]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr.c
spapr: Forbid setting ic-mode for old machine types
[mirror_qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/numa.h"
32 #include "hw/hw.h"
33 #include "qemu/log.h"
34 #include "hw/fw-path-provider.h"
35 #include "elf.h"
36 #include "net/net.h"
37 #include "sysemu/device_tree.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/hw_accel.h"
40 #include "kvm_ppc.h"
41 #include "migration/misc.h"
42 #include "migration/global_state.h"
43 #include "migration/register.h"
44 #include "mmu-hash64.h"
45 #include "mmu-book3s-v3.h"
46 #include "cpu-models.h"
47 #include "qom/cpu.h"
48
49 #include "hw/boards.h"
50 #include "hw/ppc/ppc.h"
51 #include "hw/loader.h"
52
53 #include "hw/ppc/fdt.h"
54 #include "hw/ppc/spapr.h"
55 #include "hw/ppc/spapr_vio.h"
56 #include "hw/pci-host/spapr.h"
57 #include "hw/pci/msi.h"
58
59 #include "hw/pci/pci.h"
60 #include "hw/scsi/scsi.h"
61 #include "hw/virtio/virtio-scsi.h"
62 #include "hw/virtio/vhost-scsi-common.h"
63
64 #include "exec/address-spaces.h"
65 #include "exec/ram_addr.h"
66 #include "hw/usb.h"
67 #include "qemu/config-file.h"
68 #include "qemu/error-report.h"
69 #include "trace.h"
70 #include "hw/nmi.h"
71 #include "hw/intc/intc.h"
72
73 #include "qemu/cutils.h"
74 #include "hw/ppc/spapr_cpu_core.h"
75 #include "hw/mem/memory-device.h"
76
77 #include <libfdt.h>
78
79 /* SLOF memory layout:
80 *
81 * SLOF raw image loaded at 0, copies its romfs right below the flat
82 * device-tree, then position SLOF itself 31M below that
83 *
84 * So we set FW_OVERHEAD to 40MB which should account for all of that
85 * and more
86 *
87 * We load our kernel at 4M, leaving space for SLOF initial image
88 */
89 #define FDT_MAX_SIZE 0x100000
90 #define RTAS_MAX_SIZE 0x10000
91 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
92 #define FW_MAX_SIZE 0x400000
93 #define FW_FILE_NAME "slof.bin"
94 #define FW_OVERHEAD 0x2800000
95 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
96
97 #define MIN_RMA_SLOF 128UL
98
99 #define PHANDLE_XICP 0x00001111
100
101 /* These two functions implement the VCPU id numbering: one to compute them
102 * all and one to identify thread 0 of a VCORE. Any change to the first one
103 * is likely to have an impact on the second one, so let's keep them close.
104 */
105 static int spapr_vcpu_id(sPAPRMachineState *spapr, int cpu_index)
106 {
107 assert(spapr->vsmt);
108 return
109 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
110 }
111 static bool spapr_is_thread0_in_vcore(sPAPRMachineState *spapr,
112 PowerPCCPU *cpu)
113 {
114 assert(spapr->vsmt);
115 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
116 }
117
118 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
119 {
120 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
121 * and newer QEMUs don't even have them. In both cases, we don't want
122 * to send anything on the wire.
123 */
124 return false;
125 }
126
127 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
128 .name = "icp/server",
129 .version_id = 1,
130 .minimum_version_id = 1,
131 .needed = pre_2_10_vmstate_dummy_icp_needed,
132 .fields = (VMStateField[]) {
133 VMSTATE_UNUSED(4), /* uint32_t xirr */
134 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
135 VMSTATE_UNUSED(1), /* uint8_t mfrr */
136 VMSTATE_END_OF_LIST()
137 },
138 };
139
140 static void pre_2_10_vmstate_register_dummy_icp(int i)
141 {
142 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
143 (void *)(uintptr_t) i);
144 }
145
146 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
147 {
148 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
149 (void *)(uintptr_t) i);
150 }
151
152 int spapr_max_server_number(sPAPRMachineState *spapr)
153 {
154 assert(spapr->vsmt);
155 return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads);
156 }
157
158 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
159 int smt_threads)
160 {
161 int i, ret = 0;
162 uint32_t servers_prop[smt_threads];
163 uint32_t gservers_prop[smt_threads * 2];
164 int index = spapr_get_vcpu_id(cpu);
165
166 if (cpu->compat_pvr) {
167 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
168 if (ret < 0) {
169 return ret;
170 }
171 }
172
173 /* Build interrupt servers and gservers properties */
174 for (i = 0; i < smt_threads; i++) {
175 servers_prop[i] = cpu_to_be32(index + i);
176 /* Hack, direct the group queues back to cpu 0 */
177 gservers_prop[i*2] = cpu_to_be32(index + i);
178 gservers_prop[i*2 + 1] = 0;
179 }
180 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
181 servers_prop, sizeof(servers_prop));
182 if (ret < 0) {
183 return ret;
184 }
185 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
186 gservers_prop, sizeof(gservers_prop));
187
188 return ret;
189 }
190
191 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
192 {
193 int index = spapr_get_vcpu_id(cpu);
194 uint32_t associativity[] = {cpu_to_be32(0x5),
195 cpu_to_be32(0x0),
196 cpu_to_be32(0x0),
197 cpu_to_be32(0x0),
198 cpu_to_be32(cpu->node_id),
199 cpu_to_be32(index)};
200
201 /* Advertise NUMA via ibm,associativity */
202 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
203 sizeof(associativity));
204 }
205
206 /* Populate the "ibm,pa-features" property */
207 static void spapr_populate_pa_features(sPAPRMachineState *spapr,
208 PowerPCCPU *cpu,
209 void *fdt, int offset,
210 bool legacy_guest)
211 {
212 uint8_t pa_features_206[] = { 6, 0,
213 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
214 uint8_t pa_features_207[] = { 24, 0,
215 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
216 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
217 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
218 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
219 uint8_t pa_features_300[] = { 66, 0,
220 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
221 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
222 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
223 /* 6: DS207 */
224 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
225 /* 16: Vector */
226 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
227 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
228 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
229 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
230 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
231 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
232 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
233 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
234 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
235 /* 42: PM, 44: PC RA, 46: SC vec'd */
236 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
237 /* 48: SIMD, 50: QP BFP, 52: String */
238 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
239 /* 54: DecFP, 56: DecI, 58: SHA */
240 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
241 /* 60: NM atomic, 62: RNG */
242 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
243 };
244 uint8_t *pa_features = NULL;
245 size_t pa_size;
246
247 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
248 pa_features = pa_features_206;
249 pa_size = sizeof(pa_features_206);
250 }
251 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
252 pa_features = pa_features_207;
253 pa_size = sizeof(pa_features_207);
254 }
255 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
256 pa_features = pa_features_300;
257 pa_size = sizeof(pa_features_300);
258 }
259 if (!pa_features) {
260 return;
261 }
262
263 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
264 /*
265 * Note: we keep CI large pages off by default because a 64K capable
266 * guest provisioned with large pages might otherwise try to map a qemu
267 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
268 * even if that qemu runs on a 4k host.
269 * We dd this bit back here if we are confident this is not an issue
270 */
271 pa_features[3] |= 0x20;
272 }
273 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
274 pa_features[24] |= 0x80; /* Transactional memory support */
275 }
276 if (legacy_guest && pa_size > 40) {
277 /* Workaround for broken kernels that attempt (guest) radix
278 * mode when they can't handle it, if they see the radix bit set
279 * in pa-features. So hide it from them. */
280 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
281 }
282
283 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
284 }
285
286 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
287 {
288 int ret = 0, offset, cpus_offset;
289 CPUState *cs;
290 char cpu_model[32];
291 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
292
293 CPU_FOREACH(cs) {
294 PowerPCCPU *cpu = POWERPC_CPU(cs);
295 DeviceClass *dc = DEVICE_GET_CLASS(cs);
296 int index = spapr_get_vcpu_id(cpu);
297 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
298
299 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
300 continue;
301 }
302
303 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
304
305 cpus_offset = fdt_path_offset(fdt, "/cpus");
306 if (cpus_offset < 0) {
307 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
308 if (cpus_offset < 0) {
309 return cpus_offset;
310 }
311 }
312 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
313 if (offset < 0) {
314 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
315 if (offset < 0) {
316 return offset;
317 }
318 }
319
320 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
321 pft_size_prop, sizeof(pft_size_prop));
322 if (ret < 0) {
323 return ret;
324 }
325
326 if (nb_numa_nodes > 1) {
327 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
328 if (ret < 0) {
329 return ret;
330 }
331 }
332
333 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
334 if (ret < 0) {
335 return ret;
336 }
337
338 spapr_populate_pa_features(spapr, cpu, fdt, offset,
339 spapr->cas_legacy_guest_workaround);
340 }
341 return ret;
342 }
343
344 static hwaddr spapr_node0_size(MachineState *machine)
345 {
346 if (nb_numa_nodes) {
347 int i;
348 for (i = 0; i < nb_numa_nodes; ++i) {
349 if (numa_info[i].node_mem) {
350 return MIN(pow2floor(numa_info[i].node_mem),
351 machine->ram_size);
352 }
353 }
354 }
355 return machine->ram_size;
356 }
357
358 static void add_str(GString *s, const gchar *s1)
359 {
360 g_string_append_len(s, s1, strlen(s1) + 1);
361 }
362
363 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
364 hwaddr size)
365 {
366 uint32_t associativity[] = {
367 cpu_to_be32(0x4), /* length */
368 cpu_to_be32(0x0), cpu_to_be32(0x0),
369 cpu_to_be32(0x0), cpu_to_be32(nodeid)
370 };
371 char mem_name[32];
372 uint64_t mem_reg_property[2];
373 int off;
374
375 mem_reg_property[0] = cpu_to_be64(start);
376 mem_reg_property[1] = cpu_to_be64(size);
377
378 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
379 off = fdt_add_subnode(fdt, 0, mem_name);
380 _FDT(off);
381 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
382 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
383 sizeof(mem_reg_property))));
384 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
385 sizeof(associativity))));
386 return off;
387 }
388
389 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
390 {
391 MachineState *machine = MACHINE(spapr);
392 hwaddr mem_start, node_size;
393 int i, nb_nodes = nb_numa_nodes;
394 NodeInfo *nodes = numa_info;
395 NodeInfo ramnode;
396
397 /* No NUMA nodes, assume there is just one node with whole RAM */
398 if (!nb_numa_nodes) {
399 nb_nodes = 1;
400 ramnode.node_mem = machine->ram_size;
401 nodes = &ramnode;
402 }
403
404 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
405 if (!nodes[i].node_mem) {
406 continue;
407 }
408 if (mem_start >= machine->ram_size) {
409 node_size = 0;
410 } else {
411 node_size = nodes[i].node_mem;
412 if (node_size > machine->ram_size - mem_start) {
413 node_size = machine->ram_size - mem_start;
414 }
415 }
416 if (!mem_start) {
417 /* spapr_machine_init() checks for rma_size <= node0_size
418 * already */
419 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
420 mem_start += spapr->rma_size;
421 node_size -= spapr->rma_size;
422 }
423 for ( ; node_size; ) {
424 hwaddr sizetmp = pow2floor(node_size);
425
426 /* mem_start != 0 here */
427 if (ctzl(mem_start) < ctzl(sizetmp)) {
428 sizetmp = 1ULL << ctzl(mem_start);
429 }
430
431 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
432 node_size -= sizetmp;
433 mem_start += sizetmp;
434 }
435 }
436
437 return 0;
438 }
439
440 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
441 sPAPRMachineState *spapr)
442 {
443 PowerPCCPU *cpu = POWERPC_CPU(cs);
