]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr.c
spapr: export and rename the xics_max_server_number() routine
[mirror_qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/numa.h"
32 #include "hw/hw.h"
33 #include "qemu/log.h"
34 #include "hw/fw-path-provider.h"
35 #include "elf.h"
36 #include "net/net.h"
37 #include "sysemu/device_tree.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/hw_accel.h"
40 #include "kvm_ppc.h"
41 #include "migration/misc.h"
42 #include "migration/global_state.h"
43 #include "migration/register.h"
44 #include "mmu-hash64.h"
45 #include "mmu-book3s-v3.h"
46 #include "cpu-models.h"
47 #include "qom/cpu.h"
48
49 #include "hw/boards.h"
50 #include "hw/ppc/ppc.h"
51 #include "hw/loader.h"
52
53 #include "hw/ppc/fdt.h"
54 #include "hw/ppc/spapr.h"
55 #include "hw/ppc/spapr_vio.h"
56 #include "hw/pci-host/spapr.h"
57 #include "hw/pci/msi.h"
58
59 #include "hw/pci/pci.h"
60 #include "hw/scsi/scsi.h"
61 #include "hw/virtio/virtio-scsi.h"
62 #include "hw/virtio/vhost-scsi-common.h"
63
64 #include "exec/address-spaces.h"
65 #include "exec/ram_addr.h"
66 #include "hw/usb.h"
67 #include "qemu/config-file.h"
68 #include "qemu/error-report.h"
69 #include "trace.h"
70 #include "hw/nmi.h"
71 #include "hw/intc/intc.h"
72
73 #include "hw/compat.h"
74 #include "qemu/cutils.h"
75 #include "hw/ppc/spapr_cpu_core.h"
76 #include "hw/mem/memory-device.h"
77
78 #include <libfdt.h>
79
80 /* SLOF memory layout:
81 *
82 * SLOF raw image loaded at 0, copies its romfs right below the flat
83 * device-tree, then position SLOF itself 31M below that
84 *
85 * So we set FW_OVERHEAD to 40MB which should account for all of that
86 * and more
87 *
88 * We load our kernel at 4M, leaving space for SLOF initial image
89 */
90 #define FDT_MAX_SIZE 0x100000
91 #define RTAS_MAX_SIZE 0x10000
92 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
93 #define FW_MAX_SIZE 0x400000
94 #define FW_FILE_NAME "slof.bin"
95 #define FW_OVERHEAD 0x2800000
96 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
97
98 #define MIN_RMA_SLOF 128UL
99
100 #define PHANDLE_XICP 0x00001111
101
102 /* These two functions implement the VCPU id numbering: one to compute them
103 * all and one to identify thread 0 of a VCORE. Any change to the first one
104 * is likely to have an impact on the second one, so let's keep them close.
105 */
106 static int spapr_vcpu_id(sPAPRMachineState *spapr, int cpu_index)
107 {
108 assert(spapr->vsmt);
109 return
110 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
111 }
112 static bool spapr_is_thread0_in_vcore(sPAPRMachineState *spapr,
113 PowerPCCPU *cpu)
114 {
115 assert(spapr->vsmt);
116 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
117 }
118
119 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
120 {
121 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
122 * and newer QEMUs don't even have them. In both cases, we don't want
123 * to send anything on the wire.
124 */
125 return false;
126 }
127
128 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
129 .name = "icp/server",
130 .version_id = 1,
131 .minimum_version_id = 1,
132 .needed = pre_2_10_vmstate_dummy_icp_needed,
133 .fields = (VMStateField[]) {
134 VMSTATE_UNUSED(4), /* uint32_t xirr */
135 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
136 VMSTATE_UNUSED(1), /* uint8_t mfrr */
137 VMSTATE_END_OF_LIST()
138 },
139 };
140
141 static void pre_2_10_vmstate_register_dummy_icp(int i)
142 {
143 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
144 (void *)(uintptr_t) i);
145 }
146
147 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
148 {
149 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
150 (void *)(uintptr_t) i);
151 }
152
153 int spapr_max_server_number(sPAPRMachineState *spapr)
154 {
155 assert(spapr->vsmt);
156 return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads);
157 }
158
159 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
160 int smt_threads)
161 {
162 int i, ret = 0;
163 uint32_t servers_prop[smt_threads];
164 uint32_t gservers_prop[smt_threads * 2];
165 int index = spapr_get_vcpu_id(cpu);
166
167 if (cpu->compat_pvr) {
168 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
169 if (ret < 0) {
170 return ret;
171 }
172 }
173
174 /* Build interrupt servers and gservers properties */
175 for (i = 0; i < smt_threads; i++) {
176 servers_prop[i] = cpu_to_be32(index + i);
177 /* Hack, direct the group queues back to cpu 0 */
178 gservers_prop[i*2] = cpu_to_be32(index + i);
179 gservers_prop[i*2 + 1] = 0;
180 }
181 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
182 servers_prop, sizeof(servers_prop));
183 if (ret < 0) {
184 return ret;
185 }
186 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
187 gservers_prop, sizeof(gservers_prop));
188
189 return ret;
190 }
191
192 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
193 {
194 int index = spapr_get_vcpu_id(cpu);
195 uint32_t associativity[] = {cpu_to_be32(0x5),
196 cpu_to_be32(0x0),
197 cpu_to_be32(0x0),
198 cpu_to_be32(0x0),
199 cpu_to_be32(cpu->node_id),
200 cpu_to_be32(index)};
201
202 /* Advertise NUMA via ibm,associativity */
203 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
204 sizeof(associativity));
205 }
206
207 /* Populate the "ibm,pa-features" property */
208 static void spapr_populate_pa_features(sPAPRMachineState *spapr,
209 PowerPCCPU *cpu,
210 void *fdt, int offset,
211 bool legacy_guest)
212 {
213 uint8_t pa_features_206[] = { 6, 0,
214 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
215 uint8_t pa_features_207[] = { 24, 0,
216 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
217 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
218 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
219 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
220 uint8_t pa_features_300[] = { 66, 0,
221 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
222 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
223 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
224 /* 6: DS207 */
225 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
226 /* 16: Vector */
227 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
228 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
229 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
230 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
231 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
232 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
233 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
234 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
235 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
236 /* 42: PM, 44: PC RA, 46: SC vec'd */
237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
238 /* 48: SIMD, 50: QP BFP, 52: String */
239 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
240 /* 54: DecFP, 56: DecI, 58: SHA */
241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
242 /* 60: NM atomic, 62: RNG */
243 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
244 };
245 uint8_t *pa_features = NULL;
246 size_t pa_size;
247
248 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
249 pa_features = pa_features_206;
250 pa_size = sizeof(pa_features_206);
251 }
252 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
253 pa_features = pa_features_207;
254 pa_size = sizeof(pa_features_207);
255 }
256 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
257 pa_features = pa_features_300;
258 pa_size = sizeof(pa_features_300);
259 }
260 if (!pa_features) {
261 return;
262 }
263
264 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
265 /*
266 * Note: we keep CI large pages off by default because a 64K capable
267 * guest provisioned with large pages might otherwise try to map a qemu
268 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
269 * even if that qemu runs on a 4k host.
270 * We dd this bit back here if we are confident this is not an issue
271 */
272 pa_features[3] |= 0x20;
273 }
274 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
275 pa_features[24] |= 0x80; /* Transactional memory support */
276 }
277 if (legacy_guest && pa_size > 40) {
278 /* Workaround for broken kernels that attempt (guest) radix
279 * mode when they can't handle it, if they see the radix bit set
280 * in pa-features. So hide it from them. */
281 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
282 }
283
284 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
285 }
286
287 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
288 {
289 int ret = 0, offset, cpus_offset;
290 CPUState *cs;
291 char cpu_model[32];
292 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
293
294 CPU_FOREACH(cs) {
295 PowerPCCPU *cpu = POWERPC_CPU(cs);
296 DeviceClass *dc = DEVICE_GET_CLASS(cs);
297 int index = spapr_get_vcpu_id(cpu);
298 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
299
300 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
301 continue;
302 }
303
304 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
305
306 cpus_offset = fdt_path_offset(fdt, "/cpus");
307 if (cpus_offset < 0) {
308 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
309 if (cpus_offset < 0) {
310 return cpus_offset;
311 }
312 }
313 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
314 if (offset < 0) {
315 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
316 if (offset < 0) {
317 return offset;
318 }
319 }
320
321 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
322 pft_size_prop, sizeof(pft_size_prop));
323 if (ret < 0) {
324 return ret;
325 }
326
327 if (nb_numa_nodes > 1) {
328 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
329 if (ret < 0) {
330 return ret;
331 }
332 }
333
334 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
335 if (ret < 0) {
336 return ret;
337 }
338
339 spapr_populate_pa_features(spapr, cpu, fdt, offset,
340 spapr->cas_legacy_guest_workaround);
341 }
342 return ret;
343 }
344
345 static hwaddr spapr_node0_size(MachineState *machine)
346 {
347 if (nb_numa_nodes) {
348 int i;
349 for (i = 0; i < nb_numa_nodes; ++i) {
350 if (numa_info[i].node_mem) {
351 return MIN(pow2floor(numa_info[i].node_mem),
352 machine->ram_size);
353 }
354 }
355 }
356 return machine->ram_size;
357 }
358
359 static void add_str(GString *s, const gchar *s1)
360 {
361 g_string_append_len(s, s1, strlen(s1) + 1);
362 }
363
364 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
365 hwaddr size)
366 {
367 uint32_t associativity[] = {
368 cpu_to_be32(0x4), /* length */
369 cpu_to_be32(0x0), cpu_to_be32(0x0),
370 cpu_to_be32(0x0), cpu_to_be32(nodeid)
371 };
372 char mem_name[32];
373 uint64_t mem_reg_property[2];
374 int off;
375
376 mem_reg_property[0] = cpu_to_be64(start);
377 mem_reg_property[1] = cpu_to_be64(size);
378
379 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
380 off = fdt_add_subnode(fdt, 0, mem_name);
381 _FDT(off);
382 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
383 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
384 sizeof(mem_reg_property))));
385 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
386 sizeof(associativity))));
387 return off;
388 }
389
390 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
391 {
392 MachineState *machine = MACHINE(spapr);
393 hwaddr mem_start, node_size;
394 int i, nb_nodes = nb_numa_nodes;
395 NodeInfo *nodes = numa_info;
396 NodeInfo ramnode;
397
398 /* No NUMA nodes, assume there is just one node with whole RAM */
399 if (!nb_numa_nodes) {
400 nb_nodes = 1;
401 ramnode.node_mem = machine->ram_size;
402 nodes = &ramnode;
403 }
404
405 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
406 if (!nodes[i].node_mem) {
407 continue;
408 }
409 if (mem_start >= machine->ram_size) {
410 node_size = 0;
411 } else {
412 node_size = nodes[i].node_mem;
413 if (node_size > machine->ram_size - mem_start) {
414 node_size = machine->ram_size - mem_start;
415 }
416 }
417 if (!mem_start) {
418 /* spapr_machine_init() checks for rma_size <= node0_size
419 * already */
420 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
421 mem_start += spapr->rma_size;
422 node_size -= spapr->rma_size;
423 }
424 for ( ; node_size; ) {
425 hwaddr sizetmp = pow2floor(node_size);
426
427 /* mem_start != 0 here */
428 if (ctzl(mem_start) < ctzl(sizetmp)) {
429 sizetmp = 1ULL << ctzl(mem_start);
430 }
431
432 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
433 node_size -= sizetmp;
434 mem_start += sizetmp;
435 }
436 }
437
438 return 0;
439 }
440
441 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
442 sPAPRMachineState *spapr)
443 {
444 PowerPCCPU *cpu = POWERPC_CPU(cs);
445 CPUPPCState *env = &cpu->env;
446 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
447 int index = spapr_get_vcpu_id(cpu);
448 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
449 0xffffffff, 0xffffffff};
450 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
451 : SPAPR_TIMEBASE_FREQ;
452 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
453 uint32_t page_sizes_prop[64];
454 size_t page_sizes_prop_size;
455 uint32_t vcpus_per_socket = smp_threads * smp_cores;
456 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
457 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
458 sPAPRDRConnector *drc;
459 int drc_index;
460 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
461 int i;
462
463 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
464 if (drc) {
465 drc_index = spapr_drc_index(drc);
466 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
467 }
468
469 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
470 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
471
472 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
473 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
474 env->dcache_line_size)));
475 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
476 env->dcache_line_size)));
477 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
478 env->icache_line_size)));
479 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
480 env->icache_line_size)));
481
482 if (pcc->l1_dcache_size) {
483 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
484 pcc->l1_dcache_size)));
485 } else {
486 warn_report("Unknown L1 dcache size for cpu");
487 }
488 if (pcc->l1_icache_size) {
489 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
490 pcc->l1_icache_size)));
491 } else {
492 warn_report("Unknown L1 icache size for cpu");
493 }
494
495 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
496 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
497 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
498 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
499 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
500 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
501
502 if (env->spr_cb[SPR_PURR].oea_read) {
503 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
504 }
505
506 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
507 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
508 segs, sizeof(segs))));
509 }
510
511 /* Advertise VSX (vector extensions) if available
512 * 1 == VMX / Altivec available
513 * 2 == VSX available
514 *
515 * Only CPUs for which we create core types in spapr_cpu_core.c
516 * are possible, and all of those have VMX */
517 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
518 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
519 } else {
520 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
521 }
522
523 /* Advertise DFP (Decimal Floating Point) if available
524 * 0 / no property == no DFP
525 * 1 == DFP available */
526 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
527 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
528 }
529
530 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
531 sizeof(page_sizes_prop));
532 if (page_sizes_prop_size) {
533 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
534 page_sizes_prop, page_sizes_prop_size)));
535 }
536
537 spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
538
539 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
540 cs->cpu_index / vcpus_per_socket)));
541
542 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
543 pft_size_prop, sizeof(pft_size_prop))));
544
545 if (nb_numa_nodes > 1) {
546 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
547 }
548
549 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
550
551 if (pcc->radix_page_info) {
552 for (i = 0; i < pcc->radix_page_info->count; i++) {
553 radix_AP_encodings[i] =
554 cpu_to_be32(pcc->radix_page_info->entries[i]);
555 }
556 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
557 radix_AP_encodings,
558 pcc->radix_page_info->count *
559 sizeof(radix_AP_encodings[0]))));
560 }
561 }
562
563 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
564 {
565 CPUState **rev;
566 CPUState *cs;
567 int n_cpus;
568 int cpus_offset;
569 char *nodename;
570 int i;
571
572 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
573 _FDT(cpus_offset);
574 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
575 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
576
577 /*
578 * We walk the CPUs in reverse order to ensure that CPU DT nodes
579 * created by fdt_add_subnode() end up in the right order in FDT
580 * for the guest kernel the enumerate the CPUs correctly.
