Linux's FWNMI error log check
929 * is off-by-one.
930 *
931 * RTAS_MIN_SIZE is required for the RTAS blob itself.
932 */
933 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE +
934 RTAS_ERROR_LOG_MAX +
935 ms->smp.max_cpus * sizeof(uint64_t) * 2 +
936 sizeof(uint64_t)));
937 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
938 RTAS_ERROR_LOG_MAX));
939 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
940 RTAS_EVENT_SCAN_RATE));
941
942 g_assert(msi_nonbroken);
943 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
944
945 /*
946 * According to PAPR, rtas ibm,os-term does not guarantee a return
947 * back to the guest cpu.
948 *
949 * While an additional ibm,extended-os-term property indicates
950 * that rtas call return will always occur. Set this property.
951 */
952 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
953
954 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
955 lrdr_capacity, sizeof(lrdr_capacity)));
956
957 spapr_dt_rtas_tokens(fdt, rtas);
958 }
959
960 /*
961 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
962 * and the XIVE features that the guest may request and thus the valid
963 * values for bytes 23..26 of option vector 5:
964 */
965 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
966 int chosen)
967 {
968 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
969
970 char val[2 * 4] = {
971 23, 0x00, /* XICS / XIVE mode */
972 24, 0x00, /* Hash/Radix, filled in below. */
973 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
974 26, 0x40, /* Radix options: GTSE == yes. */
975 };
976
977 if (spapr->irq->xics && spapr->irq->xive) {
978 val[1] = SPAPR_OV5_XIVE_BOTH;
979 } else if (spapr->irq->xive) {
980 val[1] = SPAPR_OV5_XIVE_EXPLOIT;
981 } else {
982 assert(spapr->irq->xics);
983 val[1] = SPAPR_OV5_XIVE_LEGACY;
984 }
985
986 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
987 first_ppc_cpu->compat_pvr)) {
988 /*
989 * If we're in a pre POWER9 compat mode then the guest should
990 * do hash and use the legacy interrupt mode
991 */
992 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
993 val[3] = 0x00; /* Hash */
994 spapr_check_mmu_mode(false);
995 } else if (kvm_enabled()) {
996 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
997 val[3] = 0x80; /* OV5_MMU_BOTH */
998 } else if (kvmppc_has_cap_mmu_radix()) {
999 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1000 } else {
1001 val[3] = 0x00; /* Hash */
1002 }
1003 } else {
1004 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1005 val[3] = 0xC0;
1006 }
1007 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1008 val, sizeof(val)));
1009 }
1010
1011 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1012 {
1013 MachineState *machine = MACHINE(spapr);
1014 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1015 int chosen;
1016
1017 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1018
1019 if (reset) {
1020 const char *boot_device = spapr->boot_device;
1021 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1022 size_t cb = 0;
1023 char *bootlist = get_boot_devices_list(&cb);
1024
1025 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1026 _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1027 machine->kernel_cmdline));
1028 }
1029
1030 if (spapr->initrd_size) {
1031 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1032 spapr->initrd_base));
1033 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1034 spapr->initrd_base + spapr->initrd_size));
1035 }
1036
1037 if (spapr->kernel_size) {
1038 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1039 cpu_to_be64(spapr->kernel_size) };
1040
1041 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1042 &kprop, sizeof(kprop)));
1043 if (spapr->kernel_le) {
1044 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1045 }
1046 }
1047 if (boot_menu) {
1048 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1049 }
1050 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1051 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1052 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1053
1054 if (cb && bootlist) {
1055 int i;
1056
1057 for (i = 0; i < cb; i++) {
1058 if (bootlist[i] == '\n') {
1059 bootlist[i] = ' ';
1060 }
1061 }
1062 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1063 }
1064
1065 if (boot_device && strlen(boot_device)) {
1066 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1067 }
1068
1069 if (!spapr->has_graphics && stdout_path) {
1070 /*
1071 * "linux,stdout-path" and "stdout" properties are
1072 * deprecated by linux kernel. New platforms should only
1073 * use the "stdout-path" property. Set the new property
1074 * and continue using older property to remain compatible
1075 * with the existing firmware.
1076 */
1077 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1078 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1079 }
1080
1081 /*
1082 * We can deal with BAR reallocation just fine, advertise it
1083 * to the guest
1084 */
1085 if (smc->linux_pci_probe) {
1086 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1087 }
1088
1089 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1090
1091 g_free(stdout_path);
1092 g_free(bootlist);
1093 }
1094
1095 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1096 }
1097
1098 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1099 {
1100 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1101 * KVM to work under pHyp with some guest co-operation */
1102 int hypervisor;
1103 uint8_t hypercall[16];
1104
1105 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1106 /* indicate KVM hypercall interface */
1107 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1108 if (kvmppc_has_cap_fixup_hcalls()) {
1109 /*
1110 * Older KVM versions with older guest kernels were broken
1111 * with the magic page, don't allow the guest to map it.
1112 */
1113 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1114 sizeof(hypercall))) {
1115 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1116 hypercall, sizeof(hypercall)));
1117 }
1118 }
1119 }
1120
1121 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1122 {
1123 MachineState *machine = MACHINE(spapr);
1124 MachineClass *mc = MACHINE_GET_CLASS(machine);
1125 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1126 uint32_t root_drc_type_mask = 0;
1127 int ret;
1128 void *fdt;
1129 SpaprPhbState *phb;
1130 char *buf;
1131
1132 fdt = g_malloc0(space);
1133 _FDT((fdt_create_empty_tree(fdt, space)));
1134
1135 /* Root node */
1136 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1137 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1138 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1139
1140 /* Guest UUID & Name*/
1141 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1142 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1143 if (qemu_uuid_set) {
1144 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1145 }
1146 g_free(buf);
1147
1148 if (qemu_get_vm_name()) {
1149 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1150 qemu_get_vm_name()));
1151 }
1152
1153 /* Host Model & Serial Number */
1154 if (spapr->host_model) {
1155 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1156 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1157 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1158 g_free(buf);
1159 }
1160
1161 if (spapr->host_serial) {
1162 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1163 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1164 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1165 g_free(buf);
1166 }
1167
1168 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1169 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1170
1171 /* /interrupt controller */
1172 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1173
1174 ret = spapr_dt_memory(spapr, fdt);
1175 if (ret < 0) {
1176 error_report("couldn't setup memory nodes in fdt");
1177 exit(1);
1178 }
1179
1180 /* /vdevice */
1181 spapr_dt_vdevice(spapr->vio_bus, fdt);
1182
1183 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1184 ret = spapr_dt_rng(fdt);
1185 if (ret < 0) {
1186 error_report("could not set up rng device in the fdt");
1187 exit(1);
1188 }
1189 }
1190
1191 QLIST_FOREACH(phb, &spapr->phbs, list) {
1192 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1193 if (ret < 0) {
1194 error_report("couldn't setup PCI devices in fdt");
1195 exit(1);
1196 }
1197 }
1198
1199 spapr_dt_cpus(fdt, spapr);
1200
1201 /* ibm,drc-indexes and friends */
1202 if (smc->dr_lmb_enabled) {
1203 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB;
1204 }
1205 if (smc->dr_phb_enabled) {
1206 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB;
1207 }
1208 if (mc->nvdimm_supported) {
1209 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM;
1210 }
1211 if (root_drc_type_mask) {
1212 _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask));
1213 }
1214
1215 if (mc->has_hotpluggable_cpus) {
1216 int offset = fdt_path_offset(fdt, "/cpus");
1217 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1218 if (ret < 0) {
1219 error_report("Couldn't set up CPU DR device tree properties");
1220 exit(1);
1221 }
1222 }
1223
1224 /* /event-sources */
1225 spapr_dt_events(spapr, fdt);
1226
1227 /* /rtas */
1228 spapr_dt_rtas(spapr, fdt);
1229
1230 /* /chosen */
1231 spapr_dt_chosen(spapr, fdt, reset);
1232
1233 /* /hypervisor */
1234 if (kvm_enabled()) {
1235 spapr_dt_hypervisor(spapr, fdt);
1236 }
1237
1238 /* Build memory reserve map */
1239 if (reset) {
1240 if (spapr->kernel_size) {
1241 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1242 spapr->kernel_size)));
1243 }
1244 if (spapr->initrd_size) {
1245 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1246 spapr->initrd_size)));
1247 }
1248 }
1249
1250 /* NVDIMM devices */
1251 if (mc->nvdimm_supported) {
1252 spapr_dt_persistent_memory(spapr, fdt);
1253 }
1254
1255 return fdt;
1256 }
1257
1258 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1259 {
1260 SpaprMachineState *spapr = opaque;
1261
1262 return (addr & 0x0fffffff) + spapr->kernel_addr;
1263 }
1264
1265 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1266 PowerPCCPU *cpu)
1267 {
1268 CPUPPCState *env = &cpu->env;
1269
1270 /* The TCG path should also be holding the BQL at this point */
1271 g_assert(qemu_mutex_iothread_locked());
1272
1273 g_assert(!vhyp_cpu_in_nested(cpu));
1274
1275 if (msr_pr) {
1276 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1277 env->gpr[3] = H_PRIVILEGE;
1278 } else {
1279 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1280 }
1281 }
1282
1283 struct LPCRSyncState {
1284 target_ulong value;
1285 target_ulong mask;
1286 };
1287
1288 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1289 {
1290 struct LPCRSyncState *s = arg.host_ptr;
1291 PowerPCCPU *cpu = POWERPC_CPU(cs);
1292 CPUPPCState *env = &cpu->env;
1293 target_ulong lpcr;
1294
1295 cpu_synchronize_state(cs);
1296 lpcr = env->spr[SPR_LPCR];
1297 lpcr &= ~s->mask;
1298 lpcr |= s->value;
1299 ppc_store_lpcr(cpu, lpcr);
1300 }
1301
1302 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1303 {
1304 CPUState *cs;
1305 struct LPCRSyncState s = {
1306 .value = value,
1307 .mask = mask
1308 };
1309 CPU_FOREACH(cs) {
1310 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1311 }
1312 }
1313
1314 static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu,
1315 target_ulong lpid, ppc_v3_pate_t *entry)
1316 {
1317 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1318 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1319
1320 if (!spapr_cpu->in_nested) {
1321 assert(lpid == 0);
1322
1323 /* Copy PATE1:GR into PATE0:HR */
1324 entry->dw0 = spapr->patb_entry & PATE0_HR;
1325 entry->dw1 = spapr->patb_entry;
1326
1327 } else {
1328 uint64_t patb, pats;
1329
1330 assert(lpid != 0);
1331
1332 patb = spapr->nested_ptcr & PTCR_PATB;
1333 pats = spapr->nested_ptcr & PTCR_PATS;
1334
1335 /* Calculate number of entries */
1336 pats = 1ull << (pats + 12 - 4);
1337 if (pats <= lpid) {
1338 return false;
1339 }
1340
1341 /* Grab entry */
1342 patb += 16 * lpid;
1343 entry->dw0 = ldq_phys(CPU(cpu)->as, patb);
1344 entry->dw1 = ldq_phys(CPU(cpu)->as, patb + 8);
1345 }
1346
1347 return true;
1348 }
1349
1350 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1351 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1352 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1353 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1354 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1355
1356 /*
1357 * Get the fd to access the kernel htab, re-opening it if necessary
1358 */
1359 static int get_htab_fd(SpaprMachineState *spapr)
1360 {
1361 Error *local_err = NULL;
1362
1363 if (spapr->htab_fd >= 0) {
1364 return spapr->htab_fd;
1365 }
1366
1367 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1368 if (spapr->htab_fd < 0) {
1369 error_report_err(local_err);
1370 }
1371
1372 return spapr->htab_fd;
1373 }
1374
1375 void close_htab_fd(SpaprMachineState *spapr)
1376 {
1377 if (spapr->htab_fd >= 0) {
1378 close(spapr->htab_fd);
1379 }
1380 spapr->htab_fd = -1;
1381 }
1382
1383 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1384 {
1385 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1386
1387 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1388 }
1389
1390 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1391 {
1392 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1393
1394 assert(kvm_enabled());
1395
1396 if (!spapr->htab) {
1397 return 0;
1398 }
1399
1400 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1401 }
1402
1403 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1404 hwaddr ptex, int n)
1405 {
1406 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1407 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1408
1409 if (!spapr->htab) {
1410 /*
1411 * HTAB is controlled by KVM. Fetch into temporary buffer
1412 */
1413 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1414 kvmppc_read_hptes(hptes, ptex, n);
1415 return hptes;
1416 }
1417
1418 /*
1419 * HTAB is controlled by QEMU. Just point to the internally
1420 * accessible PTEG.