444 CPUPPCState *env = &cpu->env;
445 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
446 int index = spapr_get_vcpu_id(cpu);
447 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
448 0xffffffff, 0xffffffff};
449 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
450 : SPAPR_TIMEBASE_FREQ;
451 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
452 uint32_t page_sizes_prop[64];
453 size_t page_sizes_prop_size;
454 uint32_t vcpus_per_socket = smp_threads * smp_cores;
455 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
456 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
457 sPAPRDRConnector *drc;
458 int drc_index;
459 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
460 int i;
461
462 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
463 if (drc) {
464 drc_index = spapr_drc_index(drc);
465 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
466 }
467
468 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
469 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
470
471 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
472 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
473 env->dcache_line_size)));
474 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
475 env->dcache_line_size)));
476 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
477 env->icache_line_size)));
478 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
479 env->icache_line_size)));
480
481 if (pcc->l1_dcache_size) {
482 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
483 pcc->l1_dcache_size)));
484 } else {
485 warn_report("Unknown L1 dcache size for cpu");
486 }
487 if (pcc->l1_icache_size) {
488 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
489 pcc->l1_icache_size)));
490 } else {
491 warn_report("Unknown L1 icache size for cpu");
492 }
493
494 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
495 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
496 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
497 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
498 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
499 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
500
501 if (env->spr_cb[SPR_PURR].oea_read) {
502 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
503 }
504
505 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
506 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
507 segs, sizeof(segs))));
508 }
509
510 /* Advertise VSX (vector extensions) if available
511 * 1 == VMX / Altivec available
512 * 2 == VSX available
513 *
514 * Only CPUs for which we create core types in spapr_cpu_core.c
515 * are possible, and all of those have VMX */
516 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
517 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
518 } else {
519 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
520 }
521
522 /* Advertise DFP (Decimal Floating Point) if available
523 * 0 / no property == no DFP
524 * 1 == DFP available */
525 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
526 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
527 }
528
529 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
530 sizeof(page_sizes_prop));
531 if (page_sizes_prop_size) {
532 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
533 page_sizes_prop, page_sizes_prop_size)));
534 }
535
536 spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
537
538 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
539 cs->cpu_index / vcpus_per_socket)));
540
541 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
542 pft_size_prop, sizeof(pft_size_prop))));
543
544 if (nb_numa_nodes > 1) {
545 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
546 }
547
548 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
549
550 if (pcc->radix_page_info) {
551 for (i = 0; i < pcc->radix_page_info->count; i++) {
552 radix_AP_encodings[i] =
553 cpu_to_be32(pcc->radix_page_info->entries[i]);
554 }
555 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
556 radix_AP_encodings,
557 pcc->radix_page_info->count *
558 sizeof(radix_AP_encodings[0]))));
559 }
560 }
561
562 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
563 {
564 CPUState **rev;
565 CPUState *cs;
566 int n_cpus;
567 int cpus_offset;
568 char *nodename;
569 int i;
570
571 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
572 _FDT(cpus_offset);
573 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
574 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
575
576 /*
577 * We walk the CPUs in reverse order to ensure that CPU DT nodes
578 * created by fdt_add_subnode() end up in the right order in FDT
579 * for the guest kernel the enumerate the CPUs correctly.
580 *
581 * The CPU list cannot be traversed in reverse order, so we need
582 * to do extra work.
583 */
584 n_cpus = 0;
585 rev = NULL;
586 CPU_FOREACH(cs) {
587 rev = g_renew(CPUState *, rev, n_cpus + 1);
588 rev[n_cpus++] = cs;
589 }
590
591 for (i = n_cpus - 1; i >= 0; i--) {
592 CPUState *cs = rev[i];
593 PowerPCCPU *cpu = POWERPC_CPU(cs);
594 int index = spapr_get_vcpu_id(cpu);
595 DeviceClass *dc = DEVICE_GET_CLASS(cs);
596 int offset;
597
598 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
599 continue;
600 }
601
602 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
603 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
604 g_free(nodename);
605 _FDT(offset);
606 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
607 }
608
609 g_free(rev);
610 }
611
612 static int spapr_rng_populate_dt(void *fdt)
613 {
614 int node;
615 int ret;
616
617 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
618 if (node <= 0) {
619 return -1;
620 }
621 ret = fdt_setprop_string(fdt, node, "device_type",
622 "ibm,platform-facilities");
623 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
624 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
625
626 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
627 if (node <= 0) {
628 return -1;
629 }
630 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
631
632 return ret ? -1 : 0;
633 }
634
635 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
636 {
637 MemoryDeviceInfoList *info;
638
639 for (info = list; info; info = info->next) {
640 MemoryDeviceInfo *value = info->value;
641
642 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
643 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
644
645 if (addr >= pcdimm_info->addr &&
646 addr < (pcdimm_info->addr + pcdimm_info->size)) {
647 return pcdimm_info->node;
648 }
649 }
650 }
651
652 return -1;
653 }
654
655 struct sPAPRDrconfCellV2 {
656 uint32_t seq_lmbs;
657 uint64_t base_addr;
658 uint32_t drc_index;
659 uint32_t aa_index;
660 uint32_t flags;
661 } QEMU_PACKED;
662
663 typedef struct DrconfCellQueue {
664 struct sPAPRDrconfCellV2 cell;
665 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
666 } DrconfCellQueue;
667
668 static DrconfCellQueue *
669 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
670 uint32_t drc_index, uint32_t aa_index,
671 uint32_t flags)
672 {
673 DrconfCellQueue *elem;
674
675 elem = g_malloc0(sizeof(*elem));
676 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
677 elem->cell.base_addr = cpu_to_be64(base_addr);
678 elem->cell.drc_index = cpu_to_be32(drc_index);
679 elem->cell.aa_index = cpu_to_be32(aa_index);
680 elem->cell.flags = cpu_to_be32(flags);
681
682 return elem;
683 }
684
685 /* ibm,dynamic-memory-v2 */
686 static int spapr_populate_drmem_v2(sPAPRMachineState *spapr, void *fdt,
687 int offset, MemoryDeviceInfoList *dimms)
688 {
689 MachineState *machine = MACHINE(spapr);
690 uint8_t *int_buf, *cur_index, buf_len;
691 int ret;
692 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
693 uint64_t addr, cur_addr, size;
694 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
695 uint64_t mem_end = machine->device_memory->base +
696 memory_region_size(&machine->device_memory->mr);
697 uint32_t node, nr_entries = 0;
698 sPAPRDRConnector *drc;
699 DrconfCellQueue *elem, *next;
700 MemoryDeviceInfoList *info;
701 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
702 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
703
704 /* Entry to cover RAM and the gap area */
705 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
706 SPAPR_LMB_FLAGS_RESERVED |
707 SPAPR_LMB_FLAGS_DRC_INVALID);
708 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
709 nr_entries++;
710
711 cur_addr = machine->device_memory->base;
712 for (info = dimms; info; info = info->next) {
713 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
714
715 addr = di->addr;
716 size = di->size;
717 node = di->node;
718
719 /* Entry for hot-pluggable area */
720 if (cur_addr < addr) {
721 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
722 g_assert(drc);
723 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
724 cur_addr, spapr_drc_index(drc), -1, 0);
725 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
726 nr_entries++;
727 }
728
729 /* Entry for DIMM */
730 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
731 g_assert(drc);
732 elem = spapr_get_drconf_cell(size / lmb_size, addr,
733 spapr_drc_index(drc), node,
734 SPAPR_LMB_FLAGS_ASSIGNED);
735 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
736 nr_entries++;
737 cur_addr = addr + size;
738 }
739
740 /* Entry for remaining hotpluggable area */
741 if (cur_addr < mem_end) {
742 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
743 g_assert(drc);
744 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
745 cur_addr, spapr_drc_index(drc), -1, 0);
746 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
747 nr_entries++;
748 }
749
750 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
751 int_buf = cur_index = g_malloc0(buf_len);
752 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
753 cur_index += sizeof(nr_entries);
754
755 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
756 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
757 cur_index += sizeof(elem->cell);
758 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
759 g_free(elem);
760 }
761
762 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
763 g_free(int_buf);
764 if (ret < 0) {
765 return -1;
766 }
767 return 0;
768 }
769
770 /* ibm,dynamic-memory */
771 static int spapr_populate_drmem_v1(sPAPRMachineState *spapr, void *fdt,
772 int offset, MemoryDeviceInfoList *dimms)
773 {
774 MachineState *machine = MACHINE(spapr);
775 int i, ret;
776 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
777 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
778 uint32_t nr_lmbs = (machine->device_memory->base +
779 memory_region_size(&machine->device_memory->mr)) /
780 lmb_size;
781 uint32_t *int_buf, *cur_index, buf_len;
782
783 /*
784 * Allocate enough buffer size to fit in ibm,dynamic-memory
785 */
786 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
787 cur_index = int_buf = g_malloc0(buf_len);
788 int_buf[0] = cpu_to_be32(nr_lmbs);
789 cur_index++;
790 for (i = 0; i < nr_lmbs; i++) {
791 uint64_t addr = i * lmb_size;
792 uint32_t *dynamic_memory = cur_index;
793
794 if (i >= device_lmb_start) {
795 sPAPRDRConnector *drc;
796
797 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
798 g_assert(drc);
799
800 dynamic_memory[0] = cpu_to_be32(addr >> 32);
801 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
802 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
803 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
804 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
805 if (memory_region_present(get_system_memory(), addr)) {
806 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
807 } else {
808 dynamic_memory[5] = cpu_to_be32(0);
809 }
810 } else {
811 /*
812 * LMB information for RMA, boot time RAM and gap b/n RAM and
813 * device memory region -- all these are marked as reserved
814 * and as having no valid DRC.
815 */
816 dynamic_memory[0] = cpu_to_be32(addr >> 32);
817 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
818 dynamic_memory[2] = cpu_to_be32(0);
819 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
820 dynamic_memory[4] = cpu_to_be32(-1);
821 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
822 SPAPR_LMB_FLAGS_DRC_INVALID);
823 }
824
825 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
826 }
827 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
828 g_free(int_buf);
829 if (ret < 0) {
830 return -1;
831 }
832 return 0;
833 }
834
835 /*
836 * Adds ibm,dynamic-reconfiguration-memory node.
837 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
838 * of this device tree node.