581 *
582 * The CPU list cannot be traversed in reverse order, so we need
583 * to do extra work.
584 */
585 n_cpus = 0;
586 rev = NULL;
587 CPU_FOREACH(cs) {
588 rev = g_renew(CPUState *, rev, n_cpus + 1);
589 rev[n_cpus++] = cs;
590 }
591
592 for (i = n_cpus - 1; i >= 0; i--) {
593 CPUState *cs = rev[i];
594 PowerPCCPU *cpu = POWERPC_CPU(cs);
595 int index = spapr_get_vcpu_id(cpu);
596 DeviceClass *dc = DEVICE_GET_CLASS(cs);
597 int offset;
598
599 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
600 continue;
601 }
602
603 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
604 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
605 g_free(nodename);
606 _FDT(offset);
607 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
608 }
609
610 g_free(rev);
611 }
612
613 static int spapr_rng_populate_dt(void *fdt)
614 {
615 int node;
616 int ret;
617
618 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
619 if (node <= 0) {
620 return -1;
621 }
622 ret = fdt_setprop_string(fdt, node, "device_type",
623 "ibm,platform-facilities");
624 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
625 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
626
627 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
628 if (node <= 0) {
629 return -1;
630 }
631 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
632
633 return ret ? -1 : 0;
634 }
635
636 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
637 {
638 MemoryDeviceInfoList *info;
639
640 for (info = list; info; info = info->next) {
641 MemoryDeviceInfo *value = info->value;
642
643 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
644 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
645
646 if (addr >= pcdimm_info->addr &&
647 addr < (pcdimm_info->addr + pcdimm_info->size)) {
648 return pcdimm_info->node;
649 }
650 }
651 }
652
653 return -1;
654 }
655
656 struct sPAPRDrconfCellV2 {
657 uint32_t seq_lmbs;
658 uint64_t base_addr;
659 uint32_t drc_index;
660 uint32_t aa_index;
661 uint32_t flags;
662 } QEMU_PACKED;
663
664 typedef struct DrconfCellQueue {
665 struct sPAPRDrconfCellV2 cell;
666 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
667 } DrconfCellQueue;
668
669 static DrconfCellQueue *
670 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
671 uint32_t drc_index, uint32_t aa_index,
672 uint32_t flags)
673 {
674 DrconfCellQueue *elem;
675
676 elem = g_malloc0(sizeof(*elem));
677 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
678 elem->cell.base_addr = cpu_to_be64(base_addr);
679 elem->cell.drc_index = cpu_to_be32(drc_index);
680 elem->cell.aa_index = cpu_to_be32(aa_index);
681 elem->cell.flags = cpu_to_be32(flags);
682
683 return elem;
684 }
685
686 /* ibm,dynamic-memory-v2 */
687 static int spapr_populate_drmem_v2(sPAPRMachineState *spapr, void *fdt,
688 int offset, MemoryDeviceInfoList *dimms)
689 {
690 MachineState *machine = MACHINE(spapr);
691 uint8_t *int_buf, *cur_index, buf_len;
692 int ret;
693 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
694 uint64_t addr, cur_addr, size;
695 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
696 uint64_t mem_end = machine->device_memory->base +
697 memory_region_size(&machine->device_memory->mr);
698 uint32_t node, nr_entries = 0;
699 sPAPRDRConnector *drc;
700 DrconfCellQueue *elem, *next;
701 MemoryDeviceInfoList *info;
702 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
703 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
704
705 /* Entry to cover RAM and the gap area */
706 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
707 SPAPR_LMB_FLAGS_RESERVED |
708 SPAPR_LMB_FLAGS_DRC_INVALID);
709 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
710 nr_entries++;
711
712 cur_addr = machine->device_memory->base;
713 for (info = dimms; info; info = info->next) {
714 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
715
716 addr = di->addr;
717 size = di->size;
718 node = di->node;
719
720 /* Entry for hot-pluggable area */
721 if (cur_addr < addr) {
722 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
723 g_assert(drc);
724 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
725 cur_addr, spapr_drc_index(drc), -1, 0);
726 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
727 nr_entries++;
728 }
729
730 /* Entry for DIMM */
731 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
732 g_assert(drc);
733 elem = spapr_get_drconf_cell(size / lmb_size, addr,
734 spapr_drc_index(drc), node,
735 SPAPR_LMB_FLAGS_ASSIGNED);
736 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
737 nr_entries++;
738 cur_addr = addr + size;
739 }
740
741 /* Entry for remaining hotpluggable area */
742 if (cur_addr < mem_end) {
743 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
744 g_assert(drc);
745 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
746 cur_addr, spapr_drc_index(drc), -1, 0);
747 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
748 nr_entries++;
749 }
750
751 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
752 int_buf = cur_index = g_malloc0(buf_len);
753 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
754 cur_index += sizeof(nr_entries);
755
756 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
757 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
758 cur_index += sizeof(elem->cell);
759 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
760 g_free(elem);
761 }
762
763 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
764 g_free(int_buf);
765 if (ret < 0) {
766 return -1;
767 }
768 return 0;
769 }
770
771 /* ibm,dynamic-memory */
772 static int spapr_populate_drmem_v1(sPAPRMachineState *spapr, void *fdt,
773 int offset, MemoryDeviceInfoList *dimms)
774 {
775 MachineState *machine = MACHINE(spapr);
776 int i, ret;
777 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
778 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
779 uint32_t nr_lmbs = (machine->device_memory->base +
780 memory_region_size(&machine->device_memory->mr)) /
781 lmb_size;
782 uint32_t *int_buf, *cur_index, buf_len;
783
784 /*
785 * Allocate enough buffer size to fit in ibm,dynamic-memory
786 */
787 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
788 cur_index = int_buf = g_malloc0(buf_len);
789 int_buf[0] = cpu_to_be32(nr_lmbs);
790 cur_index++;
791 for (i = 0; i < nr_lmbs; i++) {
792 uint64_t addr = i * lmb_size;
793 uint32_t *dynamic_memory = cur_index;
794
795 if (i >= device_lmb_start) {
796 sPAPRDRConnector *drc;
797
798 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
799 g_assert(drc);
800
801 dynamic_memory[0] = cpu_to_be32(addr >> 32);
802 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
803 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
804 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
805 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
806 if (memory_region_present(get_system_memory(), addr)) {
807 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
808 } else {
809 dynamic_memory[5] = cpu_to_be32(0);
810 }
811 } else {
812 /*
813 * LMB information for RMA, boot time RAM and gap b/n RAM and
814 * device memory region -- all these are marked as reserved
815 * and as having no valid DRC.
816 */
817 dynamic_memory[0] = cpu_to_be32(addr >> 32);
818 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
819 dynamic_memory[2] = cpu_to_be32(0);
820 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
821 dynamic_memory[4] = cpu_to_be32(-1);
822 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
823 SPAPR_LMB_FLAGS_DRC_INVALID);
824 }
825
826 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
827 }
828 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
829 g_free(int_buf);
830 if (ret < 0) {
831 return -1;
832 }
833 return 0;
834 }
835
836 /*
837 * Adds ibm,dynamic-reconfiguration-memory node.
838 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
839 * of this device tree node.
840 */
841 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
842 {
843 MachineState *machine = MACHINE(spapr);
844 int ret, i, offset;
845 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
846 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
847 uint32_t *int_buf, *cur_index, buf_len;
848 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
849 MemoryDeviceInfoList *dimms = NULL;
850
851 /*
852 * Don't create the node if there is no device memory
853 */
854 if (machine->ram_size == machine->maxram_size) {
855 return 0;
856 }
857
858 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
859
860 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
861 sizeof(prop_lmb_size));
862 if (ret < 0) {
863 return ret;
864 }
865
866 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
867 if (ret < 0) {
868 return ret;
869 }
870
871 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
872 if (ret < 0) {
873 return ret;
874 }
875
876 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
877 dimms = qmp_memory_device_list();
878 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
879 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
880 } else {
881 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
882 }
883 qapi_free_MemoryDeviceInfoList(dimms);
884
885 if (ret < 0) {
886 return ret;
887 }
888
889 /* ibm,associativity-lookup-arrays */
890 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
891 cur_index = int_buf = g_malloc0(buf_len);
892 int_buf[0] = cpu_to_be32(nr_nodes);
893 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
894 cur_index += 2;
895 for (i = 0; i < nr_nodes; i++) {
896 uint32_t associativity[] = {
897 cpu_to_be32(0x0),
898 cpu_to_be32(0x0),
899 cpu_to_be32(0x0),
900 cpu_to_be32(i)
901 };
902 memcpy(cur_index, associativity, sizeof(associativity));
903 cur_index += 4;
904 }
905 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
906 (cur_index - int_buf) * sizeof(uint32_t));
907 g_free(int_buf);
908
909 return ret;
910 }
911
912 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
913 sPAPROptionVector *ov5_updates)
914 {
915 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
916 int ret = 0, offset;
917
918 /* Generate ibm,dynamic-reconfiguration-memory node if required */
919 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
920 g_assert(smc->dr_lmb_enabled);
921 ret = spapr_populate_drconf_memory(spapr, fdt);
922 if (ret) {
923 goto out;
924 }
925 }
926
927 offset = fdt_path_offset(fdt, "/chosen");
928 if (offset < 0) {
929 offset = fdt_add_subnode(fdt, 0, "chosen");
930 if (offset < 0) {
931 return offset;
932 }
933 }
934 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
935 "ibm,architecture-vec-5");
936
937 out:
938 return ret;
939 }
940
941 static bool spapr_hotplugged_dev_before_cas(void)
942 {
943 Object *drc_container, *obj;
944 ObjectProperty *prop;
945 ObjectPropertyIterator iter;
946
947 drc_container = container_get(object_get_root(), "/dr-connector");
948 object_property_iter_init(&iter, drc_container);
949 while ((prop = object_property_iter_next(&iter))) {
950 if (!strstart(prop->type, "link<", NULL)) {
951 continue;
952 }
953 obj = object_property_get_link(drc_container, prop->name, NULL);
954 if (spapr_drc_needed(obj)) {
955 return true;
956 }
957 }
958 return false;
959 }
960
961 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
962 target_ulong addr, target_ulong size,
963 sPAPROptionVector *ov5_updates)
964 {
965 void *fdt, *fdt_skel;
966 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
967
968 if (spapr_hotplugged_dev_before_cas()) {
969 return 1;
970 }
971
972 if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
973 error_report("SLOF provided an unexpected CAS buffer size "
974 TARGET_FMT_lu " (min: %zu, max: %u)",
975 size, sizeof(hdr), FW_MAX_SIZE);
976 exit(EXIT_FAILURE);
977 }
978
979 size -= sizeof(hdr);
980
981 /* Create skeleton */
982 fdt_skel = g_malloc0(size);
983 _FDT((fdt_create(fdt_skel, size)));
984 _FDT((fdt_finish_reservemap(fdt_skel)));
985 _FDT((fdt_begin_node(fdt_skel, "")));
986 _FDT((fdt_end_node(fdt_skel)));
987 _FDT((fdt_finish(fdt_skel)));
988 fdt = g_malloc0(size);
989 _FDT((fdt_open_into(fdt_skel, fdt, size)));
990 g_free(fdt_skel);
991
992 /* Fixup cpu nodes */
993 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
994
995 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
996 return -1;
997 }
998
999 /* Pack resulting tree */
1000 _FDT((fdt_pack(fdt)));
1001
1002 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1003 trace_spapr_cas_failed(size);
1004 return -1;
1005 }
1006
1007 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1008 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1009 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1010 g_free(fdt);
1011
1012 return 0;
1013 }
1014
1015 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
1016 {
1017 int rtas;
1018 GString *hypertas = g_string_sized_new(256);
1019 GString *qemu_hypertas = g_string_sized_new(256);
1020 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1021 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1022 memory_region_size(&MACHINE(spapr)->device_memory->mr);
1023 uint32_t lrdr_capacity[] = {
1024 cpu_to_be32(max_device_addr >> 32),
1025 cpu_to_be32(max_device_addr & 0xffffffff),
1026 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1027 cpu_to_be32(max_cpus / smp_threads),
1028 };
1029 uint32_t maxdomains[] = {
1030 cpu_to_be32(4),
1031 cpu_to_be32(0),
1032 cpu_to_be32(0),
1033 cpu_to_be32(0),
1034 cpu_to_be32(nb_numa_nodes ? nb_numa_nodes : 1),
1035 };
1036
1037 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1038
1039 /* hypertas */
1040 add_str(hypertas, "hcall-pft");
1041 add_str(hypertas, "hcall-term");
1042 add_str(hypertas, "hcall-dabr");
1043 add_str(hypertas, "hcall-interrupt");
1044 add_str(hypertas, "hcall-tce");
1045 add_str(hypertas, "hcall-vio");
1046 add_str(hypertas, "hcall-splpar");
1047 add_str(hypertas, "hcall-bulk");
1048 add_str(hypertas, "hcall-set-mode");
1049 add_str(hypertas, "hcall-sprg0");
1050 add_str(hypertas, "hcall-copy");
1051 add_str(hypertas, "hcall-debug");
1052 add_str(qemu_hypertas, "hcall-memop1");
1053
1054 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1055 add_str(hypertas, "hcall-multi-tce");
1056 }
1057
1058 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1059 add_str(hypertas, "hcall-hpt-resize");
1060 }
1061
1062 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1063 hypertas->str, hypertas->len));
1064 g_string_free(hypertas, TRUE);
1065 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1066 qemu_hypertas->str, qemu_hypertas->len));
1067 g_string_free(qemu_hypertas, TRUE);
1068
1069 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1070 refpoints, sizeof(refpoints)));
1071
1072 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1073 maxdomains, sizeof(maxdomains)));
1074
1075 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1076 RTAS_ERROR_LOG_MAX));
1077 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1078 RTAS_EVENT_SCAN_RATE));
1079
1080 g_assert(msi_nonbroken);
1081 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1082
1083 /*
1084 * According to PAPR, rtas ibm,os-term does not guarantee a return
1085 * back to the guest cpu.
1086 *
1087 * While an additional ibm,extended-os-term property indicates
1088 * that rtas call return will always occur. Set this property.
