]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr.c
spapr: Fix implementation of Open Firmware client interface
[mirror_qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 */
26
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qemu/datadir.h"
30 #include "qapi/error.h"
31 #include "qapi/qapi-events-machine.h"
32 #include "qapi/visitor.h"
33 #include "sysemu/sysemu.h"
34 #include "sysemu/hostmem.h"
35 #include "sysemu/numa.h"
36 #include "sysemu/qtest.h"
37 #include "sysemu/reset.h"
38 #include "sysemu/runstate.h"
39 #include "qemu/log.h"
40 #include "hw/fw-path-provider.h"
41 #include "elf.h"
42 #include "net/net.h"
43 #include "sysemu/device_tree.h"
44 #include "sysemu/cpus.h"
45 #include "sysemu/hw_accel.h"
46 #include "kvm_ppc.h"
47 #include "migration/misc.h"
48 #include "migration/qemu-file-types.h"
49 #include "migration/global_state.h"
50 #include "migration/register.h"
51 #include "migration/blocker.h"
52 #include "mmu-hash64.h"
53 #include "mmu-book3s-v3.h"
54 #include "cpu-models.h"
55 #include "hw/core/cpu.h"
56
57 #include "hw/ppc/ppc.h"
58 #include "hw/loader.h"
59
60 #include "hw/ppc/fdt.h"
61 #include "hw/ppc/spapr.h"
62 #include "hw/ppc/spapr_vio.h"
63 #include "hw/qdev-properties.h"
64 #include "hw/pci-host/spapr.h"
65 #include "hw/pci/msi.h"
66
67 #include "hw/pci/pci.h"
68 #include "hw/scsi/scsi.h"
69 #include "hw/virtio/virtio-scsi.h"
70 #include "hw/virtio/vhost-scsi-common.h"
71
72 #include "exec/ram_addr.h"
73 #include "hw/usb.h"
74 #include "qemu/config-file.h"
75 #include "qemu/error-report.h"
76 #include "trace.h"
77 #include "hw/nmi.h"
78 #include "hw/intc/intc.h"
79
80 #include "hw/ppc/spapr_cpu_core.h"
81 #include "hw/mem/memory-device.h"
82 #include "hw/ppc/spapr_tpm_proxy.h"
83 #include "hw/ppc/spapr_nvdimm.h"
84 #include "hw/ppc/spapr_numa.h"
85 #include "hw/ppc/pef.h"
86
87 #include "monitor/monitor.h"
88
89 #include <libfdt.h>
90
91 /* SLOF memory layout:
92 *
93 * SLOF raw image loaded at 0, copies its romfs right below the flat
94 * device-tree, then position SLOF itself 31M below that
95 *
96 * So we set FW_OVERHEAD to 40MB which should account for all of that
97 * and more
98 *
99 * We load our kernel at 4M, leaving space for SLOF initial image
100 */
101 #define FDT_MAX_ADDR 0x80000000 /* FDT must stay below that */
102 #define FW_MAX_SIZE 0x400000
103 #define FW_FILE_NAME "slof.bin"
104 #define FW_FILE_NAME_VOF "vof.bin"
105 #define FW_OVERHEAD 0x2800000
106 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
107
108 #define MIN_RMA_SLOF (128 * MiB)
109
110 #define PHANDLE_INTC 0x00001111
111
112 /* These two functions implement the VCPU id numbering: one to compute them
113 * all and one to identify thread 0 of a VCORE. Any change to the first one
114 * is likely to have an impact on the second one, so let's keep them close.
115 */
116 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
117 {
118 MachineState *ms = MACHINE(spapr);
119 unsigned int smp_threads = ms->smp.threads;
120
121 assert(spapr->vsmt);
122 return
123 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
124 }
125 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
126 PowerPCCPU *cpu)
127 {
128 assert(spapr->vsmt);
129 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
130 }
131
132 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
133 {
134 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
135 * and newer QEMUs don't even have them. In both cases, we don't want
136 * to send anything on the wire.
137 */
138 return false;
139 }
140
141 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
142 .name = "icp/server",
143 .version_id = 1,
144 .minimum_version_id = 1,
145 .needed = pre_2_10_vmstate_dummy_icp_needed,
146 .fields = (VMStateField[]) {
147 VMSTATE_UNUSED(4), /* uint32_t xirr */
148 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
149 VMSTATE_UNUSED(1), /* uint8_t mfrr */
150 VMSTATE_END_OF_LIST()
151 },
152 };
153
154 static void pre_2_10_vmstate_register_dummy_icp(int i)
155 {
156 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
157 (void *)(uintptr_t) i);
158 }
159
160 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
161 {
162 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
163 (void *)(uintptr_t) i);
164 }
165
166 int spapr_max_server_number(SpaprMachineState *spapr)
167 {
168 MachineState *ms = MACHINE(spapr);
169
170 assert(spapr->vsmt);
171 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
172 }
173
174 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
175 int smt_threads)
176 {
177 int i, ret = 0;
178 uint32_t servers_prop[smt_threads];
179 uint32_t gservers_prop[smt_threads * 2];
180 int index = spapr_get_vcpu_id(cpu);
181
182 if (cpu->compat_pvr) {
183 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
184 if (ret < 0) {
185 return ret;
186 }
187 }
188
189 /* Build interrupt servers and gservers properties */
190 for (i = 0; i < smt_threads; i++) {
191 servers_prop[i] = cpu_to_be32(index + i);
192 /* Hack, direct the group queues back to cpu 0 */
193 gservers_prop[i*2] = cpu_to_be32(index + i);
194 gservers_prop[i*2 + 1] = 0;
195 }
196 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
197 servers_prop, sizeof(servers_prop));
198 if (ret < 0) {
199 return ret;
200 }
201 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
202 gservers_prop, sizeof(gservers_prop));
203
204 return ret;
205 }
206
207 static void spapr_dt_pa_features(SpaprMachineState *spapr,
208 PowerPCCPU *cpu,
209 void *fdt, int offset)
210 {
211 uint8_t pa_features_206[] = { 6, 0,
212 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
213 uint8_t pa_features_207[] = { 24, 0,
214 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
215 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
216 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
217 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
218 uint8_t pa_features_300[] = { 66, 0,
219 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
220 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
221 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
222 /* 6: DS207 */
223 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
224 /* 16: Vector */
225 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
226 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
227 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
228 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
229 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
230 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
231 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
232 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
233 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
234 /* 42: PM, 44: PC RA, 46: SC vec'd */
235 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
236 /* 48: SIMD, 50: QP BFP, 52: String */
237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
238 /* 54: DecFP, 56: DecI, 58: SHA */
239 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
240 /* 60: NM atomic, 62: RNG */
241 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
242 };
243 uint8_t *pa_features = NULL;
244 size_t pa_size;
245
246 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
247 pa_features = pa_features_206;
248 pa_size = sizeof(pa_features_206);
249 }
250 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
251 pa_features = pa_features_207;
252 pa_size = sizeof(pa_features_207);
253 }
254 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
255 pa_features = pa_features_300;
256 pa_size = sizeof(pa_features_300);
257 }
258 if (!pa_features) {
259 return;
260 }
261
262 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
263 /*
264 * Note: we keep CI large pages off by default because a 64K capable
265 * guest provisioned with large pages might otherwise try to map a qemu
266 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
267 * even if that qemu runs on a 4k host.
268 * We dd this bit back here if we are confident this is not an issue
269 */
270 pa_features[3] |= 0x20;
271 }
272 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
273 pa_features[24] |= 0x80; /* Transactional memory support */
274 }
275 if (spapr->cas_pre_isa3_guest && pa_size > 40) {
276 /* Workaround for broken kernels that attempt (guest) radix
277 * mode when they can't handle it, if they see the radix bit set
278 * in pa-features. So hide it from them. */
279 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
280 }
281
282 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
283 }
284
285 static hwaddr spapr_node0_size(MachineState *machine)
286 {
287 if (machine->numa_state->num_nodes) {
288 int i;
289 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
290 if (machine->numa_state->nodes[i].node_mem) {
291 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
292 machine->ram_size);
293 }
294 }
295 }
296 return machine->ram_size;
297 }
298
299 static void add_str(GString *s, const gchar *s1)
300 {
301 g_string_append_len(s, s1, strlen(s1) + 1);
302 }
303
304 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
305 hwaddr start, hwaddr size)
306 {
307 char mem_name[32];
308 uint64_t mem_reg_property[2];
309 int off;
310
311 mem_reg_property[0] = cpu_to_be64(start);
312 mem_reg_property[1] = cpu_to_be64(size);
313
314 sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
315 off = fdt_add_subnode(fdt, 0, mem_name);
316 _FDT(off);
317 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
318 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
319 sizeof(mem_reg_property))));
320 spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
321 return off;
322 }
323
324 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
325 {
326 MemoryDeviceInfoList *info;
327
328 for (info = list; info; info = info->next) {
329 MemoryDeviceInfo *value = info->value;
330
331 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
332 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
333
334 if (addr >= pcdimm_info->addr &&
335 addr < (pcdimm_info->addr + pcdimm_info->size)) {
336 return pcdimm_info->node;
337 }
338 }
339 }
340
341 return -1;
342 }
343
344 struct sPAPRDrconfCellV2 {
345 uint32_t seq_lmbs;
346 uint64_t base_addr;
347 uint32_t drc_index;
348 uint32_t aa_index;
349 uint32_t flags;
350 } QEMU_PACKED;
351
352 typedef struct DrconfCellQueue {
353 struct sPAPRDrconfCellV2 cell;
354 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
355 } DrconfCellQueue;
356
357 static DrconfCellQueue *
358 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
359 uint32_t drc_index, uint32_t aa_index,
360 uint32_t flags)
361 {
362 DrconfCellQueue *elem;
363
364 elem = g_malloc0(sizeof(*elem));
365 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
366 elem->cell.base_addr = cpu_to_be64(base_addr);
367 elem->cell.drc_index = cpu_to_be32(drc_index);
368 elem->cell.aa_index = cpu_to_be32(aa_index);
369 elem->cell.flags = cpu_to_be32(flags);
370
371 return elem;
372 }
373
374 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
375 int offset, MemoryDeviceInfoList *dimms)
376 {
377 MachineState *machine = MACHINE(spapr);
378 uint8_t *int_buf, *cur_index;
379 int ret;
380 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
381 uint64_t addr, cur_addr, size;
382 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
383 uint64_t mem_end = machine->device_memory->base +
384 memory_region_size(&machine->device_memory->mr);
385 uint32_t node, buf_len, nr_entries = 0;
386 SpaprDrc *drc;
387 DrconfCellQueue *elem, *next;
388 MemoryDeviceInfoList *info;
389 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
390 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
391
392 /* Entry to cover RAM and the gap area */
393 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
394 SPAPR_LMB_FLAGS_RESERVED |
395 SPAPR_LMB_FLAGS_DRC_INVALID);
396 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
397 nr_entries++;
398
399 cur_addr = machine->device_memory->base;
400 for (info = dimms; info; info = info->next) {
401 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
402
403 addr = di->addr;
404 size = di->size;
405 node = di->node;
406
407 /*
408 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
409 * area is marked hotpluggable in the next iteration for the bigger
410 * chunk including the NVDIMM occupied area.
411 */
412 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
413 continue;
414
415 /* Entry for hot-pluggable area */
416 if (cur_addr < addr) {
417 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
418 g_assert(drc);
419 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
420 cur_addr, spapr_drc_index(drc), -1, 0);
421 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
422 nr_entries++;
423 }
424
425 /* Entry for DIMM */
426 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
427 g_assert(drc);
428 elem = spapr_get_drconf_cell(size / lmb_size, addr,
429 spapr_drc_index(drc), node,
430 (SPAPR_LMB_FLAGS_ASSIGNED |
431 SPAPR_LMB_FLAGS_HOTREMOVABLE));
432 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
433 nr_entries++;
434 cur_addr = addr + size;
435 }
436
437 /* Entry for remaining hotpluggable area */
438 if (cur_addr < mem_end) {
439 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
440 g_assert(drc);
441 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
442 cur_addr, spapr_drc_index(drc), -1, 0);
443 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
444 nr_entries++;
445 }
446
447 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
448 int_buf = cur_index = g_malloc0(buf_len);
449 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
450 cur_index += sizeof(nr_entries);
451
452 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
453 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
454 cur_index += sizeof(elem->cell);
455 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
456 g_free(elem);
457 }
458
459 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
460 g_free(int_buf);
461 if (ret < 0) {
462 return -1;
463 }
464 return 0;
465 }
466
467 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
468 int offset, MemoryDeviceInfoList *dimms)
469 {
470 MachineState *machine = MACHINE(spapr);
471 int i, ret;
472 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
473 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
474 uint32_t nr_lmbs = (machine->device_memory->base +
475 memory_region_size(&machine->device_memory->mr)) /
476 lmb_size;
477 uint32_t *int_buf, *cur_index, buf_len;
478
479 /*
480 * Allocate enough buffer size to fit in ibm,dynamic-memory
481 */
482 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
483 cur_index = int_buf = g_malloc0(buf_len);
484 int_buf[0] = cpu_to_be32(nr_lmbs);
485 cur_index++;
486 for (i = 0; i < nr_lmbs; i++) {
487 uint64_t addr = i * lmb_size;
488 uint32_t *dynamic_memory = cur_index;
489
490 if (i >= device_lmb_start) {
491 SpaprDrc *drc;
492
493 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
494 g_assert(drc);
495
496 dynamic_memory[0] = cpu_to_be32(addr >> 32);
497 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
498 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
499 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
500 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
501 if (memory_region_present(get_system_memory(), addr)) {
502 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
503 } else {
504 dynamic_memory[5] = cpu_to_be32(0);
505 }
506 } else {
507 /*
508 * LMB information for RMA, boot time RAM and gap b/n RAM and
509 * device memory region -- all these are marked as reserved
510 * and as having no valid DRC.
511 */
512 dynamic_memory[0] = cpu_to_be32(addr >> 32);
513 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
514 dynamic_memory[2] = cpu_to_be32(0);
515 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
516 dynamic_memory[4] = cpu_to_be32(-1);
517 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
518 SPAPR_LMB_FLAGS_DRC_INVALID);
519 }
520
521 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
522 }
523 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
524 g_free(int_buf);
525 if (ret < 0) {
526 return -1;
527 }
528 return 0;
529 }
530
531 /*
532 * Adds ibm,dynamic-reconfiguration-memory node.
533 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
534 * of this device tree node.
535 */
536 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
537 void *fdt)
538 {
539 MachineState *machine = MACHINE(spapr);
540 int ret, offset;
541 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
542 uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
543 cpu_to_be32(lmb_size & 0xffffffff)};
544 MemoryDeviceInfoList *dimms = NULL;
545
546 /*
547 * Don't create the node if there is no device memory
548 */
549 if (machine->ram_size == machine->maxram_size) {
550 return 0;
551 }
552
553 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
554
555 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
556 sizeof(prop_lmb_size));
557 if (ret < 0) {
558 return ret;
559 }
560
561 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
562 if (ret < 0) {
563 return ret;
564 }
565
566 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
567 if (ret < 0) {
568 return ret;
569 }
570
571 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
572 dimms = qmp_memory_device_list();
573 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
574 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
575 } else {
576 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
577 }
578 qapi_free_MemoryDeviceInfoList(dimms);
579
580 if (ret < 0) {
581 return ret;
582 }
583
584 ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
585
586 return ret;
587 }
588
589 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
590 {
591 MachineState *machine = MACHINE(spapr);
592 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
593 hwaddr mem_start, node_size;
594 int i, nb_nodes = machine->numa_state->num_nodes;
595 NodeInfo *nodes = machine->numa_state->nodes;
596
597 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
598 if (!nodes[i].node_mem) {
599 continue;
600 }
601 if (mem_start >= machine->ram_size) {
602 node_size = 0;
603 } else {
604 node_size = nodes[i].node_mem;
605 if (node_size > machine->ram_size - mem_start) {
606 node_size = machine->ram_size - mem_start;
607 }
608 }
609 if (!mem_start) {
610 /* spapr_machine_init() checks for rma_size <= node0_size
611 * already */
612 spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
613 mem_start += spapr->rma_size;
614 node_size -= spapr->rma_size;
615 }
616 for ( ; node_size; ) {
617 hwaddr sizetmp = pow2floor(node_size);
618
619 /* mem_start != 0 here */
620 if (ctzl(mem_start) < ctzl(sizetmp)) {
621 sizetmp = 1ULL << ctzl(mem_start);
622 }
623
624 spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
625 node_size -= sizetmp;
626 mem_start += sizetmp;
627 }
628 }
629
630 /* Generate ibm,dynamic-reconfiguration-memory node if required */
631 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
632 int ret;
633
634 g_assert(smc->dr_lmb_enabled);
635 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
636 if (ret) {
637 return ret;
638 }
639 }
640
641 return 0;
642 }
643
644 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
645 SpaprMachineState *spapr)
646 {
647 MachineState *ms = MACHINE(spapr);
648 PowerPCCPU *cpu = POWERPC_CPU(cs);
649 CPUPPCState *env = &cpu->env;
650 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
651 int index = spapr_get_vcpu_id(cpu);
652 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
653 0xffffffff, 0xffffffff};
654 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
655 : SPAPR_TIMEBASE_FREQ;
656 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
657 uint32_t page_sizes_prop[64];
658 size_t page_sizes_prop_size;
659 unsigned int smp_threads = ms->smp.threads;
660 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
661 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
662 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
663 SpaprDrc *drc;
664 int drc_index;
665 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
666 int i;
667
668 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
669 if (drc) {
670 drc_index = spapr_drc_index(drc);
671 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
672 }
673
674 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
675 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
676
677 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
678 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
679 env->dcache_line_size)));
680 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
681 env->dcache_line_size)));
682 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
683 env->icache_line_size)));
684 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
685 env->icache_line_size)));
686
687 if (pcc->l1_dcache_size) {
688 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
689 pcc->l1_dcache_size)));
690 } else {
691 warn_report("Unknown L1 dcache size for cpu");
692 }
693 if (pcc->l1_icache_size) {
694 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
695 pcc->l1_icache_size)));
696 } else {
697 warn_report("Unknown L1 icache size for cpu");
698 }
699
700 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
701 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
702 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
703 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
704 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
705 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
706
707 if (ppc_has_spr(cpu, SPR_PURR)) {
708 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
709 }
710 if (ppc_has_spr(cpu, SPR_PURR)) {
711 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
712 }
713
714 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
715 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
716 segs, sizeof(segs))));
717 }
718
719 /* Advertise VSX (vector extensions) if available
720 * 1 == VMX / Altivec available
721 * 2 == VSX available
722 *
723 * Only CPUs for which we create core types in spapr_cpu_core.c
724 * are possible, and all of those have VMX */
725 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
726 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
727 } else {
728 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
729 }
730
731 /* Advertise DFP (Decimal Floating Point) if available
732 * 0 / no property == no DFP
733 * 1 == DFP available */
734 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
735 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
736 }
737
738 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
739 sizeof(page_sizes_prop));
740 if (page_sizes_prop_size) {
741 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
742 page_sizes_prop, page_sizes_prop_size)));
743 }
744
745 spapr_dt_pa_features(spapr, cpu, fdt, offset);
746
747 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
748 cs->cpu_index / vcpus_per_socket)));
749
750 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
751 pft_size_prop, sizeof(pft_size_prop))));
752
753 if (ms->numa_state->num_nodes > 1) {
754 _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
755 }
756
757 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
758
759 if (pcc->radix_page_info) {
760 for (i = 0; i < pcc->radix_page_info->count; i++) {
761 radix_AP_encodings[i] =
762 cpu_to_be32(pcc->radix_page_info->entries[i]);
763 }
764 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
765 radix_AP_encodings,
766 pcc->radix_page_info->count *
767 sizeof(radix_AP_encodings[0]))));
768 }
769
770 /*
771 * We set this property to let the guest know that it can use the large
772 * decrementer and its width in bits.