839 */
840 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
841 {
842 MachineState *machine = MACHINE(spapr);
843 int ret, i, offset;
844 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
845 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
846 uint32_t *int_buf, *cur_index, buf_len;
847 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
848 MemoryDeviceInfoList *dimms = NULL;
849
850 /*
851 * Don't create the node if there is no device memory
852 */
853 if (machine->ram_size == machine->maxram_size) {
854 return 0;
855 }
856
857 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
858
859 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
860 sizeof(prop_lmb_size));
861 if (ret < 0) {
862 return ret;
863 }
864
865 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
866 if (ret < 0) {
867 return ret;
868 }
869
870 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
871 if (ret < 0) {
872 return ret;
873 }
874
875 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
876 dimms = qmp_memory_device_list();
877 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
878 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
879 } else {
880 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
881 }
882 qapi_free_MemoryDeviceInfoList(dimms);
883
884 if (ret < 0) {
885 return ret;
886 }
887
888 /* ibm,associativity-lookup-arrays */
889 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
890 cur_index = int_buf = g_malloc0(buf_len);
891 int_buf[0] = cpu_to_be32(nr_nodes);
892 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
893 cur_index += 2;
894 for (i = 0; i < nr_nodes; i++) {
895 uint32_t associativity[] = {
896 cpu_to_be32(0x0),
897 cpu_to_be32(0x0),
898 cpu_to_be32(0x0),
899 cpu_to_be32(i)
900 };
901 memcpy(cur_index, associativity, sizeof(associativity));
902 cur_index += 4;
903 }
904 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
905 (cur_index - int_buf) * sizeof(uint32_t));
906 g_free(int_buf);
907
908 return ret;
909 }
910
911 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
912 sPAPROptionVector *ov5_updates)
913 {
914 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
915 int ret = 0, offset;
916
917 /* Generate ibm,dynamic-reconfiguration-memory node if required */
918 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
919 g_assert(smc->dr_lmb_enabled);
920 ret = spapr_populate_drconf_memory(spapr, fdt);
921 if (ret) {
922 goto out;
923 }
924 }
925
926 offset = fdt_path_offset(fdt, "/chosen");
927 if (offset < 0) {
928 offset = fdt_add_subnode(fdt, 0, "chosen");
929 if (offset < 0) {
930 return offset;
931 }
932 }
933 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
934 "ibm,architecture-vec-5");
935
936 out:
937 return ret;
938 }
939
940 static bool spapr_hotplugged_dev_before_cas(void)
941 {
942 Object *drc_container, *obj;
943 ObjectProperty *prop;
944 ObjectPropertyIterator iter;
945
946 drc_container = container_get(object_get_root(), "/dr-connector");
947 object_property_iter_init(&iter, drc_container);
948 while ((prop = object_property_iter_next(&iter))) {
949 if (!strstart(prop->type, "link<", NULL)) {
950 continue;
951 }
952 obj = object_property_get_link(drc_container, prop->name, NULL);
953 if (spapr_drc_needed(obj)) {
954 return true;
955 }
956 }
957 return false;
958 }
959
960 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
961 target_ulong addr, target_ulong size,
962 sPAPROptionVector *ov5_updates)
963 {
964 void *fdt, *fdt_skel;
965 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
966
967 if (spapr_hotplugged_dev_before_cas()) {
968 return 1;
969 }
970
971 if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
972 error_report("SLOF provided an unexpected CAS buffer size "
973 TARGET_FMT_lu " (min: %zu, max: %u)",
974 size, sizeof(hdr), FW_MAX_SIZE);
975 exit(EXIT_FAILURE);
976 }
977
978 size -= sizeof(hdr);
979
980 /* Create skeleton */
981 fdt_skel = g_malloc0(size);
982 _FDT((fdt_create(fdt_skel, size)));
983 _FDT((fdt_finish_reservemap(fdt_skel)));
984 _FDT((fdt_begin_node(fdt_skel, "")));
985 _FDT((fdt_end_node(fdt_skel)));
986 _FDT((fdt_finish(fdt_skel)));
987 fdt = g_malloc0(size);
988 _FDT((fdt_open_into(fdt_skel, fdt, size)));
989 g_free(fdt_skel);
990
991 /* Fixup cpu nodes */
992 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
993
994 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
995 return -1;
996 }
997
998 /* Pack resulting tree */
999 _FDT((fdt_pack(fdt)));
1000
1001 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1002 trace_spapr_cas_failed(size);
1003 return -1;
1004 }
1005
1006 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1007 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1008 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1009 g_free(fdt);
1010
1011 return 0;
1012 }
1013
1014 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
1015 {
1016 int rtas;
1017 GString *hypertas = g_string_sized_new(256);
1018 GString *qemu_hypertas = g_string_sized_new(256);
1019 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1020 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1021 memory_region_size(&MACHINE(spapr)->device_memory->mr);
1022 uint32_t lrdr_capacity[] = {
1023 cpu_to_be32(max_device_addr >> 32),
1024 cpu_to_be32(max_device_addr & 0xffffffff),
1025 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1026 cpu_to_be32(max_cpus / smp_threads),
1027 };
1028 uint32_t maxdomains[] = {
1029 cpu_to_be32(4),
1030 cpu_to_be32(0),
1031 cpu_to_be32(0),
1032 cpu_to_be32(0),
1033 cpu_to_be32(nb_numa_nodes ? nb_numa_nodes : 1),
1034 };
1035
1036 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1037
1038 /* hypertas */
1039 add_str(hypertas, "hcall-pft");
1040 add_str(hypertas, "hcall-term");
1041 add_str(hypertas, "hcall-dabr");
1042 add_str(hypertas, "hcall-interrupt");
1043 add_str(hypertas, "hcall-tce");
1044 add_str(hypertas, "hcall-vio");
1045 add_str(hypertas, "hcall-splpar");
1046 add_str(hypertas, "hcall-bulk");
1047 add_str(hypertas, "hcall-set-mode");
1048 add_str(hypertas, "hcall-sprg0");
1049 add_str(hypertas, "hcall-copy");
1050 add_str(hypertas, "hcall-debug");
1051 add_str(hypertas, "hcall-vphn");
1052 add_str(qemu_hypertas, "hcall-memop1");
1053
1054 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1055 add_str(hypertas, "hcall-multi-tce");
1056 }
1057
1058 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1059 add_str(hypertas, "hcall-hpt-resize");
1060 }
1061
1062 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1063 hypertas->str, hypertas->len));
1064 g_string_free(hypertas, TRUE);
1065 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1066 qemu_hypertas->str, qemu_hypertas->len));
1067 g_string_free(qemu_hypertas, TRUE);
1068
1069 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1070 refpoints, sizeof(refpoints)));
1071
1072 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1073 maxdomains, sizeof(maxdomains)));
1074
1075 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1076 RTAS_ERROR_LOG_MAX));
1077 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1078 RTAS_EVENT_SCAN_RATE));
1079
1080 g_assert(msi_nonbroken);
1081 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1082
1083 /*
1084 * According to PAPR, rtas ibm,os-term does not guarantee a return
1085 * back to the guest cpu.
1086 *
1087 * While an additional ibm,extended-os-term property indicates
1088 * that rtas call return will always occur. Set this property.
1089 */
1090 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1091
1092 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1093 lrdr_capacity, sizeof(lrdr_capacity)));
1094
1095 spapr_dt_rtas_tokens(fdt, rtas);
1096 }
1097
1098 /*
1099 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1100 * and the XIVE features that the guest may request and thus the valid
1101 * values for bytes 23..26 of option vector 5:
1102 */
1103 static void spapr_dt_ov5_platform_support(sPAPRMachineState *spapr, void *fdt,
1104 int chosen)
1105 {
1106 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1107
1108 char val[2 * 4] = {
1109 23, spapr->irq->ov5, /* Xive mode. */
1110 24, 0x00, /* Hash/Radix, filled in below. */
1111 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1112 26, 0x40, /* Radix options: GTSE == yes. */
1113 };
1114
1115 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1116 first_ppc_cpu->compat_pvr)) {
1117 /*
1118 * If we're in a pre POWER9 compat mode then the guest should
1119 * do hash and use the legacy interrupt mode
1120 */
1121 val[1] = 0x00; /* XICS */
1122 val[3] = 0x00; /* Hash */
1123 } else if (kvm_enabled()) {
1124 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1125 val[3] = 0x80; /* OV5_MMU_BOTH */
1126 } else if (kvmppc_has_cap_mmu_radix()) {
1127 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1128 } else {
1129 val[3] = 0x00; /* Hash */
1130 }
1131 } else {
1132 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1133 val[3] = 0xC0;
1134 }
1135 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1136 val, sizeof(val)));
1137 }
1138
1139 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
1140 {
1141 MachineState *machine = MACHINE(spapr);
1142 int chosen;
1143 const char *boot_device = machine->boot_order;
1144 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1145 size_t cb = 0;
1146 char *bootlist = get_boot_devices_list(&cb);
1147
1148 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1149
1150 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1151 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1152 spapr->initrd_base));
1153 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1154 spapr->initrd_base + spapr->initrd_size));
1155
1156 if (spapr->kernel_size) {
1157 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1158 cpu_to_be64(spapr->kernel_size) };
1159
1160 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1161 &kprop, sizeof(kprop)));
1162 if (spapr->kernel_le) {
1163 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1164 }
1165 }
1166 if (boot_menu) {
1167 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1168 }
1169 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1170 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1171 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1172
1173 if (cb && bootlist) {
1174 int i;
1175
1176 for (i = 0; i < cb; i++) {
1177 if (bootlist[i] == '\n') {
1178 bootlist[i] = ' ';
1179 }
1180 }
1181 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1182 }
1183
1184 if (boot_device && strlen(boot_device)) {
1185 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1186 }
1187
1188 if (!spapr->has_graphics && stdout_path) {
1189 /*
1190 * "linux,stdout-path" and "stdout" properties are deprecated by linux
1191 * kernel. New platforms should only use the "stdout-path" property. Set
1192 * the new property and continue using older property to remain
1193 * compatible with the existing firmware.
1194 */
1195 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1196 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1197 }
1198
1199 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1200
1201 g_free(stdout_path);
1202 g_free(bootlist);
1203 }
1204
1205 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1206 {
1207 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1208 * KVM to work under pHyp with some guest co-operation */
1209 int hypervisor;
1210 uint8_t hypercall[16];
1211
1212 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1213 /* indicate KVM hypercall interface */
1214 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1215 if (kvmppc_has_cap_fixup_hcalls()) {
1216 /*
1217 * Older KVM versions with older guest kernels were broken
1218 * with the magic page, don't allow the guest to map it.