1089 */
1090 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1091
1092 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1093 lrdr_capacity, sizeof(lrdr_capacity)));
1094
1095 spapr_dt_rtas_tokens(fdt, rtas);
1096 }
1097
1098 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
1099 * that the guest may request and thus the valid values for bytes 24..26 of
1100 * option vector 5: */
1101 static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
1102 {
1103 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1104
1105 char val[2 * 4] = {
1106 23, 0x00, /* Xive mode, filled in below. */
1107 24, 0x00, /* Hash/Radix, filled in below. */
1108 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1109 26, 0x40, /* Radix options: GTSE == yes. */
1110 };
1111
1112 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1113 first_ppc_cpu->compat_pvr)) {
1114 /* If we're in a pre POWER9 compat mode then the guest should do hash */
1115 val[3] = 0x00; /* Hash */
1116 } else if (kvm_enabled()) {
1117 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1118 val[3] = 0x80; /* OV5_MMU_BOTH */
1119 } else if (kvmppc_has_cap_mmu_radix()) {
1120 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1121 } else {
1122 val[3] = 0x00; /* Hash */
1123 }
1124 } else {
1125 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1126 val[3] = 0xC0;
1127 }
1128 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1129 val, sizeof(val)));
1130 }
1131
1132 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
1133 {
1134 MachineState *machine = MACHINE(spapr);
1135 int chosen;
1136 const char *boot_device = machine->boot_order;
1137 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1138 size_t cb = 0;
1139 char *bootlist = get_boot_devices_list(&cb);
1140
1141 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1142
1143 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1144 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1145 spapr->initrd_base));
1146 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1147 spapr->initrd_base + spapr->initrd_size));
1148
1149 if (spapr->kernel_size) {
1150 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1151 cpu_to_be64(spapr->kernel_size) };
1152
1153 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1154 &kprop, sizeof(kprop)));
1155 if (spapr->kernel_le) {
1156 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1157 }
1158 }
1159 if (boot_menu) {
1160 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1161 }
1162 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1163 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1164 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1165
1166 if (cb && bootlist) {
1167 int i;
1168
1169 for (i = 0; i < cb; i++) {
1170 if (bootlist[i] == '\n') {
1171 bootlist[i] = ' ';
1172 }
1173 }
1174 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1175 }
1176
1177 if (boot_device && strlen(boot_device)) {
1178 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1179 }
1180
1181 if (!spapr->has_graphics && stdout_path) {
1182 /*
1183 * "linux,stdout-path" and "stdout" properties are deprecated by linux
1184 * kernel. New platforms should only use the "stdout-path" property. Set
1185 * the new property and continue using older property to remain
1186 * compatible with the existing firmware.
1187 */
1188 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1189 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1190 }
1191
1192 spapr_dt_ov5_platform_support(fdt, chosen);
1193
1194 g_free(stdout_path);
1195 g_free(bootlist);
1196 }
1197
1198 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1199 {
1200 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1201 * KVM to work under pHyp with some guest co-operation */
1202 int hypervisor;
1203 uint8_t hypercall[16];
1204
1205 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1206 /* indicate KVM hypercall interface */
1207 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1208 if (kvmppc_has_cap_fixup_hcalls()) {
1209 /*
1210 * Older KVM versions with older guest kernels were broken
1211 * with the magic page, don't allow the guest to map it.
1212 */
1213 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1214 sizeof(hypercall))) {
1215 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1216 hypercall, sizeof(hypercall)));
1217 }
1218 }
1219 }
1220
1221 static void *spapr_build_fdt(sPAPRMachineState *spapr,
1222 hwaddr rtas_addr,
1223 hwaddr rtas_size)
1224 {
1225 MachineState *machine = MACHINE(spapr);
1226 MachineClass *mc = MACHINE_GET_CLASS(machine);
1227 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1228 int ret;
1229 void *fdt;
1230 sPAPRPHBState *phb;
1231 char *buf;
1232
1233 fdt = g_malloc0(FDT_MAX_SIZE);
1234 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1235
1236 /* Root node */
1237 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1238 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1239 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1240
1241 /*
1242 * Add info to guest to indentify which host is it being run on
1243 * and what is the uuid of the guest
1244 */
1245 if (kvmppc_get_host_model(&buf)) {
1246 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1247 g_free(buf);
1248 }
1249 if (kvmppc_get_host_serial(&buf)) {
1250 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1251 g_free(buf);
1252 }
1253
1254 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1255
1256 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1257 if (qemu_uuid_set) {
1258 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1259 }
1260 g_free(buf);
1261
1262 if (qemu_get_vm_name()) {
1263 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1264 qemu_get_vm_name()));
1265 }
1266
1267 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1268 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1269
1270 /* /interrupt controller */
1271 spapr_dt_xics(spapr_max_server_number(spapr), fdt, PHANDLE_XICP);
1272
1273 ret = spapr_populate_memory(spapr, fdt);
1274 if (ret < 0) {
1275 error_report("couldn't setup memory nodes in fdt");
1276 exit(1);
1277 }
1278
1279 /* /vdevice */
1280 spapr_dt_vdevice(spapr->vio_bus, fdt);
1281
1282 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1283 ret = spapr_rng_populate_dt(fdt);
1284 if (ret < 0) {
1285 error_report("could not set up rng device in the fdt");
1286 exit(1);
1287 }
1288 }
1289
1290 QLIST_FOREACH(phb, &spapr->phbs, list) {
1291 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt, smc->irq->nr_msis);
1292 if (ret < 0) {
1293 error_report("couldn't setup PCI devices in fdt");
1294 exit(1);
1295 }
1296 }
1297
1298 /* cpus */
1299 spapr_populate_cpus_dt_node(fdt, spapr);
1300
1301 if (smc->dr_lmb_enabled) {
1302 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1303 }
1304
1305 if (mc->has_hotpluggable_cpus) {
1306 int offset = fdt_path_offset(fdt, "/cpus");
1307 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1308 SPAPR_DR_CONNECTOR_TYPE_CPU);
1309 if (ret < 0) {
1310 error_report("Couldn't set up CPU DR device tree properties");
1311 exit(1);
1312 }
1313 }
1314
1315 /* /event-sources */
1316 spapr_dt_events(spapr, fdt);
1317
1318 /* /rtas */
1319 spapr_dt_rtas(spapr, fdt);
1320
1321 /* /chosen */
1322 spapr_dt_chosen(spapr, fdt);
1323
1324 /* /hypervisor */
1325 if (kvm_enabled()) {
1326 spapr_dt_hypervisor(spapr, fdt);
1327 }
1328
1329 /* Build memory reserve map */
1330 if (spapr->kernel_size) {
1331 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1332 }
1333 if (spapr->initrd_size) {
1334 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1335 }
1336
1337 /* ibm,client-architecture-support updates */
1338 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1339 if (ret < 0) {
1340 error_report("couldn't setup CAS properties fdt");
1341 exit(1);
1342 }
1343
1344 return fdt;
1345 }
1346
1347 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1348 {
1349 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1350 }
1351
1352 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1353 PowerPCCPU *cpu)
1354 {
1355 CPUPPCState *env = &cpu->env;
1356
1357 /* The TCG path should also be holding the BQL at this point */
1358 g_assert(qemu_mutex_iothread_locked());
1359
1360 if (msr_pr) {
1361 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1362 env->gpr[3] = H_PRIVILEGE;
1363 } else {
1364 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1365 }
1366 }
1367
1368 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1369 {
1370 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1371
1372 return spapr->patb_entry;
1373 }
1374
1375 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1376 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1377 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1378 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1379 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1380
1381 /*
1382 * Get the fd to access the kernel htab, re-opening it if necessary
1383 */
1384 static int get_htab_fd(sPAPRMachineState *spapr)
1385 {
1386 Error *local_err = NULL;
1387
1388 if (spapr->htab_fd >= 0) {
1389 return spapr->htab_fd;
1390 }
1391
1392 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1393 if (spapr->htab_fd < 0) {
1394 error_report_err(local_err);
1395 }
1396
1397 return spapr->htab_fd;
1398 }
1399
1400 void close_htab_fd(sPAPRMachineState *spapr)
1401 {
1402 if (spapr->htab_fd >= 0) {
1403 close(spapr->htab_fd);
1404 }
1405 spapr->htab_fd = -1;
1406 }
1407
1408 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1409 {
1410 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1411
1412 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1413 }
1414
1415 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1416 {
1417 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1418
1419 assert(kvm_enabled());
1420
1421 if (!spapr->htab) {
1422 return 0;
1423 }
1424
1425 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1426 }
1427
1428 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1429 hwaddr ptex, int n)
1430 {
1431 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1432 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1433
1434 if (!spapr->htab) {
1435 /*
1436 * HTAB is controlled by KVM. Fetch into temporary buffer
1437 */
1438 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1439 kvmppc_read_hptes(hptes, ptex, n);
1440 return hptes;
1441 }
1442
1443 /*
1444 * HTAB is controlled by QEMU. Just point to the internally
1445 * accessible PTEG.
1446 */
1447 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1448 }
1449
1450 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1451 const ppc_hash_pte64_t *hptes,
1452 hwaddr ptex, int n)
1453 {
1454 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1455
1456 if (!spapr->htab) {
1457 g_free((void *)hptes);
1458 }
1459
1460 /* Nothing to do for qemu managed HPT */
1461 }
1462
1463 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1464 uint64_t pte0, uint64_t pte1)
1465 {
1466 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1467 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1468
1469 if (!spapr->htab) {
1470 kvmppc_write_hpte(ptex, pte0, pte1);
1471 } else {
1472 stq_p(spapr->htab + offset, pte0);
1473 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1474 }
1475 }
1476
1477 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1478 {
1479 int shift;
1480
1481 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1482 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1483 * that's much more than is needed for Linux guests */
1484 shift = ctz64(pow2ceil(ramsize)) - 7;
1485 shift = MAX(shift, 18); /* Minimum architected size */
1486 shift = MIN(shift, 46); /* Maximum architected size */
1487 return shift;
1488 }
1489
1490 void spapr_free_hpt(sPAPRMachineState *spapr)
1491 {
1492 g_free(spapr->htab);
1493 spapr->htab = NULL;
1494 spapr->htab_shift = 0;
1495 close_htab_fd(spapr);
1496 }
1497
1498 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1499 Error **errp)
1500 {
1501 long rc;
1502
1503 /* Clean up any HPT info from a previous boot */
1504 spapr_free_hpt(spapr);
1505
1506 rc = kvmppc_reset_htab(shift);
1507 if (rc < 0) {
1508 /* kernel-side HPT needed, but couldn't allocate one */
1509 error_setg_errno(errp, errno,
1510 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1511 shift);
1512 /* This is almost certainly fatal, but if the caller really
1513 * wants to carry on with shift == 0, it's welcome to try */
1514 } else if (rc > 0) {
1515 /* kernel-side HPT allocated */
1516 if (rc != shift) {
1517 error_setg(errp,
1518 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1519 shift, rc);
1520 }
1521
1522 spapr->htab_shift = shift;
1523 spapr->htab = NULL;
1524 } else {
1525 /* kernel-side HPT not needed, allocate in userspace instead */
1526 size_t size = 1ULL << shift;
1527 int i;
1528
1529 spapr->htab = qemu_memalign(size, size);
1530 if (!spapr->htab) {
1531 error_setg_errno(errp, errno,
1532 "Could not allocate HPT of order %d", shift);
1533 return;
1534 }
1535
1536 memset(spapr->htab, 0, size);
1537 spapr->htab_shift = shift;
1538
1539 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1540 DIRTY_HPTE(HPTE(spapr->htab, i));
1541 }
1542 }
1543 /* We're setting up a hash table, so that means we're not radix */
1544 spapr->patb_entry = 0;
1545 }
1546
1547 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1548 {
1549 int hpt_shift;
1550
1551 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1552 || (spapr->cas_reboot
1553 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1554 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1555 } else {
1556 uint64_t current_ram_size;
1557
1558 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1559 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1560 }
1561 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1562
1563 if (spapr->vrma_adjust) {
1564 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1565 spapr->htab_shift);
1566 }
1567 }
1568
1569 static int spapr_reset_drcs(Object *child, void *opaque)
1570 {
1571 sPAPRDRConnector *drc =
1572 (sPAPRDRConnector *) object_dynamic_cast(child,
1573 TYPE_SPAPR_DR_CONNECTOR);
1574
1575 if (drc) {
1576 spapr_drc_reset(drc);
1577 }
1578
1579 return 0;
1580 }
1581
1582 static void spapr_machine_reset(void)
1583 {
1584 MachineState *machine = MACHINE(qdev_get_machine());
1585 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1586 PowerPCCPU *first_ppc_cpu;
1587 uint32_t rtas_limit;
1588 hwaddr rtas_addr, fdt_addr;
1589 void *fdt;
1590 int rc;
1591
1592 spapr_caps_apply(spapr);
1593
1594 first_ppc_cpu = POWERPC_CPU(first_cpu);
1595 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1596 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1597 spapr->max_compat_pvr)) {
1598 /* If using KVM with radix mode available, VCPUs can be started
1599 * without a HPT because KVM will start them in radix mode.
1600 * Set the GR bit in PATB so that we know there is no HPT. */
1601 spapr->patb_entry = PATBE1_GR;
1602 } else {
1603 spapr_setup_hpt_and_vrma(spapr);
1604 }
1605
1606 /* if this reset wasn't generated by CAS, we should reset our
1607 * negotiated options and start from scratch */
1608 if (!spapr->cas_reboot) {
1609 spapr_ovec_cleanup(spapr->ov5_cas);
1610 spapr->ov5_cas = spapr_ovec_new();
1611
1612 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1613 }
1614
1615 if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
1616 spapr_irq_msi_reset(spapr);
1617 }
1618
1619 qemu_devices_reset();
1620
1621 /* DRC reset may cause a device to be unplugged. This will cause troubles
1622 * if this device is used by another device (eg, a running vhost backend
1623 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1624 * situations, we reset DRCs after all devices have been reset.