773 */
774 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
775 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
776 pcc->lrg_decr_bits)));
777 }
778
779 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
780 {
781 CPUState **rev;
782 CPUState *cs;
783 int n_cpus;
784 int cpus_offset;
785 int i;
786
787 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
788 _FDT(cpus_offset);
789 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
790 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
791
792 /*
793 * We walk the CPUs in reverse order to ensure that CPU DT nodes
794 * created by fdt_add_subnode() end up in the right order in FDT
795 * for the guest kernel the enumerate the CPUs correctly.
796 *
797 * The CPU list cannot be traversed in reverse order, so we need
798 * to do extra work.
799 */
800 n_cpus = 0;
801 rev = NULL;
802 CPU_FOREACH(cs) {
803 rev = g_renew(CPUState *, rev, n_cpus + 1);
804 rev[n_cpus++] = cs;
805 }
806
807 for (i = n_cpus - 1; i >= 0; i--) {
808 CPUState *cs = rev[i];
809 PowerPCCPU *cpu = POWERPC_CPU(cs);
810 int index = spapr_get_vcpu_id(cpu);
811 DeviceClass *dc = DEVICE_GET_CLASS(cs);
812 g_autofree char *nodename = NULL;
813 int offset;
814
815 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
816 continue;
817 }
818
819 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
820 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
821 _FDT(offset);
822 spapr_dt_cpu(cs, fdt, offset, spapr);
823 }
824
825 g_free(rev);
826 }
827
828 static int spapr_dt_rng(void *fdt)
829 {
830 int node;
831 int ret;
832
833 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
834 if (node <= 0) {
835 return -1;
836 }
837 ret = fdt_setprop_string(fdt, node, "device_type",
838 "ibm,platform-facilities");
839 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
840 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
841
842 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
843 if (node <= 0) {
844 return -1;
845 }
846 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
847
848 return ret ? -1 : 0;
849 }
850
851 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
852 {
853 MachineState *ms = MACHINE(spapr);
854 int rtas;
855 GString *hypertas = g_string_sized_new(256);
856 GString *qemu_hypertas = g_string_sized_new(256);
857 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
858 memory_region_size(&MACHINE(spapr)->device_memory->mr);
859 uint32_t lrdr_capacity[] = {
860 cpu_to_be32(max_device_addr >> 32),
861 cpu_to_be32(max_device_addr & 0xffffffff),
862 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
863 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
864 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
865 };
866
867 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
868
869 /* hypertas */
870 add_str(hypertas, "hcall-pft");
871 add_str(hypertas, "hcall-term");
872 add_str(hypertas, "hcall-dabr");
873 add_str(hypertas, "hcall-interrupt");
874 add_str(hypertas, "hcall-tce");
875 add_str(hypertas, "hcall-vio");
876 add_str(hypertas, "hcall-splpar");
877 add_str(hypertas, "hcall-join");
878 add_str(hypertas, "hcall-bulk");
879 add_str(hypertas, "hcall-set-mode");
880 add_str(hypertas, "hcall-sprg0");
881 add_str(hypertas, "hcall-copy");
882 add_str(hypertas, "hcall-debug");
883 add_str(hypertas, "hcall-vphn");
884 add_str(qemu_hypertas, "hcall-memop1");
885
886 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
887 add_str(hypertas, "hcall-multi-tce");
888 }
889
890 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
891 add_str(hypertas, "hcall-hpt-resize");
892 }
893
894 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
895 hypertas->str, hypertas->len));
896 g_string_free(hypertas, TRUE);
897 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
898 qemu_hypertas->str, qemu_hypertas->len));
899 g_string_free(qemu_hypertas, TRUE);
900
901 spapr_numa_write_rtas_dt(spapr, fdt, rtas);
902
903 /*
904 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
905 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
906 *
907 * The system reset requirements are driven by existing Linux and PowerVM
908 * implementation which (contrary to PAPR) saves r3 in the error log
909 * structure like machine check, so Linux expects to find the saved r3
910 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
911 * does not look at the error value).
912 *
913 * System reset interrupts are not subject to interlock like machine
914 * check, so this memory area could be corrupted if the sreset is
915 * interrupted by a machine check (or vice versa) if it was shared. To
916 * prevent this, system reset uses per-CPU areas for the sreset save
917 * area. A system reset that interrupts a system reset handler could
918 * still overwrite this area, but Linux doesn't try to recover in that
919 * case anyway.
920 *
921 * The extra 8 bytes is required because Linux's FWNMI error log check
922 * is off-by-one.
923 *
924 * RTAS_MIN_SIZE is required for the RTAS blob itself.
925 */
926 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE +
927 RTAS_ERROR_LOG_MAX +
928 ms->smp.max_cpus * sizeof(uint64_t) * 2 +
929 sizeof(uint64_t)));
930 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
931 RTAS_ERROR_LOG_MAX));
932 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
933 RTAS_EVENT_SCAN_RATE));
934
935 g_assert(msi_nonbroken);
936 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
937
938 /*
939 * According to PAPR, rtas ibm,os-term does not guarantee a return
940 * back to the guest cpu.
941 *
942 * While an additional ibm,extended-os-term property indicates
943 * that rtas call return will always occur. Set this property.
944 */
945 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
946
947 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
948 lrdr_capacity, sizeof(lrdr_capacity)));
949
950 spapr_dt_rtas_tokens(fdt, rtas);
951 }
952
953 /*
954 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
955 * and the XIVE features that the guest may request and thus the valid
956 * values for bytes 23..26 of option vector 5:
957 */
958 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
959 int chosen)
960 {
961 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
962
963 char val[2 * 4] = {
964 23, 0x00, /* XICS / XIVE mode */
965 24, 0x00, /* Hash/Radix, filled in below. */
966 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
967 26, 0x40, /* Radix options: GTSE == yes. */
968 };
969
970 if (spapr->irq->xics && spapr->irq->xive) {
971 val[1] = SPAPR_OV5_XIVE_BOTH;
972 } else if (spapr->irq->xive) {
973 val[1] = SPAPR_OV5_XIVE_EXPLOIT;
974 } else {
975 assert(spapr->irq->xics);
976 val[1] = SPAPR_OV5_XIVE_LEGACY;
977 }
978
979 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
980 first_ppc_cpu->compat_pvr)) {
981 /*
982 * If we're in a pre POWER9 compat mode then the guest should
983 * do hash and use the legacy interrupt mode
984 */
985 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
986 val[3] = 0x00; /* Hash */
987 spapr_check_mmu_mode(false);
988 } else if (kvm_enabled()) {
989 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
990 val[3] = 0x80; /* OV5_MMU_BOTH */
991 } else if (kvmppc_has_cap_mmu_radix()) {
992 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
993 } else {
994 val[3] = 0x00; /* Hash */
995 }
996 } else {
997 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
998 val[3] = 0xC0;
999 }
1000 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1001 val, sizeof(val)));
1002 }
1003
1004 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1005 {
1006 MachineState *machine = MACHINE(spapr);
1007 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1008 int chosen;
1009
1010 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1011
1012 if (reset) {
1013 const char *boot_device = spapr->boot_device;
1014 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1015 size_t cb = 0;
1016 char *bootlist = get_boot_devices_list(&cb);
1017
1018 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1019 _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1020 machine->kernel_cmdline));
1021 }
1022
1023 if (spapr->initrd_size) {
1024 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1025 spapr->initrd_base));
1026 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1027 spapr->initrd_base + spapr->initrd_size));
1028 }
1029
1030 if (spapr->kernel_size) {
1031 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1032 cpu_to_be64(spapr->kernel_size) };
1033
1034 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1035 &kprop, sizeof(kprop)));
1036 if (spapr->kernel_le) {
1037 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1038 }
1039 }
1040 if (boot_menu) {
1041 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1042 }
1043 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1044 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1045 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1046
1047 if (cb && bootlist) {
1048 int i;
1049
1050 for (i = 0; i < cb; i++) {
1051 if (bootlist[i] == '\n') {
1052 bootlist[i] = ' ';
1053 }
1054 }
1055 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1056 }
1057
1058 if (boot_device && strlen(boot_device)) {
1059 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1060 }
1061
1062 if (!spapr->has_graphics && stdout_path) {
1063 /*
1064 * "linux,stdout-path" and "stdout" properties are
1065 * deprecated by linux kernel. New platforms should only
1066 * use the "stdout-path" property. Set the new property
1067 * and continue using older property to remain compatible
1068 * with the existing firmware.
1069 */
1070 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1071 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1072 }
1073
1074 /*
1075 * We can deal with BAR reallocation just fine, advertise it
1076 * to the guest
1077 */
1078 if (smc->linux_pci_probe) {
1079 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1080 }
1081
1082 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1083
1084 g_free(stdout_path);
1085 g_free(bootlist);
1086 }
1087
1088 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1089 }
1090
1091 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1092 {
1093 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1094 * KVM to work under pHyp with some guest co-operation */
1095 int hypervisor;
1096 uint8_t hypercall[16];
1097
1098 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1099 /* indicate KVM hypercall interface */
1100 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1101 if (kvmppc_has_cap_fixup_hcalls()) {
1102 /*
1103 * Older KVM versions with older guest kernels were broken
1104 * with the magic page, don't allow the guest to map it.
1105 */
1106 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1107 sizeof(hypercall))) {
1108 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1109 hypercall, sizeof(hypercall)));
1110 }
1111 }
1112 }
1113
1114 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1115 {
1116 MachineState *machine = MACHINE(spapr);
1117 MachineClass *mc = MACHINE_GET_CLASS(machine);
1118 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1119 uint32_t root_drc_type_mask = 0;
1120 int ret;
1121 void *fdt;
1122 SpaprPhbState *phb;
1123 char *buf;
1124
1125 fdt = g_malloc0(space);
1126 _FDT((fdt_create_empty_tree(fdt, space)));
1127
1128 /* Root node */
1129 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1130 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1131 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1132
1133 /* Guest UUID & Name*/
1134 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1135 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1136 if (qemu_uuid_set) {
1137 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1138 }
1139 g_free(buf);
1140
1141 if (qemu_get_vm_name()) {
1142 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1143 qemu_get_vm_name()));
1144 }
1145
1146 /* Host Model & Serial Number */
1147 if (spapr->host_model) {
1148 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1149 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1150 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1151 g_free(buf);
1152 }
1153
1154 if (spapr->host_serial) {
1155 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1156 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1157 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1158 g_free(buf);
1159 }
1160
1161 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1162 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1163
1164 /* /interrupt controller */
1165 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1166
1167 ret = spapr_dt_memory(spapr, fdt);
1168 if (ret < 0) {
1169 error_report("couldn't setup memory nodes in fdt");
1170 exit(1);
1171 }
1172
1173 /* /vdevice */
1174 spapr_dt_vdevice(spapr->vio_bus, fdt);
1175
1176 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1177 ret = spapr_dt_rng(fdt);
1178 if (ret < 0) {
1179 error_report("could not set up rng device in the fdt");
1180 exit(1);
1181 }
1182 }
1183
1184 QLIST_FOREACH(phb, &spapr->phbs, list) {
1185 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1186 if (ret < 0) {
1187 error_report("couldn't setup PCI devices in fdt");
1188 exit(1);
1189 }
1190 }
1191
1192 spapr_dt_cpus(fdt, spapr);
1193
1194 /* ibm,drc-indexes and friends */
1195 if (smc->dr_lmb_enabled) {
1196 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB;
1197 }
1198 if (smc->dr_phb_enabled) {
1199 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB;
1200 }
1201 if (mc->nvdimm_supported) {
1202 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM;
1203 }
1204 if (root_drc_type_mask) {
1205 _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask));
1206 }
1207
1208 if (mc->has_hotpluggable_cpus) {
1209 int offset = fdt_path_offset(fdt, "/cpus");
1210 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1211 if (ret < 0) {
1212 error_report("Couldn't set up CPU DR device tree properties");
1213 exit(1);
1214 }
1215 }
1216
1217 /* /event-sources */
1218 spapr_dt_events(spapr, fdt);
1219
1220 /* /rtas */
1221 spapr_dt_rtas(spapr, fdt);
1222
1223 /* /chosen */
1224 spapr_dt_chosen(spapr, fdt, reset);
1225
1226 /* /hypervisor */
1227 if (kvm_enabled()) {
1228 spapr_dt_hypervisor(spapr, fdt);
1229 }
1230
1231 /* Build memory reserve map */
1232 if (reset) {
1233 if (spapr->kernel_size) {
1234 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1235 spapr->kernel_size)));
1236 }
1237 if (spapr->initrd_size) {
1238 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1239 spapr->initrd_size)));
1240 }
1241 }
1242
1243 /* NVDIMM devices */
1244 if (mc->nvdimm_supported) {
1245 spapr_dt_persistent_memory(spapr, fdt);
1246 }
1247
1248 return fdt;
1249 }
1250
1251 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1252 {
1253 SpaprMachineState *spapr = opaque;
1254
1255 return (addr & 0x0fffffff) + spapr->kernel_addr;
1256 }
1257
1258 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1259 PowerPCCPU *cpu)
1260 {
1261 CPUPPCState *env = &cpu->env;
1262
1263 /* The TCG path should also be holding the BQL at this point */
1264 g_assert(qemu_mutex_iothread_locked());
1265
1266 if (msr_pr) {
1267 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1268 env->gpr[3] = H_PRIVILEGE;
1269 } else {
1270 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1271 }
1272 }
1273
1274 struct LPCRSyncState {
1275 target_ulong value;
1276 target_ulong mask;
1277 };
1278
1279 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1280 {
1281 struct LPCRSyncState *s = arg.host_ptr;
1282 PowerPCCPU *cpu = POWERPC_CPU(cs);
1283 CPUPPCState *env = &cpu->env;
1284 target_ulong lpcr;
1285
1286 cpu_synchronize_state(cs);
1287 lpcr = env->spr[SPR_LPCR];
1288 lpcr &= ~s->mask;
1289 lpcr |= s->value;
1290 ppc_store_lpcr(cpu, lpcr);
1291 }
1292
1293 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1294 {
1295 CPUState *cs;
1296 struct LPCRSyncState s = {
1297 .value = value,
1298 .mask = mask
1299 };
1300 CPU_FOREACH(cs) {
1301 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1302 }
1303 }
1304
1305 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1306 {
1307 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1308
1309 /* Copy PATE1:GR into PATE0:HR */
1310 entry->dw0 = spapr->patb_entry & PATE0_HR;
1311 entry->dw1 = spapr->patb_entry;
1312 }
1313
1314 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1315 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1316 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1317 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1318 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1319
1320 /*
1321 * Get the fd to access the kernel htab, re-opening it if necessary
1322 */
1323 static int get_htab_fd(SpaprMachineState *spapr)
1324 {
1325 Error *local_err = NULL;
1326
1327 if (spapr->htab_fd >= 0) {
1328 return spapr->htab_fd;
1329 }
1330
1331 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1332 if (spapr->htab_fd < 0) {
1333 error_report_err(local_err);
1334 }
1335
1336 return spapr->htab_fd;
1337 }
1338
1339 void close_htab_fd(SpaprMachineState *spapr)
1340 {
1341 if (spapr->htab_fd >= 0) {
1342 close(spapr->htab_fd);
1343 }
1344 spapr->htab_fd = -1;
1345 }
1346
1347 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1348 {
1349 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1350
1351 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1352 }
1353
1354 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1355 {
1356 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1357
1358 assert(kvm_enabled());
1359
1360 if (!spapr->htab) {
1361 return 0;
1362 }
1363
1364 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1365 }
1366
1367 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1368 hwaddr ptex, int n)
1369 {
1370 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1371 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1372
1373 if (!spapr->htab) {
1374 /*
1375 * HTAB is controlled by KVM. Fetch into temporary buffer
1376 */
1377 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1378 kvmppc_read_hptes(hptes, ptex, n);
1379 return hptes;
1380 }
1381
1382 /*
1383 * HTAB is controlled by QEMU. Just point to the internally
1384 * accessible PTEG.