1219 */
1220 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1221 sizeof(hypercall))) {
1222 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1223 hypercall, sizeof(hypercall)));
1224 }
1225 }
1226 }
1227
1228 static void *spapr_build_fdt(sPAPRMachineState *spapr,
1229 hwaddr rtas_addr,
1230 hwaddr rtas_size)
1231 {
1232 MachineState *machine = MACHINE(spapr);
1233 MachineClass *mc = MACHINE_GET_CLASS(machine);
1234 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1235 int ret;
1236 void *fdt;
1237 sPAPRPHBState *phb;
1238 char *buf;
1239
1240 fdt = g_malloc0(FDT_MAX_SIZE);
1241 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1242
1243 /* Root node */
1244 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1245 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1246 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1247
1248 /*
1249 * Add info to guest to indentify which host is it being run on
1250 * and what is the uuid of the guest
1251 */
1252 if (kvmppc_get_host_model(&buf)) {
1253 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1254 g_free(buf);
1255 }
1256 if (kvmppc_get_host_serial(&buf)) {
1257 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1258 g_free(buf);
1259 }
1260
1261 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1262
1263 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1264 if (qemu_uuid_set) {
1265 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1266 }
1267 g_free(buf);
1268
1269 if (qemu_get_vm_name()) {
1270 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1271 qemu_get_vm_name()));
1272 }
1273
1274 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1275 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1276
1277 /* /interrupt controller */
1278 spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt,
1279 PHANDLE_XICP);
1280
1281 ret = spapr_populate_memory(spapr, fdt);
1282 if (ret < 0) {
1283 error_report("couldn't setup memory nodes in fdt");
1284 exit(1);
1285 }
1286
1287 /* /vdevice */
1288 spapr_dt_vdevice(spapr->vio_bus, fdt);
1289
1290 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1291 ret = spapr_rng_populate_dt(fdt);
1292 if (ret < 0) {
1293 error_report("could not set up rng device in the fdt");
1294 exit(1);
1295 }
1296 }
1297
1298 QLIST_FOREACH(phb, &spapr->phbs, list) {
1299 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt,
1300 spapr->irq->nr_msis);
1301 if (ret < 0) {
1302 error_report("couldn't setup PCI devices in fdt");
1303 exit(1);
1304 }
1305 }
1306
1307 /* cpus */
1308 spapr_populate_cpus_dt_node(fdt, spapr);
1309
1310 if (smc->dr_lmb_enabled) {
1311 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1312 }
1313
1314 if (mc->has_hotpluggable_cpus) {
1315 int offset = fdt_path_offset(fdt, "/cpus");
1316 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1317 SPAPR_DR_CONNECTOR_TYPE_CPU);
1318 if (ret < 0) {
1319 error_report("Couldn't set up CPU DR device tree properties");
1320 exit(1);
1321 }
1322 }
1323
1324 /* /event-sources */
1325 spapr_dt_events(spapr, fdt);
1326
1327 /* /rtas */
1328 spapr_dt_rtas(spapr, fdt);
1329
1330 /* /chosen */
1331 spapr_dt_chosen(spapr, fdt);
1332
1333 /* /hypervisor */
1334 if (kvm_enabled()) {
1335 spapr_dt_hypervisor(spapr, fdt);
1336 }
1337
1338 /* Build memory reserve map */
1339 if (spapr->kernel_size) {
1340 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1341 }
1342 if (spapr->initrd_size) {
1343 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1344 }
1345
1346 /* ibm,client-architecture-support updates */
1347 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1348 if (ret < 0) {
1349 error_report("couldn't setup CAS properties fdt");
1350 exit(1);
1351 }
1352
1353 return fdt;
1354 }
1355
1356 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1357 {
1358 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1359 }
1360
1361 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1362 PowerPCCPU *cpu)
1363 {
1364 CPUPPCState *env = &cpu->env;
1365
1366 /* The TCG path should also be holding the BQL at this point */
1367 g_assert(qemu_mutex_iothread_locked());
1368
1369 if (msr_pr) {
1370 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1371 env->gpr[3] = H_PRIVILEGE;
1372 } else {
1373 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1374 }
1375 }
1376
1377 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1378 {
1379 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1380
1381 return spapr->patb_entry;
1382 }
1383
1384 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1385 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1386 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1387 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1388 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1389
1390 /*
1391 * Get the fd to access the kernel htab, re-opening it if necessary
1392 */
1393 static int get_htab_fd(sPAPRMachineState *spapr)
1394 {
1395 Error *local_err = NULL;
1396
1397 if (spapr->htab_fd >= 0) {
1398 return spapr->htab_fd;
1399 }
1400
1401 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1402 if (spapr->htab_fd < 0) {
1403 error_report_err(local_err);
1404 }
1405
1406 return spapr->htab_fd;
1407 }
1408
1409 void close_htab_fd(sPAPRMachineState *spapr)
1410 {
1411 if (spapr->htab_fd >= 0) {
1412 close(spapr->htab_fd);
1413 }
1414 spapr->htab_fd = -1;
1415 }
1416
1417 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1418 {
1419 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1420
1421 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1422 }
1423
1424 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1425 {
1426 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1427
1428 assert(kvm_enabled());
1429
1430 if (!spapr->htab) {
1431 return 0;
1432 }
1433
1434 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1435 }
1436
1437 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1438 hwaddr ptex, int n)
1439 {
1440 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1441 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1442
1443 if (!spapr->htab) {
1444 /*
1445 * HTAB is controlled by KVM. Fetch into temporary buffer
1446 */
1447 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1448 kvmppc_read_hptes(hptes, ptex, n);
1449 return hptes;
1450 }
1451
1452 /*
1453 * HTAB is controlled by QEMU. Just point to the internally
1454 * accessible PTEG.
1455 */
1456 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1457 }
1458
1459 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1460 const ppc_hash_pte64_t *hptes,
1461 hwaddr ptex, int n)
1462 {
1463 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1464
1465 if (!spapr->htab) {
1466 g_free((void *)hptes);
1467 }
1468
1469 /* Nothing to do for qemu managed HPT */
1470 }
1471
1472 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1473 uint64_t pte0, uint64_t pte1)
1474 {
1475 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1476 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1477
1478 if (!spapr->htab) {
1479 kvmppc_write_hpte(ptex, pte0, pte1);
1480 } else {
1481 stq_p(spapr->htab + offset, pte0);
1482 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1483 }
1484 }
1485
1486 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1487 {
1488 int shift;
1489
1490 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1491 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1492 * that's much more than is needed for Linux guests */
1493 shift = ctz64(pow2ceil(ramsize)) - 7;
1494 shift = MAX(shift, 18); /* Minimum architected size */
1495 shift = MIN(shift, 46); /* Maximum architected size */
1496 return shift;
1497 }
1498
1499 void spapr_free_hpt(sPAPRMachineState *spapr)
1500 {
1501 g_free(spapr->htab);
1502 spapr->htab = NULL;
1503 spapr->htab_shift = 0;
1504 close_htab_fd(spapr);
1505 }
1506
1507 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1508 Error **errp)
1509 {
1510 long rc;
1511
1512 /* Clean up any HPT info from a previous boot */
1513 spapr_free_hpt(spapr);
1514
1515 rc = kvmppc_reset_htab(shift);
1516 if (rc < 0) {
1517 /* kernel-side HPT needed, but couldn't allocate one */
1518 error_setg_errno(errp, errno,
1519 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1520 shift);
1521 /* This is almost certainly fatal, but if the caller really
1522 * wants to carry on with shift == 0, it's welcome to try */
1523 } else if (rc > 0) {
1524 /* kernel-side HPT allocated */
1525 if (rc != shift) {
1526 error_setg(errp,
1527 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1528 shift, rc);
1529 }
1530
1531 spapr->htab_shift = shift;
1532 spapr->htab = NULL;
1533 } else {
1534 /* kernel-side HPT not needed, allocate in userspace instead */
1535 size_t size = 1ULL << shift;
1536 int i;
1537
1538 spapr->htab = qemu_memalign(size, size);
1539 if (!spapr->htab) {
1540 error_setg_errno(errp, errno,
1541 "Could not allocate HPT of order %d", shift);
1542 return;
1543 }
1544
1545 memset(spapr->htab, 0, size);
1546 spapr->htab_shift = shift;
1547
1548 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1549 DIRTY_HPTE(HPTE(spapr->htab, i));
1550 }
1551 }
1552 /* We're setting up a hash table, so that means we're not radix */
1553 spapr->patb_entry = 0;
1554 }
1555
1556 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1557 {
1558 int hpt_shift;
1559
1560 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1561 || (spapr->cas_reboot
1562 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1563 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1564 } else {
1565 uint64_t current_ram_size;
1566
1567 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1568 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1569 }
1570 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1571
1572 if (spapr->vrma_adjust) {
1573 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1574 spapr->htab_shift);
1575 }
1576 }
1577
1578 static int spapr_reset_drcs(Object *child, void *opaque)
1579 {
1580 sPAPRDRConnector *drc =
1581 (sPAPRDRConnector *) object_dynamic_cast(child,
1582 TYPE_SPAPR_DR_CONNECTOR);
1583
1584 if (drc) {
1585 spapr_drc_reset(drc);
1586 }
1587
1588 return 0;
1589 }
1590
1591 static void spapr_machine_reset(void)
1592 {
1593 MachineState *machine = MACHINE(qdev_get_machine());
1594 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1595 PowerPCCPU *first_ppc_cpu;
1596 uint32_t rtas_limit;
1597 hwaddr rtas_addr, fdt_addr;
1598 void *fdt;
1599 int rc;
1600
1601 spapr_caps_apply(spapr);
1602
1603 first_ppc_cpu = POWERPC_CPU(first_cpu);
1604 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1605 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1606 spapr->max_compat_pvr)) {
1607 /* If using KVM with radix mode available, VCPUs can be started
1608 * without a HPT because KVM will start them in radix mode.
1609 * Set the GR bit in PATB so that we know there is no HPT. */
1610 spapr->patb_entry = PATBE1_GR;
1611 } else {
1612 spapr_setup_hpt_and_vrma(spapr);
1613 }
1614
1615 /* if this reset wasn't generated by CAS, we should reset our
1616 * negotiated options and start from scratch */
1617 if (!spapr->cas_reboot) {
1618 spapr_ovec_cleanup(spapr->ov5_cas);
1619 spapr->ov5_cas = spapr_ovec_new();
1620
1621 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1622 }
1623
1624 if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
1625 spapr_irq_msi_reset(spapr);
1626 }
1627
1628 qemu_devices_reset();
1629
1630 /*
1631 * This is fixing some of the default configuration of the XIVE
1632 * devices. To be called after the reset of the machine devices.
1633 */
1634 spapr_irq_reset(spapr, &error_fatal);
1635
1636 /* DRC reset may cause a device to be unplugged. This will cause troubles
1637 * if this device is used by another device (eg, a running vhost backend
1638 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1639 * situations, we reset DRCs after all devices have been reset.