1625 */
1626 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1627
1628 spapr_clear_pending_events(spapr);
1629
1630 /*
1631 * We place the device tree and RTAS just below either the top of the RMA,
1632 * or just below 2GB, whichever is lowere, so that it can be
1633 * processed with 32-bit real mode code if necessary
1634 */
1635 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1636 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1637 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1638
1639 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1640
1641 spapr_load_rtas(spapr, fdt, rtas_addr);
1642
1643 rc = fdt_pack(fdt);
1644
1645 /* Should only fail if we've built a corrupted tree */
1646 assert(rc == 0);
1647
1648 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1649 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1650 fdt_totalsize(fdt), FDT_MAX_SIZE);
1651 exit(1);
1652 }
1653
1654 /* Load the fdt */
1655 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1656 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1657 g_free(fdt);
1658
1659 /* Set up the entry state */
1660 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1661 first_ppc_cpu->env.gpr[5] = 0;
1662
1663 spapr->cas_reboot = false;
1664 }
1665
1666 static void spapr_create_nvram(sPAPRMachineState *spapr)
1667 {
1668 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1669 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1670
1671 if (dinfo) {
1672 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1673 &error_fatal);
1674 }
1675
1676 qdev_init_nofail(dev);
1677
1678 spapr->nvram = (struct sPAPRNVRAM *)dev;
1679 }
1680
1681 static void spapr_rtc_create(sPAPRMachineState *spapr)
1682 {
1683 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1684 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1685 &error_fatal);
1686 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1687 &error_fatal);
1688 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1689 "date", &error_fatal);
1690 }
1691
1692 /* Returns whether we want to use VGA or not */
1693 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1694 {
1695 switch (vga_interface_type) {
1696 case VGA_NONE:
1697 return false;
1698 case VGA_DEVICE:
1699 return true;
1700 case VGA_STD:
1701 case VGA_VIRTIO:
1702 return pci_vga_init(pci_bus) != NULL;
1703 default:
1704 error_setg(errp,
1705 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1706 return false;
1707 }
1708 }
1709
1710 static int spapr_pre_load(void *opaque)
1711 {
1712 int rc;
1713
1714 rc = spapr_caps_pre_load(opaque);
1715 if (rc) {
1716 return rc;
1717 }
1718
1719 return 0;
1720 }
1721
1722 static int spapr_post_load(void *opaque, int version_id)
1723 {
1724 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1725 int err = 0;
1726
1727 err = spapr_caps_post_migration(spapr);
1728 if (err) {
1729 return err;
1730 }
1731
1732 if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1733 CPUState *cs;
1734 CPU_FOREACH(cs) {
1735 PowerPCCPU *cpu = POWERPC_CPU(cs);
1736 icp_resend(ICP(cpu->intc));
1737 }
1738 }
1739
1740 /* In earlier versions, there was no separate qdev for the PAPR
1741 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1742 * So when migrating from those versions, poke the incoming offset
1743 * value into the RTC device */
1744 if (version_id < 3) {
1745 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1746 }
1747
1748 if (kvm_enabled() && spapr->patb_entry) {
1749 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1750 bool radix = !!(spapr->patb_entry & PATBE1_GR);
1751 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1752
1753 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1754 if (err) {
1755 error_report("Process table config unsupported by the host");
1756 return -EINVAL;
1757 }
1758 }
1759
1760 return err;
1761 }
1762
1763 static int spapr_pre_save(void *opaque)
1764 {
1765 int rc;
1766
1767 rc = spapr_caps_pre_save(opaque);
1768 if (rc) {
1769 return rc;
1770 }
1771
1772 return 0;
1773 }
1774
1775 static bool version_before_3(void *opaque, int version_id)
1776 {
1777 return version_id < 3;
1778 }
1779
1780 static bool spapr_pending_events_needed(void *opaque)
1781 {
1782 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1783 return !QTAILQ_EMPTY(&spapr->pending_events);
1784 }
1785
1786 static const VMStateDescription vmstate_spapr_event_entry = {
1787 .name = "spapr_event_log_entry",
1788 .version_id = 1,
1789 .minimum_version_id = 1,
1790 .fields = (VMStateField[]) {
1791 VMSTATE_UINT32(summary, sPAPREventLogEntry),
1792 VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
1793 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
1794 NULL, extended_length),
1795 VMSTATE_END_OF_LIST()
1796 },
1797 };
1798
1799 static const VMStateDescription vmstate_spapr_pending_events = {
1800 .name = "spapr_pending_events",
1801 .version_id = 1,
1802 .minimum_version_id = 1,
1803 .needed = spapr_pending_events_needed,
1804 .fields = (VMStateField[]) {
1805 VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
1806 vmstate_spapr_event_entry, sPAPREventLogEntry, next),
1807 VMSTATE_END_OF_LIST()
1808 },
1809 };
1810
1811 static bool spapr_ov5_cas_needed(void *opaque)
1812 {
1813 sPAPRMachineState *spapr = opaque;
1814 sPAPROptionVector *ov5_mask = spapr_ovec_new();
1815 sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1816 sPAPROptionVector *ov5_removed = spapr_ovec_new();
1817 bool cas_needed;
1818
1819 /* Prior to the introduction of sPAPROptionVector, we had two option
1820 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1821 * Both of these options encode machine topology into the device-tree
1822 * in such a way that the now-booted OS should still be able to interact
1823 * appropriately with QEMU regardless of what options were actually
1824 * negotiatied on the source side.
1825 *
1826 * As such, we can avoid migrating the CAS-negotiated options if these
1827 * are the only options available on the current machine/platform.
1828 * Since these are the only options available for pseries-2.7 and
1829 * earlier, this allows us to maintain old->new/new->old migration
1830 * compatibility.
1831 *
1832 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1833 * via default pseries-2.8 machines and explicit command-line parameters.
1834 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1835 * of the actual CAS-negotiated values to continue working properly. For
1836 * example, availability of memory unplug depends on knowing whether
1837 * OV5_HP_EVT was negotiated via CAS.
1838 *
1839 * Thus, for any cases where the set of available CAS-negotiatable
1840 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1841 * include the CAS-negotiated options in the migration stream, unless
1842 * if they affect boot time behaviour only.
1843 */
1844 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1845 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1846 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1847
1848 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1849 * the mask itself since in the future it's possible "legacy" bits may be
1850 * removed via machine options, which could generate a false positive
1851 * that breaks migration.
1852 */
1853 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1854 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1855
1856 spapr_ovec_cleanup(ov5_mask);
1857 spapr_ovec_cleanup(ov5_legacy);
1858 spapr_ovec_cleanup(ov5_removed);
1859
1860 return cas_needed;
1861 }
1862
1863 static const VMStateDescription vmstate_spapr_ov5_cas = {
1864 .name = "spapr_option_vector_ov5_cas",
1865 .version_id = 1,
1866 .minimum_version_id = 1,
1867 .needed = spapr_ov5_cas_needed,
1868 .fields = (VMStateField[]) {
1869 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1870 vmstate_spapr_ovec, sPAPROptionVector),
1871 VMSTATE_END_OF_LIST()
1872 },
1873 };
1874
1875 static bool spapr_patb_entry_needed(void *opaque)
1876 {
1877 sPAPRMachineState *spapr = opaque;
1878
1879 return !!spapr->patb_entry;
1880 }
1881
1882 static const VMStateDescription vmstate_spapr_patb_entry = {
1883 .name = "spapr_patb_entry",
1884 .version_id = 1,
1885 .minimum_version_id = 1,
1886 .needed = spapr_patb_entry_needed,
1887 .fields = (VMStateField[]) {
1888 VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1889 VMSTATE_END_OF_LIST()
1890 },
1891 };
1892
1893 static bool spapr_irq_map_needed(void *opaque)
1894 {
1895 sPAPRMachineState *spapr = opaque;
1896
1897 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1898 }
1899
1900 static const VMStateDescription vmstate_spapr_irq_map = {
1901 .name = "spapr_irq_map",
1902 .version_id = 1,
1903 .minimum_version_id = 1,
1904 .needed = spapr_irq_map_needed,
1905 .fields = (VMStateField[]) {
1906 VMSTATE_BITMAP(irq_map, sPAPRMachineState, 0, irq_map_nr),
1907 VMSTATE_END_OF_LIST()
1908 },
1909 };
1910
1911 static const VMStateDescription vmstate_spapr = {
1912 .name = "spapr",
1913 .version_id = 3,
1914 .minimum_version_id = 1,
1915 .pre_load = spapr_pre_load,
1916 .post_load = spapr_post_load,
1917 .pre_save = spapr_pre_save,
1918 .fields = (VMStateField[]) {
1919 /* used to be @next_irq */
1920 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1921
1922 /* RTC offset */
1923 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1924
1925 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1926 VMSTATE_END_OF_LIST()
1927 },
1928 .subsections = (const VMStateDescription*[]) {
1929 &vmstate_spapr_ov5_cas,
1930 &vmstate_spapr_patb_entry,
1931 &vmstate_spapr_pending_events,
1932 &vmstate_spapr_cap_htm,
1933 &vmstate_spapr_cap_vsx,
1934 &vmstate_spapr_cap_dfp,
1935 &vmstate_spapr_cap_cfpc,
1936 &vmstate_spapr_cap_sbbc,
1937 &vmstate_spapr_cap_ibs,
1938 &vmstate_spapr_irq_map,
1939 &vmstate_spapr_cap_nested_kvm_hv,
1940 NULL
1941 }
1942 };
1943
1944 static int htab_save_setup(QEMUFile *f, void *opaque)
1945 {
1946 sPAPRMachineState *spapr = opaque;
1947
1948 /* "Iteration" header */
1949 if (!spapr->htab_shift) {
1950 qemu_put_be32(f, -1);
1951 } else {
1952 qemu_put_be32(f, spapr->htab_shift);
1953 }
1954
1955 if (spapr->htab) {
1956 spapr->htab_save_index = 0;
1957 spapr->htab_first_pass = true;
1958 } else {
1959 if (spapr->htab_shift) {
1960 assert(kvm_enabled());
1961 }
1962 }
1963
1964
1965 return 0;
1966 }
1967
1968 static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr,
1969 int chunkstart, int n_valid, int n_invalid)
1970 {
1971 qemu_put_be32(f, chunkstart);
1972 qemu_put_be16(f, n_valid);
1973 qemu_put_be16(f, n_invalid);
1974 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1975 HASH_PTE_SIZE_64 * n_valid);
1976 }
1977
1978 static void htab_save_end_marker(QEMUFile *f)
1979 {
1980 qemu_put_be32(f, 0);
1981 qemu_put_be16(f, 0);
1982 qemu_put_be16(f, 0);
1983 }
1984
1985 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1986 int64_t max_ns)
1987 {
1988 bool has_timeout = max_ns != -1;
1989 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1990 int index = spapr->htab_save_index;
1991 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1992
1993 assert(spapr->htab_first_pass);
1994
1995 do {
1996 int chunkstart;
1997
1998 /* Consume invalid HPTEs */
1999 while ((index < htabslots)
2000 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2001 CLEAN_HPTE(HPTE(spapr->htab, index));
2002 index++;
2003 }
2004
2005 /* Consume valid HPTEs */
2006 chunkstart = index;
2007 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2008 && HPTE_VALID(HPTE(spapr->htab, index))) {
2009 CLEAN_HPTE(HPTE(spapr->htab, index));
2010 index++;
2011 }
2012
2013 if (index > chunkstart) {
2014 int n_valid = index - chunkstart;
2015
2016 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2017
2018 if (has_timeout &&
2019 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2020 break;
2021 }
2022 }
2023 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2024
2025 if (index >= htabslots) {
2026 assert(index == htabslots);
2027 index = 0;
2028 spapr->htab_first_pass = false;
2029 }
2030 spapr->htab_save_index = index;
2031 }
2032
2033 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
2034 int64_t max_ns)
2035 {
2036 bool final = max_ns < 0;
2037 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2038 int examined = 0, sent = 0;
2039 int index = spapr->htab_save_index;
2040 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2041
2042 assert(!spapr->htab_first_pass);
2043
2044 do {
2045 int chunkstart, invalidstart;
2046
2047 /* Consume non-dirty HPTEs */
2048 while ((index < htabslots)
2049 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2050 index++;
2051 examined++;
2052 }
2053
2054 chunkstart = index;
2055 /* Consume valid dirty HPTEs */
2056 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2057 && HPTE_DIRTY(HPTE(spapr->htab, index))
2058 && HPTE_VALID(HPTE(spapr->htab, index))) {
2059 CLEAN_HPTE(HPTE(spapr->htab, index));
2060 index++;
2061 examined++;
2062 }
2063
2064 invalidstart = index;
2065 /* Consume invalid dirty HPTEs */
2066 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2067 && HPTE_DIRTY(HPTE(spapr->htab, index))
2068 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2069 CLEAN_HPTE(HPTE(spapr->htab, index));
2070 index++;
2071 examined++;
2072 }
2073
2074 if (index > chunkstart) {
2075 int n_valid = invalidstart - chunkstart;
2076 int n_invalid = index - invalidstart;
2077
2078 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2079 sent += index - chunkstart;
2080
2081 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2082 break;
2083 }
2084 }
2085
2086 if (examined >= htabslots) {
2087 break;
2088 }
2089
2090 if (index >= htabslots) {
2091 assert(index == htabslots);
2092 index = 0;
2093 }
2094 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2095
2096 if (index >= htabslots) {
2097 assert(index == htabslots);
2098 index = 0;
2099 }
2100
2101 spapr->htab_save_index = index;
2102
2103 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2104 }
2105
2106 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2107 #define MAX_KVM_BUF_SIZE 2048
2108
2109 static int htab_save_iterate(QEMUFile *f, void *opaque)
2110 {
2111 sPAPRMachineState *spapr = opaque;
2112 int fd;
2113 int rc = 0;
2114
2115 /* Iteration header */
2116 if (!spapr->htab_shift) {
2117 qemu_put_be32(f, -1);
2118 return 1;
2119 } else {
2120 qemu_put_be32(f, 0);
2121 }
2122
2123 if (!spapr->htab) {
2124 assert(kvm_enabled());
2125
2126 fd = get_htab_fd(spapr);
2127 if (fd < 0) {
2128 return fd;
2129 }
2130
2131 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2132 if (rc < 0) {
2133 return rc;
2134 }
2135 } else if (spapr->htab_first_pass) {
2136 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2137 } else {
2138 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2139 }
2140
2141 htab_save_end_marker(f);
2142
2143 return rc;
2144 }
2145
2146 static int htab_save_complete(QEMUFile *f, void *opaque)
2147 {
2148 sPAPRMachineState *spapr = opaque;
2149 int fd;
2150
2151 /* Iteration header */