1421 */
1422 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1423 }
1424
1425 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1426 const ppc_hash_pte64_t *hptes,
1427 hwaddr ptex, int n)
1428 {
1429 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1430
1431 if (!spapr->htab) {
1432 g_free((void *)hptes);
1433 }
1434
1435 /* Nothing to do for qemu managed HPT */
1436 }
1437
1438 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1439 uint64_t pte0, uint64_t pte1)
1440 {
1441 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1442 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1443
1444 if (!spapr->htab) {
1445 kvmppc_write_hpte(ptex, pte0, pte1);
1446 } else {
1447 if (pte0 & HPTE64_V_VALID) {
1448 stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1449 /*
1450 * When setting valid, we write PTE1 first. This ensures
1451 * proper synchronization with the reading code in
1452 * ppc_hash64_pteg_search()
1453 */
1454 smp_wmb();
1455 stq_p(spapr->htab + offset, pte0);
1456 } else {
1457 stq_p(spapr->htab + offset, pte0);
1458 /*
1459 * When clearing it we set PTE0 first. This ensures proper
1460 * synchronization with the reading code in
1461 * ppc_hash64_pteg_search()
1462 */
1463 smp_wmb();
1464 stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1465 }
1466 }
1467 }
1468
1469 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1470 uint64_t pte1)
1471 {
1472 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C;
1473 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1474
1475 if (!spapr->htab) {
1476 /* There should always be a hash table when this is called */
1477 error_report("spapr_hpte_set_c called with no hash table !");
1478 return;
1479 }
1480
1481 /* The HW performs a non-atomic byte update */
1482 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1483 }
1484
1485 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1486 uint64_t pte1)
1487 {
1488 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R;
1489 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1490
1491 if (!spapr->htab) {
1492 /* There should always be a hash table when this is called */
1493 error_report("spapr_hpte_set_r called with no hash table !");
1494 return;
1495 }
1496
1497 /* The HW performs a non-atomic byte update */
1498 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1499 }
1500
1501 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1502 {
1503 int shift;
1504
1505 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1506 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1507 * that's much more than is needed for Linux guests */
1508 shift = ctz64(pow2ceil(ramsize)) - 7;
1509 shift = MAX(shift, 18); /* Minimum architected size */
1510 shift = MIN(shift, 46); /* Maximum architected size */
1511 return shift;
1512 }
1513
1514 void spapr_free_hpt(SpaprMachineState *spapr)
1515 {
1516 g_free(spapr->htab);
1517 spapr->htab = NULL;
1518 spapr->htab_shift = 0;
1519 close_htab_fd(spapr);
1520 }
1521
1522 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp)
1523 {
1524 ERRP_GUARD();
1525 long rc;
1526
1527 /* Clean up any HPT info from a previous boot */
1528 spapr_free_hpt(spapr);
1529
1530 rc = kvmppc_reset_htab(shift);
1531
1532 if (rc == -EOPNOTSUPP) {
1533 error_setg(errp, "HPT not supported in nested guests");
1534 return -EOPNOTSUPP;
1535 }
1536
1537 if (rc < 0) {
1538 /* kernel-side HPT needed, but couldn't allocate one */
1539 error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
1540 shift);
1541 error_append_hint(errp, "Try smaller maxmem?\n");
1542 return -errno;
1543 } else if (rc > 0) {
1544 /* kernel-side HPT allocated */
1545 if (rc != shift) {
1546 error_setg(errp,
1547 "Requested order %d HPT, but kernel allocated order %ld",
1548 shift, rc);
1549 error_append_hint(errp, "Try smaller maxmem?\n");
1550 return -ENOSPC;
1551 }
1552
1553 spapr->htab_shift = shift;
1554 spapr->htab = NULL;
1555 } else {
1556 /* kernel-side HPT not needed, allocate in userspace instead */
1557 size_t size = 1ULL << shift;
1558 int i;
1559
1560 spapr->htab = qemu_memalign(size, size);
1561 memset(spapr->htab, 0, size);
1562 spapr->htab_shift = shift;
1563
1564 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1565 DIRTY_HPTE(HPTE(spapr->htab, i));
1566 }
1567 }
1568 /* We're setting up a hash table, so that means we're not radix */
1569 spapr->patb_entry = 0;
1570 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1571 return 0;
1572 }
1573
1574 void spapr_setup_hpt(SpaprMachineState *spapr)
1575 {
1576 int hpt_shift;
1577
1578 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1579 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1580 } else {
1581 uint64_t current_ram_size;
1582
1583 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1584 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1585 }
1586 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1587
1588 if (kvm_enabled()) {
1589 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1590
1591 /* Check our RMA fits in the possible VRMA */
1592 if (vrma_limit < spapr->rma_size) {
1593 error_report("Unable to create %" HWADDR_PRIu
1594 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1595 spapr->rma_size / MiB, vrma_limit / MiB);
1596 exit(EXIT_FAILURE);
1597 }
1598 }
1599 }
1600
1601 void spapr_check_mmu_mode(bool guest_radix)
1602 {
1603 if (guest_radix) {
1604 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1605 error_report("Guest requested unavailable MMU mode (radix).");
1606 exit(EXIT_FAILURE);
1607 }
1608 } else {
1609 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1610 && !kvmppc_has_cap_mmu_hash_v3()) {
1611 error_report("Guest requested unavailable MMU mode (hash).");
1612 exit(EXIT_FAILURE);
1613 }
1614 }
1615 }
1616
1617 static void spapr_machine_reset(MachineState *machine)
1618 {
1619 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1620 PowerPCCPU *first_ppc_cpu;
1621 hwaddr fdt_addr;
1622 void *fdt;
1623 int rc;
1624
1625 pef_kvm_reset(machine->cgs, &error_fatal);
1626 spapr_caps_apply(spapr);
1627
1628 first_ppc_cpu = POWERPC_CPU(first_cpu);
1629 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1630 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1631 spapr->max_compat_pvr)) {
1632 /*
1633 * If using KVM with radix mode available, VCPUs can be started
1634 * without a HPT because KVM will start them in radix mode.
1635 * Set the GR bit in PATE so that we know there is no HPT.
1636 */
1637 spapr->patb_entry = PATE1_GR;
1638 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1639 } else {
1640 spapr_setup_hpt(spapr);
1641 }
1642
1643 qemu_devices_reset();
1644
1645 spapr_ovec_cleanup(spapr->ov5_cas);
1646 spapr->ov5_cas = spapr_ovec_new();
1647
1648 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1649
1650 /*
1651 * This is fixing some of the default configuration of the XIVE
1652 * devices. To be called after the reset of the machine devices.
1653 */
1654 spapr_irq_reset(spapr, &error_fatal);
1655
1656 /*
1657 * There is no CAS under qtest. Simulate one to please the code that
1658 * depends on spapr->ov5_cas. This is especially needed to test device
1659 * unplug, so we do that before resetting the DRCs.
1660 */
1661 if (qtest_enabled()) {
1662 spapr_ovec_cleanup(spapr->ov5_cas);
1663 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1664 }
1665
1666 spapr_nvdimm_finish_flushes();
1667
1668 /* DRC reset may cause a device to be unplugged. This will cause troubles
1669 * if this device is used by another device (eg, a running vhost backend
1670 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1671 * situations, we reset DRCs after all devices have been reset.
1672 */
1673 spapr_drc_reset_all(spapr);
1674
1675 spapr_clear_pending_events(spapr);
1676
1677 /*
1678 * We place the device tree just below either the top of the RMA,
1679 * or just below 2GB, whichever is lower, so that it can be
1680 * processed with 32-bit real mode code if necessary
1681 */
1682 fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE;
1683
1684 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1685 if (spapr->vof) {
1686 spapr_vof_reset(spapr, fdt, &error_fatal);
1687 /*
1688 * Do not pack the FDT as the client may change properties.
1689 * VOF client does not expect the FDT so we do not load it to the VM.
1690 */
1691 } else {
1692 rc = fdt_pack(fdt);
1693 /* Should only fail if we've built a corrupted tree */
1694 assert(rc == 0);
1695
1696 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT,
1697 0, fdt_addr, 0);
1698 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1699 }
1700 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1701
1702 g_free(spapr->fdt_blob);
1703 spapr->fdt_size = fdt_totalsize(fdt);
1704 spapr->fdt_initial_size = spapr->fdt_size;
1705 spapr->fdt_blob = fdt;
1706
1707 /* Set up the entry state */
1708 first_ppc_cpu->env.gpr[5] = 0;
1709
1710 spapr->fwnmi_system_reset_addr = -1;
1711 spapr->fwnmi_machine_check_addr = -1;
1712 spapr->fwnmi_machine_check_interlock = -1;
1713
1714 /* Signal all vCPUs waiting on this condition */
1715 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1716
1717 migrate_del_blocker(spapr->fwnmi_migration_blocker);
1718 }
1719
1720 static void spapr_create_nvram(SpaprMachineState *spapr)
1721 {
1722 DeviceState *dev = qdev_new("spapr-nvram");
1723 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1724
1725 if (dinfo) {
1726 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1727 &error_fatal);
1728 }
1729
1730 qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1731
1732 spapr->nvram = (struct SpaprNvram *)dev;
1733 }
1734
1735 static void spapr_rtc_create(SpaprMachineState *spapr)
1736 {
1737 object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1738 sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1739 &error_fatal, NULL);
1740 qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1741 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1742 "date");
1743 }
1744
1745 /* Returns whether we want to use VGA or not */
1746 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1747 {
1748 switch (vga_interface_type) {
1749 case VGA_NONE:
1750 return false;
1751 case VGA_DEVICE:
1752 return true;
1753 case VGA_STD:
1754 case VGA_VIRTIO:
1755 case VGA_CIRRUS:
1756 return pci_vga_init(pci_bus) != NULL;
1757 default:
1758 error_setg(errp,
1759 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1760 return false;
1761 }
1762 }
1763
1764 static int spapr_pre_load(void *opaque)
1765 {
1766 int rc;
1767
1768 rc = spapr_caps_pre_load(opaque);
1769 if (rc) {
1770 return rc;
1771 }
1772
1773 return 0;
1774 }
1775
1776 static int spapr_post_load(void *opaque, int version_id)
1777 {
1778 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1779 int err = 0;
1780
1781 err = spapr_caps_post_migration(spapr);
1782 if (err) {
1783 return err;
1784 }
1785
1786 /*
1787 * In earlier versions, there was no separate qdev for the PAPR
1788 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1789 * So when migrating from those versions, poke the incoming offset
1790 * value into the RTC device
1791 */
1792 if (version_id < 3) {
1793 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1794 if (err) {
1795 return err;
1796 }
1797 }
1798
1799 if (kvm_enabled() && spapr->patb_entry) {
1800 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1801 bool radix = !!(spapr->patb_entry & PATE1_GR);
1802 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1803
1804 /*
1805 * Update LPCR:HR and UPRT as they may not be set properly in
1806 * the stream
1807 */
1808 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1809 LPCR_HR | LPCR_UPRT);
1810
1811 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1812 if (err) {
1813 error_report("Process table config unsupported by the host");
1814 return -EINVAL;
1815 }
1816 }
1817
1818 err = spapr_irq_post_load(spapr, version_id);
1819 if (err) {
1820 return err;
1821 }
1822
1823 return err;
1824 }
1825
1826 static int spapr_pre_save(void *opaque)
1827 {
1828 int rc;
1829
1830 rc = spapr_caps_pre_save(opaque);
1831 if (rc) {
1832 return rc;
1833 }
1834
1835 return 0;
1836 }
1837
1838 static bool version_before_3(void *opaque, int version_id)
1839 {
1840 return version_id < 3;
1841 }
1842
1843 static bool spapr_pending_events_needed(void *opaque)
1844 {
1845 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1846 return !QTAILQ_EMPTY(&spapr->pending_events);
1847 }
1848
1849 static const VMStateDescription vmstate_spapr_event_entry = {
1850 .name = "spapr_event_log_entry",
1851 .version_id = 1,
1852 .minimum_version_id = 1,
1853 .fields = (VMStateField[]) {
1854 VMSTATE_UINT32(summary, SpaprEventLogEntry),
1855 VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1856 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1857 NULL, extended_length),
1858 VMSTATE_END_OF_LIST()
1859 },
1860 };
1861
1862 static const VMStateDescription vmstate_spapr_pending_events = {
1863 .name = "spapr_pending_events",
1864 .version_id = 1,
1865 .minimum_version_id = 1,
1866 .needed = spapr_pending_events_needed,
1867 .fields = (VMStateField[]) {
1868 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1869 vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1870 VMSTATE_END_OF_LIST()
1871 },
1872 };
1873
1874 static bool spapr_ov5_cas_needed(void *opaque)
1875 {
1876 SpaprMachineState *spapr = opaque;
1877 SpaprOptionVector *ov5_mask = spapr_ovec_new();
1878 bool cas_needed;
1879
1880 /* Prior to the introduction of SpaprOptionVector, we had two option
1881 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1882 * Both of these options encode machine topology into the device-tree
1883 * in such a way that the now-booted OS should still be able to interact
1884 * appropriately with QEMU regardless of what options were actually
1885 * negotiatied on the source side.
1886 *
1887 * As such, we can avoid migrating the CAS-negotiated options if these
1888 * are the only options available on the current machine/platform.
1889 * Since these are the only options available for pseries-2.7 and
1890 * earlier, this allows us to maintain old->new/new->old migration
1891 * compatibility.
1892 *
1893 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1894 * via default pseries-2.8 machines and explicit command-line parameters.
1895 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1896 * of the actual CAS-negotiated values to continue working properly. For
1897 * example, availability of memory unplug depends on knowing whether
1898 * OV5_HP_EVT was negotiated via CAS.
1899 *
1900 * Thus, for any cases where the set of available CAS-negotiatable
1901 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1902 * include the CAS-negotiated options in the migration stream, unless
1903 * if they affect boot time behaviour only.
1904 */
1905 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1906 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1907 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1908
1909 /* We need extra information if we have any bits outside the mask
1910 * defined above */
1911 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1912
1913 spapr_ovec_cleanup(ov5_mask);
1914
1915 return cas_needed;
1916 }
1917
1918 static const VMStateDescription vmstate_spapr_ov5_cas = {
1919 .name = "spapr_option_vector_ov5_cas",
1920 .version_id = 1,
1921 .minimum_version_id = 1,
1922 .needed = spapr_ov5_cas_needed,
1923 .fields = (VMStateField[]) {
1924 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1925 vmstate_spapr_ovec, SpaprOptionVector),
1926 VMSTATE_END_OF_LIST()
1927 },
1928 };
1929
1930 static bool spapr_patb_entry_needed(void *opaque)
1931 {
1932 SpaprMachineState *spapr = opaque;
1933
1934 return !!spapr->patb_entry;
1935 }
1936
1937 static const VMStateDescription vmstate_spapr_patb_entry = {
1938 .name = "spapr_patb_entry",
1939 .version_id = 1,
1940 .minimum_version_id = 1,
1941 .needed = spapr_patb_entry_needed,
1942 .fields = (VMStateField[]) {
1943 VMSTATE_UINT64(patb_entry, SpaprMachineState),
1944 VMSTATE_END_OF_LIST()
1945 },
1946 };
1947
1948 static bool spapr_irq_map_needed(void *opaque)
1949 {
1950 SpaprMachineState *spapr = opaque;
1951
1952 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1953 }
1954
1955 static const VMStateDescription vmstate_spapr_irq_map = {
1956 .name = "spapr_irq_map",
1957 .version_id = 1,
1958 .minimum_version_id = 1,
1959 .needed = spapr_irq_map_needed,
1960 .fields = (VMStateField[]) {
1961 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1962 VMSTATE_END_OF_LIST()
1963 },
1964 };
1965
1966 static bool spapr_dtb_needed(void *opaque)
1967 {
1968 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1969
1970 return smc->update_dt_enabled;
1971 }
1972
1973 static int spapr_dtb_pre_load(void *opaque)
1974 {
1975 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1976
1977 g_free(spapr->fdt_blob);
1978 spapr->fdt_blob = NULL;
1979 spapr->fdt_size = 0;
1980
1981 return 0;
1982 }
1983
1984 static const VMStateDescription vmstate_spapr_dtb = {
1985 .name = "spapr_dtb",
1986 .version_id = 1,
1987 .minimum_version_id = 1,
1988 .needed = spapr_dtb_needed,
1989 .pre_load = spapr_dtb_pre_load,
1990 .fields = (VMStateField[]) {
1991 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
1992 VMSTATE_UINT32(fdt_size, SpaprMachineState),
1993 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
1994 fdt_size),
1995 VMSTATE_END_OF_LIST()
1996 },
1997 };
1998
1999 static bool spapr_fwnmi_needed(void *opaque)
2000 {
2001 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2002
2003 return spapr->fwnmi_machine_check_addr != -1;
2004 }
2005
2006 static int spapr_fwnmi_pre_save(void *opaque)
2007 {
2008 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2009
2010 /*
2011 * Check if machine check handling is in progress and print a
2012 * warning message.