1640 */
1641 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1642
1643 spapr_clear_pending_events(spapr);
1644
1645 /*
1646 * We place the device tree and RTAS just below either the top of the RMA,
1647 * or just below 2GB, whichever is lowere, so that it can be
1648 * processed with 32-bit real mode code if necessary
1649 */
1650 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1651 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1652 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1653
1654 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1655
1656 spapr_load_rtas(spapr, fdt, rtas_addr);
1657
1658 rc = fdt_pack(fdt);
1659
1660 /* Should only fail if we've built a corrupted tree */
1661 assert(rc == 0);
1662
1663 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1664 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1665 fdt_totalsize(fdt), FDT_MAX_SIZE);
1666 exit(1);
1667 }
1668
1669 /* Load the fdt */
1670 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1671 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1672 g_free(spapr->fdt_blob);
1673 spapr->fdt_size = fdt_totalsize(fdt);
1674 spapr->fdt_initial_size = spapr->fdt_size;
1675 spapr->fdt_blob = fdt;
1676
1677 /* Set up the entry state */
1678 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1679 first_ppc_cpu->env.gpr[5] = 0;
1680
1681 spapr->cas_reboot = false;
1682 }
1683
1684 static void spapr_create_nvram(sPAPRMachineState *spapr)
1685 {
1686 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1687 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1688
1689 if (dinfo) {
1690 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1691 &error_fatal);
1692 }
1693
1694 qdev_init_nofail(dev);
1695
1696 spapr->nvram = (struct sPAPRNVRAM *)dev;
1697 }
1698
1699 static void spapr_rtc_create(sPAPRMachineState *spapr)
1700 {
1701 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1702 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1703 &error_fatal);
1704 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1705 &error_fatal);
1706 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1707 "date", &error_fatal);
1708 }
1709
1710 /* Returns whether we want to use VGA or not */
1711 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1712 {
1713 switch (vga_interface_type) {
1714 case VGA_NONE:
1715 return false;
1716 case VGA_DEVICE:
1717 return true;
1718 case VGA_STD:
1719 case VGA_VIRTIO:
1720 return pci_vga_init(pci_bus) != NULL;
1721 default:
1722 error_setg(errp,
1723 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1724 return false;
1725 }
1726 }
1727
1728 static int spapr_pre_load(void *opaque)
1729 {
1730 int rc;
1731
1732 rc = spapr_caps_pre_load(opaque);
1733 if (rc) {
1734 return rc;
1735 }
1736
1737 return 0;
1738 }
1739
1740 static int spapr_post_load(void *opaque, int version_id)
1741 {
1742 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1743 int err = 0;
1744
1745 err = spapr_caps_post_migration(spapr);
1746 if (err) {
1747 return err;
1748 }
1749
1750 /*
1751 * In earlier versions, there was no separate qdev for the PAPR
1752 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1753 * So when migrating from those versions, poke the incoming offset
1754 * value into the RTC device
1755 */
1756 if (version_id < 3) {
1757 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1758 if (err) {
1759 return err;
1760 }
1761 }
1762
1763 if (kvm_enabled() && spapr->patb_entry) {
1764 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1765 bool radix = !!(spapr->patb_entry & PATBE1_GR);
1766 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1767
1768 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1769 if (err) {
1770 error_report("Process table config unsupported by the host");
1771 return -EINVAL;
1772 }
1773 }
1774
1775 err = spapr_irq_post_load(spapr, version_id);
1776 if (err) {
1777 return err;
1778 }
1779
1780 return err;
1781 }
1782
1783 static int spapr_pre_save(void *opaque)
1784 {
1785 int rc;
1786
1787 rc = spapr_caps_pre_save(opaque);
1788 if (rc) {
1789 return rc;
1790 }
1791
1792 return 0;
1793 }
1794
1795 static bool version_before_3(void *opaque, int version_id)
1796 {
1797 return version_id < 3;
1798 }
1799
1800 static bool spapr_pending_events_needed(void *opaque)
1801 {
1802 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1803 return !QTAILQ_EMPTY(&spapr->pending_events);
1804 }
1805
1806 static const VMStateDescription vmstate_spapr_event_entry = {
1807 .name = "spapr_event_log_entry",
1808 .version_id = 1,
1809 .minimum_version_id = 1,
1810 .fields = (VMStateField[]) {
1811 VMSTATE_UINT32(summary, sPAPREventLogEntry),
1812 VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
1813 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
1814 NULL, extended_length),
1815 VMSTATE_END_OF_LIST()
1816 },
1817 };
1818
1819 static const VMStateDescription vmstate_spapr_pending_events = {
1820 .name = "spapr_pending_events",
1821 .version_id = 1,
1822 .minimum_version_id = 1,
1823 .needed = spapr_pending_events_needed,
1824 .fields = (VMStateField[]) {
1825 VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
1826 vmstate_spapr_event_entry, sPAPREventLogEntry, next),
1827 VMSTATE_END_OF_LIST()
1828 },
1829 };
1830
1831 static bool spapr_ov5_cas_needed(void *opaque)
1832 {
1833 sPAPRMachineState *spapr = opaque;
1834 sPAPROptionVector *ov5_mask = spapr_ovec_new();
1835 sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1836 sPAPROptionVector *ov5_removed = spapr_ovec_new();
1837 bool cas_needed;
1838
1839 /* Prior to the introduction of sPAPROptionVector, we had two option
1840 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1841 * Both of these options encode machine topology into the device-tree
1842 * in such a way that the now-booted OS should still be able to interact
1843 * appropriately with QEMU regardless of what options were actually
1844 * negotiatied on the source side.
1845 *
1846 * As such, we can avoid migrating the CAS-negotiated options if these
1847 * are the only options available on the current machine/platform.
1848 * Since these are the only options available for pseries-2.7 and
1849 * earlier, this allows us to maintain old->new/new->old migration
1850 * compatibility.
1851 *
1852 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1853 * via default pseries-2.8 machines and explicit command-line parameters.
1854 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1855 * of the actual CAS-negotiated values to continue working properly. For
1856 * example, availability of memory unplug depends on knowing whether
1857 * OV5_HP_EVT was negotiated via CAS.
1858 *
1859 * Thus, for any cases where the set of available CAS-negotiatable
1860 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1861 * include the CAS-negotiated options in the migration stream, unless
1862 * if they affect boot time behaviour only.
1863 */
1864 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1865 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1866 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1867
1868 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1869 * the mask itself since in the future it's possible "legacy" bits may be
1870 * removed via machine options, which could generate a false positive
1871 * that breaks migration.
1872 */
1873 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1874 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1875
1876 spapr_ovec_cleanup(ov5_mask);
1877 spapr_ovec_cleanup(ov5_legacy);
1878 spapr_ovec_cleanup(ov5_removed);
1879
1880 return cas_needed;
1881 }
1882
1883 static const VMStateDescription vmstate_spapr_ov5_cas = {
1884 .name = "spapr_option_vector_ov5_cas",
1885 .version_id = 1,
1886 .minimum_version_id = 1,
1887 .needed = spapr_ov5_cas_needed,
1888 .fields = (VMStateField[]) {
1889 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1890 vmstate_spapr_ovec, sPAPROptionVector),
1891 VMSTATE_END_OF_LIST()
1892 },
1893 };
1894
1895 static bool spapr_patb_entry_needed(void *opaque)
1896 {
1897 sPAPRMachineState *spapr = opaque;
1898
1899 return !!spapr->patb_entry;
1900 }
1901
1902 static const VMStateDescription vmstate_spapr_patb_entry = {
1903 .name = "spapr_patb_entry",
1904 .version_id = 1,
1905 .minimum_version_id = 1,
1906 .needed = spapr_patb_entry_needed,
1907 .fields = (VMStateField[]) {
1908 VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1909 VMSTATE_END_OF_LIST()
1910 },
1911 };
1912
1913 static bool spapr_irq_map_needed(void *opaque)
1914 {
1915 sPAPRMachineState *spapr = opaque;
1916
1917 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1918 }
1919
1920 static const VMStateDescription vmstate_spapr_irq_map = {
1921 .name = "spapr_irq_map",
1922 .version_id = 1,
1923 .minimum_version_id = 1,
1924 .needed = spapr_irq_map_needed,
1925 .fields = (VMStateField[]) {
1926 VMSTATE_BITMAP(irq_map, sPAPRMachineState, 0, irq_map_nr),
1927 VMSTATE_END_OF_LIST()
1928 },
1929 };
1930
1931 static bool spapr_dtb_needed(void *opaque)
1932 {
1933 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1934
1935 return smc->update_dt_enabled;
1936 }
1937
1938 static int spapr_dtb_pre_load(void *opaque)
1939 {
1940 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1941
1942 g_free(spapr->fdt_blob);
1943 spapr->fdt_blob = NULL;
1944 spapr->fdt_size = 0;
1945
1946 return 0;
1947 }
1948
1949 static const VMStateDescription vmstate_spapr_dtb = {
1950 .name = "spapr_dtb",
1951 .version_id = 1,
1952 .minimum_version_id = 1,
1953 .needed = spapr_dtb_needed,
1954 .pre_load = spapr_dtb_pre_load,
1955 .fields = (VMStateField[]) {
1956 VMSTATE_UINT32(fdt_initial_size, sPAPRMachineState),
1957 VMSTATE_UINT32(fdt_size, sPAPRMachineState),
1958 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, sPAPRMachineState, 0, NULL,
1959 fdt_size),
1960 VMSTATE_END_OF_LIST()
1961 },
1962 };
1963
1964 static const VMStateDescription vmstate_spapr = {
1965 .name = "spapr",
1966 .version_id = 3,
1967 .minimum_version_id = 1,
1968 .pre_load = spapr_pre_load,
1969 .post_load = spapr_post_load,
1970 .pre_save = spapr_pre_save,
1971 .fields = (VMStateField[]) {
1972 /* used to be @next_irq */
1973 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1974
1975 /* RTC offset */
1976 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1977
1978 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1979 VMSTATE_END_OF_LIST()
1980 },
1981 .subsections = (const VMStateDescription*[]) {
1982 &vmstate_spapr_ov5_cas,
1983 &vmstate_spapr_patb_entry,
1984 &vmstate_spapr_pending_events,
1985 &vmstate_spapr_cap_htm,
1986 &vmstate_spapr_cap_vsx,
1987 &vmstate_spapr_cap_dfp,
1988 &vmstate_spapr_cap_cfpc,
1989 &vmstate_spapr_cap_sbbc,
1990 &vmstate_spapr_cap_ibs,
1991 &vmstate_spapr_irq_map,
1992 &vmstate_spapr_cap_nested_kvm_hv,
1993 &vmstate_spapr_dtb,
1994 NULL
1995 }
1996 };
1997
1998 static int htab_save_setup(QEMUFile *f, void *opaque)
1999 {
2000 sPAPRMachineState *spapr = opaque;
2001
2002 /* "Iteration" header */
2003 if (!spapr->htab_shift) {
2004 qemu_put_be32(f, -1);
2005 } else {
2006 qemu_put_be32(f, spapr->htab_shift);
2007 }
2008
2009 if (spapr->htab) {
2010 spapr->htab_save_index = 0;