2152 if (!spapr->htab_shift) {
2153 qemu_put_be32(f, -1);
2154 return 0;
2155 } else {
2156 qemu_put_be32(f, 0);
2157 }
2158
2159 if (!spapr->htab) {
2160 int rc;
2161
2162 assert(kvm_enabled());
2163
2164 fd = get_htab_fd(spapr);
2165 if (fd < 0) {
2166 return fd;
2167 }
2168
2169 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2170 if (rc < 0) {
2171 return rc;
2172 }
2173 } else {
2174 if (spapr->htab_first_pass) {
2175 htab_save_first_pass(f, spapr, -1);
2176 }
2177 htab_save_later_pass(f, spapr, -1);
2178 }
2179
2180 /* End marker */
2181 htab_save_end_marker(f);
2182
2183 return 0;
2184 }
2185
2186 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2187 {
2188 sPAPRMachineState *spapr = opaque;
2189 uint32_t section_hdr;
2190 int fd = -1;
2191 Error *local_err = NULL;
2192
2193 if (version_id < 1 || version_id > 1) {
2194 error_report("htab_load() bad version");
2195 return -EINVAL;
2196 }
2197
2198 section_hdr = qemu_get_be32(f);
2199
2200 if (section_hdr == -1) {
2201 spapr_free_hpt(spapr);
2202 return 0;
2203 }
2204
2205 if (section_hdr) {
2206 /* First section gives the htab size */
2207 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2208 if (local_err) {
2209 error_report_err(local_err);
2210 return -EINVAL;
2211 }
2212 return 0;
2213 }
2214
2215 if (!spapr->htab) {
2216 assert(kvm_enabled());
2217
2218 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2219 if (fd < 0) {
2220 error_report_err(local_err);
2221 return fd;
2222 }
2223 }
2224
2225 while (true) {
2226 uint32_t index;
2227 uint16_t n_valid, n_invalid;
2228
2229 index = qemu_get_be32(f);
2230 n_valid = qemu_get_be16(f);
2231 n_invalid = qemu_get_be16(f);
2232
2233 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2234 /* End of Stream */
2235 break;
2236 }
2237
2238 if ((index + n_valid + n_invalid) >
2239 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2240 /* Bad index in stream */
2241 error_report(
2242 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2243 index, n_valid, n_invalid, spapr->htab_shift);
2244 return -EINVAL;
2245 }
2246
2247 if (spapr->htab) {
2248 if (n_valid) {
2249 qemu_get_buffer(f, HPTE(spapr->htab, index),
2250 HASH_PTE_SIZE_64 * n_valid);
2251 }
2252 if (n_invalid) {
2253 memset(HPTE(spapr->htab, index + n_valid), 0,
2254 HASH_PTE_SIZE_64 * n_invalid);
2255 }
2256 } else {
2257 int rc;
2258
2259 assert(fd >= 0);
2260
2261 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2262 if (rc < 0) {
2263 return rc;
2264 }
2265 }
2266 }
2267
2268 if (!spapr->htab) {
2269 assert(fd >= 0);
2270 close(fd);
2271 }
2272
2273 return 0;
2274 }
2275
2276 static void htab_save_cleanup(void *opaque)
2277 {
2278 sPAPRMachineState *spapr = opaque;
2279
2280 close_htab_fd(spapr);
2281 }
2282
2283 static SaveVMHandlers savevm_htab_handlers = {
2284 .save_setup = htab_save_setup,
2285 .save_live_iterate = htab_save_iterate,
2286 .save_live_complete_precopy = htab_save_complete,
2287 .save_cleanup = htab_save_cleanup,
2288 .load_state = htab_load,
2289 };
2290
2291 static void spapr_boot_set(void *opaque, const char *boot_device,
2292 Error **errp)
2293 {
2294 MachineState *machine = MACHINE(opaque);
2295 machine->boot_order = g_strdup(boot_device);
2296 }
2297
2298 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
2299 {
2300 MachineState *machine = MACHINE(spapr);
2301 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2302 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2303 int i;
2304
2305 for (i = 0; i < nr_lmbs; i++) {
2306 uint64_t addr;
2307
2308 addr = i * lmb_size + machine->device_memory->base;
2309 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2310 addr / lmb_size);
2311 }
2312 }
2313
2314 /*
2315 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2316 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2317 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2318 */
2319 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2320 {
2321 int i;
2322
2323 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2324 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2325 " is not aligned to %" PRIu64 " MiB",
2326 machine->ram_size,
2327 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2328 return;
2329 }
2330
2331 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2332 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2333 " is not aligned to %" PRIu64 " MiB",
2334 machine->ram_size,
2335 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2336 return;
2337 }
2338
2339 for (i = 0; i < nb_numa_nodes; i++) {
2340 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2341 error_setg(errp,
2342 "Node %d memory size 0x%" PRIx64
2343 " is not aligned to %" PRIu64 " MiB",
2344 i, numa_info[i].node_mem,
2345 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2346 return;
2347 }
2348 }
2349 }
2350
2351 /* find cpu slot in machine->possible_cpus by core_id */
2352 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2353 {
2354 int index = id / smp_threads;
2355
2356 if (index >= ms->possible_cpus->len) {
2357 return NULL;
2358 }
2359 if (idx) {
2360 *idx = index;
2361 }
2362 return &ms->possible_cpus->cpus[index];
2363 }
2364
2365 static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp)
2366 {
2367 Error *local_err = NULL;
2368 bool vsmt_user = !!spapr->vsmt;
2369 int kvm_smt = kvmppc_smt_threads();
2370 int ret;
2371
2372 if (!kvm_enabled() && (smp_threads > 1)) {
2373 error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2374 "on a pseries machine");
2375 goto out;
2376 }
2377 if (!is_power_of_2(smp_threads)) {
2378 error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2379 "machine because it must be a power of 2", smp_threads);
2380 goto out;
2381 }
2382
2383 /* Detemine the VSMT mode to use: */
2384 if (vsmt_user) {
2385 if (spapr->vsmt < smp_threads) {
2386 error_setg(&local_err, "Cannot support VSMT mode %d"
2387 " because it must be >= threads/core (%d)",
2388 spapr->vsmt, smp_threads);
2389 goto out;
2390 }
2391 /* In this case, spapr->vsmt has been set by the command line */
2392 } else {
2393 /*
2394 * Default VSMT value is tricky, because we need it to be as
2395 * consistent as possible (for migration), but this requires
2396 * changing it for at least some existing cases. We pick 8 as
2397 * the value that we'd get with KVM on POWER8, the
2398 * overwhelmingly common case in production systems.
2399 */
2400 spapr->vsmt = MAX(8, smp_threads);
2401 }
2402
2403 /* KVM: If necessary, set the SMT mode: */
2404 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2405 ret = kvmppc_set_smt_threads(spapr->vsmt);
2406 if (ret) {
2407 /* Looks like KVM isn't able to change VSMT mode */
2408 error_setg(&local_err,
2409 "Failed to set KVM's VSMT mode to %d (errno %d)",
2410 spapr->vsmt, ret);
2411 /* We can live with that if the default one is big enough
2412 * for the number of threads, and a submultiple of the one
2413 * we want. In this case we'll waste some vcpu ids, but
2414 * behaviour will be correct */
2415 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2416 warn_report_err(local_err);
2417 local_err = NULL;
2418 goto out;
2419 } else {
2420 if (!vsmt_user) {
2421 error_append_hint(&local_err,
2422 "On PPC, a VM with %d threads/core"
2423 " on a host with %d threads/core"
2424 " requires the use of VSMT mode %d.\n",
2425 smp_threads, kvm_smt, spapr->vsmt);
2426 }
2427 kvmppc_hint_smt_possible(&local_err);
2428 goto out;
2429 }
2430 }
2431 }
2432 /* else TCG: nothing to do currently */
2433 out:
2434 error_propagate(errp, local_err);
2435 }
2436
2437 static void spapr_init_cpus(sPAPRMachineState *spapr)
2438 {
2439 MachineState *machine = MACHINE(spapr);
2440 MachineClass *mc = MACHINE_GET_CLASS(machine);
2441 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2442 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2443 const CPUArchIdList *possible_cpus;
2444 int boot_cores_nr = smp_cpus / smp_threads;
2445 int i;
2446
2447 possible_cpus = mc->possible_cpu_arch_ids(machine);
2448 if (mc->has_hotpluggable_cpus) {
2449 if (smp_cpus % smp_threads) {
2450 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2451 smp_cpus, smp_threads);
2452 exit(1);
2453 }
2454 if (max_cpus % smp_threads) {
2455 error_report("max_cpus (%u) must be multiple of threads (%u)",
2456 max_cpus, smp_threads);
2457 exit(1);
2458 }
2459 } else {
2460 if (max_cpus != smp_cpus) {
2461 error_report("This machine version does not support CPU hotplug");
2462 exit(1);
2463 }
2464 boot_cores_nr = possible_cpus->len;
2465 }
2466
2467 if (smc->pre_2_10_has_unused_icps) {
2468 int i;
2469
2470 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2471 /* Dummy entries get deregistered when real ICPState objects
2472 * are registered during CPU core hotplug.
2473 */
2474 pre_2_10_vmstate_register_dummy_icp(i);
2475 }
2476 }
2477
2478 for (i = 0; i < possible_cpus->len; i++) {
2479 int core_id = i * smp_threads;
2480
2481 if (mc->has_hotpluggable_cpus) {
2482 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2483 spapr_vcpu_id(spapr, core_id));
2484 }
2485
2486 if (i < boot_cores_nr) {
2487 Object *core = object_new(type);
2488 int nr_threads = smp_threads;
2489
2490 /* Handle the partially filled core for older machine types */
2491 if ((i + 1) * smp_threads >= smp_cpus) {
2492 nr_threads = smp_cpus - i * smp_threads;
2493 }
2494
2495 object_property_set_int(core, nr_threads, "nr-threads",
2496 &error_fatal);
2497 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2498 &error_fatal);
2499 object_property_set_bool(core, true, "realized", &error_fatal);
2500
2501 object_unref(core);
2502 }
2503 }
2504 }
2505
2506 /* pSeries LPAR / sPAPR hardware init */
2507 static void spapr_machine_init(MachineState *machine)
2508 {
2509 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2510 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2511 const char *kernel_filename = machine->kernel_filename;
2512 const char *initrd_filename = machine->initrd_filename;
2513 PCIHostState *phb;
2514 int i;
2515 MemoryRegion *sysmem = get_system_memory();
2516 MemoryRegion *ram = g_new(MemoryRegion, 1);
2517 hwaddr node0_size = spapr_node0_size(machine);
2518 long load_limit, fw_size;
2519 char *filename;
2520 Error *resize_hpt_err = NULL;
2521
2522 msi_nonbroken = true;
2523
2524 QLIST_INIT(&spapr->phbs);
2525 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2526
2527 /* Determine capabilities to run with */
2528 spapr_caps_init(spapr);
2529
2530 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2531 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2532 /*
2533 * If the user explicitly requested a mode we should either
2534 * supply it, or fail completely (which we do below). But if
2535 * it's not set explicitly, we reset our mode to something
2536 * that works
2537 */
2538 if (resize_hpt_err) {
2539 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2540 error_free(resize_hpt_err);
2541 resize_hpt_err = NULL;
2542 } else {
2543 spapr->resize_hpt = smc->resize_hpt_default;
2544 }
2545 }
2546
2547 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2548
2549 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2550 /*
2551 * User requested HPT resize, but this host can't supply it. Bail out
2552 */
2553 error_report_err(resize_hpt_err);
2554 exit(1);
2555 }
2556
2557 spapr->rma_size = node0_size;
2558
2559 /* With KVM, we don't actually know whether KVM supports an
2560 * unbounded RMA (PR KVM) or is limited by the hash table size
2561 * (HV KVM using VRMA), so we always assume the latter
2562 *
2563 * In that case, we also limit the initial allocations for RTAS
2564 * etc... to 256M since we have no way to know what the VRMA size
2565 * is going to be as it depends on the size of the hash table
2566 * which isn't determined yet.
2567 */
2568 if (kvm_enabled()) {
2569 spapr->vrma_adjust = 1;
2570 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2571 }
2572
2573 /* Actually we don't support unbounded RMA anymore since we added
2574 * proper emulation of HV mode. The max we can get is 16G which
2575 * also happens to be what we configure for PAPR mode so make sure
2576 * we don't do anything bigger than that
2577 */
2578 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2579
2580 if (spapr->rma_size > node0_size) {
2581 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2582 spapr->rma_size);
2583 exit(1);
2584 }
2585
2586 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2587 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2588
2589 /*
2590 * VSMT must be set in order to be able to compute VCPU ids, ie to
2591 * call spapr_max_server_number() or spapr_vcpu_id().
2592 */
2593 spapr_set_vsmt_mode(spapr, &error_fatal);
2594
2595 /* Set up Interrupt Controller before we create the VCPUs */
2596 spapr_irq_init(spapr, &error_fatal);
2597
2598 /* Set up containers for ibm,client-architecture-support negotiated options
2599 */
2600 spapr->ov5 = spapr_ovec_new();
2601 spapr->ov5_cas = spapr_ovec_new();
2602
2603 if (smc->dr_lmb_enabled) {
2604 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2605 spapr_validate_node_memory(machine, &error_fatal);
2606 }
2607
2608 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2609
2610 /* advertise support for dedicated HP event source to guests */
2611 if (spapr->use_hotplug_event_source) {
2612 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2613 }
2614
2615 /* advertise support for HPT resizing */
2616 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2617 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2618 }
2619
2620 /* advertise support for ibm,dyamic-memory-v2 */
2621 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2622
2623 /* init CPUs */
2624 spapr_init_cpus(spapr);
2625
2626 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2627 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2628 spapr->max_compat_pvr)) {
2629 /* KVM and TCG always allow GTSE with radix... */
2630 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2631 }
2632 /* ... but not with hash (currently). */
2633
2634 if (kvm_enabled()) {
2635 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2636 kvmppc_enable_logical_ci_hcalls();
2637 kvmppc_enable_set_mode_hcall();
2638
2639 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2640 kvmppc_enable_clear_ref_mod_hcalls();
2641 }
2642
2643 /* allocate RAM */
2644 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2645 machine->ram_size);
2646 memory_region_add_subregion(sysmem, 0, ram);
2647
2648 /* always allocate the device memory information */
2649 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2650
2651 /* initialize hotplug memory address space */
2652 if (machine->ram_size < machine->maxram_size) {
2653 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2654 /*
2655 * Limit the number of hotpluggable memory slots to half the number
2656 * slots that KVM supports, leaving the other half for PCI and other
2657 * devices. However ensure that number of slots doesn't drop below 32.