2013 */
2014 if (spapr->fwnmi_machine_check_interlock != -1) {
2015 warn_report("A machine check is being handled during migration. The"
2016 "handler may run and log hardware error on the destination");
2017 }
2018
2019 return 0;
2020 }
2021
2022 static const VMStateDescription vmstate_spapr_fwnmi = {
2023 .name = "spapr_fwnmi",
2024 .version_id = 1,
2025 .minimum_version_id = 1,
2026 .needed = spapr_fwnmi_needed,
2027 .pre_save = spapr_fwnmi_pre_save,
2028 .fields = (VMStateField[]) {
2029 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
2030 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
2031 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
2032 VMSTATE_END_OF_LIST()
2033 },
2034 };
2035
2036 static const VMStateDescription vmstate_spapr = {
2037 .name = "spapr",
2038 .version_id = 3,
2039 .minimum_version_id = 1,
2040 .pre_load = spapr_pre_load,
2041 .post_load = spapr_post_load,
2042 .pre_save = spapr_pre_save,
2043 .fields = (VMStateField[]) {
2044 /* used to be @next_irq */
2045 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2046
2047 /* RTC offset */
2048 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2049
2050 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2051 VMSTATE_END_OF_LIST()
2052 },
2053 .subsections = (const VMStateDescription*[]) {
2054 &vmstate_spapr_ov5_cas,
2055 &vmstate_spapr_patb_entry,
2056 &vmstate_spapr_pending_events,
2057 &vmstate_spapr_cap_htm,
2058 &vmstate_spapr_cap_vsx,
2059 &vmstate_spapr_cap_dfp,
2060 &vmstate_spapr_cap_cfpc,
2061 &vmstate_spapr_cap_sbbc,
2062 &vmstate_spapr_cap_ibs,
2063 &vmstate_spapr_cap_hpt_maxpagesize,
2064 &vmstate_spapr_irq_map,
2065 &vmstate_spapr_cap_nested_kvm_hv,
2066 &vmstate_spapr_dtb,
2067 &vmstate_spapr_cap_large_decr,
2068 &vmstate_spapr_cap_ccf_assist,
2069 &vmstate_spapr_cap_fwnmi,
2070 &vmstate_spapr_fwnmi,
2071 &vmstate_spapr_cap_rpt_invalidate,
2072 NULL
2073 }
2074 };
2075
2076 static int htab_save_setup(QEMUFile *f, void *opaque)
2077 {
2078 SpaprMachineState *spapr = opaque;
2079
2080 /* "Iteration" header */
2081 if (!spapr->htab_shift) {
2082 qemu_put_be32(f, -1);
2083 } else {
2084 qemu_put_be32(f, spapr->htab_shift);
2085 }
2086
2087 if (spapr->htab) {
2088 spapr->htab_save_index = 0;
2089 spapr->htab_first_pass = true;
2090 } else {
2091 if (spapr->htab_shift) {
2092 assert(kvm_enabled());
2093 }
2094 }
2095
2096
2097 return 0;
2098 }
2099
2100 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2101 int chunkstart, int n_valid, int n_invalid)
2102 {
2103 qemu_put_be32(f, chunkstart);
2104 qemu_put_be16(f, n_valid);
2105 qemu_put_be16(f, n_invalid);
2106 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2107 HASH_PTE_SIZE_64 * n_valid);
2108 }
2109
2110 static void htab_save_end_marker(QEMUFile *f)
2111 {
2112 qemu_put_be32(f, 0);
2113 qemu_put_be16(f, 0);
2114 qemu_put_be16(f, 0);
2115 }
2116
2117 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2118 int64_t max_ns)
2119 {
2120 bool has_timeout = max_ns != -1;
2121 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2122 int index = spapr->htab_save_index;
2123 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2124
2125 assert(spapr->htab_first_pass);
2126
2127 do {
2128 int chunkstart;
2129
2130 /* Consume invalid HPTEs */
2131 while ((index < htabslots)
2132 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2133 CLEAN_HPTE(HPTE(spapr->htab, index));
2134 index++;
2135 }
2136
2137 /* Consume valid HPTEs */
2138 chunkstart = index;
2139 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2140 && HPTE_VALID(HPTE(spapr->htab, index))) {
2141 CLEAN_HPTE(HPTE(spapr->htab, index));
2142 index++;
2143 }
2144
2145 if (index > chunkstart) {
2146 int n_valid = index - chunkstart;
2147
2148 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2149
2150 if (has_timeout &&
2151 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2152 break;
2153 }
2154 }
2155 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2156
2157 if (index >= htabslots) {
2158 assert(index == htabslots);
2159 index = 0;
2160 spapr->htab_first_pass = false;
2161 }
2162 spapr->htab_save_index = index;
2163 }
2164
2165 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2166 int64_t max_ns)
2167 {
2168 bool final = max_ns < 0;
2169 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2170 int examined = 0, sent = 0;
2171 int index = spapr->htab_save_index;
2172 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2173
2174 assert(!spapr->htab_first_pass);
2175
2176 do {
2177 int chunkstart, invalidstart;
2178
2179 /* Consume non-dirty HPTEs */
2180 while ((index < htabslots)
2181 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2182 index++;
2183 examined++;
2184 }
2185
2186 chunkstart = index;
2187 /* Consume valid dirty HPTEs */
2188 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2189 && HPTE_DIRTY(HPTE(spapr->htab, index))
2190 && HPTE_VALID(HPTE(spapr->htab, index))) {
2191 CLEAN_HPTE(HPTE(spapr->htab, index));
2192 index++;
2193 examined++;
2194 }
2195
2196 invalidstart = index;
2197 /* Consume invalid dirty HPTEs */
2198 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2199 && HPTE_DIRTY(HPTE(spapr->htab, index))
2200 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2201 CLEAN_HPTE(HPTE(spapr->htab, index));
2202 index++;
2203 examined++;
2204 }
2205
2206 if (index > chunkstart) {
2207 int n_valid = invalidstart - chunkstart;
2208 int n_invalid = index - invalidstart;
2209
2210 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2211 sent += index - chunkstart;
2212
2213 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2214 break;
2215 }
2216 }
2217
2218 if (examined >= htabslots) {
2219 break;
2220 }
2221
2222 if (index >= htabslots) {
2223 assert(index == htabslots);
2224 index = 0;
2225 }
2226 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2227
2228 if (index >= htabslots) {
2229 assert(index == htabslots);
2230 index = 0;
2231 }
2232
2233 spapr->htab_save_index = index;
2234
2235 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2236 }
2237
2238 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2239 #define MAX_KVM_BUF_SIZE 2048
2240
2241 static int htab_save_iterate(QEMUFile *f, void *opaque)
2242 {
2243 SpaprMachineState *spapr = opaque;
2244 int fd;
2245 int rc = 0;
2246
2247 /* Iteration header */
2248 if (!spapr->htab_shift) {
2249 qemu_put_be32(f, -1);
2250 return 1;
2251 } else {
2252 qemu_put_be32(f, 0);
2253 }
2254
2255 if (!spapr->htab) {
2256 assert(kvm_enabled());
2257
2258 fd = get_htab_fd(spapr);
2259 if (fd < 0) {
2260 return fd;
2261 }
2262
2263 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2264 if (rc < 0) {
2265 return rc;
2266 }
2267 } else if (spapr->htab_first_pass) {
2268 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2269 } else {
2270 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2271 }
2272
2273 htab_save_end_marker(f);
2274
2275 return rc;
2276 }
2277
2278 static int htab_save_complete(QEMUFile *f, void *opaque)
2279 {
2280 SpaprMachineState *spapr = opaque;
2281 int fd;
2282
2283 /* Iteration header */
2284 if (!spapr->htab_shift) {
2285 qemu_put_be32(f, -1);
2286 return 0;
2287 } else {
2288 qemu_put_be32(f, 0);
2289 }
2290
2291 if (!spapr->htab) {
2292 int rc;
2293
2294 assert(kvm_enabled());
2295
2296 fd = get_htab_fd(spapr);
2297 if (fd < 0) {
2298 return fd;
2299 }
2300
2301 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2302 if (rc < 0) {
2303 return rc;
2304 }
2305 } else {
2306 if (spapr->htab_first_pass) {
2307 htab_save_first_pass(f, spapr, -1);
2308 }
2309 htab_save_later_pass(f, spapr, -1);
2310 }
2311
2312 /* End marker */
2313 htab_save_end_marker(f);
2314
2315 return 0;
2316 }
2317
2318 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2319 {
2320 SpaprMachineState *spapr = opaque;
2321 uint32_t section_hdr;
2322 int fd = -1;
2323 Error *local_err = NULL;
2324
2325 if (version_id < 1 || version_id > 1) {
2326 error_report("htab_load() bad version");
2327 return -EINVAL;
2328 }
2329
2330 section_hdr = qemu_get_be32(f);
2331
2332 if (section_hdr == -1) {
2333 spapr_free_hpt(spapr);
2334 return 0;
2335 }
2336
2337 if (section_hdr) {
2338 int ret;
2339
2340 /* First section gives the htab size */
2341 ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2342 if (ret < 0) {
2343 error_report_err(local_err);
2344 return ret;
2345 }
2346 return 0;
2347 }
2348
2349 if (!spapr->htab) {
2350 assert(kvm_enabled());
2351
2352 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2353 if (fd < 0) {
2354 error_report_err(local_err);
2355 return fd;
2356 }
2357 }
2358
2359 while (true) {
2360 uint32_t index;
2361 uint16_t n_valid, n_invalid;
2362
2363 index = qemu_get_be32(f);
2364 n_valid = qemu_get_be16(f);
2365 n_invalid = qemu_get_be16(f);
2366
2367 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2368 /* End of Stream */
2369 break;
2370 }
2371
2372 if ((index + n_valid + n_invalid) >
2373 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2374 /* Bad index in stream */
2375 error_report(
2376 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2377 index, n_valid, n_invalid, spapr->htab_shift);
2378 return -EINVAL;
2379 }
2380
2381 if (spapr->htab) {
2382 if (n_valid) {
2383 qemu_get_buffer(f, HPTE(spapr->htab, index),
2384 HASH_PTE_SIZE_64 * n_valid);
2385 }
2386 if (n_invalid) {
2387 memset(HPTE(spapr->htab, index + n_valid), 0,
2388 HASH_PTE_SIZE_64 * n_invalid);
2389 }
2390 } else {
2391 int rc;
2392
2393 assert(fd >= 0);
2394
2395 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid,
2396 &local_err);
2397 if (rc < 0) {
2398 error_report_err(local_err);
2399 return rc;
2400 }
2401 }
2402 }
2403
2404 if (!spapr->htab) {
2405 assert(fd >= 0);
2406 close(fd);
2407 }
2408
2409 return 0;
2410 }
2411
2412 static void htab_save_cleanup(void *opaque)
2413 {
2414 SpaprMachineState *spapr = opaque;
2415
2416 close_htab_fd(spapr);
2417 }
2418
2419 static SaveVMHandlers savevm_htab_handlers = {
2420 .save_setup = htab_save_setup,
2421 .save_live_iterate = htab_save_iterate,
2422 .save_live_complete_precopy = htab_save_complete,
2423 .save_cleanup = htab_save_cleanup,
2424 .load_state = htab_load,
2425 };
2426
2427 static void spapr_boot_set(void *opaque, const char *boot_device,
2428 Error **errp)
2429 {
2430 SpaprMachineState *spapr = SPAPR_MACHINE(opaque);
2431
2432 g_free(spapr->boot_device);
2433 spapr->boot_device = g_strdup(boot_device);
2434 }
2435
2436 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2437 {
2438 MachineState *machine = MACHINE(spapr);
2439 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2440 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2441 int i;
2442
2443 for (i = 0; i < nr_lmbs; i++) {
2444 uint64_t addr;
2445
2446 addr = i * lmb_size + machine->device_memory->base;
2447 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2448 addr / lmb_size);
2449 }
2450 }
2451
2452 /*
2453 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2454 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2455 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2456 */
2457 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2458 {
2459 int i;
2460
2461 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2462 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2463 " is not aligned to %" PRIu64 " MiB",
2464 machine->ram_size,
2465 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2466 return;
2467 }
2468
2469 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2470 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2471 " is not aligned to %" PRIu64 " MiB",
2472 machine->ram_size,
2473 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2474 return;
2475 }
2476
2477 for (i = 0; i < machine->numa_state->num_nodes; i++) {
2478 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2479 error_setg(errp,
2480 "Node %d memory size 0x%" PRIx64
2481 " is not aligned to %" PRIu64 " MiB",
2482 i, machine->numa_state->nodes[i].node_mem,
2483 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2484 return;
2485 }
2486 }
2487 }
2488
2489 /* find cpu slot in machine->possible_cpus by core_id */
2490 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2491 {
2492 int index = id / ms->smp.threads;
2493
2494 if (index >= ms->possible_cpus->len) {
2495 return NULL;
2496 }
2497 if (idx) {
2498 *idx = index;
2499 }
2500 return &ms->possible_cpus->cpus[index];
2501 }
2502
2503 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2504 {
2505 MachineState *ms = MACHINE(spapr);
2506 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2507 Error *local_err = NULL;
2508 bool vsmt_user = !!spapr->vsmt;
2509 int kvm_smt = kvmppc_smt_threads();
2510 int ret;
2511 unsigned int smp_threads = ms->smp.threads;
2512
2513 if (!kvm_enabled() && (smp_threads > 1)) {
2514 error_setg(errp, "TCG cannot support more than 1 thread/core "
2515 "on a pseries machine");
2516 return;
2517 }
2518 if (!is_power_of_2(smp_threads)) {
2519 error_setg(errp, "Cannot support %d threads/core on a pseries "
2520 "machine because it must be a power of 2", smp_threads);
2521 return;
2522 }
2523
2524 /* Detemine the VSMT mode to use: */
2525 if (vsmt_user) {
2526 if (spapr->vsmt < smp_threads) {
2527 error_setg(errp, "Cannot support VSMT mode %d"
2528 " because it must be >= threads/core (%d)",
2529 spapr->vsmt, smp_threads);
2530 return;
2531 }
2532 /* In this case, spapr->vsmt has been set by the command line */
2533 } else if (!smc->smp_threads_vsmt) {
2534 /*
2535 * Default VSMT value is tricky, because we need it to be as
2536 * consistent as possible (for migration), but this requires
2537 * changing it for at least some existing cases. We pick 8 as
2538 * the value that we'd get with KVM on POWER8, the
2539 * overwhelmingly common case in production systems.