1385 */
1386 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1387 }
1388
1389 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1390 const ppc_hash_pte64_t *hptes,
1391 hwaddr ptex, int n)
1392 {
1393 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1394
1395 if (!spapr->htab) {
1396 g_free((void *)hptes);
1397 }
1398
1399 /* Nothing to do for qemu managed HPT */
1400 }
1401
1402 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1403 uint64_t pte0, uint64_t pte1)
1404 {
1405 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1406 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1407
1408 if (!spapr->htab) {
1409 kvmppc_write_hpte(ptex, pte0, pte1);
1410 } else {
1411 if (pte0 & HPTE64_V_VALID) {
1412 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1413 /*
1414 * When setting valid, we write PTE1 first. This ensures
1415 * proper synchronization with the reading code in
1416 * ppc_hash64_pteg_search()
1417 */
1418 smp_wmb();
1419 stq_p(spapr->htab + offset, pte0);
1420 } else {
1421 stq_p(spapr->htab + offset, pte0);
1422 /*
1423 * When clearing it we set PTE0 first. This ensures proper
1424 * synchronization with the reading code in
1425 * ppc_hash64_pteg_search()
1426 */
1427 smp_wmb();
1428 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1429 }
1430 }
1431 }
1432
1433 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1434 uint64_t pte1)
1435 {
1436 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1437 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1438
1439 if (!spapr->htab) {
1440 /* There should always be a hash table when this is called */
1441 error_report("spapr_hpte_set_c called with no hash table !");
1442 return;
1443 }
1444
1445 /* The HW performs a non-atomic byte update */
1446 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1447 }
1448
1449 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1450 uint64_t pte1)
1451 {
1452 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1453 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1454
1455 if (!spapr->htab) {
1456 /* There should always be a hash table when this is called */
1457 error_report("spapr_hpte_set_r called with no hash table !");
1458 return;
1459 }
1460
1461 /* The HW performs a non-atomic byte update */
1462 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1463 }
1464
1465 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1466 {
1467 int shift;
1468
1469 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1470 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1471 * that's much more than is needed for Linux guests */
1472 shift = ctz64(pow2ceil(ramsize)) - 7;
1473 shift = MAX(shift, 18); /* Minimum architected size */
1474 shift = MIN(shift, 46); /* Maximum architected size */
1475 return shift;
1476 }
1477
1478 void spapr_free_hpt(SpaprMachineState *spapr)
1479 {
1480 g_free(spapr->htab);
1481 spapr->htab = NULL;
1482 spapr->htab_shift = 0;
1483 close_htab_fd(spapr);
1484 }
1485
1486 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp)
1487 {
1488 ERRP_GUARD();
1489 long rc;
1490
1491 /* Clean up any HPT info from a previous boot */
1492 spapr_free_hpt(spapr);
1493
1494 rc = kvmppc_reset_htab(shift);
1495
1496 if (rc == -EOPNOTSUPP) {
1497 error_setg(errp, "HPT not supported in nested guests");
1498 return -EOPNOTSUPP;
1499 }
1500
1501 if (rc < 0) {
1502 /* kernel-side HPT needed, but couldn't allocate one */
1503 error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
1504 shift);
1505 error_append_hint(errp, "Try smaller maxmem?\n");
1506 return -errno;
1507 } else if (rc > 0) {
1508 /* kernel-side HPT allocated */
1509 if (rc != shift) {
1510 error_setg(errp,
1511 "Requested order %d HPT, but kernel allocated order %ld",
1512 shift, rc);
1513 error_append_hint(errp, "Try smaller maxmem?\n");
1514 return -ENOSPC;
1515 }
1516
1517 spapr->htab_shift = shift;
1518 spapr->htab = NULL;
1519 } else {
1520 /* kernel-side HPT not needed, allocate in userspace instead */
1521 size_t size = 1ULL << shift;
1522 int i;
1523
1524 spapr->htab = qemu_memalign(size, size);
1525 memset(spapr->htab, 0, size);
1526 spapr->htab_shift = shift;
1527
1528 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1529 DIRTY_HPTE(HPTE(spapr->htab, i));
1530 }
1531 }
1532 /* We're setting up a hash table, so that means we're not radix */
1533 spapr->patb_entry = 0;
1534 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1535 return 0;
1536 }
1537
1538 void spapr_setup_hpt(SpaprMachineState *spapr)
1539 {
1540 int hpt_shift;
1541
1542 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1543 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1544 } else {
1545 uint64_t current_ram_size;
1546
1547 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1548 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1549 }
1550 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1551
1552 if (kvm_enabled()) {
1553 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1554
1555 /* Check our RMA fits in the possible VRMA */
1556 if (vrma_limit < spapr->rma_size) {
1557 error_report("Unable to create %" HWADDR_PRIu
1558 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1559 spapr->rma_size / MiB, vrma_limit / MiB);
1560 exit(EXIT_FAILURE);
1561 }
1562 }
1563 }
1564
1565 void spapr_check_mmu_mode(bool guest_radix)
1566 {
1567 if (guest_radix) {
1568 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1569 error_report("Guest requested unavailable MMU mode (radix).");
1570 exit(EXIT_FAILURE);
1571 }
1572 } else {
1573 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1574 && !kvmppc_has_cap_mmu_hash_v3()) {
1575 error_report("Guest requested unavailable MMU mode (hash).");
1576 exit(EXIT_FAILURE);
1577 }
1578 }
1579 }
1580
1581 static void spapr_machine_reset(MachineState *machine)
1582 {
1583 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1584 PowerPCCPU *first_ppc_cpu;
1585 hwaddr fdt_addr;
1586 void *fdt;
1587 int rc;
1588
1589 pef_kvm_reset(machine->cgs, &error_fatal);
1590 spapr_caps_apply(spapr);
1591
1592 first_ppc_cpu = POWERPC_CPU(first_cpu);
1593 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1594 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1595 spapr->max_compat_pvr)) {
1596 /*
1597 * If using KVM with radix mode available, VCPUs can be started
1598 * without a HPT because KVM will start them in radix mode.
1599 * Set the GR bit in PATE so that we know there is no HPT.
1600 */
1601 spapr->patb_entry = PATE1_GR;
1602 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1603 } else {
1604 spapr_setup_hpt(spapr);
1605 }
1606
1607 qemu_devices_reset();
1608
1609 spapr_ovec_cleanup(spapr->ov5_cas);
1610 spapr->ov5_cas = spapr_ovec_new();
1611
1612 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1613
1614 /*
1615 * This is fixing some of the default configuration of the XIVE
1616 * devices. To be called after the reset of the machine devices.
1617 */
1618 spapr_irq_reset(spapr, &error_fatal);
1619
1620 /*
1621 * There is no CAS under qtest. Simulate one to please the code that
1622 * depends on spapr->ov5_cas. This is especially needed to test device
1623 * unplug, so we do that before resetting the DRCs.
1624 */
1625 if (qtest_enabled()) {
1626 spapr_ovec_cleanup(spapr->ov5_cas);
1627 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1628 }
1629
1630 /* DRC reset may cause a device to be unplugged. This will cause troubles
1631 * if this device is used by another device (eg, a running vhost backend
1632 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1633 * situations, we reset DRCs after all devices have been reset.
1634 */
1635 spapr_drc_reset_all(spapr);
1636
1637 spapr_clear_pending_events(spapr);
1638
1639 /*
1640 * We place the device tree just below either the top of the RMA,
1641 * or just below 2GB, whichever is lower, so that it can be
1642 * processed with 32-bit real mode code if necessary
1643 */
1644 fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE;
1645
1646 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1647 if (spapr->vof) {
1648 spapr_vof_reset(spapr, fdt, &error_fatal);
1649 /*
1650 * Do not pack the FDT as the client may change properties.
1651 * VOF client does not expect the FDT so we do not load it to the VM.
1652 */
1653 } else {
1654 rc = fdt_pack(fdt);
1655 /* Should only fail if we've built a corrupted tree */
1656 assert(rc == 0);
1657
1658 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT,
1659 0, fdt_addr, 0);
1660 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1661 }
1662 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1663
1664 g_free(spapr->fdt_blob);
1665 spapr->fdt_size = fdt_totalsize(fdt);
1666 spapr->fdt_initial_size = spapr->fdt_size;
1667 spapr->fdt_blob = fdt;
1668
1669 /* Set up the entry state */
1670 first_ppc_cpu->env.gpr[5] = 0;
1671
1672 spapr->fwnmi_system_reset_addr = -1;
1673 spapr->fwnmi_machine_check_addr = -1;
1674 spapr->fwnmi_machine_check_interlock = -1;
1675
1676 /* Signal all vCPUs waiting on this condition */
1677 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1678
1679 migrate_del_blocker(spapr->fwnmi_migration_blocker);
1680 }
1681
1682 static void spapr_create_nvram(SpaprMachineState *spapr)
1683 {
1684 DeviceState *dev = qdev_new("spapr-nvram");
1685 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1686
1687 if (dinfo) {
1688 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1689 &error_fatal);
1690 }
1691
1692 qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1693
1694 spapr->nvram = (struct SpaprNvram *)dev;
1695 }
1696
1697 static void spapr_rtc_create(SpaprMachineState *spapr)
1698 {
1699 object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1700 sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1701 &error_fatal, NULL);
1702 qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1703 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1704 "date");
1705 }
1706
1707 /* Returns whether we want to use VGA or not */
1708 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1709 {
1710 switch (vga_interface_type) {
1711 case VGA_NONE:
1712 return false;
1713 case VGA_DEVICE:
1714 return true;
1715 case VGA_STD:
1716 case VGA_VIRTIO:
1717 case VGA_CIRRUS:
1718 return pci_vga_init(pci_bus) != NULL;
1719 default:
1720 error_setg(errp,
1721 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1722 return false;
1723 }
1724 }
1725
1726 static int spapr_pre_load(void *opaque)
1727 {
1728 int rc;
1729
1730 rc = spapr_caps_pre_load(opaque);
1731 if (rc) {
1732 return rc;
1733 }
1734
1735 return 0;
1736 }
1737
1738 static int spapr_post_load(void *opaque, int version_id)
1739 {
1740 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1741 int err = 0;
1742
1743 err = spapr_caps_post_migration(spapr);
1744 if (err) {
1745 return err;
1746 }
1747
1748 /*
1749 * In earlier versions, there was no separate qdev for the PAPR
1750 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1751 * So when migrating from those versions, poke the incoming offset
1752 * value into the RTC device
1753 */
1754 if (version_id < 3) {
1755 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1756 if (err) {
1757 return err;
1758 }
1759 }
1760
1761 if (kvm_enabled() && spapr->patb_entry) {
1762 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1763 bool radix = !!(spapr->patb_entry & PATE1_GR);
1764 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1765
1766 /*
1767 * Update LPCR:HR and UPRT as they may not be set properly in
1768 * the stream
1769 */
1770 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1771 LPCR_HR | LPCR_UPRT);
1772
1773 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1774 if (err) {
1775 error_report("Process table config unsupported by the host");
1776 return -EINVAL;
1777 }
1778 }
1779
1780 err = spapr_irq_post_load(spapr, version_id);
1781 if (err) {
1782 return err;
1783 }
1784
1785 return err;
1786 }
1787
1788 static int spapr_pre_save(void *opaque)
1789 {
1790 int rc;
1791
1792 rc = spapr_caps_pre_save(opaque);
1793 if (rc) {
1794 return rc;
1795 }
1796
1797 return 0;
1798 }
1799
1800 static bool version_before_3(void *opaque, int version_id)
1801 {
1802 return version_id < 3;
1803 }
1804
1805 static bool spapr_pending_events_needed(void *opaque)
1806 {
1807 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1808 return !QTAILQ_EMPTY(&spapr->pending_events);
1809 }
1810
1811 static const VMStateDescription vmstate_spapr_event_entry = {
1812 .name = "spapr_event_log_entry",
1813 .version_id = 1,
1814 .minimum_version_id = 1,
1815 .fields = (VMStateField[]) {
1816 VMSTATE_UINT32(summary, SpaprEventLogEntry),
1817 VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1818 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1819 NULL, extended_length),
1820 VMSTATE_END_OF_LIST()
1821 },
1822 };
1823
1824 static const VMStateDescription vmstate_spapr_pending_events = {
1825 .name = "spapr_pending_events",
1826 .version_id = 1,
1827 .minimum_version_id = 1,
1828 .needed = spapr_pending_events_needed,
1829 .fields = (VMStateField[]) {
1830 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1831 vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1832 VMSTATE_END_OF_LIST()
1833 },
1834 };
1835
1836 static bool spapr_ov5_cas_needed(void *opaque)
1837 {
1838 SpaprMachineState *spapr = opaque;
1839 SpaprOptionVector *ov5_mask = spapr_ovec_new();
1840 bool cas_needed;
1841
1842 /* Prior to the introduction of SpaprOptionVector, we had two option
1843 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1844 * Both of these options encode machine topology into the device-tree
1845 * in such a way that the now-booted OS should still be able to interact
1846 * appropriately with QEMU regardless of what options were actually
1847 * negotiatied on the source side.
1848 *
1849 * As such, we can avoid migrating the CAS-negotiated options if these
1850 * are the only options available on the current machine/platform.
1851 * Since these are the only options available for pseries-2.7 and
1852 * earlier, this allows us to maintain old->new/new->old migration
1853 * compatibility.
1854 *
1855 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1856 * via default pseries-2.8 machines and explicit command-line parameters.
1857 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1858 * of the actual CAS-negotiated values to continue working properly. For
1859 * example, availability of memory unplug depends on knowing whether
1860 * OV5_HP_EVT was negotiated via CAS.
1861 *
1862 * Thus, for any cases where the set of available CAS-negotiatable
1863 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1864 * include the CAS-negotiated options in the migration stream, unless
1865 * if they affect boot time behaviour only.
1866 */
1867 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1868 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1869 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1870
1871 /* We need extra information if we have any bits outside the mask
1872 * defined above */
1873 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1874
1875 spapr_ovec_cleanup(ov5_mask);
1876
1877 return cas_needed;
1878 }
1879
1880 static const VMStateDescription vmstate_spapr_ov5_cas = {
1881 .name = "spapr_option_vector_ov5_cas",
1882 .version_id = 1,
1883 .minimum_version_id = 1,
1884 .needed = spapr_ov5_cas_needed,
1885 .fields = (VMStateField[]) {
1886 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1887 vmstate_spapr_ovec, SpaprOptionVector),
1888 VMSTATE_END_OF_LIST()
1889 },
1890 };
1891
1892 static bool spapr_patb_entry_needed(void *opaque)
1893 {
1894 SpaprMachineState *spapr = opaque;
1895
1896 return !!spapr->patb_entry;
1897 }
1898
1899 static const VMStateDescription vmstate_spapr_patb_entry = {
1900 .name = "spapr_patb_entry",
1901 .version_id = 1,
1902 .minimum_version_id = 1,
1903 .needed = spapr_patb_entry_needed,
1904 .fields = (VMStateField[]) {
1905 VMSTATE_UINT64(patb_entry, SpaprMachineState),
1906 VMSTATE_END_OF_LIST()
1907 },
1908 };
1909
1910 static bool spapr_irq_map_needed(void *opaque)
1911 {
1912 SpaprMachineState *spapr = opaque;
1913
1914 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1915 }
1916
1917 static const VMStateDescription vmstate_spapr_irq_map = {
1918 .name = "spapr_irq_map",
1919 .version_id = 1,
1920 .minimum_version_id = 1,
1921 .needed = spapr_irq_map_needed,
1922 .fields = (VMStateField[]) {
1923 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1924 VMSTATE_END_OF_LIST()
1925 },
1926 };
1927
1928 static bool spapr_dtb_needed(void *opaque)
1929 {
1930 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1931
1932 return smc->update_dt_enabled;
1933 }
1934
1935 static int spapr_dtb_pre_load(void *opaque)
1936 {
1937 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1938
1939 g_free(spapr->fdt_blob);
1940 spapr->fdt_blob = NULL;
1941 spapr->fdt_size = 0;
1942
1943 return 0;
1944 }
1945
1946 static const VMStateDescription vmstate_spapr_dtb = {
1947 .name = "spapr_dtb",
1948 .version_id = 1,
1949 .minimum_version_id = 1,
1950 .needed = spapr_dtb_needed,
1951 .pre_load = spapr_dtb_pre_load,
1952 .fields = (VMStateField[]) {
1953 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
1954 VMSTATE_UINT32(fdt_size, SpaprMachineState),
1955 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
1956 fdt_size),
1957 VMSTATE_END_OF_LIST()
1958 },
1959 };
1960
1961 static bool spapr_fwnmi_needed(void *opaque)
1962 {
1963 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1964
1965 return spapr->fwnmi_machine_check_addr != -1;
1966 }
1967
1968 static int spapr_fwnmi_pre_save(void *opaque)
1969 {
1970 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1971
1972 /*
1973 * Check if machine check handling is in progress and print a
1974 * warning message.