2011 spapr->htab_first_pass = true;
2012 } else {
2013 if (spapr->htab_shift) {
2014 assert(kvm_enabled());
2015 }
2016 }
2017
2018
2019 return 0;
2020 }
2021
2022 static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr,
2023 int chunkstart, int n_valid, int n_invalid)
2024 {
2025 qemu_put_be32(f, chunkstart);
2026 qemu_put_be16(f, n_valid);
2027 qemu_put_be16(f, n_invalid);
2028 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2029 HASH_PTE_SIZE_64 * n_valid);
2030 }
2031
2032 static void htab_save_end_marker(QEMUFile *f)
2033 {
2034 qemu_put_be32(f, 0);
2035 qemu_put_be16(f, 0);
2036 qemu_put_be16(f, 0);
2037 }
2038
2039 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
2040 int64_t max_ns)
2041 {
2042 bool has_timeout = max_ns != -1;
2043 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2044 int index = spapr->htab_save_index;
2045 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2046
2047 assert(spapr->htab_first_pass);
2048
2049 do {
2050 int chunkstart;
2051
2052 /* Consume invalid HPTEs */
2053 while ((index < htabslots)
2054 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2055 CLEAN_HPTE(HPTE(spapr->htab, index));
2056 index++;
2057 }
2058
2059 /* Consume valid HPTEs */
2060 chunkstart = index;
2061 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2062 && HPTE_VALID(HPTE(spapr->htab, index))) {
2063 CLEAN_HPTE(HPTE(spapr->htab, index));
2064 index++;
2065 }
2066
2067 if (index > chunkstart) {
2068 int n_valid = index - chunkstart;
2069
2070 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2071
2072 if (has_timeout &&
2073 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2074 break;
2075 }
2076 }
2077 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2078
2079 if (index >= htabslots) {
2080 assert(index == htabslots);
2081 index = 0;
2082 spapr->htab_first_pass = false;
2083 }
2084 spapr->htab_save_index = index;
2085 }
2086
2087 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
2088 int64_t max_ns)
2089 {
2090 bool final = max_ns < 0;
2091 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2092 int examined = 0, sent = 0;
2093 int index = spapr->htab_save_index;
2094 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2095
2096 assert(!spapr->htab_first_pass);
2097
2098 do {
2099 int chunkstart, invalidstart;
2100
2101 /* Consume non-dirty HPTEs */
2102 while ((index < htabslots)
2103 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2104 index++;
2105 examined++;
2106 }
2107
2108 chunkstart = index;
2109 /* Consume valid dirty HPTEs */
2110 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2111 && HPTE_DIRTY(HPTE(spapr->htab, index))
2112 && HPTE_VALID(HPTE(spapr->htab, index))) {
2113 CLEAN_HPTE(HPTE(spapr->htab, index));
2114 index++;
2115 examined++;
2116 }
2117
2118 invalidstart = index;
2119 /* Consume invalid dirty HPTEs */
2120 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2121 && HPTE_DIRTY(HPTE(spapr->htab, index))
2122 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2123 CLEAN_HPTE(HPTE(spapr->htab, index));
2124 index++;
2125 examined++;
2126 }
2127
2128 if (index > chunkstart) {
2129 int n_valid = invalidstart - chunkstart;
2130 int n_invalid = index - invalidstart;
2131
2132 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2133 sent += index - chunkstart;
2134
2135 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2136 break;
2137 }
2138 }
2139
2140 if (examined >= htabslots) {
2141 break;
2142 }
2143
2144 if (index >= htabslots) {
2145 assert(index == htabslots);
2146 index = 0;
2147 }
2148 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2149
2150 if (index >= htabslots) {
2151 assert(index == htabslots);
2152 index = 0;
2153 }
2154
2155 spapr->htab_save_index = index;
2156
2157 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2158 }
2159
2160 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2161 #define MAX_KVM_BUF_SIZE 2048
2162
2163 static int htab_save_iterate(QEMUFile *f, void *opaque)
2164 {
2165 sPAPRMachineState *spapr = opaque;
2166 int fd;
2167 int rc = 0;
2168
2169 /* Iteration header */
2170 if (!spapr->htab_shift) {
2171 qemu_put_be32(f, -1);
2172 return 1;
2173 } else {
2174 qemu_put_be32(f, 0);
2175 }
2176
2177 if (!spapr->htab) {
2178 assert(kvm_enabled());
2179
2180 fd = get_htab_fd(spapr);
2181 if (fd < 0) {
2182 return fd;
2183 }
2184
2185 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2186 if (rc < 0) {
2187 return rc;
2188 }
2189 } else if (spapr->htab_first_pass) {
2190 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2191 } else {
2192 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2193 }
2194
2195 htab_save_end_marker(f);
2196
2197 return rc;
2198 }
2199
2200 static int htab_save_complete(QEMUFile *f, void *opaque)
2201 {
2202 sPAPRMachineState *spapr = opaque;
2203 int fd;
2204
2205 /* Iteration header */
2206 if (!spapr->htab_shift) {
2207 qemu_put_be32(f, -1);
2208 return 0;
2209 } else {
2210 qemu_put_be32(f, 0);
2211 }
2212
2213 if (!spapr->htab) {
2214 int rc;
2215
2216 assert(kvm_enabled());
2217
2218 fd = get_htab_fd(spapr);
2219 if (fd < 0) {
2220 return fd;
2221 }
2222
2223 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2224 if (rc < 0) {
2225 return rc;
2226 }
2227 } else {
2228 if (spapr->htab_first_pass) {
2229 htab_save_first_pass(f, spapr, -1);
2230 }
2231 htab_save_later_pass(f, spapr, -1);
2232 }
2233
2234 /* End marker */
2235 htab_save_end_marker(f);
2236
2237 return 0;
2238 }
2239
2240 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2241 {
2242 sPAPRMachineState *spapr = opaque;
2243 uint32_t section_hdr;
2244 int fd = -1;
2245 Error *local_err = NULL;
2246
2247 if (version_id < 1 || version_id > 1) {
2248 error_report("htab_load() bad version");
2249 return -EINVAL;
2250 }
2251
2252 section_hdr = qemu_get_be32(f);
2253
2254 if (section_hdr == -1) {
2255 spapr_free_hpt(spapr);
2256 return 0;
2257 }
2258
2259 if (section_hdr) {
2260 /* First section gives the htab size */
2261 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2262 if (local_err) {
2263 error_report_err(local_err);
2264 return -EINVAL;
2265 }
2266 return 0;
2267 }
2268
2269 if (!spapr->htab) {
2270 assert(kvm_enabled());
2271
2272 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2273 if (fd < 0) {
2274 error_report_err(local_err);
2275 return fd;
2276 }
2277 }
2278
2279 while (true) {
2280 uint32_t index;
2281 uint16_t n_valid, n_invalid;
2282
2283 index = qemu_get_be32(f);
2284 n_valid = qemu_get_be16(f);
2285 n_invalid = qemu_get_be16(f);
2286
2287 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2288 /* End of Stream */
2289 break;
2290 }
2291
2292 if ((index + n_valid + n_invalid) >
2293 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2294 /* Bad index in stream */
2295 error_report(
2296 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2297 index, n_valid, n_invalid, spapr->htab_shift);
2298 return -EINVAL;
2299 }
2300
2301 if (spapr->htab) {
2302 if (n_valid) {
2303 qemu_get_buffer(f, HPTE(spapr->htab, index),
2304 HASH_PTE_SIZE_64 * n_valid);
2305 }
2306 if (n_invalid) {
2307 memset(HPTE(spapr->htab, index + n_valid), 0,
2308 HASH_PTE_SIZE_64 * n_invalid);
2309 }
2310 } else {
2311 int rc;
2312
2313 assert(fd >= 0);
2314
2315 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2316 if (rc < 0) {
2317 return rc;
2318 }
2319 }
2320 }
2321
2322 if (!spapr->htab) {
2323 assert(fd >= 0);
2324 close(fd);
2325 }
2326
2327 return 0;
2328 }
2329
2330 static void htab_save_cleanup(void *opaque)
2331 {
2332 sPAPRMachineState *spapr = opaque;
2333
2334 close_htab_fd(spapr);
2335 }
2336
2337 static SaveVMHandlers savevm_htab_handlers = {
2338 .save_setup = htab_save_setup,
2339 .save_live_iterate = htab_save_iterate,
2340 .save_live_complete_precopy = htab_save_complete,
2341 .save_cleanup = htab_save_cleanup,
2342 .load_state = htab_load,
2343 };
2344
2345 static void spapr_boot_set(void *opaque, const char *boot_device,
2346 Error **errp)
2347 {
2348 MachineState *machine = MACHINE(opaque);
2349 machine->boot_order = g_strdup(boot_device);
2350 }
2351
2352 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
2353 {
2354 MachineState *machine = MACHINE(spapr);
2355 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2356 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2357 int i;
2358
2359 for (i = 0; i < nr_lmbs; i++) {
2360 uint64_t addr;
2361
2362 addr = i * lmb_size + machine->device_memory->base;
2363 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2364 addr / lmb_size);
2365 }
2366 }
2367
2368 /*
2369 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2370 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2371 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2372 */
2373 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2374 {
2375 int i;
2376
2377 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2378 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2379 " is not aligned to %" PRIu64 " MiB",
2380 machine->ram_size,
2381 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2382 return;
2383 }
2384
2385 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2386 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2387 " is not aligned to %" PRIu64 " MiB",
2388 machine->ram_size,
2389 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2390 return;
2391 }
2392
2393 for (i = 0; i < nb_numa_nodes; i++) {
2394 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2395 error_setg(errp,
2396 "Node %d memory size 0x%" PRIx64
2397 " is not aligned to %" PRIu64 " MiB",
2398 i, numa_info[i].node_mem,
2399 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2400 return;
2401 }
2402 }
2403 }
2404
2405 /* find cpu slot in machine->possible_cpus by core_id */
2406 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2407 {
2408 int index = id / smp_threads;
2409
2410 if (index >= ms->possible_cpus->len) {
2411 return NULL;
2412 }
2413 if (idx) {
2414 *idx = index;
2415 }
2416 return &ms->possible_cpus->cpus[index];
2417 }
2418
2419 static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp)
2420 {
2421 Error *local_err = NULL;
2422 bool vsmt_user = !!spapr->vsmt;
2423 int kvm_smt = kvmppc_smt_threads();
2424 int ret;
2425
2426 if (!kvm_enabled() && (smp_threads > 1)) {
2427 error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2428 "on a pseries machine");
2429 goto out;
2430 }
2431 if (!is_power_of_2(smp_threads)) {
2432 error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2433 "machine because it must be a power of 2", smp_threads);
2434 goto out;
2435 }
2436
2437 /* Detemine the VSMT mode to use: */
2438 if (vsmt_user) {
2439 if (spapr->vsmt < smp_threads) {
2440 error_setg(&local_err, "Cannot support VSMT mode %d"
2441 " because it must be >= threads/core (%d)",
2442 spapr->vsmt, smp_threads);
2443 goto out;
2444 }
2445 /* In this case, spapr->vsmt has been set by the command line */
2446 } else {
2447 /*
2448 * Default VSMT value is tricky, because we need it to be as
2449 * consistent as possible (for migration), but this requires
2450 * changing it for at least some existing cases. We pick 8 as
2451 * the value that we'd get with KVM on POWER8, the
2452 * overwhelmingly common case in production systems.