2540 */
2541 spapr->vsmt = MAX(8, smp_threads);
2542 } else {
2543 spapr->vsmt = smp_threads;
2544 }
2545
2546 /* KVM: If necessary, set the SMT mode: */
2547 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2548 ret = kvmppc_set_smt_threads(spapr->vsmt);
2549 if (ret) {
2550 /* Looks like KVM isn't able to change VSMT mode */
2551 error_setg(&local_err,
2552 "Failed to set KVM's VSMT mode to %d (errno %d)",
2553 spapr->vsmt, ret);
2554 /* We can live with that if the default one is big enough
2555 * for the number of threads, and a submultiple of the one
2556 * we want. In this case we'll waste some vcpu ids, but
2557 * behaviour will be correct */
2558 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2559 warn_report_err(local_err);
2560 } else {
2561 if (!vsmt_user) {
2562 error_append_hint(&local_err,
2563 "On PPC, a VM with %d threads/core"
2564 " on a host with %d threads/core"
2565 " requires the use of VSMT mode %d.\n",
2566 smp_threads, kvm_smt, spapr->vsmt);
2567 }
2568 kvmppc_error_append_smt_possible_hint(&local_err);
2569 error_propagate(errp, local_err);
2570 }
2571 }
2572 }
2573 /* else TCG: nothing to do currently */
2574 }
2575
2576 static void spapr_init_cpus(SpaprMachineState *spapr)
2577 {
2578 MachineState *machine = MACHINE(spapr);
2579 MachineClass *mc = MACHINE_GET_CLASS(machine);
2580 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2581 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2582 const CPUArchIdList *possible_cpus;
2583 unsigned int smp_cpus = machine->smp.cpus;
2584 unsigned int smp_threads = machine->smp.threads;
2585 unsigned int max_cpus = machine->smp.max_cpus;
2586 int boot_cores_nr = smp_cpus / smp_threads;
2587 int i;
2588
2589 possible_cpus = mc->possible_cpu_arch_ids(machine);
2590 if (mc->has_hotpluggable_cpus) {
2591 if (smp_cpus % smp_threads) {
2592 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2593 smp_cpus, smp_threads);
2594 exit(1);
2595 }
2596 if (max_cpus % smp_threads) {
2597 error_report("max_cpus (%u) must be multiple of threads (%u)",
2598 max_cpus, smp_threads);
2599 exit(1);
2600 }
2601 } else {
2602 if (max_cpus != smp_cpus) {
2603 error_report("This machine version does not support CPU hotplug");
2604 exit(1);
2605 }
2606 boot_cores_nr = possible_cpus->len;
2607 }
2608
2609 if (smc->pre_2_10_has_unused_icps) {
2610 int i;
2611
2612 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2613 /* Dummy entries get deregistered when real ICPState objects
2614 * are registered during CPU core hotplug.
2615 */
2616 pre_2_10_vmstate_register_dummy_icp(i);
2617 }
2618 }
2619
2620 for (i = 0; i < possible_cpus->len; i++) {
2621 int core_id = i * smp_threads;
2622
2623 if (mc->has_hotpluggable_cpus) {
2624 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2625 spapr_vcpu_id(spapr, core_id));
2626 }
2627
2628 if (i < boot_cores_nr) {
2629 Object *core = object_new(type);
2630 int nr_threads = smp_threads;
2631
2632 /* Handle the partially filled core for older machine types */
2633 if ((i + 1) * smp_threads >= smp_cpus) {
2634 nr_threads = smp_cpus - i * smp_threads;
2635 }
2636
2637 object_property_set_int(core, "nr-threads", nr_threads,
2638 &error_fatal);
2639 object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2640 &error_fatal);
2641 qdev_realize(DEVICE(core), NULL, &error_fatal);
2642
2643 object_unref(core);
2644 }
2645 }
2646 }
2647
2648 static PCIHostState *spapr_create_default_phb(void)
2649 {
2650 DeviceState *dev;
2651
2652 dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2653 qdev_prop_set_uint32(dev, "index", 0);
2654 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2655
2656 return PCI_HOST_BRIDGE(dev);
2657 }
2658
2659 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2660 {
2661 MachineState *machine = MACHINE(spapr);
2662 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2663 hwaddr rma_size = machine->ram_size;
2664 hwaddr node0_size = spapr_node0_size(machine);
2665
2666 /* RMA has to fit in the first NUMA node */
2667 rma_size = MIN(rma_size, node0_size);
2668
2669 /*
2670 * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2671 * never exceed that
2672 */
2673 rma_size = MIN(rma_size, 1 * TiB);
2674
2675 /*
2676 * Clamp the RMA size based on machine type. This is for
2677 * migration compatibility with older qemu versions, which limited
2678 * the RMA size for complicated and mostly bad reasons.
2679 */
2680 if (smc->rma_limit) {
2681 rma_size = MIN(rma_size, smc->rma_limit);
2682 }
2683
2684 if (rma_size < MIN_RMA_SLOF) {
2685 error_setg(errp,
2686 "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2687 "ldMiB guest RMA (Real Mode Area memory)",
2688 MIN_RMA_SLOF / MiB);
2689 return 0;
2690 }
2691
2692 return rma_size;
2693 }
2694
2695 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
2696 {
2697 MachineState *machine = MACHINE(spapr);
2698 int i;
2699
2700 for (i = 0; i < machine->ram_slots; i++) {
2701 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
2702 }
2703 }
2704
2705 /* pSeries LPAR / sPAPR hardware init */
2706 static void spapr_machine_init(MachineState *machine)
2707 {
2708 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2709 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2710 MachineClass *mc = MACHINE_GET_CLASS(machine);
2711 const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME;
2712 const char *bios_name = machine->firmware ?: bios_default;
2713 const char *kernel_filename = machine->kernel_filename;
2714 const char *initrd_filename = machine->initrd_filename;
2715 PCIHostState *phb;
2716 int i;
2717 MemoryRegion *sysmem = get_system_memory();
2718 long load_limit, fw_size;
2719 char *filename;
2720 Error *resize_hpt_err = NULL;
2721
2722 /*
2723 * if Secure VM (PEF) support is configured, then initialize it
2724 */
2725 pef_kvm_init(machine->cgs, &error_fatal);
2726
2727 msi_nonbroken = true;
2728
2729 QLIST_INIT(&spapr->phbs);
2730 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2731
2732 /* Determine capabilities to run with */
2733 spapr_caps_init(spapr);
2734
2735 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2736 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2737 /*
2738 * If the user explicitly requested a mode we should either
2739 * supply it, or fail completely (which we do below). But if
2740 * it's not set explicitly, we reset our mode to something
2741 * that works
2742 */
2743 if (resize_hpt_err) {
2744 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2745 error_free(resize_hpt_err);
2746 resize_hpt_err = NULL;
2747 } else {
2748 spapr->resize_hpt = smc->resize_hpt_default;
2749 }
2750 }
2751
2752 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2753
2754 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2755 /*
2756 * User requested HPT resize, but this host can't supply it. Bail out
2757 */
2758 error_report_err(resize_hpt_err);
2759 exit(1);
2760 }
2761 error_free(resize_hpt_err);
2762
2763 spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2764
2765 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2766 load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD;
2767
2768 /*
2769 * VSMT must be set in order to be able to compute VCPU ids, ie to
2770 * call spapr_max_server_number() or spapr_vcpu_id().
2771 */
2772 spapr_set_vsmt_mode(spapr, &error_fatal);
2773
2774 /* Set up Interrupt Controller before we create the VCPUs */
2775 spapr_irq_init(spapr, &error_fatal);
2776
2777 /* Set up containers for ibm,client-architecture-support negotiated options
2778 */
2779 spapr->ov5 = spapr_ovec_new();
2780 spapr->ov5_cas = spapr_ovec_new();
2781
2782 if (smc->dr_lmb_enabled) {
2783 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2784 spapr_validate_node_memory(machine, &error_fatal);
2785 }
2786
2787 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2788
2789 /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */
2790 if (!smc->pre_6_2_numa_affinity) {
2791 spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY);
2792 }
2793
2794 /* advertise support for dedicated HP event source to guests */
2795 if (spapr->use_hotplug_event_source) {
2796 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2797 }
2798
2799 /* advertise support for HPT resizing */
2800 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2801 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2802 }
2803
2804 /* advertise support for ibm,dyamic-memory-v2 */
2805 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2806
2807 /* advertise XIVE on POWER9 machines */
2808 if (spapr->irq->xive) {
2809 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2810 }
2811
2812 /* init CPUs */
2813 spapr_init_cpus(spapr);
2814
2815 spapr->gpu_numa_id = spapr_numa_initial_nvgpu_numa_id(machine);
2816
2817 /* Init numa_assoc_array */
2818 spapr_numa_associativity_init(spapr, machine);
2819
2820 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2821 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2822 spapr->max_compat_pvr)) {
2823 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2824 /* KVM and TCG always allow GTSE with radix... */
2825 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2826 }
2827 /* ... but not with hash (currently). */
2828
2829 if (kvm_enabled()) {
2830 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2831 kvmppc_enable_logical_ci_hcalls();
2832 kvmppc_enable_set_mode_hcall();
2833
2834 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2835 kvmppc_enable_clear_ref_mod_hcalls();
2836
2837 /* Enable H_PAGE_INIT */
2838 kvmppc_enable_h_page_init();
2839 }
2840
2841 /* map RAM */
2842 memory_region_add_subregion(sysmem, 0, machine->ram);
2843
2844 /* always allocate the device memory information */
2845 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2846
2847 /* initialize hotplug memory address space */
2848 if (machine->ram_size < machine->maxram_size) {
2849 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2850 /*
2851 * Limit the number of hotpluggable memory slots to half the number
2852 * slots that KVM supports, leaving the other half for PCI and other
2853 * devices. However ensure that number of slots doesn't drop below 32.
2854 */
2855 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2856 SPAPR_MAX_RAM_SLOTS;
2857
2858 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2859 max_memslots = SPAPR_MAX_RAM_SLOTS;
2860 }
2861 if (machine->ram_slots > max_memslots) {
2862 error_report("Specified number of memory slots %"
2863 PRIu64" exceeds max supported %d",
2864 machine->ram_slots, max_memslots);
2865 exit(1);
2866 }
2867
2868 machine->device_memory->base = ROUND_UP(machine->ram_size,
2869 SPAPR_DEVICE_MEM_ALIGN);
2870 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2871 "device-memory", device_mem_size);
2872 memory_region_add_subregion(sysmem, machine->device_memory->base,
2873 &machine->device_memory->mr);
2874 }
2875
2876 if (smc->dr_lmb_enabled) {
2877 spapr_create_lmb_dr_connectors(spapr);
2878 }
2879
2880 if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2881 /* Create the error string for live migration blocker */
2882 error_setg(&spapr->fwnmi_migration_blocker,
2883 "A machine check is being handled during migration. The handler"
2884 "may run and log hardware error on the destination");
2885 }
2886
2887 if (mc->nvdimm_supported) {
2888 spapr_create_nvdimm_dr_connectors(spapr);
2889 }
2890
2891 /* Set up RTAS event infrastructure */
2892 spapr_events_init(spapr);
2893
2894 /* Set up the RTC RTAS interfaces */
2895 spapr_rtc_create(spapr);
2896
2897 /* Set up VIO bus */
2898 spapr->vio_bus = spapr_vio_bus_init();
2899
2900 for (i = 0; serial_hd(i); i++) {
2901 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2902 }
2903
2904 /* We always have at least the nvram device on VIO */
2905 spapr_create_nvram(spapr);
2906
2907 /*
2908 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2909 * connectors (described in root DT node's "ibm,drc-types" property)
2910 * are pre-initialized here. additional child connectors (such as
2911 * connectors for a PHBs PCI slots) are added as needed during their
2912 * parent's realization.
2913 */
2914 if (smc->dr_phb_enabled) {
2915 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2916 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2917 }
2918 }
2919
2920 /* Set up PCI */
2921 spapr_pci_rtas_init();
2922
2923 phb = spapr_create_default_phb();
2924
2925 for (i = 0; i < nb_nics; i++) {
2926 NICInfo *nd = &nd_table[i];
2927
2928 if (!nd->model) {
2929 nd->model = g_strdup("spapr-vlan");
2930 }
2931
2932 if (g_str_equal(nd->model, "spapr-vlan") ||
2933 g_str_equal(nd->model, "ibmveth")) {
2934 spapr_vlan_create(spapr->vio_bus, nd);
2935 } else {
2936 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2937 }
2938 }
2939
2940 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2941 spapr_vscsi_create(spapr->vio_bus);
2942 }
2943
2944 /* Graphics */
2945 if (spapr_vga_init(phb->bus, &error_fatal)) {
2946 spapr->has_graphics = true;
2947 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2948 }
2949
2950 if (machine->usb) {
2951 if (smc->use_ohci_by_default) {
2952 pci_create_simple(phb->bus, -1, "pci-ohci");
2953 } else {
2954 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2955 }
2956
2957 if (spapr->has_graphics) {
2958 USBBus *usb_bus = usb_bus_find(-1);
2959
2960 usb_create_simple(usb_bus, "usb-kbd");
2961 usb_create_simple(usb_bus, "usb-mouse");
2962 }
2963 }
2964
2965 if (kernel_filename) {
2966 spapr->kernel_size = load_elf(kernel_filename, NULL,
2967 translate_kernel_address, spapr,
2968 NULL, NULL, NULL, NULL, 1,
2969 PPC_ELF_MACHINE, 0, 0);
2970 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2971 spapr->kernel_size = load_elf(kernel_filename, NULL,
2972 translate_kernel_address, spapr,
2973 NULL, NULL, NULL, NULL, 0,
2974 PPC_ELF_MACHINE, 0, 0);
2975 spapr->kernel_le = spapr->kernel_size > 0;
2976 }
2977 if (spapr->kernel_size < 0) {
2978 error_report("error loading %s: %s", kernel_filename,
2979 load_elf_strerror(spapr->kernel_size));
2980 exit(1);
2981 }
2982
2983 /* load initrd */
2984 if (initrd_filename) {
2985 /* Try to locate the initrd in the gap between the kernel
2986 * and the firmware. Add a bit of space just in case
2987 */
2988 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
2989 + 0x1ffff) & ~0xffff;
2990 spapr->initrd_size = load_image_targphys(initrd_filename,
2991 spapr->initrd_base,
2992 load_limit
2993 - spapr->initrd_base);
2994 if (spapr->initrd_size < 0) {
2995 error_report("could not load initial ram disk '%s'",
2996 initrd_filename);
2997 exit(1);
2998 }
2999 }
3000 }
3001
3002 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
3003 if (!filename) {
3004 error_report("Could not find LPAR firmware '%s'", bios_name);
3005 exit(1);
3006 }
3007 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3008 if (fw_size <= 0) {
3009 error_report("Could not load LPAR firmware '%s'", filename);
3010 exit(1);
3011 }
3012 g_free(filename);
3013
3014 /* FIXME: Should register things through the MachineState's qdev
3015 * interface, this is a legacy from the sPAPREnvironment structure
3016 * which predated MachineState but had a similar function */
3017 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3018 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
3019 &savevm_htab_handlers, spapr);
3020
3021 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
3022
3023 qemu_register_boot_set(spapr_boot_set, spapr);
3024
3025 /*
3026 * Nothing needs to be done to resume a suspended guest because
3027 * suspending does not change the machine state, so no need for
3028 * a ->wakeup method.