1975 */
1976 if (spapr->fwnmi_machine_check_interlock != -1) {
1977 warn_report("A machine check is being handled during migration. The"
1978 "handler may run and log hardware error on the destination");
1979 }
1980
1981 return 0;
1982 }
1983
1984 static const VMStateDescription vmstate_spapr_fwnmi = {
1985 .name = "spapr_fwnmi",
1986 .version_id = 1,
1987 .minimum_version_id = 1,
1988 .needed = spapr_fwnmi_needed,
1989 .pre_save = spapr_fwnmi_pre_save,
1990 .fields = (VMStateField[]) {
1991 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
1992 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
1993 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
1994 VMSTATE_END_OF_LIST()
1995 },
1996 };
1997
1998 static const VMStateDescription vmstate_spapr = {
1999 .name = "spapr",
2000 .version_id = 3,
2001 .minimum_version_id = 1,
2002 .pre_load = spapr_pre_load,
2003 .post_load = spapr_post_load,
2004 .pre_save = spapr_pre_save,
2005 .fields = (VMStateField[]) {
2006 /* used to be @next_irq */
2007 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2008
2009 /* RTC offset */
2010 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2011
2012 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2013 VMSTATE_END_OF_LIST()
2014 },
2015 .subsections = (const VMStateDescription*[]) {
2016 &vmstate_spapr_ov5_cas,
2017 &vmstate_spapr_patb_entry,
2018 &vmstate_spapr_pending_events,
2019 &vmstate_spapr_cap_htm,
2020 &vmstate_spapr_cap_vsx,
2021 &vmstate_spapr_cap_dfp,
2022 &vmstate_spapr_cap_cfpc,
2023 &vmstate_spapr_cap_sbbc,
2024 &vmstate_spapr_cap_ibs,
2025 &vmstate_spapr_cap_hpt_maxpagesize,
2026 &vmstate_spapr_irq_map,
2027 &vmstate_spapr_cap_nested_kvm_hv,
2028 &vmstate_spapr_dtb,
2029 &vmstate_spapr_cap_large_decr,
2030 &vmstate_spapr_cap_ccf_assist,
2031 &vmstate_spapr_cap_fwnmi,
2032 &vmstate_spapr_fwnmi,
2033 NULL
2034 }
2035 };
2036
2037 static int htab_save_setup(QEMUFile *f, void *opaque)
2038 {
2039 SpaprMachineState *spapr = opaque;
2040
2041 /* "Iteration" header */
2042 if (!spapr->htab_shift) {
2043 qemu_put_be32(f, -1);
2044 } else {
2045 qemu_put_be32(f, spapr->htab_shift);
2046 }
2047
2048 if (spapr->htab) {
2049 spapr->htab_save_index = 0;
2050 spapr->htab_first_pass = true;
2051 } else {
2052 if (spapr->htab_shift) {
2053 assert(kvm_enabled());
2054 }
2055 }
2056
2057
2058 return 0;
2059 }
2060
2061 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2062 int chunkstart, int n_valid, int n_invalid)
2063 {
2064 qemu_put_be32(f, chunkstart);
2065 qemu_put_be16(f, n_valid);
2066 qemu_put_be16(f, n_invalid);
2067 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2068 HASH_PTE_SIZE_64 * n_valid);
2069 }
2070
2071 static void htab_save_end_marker(QEMUFile *f)
2072 {
2073 qemu_put_be32(f, 0);
2074 qemu_put_be16(f, 0);
2075 qemu_put_be16(f, 0);
2076 }
2077
2078 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2079 int64_t max_ns)
2080 {
2081 bool has_timeout = max_ns != -1;
2082 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2083 int index = spapr->htab_save_index;
2084 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2085
2086 assert(spapr->htab_first_pass);
2087
2088 do {
2089 int chunkstart;
2090
2091 /* Consume invalid HPTEs */
2092 while ((index < htabslots)
2093 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2094 CLEAN_HPTE(HPTE(spapr->htab, index));
2095 index++;
2096 }
2097
2098 /* Consume valid HPTEs */
2099 chunkstart = index;
2100 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2101 && HPTE_VALID(HPTE(spapr->htab, index))) {
2102 CLEAN_HPTE(HPTE(spapr->htab, index));
2103 index++;
2104 }
2105
2106 if (index > chunkstart) {
2107 int n_valid = index - chunkstart;
2108
2109 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2110
2111 if (has_timeout &&
2112 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2113 break;
2114 }
2115 }
2116 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2117
2118 if (index >= htabslots) {
2119 assert(index == htabslots);
2120 index = 0;
2121 spapr->htab_first_pass = false;
2122 }
2123 spapr->htab_save_index = index;
2124 }
2125
2126 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2127 int64_t max_ns)
2128 {
2129 bool final = max_ns < 0;
2130 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2131 int examined = 0, sent = 0;
2132 int index = spapr->htab_save_index;
2133 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2134
2135 assert(!spapr->htab_first_pass);
2136
2137 do {
2138 int chunkstart, invalidstart;
2139
2140 /* Consume non-dirty HPTEs */
2141 while ((index < htabslots)
2142 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2143 index++;
2144 examined++;
2145 }
2146
2147 chunkstart = index;
2148 /* Consume valid dirty HPTEs */
2149 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2150 && HPTE_DIRTY(HPTE(spapr->htab, index))
2151 && HPTE_VALID(HPTE(spapr->htab, index))) {
2152 CLEAN_HPTE(HPTE(spapr->htab, index));
2153 index++;
2154 examined++;
2155 }
2156
2157 invalidstart = index;
2158 /* Consume invalid dirty HPTEs */
2159 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2160 && HPTE_DIRTY(HPTE(spapr->htab, index))
2161 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2162 CLEAN_HPTE(HPTE(spapr->htab, index));
2163 index++;
2164 examined++;
2165 }
2166
2167 if (index > chunkstart) {
2168 int n_valid = invalidstart - chunkstart;
2169 int n_invalid = index - invalidstart;
2170
2171 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2172 sent += index - chunkstart;
2173
2174 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2175 break;
2176 }
2177 }
2178
2179 if (examined >= htabslots) {
2180 break;
2181 }
2182
2183 if (index >= htabslots) {
2184 assert(index == htabslots);
2185 index = 0;
2186 }
2187 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2188
2189 if (index >= htabslots) {
2190 assert(index == htabslots);
2191 index = 0;
2192 }
2193
2194 spapr->htab_save_index = index;
2195
2196 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2197 }
2198
2199 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2200 #define MAX_KVM_BUF_SIZE 2048
2201
2202 static int htab_save_iterate(QEMUFile *f, void *opaque)
2203 {
2204 SpaprMachineState *spapr = opaque;
2205 int fd;
2206 int rc = 0;
2207
2208 /* Iteration header */
2209 if (!spapr->htab_shift) {
2210 qemu_put_be32(f, -1);
2211 return 1;
2212 } else {
2213 qemu_put_be32(f, 0);
2214 }
2215
2216 if (!spapr->htab) {
2217 assert(kvm_enabled());
2218
2219 fd = get_htab_fd(spapr);
2220 if (fd < 0) {
2221 return fd;
2222 }
2223
2224 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2225 if (rc < 0) {
2226 return rc;
2227 }
2228 } else if (spapr->htab_first_pass) {
2229 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2230 } else {
2231 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2232 }
2233
2234 htab_save_end_marker(f);
2235
2236 return rc;
2237 }
2238
2239 static int htab_save_complete(QEMUFile *f, void *opaque)
2240 {
2241 SpaprMachineState *spapr = opaque;
2242 int fd;
2243
2244 /* Iteration header */
2245 if (!spapr->htab_shift) {
2246 qemu_put_be32(f, -1);
2247 return 0;
2248 } else {
2249 qemu_put_be32(f, 0);
2250 }
2251
2252 if (!spapr->htab) {
2253 int rc;
2254
2255 assert(kvm_enabled());
2256
2257 fd = get_htab_fd(spapr);
2258 if (fd < 0) {
2259 return fd;
2260 }
2261
2262 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2263 if (rc < 0) {
2264 return rc;
2265 }
2266 } else {
2267 if (spapr->htab_first_pass) {
2268 htab_save_first_pass(f, spapr, -1);
2269 }
2270 htab_save_later_pass(f, spapr, -1);
2271 }
2272
2273 /* End marker */
2274 htab_save_end_marker(f);
2275
2276 return 0;
2277 }
2278
2279 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2280 {
2281 SpaprMachineState *spapr = opaque;
2282 uint32_t section_hdr;
2283 int fd = -1;
2284 Error *local_err = NULL;
2285
2286 if (version_id < 1 || version_id > 1) {
2287 error_report("htab_load() bad version");
2288 return -EINVAL;
2289 }
2290
2291 section_hdr = qemu_get_be32(f);
2292
2293 if (section_hdr == -1) {
2294 spapr_free_hpt(spapr);
2295 return 0;
2296 }
2297
2298 if (section_hdr) {
2299 int ret;
2300
2301 /* First section gives the htab size */
2302 ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2303 if (ret < 0) {
2304 error_report_err(local_err);
2305 return ret;
2306 }
2307 return 0;
2308 }
2309
2310 if (!spapr->htab) {
2311 assert(kvm_enabled());
2312
2313 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2314 if (fd < 0) {
2315 error_report_err(local_err);
2316 return fd;
2317 }
2318 }
2319
2320 while (true) {
2321 uint32_t index;
2322 uint16_t n_valid, n_invalid;
2323
2324 index = qemu_get_be32(f);
2325 n_valid = qemu_get_be16(f);
2326 n_invalid = qemu_get_be16(f);
2327
2328 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2329 /* End of Stream */
2330 break;
2331 }
2332
2333 if ((index + n_valid + n_invalid) >
2334 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2335 /* Bad index in stream */
2336 error_report(
2337 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2338 index, n_valid, n_invalid, spapr->htab_shift);
2339 return -EINVAL;
2340 }
2341
2342 if (spapr->htab) {
2343 if (n_valid) {
2344 qemu_get_buffer(f, HPTE(spapr->htab, index),
2345 HASH_PTE_SIZE_64 * n_valid);
2346 }
2347 if (n_invalid) {
2348 memset(HPTE(spapr->htab, index + n_valid), 0,
2349 HASH_PTE_SIZE_64 * n_invalid);
2350 }
2351 } else {
2352 int rc;
2353
2354 assert(fd >= 0);
2355
2356 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid,
2357 &local_err);
2358 if (rc < 0) {
2359 error_report_err(local_err);
2360 return rc;
2361 }
2362 }
2363 }
2364
2365 if (!spapr->htab) {
2366 assert(fd >= 0);
2367 close(fd);
2368 }
2369
2370 return 0;
2371 }
2372
2373 static void htab_save_cleanup(void *opaque)
2374 {
2375 SpaprMachineState *spapr = opaque;
2376
2377 close_htab_fd(spapr);
2378 }
2379
2380 static SaveVMHandlers savevm_htab_handlers = {
2381 .save_setup = htab_save_setup,
2382 .save_live_iterate = htab_save_iterate,
2383 .save_live_complete_precopy = htab_save_complete,
2384 .save_cleanup = htab_save_cleanup,
2385 .load_state = htab_load,
2386 };
2387
2388 static void spapr_boot_set(void *opaque, const char *boot_device,
2389 Error **errp)
2390 {
2391 SpaprMachineState *spapr = SPAPR_MACHINE(opaque);
2392
2393 g_free(spapr->boot_device);
2394 spapr->boot_device = g_strdup(boot_device);
2395 }
2396
2397 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2398 {
2399 MachineState *machine = MACHINE(spapr);
2400 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2401 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2402 int i;
2403
2404 for (i = 0; i < nr_lmbs; i++) {
2405 uint64_t addr;
2406
2407 addr = i * lmb_size + machine->device_memory->base;
2408 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2409 addr / lmb_size);
2410 }
2411 }
2412
2413 /*
2414 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2415 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2416 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2417 */
2418 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2419 {
2420 int i;
2421
2422 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2423 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2424 " is not aligned to %" PRIu64 " MiB",
2425 machine->ram_size,
2426 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2427 return;
2428 }
2429
2430 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2431 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2432 " is not aligned to %" PRIu64 " MiB",
2433 machine->ram_size,
2434 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2435 return;
2436 }
2437
2438 for (i = 0; i < machine->numa_state->num_nodes; i++) {
2439 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2440 error_setg(errp,
2441 "Node %d memory size 0x%" PRIx64
2442 " is not aligned to %" PRIu64 " MiB",
2443 i, machine->numa_state->nodes[i].node_mem,
2444 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2445 return;
2446 }
2447 }
2448 }
2449
2450 /* find cpu slot in machine->possible_cpus by core_id */
2451 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2452 {
2453 int index = id / ms->smp.threads;
2454
2455 if (index >= ms->possible_cpus->len) {
2456 return NULL;
2457 }
2458 if (idx) {
2459 *idx = index;
2460 }
2461 return &ms->possible_cpus->cpus[index];
2462 }
2463
2464 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2465 {
2466 MachineState *ms = MACHINE(spapr);
2467 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2468 Error *local_err = NULL;
2469 bool vsmt_user = !!spapr->vsmt;
2470 int kvm_smt = kvmppc_smt_threads();
2471 int ret;
2472 unsigned int smp_threads = ms->smp.threads;
2473
2474 if (!kvm_enabled() && (smp_threads > 1)) {
2475 error_setg(errp, "TCG cannot support more than 1 thread/core "
2476 "on a pseries machine");
2477 return;
2478 }
2479 if (!is_power_of_2(smp_threads)) {
2480 error_setg(errp, "Cannot support %d threads/core on a pseries "
2481 "machine because it must be a power of 2", smp_threads);
2482 return;
2483 }
2484
2485 /* Detemine the VSMT mode to use: */
2486 if (vsmt_user) {
2487 if (spapr->vsmt < smp_threads) {
2488 error_setg(errp, "Cannot support VSMT mode %d"
2489 " because it must be >= threads/core (%d)",
2490 spapr->vsmt, smp_threads);
2491 return;
2492 }
2493 /* In this case, spapr->vsmt has been set by the command line */
2494 } else if (!smc->smp_threads_vsmt) {
2495 /*
2496 * Default VSMT value is tricky, because we need it to be as
2497 * consistent as possible (for migration), but this requires
2498 * changing it for at least some existing cases. We pick 8 as
2499 * the value that we'd get with KVM on POWER8, the
2500 * overwhelmingly common case in production systems.
2501 */
2502 spapr->vsmt = MAX(8, smp_threads);
2503 } else {
2504 spapr->vsmt = smp_threads;
2505 }
2506
2507 /* KVM: If necessary, set the SMT mode: */
2508 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2509 ret = kvmppc_set_smt_threads(spapr->vsmt);
2510 if (ret) {
2511 /* Looks like KVM isn't able to change VSMT mode */
2512 error_setg(&local_err,
2513 "Failed to set KVM's VSMT mode to %d (errno %d)",
2514 spapr->vsmt, ret);
2515 /* We can live with that if the default one is big enough
2516 * for the number of threads, and a submultiple of the one
2517 * we want. In this case we'll waste some vcpu ids, but
2518 * behaviour will be correct */
2519 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2520 warn_report_err(local_err);
2521 } else {
2522 if (!vsmt_user) {
2523 error_append_hint(&local_err,
2524 "On PPC, a VM with %d threads/core"
2525 " on a host with %d threads/core"
2526 " requires the use of VSMT mode %d.\n",
2527 smp_threads, kvm_smt, spapr->vsmt);
2528 }
2529 kvmppc_error_append_smt_possible_hint(&local_err);
2530 error_propagate(errp, local_err);
2531 }
2532 }
2533 }
2534 /* else TCG: nothing to do currently */
2535 }
2536
2537 static void spapr_init_cpus(SpaprMachineState *spapr)
2538 {
2539 MachineState *machine = MACHINE(spapr);
2540 MachineClass *mc = MACHINE_GET_CLASS(machine);
2541 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2542 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2543 const CPUArchIdList *possible_cpus;
2544 unsigned int smp_cpus = machine->smp.cpus;
2545 unsigned int smp_threads = machine->smp.threads;
2546 unsigned int max_cpus = machine->smp.max_cpus;
2547 int boot_cores_nr = smp_cpus / smp_threads;
2548 int i;
2549
2550 possible_cpus = mc->possible_cpu_arch_ids(machine);
2551 if (mc->has_hotpluggable_cpus) {
2552 if (smp_cpus % smp_threads) {
2553 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2554 smp_cpus, smp_threads);
2555 exit(1);
2556 }
2557 if (max_cpus % smp_threads) {
2558 error_report("max_cpus (%u) must be multiple of threads (%u)",
2559 max_cpus, smp_threads);
2560 exit(1);
2561 }
2562 } else {
2563 if (max_cpus != smp_cpus) {
2564 error_report("This machine version does not support CPU hotplug");
2565 exit(1);
2566 }
2567 boot_cores_nr = possible_cpus->len;
2568 }
2569
2570 if (smc->pre_2_10_has_unused_icps) {
2571 int i;
2572
2573 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2574 /* Dummy entries get deregistered when real ICPState objects
2575 * are registered during CPU core hotplug.