2658 */
2659 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2660 SPAPR_MAX_RAM_SLOTS;
2661
2662 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2663 max_memslots = SPAPR_MAX_RAM_SLOTS;
2664 }
2665 if (machine->ram_slots > max_memslots) {
2666 error_report("Specified number of memory slots %"
2667 PRIu64" exceeds max supported %d",
2668 machine->ram_slots, max_memslots);
2669 exit(1);
2670 }
2671
2672 machine->device_memory->base = ROUND_UP(machine->ram_size,
2673 SPAPR_DEVICE_MEM_ALIGN);
2674 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2675 "device-memory", device_mem_size);
2676 memory_region_add_subregion(sysmem, machine->device_memory->base,
2677 &machine->device_memory->mr);
2678 }
2679
2680 if (smc->dr_lmb_enabled) {
2681 spapr_create_lmb_dr_connectors(spapr);
2682 }
2683
2684 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2685 if (!filename) {
2686 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2687 exit(1);
2688 }
2689 spapr->rtas_size = get_image_size(filename);
2690 if (spapr->rtas_size < 0) {
2691 error_report("Could not get size of LPAR rtas '%s'", filename);
2692 exit(1);
2693 }
2694 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2695 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2696 error_report("Could not load LPAR rtas '%s'", filename);
2697 exit(1);
2698 }
2699 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2700 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2701 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2702 exit(1);
2703 }
2704 g_free(filename);
2705
2706 /* Set up RTAS event infrastructure */
2707 spapr_events_init(spapr);
2708
2709 /* Set up the RTC RTAS interfaces */
2710 spapr_rtc_create(spapr);
2711
2712 /* Set up VIO bus */
2713 spapr->vio_bus = spapr_vio_bus_init();
2714
2715 for (i = 0; i < serial_max_hds(); i++) {
2716 if (serial_hd(i)) {
2717 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2718 }
2719 }
2720
2721 /* We always have at least the nvram device on VIO */
2722 spapr_create_nvram(spapr);
2723
2724 /* Set up PCI */
2725 spapr_pci_rtas_init();
2726
2727 phb = spapr_create_phb(spapr, 0);
2728
2729 for (i = 0; i < nb_nics; i++) {
2730 NICInfo *nd = &nd_table[i];
2731
2732 if (!nd->model) {
2733 nd->model = g_strdup("spapr-vlan");
2734 }
2735
2736 if (g_str_equal(nd->model, "spapr-vlan") ||
2737 g_str_equal(nd->model, "ibmveth")) {
2738 spapr_vlan_create(spapr->vio_bus, nd);
2739 } else {
2740 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2741 }
2742 }
2743
2744 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2745 spapr_vscsi_create(spapr->vio_bus);
2746 }
2747
2748 /* Graphics */
2749 if (spapr_vga_init(phb->bus, &error_fatal)) {
2750 spapr->has_graphics = true;
2751 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2752 }
2753
2754 if (machine->usb) {
2755 if (smc->use_ohci_by_default) {
2756 pci_create_simple(phb->bus, -1, "pci-ohci");
2757 } else {
2758 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2759 }
2760
2761 if (spapr->has_graphics) {
2762 USBBus *usb_bus = usb_bus_find(-1);
2763
2764 usb_create_simple(usb_bus, "usb-kbd");
2765 usb_create_simple(usb_bus, "usb-mouse");
2766 }
2767 }
2768
2769 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
2770 error_report(
2771 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2772 MIN_RMA_SLOF);
2773 exit(1);
2774 }
2775
2776 if (kernel_filename) {
2777 uint64_t lowaddr = 0;
2778
2779 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2780 NULL, NULL, &lowaddr, NULL, 1,
2781 PPC_ELF_MACHINE, 0, 0);
2782 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2783 spapr->kernel_size = load_elf(kernel_filename,
2784 translate_kernel_address, NULL, NULL,
2785 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2786 0, 0);
2787 spapr->kernel_le = spapr->kernel_size > 0;
2788 }
2789 if (spapr->kernel_size < 0) {
2790 error_report("error loading %s: %s", kernel_filename,
2791 load_elf_strerror(spapr->kernel_size));
2792 exit(1);
2793 }
2794
2795 /* load initrd */
2796 if (initrd_filename) {
2797 /* Try to locate the initrd in the gap between the kernel
2798 * and the firmware. Add a bit of space just in case
2799 */
2800 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2801 + 0x1ffff) & ~0xffff;
2802 spapr->initrd_size = load_image_targphys(initrd_filename,
2803 spapr->initrd_base,
2804 load_limit
2805 - spapr->initrd_base);
2806 if (spapr->initrd_size < 0) {
2807 error_report("could not load initial ram disk '%s'",
2808 initrd_filename);
2809 exit(1);
2810 }
2811 }
2812 }
2813
2814 if (bios_name == NULL) {
2815 bios_name = FW_FILE_NAME;
2816 }
2817 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2818 if (!filename) {
2819 error_report("Could not find LPAR firmware '%s'", bios_name);
2820 exit(1);
2821 }
2822 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2823 if (fw_size <= 0) {
2824 error_report("Could not load LPAR firmware '%s'", filename);
2825 exit(1);
2826 }
2827 g_free(filename);
2828
2829 /* FIXME: Should register things through the MachineState's qdev
2830 * interface, this is a legacy from the sPAPREnvironment structure
2831 * which predated MachineState but had a similar function */
2832 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2833 register_savevm_live(NULL, "spapr/htab", -1, 1,
2834 &savevm_htab_handlers, spapr);
2835
2836 qemu_register_boot_set(spapr_boot_set, spapr);
2837
2838 if (kvm_enabled()) {
2839 /* to stop and start vmclock */
2840 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2841 &spapr->tb);
2842
2843 kvmppc_spapr_enable_inkernel_multitce();
2844 }
2845 }
2846
2847 static int spapr_kvm_type(const char *vm_type)
2848 {
2849 if (!vm_type) {
2850 return 0;
2851 }
2852
2853 if (!strcmp(vm_type, "HV")) {
2854 return 1;
2855 }
2856
2857 if (!strcmp(vm_type, "PR")) {
2858 return 2;
2859 }
2860
2861 error_report("Unknown kvm-type specified '%s'", vm_type);
2862 exit(1);
2863 }
2864
2865 /*
2866 * Implementation of an interface to adjust firmware path
2867 * for the bootindex property handling.
2868 */
2869 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2870 DeviceState *dev)
2871 {
2872 #define CAST(type, obj, name) \
2873 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2874 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2875 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2876 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
2877
2878 if (d) {
2879 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2880 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2881 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2882
2883 if (spapr) {
2884 /*
2885 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2886 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2887 * in the top 16 bits of the 64-bit LUN
2888 */
2889 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2890 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2891 (uint64_t)id << 48);
2892 } else if (virtio) {
2893 /*
2894 * We use SRP luns of the form 01000000 | (target << 8) | lun
2895 * in the top 32 bits of the 64-bit LUN
2896 * Note: the quote above is from SLOF and it is wrong,
2897 * the actual binding is:
2898 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2899 */
2900 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2901 if (d->lun >= 256) {
2902 /* Use the LUN "flat space addressing method" */
2903 id |= 0x4000;
2904 }
2905 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2906 (uint64_t)id << 32);
2907 } else if (usb) {
2908 /*
2909 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2910 * in the top 32 bits of the 64-bit LUN
2911 */
2912 unsigned usb_port = atoi(usb->port->path);
2913 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2914 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2915 (uint64_t)id << 32);
2916 }
2917 }
2918
2919 /*
2920 * SLOF probes the USB devices, and if it recognizes that the device is a
2921 * storage device, it changes its name to "storage" instead of "usb-host",
2922 * and additionally adds a child node for the SCSI LUN, so the correct
2923 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2924 */
2925 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2926 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2927 if (usb_host_dev_is_scsi_storage(usbdev)) {
2928 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2929 }
2930 }
2931
2932 if (phb) {
2933 /* Replace "pci" with "pci@800000020000000" */
2934 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2935 }
2936
2937 if (vsc) {
2938 /* Same logic as virtio above */
2939 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
2940 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
2941 }
2942
2943 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
2944 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
2945 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
2946 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
2947 }
2948
2949 return NULL;
2950 }
2951
2952 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2953 {
2954 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2955
2956 return g_strdup(spapr->kvm_type);
2957 }
2958
2959 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2960 {
2961 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2962
2963 g_free(spapr->kvm_type);
2964 spapr->kvm_type = g_strdup(value);
2965 }
2966
2967 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2968 {
2969 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2970
2971 return spapr->use_hotplug_event_source;
2972 }
2973
2974 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2975 Error **errp)
2976 {
2977 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2978
2979 spapr->use_hotplug_event_source = value;
2980 }
2981
2982 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
2983 {
2984 return true;
2985 }
2986
2987 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
2988 {
2989 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2990
2991 switch (spapr->resize_hpt) {
2992 case SPAPR_RESIZE_HPT_DEFAULT:
2993 return g_strdup("default");
2994 case SPAPR_RESIZE_HPT_DISABLED:
2995 return g_strdup("disabled");
2996 case SPAPR_RESIZE_HPT_ENABLED:
2997 return g_strdup("enabled");
2998 case SPAPR_RESIZE_HPT_REQUIRED:
2999 return g_strdup("required");
3000 }
3001 g_assert_not_reached();
3002 }
3003
3004 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3005 {
3006 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3007
3008 if (strcmp(value, "default") == 0) {
3009 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3010 } else if (strcmp(value, "disabled") == 0) {
3011 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3012 } else if (strcmp(value, "enabled") == 0) {
3013 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3014 } else if (strcmp(value, "required") == 0) {
3015 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3016 } else {
3017 error_setg(errp, "Bad value for \"resize-hpt\" property");
3018 }
3019 }
3020
3021 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3022 void *opaque, Error **errp)
3023 {
3024 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3025 }
3026
3027 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3028 void *opaque, Error **errp)
3029 {
3030 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3031 }
3032
3033 static void spapr_instance_init(Object *obj)
3034 {
3035 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3036
3037 spapr->htab_fd = -1;
3038 spapr->use_hotplug_event_source = true;
3039 object_property_add_str(obj, "kvm-type",
3040 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3041 object_property_set_description(obj, "kvm-type",
3042 "Specifies the KVM virtualization mode (HV, PR)",
3043 NULL);
3044 object_property_add_bool(obj, "modern-hotplug-events",
3045 spapr_get_modern_hotplug_events,
3046 spapr_set_modern_hotplug_events,
3047 NULL);
3048 object_property_set_description(obj, "modern-hotplug-events",
3049 "Use dedicated hotplug event mechanism in"
3050 " place of standard EPOW events when possible"
3051 " (required for memory hot-unplug support)",
3052 NULL);
3053 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3054 "Maximum permitted CPU compatibility mode",
3055 &error_fatal);
3056
3057 object_property_add_str(obj, "resize-hpt",
3058 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3059 object_property_set_description(obj, "resize-hpt",
3060 "Resizing of the Hash Page Table (enabled, disabled, required)",
3061 NULL);
3062 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3063 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3064 object_property_set_description(obj, "vsmt",
3065 "Virtual SMT: KVM behaves as if this were"
3066 " the host's SMT mode", &error_abort);
3067 object_property_add_bool(obj, "vfio-no-msix-emulation",
3068 spapr_get_msix_emulation, NULL, NULL);
3069 }
3070
3071 static void spapr_machine_finalizefn(Object *obj)
3072 {
3073 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3074
3075 g_free(spapr->kvm_type);
3076 }
3077
3078 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3079 {
3080 cpu_synchronize_state(cs);
3081 ppc_cpu_do_system_reset(cs);
3082 }
3083
3084 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3085 {
3086 CPUState *cs;
3087
3088 CPU_FOREACH(cs) {
3089 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3090 }
3091 }
3092
3093 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3094 uint32_t node, bool dedicated_hp_event_source,
3095 Error **errp)
3096 {
3097 sPAPRDRConnector *drc;
3098 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3099 int i, fdt_offset, fdt_size;
3100 void *fdt;
3101 uint64_t addr = addr_start;
3102 bool hotplugged = spapr_drc_hotplugged(dev);
3103 Error *local_err = NULL;
3104
3105 for (i = 0; i < nr_lmbs; i++) {
3106 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3107 addr / SPAPR_MEMORY_BLOCK_SIZE);
3108 g_assert(drc);
3109
3110 fdt = create_device_tree(&fdt_size);
3111 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
3112 SPAPR_MEMORY_BLOCK_SIZE);
3113
3114 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3115 if (local_err) {
3116 while (addr > addr_start) {
3117 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3118 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3119 addr / SPAPR_MEMORY_BLOCK_SIZE);
3120 spapr_drc_detach(drc);
3121 }
3122 g_free(fdt);
3123 error_propagate(errp, local_err);
3124 return;
3125 }
3126 if (!hotplugged) {
3127 spapr_drc_reset(drc);
3128 }
3129 addr += SPAPR_MEMORY_BLOCK_SIZE;
3130 }
3131 /* send hotplug notification to the
3132 * guest only in case of hotplugged memory
3133 */
3134 if (hotplugged) {
3135 if (dedicated_hp_event_source) {
3136 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3137 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3138 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3139 nr_lmbs,
3140 spapr_drc_index(drc));
3141 } else {
3142 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3143 nr_lmbs);
3144 }
3145 }
3146 }
3147
3148 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3149 Error **errp)
3150 {
3151 Error *local_err = NULL;
3152 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3153 PCDIMMDevice *dimm = PC_DIMM(dev);
3154 uint64_t size, addr;
3155 uint32_t node;
3156
3157 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3158
3159 pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3160 if (local_err) {
3161 goto out;
3162 }
3163
3164 addr = object_property_get_uint(OBJECT(dimm),
3165 PC_DIMM_ADDR_PROP, &local_err);
3166 if (local_err) {
3167 goto out_unplug;
3168 }
3169
3170 node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP,
3171 &error_abort);
3172 spapr_add_lmbs(dev, addr, size, node,
3173 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3174 &local_err);
3175 if (local_err) {
3176 goto out_unplug;
3177 }
3178
3179 return;
3180
3181 out_unplug:
3182 pc_dimm_unplug(dimm, MACHINE(ms));
3183 out:
3184 error_propagate(errp, local_err);
3185 }
3186
3187 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3188 Error **errp)
3189 {
3190 const sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3191 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3192 PCDIMMDevice *dimm = PC_DIMM(dev);
3193 Error *local_err = NULL;
3194 uint64_t size;
3195 Object *memdev;
3196 hwaddr pagesize;
3197
3198 if (!smc->dr_lmb_enabled) {
3199 error_setg(errp, "Memory hotplug not supported for this machine");
3200 return;
3201 }
3202
3203 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3204 if (local_err) {
3205 error_propagate(errp, local_err);
3206 return;
3207 }
3208
3209 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3210 error_setg(errp, "Hotplugged memory size must be a multiple of "
3211 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3212 return;
3213 }
3214
3215 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3216 &error_abort);
3217 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3218 spapr_check_pagesize(spapr, pagesize, &local_err);
3219 if (local_err) {
3220 error_propagate(errp, local_err);
3221 return;
3222 }
3223
3224 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3225 }
3226
3227 struct sPAPRDIMMState {
3228 PCDIMMDevice *dimm;
3229 uint32_t nr_lmbs;
3230 QTAILQ_ENTRY(sPAPRDIMMState) next;
3231 };
3232
3233 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
3234 PCDIMMDevice *dimm)
3235 {
3236 sPAPRDIMMState *dimm_state = NULL;
3237
3238 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3239 if (dimm_state->dimm == dimm) {
3240 break;
3241 }
3242 }
3243 return dimm_state;
3244 }
3245
3246 static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
3247 uint32_t nr_lmbs,
3248 PCDIMMDevice *dimm)
3249 {
3250 sPAPRDIMMState *ds = NULL;
3251
3252 /*
3253 * If this request is for a DIMM whose removal had failed earlier
3254 * (due to guest's refusal to remove the LMBs), we would have this
3255 * dimm already in the pending_dimm_unplugs list. In that
3256 * case don't add again.