2453 */
2454 spapr->vsmt = MAX(8, smp_threads);
2455 }
2456
2457 /* KVM: If necessary, set the SMT mode: */
2458 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2459 ret = kvmppc_set_smt_threads(spapr->vsmt);
2460 if (ret) {
2461 /* Looks like KVM isn't able to change VSMT mode */
2462 error_setg(&local_err,
2463 "Failed to set KVM's VSMT mode to %d (errno %d)",
2464 spapr->vsmt, ret);
2465 /* We can live with that if the default one is big enough
2466 * for the number of threads, and a submultiple of the one
2467 * we want. In this case we'll waste some vcpu ids, but
2468 * behaviour will be correct */
2469 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2470 warn_report_err(local_err);
2471 local_err = NULL;
2472 goto out;
2473 } else {
2474 if (!vsmt_user) {
2475 error_append_hint(&local_err,
2476 "On PPC, a VM with %d threads/core"
2477 " on a host with %d threads/core"
2478 " requires the use of VSMT mode %d.\n",
2479 smp_threads, kvm_smt, spapr->vsmt);
2480 }
2481 kvmppc_hint_smt_possible(&local_err);
2482 goto out;
2483 }
2484 }
2485 }
2486 /* else TCG: nothing to do currently */
2487 out:
2488 error_propagate(errp, local_err);
2489 }
2490
2491 static void spapr_init_cpus(sPAPRMachineState *spapr)
2492 {
2493 MachineState *machine = MACHINE(spapr);
2494 MachineClass *mc = MACHINE_GET_CLASS(machine);
2495 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2496 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2497 const CPUArchIdList *possible_cpus;
2498 int boot_cores_nr = smp_cpus / smp_threads;
2499 int i;
2500
2501 possible_cpus = mc->possible_cpu_arch_ids(machine);
2502 if (mc->has_hotpluggable_cpus) {
2503 if (smp_cpus % smp_threads) {
2504 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2505 smp_cpus, smp_threads);
2506 exit(1);
2507 }
2508 if (max_cpus % smp_threads) {
2509 error_report("max_cpus (%u) must be multiple of threads (%u)",
2510 max_cpus, smp_threads);
2511 exit(1);
2512 }
2513 } else {
2514 if (max_cpus != smp_cpus) {
2515 error_report("This machine version does not support CPU hotplug");
2516 exit(1);
2517 }
2518 boot_cores_nr = possible_cpus->len;
2519 }
2520
2521 if (smc->pre_2_10_has_unused_icps) {
2522 int i;
2523
2524 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2525 /* Dummy entries get deregistered when real ICPState objects
2526 * are registered during CPU core hotplug.
2527 */
2528 pre_2_10_vmstate_register_dummy_icp(i);
2529 }
2530 }
2531
2532 for (i = 0; i < possible_cpus->len; i++) {
2533 int core_id = i * smp_threads;
2534
2535 if (mc->has_hotpluggable_cpus) {
2536 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2537 spapr_vcpu_id(spapr, core_id));
2538 }
2539
2540 if (i < boot_cores_nr) {
2541 Object *core = object_new(type);
2542 int nr_threads = smp_threads;
2543
2544 /* Handle the partially filled core for older machine types */
2545 if ((i + 1) * smp_threads >= smp_cpus) {
2546 nr_threads = smp_cpus - i * smp_threads;
2547 }
2548
2549 object_property_set_int(core, nr_threads, "nr-threads",
2550 &error_fatal);
2551 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2552 &error_fatal);
2553 object_property_set_bool(core, true, "realized", &error_fatal);
2554
2555 object_unref(core);
2556 }
2557 }
2558 }
2559
2560 static PCIHostState *spapr_create_default_phb(void)
2561 {
2562 DeviceState *dev;
2563
2564 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2565 qdev_prop_set_uint32(dev, "index", 0);
2566 qdev_init_nofail(dev);
2567
2568 return PCI_HOST_BRIDGE(dev);
2569 }
2570
2571 /* pSeries LPAR / sPAPR hardware init */
2572 static void spapr_machine_init(MachineState *machine)
2573 {
2574 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2575 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2576 const char *kernel_filename = machine->kernel_filename;
2577 const char *initrd_filename = machine->initrd_filename;
2578 PCIHostState *phb;
2579 int i;
2580 MemoryRegion *sysmem = get_system_memory();
2581 MemoryRegion *ram = g_new(MemoryRegion, 1);
2582 hwaddr node0_size = spapr_node0_size(machine);
2583 long load_limit, fw_size;
2584 char *filename;
2585 Error *resize_hpt_err = NULL;
2586
2587 msi_nonbroken = true;
2588
2589 QLIST_INIT(&spapr->phbs);
2590 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2591
2592 /* Determine capabilities to run with */
2593 spapr_caps_init(spapr);
2594
2595 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2596 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2597 /*
2598 * If the user explicitly requested a mode we should either
2599 * supply it, or fail completely (which we do below). But if
2600 * it's not set explicitly, we reset our mode to something
2601 * that works
2602 */
2603 if (resize_hpt_err) {
2604 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2605 error_free(resize_hpt_err);
2606 resize_hpt_err = NULL;
2607 } else {
2608 spapr->resize_hpt = smc->resize_hpt_default;
2609 }
2610 }
2611
2612 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2613
2614 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2615 /*
2616 * User requested HPT resize, but this host can't supply it. Bail out
2617 */
2618 error_report_err(resize_hpt_err);
2619 exit(1);
2620 }
2621
2622 spapr->rma_size = node0_size;
2623
2624 /* With KVM, we don't actually know whether KVM supports an
2625 * unbounded RMA (PR KVM) or is limited by the hash table size
2626 * (HV KVM using VRMA), so we always assume the latter
2627 *
2628 * In that case, we also limit the initial allocations for RTAS
2629 * etc... to 256M since we have no way to know what the VRMA size
2630 * is going to be as it depends on the size of the hash table
2631 * which isn't determined yet.
2632 */
2633 if (kvm_enabled()) {
2634 spapr->vrma_adjust = 1;
2635 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2636 }
2637
2638 /* Actually we don't support unbounded RMA anymore since we added
2639 * proper emulation of HV mode. The max we can get is 16G which
2640 * also happens to be what we configure for PAPR mode so make sure
2641 * we don't do anything bigger than that
2642 */
2643 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2644
2645 if (spapr->rma_size > node0_size) {
2646 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2647 spapr->rma_size);
2648 exit(1);
2649 }
2650
2651 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2652 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2653
2654 /*
2655 * VSMT must be set in order to be able to compute VCPU ids, ie to
2656 * call spapr_max_server_number() or spapr_vcpu_id().
2657 */
2658 spapr_set_vsmt_mode(spapr, &error_fatal);
2659
2660 /* Set up Interrupt Controller before we create the VCPUs */
2661 spapr_irq_init(spapr, &error_fatal);
2662
2663 /* Set up containers for ibm,client-architecture-support negotiated options
2664 */
2665 spapr->ov5 = spapr_ovec_new();
2666 spapr->ov5_cas = spapr_ovec_new();
2667
2668 if (smc->dr_lmb_enabled) {
2669 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2670 spapr_validate_node_memory(machine, &error_fatal);
2671 }
2672
2673 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2674
2675 /* advertise support for dedicated HP event source to guests */
2676 if (spapr->use_hotplug_event_source) {
2677 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2678 }
2679
2680 /* advertise support for HPT resizing */
2681 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2682 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2683 }
2684
2685 /* advertise support for ibm,dyamic-memory-v2 */
2686 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2687
2688 /* advertise XIVE on POWER9 machines */
2689 if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) {
2690 if (ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00,
2691 0, spapr->max_compat_pvr)) {
2692 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2693 } else if (spapr->irq->ov5 & SPAPR_OV5_XIVE_EXPLOIT) {
2694 error_report("XIVE-only machines require a POWER9 CPU");
2695 exit(1);
2696 }
2697 }
2698
2699 /* init CPUs */
2700 spapr_init_cpus(spapr);
2701
2702 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2703 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2704 spapr->max_compat_pvr)) {
2705 /* KVM and TCG always allow GTSE with radix... */
2706 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2707 }
2708 /* ... but not with hash (currently). */
2709
2710 if (kvm_enabled()) {
2711 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2712 kvmppc_enable_logical_ci_hcalls();
2713 kvmppc_enable_set_mode_hcall();
2714
2715 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2716 kvmppc_enable_clear_ref_mod_hcalls();
2717 }
2718
2719 /* allocate RAM */
2720 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2721 machine->ram_size);
2722 memory_region_add_subregion(sysmem, 0, ram);
2723
2724 /* always allocate the device memory information */
2725 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2726
2727 /* initialize hotplug memory address space */
2728 if (machine->ram_size < machine->maxram_size) {
2729 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2730 /*
2731 * Limit the number of hotpluggable memory slots to half the number
2732 * slots that KVM supports, leaving the other half for PCI and other
2733 * devices. However ensure that number of slots doesn't drop below 32.