2576 */
2577 pre_2_10_vmstate_register_dummy_icp(i);
2578 }
2579 }
2580
2581 for (i = 0; i < possible_cpus->len; i++) {
2582 int core_id = i * smp_threads;
2583
2584 if (mc->has_hotpluggable_cpus) {
2585 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2586 spapr_vcpu_id(spapr, core_id));
2587 }
2588
2589 if (i < boot_cores_nr) {
2590 Object *core = object_new(type);
2591 int nr_threads = smp_threads;
2592
2593 /* Handle the partially filled core for older machine types */
2594 if ((i + 1) * smp_threads >= smp_cpus) {
2595 nr_threads = smp_cpus - i * smp_threads;
2596 }
2597
2598 object_property_set_int(core, "nr-threads", nr_threads,
2599 &error_fatal);
2600 object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2601 &error_fatal);
2602 qdev_realize(DEVICE(core), NULL, &error_fatal);
2603
2604 object_unref(core);
2605 }
2606 }
2607 }
2608
2609 static PCIHostState *spapr_create_default_phb(void)
2610 {
2611 DeviceState *dev;
2612
2613 dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2614 qdev_prop_set_uint32(dev, "index", 0);
2615 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2616
2617 return PCI_HOST_BRIDGE(dev);
2618 }
2619
2620 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2621 {
2622 MachineState *machine = MACHINE(spapr);
2623 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2624 hwaddr rma_size = machine->ram_size;
2625 hwaddr node0_size = spapr_node0_size(machine);
2626
2627 /* RMA has to fit in the first NUMA node */
2628 rma_size = MIN(rma_size, node0_size);
2629
2630 /*
2631 * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2632 * never exceed that
2633 */
2634 rma_size = MIN(rma_size, 1 * TiB);
2635
2636 /*
2637 * Clamp the RMA size based on machine type. This is for
2638 * migration compatibility with older qemu versions, which limited
2639 * the RMA size for complicated and mostly bad reasons.
2640 */
2641 if (smc->rma_limit) {
2642 rma_size = MIN(rma_size, smc->rma_limit);
2643 }
2644
2645 if (rma_size < MIN_RMA_SLOF) {
2646 error_setg(errp,
2647 "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2648 "ldMiB guest RMA (Real Mode Area memory)",
2649 MIN_RMA_SLOF / MiB);
2650 return 0;
2651 }
2652
2653 return rma_size;
2654 }
2655
2656 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
2657 {
2658 MachineState *machine = MACHINE(spapr);
2659 int i;
2660
2661 for (i = 0; i < machine->ram_slots; i++) {
2662 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
2663 }
2664 }
2665
2666 /* pSeries LPAR / sPAPR hardware init */
2667 static void spapr_machine_init(MachineState *machine)
2668 {
2669 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2670 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2671 MachineClass *mc = MACHINE_GET_CLASS(machine);
2672 const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME;
2673 const char *bios_name = machine->firmware ?: bios_default;
2674 const char *kernel_filename = machine->kernel_filename;
2675 const char *initrd_filename = machine->initrd_filename;
2676 PCIHostState *phb;
2677 int i;
2678 MemoryRegion *sysmem = get_system_memory();
2679 long load_limit, fw_size;
2680 char *filename;
2681 Error *resize_hpt_err = NULL;
2682
2683 /*
2684 * if Secure VM (PEF) support is configured, then initialize it
2685 */
2686 pef_kvm_init(machine->cgs, &error_fatal);
2687
2688 msi_nonbroken = true;
2689
2690 QLIST_INIT(&spapr->phbs);
2691 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2692
2693 /* Determine capabilities to run with */
2694 spapr_caps_init(spapr);
2695
2696 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2697 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2698 /*
2699 * If the user explicitly requested a mode we should either
2700 * supply it, or fail completely (which we do below). But if
2701 * it's not set explicitly, we reset our mode to something
2702 * that works
2703 */
2704 if (resize_hpt_err) {
2705 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2706 error_free(resize_hpt_err);
2707 resize_hpt_err = NULL;
2708 } else {
2709 spapr->resize_hpt = smc->resize_hpt_default;
2710 }
2711 }
2712
2713 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2714
2715 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2716 /*
2717 * User requested HPT resize, but this host can't supply it. Bail out
2718 */
2719 error_report_err(resize_hpt_err);
2720 exit(1);
2721 }
2722 error_free(resize_hpt_err);
2723
2724 spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2725
2726 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2727 load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD;
2728
2729 /*
2730 * VSMT must be set in order to be able to compute VCPU ids, ie to
2731 * call spapr_max_server_number() or spapr_vcpu_id().
2732 */
2733 spapr_set_vsmt_mode(spapr, &error_fatal);
2734
2735 /* Set up Interrupt Controller before we create the VCPUs */
2736 spapr_irq_init(spapr, &error_fatal);
2737
2738 /* Set up containers for ibm,client-architecture-support negotiated options
2739 */
2740 spapr->ov5 = spapr_ovec_new();
2741 spapr->ov5_cas = spapr_ovec_new();
2742
2743 if (smc->dr_lmb_enabled) {
2744 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2745 spapr_validate_node_memory(machine, &error_fatal);
2746 }
2747
2748 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2749
2750 /* advertise support for dedicated HP event source to guests */
2751 if (spapr->use_hotplug_event_source) {
2752 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2753 }
2754
2755 /* advertise support for HPT resizing */
2756 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2757 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2758 }
2759
2760 /* advertise support for ibm,dyamic-memory-v2 */
2761 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2762
2763 /* advertise XIVE on POWER9 machines */
2764 if (spapr->irq->xive) {
2765 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2766 }
2767
2768 /* init CPUs */
2769 spapr_init_cpus(spapr);
2770
2771 /*
2772 * check we don't have a memory-less/cpu-less NUMA node
2773 * Firmware relies on the existing memory/cpu topology to provide the
2774 * NUMA topology to the kernel.
2775 * And the linux kernel needs to know the NUMA topology at start
2776 * to be able to hotplug CPUs later.
2777 */
2778 if (machine->numa_state->num_nodes) {
2779 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
2780 /* check for memory-less node */
2781 if (machine->numa_state->nodes[i].node_mem == 0) {
2782 CPUState *cs;
2783 int found = 0;
2784 /* check for cpu-less node */
2785 CPU_FOREACH(cs) {
2786 PowerPCCPU *cpu = POWERPC_CPU(cs);
2787 if (cpu->node_id == i) {
2788 found = 1;
2789 break;
2790 }
2791 }
2792 /* memory-less and cpu-less node */
2793 if (!found) {
2794 error_report(
2795 "Memory-less/cpu-less nodes are not supported (node %d)",
2796 i);
2797 exit(1);
2798 }
2799 }
2800 }
2801
2802 }
2803
2804 spapr->gpu_numa_id = spapr_numa_initial_nvgpu_numa_id(machine);
2805
2806 /* Init numa_assoc_array */
2807 spapr_numa_associativity_init(spapr, machine);
2808
2809 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2810 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2811 spapr->max_compat_pvr)) {
2812 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2813 /* KVM and TCG always allow GTSE with radix... */
2814 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2815 }
2816 /* ... but not with hash (currently). */
2817
2818 if (kvm_enabled()) {
2819 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2820 kvmppc_enable_logical_ci_hcalls();
2821 kvmppc_enable_set_mode_hcall();
2822
2823 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2824 kvmppc_enable_clear_ref_mod_hcalls();
2825
2826 /* Enable H_PAGE_INIT */
2827 kvmppc_enable_h_page_init();
2828 }
2829
2830 /* map RAM */
2831 memory_region_add_subregion(sysmem, 0, machine->ram);
2832
2833 /* always allocate the device memory information */
2834 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2835
2836 /* initialize hotplug memory address space */
2837 if (machine->ram_size < machine->maxram_size) {
2838 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2839 /*
2840 * Limit the number of hotpluggable memory slots to half the number
2841 * slots that KVM supports, leaving the other half for PCI and other
2842 * devices. However ensure that number of slots doesn't drop below 32.
2843 */
2844 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2845 SPAPR_MAX_RAM_SLOTS;
2846
2847 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2848 max_memslots = SPAPR_MAX_RAM_SLOTS;
2849 }
2850 if (machine->ram_slots > max_memslots) {
2851 error_report("Specified number of memory slots %"
2852 PRIu64" exceeds max supported %d",
2853 machine->ram_slots, max_memslots);
2854 exit(1);
2855 }
2856
2857 machine->device_memory->base = ROUND_UP(machine->ram_size,
2858 SPAPR_DEVICE_MEM_ALIGN);
2859 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2860 "device-memory", device_mem_size);
2861 memory_region_add_subregion(sysmem, machine->device_memory->base,
2862 &machine->device_memory->mr);
2863 }
2864
2865 if (smc->dr_lmb_enabled) {
2866 spapr_create_lmb_dr_connectors(spapr);
2867 }
2868
2869 if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2870 /* Create the error string for live migration blocker */
2871 error_setg(&spapr->fwnmi_migration_blocker,
2872 "A machine check is being handled during migration. The handler"
2873 "may run and log hardware error on the destination");
2874 }
2875
2876 if (mc->nvdimm_supported) {
2877 spapr_create_nvdimm_dr_connectors(spapr);
2878 }
2879
2880 /* Set up RTAS event infrastructure */
2881 spapr_events_init(spapr);
2882
2883 /* Set up the RTC RTAS interfaces */
2884 spapr_rtc_create(spapr);
2885
2886 /* Set up VIO bus */
2887 spapr->vio_bus = spapr_vio_bus_init();
2888
2889 for (i = 0; serial_hd(i); i++) {
2890 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2891 }
2892
2893 /* We always have at least the nvram device on VIO */
2894 spapr_create_nvram(spapr);
2895
2896 /*
2897 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2898 * connectors (described in root DT node's "ibm,drc-types" property)
2899 * are pre-initialized here. additional child connectors (such as
2900 * connectors for a PHBs PCI slots) are added as needed during their
2901 * parent's realization.
2902 */
2903 if (smc->dr_phb_enabled) {
2904 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2905 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2906 }
2907 }
2908
2909 /* Set up PCI */
2910 spapr_pci_rtas_init();
2911
2912 phb = spapr_create_default_phb();
2913
2914 for (i = 0; i < nb_nics; i++) {
2915 NICInfo *nd = &nd_table[i];
2916
2917 if (!nd->model) {
2918 nd->model = g_strdup("spapr-vlan");
2919 }
2920
2921 if (g_str_equal(nd->model, "spapr-vlan") ||
2922 g_str_equal(nd->model, "ibmveth")) {
2923 spapr_vlan_create(spapr->vio_bus, nd);
2924 } else {
2925 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2926 }
2927 }
2928
2929 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2930 spapr_vscsi_create(spapr->vio_bus);
2931 }
2932
2933 /* Graphics */
2934 if (spapr_vga_init(phb->bus, &error_fatal)) {
2935 spapr->has_graphics = true;
2936 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2937 }
2938
2939 if (machine->usb) {
2940 if (smc->use_ohci_by_default) {
2941 pci_create_simple(phb->bus, -1, "pci-ohci");
2942 } else {
2943 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2944 }
2945
2946 if (spapr->has_graphics) {
2947 USBBus *usb_bus = usb_bus_find(-1);
2948
2949 usb_create_simple(usb_bus, "usb-kbd");
2950 usb_create_simple(usb_bus, "usb-mouse");
2951 }
2952 }
2953
2954 if (kernel_filename) {
2955 spapr->kernel_size = load_elf(kernel_filename, NULL,
2956 translate_kernel_address, spapr,
2957 NULL, NULL, NULL, NULL, 1,
2958 PPC_ELF_MACHINE, 0, 0);
2959 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2960 spapr->kernel_size = load_elf(kernel_filename, NULL,
2961 translate_kernel_address, spapr,
2962 NULL, NULL, NULL, NULL, 0,
2963 PPC_ELF_MACHINE, 0, 0);
2964 spapr->kernel_le = spapr->kernel_size > 0;
2965 }
2966 if (spapr->kernel_size < 0) {
2967 error_report("error loading %s: %s", kernel_filename,
2968 load_elf_strerror(spapr->kernel_size));
2969 exit(1);
2970 }
2971
2972 /* load initrd */
2973 if (initrd_filename) {
2974 /* Try to locate the initrd in the gap between the kernel
2975 * and the firmware. Add a bit of space just in case
2976 */
2977 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
2978 + 0x1ffff) & ~0xffff;
2979 spapr->initrd_size = load_image_targphys(initrd_filename,
2980 spapr->initrd_base,
2981 load_limit
2982 - spapr->initrd_base);
2983 if (spapr->initrd_size < 0) {
2984 error_report("could not load initial ram disk '%s'",
2985 initrd_filename);
2986 exit(1);
2987 }
2988 }
2989 }
2990
2991 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2992 if (!filename) {
2993 error_report("Could not find LPAR firmware '%s'", bios_name);
2994 exit(1);
2995 }
2996 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2997 if (fw_size <= 0) {
2998 error_report("Could not load LPAR firmware '%s'", filename);
2999 exit(1);
3000 }
3001 g_free(filename);
3002
3003 /* FIXME: Should register things through the MachineState's qdev
3004 * interface, this is a legacy from the sPAPREnvironment structure
3005 * which predated MachineState but had a similar function */
3006 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3007 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
3008 &savevm_htab_handlers, spapr);
3009
3010 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
3011
3012 qemu_register_boot_set(spapr_boot_set, spapr);
3013
3014 /*
3015 * Nothing needs to be done to resume a suspended guest because
3016 * suspending does not change the machine state, so no need for
3017 * a ->wakeup method.
3018 */
3019 qemu_register_wakeup_support();
3020
3021 if (kvm_enabled()) {
3022 /* to stop and start vmclock */
3023 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3024 &spapr->tb);
3025
3026 kvmppc_spapr_enable_inkernel_multitce();
3027 }
3028
3029 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3030 if (spapr->vof) {
3031 spapr->vof->fw_size = fw_size; /* for claim() on itself */
3032 spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client);
3033 }
3034 }
3035
3036 #define DEFAULT_KVM_TYPE "auto"
3037 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3038 {
3039 /*
3040 * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3041 * accomodate the 'HV' and 'PV' formats that exists in the
3042 * wild. The 'auto' mode is being introduced already as
3043 * lower-case, thus we don't need to bother checking for
3044 * "AUTO".
3045 */
3046 if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) {
3047 return 0;
3048 }
3049
3050 if (!g_ascii_strcasecmp(vm_type, "hv")) {
3051 return 1;
3052 }
3053
3054 if (!g_ascii_strcasecmp(vm_type, "pr")) {
3055 return 2;
3056 }
3057
3058 error_report("Unknown kvm-type specified '%s'", vm_type);
3059 exit(1);
3060 }
3061
3062 /*
3063 * Implementation of an interface to adjust firmware path
3064 * for the bootindex property handling.