3257 */
3258 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3259 if (!ds) {
3260 ds = g_malloc0(sizeof(sPAPRDIMMState));
3261 ds->nr_lmbs = nr_lmbs;
3262 ds->dimm = dimm;
3263 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3264 }
3265 return ds;
3266 }
3267
3268 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
3269 sPAPRDIMMState *dimm_state)
3270 {
3271 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3272 g_free(dimm_state);
3273 }
3274
3275 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
3276 PCDIMMDevice *dimm)
3277 {
3278 sPAPRDRConnector *drc;
3279 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3280 &error_abort);
3281 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3282 uint32_t avail_lmbs = 0;
3283 uint64_t addr_start, addr;
3284 int i;
3285
3286 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3287 &error_abort);
3288
3289 addr = addr_start;
3290 for (i = 0; i < nr_lmbs; i++) {
3291 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3292 addr / SPAPR_MEMORY_BLOCK_SIZE);
3293 g_assert(drc);
3294 if (drc->dev) {
3295 avail_lmbs++;
3296 }
3297 addr += SPAPR_MEMORY_BLOCK_SIZE;
3298 }
3299
3300 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3301 }
3302
3303 /* Callback to be called during DRC release. */
3304 void spapr_lmb_release(DeviceState *dev)
3305 {
3306 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3307 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3308 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3309
3310 /* This information will get lost if a migration occurs
3311 * during the unplug process. In this case recover it. */
3312 if (ds == NULL) {
3313 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3314 g_assert(ds);
3315 /* The DRC being examined by the caller at least must be counted */
3316 g_assert(ds->nr_lmbs);
3317 }
3318
3319 if (--ds->nr_lmbs) {
3320 return;
3321 }
3322
3323 /*
3324 * Now that all the LMBs have been removed by the guest, call the
3325 * unplug handler chain. This can never fail.
3326 */
3327 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3328 }
3329
3330 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3331 {
3332 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3333 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3334
3335 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3336 object_unparent(OBJECT(dev));
3337 spapr_pending_dimm_unplugs_remove(spapr, ds);
3338 }
3339
3340 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3341 DeviceState *dev, Error **errp)
3342 {
3343 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3344 Error *local_err = NULL;
3345 PCDIMMDevice *dimm = PC_DIMM(dev);
3346 uint32_t nr_lmbs;
3347 uint64_t size, addr_start, addr;
3348 int i;
3349 sPAPRDRConnector *drc;
3350
3351 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3352 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3353
3354 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3355 &local_err);
3356 if (local_err) {
3357 goto out;
3358 }
3359
3360 /*
3361 * An existing pending dimm state for this DIMM means that there is an
3362 * unplug operation in progress, waiting for the spapr_lmb_release
3363 * callback to complete the job (BQL can't cover that far). In this case,
3364 * bail out to avoid detaching DRCs that were already released.
3365 */
3366 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3367 error_setg(&local_err,
3368 "Memory unplug already in progress for device %s",
3369 dev->id);
3370 goto out;
3371 }
3372
3373 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3374
3375 addr = addr_start;
3376 for (i = 0; i < nr_lmbs; i++) {
3377 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3378 addr / SPAPR_MEMORY_BLOCK_SIZE);
3379 g_assert(drc);
3380
3381 spapr_drc_detach(drc);
3382 addr += SPAPR_MEMORY_BLOCK_SIZE;
3383 }
3384
3385 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3386 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3387 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3388 nr_lmbs, spapr_drc_index(drc));
3389 out:
3390 error_propagate(errp, local_err);
3391 }
3392
3393 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
3394 sPAPRMachineState *spapr)
3395 {
3396 PowerPCCPU *cpu = POWERPC_CPU(cs);
3397 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3398 int id = spapr_get_vcpu_id(cpu);
3399 void *fdt;
3400 int offset, fdt_size;
3401 char *nodename;
3402
3403 fdt = create_device_tree(&fdt_size);
3404 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3405 offset = fdt_add_subnode(fdt, 0, nodename);
3406
3407 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3408 g_free(nodename);
3409
3410 *fdt_offset = offset;
3411 return fdt;
3412 }
3413
3414 /* Callback to be called during DRC release. */
3415 void spapr_core_release(DeviceState *dev)
3416 {
3417 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3418
3419 /* Call the unplug handler chain. This can never fail. */
3420 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3421 }
3422
3423 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3424 {
3425 MachineState *ms = MACHINE(hotplug_dev);
3426 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3427 CPUCore *cc = CPU_CORE(dev);
3428 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3429
3430 if (smc->pre_2_10_has_unused_icps) {
3431 sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3432 int i;
3433
3434 for (i = 0; i < cc->nr_threads; i++) {
3435 CPUState *cs = CPU(sc->threads[i]);
3436
3437 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3438 }
3439 }
3440
3441 assert(core_slot);
3442 core_slot->cpu = NULL;
3443 object_unparent(OBJECT(dev));
3444 }
3445
3446 static
3447 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3448 Error **errp)
3449 {
3450 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3451 int index;
3452 sPAPRDRConnector *drc;
3453 CPUCore *cc = CPU_CORE(dev);
3454
3455 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3456 error_setg(errp, "Unable to find CPU core with core-id: %d",
3457 cc->core_id);
3458 return;
3459 }
3460 if (index == 0) {
3461 error_setg(errp, "Boot CPU core may not be unplugged");
3462 return;
3463 }
3464
3465 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3466 spapr_vcpu_id(spapr, cc->core_id));
3467 g_assert(drc);
3468
3469 spapr_drc_detach(drc);
3470
3471 spapr_hotplug_req_remove_by_index(drc);
3472 }
3473
3474 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3475 Error **errp)
3476 {
3477 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3478 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3479 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3480 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3481 CPUCore *cc = CPU_CORE(dev);
3482 CPUState *cs = CPU(core->threads[0]);
3483 sPAPRDRConnector *drc;
3484 Error *local_err = NULL;
3485 CPUArchId *core_slot;
3486 int index;
3487 bool hotplugged = spapr_drc_hotplugged(dev);
3488
3489 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3490 if (!core_slot) {
3491 error_setg(errp, "Unable to find CPU core with core-id: %d",
3492 cc->core_id);
3493 return;
3494 }
3495 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3496 spapr_vcpu_id(spapr, cc->core_id));
3497
3498 g_assert(drc || !mc->has_hotpluggable_cpus);
3499
3500 if (drc) {
3501 void *fdt;
3502 int fdt_offset;
3503
3504 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
3505
3506 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3507 if (local_err) {
3508 g_free(fdt);
3509 error_propagate(errp, local_err);
3510 return;
3511 }
3512
3513 if (hotplugged) {
3514 /*
3515 * Send hotplug notification interrupt to the guest only
3516 * in case of hotplugged CPUs.
3517 */
3518 spapr_hotplug_req_add_by_index(drc);
3519 } else {
3520 spapr_drc_reset(drc);
3521 }
3522 }
3523
3524 core_slot->cpu = OBJECT(dev);
3525
3526 if (smc->pre_2_10_has_unused_icps) {
3527 int i;
3528
3529 for (i = 0; i < cc->nr_threads; i++) {
3530 cs = CPU(core->threads[i]);
3531 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3532 }
3533 }
3534 }
3535
3536 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3537 Error **errp)
3538 {
3539 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3540 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3541 Error *local_err = NULL;
3542 CPUCore *cc = CPU_CORE(dev);
3543 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3544 const char *type = object_get_typename(OBJECT(dev));
3545 CPUArchId *core_slot;
3546 int index;
3547
3548 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3549 error_setg(&local_err, "CPU hotplug not supported for this machine");
3550 goto out;
3551 }
3552
3553 if (strcmp(base_core_type, type)) {
3554 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3555 goto out;
3556 }
3557
3558 if (cc->core_id % smp_threads) {
3559 error_setg(&local_err, "invalid core id %d", cc->core_id);
3560 goto out;
3561 }
3562
3563 /*
3564 * In general we should have homogeneous threads-per-core, but old
3565 * (pre hotplug support) machine types allow the last core to have
3566 * reduced threads as a compatibility hack for when we allowed
3567 * total vcpus not a multiple of threads-per-core.
3568 */
3569 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3570 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3571 cc->nr_threads, smp_threads);
3572 goto out;
3573 }
3574
3575 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3576 if (!core_slot) {
3577 error_setg(&local_err, "core id %d out of range", cc->core_id);
3578 goto out;
3579 }
3580
3581 if (core_slot->cpu) {
3582 error_setg(&local_err, "core %d already populated", cc->core_id);
3583 goto out;
3584 }
3585
3586 numa_cpu_pre_plug(core_slot, dev, &local_err);
3587
3588 out:
3589 error_propagate(errp, local_err);
3590 }
3591
3592 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3593 DeviceState *dev, Error **errp)
3594 {
3595 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3596 spapr_memory_plug(hotplug_dev, dev, errp);
3597 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3598 spapr_core_plug(hotplug_dev, dev, errp);
3599 }
3600 }
3601
3602 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
3603 DeviceState *dev, Error **errp)
3604 {
3605 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3606 spapr_memory_unplug(hotplug_dev, dev);
3607 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3608 spapr_core_unplug(hotplug_dev, dev);
3609 }
3610 }
3611
3612 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3613 DeviceState *dev, Error **errp)
3614 {
3615 sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
3616 MachineClass *mc = MACHINE_GET_CLASS(sms);
3617
3618 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3619 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3620 spapr_memory_unplug_request(hotplug_dev, dev, errp);
3621 } else {
3622 /* NOTE: this means there is a window after guest reset, prior to
3623 * CAS negotiation, where unplug requests will fail due to the
3624 * capability not being detected yet. This is a bit different than
3625 * the case with PCI unplug, where the events will be queued and
3626 * eventually handled by the guest after boot
3627 */
3628 error_setg(errp, "Memory hot unplug not supported for this guest");
3629 }
3630 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3631 if (!mc->has_hotpluggable_cpus) {
3632 error_setg(errp, "CPU hot unplug not supported on this machine");
3633 return;
3634 }
3635 spapr_core_unplug_request(hotplug_dev, dev, errp);
3636 }
3637 }
3638
3639 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3640 DeviceState *dev, Error **errp)
3641 {
3642 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3643 spapr_memory_pre_plug(hotplug_dev, dev, errp);
3644 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3645 spapr_core_pre_plug(hotplug_dev, dev, errp);
3646 }
3647 }
3648
3649 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3650 DeviceState *dev)
3651 {
3652 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3653 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3654 return HOTPLUG_HANDLER(machine);
3655 }
3656 return NULL;
3657 }
3658
3659 static CpuInstanceProperties
3660 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3661 {
3662 CPUArchId *core_slot;
3663 MachineClass *mc = MACHINE_GET_CLASS(machine);
3664
3665 /* make sure possible_cpu are intialized */
3666 mc->possible_cpu_arch_ids(machine);
3667 /* get CPU core slot containing thread that matches cpu_index */
3668 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3669 assert(core_slot);
3670 return core_slot->props;
3671 }
3672
3673 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
3674 {
3675 return idx / smp_cores % nb_numa_nodes;
3676 }
3677
3678 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3679 {
3680 int i;
3681 const char *core_type;
3682 int spapr_max_cores = max_cpus / smp_threads;
3683 MachineClass *mc = MACHINE_GET_CLASS(machine);
3684
3685 if (!mc->has_hotpluggable_cpus) {
3686 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3687 }
3688 if (machine->possible_cpus) {
3689 assert(machine->possible_cpus->len == spapr_max_cores);
3690 return machine->possible_cpus;
3691 }
3692
3693 core_type = spapr_get_cpu_core_type(machine->cpu_type);
3694 if (!core_type) {
3695 error_report("Unable to find sPAPR CPU Core definition");
3696 exit(1);
3697 }
3698
3699 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3700 sizeof(CPUArchId) * spapr_max_cores);
3701 machine->possible_cpus->len = spapr_max_cores;
3702 for (i = 0; i < machine->possible_cpus->len; i++) {
3703 int core_id = i * smp_threads;
3704
3705 machine->possible_cpus->cpus[i].type = core_type;
3706 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3707 machine->possible_cpus->cpus[i].arch_id = core_id;
3708 machine->possible_cpus->cpus[i].props.has_core_id = true;
3709 machine->possible_cpus->cpus[i].props.core_id = core_id;
3710 }
3711 return machine->possible_cpus;
3712 }
3713
3714 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3715 uint64_t *buid, hwaddr *pio,
3716 hwaddr *mmio32, hwaddr *mmio64,
3717 unsigned n_dma, uint32_t *liobns, Error **errp)
3718 {
3719 /*
3720 * New-style PHB window placement.
3721 *
3722 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3723 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3724 * windows.
3725 *
3726 * Some guest kernels can't work with MMIO windows above 1<<46
3727 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3728 *
3729 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3730 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
3731 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
3732 * 1TiB 64-bit MMIO windows for each PHB.