3029 */
3030 qemu_register_wakeup_support();
3031
3032 if (kvm_enabled()) {
3033 /* to stop and start vmclock */
3034 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3035 &spapr->tb);
3036
3037 kvmppc_spapr_enable_inkernel_multitce();
3038 }
3039
3040 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3041 if (spapr->vof) {
3042 spapr->vof->fw_size = fw_size; /* for claim() on itself */
3043 spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client);
3044 }
3045 }
3046
3047 #define DEFAULT_KVM_TYPE "auto"
3048 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3049 {
3050 /*
3051 * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3052 * accomodate the 'HV' and 'PV' formats that exists in the
3053 * wild. The 'auto' mode is being introduced already as
3054 * lower-case, thus we don't need to bother checking for
3055 * "AUTO".
3056 */
3057 if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) {
3058 return 0;
3059 }
3060
3061 if (!g_ascii_strcasecmp(vm_type, "hv")) {
3062 return 1;
3063 }
3064
3065 if (!g_ascii_strcasecmp(vm_type, "pr")) {
3066 return 2;
3067 }
3068
3069 error_report("Unknown kvm-type specified '%s'", vm_type);
3070 exit(1);
3071 }
3072
3073 /*
3074 * Implementation of an interface to adjust firmware path
3075 * for the bootindex property handling.
3076 */
3077 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3078 DeviceState *dev)
3079 {
3080 #define CAST(type, obj, name) \
3081 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3082 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3083 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3084 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3085 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3086
3087 if (d && bus) {
3088 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3089 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3090 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3091
3092 if (spapr) {
3093 /*
3094 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3095 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3096 * 0x8000 | (target << 8) | (bus << 5) | lun
3097 * (see the "Logical unit addressing format" table in SAM5)
3098 */
3099 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3100 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3101 (uint64_t)id << 48);
3102 } else if (virtio) {
3103 /*
3104 * We use SRP luns of the form 01000000 | (target << 8) | lun
3105 * in the top 32 bits of the 64-bit LUN
3106 * Note: the quote above is from SLOF and it is wrong,
3107 * the actual binding is:
3108 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3109 */
3110 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3111 if (d->lun >= 256) {
3112 /* Use the LUN "flat space addressing method" */
3113 id |= 0x4000;
3114 }
3115 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3116 (uint64_t)id << 32);
3117 } else if (usb) {
3118 /*
3119 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3120 * in the top 32 bits of the 64-bit LUN
3121 */
3122 unsigned usb_port = atoi(usb->port->path);
3123 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3124 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3125 (uint64_t)id << 32);
3126 }
3127 }
3128
3129 /*
3130 * SLOF probes the USB devices, and if it recognizes that the device is a
3131 * storage device, it changes its name to "storage" instead of "usb-host",
3132 * and additionally adds a child node for the SCSI LUN, so the correct
3133 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3134 */
3135 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3136 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3137 if (usb_device_is_scsi_storage(usbdev)) {
3138 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3139 }
3140 }
3141
3142 if (phb) {
3143 /* Replace "pci" with "pci@800000020000000" */
3144 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3145 }
3146
3147 if (vsc) {
3148 /* Same logic as virtio above */
3149 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3150 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3151 }
3152
3153 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3154 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3155 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3156 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3157 }
3158
3159 if (pcidev) {
3160 return spapr_pci_fw_dev_name(pcidev);
3161 }
3162
3163 return NULL;
3164 }
3165
3166 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3167 {
3168 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3169
3170 return g_strdup(spapr->kvm_type);
3171 }
3172
3173 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3174 {
3175 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3176
3177 g_free(spapr->kvm_type);
3178 spapr->kvm_type = g_strdup(value);
3179 }
3180
3181 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3182 {
3183 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3184
3185 return spapr->use_hotplug_event_source;
3186 }
3187
3188 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3189 Error **errp)
3190 {
3191 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3192
3193 spapr->use_hotplug_event_source = value;
3194 }
3195
3196 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3197 {
3198 return true;
3199 }
3200
3201 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3202 {
3203 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3204
3205 switch (spapr->resize_hpt) {
3206 case SPAPR_RESIZE_HPT_DEFAULT:
3207 return g_strdup("default");
3208 case SPAPR_RESIZE_HPT_DISABLED:
3209 return g_strdup("disabled");
3210 case SPAPR_RESIZE_HPT_ENABLED:
3211 return g_strdup("enabled");
3212 case SPAPR_RESIZE_HPT_REQUIRED:
3213 return g_strdup("required");
3214 }
3215 g_assert_not_reached();
3216 }
3217
3218 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3219 {
3220 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3221
3222 if (strcmp(value, "default") == 0) {
3223 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3224 } else if (strcmp(value, "disabled") == 0) {
3225 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3226 } else if (strcmp(value, "enabled") == 0) {
3227 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3228 } else if (strcmp(value, "required") == 0) {
3229 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3230 } else {
3231 error_setg(errp, "Bad value for \"resize-hpt\" property");
3232 }
3233 }
3234
3235 static bool spapr_get_vof(Object *obj, Error **errp)
3236 {
3237 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3238
3239 return spapr->vof != NULL;
3240 }
3241
3242 static void spapr_set_vof(Object *obj, bool value, Error **errp)
3243 {
3244 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3245
3246 if (spapr->vof) {
3247 vof_cleanup(spapr->vof);
3248 g_free(spapr->vof);
3249 spapr->vof = NULL;
3250 }
3251 if (!value) {
3252 return;
3253 }
3254 spapr->vof = g_malloc0(sizeof(*spapr->vof));
3255 }
3256
3257 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3258 {
3259 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3260
3261 if (spapr->irq == &spapr_irq_xics_legacy) {
3262 return g_strdup("legacy");
3263 } else if (spapr->irq == &spapr_irq_xics) {
3264 return g_strdup("xics");
3265 } else if (spapr->irq == &spapr_irq_xive) {
3266 return g_strdup("xive");
3267 } else if (spapr->irq == &spapr_irq_dual) {
3268 return g_strdup("dual");
3269 }
3270 g_assert_not_reached();
3271 }
3272
3273 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3274 {
3275 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3276
3277 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3278 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3279 return;
3280 }
3281
3282 /* The legacy IRQ backend can not be set */
3283 if (strcmp(value, "xics") == 0) {
3284 spapr->irq = &spapr_irq_xics;
3285 } else if (strcmp(value, "xive") == 0) {
3286 spapr->irq = &spapr_irq_xive;
3287 } else if (strcmp(value, "dual") == 0) {
3288 spapr->irq = &spapr_irq_dual;
3289 } else {
3290 error_setg(errp, "Bad value for \"ic-mode\" property");
3291 }
3292 }
3293
3294 static char *spapr_get_host_model(Object *obj, Error **errp)
3295 {
3296 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3297
3298 return g_strdup(spapr->host_model);
3299 }
3300
3301 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3302 {
3303 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3304
3305 g_free(spapr->host_model);
3306 spapr->host_model = g_strdup(value);
3307 }
3308
3309 static char *spapr_get_host_serial(Object *obj, Error **errp)
3310 {
3311 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3312
3313 return g_strdup(spapr->host_serial);
3314 }
3315
3316 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3317 {
3318 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3319
3320 g_free(spapr->host_serial);
3321 spapr->host_serial = g_strdup(value);
3322 }
3323
3324 static void spapr_instance_init(Object *obj)
3325 {
3326 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3327 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3328 MachineState *ms = MACHINE(spapr);
3329 MachineClass *mc = MACHINE_GET_CLASS(ms);
3330
3331 /*
3332 * NVDIMM support went live in 5.1 without considering that, in
3333 * other archs, the user needs to enable NVDIMM support with the
3334 * 'nvdimm' machine option and the default behavior is NVDIMM
3335 * support disabled. It is too late to roll back to the standard
3336 * behavior without breaking 5.1 guests.
3337 */
3338 if (mc->nvdimm_supported) {
3339 ms->nvdimms_state->is_enabled = true;
3340 }
3341
3342 spapr->htab_fd = -1;
3343 spapr->use_hotplug_event_source = true;
3344 spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE);
3345 object_property_add_str(obj, "kvm-type",
3346 spapr_get_kvm_type, spapr_set_kvm_type);
3347 object_property_set_description(obj, "kvm-type",
3348 "Specifies the KVM virtualization mode (auto,"
3349 " hv, pr). Defaults to 'auto'. This mode will use"
3350 " any available KVM module loaded in the host,"
3351 " where kvm_hv takes precedence if both kvm_hv and"
3352 " kvm_pr are loaded.");
3353 object_property_add_bool(obj, "modern-hotplug-events",
3354 spapr_get_modern_hotplug_events,
3355 spapr_set_modern_hotplug_events);
3356 object_property_set_description(obj, "modern-hotplug-events",
3357 "Use dedicated hotplug event mechanism in"
3358 " place of standard EPOW events when possible"
3359 " (required for memory hot-unplug support)");
3360 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3361 "Maximum permitted CPU compatibility mode");
3362
3363 object_property_add_str(obj, "resize-hpt",
3364 spapr_get_resize_hpt, spapr_set_resize_hpt);
3365 object_property_set_description(obj, "resize-hpt",
3366 "Resizing of the Hash Page Table (enabled, disabled, required)");
3367 object_property_add_uint32_ptr(obj, "vsmt",
3368 &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3369 object_property_set_description(obj, "vsmt",
3370 "Virtual SMT: KVM behaves as if this were"
3371 " the host's SMT mode");
3372
3373 object_property_add_bool(obj, "vfio-no-msix-emulation",
3374 spapr_get_msix_emulation, NULL);
3375
3376 object_property_add_uint64_ptr(obj, "kernel-addr",
3377 &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3378 object_property_set_description(obj, "kernel-addr",
3379 stringify(KERNEL_LOAD_ADDR)
3380 " for -kernel is the default");
3381 spapr->kernel_addr = KERNEL_LOAD_ADDR;
3382
3383 object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof);
3384 object_property_set_description(obj, "x-vof",
3385 "Enable Virtual Open Firmware (experimental)");
3386
3387 /* The machine class defines the default interrupt controller mode */
3388 spapr->irq = smc->irq;
3389 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3390 spapr_set_ic_mode);
3391 object_property_set_description(obj, "ic-mode",
3392 "Specifies the interrupt controller mode (xics, xive, dual)");
3393
3394 object_property_add_str(obj, "host-model",
3395 spapr_get_host_model, spapr_set_host_model);
3396 object_property_set_description(obj, "host-model",
3397 "Host model to advertise in guest device tree");
3398 object_property_add_str(obj, "host-serial",
3399 spapr_get_host_serial, spapr_set_host_serial);
3400 object_property_set_description(obj, "host-serial",
3401 "Host serial number to advertise in guest device tree");
3402 }
3403
3404 static void spapr_machine_finalizefn(Object *obj)
3405 {
3406 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3407
3408 g_free(spapr->kvm_type);
3409 }
3410
3411 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3412 {
3413 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3414 PowerPCCPU *cpu = POWERPC_CPU(cs);
3415 CPUPPCState *env = &cpu->env;
3416
3417 cpu_synchronize_state(cs);
3418 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3419 if (spapr->fwnmi_system_reset_addr != -1) {
3420 uint64_t rtas_addr, addr;
3421
3422 /* get rtas addr from fdt */
3423 rtas_addr = spapr_get_rtas_addr();
3424 if (!rtas_addr) {
3425 qemu_system_guest_panicked(NULL);
3426 return;
3427 }
3428
3429 addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3430 stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3431 stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3432 env->gpr[3] = addr;
3433 }
3434 ppc_cpu_do_system_reset(cs);
3435 if (spapr->fwnmi_system_reset_addr != -1) {
3436 env->nip = spapr->fwnmi_system_reset_addr;
3437 }
3438 }
3439
3440 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3441 {
3442 CPUState *cs;
3443
3444 CPU_FOREACH(cs) {
3445 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3446 }
3447 }
3448
3449 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3450 void *fdt, int *fdt_start_offset, Error **errp)
3451 {
3452 uint64_t addr;
3453 uint32_t node;
3454
3455 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3456 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3457 &error_abort);
3458 *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3459 SPAPR_MEMORY_BLOCK_SIZE);
3460 return 0;
3461 }
3462
3463 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3464 bool dedicated_hp_event_source)
3465 {
3466 SpaprDrc *drc;
3467 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3468 int i;
3469 uint64_t addr = addr_start;
3470 bool hotplugged = spapr_drc_hotplugged(dev);
3471
3472 for (i = 0; i < nr_lmbs; i++) {
3473 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3474 addr / SPAPR_MEMORY_BLOCK_SIZE);
3475 g_assert(drc);
3476
3477 /*
3478 * memory_device_get_free_addr() provided a range of free addresses
3479 * that doesn't overlap with any existing mapping at pre-plug. The
3480 * corresponding LMB DRCs are thus assumed to be all attachable.