3065 */
3066 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3067 DeviceState *dev)
3068 {
3069 #define CAST(type, obj, name) \
3070 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3071 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3072 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3073 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3074 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3075
3076 if (d) {
3077 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3078 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3079 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3080
3081 if (spapr) {
3082 /*
3083 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3084 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3085 * 0x8000 | (target << 8) | (bus << 5) | lun
3086 * (see the "Logical unit addressing format" table in SAM5)
3087 */
3088 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3089 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3090 (uint64_t)id << 48);
3091 } else if (virtio) {
3092 /*
3093 * We use SRP luns of the form 01000000 | (target << 8) | lun
3094 * in the top 32 bits of the 64-bit LUN
3095 * Note: the quote above is from SLOF and it is wrong,
3096 * the actual binding is:
3097 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3098 */
3099 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3100 if (d->lun >= 256) {
3101 /* Use the LUN "flat space addressing method" */
3102 id |= 0x4000;
3103 }
3104 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3105 (uint64_t)id << 32);
3106 } else if (usb) {
3107 /*
3108 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3109 * in the top 32 bits of the 64-bit LUN
3110 */
3111 unsigned usb_port = atoi(usb->port->path);
3112 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3113 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3114 (uint64_t)id << 32);
3115 }
3116 }
3117
3118 /*
3119 * SLOF probes the USB devices, and if it recognizes that the device is a
3120 * storage device, it changes its name to "storage" instead of "usb-host",
3121 * and additionally adds a child node for the SCSI LUN, so the correct
3122 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3123 */
3124 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3125 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3126 if (usb_host_dev_is_scsi_storage(usbdev)) {
3127 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3128 }
3129 }
3130
3131 if (phb) {
3132 /* Replace "pci" with "pci@800000020000000" */
3133 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3134 }
3135
3136 if (vsc) {
3137 /* Same logic as virtio above */
3138 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3139 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3140 }
3141
3142 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3143 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3144 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3145 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3146 }
3147
3148 if (pcidev) {
3149 return spapr_pci_fw_dev_name(pcidev);
3150 }
3151
3152 return NULL;
3153 }
3154
3155 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3156 {
3157 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3158
3159 return g_strdup(spapr->kvm_type);
3160 }
3161
3162 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3163 {
3164 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3165
3166 g_free(spapr->kvm_type);
3167 spapr->kvm_type = g_strdup(value);
3168 }
3169
3170 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3171 {
3172 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3173
3174 return spapr->use_hotplug_event_source;
3175 }
3176
3177 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3178 Error **errp)
3179 {
3180 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3181
3182 spapr->use_hotplug_event_source = value;
3183 }
3184
3185 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3186 {
3187 return true;
3188 }
3189
3190 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3191 {
3192 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3193
3194 switch (spapr->resize_hpt) {
3195 case SPAPR_RESIZE_HPT_DEFAULT:
3196 return g_strdup("default");
3197 case SPAPR_RESIZE_HPT_DISABLED:
3198 return g_strdup("disabled");
3199 case SPAPR_RESIZE_HPT_ENABLED:
3200 return g_strdup("enabled");
3201 case SPAPR_RESIZE_HPT_REQUIRED:
3202 return g_strdup("required");
3203 }
3204 g_assert_not_reached();
3205 }
3206
3207 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3208 {
3209 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3210
3211 if (strcmp(value, "default") == 0) {
3212 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3213 } else if (strcmp(value, "disabled") == 0) {
3214 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3215 } else if (strcmp(value, "enabled") == 0) {
3216 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3217 } else if (strcmp(value, "required") == 0) {
3218 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3219 } else {
3220 error_setg(errp, "Bad value for \"resize-hpt\" property");
3221 }
3222 }
3223
3224 static bool spapr_get_vof(Object *obj, Error **errp)
3225 {
3226 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3227
3228 return spapr->vof != NULL;
3229 }
3230
3231 static void spapr_set_vof(Object *obj, bool value, Error **errp)
3232 {
3233 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3234
3235 if (spapr->vof) {
3236 vof_cleanup(spapr->vof);
3237 g_free(spapr->vof);
3238 spapr->vof = NULL;
3239 }
3240 if (!value) {
3241 return;
3242 }
3243 spapr->vof = g_malloc0(sizeof(*spapr->vof));
3244 }
3245
3246 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3247 {
3248 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3249
3250 if (spapr->irq == &spapr_irq_xics_legacy) {
3251 return g_strdup("legacy");
3252 } else if (spapr->irq == &spapr_irq_xics) {
3253 return g_strdup("xics");
3254 } else if (spapr->irq == &spapr_irq_xive) {
3255 return g_strdup("xive");
3256 } else if (spapr->irq == &spapr_irq_dual) {
3257 return g_strdup("dual");
3258 }
3259 g_assert_not_reached();
3260 }
3261
3262 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3263 {
3264 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3265
3266 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3267 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3268 return;
3269 }
3270
3271 /* The legacy IRQ backend can not be set */
3272 if (strcmp(value, "xics") == 0) {
3273 spapr->irq = &spapr_irq_xics;
3274 } else if (strcmp(value, "xive") == 0) {
3275 spapr->irq = &spapr_irq_xive;
3276 } else if (strcmp(value, "dual") == 0) {
3277 spapr->irq = &spapr_irq_dual;
3278 } else {
3279 error_setg(errp, "Bad value for \"ic-mode\" property");
3280 }
3281 }
3282
3283 static char *spapr_get_host_model(Object *obj, Error **errp)
3284 {
3285 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3286
3287 return g_strdup(spapr->host_model);
3288 }
3289
3290 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3291 {
3292 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3293
3294 g_free(spapr->host_model);
3295 spapr->host_model = g_strdup(value);
3296 }
3297
3298 static char *spapr_get_host_serial(Object *obj, Error **errp)
3299 {
3300 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3301
3302 return g_strdup(spapr->host_serial);
3303 }
3304
3305 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3306 {
3307 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3308
3309 g_free(spapr->host_serial);
3310 spapr->host_serial = g_strdup(value);
3311 }
3312
3313 static void spapr_instance_init(Object *obj)
3314 {
3315 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3316 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3317 MachineState *ms = MACHINE(spapr);
3318 MachineClass *mc = MACHINE_GET_CLASS(ms);
3319
3320 /*
3321 * NVDIMM support went live in 5.1 without considering that, in
3322 * other archs, the user needs to enable NVDIMM support with the
3323 * 'nvdimm' machine option and the default behavior is NVDIMM
3324 * support disabled. It is too late to roll back to the standard
3325 * behavior without breaking 5.1 guests.
3326 */
3327 if (mc->nvdimm_supported) {
3328 ms->nvdimms_state->is_enabled = true;
3329 }
3330
3331 spapr->htab_fd = -1;
3332 spapr->use_hotplug_event_source = true;
3333 spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE);
3334 object_property_add_str(obj, "kvm-type",
3335 spapr_get_kvm_type, spapr_set_kvm_type);
3336 object_property_set_description(obj, "kvm-type",
3337 "Specifies the KVM virtualization mode (auto,"
3338 " hv, pr). Defaults to 'auto'. This mode will use"
3339 " any available KVM module loaded in the host,"
3340 " where kvm_hv takes precedence if both kvm_hv and"
3341 " kvm_pr are loaded.");
3342 object_property_add_bool(obj, "modern-hotplug-events",
3343 spapr_get_modern_hotplug_events,
3344 spapr_set_modern_hotplug_events);
3345 object_property_set_description(obj, "modern-hotplug-events",
3346 "Use dedicated hotplug event mechanism in"
3347 " place of standard EPOW events when possible"
3348 " (required for memory hot-unplug support)");
3349 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3350 "Maximum permitted CPU compatibility mode");
3351
3352 object_property_add_str(obj, "resize-hpt",
3353 spapr_get_resize_hpt, spapr_set_resize_hpt);
3354 object_property_set_description(obj, "resize-hpt",
3355 "Resizing of the Hash Page Table (enabled, disabled, required)");
3356 object_property_add_uint32_ptr(obj, "vsmt",
3357 &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3358 object_property_set_description(obj, "vsmt",
3359 "Virtual SMT: KVM behaves as if this were"
3360 " the host's SMT mode");
3361
3362 object_property_add_bool(obj, "vfio-no-msix-emulation",
3363 spapr_get_msix_emulation, NULL);
3364
3365 object_property_add_uint64_ptr(obj, "kernel-addr",
3366 &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3367 object_property_set_description(obj, "kernel-addr",
3368 stringify(KERNEL_LOAD_ADDR)
3369 " for -kernel is the default");
3370 spapr->kernel_addr = KERNEL_LOAD_ADDR;
3371
3372 object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof);
3373 object_property_set_description(obj, "x-vof",
3374 "Enable Virtual Open Firmware (experimental)");
3375
3376 /* The machine class defines the default interrupt controller mode */
3377 spapr->irq = smc->irq;
3378 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3379 spapr_set_ic_mode);
3380 object_property_set_description(obj, "ic-mode",
3381 "Specifies the interrupt controller mode (xics, xive, dual)");
3382
3383 object_property_add_str(obj, "host-model",
3384 spapr_get_host_model, spapr_set_host_model);
3385 object_property_set_description(obj, "host-model",
3386 "Host model to advertise in guest device tree");
3387 object_property_add_str(obj, "host-serial",
3388 spapr_get_host_serial, spapr_set_host_serial);
3389 object_property_set_description(obj, "host-serial",
3390 "Host serial number to advertise in guest device tree");
3391 }
3392
3393 static void spapr_machine_finalizefn(Object *obj)
3394 {
3395 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3396
3397 g_free(spapr->kvm_type);
3398 }
3399
3400 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3401 {
3402 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3403 PowerPCCPU *cpu = POWERPC_CPU(cs);
3404 CPUPPCState *env = &cpu->env;
3405
3406 cpu_synchronize_state(cs);
3407 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3408 if (spapr->fwnmi_system_reset_addr != -1) {
3409 uint64_t rtas_addr, addr;
3410
3411 /* get rtas addr from fdt */
3412 rtas_addr = spapr_get_rtas_addr();
3413 if (!rtas_addr) {
3414 qemu_system_guest_panicked(NULL);
3415 return;
3416 }
3417
3418 addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3419 stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3420 stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3421 env->gpr[3] = addr;
3422 }
3423 ppc_cpu_do_system_reset(cs);
3424 if (spapr->fwnmi_system_reset_addr != -1) {
3425 env->nip = spapr->fwnmi_system_reset_addr;
3426 }
3427 }
3428
3429 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3430 {
3431 CPUState *cs;
3432
3433 CPU_FOREACH(cs) {
3434 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3435 }
3436 }
3437
3438 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3439 void *fdt, int *fdt_start_offset, Error **errp)
3440 {
3441 uint64_t addr;
3442 uint32_t node;
3443
3444 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3445 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3446 &error_abort);
3447 *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3448 SPAPR_MEMORY_BLOCK_SIZE);
3449 return 0;
3450 }
3451
3452 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3453 bool dedicated_hp_event_source)
3454 {
3455 SpaprDrc *drc;
3456 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3457 int i;
3458 uint64_t addr = addr_start;
3459 bool hotplugged = spapr_drc_hotplugged(dev);
3460
3461 for (i = 0; i < nr_lmbs; i++) {
3462 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3463 addr / SPAPR_MEMORY_BLOCK_SIZE);
3464 g_assert(drc);
3465
3466 /*
3467 * memory_device_get_free_addr() provided a range of free addresses
3468 * that doesn't overlap with any existing mapping at pre-plug. The
3469 * corresponding LMB DRCs are thus assumed to be all attachable.
3470 */
3471 spapr_drc_attach(drc, dev);
3472 if (!hotplugged) {
3473 spapr_drc_reset(drc);
3474 }
3475 addr += SPAPR_MEMORY_BLOCK_SIZE;
3476 }
3477 /* send hotplug notification to the
3478 * guest only in case of hotplugged memory
3479 */
3480 if (hotplugged) {
3481 if (dedicated_hp_event_source) {
3482 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3483 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3484 g_assert(drc);
3485 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3486 nr_lmbs,
3487 spapr_drc_index(drc));
3488 } else {
3489 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3490 nr_lmbs);
3491 }
3492 }
3493 }
3494
3495 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3496 {
3497 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3498 PCDIMMDevice *dimm = PC_DIMM(dev);
3499 uint64_t size, addr;
3500 int64_t slot;
3501 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3502
3503 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3504
3505 pc_dimm_plug(dimm, MACHINE(ms));
3506
3507 if (!is_nvdimm) {
3508 addr = object_property_get_uint(OBJECT(dimm),
3509 PC_DIMM_ADDR_PROP, &error_abort);
3510 spapr_add_lmbs(dev, addr, size,
3511 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT));
3512 } else {
3513 slot = object_property_get_int(OBJECT(dimm),
3514 PC_DIMM_SLOT_PROP, &error_abort);
3515 /* We should have valid slot number at this point */
3516 g_assert(slot >= 0);
3517 spapr_add_nvdimm(dev, slot);
3518 }
3519 }
3520
3521 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3522 Error **errp)
3523 {
3524 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3525 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3526 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3527 PCDIMMDevice *dimm = PC_DIMM(dev);
3528 Error *local_err = NULL;
3529 uint64_t size;
3530 Object *memdev;
3531 hwaddr pagesize;
3532
3533 if (!smc->dr_lmb_enabled) {
3534 error_setg(errp, "Memory hotplug not supported for this machine");
3535 return;
3536 }
3537
3538 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3539 if (local_err) {
3540 error_propagate(errp, local_err);
3541 return;
3542 }
3543
3544 if (is_nvdimm) {
3545 if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
3546 return;
3547 }
3548 } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3549 error_setg(errp, "Hotplugged memory size must be a multiple of "
3550 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3551 return;
3552 }
3553
3554 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3555 &error_abort);
3556 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3557 if (!spapr_check_pagesize(spapr, pagesize, errp)) {
3558 return;
3559 }
3560
3561 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3562 }
3563
3564 struct SpaprDimmState {
3565 PCDIMMDevice *dimm;
3566 uint32_t nr_lmbs;
3567 QTAILQ_ENTRY(SpaprDimmState) next;
3568 };
3569
3570 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3571 PCDIMMDevice *dimm)
3572 {
3573 SpaprDimmState *dimm_state = NULL;
3574
3575 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3576 if (dimm_state->dimm == dimm) {
3577 break;
3578 }
3579 }
3580 return dimm_state;
3581 }
3582
3583 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3584 uint32_t nr_lmbs,
3585 PCDIMMDevice *dimm)
3586 {
3587 SpaprDimmState *ds = NULL;
3588
3589 /*
3590 * If this request is for a DIMM whose removal had failed earlier
3591 * (due to guest's refusal to remove the LMBs), we would have this
3592 * dimm already in the pending_dimm_unplugs list. In that
3593 * case don't add again.
3594 */
3595 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3596 if (!ds) {
3597 ds = g_malloc0(sizeof(SpaprDimmState));
3598 ds->nr_lmbs = nr_lmbs;
3599 ds->dimm = dimm;
3600 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3601 }
3602 return ds;
3603 }
3604
3605 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3606 SpaprDimmState *dimm_state)
3607 {
3608 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3609 g_free(dimm_state);
3610 }
3611
3612 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3613 PCDIMMDevice *dimm)
3614 {
3615 SpaprDrc *drc;
3616 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3617 &error_abort);
3618 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3619 uint32_t avail_lmbs = 0;
3620 uint64_t addr_start, addr;
3621 int i;
3622
3623 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3624 &error_abort);
3625
3626 addr = addr_start;
3627 for (i = 0; i < nr_lmbs; i++) {
3628 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3629 addr / SPAPR_MEMORY_BLOCK_SIZE);
3630 g_assert(drc);
3631 if (drc->dev) {
3632 avail_lmbs++;
3633 }
3634 addr += SPAPR_MEMORY_BLOCK_SIZE;
3635 }
3636
3637 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3638 }
3639
3640 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev)
3641 {
3642 SpaprDimmState *ds;
3643 PCDIMMDevice *dimm;
3644 SpaprDrc *drc;
3645 uint32_t nr_lmbs;
3646 uint64_t size, addr_start, addr;
3647 g_autofree char *qapi_error = NULL;
3648 int i;
3649
3650 if (!dev) {
3651 return;
3652 }
3653
3654 dimm = PC_DIMM(dev);
3655 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3656
3657 /*
3658 * 'ds == NULL' would mean that the DIMM doesn't have a pending
3659 * unplug state, but one of its DRC is marked as unplug_requested.
3660 * This is bad and weird enough to g_assert() out.
3661 */
3662 g_assert(ds);
3663
3664 spapr_pending_dimm_unplugs_remove(spapr, ds);
3665
3666 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3667 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3668
3669 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3670 &error_abort);
3671
3672 addr = addr_start;
3673 for (i = 0; i < nr_lmbs; i++) {
3674 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3675 addr / SPAPR_MEMORY_BLOCK_SIZE);
3676 g_assert(drc);
3677
3678 drc->unplug_requested = false;
3679 addr += SPAPR_MEMORY_BLOCK_SIZE;
3680 }
3681
3682 /*
3683 * Tell QAPI that something happened and the memory
3684 * hotunplug wasn't successful.
3685 */
3686 qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest "
3687 "for device %s", dev->id);
3688 qapi_event_send_mem_unplug_error(dev->id, qapi_error);
3689 }
3690
3691 /* Callback to be called during DRC release. */
3692 void spapr_lmb_release(DeviceState *dev)
3693 {
3694 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3695 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3696 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3697
3698 /* This information will get lost if a migration occurs
3699 * during the unplug process. In this case recover it. */
3700 if (ds == NULL) {
3701 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3702 g_assert(ds);
3703 /* The DRC being examined by the caller at least must be counted */
3704 g_assert(ds->nr_lmbs);
3705 }
3706
3707 if (--ds->nr_lmbs) {
3708 return;
3709 }
3710
3711 /*
3712 * Now that all the LMBs have been removed by the guest, call the
3713 * unplug handler chain. This can never fail.
3714 */
3715 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3716 object_unparent(OBJECT(dev));
3717 }
3718
3719 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3720 {
3721 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3722 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3723
3724 /* We really shouldn't get this far without anything to unplug */
3725 g_assert(ds);
3726
3727 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3728 qdev_unrealize(dev);
3729 spapr_pending_dimm_unplugs_remove(spapr, ds);
3730 }
3731
3732 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3733 DeviceState *dev, Error **errp)
3734 {
3735 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3736 PCDIMMDevice *dimm = PC_DIMM(dev);
3737 uint32_t nr_lmbs;
3738 uint64_t size, addr_start, addr;
3739 int i;
3740 SpaprDrc *drc;
3741
3742 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3743 error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3744 return;
3745 }
3746
3747 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3748 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3749
3750 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3751 &error_abort);
3752
3753 /*
3754 * An existing pending dimm state for this DIMM means that there is an
3755 * unplug operation in progress, waiting for the spapr_lmb_release
3756 * callback to complete the job (BQL can't cover that far). In this case,
3757 * bail out to avoid detaching DRCs that were already released.