3733 */
3734 const uint64_t base_buid = 0x800000020000000ULL;
3735 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3736 SPAPR_PCI_MEM64_WIN_SIZE - 1)
3737 int i;
3738
3739 /* Sanity check natural alignments */
3740 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3741 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3742 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3743 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3744 /* Sanity check bounds */
3745 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3746 SPAPR_PCI_MEM32_WIN_SIZE);
3747 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3748 SPAPR_PCI_MEM64_WIN_SIZE);
3749
3750 if (index >= SPAPR_MAX_PHBS) {
3751 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3752 SPAPR_MAX_PHBS - 1);
3753 return;
3754 }
3755
3756 *buid = base_buid + index;
3757 for (i = 0; i < n_dma; ++i) {
3758 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3759 }
3760
3761 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3762 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3763 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3764 }
3765
3766 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3767 {
3768 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3769
3770 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3771 }
3772
3773 static void spapr_ics_resend(XICSFabric *dev)
3774 {
3775 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3776
3777 ics_resend(spapr->ics);
3778 }
3779
3780 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
3781 {
3782 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
3783
3784 return cpu ? ICP(cpu->intc) : NULL;
3785 }
3786
3787 static void spapr_pic_print_info(InterruptStatsProvider *obj,
3788 Monitor *mon)
3789 {
3790 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3791 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3792
3793 smc->irq->print_info(spapr, mon);
3794 }
3795
3796 int spapr_get_vcpu_id(PowerPCCPU *cpu)
3797 {
3798 return cpu->vcpu_id;
3799 }
3800
3801 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
3802 {
3803 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3804 int vcpu_id;
3805
3806 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
3807
3808 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
3809 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
3810 error_append_hint(errp, "Adjust the number of cpus to %d "
3811 "or try to raise the number of threads per core\n",
3812 vcpu_id * smp_threads / spapr->vsmt);
3813 return;
3814 }
3815
3816 cpu->vcpu_id = vcpu_id;
3817 }
3818
3819 PowerPCCPU *spapr_find_cpu(int vcpu_id)
3820 {
3821 CPUState *cs;
3822
3823 CPU_FOREACH(cs) {
3824 PowerPCCPU *cpu = POWERPC_CPU(cs);
3825
3826 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
3827 return cpu;
3828 }
3829 }
3830
3831 return NULL;
3832 }
3833
3834 static void spapr_machine_class_init(ObjectClass *oc, void *data)
3835 {
3836 MachineClass *mc = MACHINE_CLASS(oc);
3837 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3838 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3839 NMIClass *nc = NMI_CLASS(oc);
3840 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3841 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3842 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3843 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3844
3845 mc->desc = "pSeries Logical Partition (PAPR compliant)";
3846 mc->ignore_boot_device_suffixes = true;
3847
3848 /*
3849 * We set up the default / latest behaviour here. The class_init
3850 * functions for the specific versioned machine types can override
3851 * these details for backwards compatibility
3852 */
3853 mc->init = spapr_machine_init;
3854 mc->reset = spapr_machine_reset;
3855 mc->block_default_type = IF_SCSI;
3856 mc->max_cpus = 1024;
3857 mc->no_parallel = 1;
3858 mc->default_boot_order = "";
3859 mc->default_ram_size = 512 * MiB;
3860 mc->default_display = "std";
3861 mc->kvm_type = spapr_kvm_type;
3862 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
3863 mc->pci_allow_0_address = true;
3864 assert(!mc->get_hotplug_handler);
3865 mc->get_hotplug_handler = spapr_get_hotplug_handler;
3866 hc->pre_plug = spapr_machine_device_pre_plug;
3867 hc->plug = spapr_machine_device_plug;
3868 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
3869 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
3870 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3871 hc->unplug_request = spapr_machine_device_unplug_request;
3872 hc->unplug = spapr_machine_device_unplug;
3873
3874 smc->dr_lmb_enabled = true;
3875 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
3876 mc->has_hotpluggable_cpus = true;
3877 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
3878 fwc->get_dev_path = spapr_get_fw_dev_path;
3879 nc->nmi_monitor_handler = spapr_nmi;
3880 smc->phb_placement = spapr_phb_placement;
3881 vhc->hypercall = emulate_spapr_hypercall;
3882 vhc->hpt_mask = spapr_hpt_mask;
3883 vhc->map_hptes = spapr_map_hptes;
3884 vhc->unmap_hptes = spapr_unmap_hptes;
3885 vhc->store_hpte = spapr_store_hpte;
3886 vhc->get_patbe = spapr_get_patbe;
3887 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
3888 xic->ics_get = spapr_ics_get;
3889 xic->ics_resend = spapr_ics_resend;
3890 xic->icp_get = spapr_icp_get;
3891 ispc->print_info = spapr_pic_print_info;
3892 /* Force NUMA node memory size to be a multiple of
3893 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3894 * in which LMBs are represented and hot-added
3895 */
3896 mc->numa_mem_align_shift = 28;
3897
3898 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
3899 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
3900 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
3901 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
3902 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
3903 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
3904 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
3905 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
3906 spapr_caps_add_properties(smc, &error_abort);
3907 smc->irq = &spapr_irq_xics;
3908 }
3909
3910 static const TypeInfo spapr_machine_info = {
3911 .name = TYPE_SPAPR_MACHINE,
3912 .parent = TYPE_MACHINE,
3913 .abstract = true,
3914 .instance_size = sizeof(sPAPRMachineState),
3915 .instance_init = spapr_instance_init,
3916 .instance_finalize = spapr_machine_finalizefn,
3917 .class_size = sizeof(sPAPRMachineClass),
3918 .class_init = spapr_machine_class_init,
3919 .interfaces = (InterfaceInfo[]) {
3920 { TYPE_FW_PATH_PROVIDER },
3921 { TYPE_NMI },
3922 { TYPE_HOTPLUG_HANDLER },
3923 { TYPE_PPC_VIRTUAL_HYPERVISOR },
3924 { TYPE_XICS_FABRIC },
3925 { TYPE_INTERRUPT_STATS_PROVIDER },
3926 { }
3927 },
3928 };
3929
3930 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
3931 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3932 void *data) \
3933 { \
3934 MachineClass *mc = MACHINE_CLASS(oc); \
3935 spapr_machine_##suffix##_class_options(mc); \
3936 if (latest) { \
3937 mc->alias = "pseries"; \
3938 mc->is_default = 1; \
3939 } \
3940 } \
3941 static const TypeInfo spapr_machine_##suffix##_info = { \
3942 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
3943 .parent = TYPE_SPAPR_MACHINE, \
3944 .class_init = spapr_machine_##suffix##_class_init, \
3945 }; \
3946 static void spapr_machine_register_##suffix(void) \
3947 { \
3948 type_register(&spapr_machine_##suffix##_info); \
3949 } \
3950 type_init(spapr_machine_register_##suffix)
3951
3952 /*
3953 * pseries-4.0
3954 */
3955 static void spapr_machine_4_0_class_options(MachineClass *mc)
3956 {
3957 /* Defaults for the latest behaviour inherited from the base class */
3958 }
3959
3960 DEFINE_SPAPR_MACHINE(4_0, "4.0", true);
3961
3962 /*
3963 * pseries-3.1
3964 */
3965 #define SPAPR_COMPAT_3_1 \
3966 HW_COMPAT_3_1
3967
3968 static void spapr_machine_3_1_class_options(MachineClass *mc)
3969 {
3970 spapr_machine_4_0_class_options(mc);
3971 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_3_1);
3972 }
3973
3974 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
3975
3976 /*
3977 * pseries-3.0
3978 */
3979 #define SPAPR_COMPAT_3_0 \
3980 HW_COMPAT_3_0
3981
3982 static void spapr_machine_3_0_class_options(MachineClass *mc)
3983 {
3984 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3985
3986 spapr_machine_3_1_class_options(mc);
3987 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_3_0);
3988
3989 smc->legacy_irq_allocation = true;
3990 smc->irq = &spapr_irq_xics_legacy;
3991 }
3992
3993 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
3994
3995 /*
3996 * pseries-2.12
3997 */
3998 #define SPAPR_COMPAT_2_12 \
3999 HW_COMPAT_2_12 \
4000 { \
4001 .driver = TYPE_POWERPC_CPU, \
4002 .property = "pre-3.0-migration", \
4003 .value = "on", \
4004 }, \
4005 { \
4006 .driver = TYPE_SPAPR_CPU_CORE, \
4007 .property = "pre-3.0-migration", \
4008 .value = "on", \
4009 },
4010
4011 static void spapr_machine_2_12_class_options(MachineClass *mc)
4012 {
4013 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4014
4015 spapr_machine_3_0_class_options(mc);
4016 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_12);
4017
4018 /* We depend on kvm_enabled() to choose a default value for the
4019 * hpt-max-page-size capability. Of course we can't do it here
4020 * because this is too early and the HW accelerator isn't initialzed
4021 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4022 */
4023 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4024 }
4025
4026 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4027
4028 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4029 {
4030 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4031
4032 spapr_machine_2_12_class_options(mc);
4033 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4034 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4035 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4036 }
4037
4038 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4039
4040 /*
4041 * pseries-2.11
4042 */
4043 #define SPAPR_COMPAT_2_11 \
4044 HW_COMPAT_2_11
4045
4046 static void spapr_machine_2_11_class_options(MachineClass *mc)
4047 {
4048 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4049
4050 spapr_machine_2_12_class_options(mc);
4051 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4052 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_11);
4053 }
4054
4055 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4056
4057 /*
4058 * pseries-2.10
4059 */
4060 #define SPAPR_COMPAT_2_10 \
4061 HW_COMPAT_2_10
4062
4063 static void spapr_machine_2_10_class_options(MachineClass *mc)
4064 {
4065 spapr_machine_2_11_class_options(mc);
4066 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_10);
4067 }
4068
4069 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4070
4071 /*
4072 * pseries-2.9
4073 */
4074 #define SPAPR_COMPAT_2_9 \
4075 HW_COMPAT_2_9 \
4076 { \
4077 .driver = TYPE_POWERPC_CPU, \
4078 .property = "pre-2.10-migration", \
4079 .value = "on", \
4080 }, \
4081
4082 static void spapr_machine_2_9_class_options(MachineClass *mc)
4083 {
4084 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4085
4086 spapr_machine_2_10_class_options(mc);
4087 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
4088 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4089 smc->pre_2_10_has_unused_icps = true;
4090 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4091 }
4092
4093 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4094
4095 /*
4096 * pseries-2.8
4097 */
4098 #define SPAPR_COMPAT_2_8 \
4099 HW_COMPAT_2_8 \
4100 { \
4101 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4102 .property = "pcie-extended-configuration-space", \
4103 .value = "off", \
4104 },
4105
4106 static void spapr_machine_2_8_class_options(MachineClass *mc)
4107 {
4108 spapr_machine_2_9_class_options(mc);
4109 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
4110 mc->numa_mem_align_shift = 23;
4111 }
4112
4113 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4114
4115 /*
4116 * pseries-2.7
4117 */
4118 #define SPAPR_COMPAT_2_7 \
4119 HW_COMPAT_2_7 \
4120 { \
4121 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4122 .property = "mem_win_size", \
4123 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
4124 }, \
4125 { \
4126 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4127 .property = "mem64_win_size", \
4128 .value = "0", \
4129 }, \
4130 { \
4131 .driver = TYPE_POWERPC_CPU, \
4132 .property = "pre-2.8-migration", \
4133 .value = "on", \
4134 }, \
4135 { \
4136 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4137 .property = "pre-2.8-migration", \
4138 .value = "on", \
4139 },
4140
4141 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
4142 uint64_t *buid, hwaddr *pio,
4143 hwaddr *mmio32, hwaddr *mmio64,
4144 unsigned n_dma, uint32_t *liobns, Error **errp)
4145 {
4146 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4147 const uint64_t base_buid = 0x800000020000000ULL;
4148 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4149 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4150 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4151 const uint32_t max_index = 255;
4152 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4153
4154 uint64_t ram_top = MACHINE(spapr)->ram_size;
4155 hwaddr phb0_base, phb_base;
4156 int i;
4157
4158 /* Do we have device memory? */
4159 if (MACHINE(spapr)->maxram_size > ram_top) {
4160 /* Can't just use maxram_size, because there may be an
4161 * alignment gap between normal and device memory regions
4162 */
4163 ram_top = MACHINE(spapr)->device_memory->base +
4164 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4165 }
4166
4167 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4168
4169 if (index > max_index) {
4170 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4171 max_index);
4172 return;
4173 }
4174
4175 *buid = base_buid + index;
4176 for (i = 0; i < n_dma; ++i) {
4177 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4178 }
4179
4180 phb_base = phb0_base + index * phb_spacing;
4181 *pio = phb_base + pio_offset;
4182 *mmio32 = phb_base + mmio_offset;
4183 /*
4184 * We don't set the 64-bit MMIO window, relying on the PHB's
4185 * fallback behaviour of automatically splitting a large "32-bit"
4186 * window into contiguous 32-bit and 64-bit windows
4187 */
4188 }
4189
4190 static void spapr_machine_2_7_class_options(MachineClass *mc)
4191 {
4192 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4193
4194 spapr_machine_2_8_class_options(mc);
4195 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4196 mc->default_machine_opts = "modern-hotplug-events=off";
4197 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
4198 smc->phb_placement = phb_placement_2_7;
4199 }
4200
4201 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4202
4203 /*
4204 * pseries-2.6
4205 */
4206 #define SPAPR_COMPAT_2_6 \
4207 HW_COMPAT_2_6 \
4208 { \
4209 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4210 .property = "ddw",\
4211 .value = stringify(off),\
4212 },
4213
4214 static void spapr_machine_2_6_class_options(MachineClass *mc)
4215 {
4216 spapr_machine_2_7_class_options(mc);
4217 mc->has_hotpluggable_cpus = false;
4218 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
4219 }
4220
4221 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4222
4223 /*
4224 * pseries-2.5
4225 */
4226 #define SPAPR_COMPAT_2_5 \
4227 HW_COMPAT_2_5 \
4228 { \
4229 .driver = "spapr-vlan", \
4230 .property = "use-rx-buffer-pools", \
4231 .value = "off", \
4232 },
4233
4234 static void spapr_machine_2_5_class_options(MachineClass *mc)
4235 {
4236 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4237
4238 spapr_machine_2_6_class_options(mc);
4239 smc->use_ohci_by_default = true;
4240 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
4241 }
4242
4243 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4244
4245 /*
4246 * pseries-2.4
4247 */
4248 #define SPAPR_COMPAT_2_4 \
4249 HW_COMPAT_2_4
4250
4251 static void spapr_machine_2_4_class_options(MachineClass *mc)
4252 {
4253 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4254
4255 spapr_machine_2_5_class_options(mc);
4256 smc->dr_lmb_enabled = false;
4257 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
4258 }
4259
4260 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4261
4262 /*
4263 * pseries-2.3
4264 */
4265 #define SPAPR_COMPAT_2_3 \
4266 HW_COMPAT_2_3 \
4267 {\
4268 .driver = "spapr-pci-host-bridge",\
4269 .property = "dynamic-reconfiguration",\
4270 .value = "off",\
4271 },
4272
4273 static void spapr_machine_2_3_class_options(MachineClass *mc)
4274 {
4275 spapr_machine_2_4_class_options(mc);
4276 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
4277 }
4278 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4279
4280 /*
4281 * pseries-2.2
4282 */
4283
4284 #define SPAPR_COMPAT_2_2 \
4285 HW_COMPAT_2_2 \
4286 {\
4287 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4288 .property = "mem_win_size",\
4289 .value = "0x20000000",\
4290 },
4291
4292 static void spapr_machine_2_2_class_options(MachineClass *mc)
4293 {
4294 spapr_machine_2_3_class_options(mc);
4295 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
4296 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4297 }
4298 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4299
4300 /*
4301 * pseries-2.1
4302 */
4303 #define SPAPR_COMPAT_2_1 \
4304 HW_COMPAT_2_1
4305
4306 static void spapr_machine_2_1_class_options(MachineClass *mc)
4307 {
4308 spapr_machine_2_2_class_options(mc);
4309 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
4310 }
4311 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4312
4313 static void spapr_machine_register_types(void)
4314 {
4315 type_register_static(&spapr_machine_info);
4316 }
4317
4318 type_init(spapr_machine_register_types)