3481 */
3482 spapr_drc_attach(drc, dev);
3483 if (!hotplugged) {
3484 spapr_drc_reset(drc);
3485 }
3486 addr += SPAPR_MEMORY_BLOCK_SIZE;
3487 }
3488 /* send hotplug notification to the
3489 * guest only in case of hotplugged memory
3490 */
3491 if (hotplugged) {
3492 if (dedicated_hp_event_source) {
3493 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3494 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3495 g_assert(drc);
3496 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3497 nr_lmbs,
3498 spapr_drc_index(drc));
3499 } else {
3500 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3501 nr_lmbs);
3502 }
3503 }
3504 }
3505
3506 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3507 {
3508 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3509 PCDIMMDevice *dimm = PC_DIMM(dev);
3510 uint64_t size, addr;
3511 int64_t slot;
3512 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3513
3514 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3515
3516 pc_dimm_plug(dimm, MACHINE(ms));
3517
3518 if (!is_nvdimm) {
3519 addr = object_property_get_uint(OBJECT(dimm),
3520 PC_DIMM_ADDR_PROP, &error_abort);
3521 spapr_add_lmbs(dev, addr, size,
3522 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT));
3523 } else {
3524 slot = object_property_get_int(OBJECT(dimm),
3525 PC_DIMM_SLOT_PROP, &error_abort);
3526 /* We should have valid slot number at this point */
3527 g_assert(slot >= 0);
3528 spapr_add_nvdimm(dev, slot);
3529 }
3530 }
3531
3532 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3533 Error **errp)
3534 {
3535 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3536 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3537 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3538 PCDIMMDevice *dimm = PC_DIMM(dev);
3539 Error *local_err = NULL;
3540 uint64_t size;
3541 Object *memdev;
3542 hwaddr pagesize;
3543
3544 if (!smc->dr_lmb_enabled) {
3545 error_setg(errp, "Memory hotplug not supported for this machine");
3546 return;
3547 }
3548
3549 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3550 if (local_err) {
3551 error_propagate(errp, local_err);
3552 return;
3553 }
3554
3555 if (is_nvdimm) {
3556 if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
3557 return;
3558 }
3559 } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3560 error_setg(errp, "Hotplugged memory size must be a multiple of "
3561 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3562 return;
3563 }
3564
3565 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3566 &error_abort);
3567 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3568 if (!spapr_check_pagesize(spapr, pagesize, errp)) {
3569 return;
3570 }
3571
3572 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3573 }
3574
3575 struct SpaprDimmState {
3576 PCDIMMDevice *dimm;
3577 uint32_t nr_lmbs;
3578 QTAILQ_ENTRY(SpaprDimmState) next;
3579 };
3580
3581 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3582 PCDIMMDevice *dimm)
3583 {
3584 SpaprDimmState *dimm_state = NULL;
3585
3586 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3587 if (dimm_state->dimm == dimm) {
3588 break;
3589 }
3590 }
3591 return dimm_state;
3592 }
3593
3594 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3595 uint32_t nr_lmbs,
3596 PCDIMMDevice *dimm)
3597 {
3598 SpaprDimmState *ds = NULL;
3599
3600 /*
3601 * If this request is for a DIMM whose removal had failed earlier
3602 * (due to guest's refusal to remove the LMBs), we would have this
3603 * dimm already in the pending_dimm_unplugs list. In that
3604 * case don't add again.
3605 */
3606 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3607 if (!ds) {
3608 ds = g_malloc0(sizeof(SpaprDimmState));
3609 ds->nr_lmbs = nr_lmbs;
3610 ds->dimm = dimm;
3611 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3612 }
3613 return ds;
3614 }
3615
3616 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3617 SpaprDimmState *dimm_state)
3618 {
3619 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3620 g_free(dimm_state);
3621 }
3622
3623 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3624 PCDIMMDevice *dimm)
3625 {
3626 SpaprDrc *drc;
3627 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3628 &error_abort);
3629 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3630 uint32_t avail_lmbs = 0;
3631 uint64_t addr_start, addr;
3632 int i;
3633
3634 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3635 &error_abort);
3636
3637 addr = addr_start;
3638 for (i = 0; i < nr_lmbs; i++) {
3639 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3640 addr / SPAPR_MEMORY_BLOCK_SIZE);
3641 g_assert(drc);
3642 if (drc->dev) {
3643 avail_lmbs++;
3644 }
3645 addr += SPAPR_MEMORY_BLOCK_SIZE;
3646 }
3647
3648 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3649 }
3650
3651 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev)
3652 {
3653 SpaprDimmState *ds;
3654 PCDIMMDevice *dimm;
3655 SpaprDrc *drc;
3656 uint32_t nr_lmbs;
3657 uint64_t size, addr_start, addr;
3658 g_autofree char *qapi_error = NULL;
3659 int i;
3660
3661 if (!dev) {
3662 return;
3663 }
3664
3665 dimm = PC_DIMM(dev);
3666 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3667
3668 /*
3669 * 'ds == NULL' would mean that the DIMM doesn't have a pending
3670 * unplug state, but one of its DRC is marked as unplug_requested.
3671 * This is bad and weird enough to g_assert() out.
3672 */
3673 g_assert(ds);
3674
3675 spapr_pending_dimm_unplugs_remove(spapr, ds);
3676
3677 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3678 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3679
3680 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3681 &error_abort);
3682
3683 addr = addr_start;
3684 for (i = 0; i < nr_lmbs; i++) {
3685 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3686 addr / SPAPR_MEMORY_BLOCK_SIZE);
3687 g_assert(drc);
3688
3689 drc->unplug_requested = false;
3690 addr += SPAPR_MEMORY_BLOCK_SIZE;
3691 }
3692
3693 /*
3694 * Tell QAPI that something happened and the memory
3695 * hotunplug wasn't successful. Keep sending
3696 * MEM_UNPLUG_ERROR even while sending
3697 * DEVICE_UNPLUG_GUEST_ERROR until the deprecation of
3698 * MEM_UNPLUG_ERROR is due.
3699 */
3700 qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest "
3701 "for device %s", dev->id);
3702
3703 qapi_event_send_mem_unplug_error(dev->id ? : "", qapi_error);
3704
3705 qapi_event_send_device_unplug_guest_error(!!dev->id, dev->id,
3706 dev->canonical_path);
3707 }
3708
3709 /* Callback to be called during DRC release. */
3710 void spapr_lmb_release(DeviceState *dev)
3711 {
3712 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3713 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3714 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3715
3716 /* This information will get lost if a migration occurs
3717 * during the unplug process. In this case recover it. */
3718 if (ds == NULL) {
3719 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3720 g_assert(ds);
3721 /* The DRC being examined by the caller at least must be counted */
3722 g_assert(ds->nr_lmbs);
3723 }
3724
3725 if (--ds->nr_lmbs) {
3726 return;
3727 }
3728
3729 /*
3730 * Now that all the LMBs have been removed by the guest, call the
3731 * unplug handler chain. This can never fail.
3732 */
3733 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3734 object_unparent(OBJECT(dev));
3735 }
3736
3737 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3738 {
3739 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3740 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3741
3742 /* We really shouldn't get this far without anything to unplug */
3743 g_assert(ds);
3744
3745 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3746 qdev_unrealize(dev);
3747 spapr_pending_dimm_unplugs_remove(spapr, ds);
3748 }
3749
3750 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3751 DeviceState *dev, Error **errp)
3752 {
3753 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3754 PCDIMMDevice *dimm = PC_DIMM(dev);
3755 uint32_t nr_lmbs;
3756 uint64_t size, addr_start, addr;
3757 int i;
3758 SpaprDrc *drc;
3759
3760 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3761 error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3762 return;
3763 }
3764
3765 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3766 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3767
3768 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3769 &error_abort);
3770
3771 /*
3772 * An existing pending dimm state for this DIMM means that there is an
3773 * unplug operation in progress, waiting for the spapr_lmb_release
3774 * callback to complete the job (BQL can't cover that far). In this case,
3775 * bail out to avoid detaching DRCs that were already released.
3776 */
3777 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3778 error_setg(errp, "Memory unplug already in progress for device %s",
3779 dev->id);
3780 return;
3781 }
3782
3783 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3784
3785 addr = addr_start;
3786 for (i = 0; i < nr_lmbs; i++) {
3787 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3788 addr / SPAPR_MEMORY_BLOCK_SIZE);
3789 g_assert(drc);
3790
3791 spapr_drc_unplug_request(drc);
3792 addr += SPAPR_MEMORY_BLOCK_SIZE;
3793 }
3794
3795 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3796 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3797 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3798 nr_lmbs, spapr_drc_index(drc));
3799 }
3800
3801 /* Callback to be called during DRC release. */
3802 void spapr_core_release(DeviceState *dev)
3803 {
3804 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3805
3806 /* Call the unplug handler chain. This can never fail. */
3807 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3808 object_unparent(OBJECT(dev));
3809 }
3810
3811 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3812 {
3813 MachineState *ms = MACHINE(hotplug_dev);
3814 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3815 CPUCore *cc = CPU_CORE(dev);
3816 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3817
3818 if (smc->pre_2_10_has_unused_icps) {
3819 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3820 int i;
3821
3822 for (i = 0; i < cc->nr_threads; i++) {
3823 CPUState *cs = CPU(sc->threads[i]);
3824
3825 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3826 }
3827 }
3828
3829 assert(core_slot);
3830 core_slot->cpu = NULL;
3831 qdev_unrealize(dev);
3832 }
3833
3834 static
3835 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3836 Error **errp)
3837 {
3838 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3839 int index;
3840 SpaprDrc *drc;
3841 CPUCore *cc = CPU_CORE(dev);
3842
3843 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3844 error_setg(errp, "Unable to find CPU core with core-id: %d",
3845 cc->core_id);
3846 return;
3847 }
3848 if (index == 0) {
3849 error_setg(errp, "Boot CPU core may not be unplugged");
3850 return;
3851 }
3852
3853 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3854 spapr_vcpu_id(spapr, cc->core_id));
3855 g_assert(drc);
3856
3857 if (!spapr_drc_unplug_requested(drc)) {
3858 spapr_drc_unplug_request(drc);
3859 }
3860
3861 /*
3862 * spapr_hotplug_req_remove_by_index is left unguarded, out of the
3863 * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ
3864 * pulses removing the same CPU. Otherwise, in an failed hotunplug
3865 * attempt (e.g. the kernel will refuse to remove the last online
3866 * CPU), we will never attempt it again because unplug_requested
3867 * will still be 'true' in that case.
3868 */
3869 spapr_hotplug_req_remove_by_index(drc);
3870 }
3871
3872 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3873 void *fdt, int *fdt_start_offset, Error **errp)
3874 {
3875 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3876 CPUState *cs = CPU(core->threads[0]);
3877 PowerPCCPU *cpu = POWERPC_CPU(cs);
3878 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3879 int id = spapr_get_vcpu_id(cpu);
3880 g_autofree char *nodename = NULL;
3881 int offset;
3882
3883 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3884 offset = fdt_add_subnode(fdt, 0, nodename);
3885
3886 spapr_dt_cpu(cs, fdt, offset, spapr);
3887
3888 /*
3889 * spapr_dt_cpu() does not fill the 'name' property in the
3890 * CPU node. The function is called during boot process, before
3891 * and after CAS, and overwriting the 'name' property written
3892 * by SLOF is not allowed.
3893 *
3894 * Write it manually after spapr_dt_cpu(). This makes the hotplug
3895 * CPUs more compatible with the coldplugged ones, which have
3896 * the 'name' property. Linux Kernel also relies on this
3897 * property to identify CPU nodes.
3898 */
3899 _FDT((fdt_setprop_string(fdt, offset, "name", nodename)));
3900
3901 *fdt_start_offset = offset;
3902 return 0;
3903 }
3904
3905 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3906 {
3907 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3908 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3909 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3910 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3911 CPUCore *cc = CPU_CORE(dev);
3912 CPUState *cs;
3913 SpaprDrc *drc;
3914 CPUArchId *core_slot;
3915 int index;
3916 bool hotplugged = spapr_drc_hotplugged(dev);
3917 int i;
3918
3919 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3920 g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */
3921
3922 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3923 spapr_vcpu_id(spapr, cc->core_id));
3924
3925 g_assert(drc || !mc->has_hotpluggable_cpus);
3926
3927 if (drc) {
3928 /*
3929 * spapr_core_pre_plug() already buys us this is a brand new
3930 * core being plugged into a free slot. Nothing should already
3931 * be attached to the corresponding DRC.
3932 */
3933 spapr_drc_attach(drc, dev);
3934
3935 if (hotplugged) {
3936 /*
3937 * Send hotplug notification interrupt to the guest only
3938 * in case of hotplugged CPUs.
3939 */
3940 spapr_hotplug_req_add_by_index(drc);
3941 } else {
3942 spapr_drc_reset(drc);
3943 }
3944 }
3945
3946 core_slot->cpu = OBJECT(dev);
3947
3948 /*
3949 * Set compatibility mode to match the boot CPU, which was either set
3950 * by the machine reset code or by CAS. This really shouldn't fail at
3951 * this point.
3952 */
3953 if (hotplugged) {
3954 for (i = 0; i < cc->nr_threads; i++) {
3955 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3956 &error_abort);
3957 }
3958 }
3959
3960 if (smc->pre_2_10_has_unused_icps) {
3961 for (i = 0; i < cc->nr_threads; i++) {
3962 cs = CPU(core->threads[i]);
3963 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3964 }
3965 }
3966 }
3967
3968 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3969 Error **errp)
3970 {
3971 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3972 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3973 CPUCore *cc = CPU_CORE(dev);
3974 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3975 const char *type = object_get_typename(OBJECT(dev));
3976 CPUArchId *core_slot;
3977 int index;
3978 unsigned int smp_threads = machine->smp.threads;
3979
3980 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3981 error_setg(errp, "CPU hotplug not supported for this machine");
3982 return;
3983 }
3984
3985 if (strcmp(base_core_type, type)) {
3986 error_setg(errp, "CPU core type should be %s", base_core_type);
3987 return;
3988 }
3989
3990 if (cc->core_id % smp_threads) {
3991 error_setg(errp, "invalid core id %d", cc->core_id);
3992 return;
3993 }
3994
3995 /*
3996 * In general we should have homogeneous threads-per-core, but old
3997 * (pre hotplug support) machine types allow the last core to have
3998 * reduced threads as a compatibility hack for when we allowed
3999 * total vcpus not a multiple of threads-per-core.
4000 */
4001 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
4002 error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
4003 smp_threads);
4004 return;
4005 }
4006
4007 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
4008 if (!core_slot) {
4009 error_setg(errp, "core id %d out of range", cc->core_id);
4010 return;
4011 }
4012
4013 if (core_slot->cpu) {
4014 error_setg(errp, "core %d already populated", cc->core_id);
4015 return;
4016 }
4017
4018 numa_cpu_pre_plug(core_slot, dev, errp);
4019 }
4020
4021 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
4022 void *fdt, int *fdt_start_offset, Error **errp)
4023 {
4024 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
4025 int intc_phandle;
4026
4027 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
4028 if (intc_phandle <= 0) {
4029 return -1;
4030 }
4031
4032 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
4033 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
4034 return -1;
4035 }
4036
4037 /* generally SLOF creates these, for hotplug it's up to QEMU */
4038 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
4039
4040 return 0;
4041 }
4042
4043 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4044 Error **errp)
4045 {
4046 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4047 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4048 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4049 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
4050 SpaprDrc *drc;
4051
4052 if (dev->hotplugged && !smc->dr_phb_enabled) {
4053 error_setg(errp, "PHB hotplug not supported for this machine");
4054 return false;
4055 }
4056
4057 if (sphb->index == (uint32_t)-1) {
4058 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
4059 return false;
4060 }
4061
4062 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4063 if (drc && drc->dev) {
4064 error_setg(errp, "PHB %d already attached", sphb->index);
4065 return false;
4066 }
4067
4068 /*
4069 * This will check that sphb->index doesn't exceed the maximum number of
4070 * PHBs for the current machine type.