3758 */
3759 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3760 error_setg(errp, "Memory unplug already in progress for device %s",
3761 dev->id);
3762 return;
3763 }
3764
3765 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3766
3767 addr = addr_start;
3768 for (i = 0; i < nr_lmbs; i++) {
3769 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3770 addr / SPAPR_MEMORY_BLOCK_SIZE);
3771 g_assert(drc);
3772
3773 spapr_drc_unplug_request(drc);
3774 addr += SPAPR_MEMORY_BLOCK_SIZE;
3775 }
3776
3777 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3778 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3779 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3780 nr_lmbs, spapr_drc_index(drc));
3781 }
3782
3783 /* Callback to be called during DRC release. */
3784 void spapr_core_release(DeviceState *dev)
3785 {
3786 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3787
3788 /* Call the unplug handler chain. This can never fail. */
3789 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3790 object_unparent(OBJECT(dev));
3791 }
3792
3793 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3794 {
3795 MachineState *ms = MACHINE(hotplug_dev);
3796 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3797 CPUCore *cc = CPU_CORE(dev);
3798 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3799
3800 if (smc->pre_2_10_has_unused_icps) {
3801 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3802 int i;
3803
3804 for (i = 0; i < cc->nr_threads; i++) {
3805 CPUState *cs = CPU(sc->threads[i]);
3806
3807 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3808 }
3809 }
3810
3811 assert(core_slot);
3812 core_slot->cpu = NULL;
3813 qdev_unrealize(dev);
3814 }
3815
3816 static
3817 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3818 Error **errp)
3819 {
3820 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3821 int index;
3822 SpaprDrc *drc;
3823 CPUCore *cc = CPU_CORE(dev);
3824
3825 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3826 error_setg(errp, "Unable to find CPU core with core-id: %d",
3827 cc->core_id);
3828 return;
3829 }
3830 if (index == 0) {
3831 error_setg(errp, "Boot CPU core may not be unplugged");
3832 return;
3833 }
3834
3835 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3836 spapr_vcpu_id(spapr, cc->core_id));
3837 g_assert(drc);
3838
3839 if (!spapr_drc_unplug_requested(drc)) {
3840 spapr_drc_unplug_request(drc);
3841 }
3842
3843 /*
3844 * spapr_hotplug_req_remove_by_index is left unguarded, out of the
3845 * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ
3846 * pulses removing the same CPU. Otherwise, in an failed hotunplug
3847 * attempt (e.g. the kernel will refuse to remove the last online
3848 * CPU), we will never attempt it again because unplug_requested
3849 * will still be 'true' in that case.
3850 */
3851 spapr_hotplug_req_remove_by_index(drc);
3852 }
3853
3854 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3855 void *fdt, int *fdt_start_offset, Error **errp)
3856 {
3857 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3858 CPUState *cs = CPU(core->threads[0]);
3859 PowerPCCPU *cpu = POWERPC_CPU(cs);
3860 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3861 int id = spapr_get_vcpu_id(cpu);
3862 g_autofree char *nodename = NULL;
3863 int offset;
3864
3865 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3866 offset = fdt_add_subnode(fdt, 0, nodename);
3867
3868 spapr_dt_cpu(cs, fdt, offset, spapr);
3869
3870 /*
3871 * spapr_dt_cpu() does not fill the 'name' property in the
3872 * CPU node. The function is called during boot process, before
3873 * and after CAS, and overwriting the 'name' property written
3874 * by SLOF is not allowed.
3875 *
3876 * Write it manually after spapr_dt_cpu(). This makes the hotplug
3877 * CPUs more compatible with the coldplugged ones, which have
3878 * the 'name' property. Linux Kernel also relies on this
3879 * property to identify CPU nodes.
3880 */
3881 _FDT((fdt_setprop_string(fdt, offset, "name", nodename)));
3882
3883 *fdt_start_offset = offset;
3884 return 0;
3885 }
3886
3887 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3888 {
3889 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3890 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3891 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3892 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3893 CPUCore *cc = CPU_CORE(dev);
3894 CPUState *cs;
3895 SpaprDrc *drc;
3896 CPUArchId *core_slot;
3897 int index;
3898 bool hotplugged = spapr_drc_hotplugged(dev);
3899 int i;
3900
3901 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3902 g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */
3903
3904 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3905 spapr_vcpu_id(spapr, cc->core_id));
3906
3907 g_assert(drc || !mc->has_hotpluggable_cpus);
3908
3909 if (drc) {
3910 /*
3911 * spapr_core_pre_plug() already buys us this is a brand new
3912 * core being plugged into a free slot. Nothing should already
3913 * be attached to the corresponding DRC.
3914 */
3915 spapr_drc_attach(drc, dev);
3916
3917 if (hotplugged) {
3918 /*
3919 * Send hotplug notification interrupt to the guest only
3920 * in case of hotplugged CPUs.
3921 */
3922 spapr_hotplug_req_add_by_index(drc);
3923 } else {
3924 spapr_drc_reset(drc);
3925 }
3926 }
3927
3928 core_slot->cpu = OBJECT(dev);
3929
3930 /*
3931 * Set compatibility mode to match the boot CPU, which was either set
3932 * by the machine reset code or by CAS. This really shouldn't fail at
3933 * this point.
3934 */
3935 if (hotplugged) {
3936 for (i = 0; i < cc->nr_threads; i++) {
3937 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3938 &error_abort);
3939 }
3940 }
3941
3942 if (smc->pre_2_10_has_unused_icps) {
3943 for (i = 0; i < cc->nr_threads; i++) {
3944 cs = CPU(core->threads[i]);
3945 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3946 }
3947 }
3948 }
3949
3950 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3951 Error **errp)
3952 {
3953 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3954 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3955 CPUCore *cc = CPU_CORE(dev);
3956 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3957 const char *type = object_get_typename(OBJECT(dev));
3958 CPUArchId *core_slot;
3959 int index;
3960 unsigned int smp_threads = machine->smp.threads;
3961
3962 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3963 error_setg(errp, "CPU hotplug not supported for this machine");
3964 return;
3965 }
3966
3967 if (strcmp(base_core_type, type)) {
3968 error_setg(errp, "CPU core type should be %s", base_core_type);
3969 return;
3970 }
3971
3972 if (cc->core_id % smp_threads) {
3973 error_setg(errp, "invalid core id %d", cc->core_id);
3974 return;
3975 }
3976
3977 /*
3978 * In general we should have homogeneous threads-per-core, but old
3979 * (pre hotplug support) machine types allow the last core to have
3980 * reduced threads as a compatibility hack for when we allowed
3981 * total vcpus not a multiple of threads-per-core.
3982 */
3983 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3984 error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
3985 smp_threads);
3986 return;
3987 }
3988
3989 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3990 if (!core_slot) {
3991 error_setg(errp, "core id %d out of range", cc->core_id);
3992 return;
3993 }
3994
3995 if (core_slot->cpu) {
3996 error_setg(errp, "core %d already populated", cc->core_id);
3997 return;
3998 }
3999
4000 numa_cpu_pre_plug(core_slot, dev, errp);
4001 }
4002
4003 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
4004 void *fdt, int *fdt_start_offset, Error **errp)
4005 {
4006 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
4007 int intc_phandle;
4008
4009 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
4010 if (intc_phandle <= 0) {
4011 return -1;
4012 }
4013
4014 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
4015 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
4016 return -1;
4017 }
4018
4019 /* generally SLOF creates these, for hotplug it's up to QEMU */
4020 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
4021
4022 return 0;
4023 }
4024
4025 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4026 Error **errp)
4027 {
4028 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4029 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4030 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4031 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
4032 SpaprDrc *drc;
4033
4034 if (dev->hotplugged && !smc->dr_phb_enabled) {
4035 error_setg(errp, "PHB hotplug not supported for this machine");
4036 return false;
4037 }
4038
4039 if (sphb->index == (uint32_t)-1) {
4040 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
4041 return false;
4042 }
4043
4044 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4045 if (drc && drc->dev) {
4046 error_setg(errp, "PHB %d already attached", sphb->index);
4047 return false;
4048 }
4049
4050 /*
4051 * This will check that sphb->index doesn't exceed the maximum number of
4052 * PHBs for the current machine type.
4053 */
4054 return
4055 smc->phb_placement(spapr, sphb->index,
4056 &sphb->buid, &sphb->io_win_addr,
4057 &sphb->mem_win_addr, &sphb->mem64_win_addr,
4058 windows_supported, sphb->dma_liobn,
4059 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
4060 errp);
4061 }
4062
4063 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4064 {
4065 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4066 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4067 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4068 SpaprDrc *drc;
4069 bool hotplugged = spapr_drc_hotplugged(dev);
4070
4071 if (!smc->dr_phb_enabled) {
4072 return;
4073 }
4074
4075 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4076 /* hotplug hooks should check it's enabled before getting this far */
4077 assert(drc);
4078
4079 /* spapr_phb_pre_plug() already checked the DRC is attachable */
4080 spapr_drc_attach(drc, dev);
4081
4082 if (hotplugged) {
4083 spapr_hotplug_req_add_by_index(drc);
4084 } else {
4085 spapr_drc_reset(drc);
4086 }
4087 }
4088
4089 void spapr_phb_release(DeviceState *dev)
4090 {
4091 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4092
4093 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4094 object_unparent(OBJECT(dev));
4095 }
4096
4097 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4098 {
4099 qdev_unrealize(dev);
4100 }
4101
4102 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4103 DeviceState *dev, Error **errp)
4104 {
4105 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4106 SpaprDrc *drc;
4107
4108 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4109 assert(drc);
4110
4111 if (!spapr_drc_unplug_requested(drc)) {
4112 spapr_drc_unplug_request(drc);
4113 spapr_hotplug_req_remove_by_index(drc);
4114 } else {
4115 error_setg(errp,
4116 "PCI Host Bridge unplug already in progress for device %s",
4117 dev->id);
4118 }
4119 }
4120
4121 static
4122 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4123 Error **errp)
4124 {
4125 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4126
4127 if (spapr->tpm_proxy != NULL) {
4128 error_setg(errp, "Only one TPM proxy can be specified for this machine");
4129 return false;
4130 }
4131
4132 return true;
4133 }
4134
4135 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4136 {
4137 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4138 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4139
4140 /* Already checked in spapr_tpm_proxy_pre_plug() */
4141 g_assert(spapr->tpm_proxy == NULL);
4142
4143 spapr->tpm_proxy = tpm_proxy;
4144 }
4145
4146 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4147 {
4148 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4149
4150 qdev_unrealize(dev);
4151 object_unparent(OBJECT(dev));
4152 spapr->tpm_proxy = NULL;
4153 }
4154
4155 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4156 DeviceState *dev, Error **errp)
4157 {
4158 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4159 spapr_memory_plug(hotplug_dev, dev);
4160 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4161 spapr_core_plug(hotplug_dev, dev);
4162 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4163 spapr_phb_plug(hotplug_dev, dev);
4164 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4165 spapr_tpm_proxy_plug(hotplug_dev, dev);
4166 }
4167 }
4168
4169 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4170 DeviceState *dev, Error **errp)
4171 {
4172 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4173 spapr_memory_unplug(hotplug_dev, dev);
4174 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4175 spapr_core_unplug(hotplug_dev, dev);
4176 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4177 spapr_phb_unplug(hotplug_dev, dev);
4178 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4179 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4180 }
4181 }
4182
4183 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr)
4184 {
4185 return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) ||
4186 /*
4187 * CAS will process all pending unplug requests.
4188 *
4189 * HACK: a guest could theoretically have cleared all bits in OV5,
4190 * but none of the guests we care for do.
4191 */
4192 spapr_ovec_empty(spapr->ov5_cas);
4193 }
4194
4195 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4196 DeviceState *dev, Error **errp)
4197 {
4198 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4199 MachineClass *mc = MACHINE_GET_CLASS(sms);
4200 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4201
4202 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4203 if (spapr_memory_hot_unplug_supported(sms)) {
4204 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4205 } else {
4206 error_setg(errp, "Memory hot unplug not supported for this guest");
4207 }
4208 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4209 if (!mc->has_hotpluggable_cpus) {
4210 error_setg(errp, "CPU hot unplug not supported on this machine");
4211 return;
4212 }
4213 spapr_core_unplug_request(hotplug_dev, dev, errp);
4214 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4215 if (!smc->dr_phb_enabled) {
4216 error_setg(errp, "PHB hot unplug not supported on this machine");
4217 return;
4218 }
4219 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4220 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4221 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4222 }
4223 }
4224
4225 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4226 DeviceState *dev, Error **errp)
4227 {
4228 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4229 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4230 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4231 spapr_core_pre_plug(hotplug_dev, dev, errp);
4232 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4233 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4234 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4235 spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp);
4236 }
4237 }
4238
4239 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4240 DeviceState *dev)
4241 {
4242 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4243 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4244 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4245 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4246 return HOTPLUG_HANDLER(machine);
4247 }
4248 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4249 PCIDevice *pcidev = PCI_DEVICE(dev);
4250 PCIBus *root = pci_device_root_bus(pcidev);
4251 SpaprPhbState *phb =
4252 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4253 TYPE_SPAPR_PCI_HOST_BRIDGE);
4254
4255 if (phb) {
4256 return HOTPLUG_HANDLER(phb);
4257 }
4258 }
4259 return NULL;
4260 }
4261
4262 static CpuInstanceProperties
4263 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4264 {
4265 CPUArchId *core_slot;
4266 MachineClass *mc = MACHINE_GET_CLASS(machine);
4267
4268 /* make sure possible_cpu are intialized */
4269 mc->possible_cpu_arch_ids(machine);
4270 /* get CPU core slot containing thread that matches cpu_index */
4271 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4272 assert(core_slot);
4273 return core_slot->props;
4274 }
4275
4276 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4277 {
4278 return idx / ms->smp.cores % ms->numa_state->num_nodes;
4279 }
4280
4281 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4282 {
4283 int i;
4284 unsigned int smp_threads = machine->smp.threads;
4285 unsigned int smp_cpus = machine->smp.cpus;
4286 const char *core_type;
4287 int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4288 MachineClass *mc = MACHINE_GET_CLASS(machine);
4289
4290 if (!mc->has_hotpluggable_cpus) {
4291 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4292 }
4293 if (machine->possible_cpus) {
4294 assert(machine->possible_cpus->len == spapr_max_cores);
4295 return machine->possible_cpus;
4296 }
4297
4298 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4299 if (!core_type) {
4300 error_report("Unable to find sPAPR CPU Core definition");
4301 exit(1);
4302 }
4303
4304 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4305 sizeof(CPUArchId) * spapr_max_cores);
4306 machine->possible_cpus->len = spapr_max_cores;
4307 for (i = 0; i < machine->possible_cpus->len; i++) {
4308 int core_id = i * smp_threads;
4309
4310 machine->possible_cpus->cpus[i].type = core_type;
4311 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4312 machine->possible_cpus->cpus[i].arch_id = core_id;
4313 machine->possible_cpus->cpus[i].props.has_core_id = true;
4314 machine->possible_cpus->cpus[i].props.core_id = core_id;
4315 }
4316 return machine->possible_cpus;
4317 }
4318
4319 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4320 uint64_t *buid, hwaddr *pio,
4321 hwaddr *mmio32, hwaddr *mmio64,
4322 unsigned n_dma, uint32_t *liobns,
4323 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4324 {
4325 /*
4326 * New-style PHB window placement.
4327 *
4328 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4329 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4330 * windows.
4331 *
4332 * Some guest kernels can't work with MMIO windows above 1<<46
4333 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4334 *
4335 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4336 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4337 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4338 * 1TiB 64-bit MMIO windows for each PHB.
4339 */
4340 const uint64_t base_buid = 0x800000020000000ULL;
4341 int i;
4342
4343 /* Sanity check natural alignments */
4344 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4345 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4346 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4347 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4348 /* Sanity check bounds */
4349 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4350 SPAPR_PCI_MEM32_WIN_SIZE);
4351 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4352 SPAPR_PCI_MEM64_WIN_SIZE);
4353
4354 if (index >= SPAPR_MAX_PHBS) {
4355 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4356 SPAPR_MAX_PHBS - 1);
4357 return false;
4358 }
4359
4360 *buid = base_buid + index;
4361 for (i = 0; i < n_dma; ++i) {
4362 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4363 }
4364
4365 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4366 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4367 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4368
4369 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4370 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4371 return true;
4372 }
4373
4374 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4375 {
4376 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4377
4378 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4379 }
4380
4381 static void spapr_ics_resend(XICSFabric *dev)
4382 {
4383 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4384
4385 ics_resend(spapr->ics);
4386 }
4387
4388 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4389 {
4390 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4391
4392 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4393 }
4394
4395 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4396 Monitor *mon)
4397 {
4398 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4399
4400 spapr_irq_print_info(spapr, mon);
4401 monitor_printf(mon, "irqchip: %s\n",
4402 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4403 }
4404
4405 /*
4406 * This is a XIVE only operation
4407 */
4408 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4409 uint8_t nvt_blk, uint32_t nvt_idx,
4410 bool cam_ignore, uint8_t priority,
4411 uint32_t logic_serv, XiveTCTXMatch *match)
4412 {
4413 SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4414 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4415 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4416 int count;
4417
4418 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4419 priority, logic_serv, match);
4420 if (count < 0) {
4421 return count;
4422 }
4423
4424 /*
4425 * When we implement the save and restore of the thread interrupt
4426 * contexts in the enter/exit CPU handlers of the machine and the
4427 * escalations in QEMU, we should be able to handle non dispatched
4428 * vCPUs.
4429 *
4430 * Until this is done, the sPAPR machine should find at least one
4431 * matching context always.
4432 */
4433 if (count == 0) {
4434 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4435 nvt_blk, nvt_idx);
4436 }
4437
4438 return count;
4439 }
4440
4441 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4442 {
4443 return cpu->vcpu_id;
4444 }
4445
4446 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4447 {
4448 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4449 MachineState *ms = MACHINE(spapr);
4450 int vcpu_id;
4451
4452 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4453
4454 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4455 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4456 error_append_hint(errp, "Adjust the number of cpus to %d "
4457 "or try to raise the number of threads per core\n",
4458 vcpu_id * ms->smp.threads / spapr->vsmt);
4459 return false;
4460 }
4461
4462 cpu->vcpu_id = vcpu_id;
4463 return true;
4464 }
4465
4466 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4467 {
4468 CPUState *cs;
4469
4470 CPU_FOREACH(cs) {
4471 PowerPCCPU *cpu = POWERPC_CPU(cs);
4472
4473 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4474 return cpu;
4475 }
4476 }
4477
4478 return NULL;
4479 }
4480
4481 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4482 {
4483 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4484
4485 /* These are only called by TCG, KVM maintains dispatch state */
4486
4487 spapr_cpu->prod = false;
4488 if (spapr_cpu->vpa_addr) {
4489 CPUState *cs = CPU(cpu);
4490 uint32_t dispatch;
4491
4492 dispatch = ldl_be_phys(cs->as,
4493 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4494 dispatch++;
4495 if ((dispatch & 1) != 0) {
4496 qemu_log_mask(LOG_GUEST_ERROR,
4497 "VPA: incorrect dispatch counter value for "
4498 "dispatched partition %u, correcting.\n", dispatch);
4499 dispatch++;
4500 }
4501 stl_be_phys(cs->as,
4502 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4503 }
4504 }
4505
4506 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4507 {
4508 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4509
4510 if (spapr_cpu->vpa_addr) {
4511 CPUState *cs = CPU(cpu);
4512 uint32_t dispatch;
4513
4514 dispatch = ldl_be_phys(cs->as,
4515 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4516 dispatch++;
4517 if ((dispatch & 1) != 1) {
4518 qemu_log_mask(LOG_GUEST_ERROR,
4519 "VPA: incorrect dispatch counter value for "
4520 "preempted partition %u, correcting.\n", dispatch);
4521 dispatch++;
4522 }
4523 stl_be_phys(cs->as,
4524 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4525 }
4526 }
4527
4528 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4529 {
4530 MachineClass *mc = MACHINE_CLASS(oc);
4531 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4532 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4533 NMIClass *nc = NMI_CLASS(oc);
4534 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4535 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4536 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4537 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4538 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4539 VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc);
4540
4541 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4542 mc->ignore_boot_device_suffixes = true;
4543
4544 /*
4545 * We set up the default / latest behaviour here. The class_init
4546 * functions for the specific versioned machine types can override
4547 * these details for backwards compatibility
4548 */
4549 mc->init = spapr_machine_init;
4550 mc->reset = spapr_machine_reset;
4551 mc->block_default_type = IF_SCSI;
4552
4553 /*
4554 * Setting max_cpus to INT32_MAX. Both KVM and TCG max_cpus values
4555 * should be limited by the host capability instead of hardcoded.
4556 * max_cpus for KVM guests will be checked in kvm_init(), and TCG
4557 * guests are welcome to have as many CPUs as the host are capable
4558 * of emulate.
4559 */
4560 mc->max_cpus = INT32_MAX;
4561
4562 mc->no_parallel = 1;
4563 mc->default_boot_order = "";
4564 mc->default_ram_size = 512 * MiB;
4565 mc->default_ram_id = "ppc_spapr.ram";
4566 mc->default_display = "std";
4567 mc->kvm_type = spapr_kvm_type;
4568 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4569 mc->pci_allow_0_address = true;
4570 assert(!mc->get_hotplug_handler);
4571 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4572 hc->pre_plug = spapr_machine_device_pre_plug;
4573 hc->plug = spapr_machine_device_plug;
4574 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4575 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4576 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4577 hc->unplug_request = spapr_machine_device_unplug_request;
4578 hc->unplug = spapr_machine_device_unplug;
4579
4580 smc->dr_lmb_enabled = true;
4581 smc->update_dt_enabled = true;
4582 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4583 mc->has_hotpluggable_cpus = true;
4584 mc->nvdimm_supported = true;
4585 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4586 fwc->get_dev_path = spapr_get_fw_dev_path;
4587 nc->nmi_monitor_handler = spapr_nmi;
4588 smc->phb_placement = spapr_phb_placement;
4589 vhc->hypercall = emulate_spapr_hypercall;
4590 vhc->hpt_mask = spapr_hpt_mask;
4591 vhc->map_hptes = spapr_map_hptes;
4592 vhc->unmap_hptes = spapr_unmap_hptes;
4593 vhc->hpte_set_c = spapr_hpte_set_c;
4594 vhc->hpte_set_r = spapr_hpte_set_r;
4595 vhc->get_pate = spapr_get_pate;
4596 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4597 vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4598 vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4599 xic->ics_get = spapr_ics_get;
4600 xic->ics_resend = spapr_ics_resend;
4601 xic->icp_get = spapr_icp_get;
4602 ispc->print_info = spapr_pic_print_info;
4603 /* Force NUMA node memory size to be a multiple of
4604 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4605 * in which LMBs are represented and hot-added
4606 */
4607 mc->numa_mem_align_shift = 28;
4608 mc->auto_enable_numa = true;
4609
4610 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4611 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4612 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4613 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4614 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4615 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4616 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4617 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4618 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4619 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4620 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4621 spapr_caps_add_properties(smc);
4622 smc->irq = &spapr_irq_dual;
4623 smc->dr_phb_enabled = true;
4624 smc->linux_pci_probe = true;
4625 smc->smp_threads_vsmt = true;
4626 smc->nr_xirqs = SPAPR_NR_XIRQS;
4627 xfc->match_nvt = spapr_match_nvt;
4628 vmc->client_architecture_support = spapr_vof_client_architecture_support;
4629 vmc->quiesce = spapr_vof_quiesce;
4630 vmc->setprop = spapr_vof_setprop;
4631 }
4632
4633 static const TypeInfo spapr_machine_info = {
4634 .name = TYPE_SPAPR_MACHINE,
4635 .parent = TYPE_MACHINE,
4636 .abstract = true,
4637 .instance_size = sizeof(SpaprMachineState),
4638 .instance_init = spapr_instance_init,
4639 .instance_finalize = spapr_machine_finalizefn,
4640 .class_size = sizeof(SpaprMachineClass),
4641 .class_init = spapr_machine_class_init,
4642 .interfaces = (InterfaceInfo[]) {
4643 { TYPE_FW_PATH_PROVIDER },
4644 { TYPE_NMI },
4645 { TYPE_HOTPLUG_HANDLER },
4646 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4647 { TYPE_XICS_FABRIC },
4648 { TYPE_INTERRUPT_STATS_PROVIDER },
4649 { TYPE_XIVE_FABRIC },
4650 { TYPE_VOF_MACHINE_IF },
4651 { }
4652 },
4653 };
4654
4655 static void spapr_machine_latest_class_options(MachineClass *mc)
4656 {
4657 mc->alias = "pseries";
4658 mc->is_default = true;
4659 }
4660
4661 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4662 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4663 void *data) \
4664 { \
4665 MachineClass *mc = MACHINE_CLASS(oc); \
4666 spapr_machine_##suffix##_class_options(mc); \
4667 if (latest) { \
4668 spapr_machine_latest_class_options(mc); \
4669 } \
4670 } \
4671 static const TypeInfo spapr_machine_##suffix##_info = { \
4672 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4673 .parent = TYPE_SPAPR_MACHINE, \
4674 .class_init = spapr_machine_##suffix##_class_init, \
4675 }; \
4676 static void spapr_machine_register_##suffix(void) \
4677 { \
4678 type_register(&spapr_machine_##suffix##_info); \
4679 } \
4680 type_init(spapr_machine_register_##suffix)
4681
4682 /*
4683 * pseries-6.1
4684 */
4685 static void spapr_machine_6_1_class_options(MachineClass *mc)
4686 {
4687 /* Defaults for the latest behaviour inherited from the base class */
4688 }
4689
4690 DEFINE_SPAPR_MACHINE(6_1, "6.1", true);
4691
4692 /*
4693 * pseries-6.0
4694 */
4695 static void spapr_machine_6_0_class_options(MachineClass *mc)
4696 {
4697 spapr_machine_6_1_class_options(mc);
4698 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
4699 }
4700
4701 DEFINE_SPAPR_MACHINE(6_0, "6.0", false);
4702
4703 /*
4704 * pseries-5.2
4705 */
4706 static void spapr_machine_5_2_class_options(MachineClass *mc)
4707 {
4708 spapr_machine_6_0_class_options(mc);
4709 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
4710 }
4711
4712 DEFINE_SPAPR_MACHINE(5_2, "5.2", false);
4713
4714 /*
4715 * pseries-5.1
4716 */
4717 static void spapr_machine_5_1_class_options(MachineClass *mc)
4718 {
4719 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4720
4721 spapr_machine_5_2_class_options(mc);
4722 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4723 smc->pre_5_2_numa_associativity = true;
4724 }
4725
4726 DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4727
4728 /*
4729 * pseries-5.0
4730 */
4731 static void spapr_machine_5_0_class_options(MachineClass *mc)
4732 {
4733 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4734 static GlobalProperty compat[] = {
4735 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4736 };
4737
4738 spapr_machine_5_1_class_options(mc);
4739 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4740 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4741 mc->numa_mem_supported = true;
4742 smc->pre_5_1_assoc_refpoints = true;
4743 }
4744
4745 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4746
4747 /*
4748 * pseries-4.2
4749 */
4750 static void spapr_machine_4_2_class_options(MachineClass *mc)
4751 {
4752 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4753
4754 spapr_machine_5_0_class_options(mc);
4755 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4756 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4757 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4758 smc->rma_limit = 16 * GiB;
4759 mc->nvdimm_supported = false;
4760 }
4761
4762 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4763
4764 /*
4765 * pseries-4.1
4766 */
4767 static void spapr_machine_4_1_class_options(MachineClass *mc)
4768 {
4769 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4770 static GlobalProperty compat[] = {
4771 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4772 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4773 };
4774
4775 spapr_machine_4_2_class_options(mc);
4776 smc->linux_pci_probe = false;
4777 smc->smp_threads_vsmt = false;
4778 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4779 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4780 }
4781
4782 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4783
4784 /*
4785 * pseries-4.0
4786 */
4787 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4788 uint64_t *buid, hwaddr *pio,
4789 hwaddr *mmio32, hwaddr *mmio64,
4790 unsigned n_dma, uint32_t *liobns,
4791 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4792 {
4793 if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma,
4794 liobns, nv2gpa, nv2atsd, errp)) {
4795 return false;
4796 }
4797
4798 *nv2gpa = 0;
4799 *nv2atsd = 0;
4800 return true;
4801 }
4802 static void spapr_machine_4_0_class_options(MachineClass *mc)
4803 {
4804 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4805
4806 spapr_machine_4_1_class_options(mc);
4807 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4808 smc->phb_placement = phb_placement_4_0;
4809 smc->irq = &spapr_irq_xics;
4810 smc->pre_4_1_migration = true;
4811 }
4812
4813 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4814
4815 /*
4816 * pseries-3.1
4817 */
4818 static void spapr_machine_3_1_class_options(MachineClass *mc)
4819 {
4820 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4821
4822 spapr_machine_4_0_class_options(mc);
4823 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4824
4825 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4826 smc->update_dt_enabled = false;
4827 smc->dr_phb_enabled = false;
4828 smc->broken_host_serial_model = true;
4829 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4830 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4831 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4832 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4833 }
4834
4835 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4836
4837 /*
4838 * pseries-3.0
4839 */
4840
4841 static void spapr_machine_3_0_class_options(MachineClass *mc)
4842 {
4843 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4844
4845 spapr_machine_3_1_class_options(mc);
4846 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4847
4848 smc->legacy_irq_allocation = true;
4849 smc->nr_xirqs = 0x400;
4850 smc->irq = &spapr_irq_xics_legacy;
4851 }
4852
4853 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4854
4855 /*
4856 * pseries-2.12
4857 */
4858 static void spapr_machine_2_12_class_options(MachineClass *mc)
4859 {
4860 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4861 static GlobalProperty compat[] = {
4862 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4863 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4864 };
4865
4866 spapr_machine_3_0_class_options(mc);
4867 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4868 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4869
4870 /* We depend on kvm_enabled() to choose a default value for the
4871 * hpt-max-page-size capability. Of course we can't do it here
4872 * because this is too early and the HW accelerator isn't initialzed
4873 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4874 */
4875 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4876 }
4877
4878 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4879
4880 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4881 {
4882 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4883
4884 spapr_machine_2_12_class_options(mc);
4885 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4886 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4887 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4888 }
4889
4890 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4891
4892 /*
4893 * pseries-2.11
4894 */
4895
4896 static void spapr_machine_2_11_class_options(MachineClass *mc)
4897 {
4898 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4899
4900 spapr_machine_2_12_class_options(mc);
4901 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4902 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4903 }
4904
4905 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4906
4907 /*
4908 * pseries-2.10
4909 */
4910
4911 static void spapr_machine_2_10_class_options(MachineClass *mc)
4912 {
4913 spapr_machine_2_11_class_options(mc);
4914 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4915 }
4916
4917 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4918
4919 /*
4920 * pseries-2.9
4921 */
4922
4923 static void spapr_machine_2_9_class_options(MachineClass *mc)
4924 {
4925 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4926 static GlobalProperty compat[] = {
4927 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4928 };
4929
4930 spapr_machine_2_10_class_options(mc);
4931 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4932 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4933 smc->pre_2_10_has_unused_icps = true;
4934 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4935 }
4936
4937 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4938
4939 /*
4940 * pseries-2.8
4941 */
4942
4943 static void spapr_machine_2_8_class_options(MachineClass *mc)
4944 {
4945 static GlobalProperty compat[] = {
4946 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4947 };
4948
4949 spapr_machine_2_9_class_options(mc);
4950 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4951 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4952 mc->numa_mem_align_shift = 23;
4953 }
4954
4955 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4956
4957 /*
4958 * pseries-2.7
4959 */
4960
4961 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4962 uint64_t *buid, hwaddr *pio,
4963 hwaddr *mmio32, hwaddr *mmio64,
4964 unsigned n_dma, uint32_t *liobns,
4965 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4966 {
4967 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4968 const uint64_t base_buid = 0x800000020000000ULL;
4969 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4970 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4971 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4972 const uint32_t max_index = 255;
4973 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4974
4975 uint64_t ram_top = MACHINE(spapr)->ram_size;
4976 hwaddr phb0_base, phb_base;
4977 int i;
4978
4979 /* Do we have device memory? */
4980 if (MACHINE(spapr)->maxram_size > ram_top) {
4981 /* Can't just use maxram_size, because there may be an
4982 * alignment gap between normal and device memory regions
4983 */
4984 ram_top = MACHINE(spapr)->device_memory->base +
4985 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4986 }
4987
4988 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4989
4990 if (index > max_index) {
4991 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4992 max_index);
4993 return false;
4994 }
4995
4996 *buid = base_buid + index;
4997 for (i = 0; i < n_dma; ++i) {
4998 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4999 }
5000
5001 phb_base = phb0_base + index * phb_spacing;
5002 *pio = phb_base + pio_offset;
5003 *mmio32 = phb_base + mmio_offset;
5004 /*
5005 * We don't set the 64-bit MMIO window, relying on the PHB's
5006 * fallback behaviour of automatically splitting a large "32-bit"
5007 * window into contiguous 32-bit and 64-bit windows
5008 */
5009
5010 *nv2gpa = 0;
5011 *nv2atsd = 0;
5012 return true;
5013 }
5014
5015 static void spapr_machine_2_7_class_options(MachineClass *mc)
5016 {
5017 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5018 static GlobalProperty compat[] = {
5019 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
5020 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
5021 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
5022 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
5023 };
5024
5025 spapr_machine_2_8_class_options(mc);
5026 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
5027 mc->default_machine_opts = "modern-hotplug-events=off";
5028 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
5029 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5030 smc->phb_placement = phb_placement_2_7;
5031 }
5032
5033 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
5034
5035 /*
5036 * pseries-2.6
5037 */
5038
5039 static void spapr_machine_2_6_class_options(MachineClass *mc)
5040 {
5041 static GlobalProperty compat[] = {
5042 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
5043 };
5044
5045 spapr_machine_2_7_class_options(mc);
5046 mc->has_hotpluggable_cpus = false;
5047 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
5048 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5049 }
5050
5051 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
5052
5053 /*
5054 * pseries-2.5
5055 */
5056
5057 static void spapr_machine_2_5_class_options(MachineClass *mc)
5058 {
5059 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5060 static GlobalProperty compat[] = {
5061 { "spapr-vlan", "use-rx-buffer-pools", "off" },
5062 };
5063
5064 spapr_machine_2_6_class_options(mc);
5065 smc->use_ohci_by_default = true;
5066 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
5067 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5068 }
5069
5070 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
5071
5072 /*
5073 * pseries-2.4
5074 */
5075
5076 static void spapr_machine_2_4_class_options(MachineClass *mc)
5077 {
5078 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5079
5080 spapr_machine_2_5_class_options(mc);
5081 smc->dr_lmb_enabled = false;
5082 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
5083 }
5084
5085 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
5086
5087 /*
5088 * pseries-2.3
5089 */
5090
5091 static void spapr_machine_2_3_class_options(MachineClass *mc)
5092 {
5093 static GlobalProperty compat[] = {
5094 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
5095 };
5096 spapr_machine_2_4_class_options(mc);
5097 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
5098 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5099 }
5100 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
5101
5102 /*
5103 * pseries-2.2
5104 */
5105
5106 static void spapr_machine_2_2_class_options(MachineClass *mc)
5107 {
5108 static GlobalProperty compat[] = {
5109 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
5110 };
5111
5112 spapr_machine_2_3_class_options(mc);
5113 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
5114 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5115 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
5116 }
5117 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
5118
5119 /*
5120 * pseries-2.1
5121 */
5122
5123 static void spapr_machine_2_1_class_options(MachineClass *mc)
5124 {
5125 spapr_machine_2_2_class_options(mc);
5126 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
5127 }
5128 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
5129
5130 static void spapr_machine_register_types(void)
5131 {
5132 type_register_static(&spapr_machine_info);
5133 }
5134
5135 type_init(spapr_machine_register_types)