4071 */
4072 return
4073 smc->phb_placement(spapr, sphb->index,
4074 &sphb->buid, &sphb->io_win_addr,
4075 &sphb->mem_win_addr, &sphb->mem64_win_addr,
4076 windows_supported, sphb->dma_liobn,
4077 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
4078 errp);
4079 }
4080
4081 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4082 {
4083 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4084 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4085 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4086 SpaprDrc *drc;
4087 bool hotplugged = spapr_drc_hotplugged(dev);
4088
4089 if (!smc->dr_phb_enabled) {
4090 return;
4091 }
4092
4093 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4094 /* hotplug hooks should check it's enabled before getting this far */
4095 assert(drc);
4096
4097 /* spapr_phb_pre_plug() already checked the DRC is attachable */
4098 spapr_drc_attach(drc, dev);
4099
4100 if (hotplugged) {
4101 spapr_hotplug_req_add_by_index(drc);
4102 } else {
4103 spapr_drc_reset(drc);
4104 }
4105 }
4106
4107 void spapr_phb_release(DeviceState *dev)
4108 {
4109 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4110
4111 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4112 object_unparent(OBJECT(dev));
4113 }
4114
4115 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4116 {
4117 qdev_unrealize(dev);
4118 }
4119
4120 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4121 DeviceState *dev, Error **errp)
4122 {
4123 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4124 SpaprDrc *drc;
4125
4126 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4127 assert(drc);
4128
4129 if (!spapr_drc_unplug_requested(drc)) {
4130 spapr_drc_unplug_request(drc);
4131 spapr_hotplug_req_remove_by_index(drc);
4132 } else {
4133 error_setg(errp,
4134 "PCI Host Bridge unplug already in progress for device %s",
4135 dev->id);
4136 }
4137 }
4138
4139 static
4140 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4141 Error **errp)
4142 {
4143 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4144
4145 if (spapr->tpm_proxy != NULL) {
4146 error_setg(errp, "Only one TPM proxy can be specified for this machine");
4147 return false;
4148 }
4149
4150 return true;
4151 }
4152
4153 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4154 {
4155 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4156 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4157
4158 /* Already checked in spapr_tpm_proxy_pre_plug() */
4159 g_assert(spapr->tpm_proxy == NULL);
4160
4161 spapr->tpm_proxy = tpm_proxy;
4162 }
4163
4164 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4165 {
4166 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4167
4168 qdev_unrealize(dev);
4169 object_unparent(OBJECT(dev));
4170 spapr->tpm_proxy = NULL;
4171 }
4172
4173 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4174 DeviceState *dev, Error **errp)
4175 {
4176 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4177 spapr_memory_plug(hotplug_dev, dev);
4178 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4179 spapr_core_plug(hotplug_dev, dev);
4180 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4181 spapr_phb_plug(hotplug_dev, dev);
4182 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4183 spapr_tpm_proxy_plug(hotplug_dev, dev);
4184 }
4185 }
4186
4187 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4188 DeviceState *dev, Error **errp)
4189 {
4190 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4191 spapr_memory_unplug(hotplug_dev, dev);
4192 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4193 spapr_core_unplug(hotplug_dev, dev);
4194 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4195 spapr_phb_unplug(hotplug_dev, dev);
4196 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4197 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4198 }
4199 }
4200
4201 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr)
4202 {
4203 return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) ||
4204 /*
4205 * CAS will process all pending unplug requests.
4206 *
4207 * HACK: a guest could theoretically have cleared all bits in OV5,
4208 * but none of the guests we care for do.
4209 */
4210 spapr_ovec_empty(spapr->ov5_cas);
4211 }
4212
4213 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4214 DeviceState *dev, Error **errp)
4215 {
4216 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4217 MachineClass *mc = MACHINE_GET_CLASS(sms);
4218 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4219
4220 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4221 if (spapr_memory_hot_unplug_supported(sms)) {
4222 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4223 } else {
4224 error_setg(errp, "Memory hot unplug not supported for this guest");
4225 }
4226 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4227 if (!mc->has_hotpluggable_cpus) {
4228 error_setg(errp, "CPU hot unplug not supported on this machine");
4229 return;
4230 }
4231 spapr_core_unplug_request(hotplug_dev, dev, errp);
4232 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4233 if (!smc->dr_phb_enabled) {
4234 error_setg(errp, "PHB hot unplug not supported on this machine");
4235 return;
4236 }
4237 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4238 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4239 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4240 }
4241 }
4242
4243 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4244 DeviceState *dev, Error **errp)
4245 {
4246 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4247 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4248 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4249 spapr_core_pre_plug(hotplug_dev, dev, errp);
4250 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4251 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4252 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4253 spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp);
4254 }
4255 }
4256
4257 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4258 DeviceState *dev)
4259 {
4260 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4261 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4262 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4263 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4264 return HOTPLUG_HANDLER(machine);
4265 }
4266 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4267 PCIDevice *pcidev = PCI_DEVICE(dev);
4268 PCIBus *root = pci_device_root_bus(pcidev);
4269 SpaprPhbState *phb =
4270 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4271 TYPE_SPAPR_PCI_HOST_BRIDGE);
4272
4273 if (phb) {
4274 return HOTPLUG_HANDLER(phb);
4275 }
4276 }
4277 return NULL;
4278 }
4279
4280 static CpuInstanceProperties
4281 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4282 {
4283 CPUArchId *core_slot;
4284 MachineClass *mc = MACHINE_GET_CLASS(machine);
4285
4286 /* make sure possible_cpu are intialized */
4287 mc->possible_cpu_arch_ids(machine);
4288 /* get CPU core slot containing thread that matches cpu_index */
4289 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4290 assert(core_slot);
4291 return core_slot->props;
4292 }
4293
4294 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4295 {
4296 return idx / ms->smp.cores % ms->numa_state->num_nodes;
4297 }
4298
4299 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4300 {
4301 int i;
4302 unsigned int smp_threads = machine->smp.threads;
4303 unsigned int smp_cpus = machine->smp.cpus;
4304 const char *core_type;
4305 int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4306 MachineClass *mc = MACHINE_GET_CLASS(machine);
4307
4308 if (!mc->has_hotpluggable_cpus) {
4309 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4310 }
4311 if (machine->possible_cpus) {
4312 assert(machine->possible_cpus->len == spapr_max_cores);
4313 return machine->possible_cpus;
4314 }
4315
4316 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4317 if (!core_type) {
4318 error_report("Unable to find sPAPR CPU Core definition");
4319 exit(1);
4320 }
4321
4322 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4323 sizeof(CPUArchId) * spapr_max_cores);
4324 machine->possible_cpus->len = spapr_max_cores;
4325 for (i = 0; i < machine->possible_cpus->len; i++) {
4326 int core_id = i * smp_threads;
4327
4328 machine->possible_cpus->cpus[i].type = core_type;
4329 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4330 machine->possible_cpus->cpus[i].arch_id = core_id;
4331 machine->possible_cpus->cpus[i].props.has_core_id = true;
4332 machine->possible_cpus->cpus[i].props.core_id = core_id;
4333 }
4334 return machine->possible_cpus;
4335 }
4336
4337 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4338 uint64_t *buid, hwaddr *pio,
4339 hwaddr *mmio32, hwaddr *mmio64,
4340 unsigned n_dma, uint32_t *liobns,
4341 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4342 {
4343 /*
4344 * New-style PHB window placement.
4345 *
4346 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4347 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4348 * windows.
4349 *
4350 * Some guest kernels can't work with MMIO windows above 1<<46
4351 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4352 *
4353 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4354 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4355 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4356 * 1TiB 64-bit MMIO windows for each PHB.
4357 */
4358 const uint64_t base_buid = 0x800000020000000ULL;
4359 int i;
4360
4361 /* Sanity check natural alignments */
4362 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4363 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4364 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4365 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4366 /* Sanity check bounds */
4367 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4368 SPAPR_PCI_MEM32_WIN_SIZE);
4369 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4370 SPAPR_PCI_MEM64_WIN_SIZE);
4371
4372 if (index >= SPAPR_MAX_PHBS) {
4373 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4374 SPAPR_MAX_PHBS - 1);
4375 return false;
4376 }
4377
4378 *buid = base_buid + index;
4379 for (i = 0; i < n_dma; ++i) {
4380 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4381 }
4382
4383 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4384 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4385 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4386
4387 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4388 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4389 return true;
4390 }
4391
4392 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4393 {
4394 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4395
4396 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4397 }
4398
4399 static void spapr_ics_resend(XICSFabric *dev)
4400 {
4401 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4402
4403 ics_resend(spapr->ics);
4404 }
4405
4406 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4407 {
4408 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4409
4410 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4411 }
4412
4413 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4414 Monitor *mon)
4415 {
4416 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4417
4418 spapr_irq_print_info(spapr, mon);
4419 monitor_printf(mon, "irqchip: %s\n",
4420 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4421 }
4422
4423 /*
4424 * This is a XIVE only operation
4425 */
4426 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4427 uint8_t nvt_blk, uint32_t nvt_idx,
4428 bool cam_ignore, uint8_t priority,
4429 uint32_t logic_serv, XiveTCTXMatch *match)
4430 {
4431 SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4432 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4433 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4434 int count;
4435
4436 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4437 priority, logic_serv, match);
4438 if (count < 0) {
4439 return count;
4440 }
4441
4442 /*
4443 * When we implement the save and restore of the thread interrupt
4444 * contexts in the enter/exit CPU handlers of the machine and the
4445 * escalations in QEMU, we should be able to handle non dispatched
4446 * vCPUs.
4447 *
4448 * Until this is done, the sPAPR machine should find at least one
4449 * matching context always.
4450 */
4451 if (count == 0) {
4452 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4453 nvt_blk, nvt_idx);
4454 }
4455
4456 return count;
4457 }
4458
4459 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4460 {
4461 return cpu->vcpu_id;
4462 }
4463
4464 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4465 {
4466 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4467 MachineState *ms = MACHINE(spapr);
4468 int vcpu_id;
4469
4470 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4471
4472 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4473 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4474 error_append_hint(errp, "Adjust the number of cpus to %d "
4475 "or try to raise the number of threads per core\n",
4476 vcpu_id * ms->smp.threads / spapr->vsmt);
4477 return false;
4478 }
4479
4480 cpu->vcpu_id = vcpu_id;
4481 return true;
4482 }
4483
4484 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4485 {
4486 CPUState *cs;
4487
4488 CPU_FOREACH(cs) {
4489 PowerPCCPU *cpu = POWERPC_CPU(cs);
4490
4491 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4492 return cpu;
4493 }
4494 }
4495
4496 return NULL;
4497 }
4498
4499 static bool spapr_cpu_in_nested(PowerPCCPU *cpu)
4500 {
4501 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4502
4503 return spapr_cpu->in_nested;
4504 }
4505
4506 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4507 {
4508 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4509
4510 /* These are only called by TCG, KVM maintains dispatch state */
4511
4512 spapr_cpu->prod = false;
4513 if (spapr_cpu->vpa_addr) {
4514 CPUState *cs = CPU(cpu);
4515 uint32_t dispatch;
4516
4517 dispatch = ldl_be_phys(cs->as,
4518 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4519 dispatch++;
4520 if ((dispatch & 1) != 0) {
4521 qemu_log_mask(LOG_GUEST_ERROR,
4522 "VPA: incorrect dispatch counter value for "
4523 "dispatched partition %u, correcting.\n", dispatch);
4524 dispatch++;
4525 }
4526 stl_be_phys(cs->as,
4527 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4528 }
4529 }
4530
4531 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4532 {
4533 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4534
4535 if (spapr_cpu->vpa_addr) {
4536 CPUState *cs = CPU(cpu);
4537 uint32_t dispatch;
4538
4539 dispatch = ldl_be_phys(cs->as,
4540 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4541 dispatch++;
4542 if ((dispatch & 1) != 1) {
4543 qemu_log_mask(LOG_GUEST_ERROR,
4544 "VPA: incorrect dispatch counter value for "
4545 "preempted partition %u, correcting.\n", dispatch);
4546 dispatch++;
4547 }
4548 stl_be_phys(cs->as,
4549 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4550 }
4551 }
4552
4553 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4554 {
4555 MachineClass *mc = MACHINE_CLASS(oc);
4556 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4557 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4558 NMIClass *nc = NMI_CLASS(oc);
4559 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4560 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4561 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4562 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4563 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4564 VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc);
4565
4566 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4567 mc->ignore_boot_device_suffixes = true;
4568
4569 /*
4570 * We set up the default / latest behaviour here. The class_init
4571 * functions for the specific versioned machine types can override
4572 * these details for backwards compatibility
4573 */
4574 mc->init = spapr_machine_init;
4575 mc->reset = spapr_machine_reset;
4576 mc->block_default_type = IF_SCSI;
4577
4578 /*
4579 * Setting max_cpus to INT32_MAX. Both KVM and TCG max_cpus values
4580 * should be limited by the host capability instead of hardcoded.
4581 * max_cpus for KVM guests will be checked in kvm_init(), and TCG
4582 * guests are welcome to have as many CPUs as the host are capable
4583 * of emulate.
4584 */
4585 mc->max_cpus = INT32_MAX;
4586
4587 mc->no_parallel = 1;
4588 mc->default_boot_order = "";
4589 mc->default_ram_size = 512 * MiB;
4590 mc->default_ram_id = "ppc_spapr.ram";
4591 mc->default_display = "std";
4592 mc->kvm_type = spapr_kvm_type;
4593 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4594 mc->pci_allow_0_address = true;
4595 assert(!mc->get_hotplug_handler);
4596 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4597 hc->pre_plug = spapr_machine_device_pre_plug;
4598 hc->plug = spapr_machine_device_plug;
4599 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4600 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4601 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4602 hc->unplug_request = spapr_machine_device_unplug_request;
4603 hc->unplug = spapr_machine_device_unplug;
4604
4605 smc->dr_lmb_enabled = true;
4606 smc->update_dt_enabled = true;
4607 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4608 mc->has_hotpluggable_cpus = true;
4609 mc->nvdimm_supported = true;
4610 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4611 fwc->get_dev_path = spapr_get_fw_dev_path;
4612 nc->nmi_monitor_handler = spapr_nmi;
4613 smc->phb_placement = spapr_phb_placement;
4614 vhc->cpu_in_nested = spapr_cpu_in_nested;
4615 vhc->deliver_hv_excp = spapr_exit_nested;
4616 vhc->hypercall = emulate_spapr_hypercall;
4617 vhc->hpt_mask = spapr_hpt_mask;
4618 vhc->map_hptes = spapr_map_hptes;
4619 vhc->unmap_hptes = spapr_unmap_hptes;
4620 vhc->hpte_set_c = spapr_hpte_set_c;
4621 vhc->hpte_set_r = spapr_hpte_set_r;
4622 vhc->get_pate = spapr_get_pate;
4623 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4624 vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4625 vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4626 xic->ics_get = spapr_ics_get;
4627 xic->ics_resend = spapr_ics_resend;
4628 xic->icp_get = spapr_icp_get;
4629 ispc->print_info = spapr_pic_print_info;
4630 /* Force NUMA node memory size to be a multiple of
4631 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4632 * in which LMBs are represented and hot-added
4633 */
4634 mc->numa_mem_align_shift = 28;
4635 mc->auto_enable_numa = true;
4636
4637 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4638 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4639 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4640 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4641 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4642 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4643 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4644 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4645 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4646 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4647 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4648 smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF;
4649 spapr_caps_add_properties(smc);
4650 smc->irq = &spapr_irq_dual;
4651 smc->dr_phb_enabled = true;
4652 smc->linux_pci_probe = true;
4653 smc->smp_threads_vsmt = true;
4654 smc->nr_xirqs = SPAPR_NR_XIRQS;
4655 xfc->match_nvt = spapr_match_nvt;
4656 vmc->client_architecture_support = spapr_vof_client_architecture_support;
4657 vmc->quiesce = spapr_vof_quiesce;
4658 vmc->setprop = spapr_vof_setprop;
4659 }
4660
4661 static const TypeInfo spapr_machine_info = {
4662 .name = TYPE_SPAPR_MACHINE,
4663 .parent = TYPE_MACHINE,
4664 .abstract = true,
4665 .instance_size = sizeof(SpaprMachineState),
4666 .instance_init = spapr_instance_init,
4667 .instance_finalize = spapr_machine_finalizefn,
4668 .class_size = sizeof(SpaprMachineClass),
4669 .class_init = spapr_machine_class_init,
4670 .interfaces = (InterfaceInfo[]) {
4671 { TYPE_FW_PATH_PROVIDER },
4672 { TYPE_NMI },
4673 { TYPE_HOTPLUG_HANDLER },
4674 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4675 { TYPE_XICS_FABRIC },
4676 { TYPE_INTERRUPT_STATS_PROVIDER },
4677 { TYPE_XIVE_FABRIC },
4678 { TYPE_VOF_MACHINE_IF },
4679 { }
4680 },
4681 };
4682
4683 static void spapr_machine_latest_class_options(MachineClass *mc)
4684 {
4685 mc->alias = "pseries";
4686 mc->is_default = true;
4687 }
4688
4689 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4690 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4691 void *data) \
4692 { \
4693 MachineClass *mc = MACHINE_CLASS(oc); \
4694 spapr_machine_##suffix##_class_options(mc); \
4695 if (latest) { \
4696 spapr_machine_latest_class_options(mc); \
4697 } \
4698 } \
4699 static const TypeInfo spapr_machine_##suffix##_info = { \
4700 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4701 .parent = TYPE_SPAPR_MACHINE, \
4702 .class_init = spapr_machine_##suffix##_class_init, \
4703 }; \
4704 static void spapr_machine_register_##suffix(void) \
4705 { \
4706 type_register(&spapr_machine_##suffix##_info); \
4707 } \
4708 type_init(spapr_machine_register_##suffix)
4709
4710 /*
4711 * pseries-7.0
4712 */
4713 static void spapr_machine_7_0_class_options(MachineClass *mc)
4714 {
4715 /* Defaults for the latest behaviour inherited from the base class */
4716 }
4717
4718 DEFINE_SPAPR_MACHINE(7_0, "7.0", true);
4719
4720 /*
4721 * pseries-6.2
4722 */
4723 static void spapr_machine_6_2_class_options(MachineClass *mc)
4724 {
4725 spapr_machine_7_0_class_options(mc);
4726 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
4727 }
4728
4729 DEFINE_SPAPR_MACHINE(6_2, "6.2", false);
4730
4731 /*
4732 * pseries-6.1
4733 */
4734 static void spapr_machine_6_1_class_options(MachineClass *mc)
4735 {
4736 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4737
4738 spapr_machine_6_2_class_options(mc);
4739 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
4740 smc->pre_6_2_numa_affinity = true;
4741 mc->smp_props.prefer_sockets = true;
4742 }
4743
4744 DEFINE_SPAPR_MACHINE(6_1, "6.1", false);
4745
4746 /*
4747 * pseries-6.0
4748 */
4749 static void spapr_machine_6_0_class_options(MachineClass *mc)
4750 {
4751 spapr_machine_6_1_class_options(mc);
4752 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
4753 }
4754
4755 DEFINE_SPAPR_MACHINE(6_0, "6.0", false);
4756
4757 /*
4758 * pseries-5.2
4759 */
4760 static void spapr_machine_5_2_class_options(MachineClass *mc)
4761 {
4762 spapr_machine_6_0_class_options(mc);
4763 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
4764 }
4765
4766 DEFINE_SPAPR_MACHINE(5_2, "5.2", false);
4767
4768 /*
4769 * pseries-5.1
4770 */
4771 static void spapr_machine_5_1_class_options(MachineClass *mc)
4772 {
4773 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4774
4775 spapr_machine_5_2_class_options(mc);
4776 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4777 smc->pre_5_2_numa_associativity = true;
4778 }
4779
4780 DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4781
4782 /*
4783 * pseries-5.0
4784 */
4785 static void spapr_machine_5_0_class_options(MachineClass *mc)
4786 {
4787 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4788 static GlobalProperty compat[] = {
4789 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4790 };
4791
4792 spapr_machine_5_1_class_options(mc);
4793 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4794 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4795 mc->numa_mem_supported = true;
4796 smc->pre_5_1_assoc_refpoints = true;
4797 }
4798
4799 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4800
4801 /*
4802 * pseries-4.2
4803 */
4804 static void spapr_machine_4_2_class_options(MachineClass *mc)
4805 {
4806 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4807
4808 spapr_machine_5_0_class_options(mc);
4809 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4810 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4811 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4812 smc->rma_limit = 16 * GiB;
4813 mc->nvdimm_supported = false;
4814 }
4815
4816 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4817
4818 /*
4819 * pseries-4.1
4820 */
4821 static void spapr_machine_4_1_class_options(MachineClass *mc)
4822 {
4823 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4824 static GlobalProperty compat[] = {
4825 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4826 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4827 };
4828
4829 spapr_machine_4_2_class_options(mc);
4830 smc->linux_pci_probe = false;
4831 smc->smp_threads_vsmt = false;
4832 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4833 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4834 }
4835
4836 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4837
4838 /*
4839 * pseries-4.0
4840 */
4841 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4842 uint64_t *buid, hwaddr *pio,
4843 hwaddr *mmio32, hwaddr *mmio64,
4844 unsigned n_dma, uint32_t *liobns,
4845 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4846 {
4847 if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma,
4848 liobns, nv2gpa, nv2atsd, errp)) {
4849 return false;
4850 }
4851
4852 *nv2gpa = 0;
4853 *nv2atsd = 0;
4854 return true;
4855 }
4856 static void spapr_machine_4_0_class_options(MachineClass *mc)
4857 {
4858 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4859
4860 spapr_machine_4_1_class_options(mc);
4861 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4862 smc->phb_placement = phb_placement_4_0;
4863 smc->irq = &spapr_irq_xics;
4864 smc->pre_4_1_migration = true;
4865 }
4866
4867 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4868
4869 /*
4870 * pseries-3.1
4871 */
4872 static void spapr_machine_3_1_class_options(MachineClass *mc)
4873 {
4874 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4875
4876 spapr_machine_4_0_class_options(mc);
4877 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4878
4879 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4880 smc->update_dt_enabled = false;
4881 smc->dr_phb_enabled = false;
4882 smc->broken_host_serial_model = true;
4883 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4884 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4885 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4886 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4887 }
4888
4889 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4890
4891 /*
4892 * pseries-3.0
4893 */
4894
4895 static void spapr_machine_3_0_class_options(MachineClass *mc)
4896 {
4897 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4898
4899 spapr_machine_3_1_class_options(mc);
4900 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4901
4902 smc->legacy_irq_allocation = true;
4903 smc->nr_xirqs = 0x400;
4904 smc->irq = &spapr_irq_xics_legacy;
4905 }
4906
4907 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4908
4909 /*
4910 * pseries-2.12
4911 */
4912 static void spapr_machine_2_12_class_options(MachineClass *mc)
4913 {
4914 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4915 static GlobalProperty compat[] = {
4916 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4917 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4918 };
4919
4920 spapr_machine_3_0_class_options(mc);
4921 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4922 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4923
4924 /* We depend on kvm_enabled() to choose a default value for the
4925 * hpt-max-page-size capability. Of course we can't do it here
4926 * because this is too early and the HW accelerator isn't initialzed
4927 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4928 */
4929 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4930 }
4931
4932 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4933
4934 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4935 {
4936 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4937
4938 spapr_machine_2_12_class_options(mc);
4939 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4940 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4941 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4942 }
4943
4944 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4945
4946 /*
4947 * pseries-2.11
4948 */
4949
4950 static void spapr_machine_2_11_class_options(MachineClass *mc)
4951 {
4952 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4953
4954 spapr_machine_2_12_class_options(mc);
4955 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4956 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4957 }
4958
4959 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4960
4961 /*
4962 * pseries-2.10
4963 */
4964
4965 static void spapr_machine_2_10_class_options(MachineClass *mc)
4966 {
4967 spapr_machine_2_11_class_options(mc);
4968 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4969 }
4970
4971 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4972
4973 /*
4974 * pseries-2.9
4975 */
4976
4977 static void spapr_machine_2_9_class_options(MachineClass *mc)
4978 {
4979 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4980 static GlobalProperty compat[] = {
4981 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4982 };
4983
4984 spapr_machine_2_10_class_options(mc);
4985 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4986 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4987 smc->pre_2_10_has_unused_icps = true;
4988 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4989 }
4990
4991 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4992
4993 /*
4994 * pseries-2.8
4995 */
4996
4997 static void spapr_machine_2_8_class_options(MachineClass *mc)
4998 {
4999 static GlobalProperty compat[] = {
5000 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
5001 };
5002
5003 spapr_machine_2_9_class_options(mc);
5004 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
5005 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5006 mc->numa_mem_align_shift = 23;
5007 }
5008
5009 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
5010
5011 /*
5012 * pseries-2.7
5013 */
5014
5015 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
5016 uint64_t *buid, hwaddr *pio,
5017 hwaddr *mmio32, hwaddr *mmio64,
5018 unsigned n_dma, uint32_t *liobns,
5019 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
5020 {
5021 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
5022 const uint64_t base_buid = 0x800000020000000ULL;
5023 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
5024 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
5025 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
5026 const uint32_t max_index = 255;
5027 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
5028
5029 uint64_t ram_top = MACHINE(spapr)->ram_size;
5030 hwaddr phb0_base, phb_base;
5031 int i;
5032
5033 /* Do we have device memory? */
5034 if (MACHINE(spapr)->maxram_size > ram_top) {
5035 /* Can't just use maxram_size, because there may be an
5036 * alignment gap between normal and device memory regions
5037 */
5038 ram_top = MACHINE(spapr)->device_memory->base +
5039 memory_region_size(&MACHINE(spapr)->device_memory->mr);
5040 }
5041
5042 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
5043
5044 if (index > max_index) {
5045 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
5046 max_index);
5047 return false;
5048 }
5049
5050 *buid = base_buid + index;
5051 for (i = 0; i < n_dma; ++i) {
5052 liobns[i] = SPAPR_PCI_LIOBN(index, i);
5053 }
5054
5055 phb_base = phb0_base + index * phb_spacing;
5056 *pio = phb_base + pio_offset;
5057 *mmio32 = phb_base + mmio_offset;
5058 /*
5059 * We don't set the 64-bit MMIO window, relying on the PHB's
5060 * fallback behaviour of automatically splitting a large "32-bit"
5061 * window into contiguous 32-bit and 64-bit windows
5062 */
5063
5064 *nv2gpa = 0;
5065 *nv2atsd = 0;
5066 return true;
5067 }
5068
5069 static void spapr_machine_2_7_class_options(MachineClass *mc)
5070 {
5071 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5072 static GlobalProperty compat[] = {
5073 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
5074 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
5075 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
5076 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
5077 };
5078
5079 spapr_machine_2_8_class_options(mc);
5080 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
5081 mc->default_machine_opts = "modern-hotplug-events=off";
5082 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
5083 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5084 smc->phb_placement = phb_placement_2_7;
5085 }
5086
5087 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
5088
5089 /*
5090 * pseries-2.6
5091 */
5092
5093 static void spapr_machine_2_6_class_options(MachineClass *mc)
5094 {
5095 static GlobalProperty compat[] = {
5096 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
5097 };
5098
5099 spapr_machine_2_7_class_options(mc);
5100 mc->has_hotpluggable_cpus = false;
5101 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
5102 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5103 }
5104
5105 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
5106
5107 /*
5108 * pseries-2.5
5109 */
5110
5111 static void spapr_machine_2_5_class_options(MachineClass *mc)
5112 {
5113 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5114 static GlobalProperty compat[] = {
5115 { "spapr-vlan", "use-rx-buffer-pools", "off" },
5116 };
5117
5118 spapr_machine_2_6_class_options(mc);
5119 smc->use_ohci_by_default = true;
5120 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
5121 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5122 }
5123
5124 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
5125
5126 /*
5127 * pseries-2.4
5128 */
5129
5130 static void spapr_machine_2_4_class_options(MachineClass *mc)
5131 {
5132 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5133
5134 spapr_machine_2_5_class_options(mc);
5135 smc->dr_lmb_enabled = false;
5136 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
5137 }
5138
5139 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
5140
5141 /*
5142 * pseries-2.3
5143 */
5144
5145 static void spapr_machine_2_3_class_options(MachineClass *mc)
5146 {
5147 static GlobalProperty compat[] = {
5148 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
5149 };
5150 spapr_machine_2_4_class_options(mc);
5151 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
5152 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5153 }
5154 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
5155
5156 /*
5157 * pseries-2.2
5158 */
5159
5160 static void spapr_machine_2_2_class_options(MachineClass *mc)
5161 {
5162 static GlobalProperty compat[] = {
5163 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
5164 };
5165
5166 spapr_machine_2_3_class_options(mc);
5167 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
5168 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5169 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
5170 }
5171 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
5172
5173 /*
5174 * pseries-2.1
5175 */
5176
5177 static void spapr_machine_2_1_class_options(MachineClass *mc)
5178 {
5179 spapr_machine_2_2_class_options(mc);
5180 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
5181 }
5182 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
5183
5184 static void spapr_machine_register_types(void)
5185 {
5186 type_register_static(&spapr_machine_info);
5187 }
5188
5189 type_init(spapr_machine_register_types)