2734 */
2735 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2736 SPAPR_MAX_RAM_SLOTS;
2737
2738 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2739 max_memslots = SPAPR_MAX_RAM_SLOTS;
2740 }
2741 if (machine->ram_slots > max_memslots) {
2742 error_report("Specified number of memory slots %"
2743 PRIu64" exceeds max supported %d",
2744 machine->ram_slots, max_memslots);
2745 exit(1);
2746 }
2747
2748 machine->device_memory->base = ROUND_UP(machine->ram_size,
2749 SPAPR_DEVICE_MEM_ALIGN);
2750 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2751 "device-memory", device_mem_size);
2752 memory_region_add_subregion(sysmem, machine->device_memory->base,
2753 &machine->device_memory->mr);
2754 }
2755
2756 if (smc->dr_lmb_enabled) {
2757 spapr_create_lmb_dr_connectors(spapr);
2758 }
2759
2760 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2761 if (!filename) {
2762 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2763 exit(1);
2764 }
2765 spapr->rtas_size = get_image_size(filename);
2766 if (spapr->rtas_size < 0) {
2767 error_report("Could not get size of LPAR rtas '%s'", filename);
2768 exit(1);
2769 }
2770 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2771 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2772 error_report("Could not load LPAR rtas '%s'", filename);
2773 exit(1);
2774 }
2775 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2776 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2777 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2778 exit(1);
2779 }
2780 g_free(filename);
2781
2782 /* Set up RTAS event infrastructure */
2783 spapr_events_init(spapr);
2784
2785 /* Set up the RTC RTAS interfaces */
2786 spapr_rtc_create(spapr);
2787
2788 /* Set up VIO bus */
2789 spapr->vio_bus = spapr_vio_bus_init();
2790
2791 for (i = 0; i < serial_max_hds(); i++) {
2792 if (serial_hd(i)) {
2793 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2794 }
2795 }
2796
2797 /* We always have at least the nvram device on VIO */
2798 spapr_create_nvram(spapr);
2799
2800 /* Set up PCI */
2801 spapr_pci_rtas_init();
2802
2803 phb = spapr_create_default_phb();
2804
2805 for (i = 0; i < nb_nics; i++) {
2806 NICInfo *nd = &nd_table[i];
2807
2808 if (!nd->model) {
2809 nd->model = g_strdup("spapr-vlan");
2810 }
2811
2812 if (g_str_equal(nd->model, "spapr-vlan") ||
2813 g_str_equal(nd->model, "ibmveth")) {
2814 spapr_vlan_create(spapr->vio_bus, nd);
2815 } else {
2816 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2817 }
2818 }
2819
2820 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2821 spapr_vscsi_create(spapr->vio_bus);
2822 }
2823
2824 /* Graphics */
2825 if (spapr_vga_init(phb->bus, &error_fatal)) {
2826 spapr->has_graphics = true;
2827 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2828 }
2829
2830 if (machine->usb) {
2831 if (smc->use_ohci_by_default) {
2832 pci_create_simple(phb->bus, -1, "pci-ohci");
2833 } else {
2834 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2835 }
2836
2837 if (spapr->has_graphics) {
2838 USBBus *usb_bus = usb_bus_find(-1);
2839
2840 usb_create_simple(usb_bus, "usb-kbd");
2841 usb_create_simple(usb_bus, "usb-mouse");
2842 }
2843 }
2844
2845 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
2846 error_report(
2847 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2848 MIN_RMA_SLOF);
2849 exit(1);
2850 }
2851
2852 if (kernel_filename) {
2853 uint64_t lowaddr = 0;
2854
2855 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2856 NULL, NULL, &lowaddr, NULL, 1,
2857 PPC_ELF_MACHINE, 0, 0);
2858 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2859 spapr->kernel_size = load_elf(kernel_filename,
2860 translate_kernel_address, NULL, NULL,
2861 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2862 0, 0);
2863 spapr->kernel_le = spapr->kernel_size > 0;
2864 }
2865 if (spapr->kernel_size < 0) {
2866 error_report("error loading %s: %s", kernel_filename,
2867 load_elf_strerror(spapr->kernel_size));
2868 exit(1);
2869 }
2870
2871 /* load initrd */
2872 if (initrd_filename) {
2873 /* Try to locate the initrd in the gap between the kernel
2874 * and the firmware. Add a bit of space just in case
2875 */
2876 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2877 + 0x1ffff) & ~0xffff;
2878 spapr->initrd_size = load_image_targphys(initrd_filename,
2879 spapr->initrd_base,
2880 load_limit
2881 - spapr->initrd_base);
2882 if (spapr->initrd_size < 0) {
2883 error_report("could not load initial ram disk '%s'",
2884 initrd_filename);
2885 exit(1);
2886 }
2887 }
2888 }
2889
2890 if (bios_name == NULL) {
2891 bios_name = FW_FILE_NAME;
2892 }
2893 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2894 if (!filename) {
2895 error_report("Could not find LPAR firmware '%s'", bios_name);
2896 exit(1);
2897 }
2898 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2899 if (fw_size <= 0) {
2900 error_report("Could not load LPAR firmware '%s'", filename);
2901 exit(1);
2902 }
2903 g_free(filename);
2904
2905 /* FIXME: Should register things through the MachineState's qdev
2906 * interface, this is a legacy from the sPAPREnvironment structure
2907 * which predated MachineState but had a similar function */
2908 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2909 register_savevm_live(NULL, "spapr/htab", -1, 1,
2910 &savevm_htab_handlers, spapr);
2911
2912 qemu_register_boot_set(spapr_boot_set, spapr);
2913
2914 if (kvm_enabled()) {
2915 /* to stop and start vmclock */
2916 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2917 &spapr->tb);
2918
2919 kvmppc_spapr_enable_inkernel_multitce();
2920 }
2921 }
2922
2923 static int spapr_kvm_type(const char *vm_type)
2924 {
2925 if (!vm_type) {
2926 return 0;
2927 }
2928
2929 if (!strcmp(vm_type, "HV")) {
2930 return 1;
2931 }
2932
2933 if (!strcmp(vm_type, "PR")) {
2934 return 2;
2935 }
2936
2937 error_report("Unknown kvm-type specified '%s'", vm_type);
2938 exit(1);
2939 }
2940
2941 /*
2942 * Implementation of an interface to adjust firmware path
2943 * for the bootindex property handling.
2944 */
2945 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2946 DeviceState *dev)
2947 {
2948 #define CAST(type, obj, name) \
2949 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2950 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2951 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2952 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
2953
2954 if (d) {
2955 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2956 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2957 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2958
2959 if (spapr) {
2960 /*
2961 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2962 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
2963 * 0x8000 | (target << 8) | (bus << 5) | lun
2964 * (see the "Logical unit addressing format" table in SAM5)
2965 */
2966 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
2967 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2968 (uint64_t)id << 48);
2969 } else if (virtio) {
2970 /*
2971 * We use SRP luns of the form 01000000 | (target << 8) | lun
2972 * in the top 32 bits of the 64-bit LUN
2973 * Note: the quote above is from SLOF and it is wrong,
2974 * the actual binding is:
2975 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2976 */
2977 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2978 if (d->lun >= 256) {
2979 /* Use the LUN "flat space addressing method" */
2980 id |= 0x4000;
2981 }
2982 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2983 (uint64_t)id << 32);
2984 } else if (usb) {
2985 /*
2986 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2987 * in the top 32 bits of the 64-bit LUN
2988 */
2989 unsigned usb_port = atoi(usb->port->path);
2990 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2991 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2992 (uint64_t)id << 32);
2993 }
2994 }
2995
2996 /*
2997 * SLOF probes the USB devices, and if it recognizes that the device is a
2998 * storage device, it changes its name to "storage" instead of "usb-host",
2999 * and additionally adds a child node for the SCSI LUN, so the correct
3000 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3001 */
3002 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3003 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3004 if (usb_host_dev_is_scsi_storage(usbdev)) {
3005 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3006 }
3007 }
3008
3009 if (phb) {
3010 /* Replace "pci" with "pci@800000020000000" */
3011 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3012 }
3013
3014 if (vsc) {
3015 /* Same logic as virtio above */
3016 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3017 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3018 }
3019
3020 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3021 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3022 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3023 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3024 }
3025
3026 return NULL;
3027 }
3028
3029 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3030 {
3031 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3032
3033 return g_strdup(spapr->kvm_type);
3034 }
3035
3036 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3037 {
3038 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3039
3040 g_free(spapr->kvm_type);
3041 spapr->kvm_type = g_strdup(value);
3042 }
3043
3044 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3045 {
3046 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3047
3048 return spapr->use_hotplug_event_source;
3049 }
3050
3051 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3052 Error **errp)
3053 {
3054 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3055
3056 spapr->use_hotplug_event_source = value;
3057 }
3058
3059 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3060 {
3061 return true;
3062 }
3063
3064 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3065 {
3066 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3067
3068 switch (spapr->resize_hpt) {
3069 case SPAPR_RESIZE_HPT_DEFAULT:
3070 return g_strdup("default");
3071 case SPAPR_RESIZE_HPT_DISABLED:
3072 return g_strdup("disabled");
3073 case SPAPR_RESIZE_HPT_ENABLED:
3074 return g_strdup("enabled");
3075 case SPAPR_RESIZE_HPT_REQUIRED:
3076 return g_strdup("required");
3077 }
3078 g_assert_not_reached();
3079 }
3080
3081 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3082 {
3083 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3084
3085 if (strcmp(value, "default") == 0) {
3086 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3087 } else if (strcmp(value, "disabled") == 0) {
3088 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3089 } else if (strcmp(value, "enabled") == 0) {
3090 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3091 } else if (strcmp(value, "required") == 0) {
3092 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3093 } else {
3094 error_setg(errp, "Bad value for \"resize-hpt\" property");
3095 }
3096 }
3097
3098 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3099 void *opaque, Error **errp)
3100 {
3101 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3102 }
3103
3104 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3105 void *opaque, Error **errp)
3106 {
3107 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3108 }
3109
3110 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3111 {
3112 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3113
3114 if (spapr->irq == &spapr_irq_xics_legacy) {
3115 return g_strdup("legacy");
3116 } else if (spapr->irq == &spapr_irq_xics) {
3117 return g_strdup("xics");
3118 } else if (spapr->irq == &spapr_irq_xive) {
3119 return g_strdup("xive");
3120 } else if (spapr->irq == &spapr_irq_dual) {
3121 return g_strdup("dual");
3122 }
3123 g_assert_not_reached();
3124 }
3125
3126 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3127 {
3128 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3129
3130 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3131 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3132 return;
3133 }
3134
3135 /* The legacy IRQ backend can not be set */
3136 if (strcmp(value, "xics") == 0) {
3137 spapr->irq = &spapr_irq_xics;
3138 } else if (strcmp(value, "xive") == 0) {
3139 spapr->irq = &spapr_irq_xive;
3140 } else if (strcmp(value, "dual") == 0) {
3141 spapr->irq = &spapr_irq_dual;
3142 } else {
3143 error_setg(errp, "Bad value for \"ic-mode\" property");
3144 }
3145 }
3146
3147 static void spapr_instance_init(Object *obj)
3148 {
3149 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3150 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3151
3152 spapr->htab_fd = -1;
3153 spapr->use_hotplug_event_source = true;
3154 object_property_add_str(obj, "kvm-type",
3155 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3156 object_property_set_description(obj, "kvm-type",
3157 "Specifies the KVM virtualization mode (HV, PR)",
3158 NULL);
3159 object_property_add_bool(obj, "modern-hotplug-events",
3160 spapr_get_modern_hotplug_events,
3161 spapr_set_modern_hotplug_events,
3162 NULL);
3163 object_property_set_description(obj, "modern-hotplug-events",
3164 "Use dedicated hotplug event mechanism in"
3165 " place of standard EPOW events when possible"
3166 " (required for memory hot-unplug support)",
3167 NULL);
3168 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3169 "Maximum permitted CPU compatibility mode",
3170 &error_fatal);
3171
3172 object_property_add_str(obj, "resize-hpt",
3173 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3174 object_property_set_description(obj, "resize-hpt",
3175 "Resizing of the Hash Page Table (enabled, disabled, required)",
3176 NULL);
3177 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3178 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3179 object_property_set_description(obj, "vsmt",
3180 "Virtual SMT: KVM behaves as if this were"
3181 " the host's SMT mode", &error_abort);
3182 object_property_add_bool(obj, "vfio-no-msix-emulation",
3183 spapr_get_msix_emulation, NULL, NULL);
3184
3185 /* The machine class defines the default interrupt controller mode */
3186 spapr->irq = smc->irq;
3187 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3188 spapr_set_ic_mode, NULL);
3189 object_property_set_description(obj, "ic-mode",
3190 "Specifies the interrupt controller mode (xics, xive, dual)",
3191 NULL);
3192 }
3193
3194 static void spapr_machine_finalizefn(Object *obj)
3195 {
3196 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3197
3198 g_free(spapr->kvm_type);
3199 }
3200
3201 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3202 {
3203 cpu_synchronize_state(cs);
3204 ppc_cpu_do_system_reset(cs);
3205 }
3206
3207 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3208 {
3209 CPUState *cs;
3210
3211 CPU_FOREACH(cs) {
3212 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3213 }
3214 }
3215
3216 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3217 uint32_t node, bool dedicated_hp_event_source,
3218 Error **errp)
3219 {
3220 sPAPRDRConnector *drc;
3221 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3222 int i, fdt_offset, fdt_size;
3223 void *fdt;
3224 uint64_t addr = addr_start;
3225 bool hotplugged = spapr_drc_hotplugged(dev);
3226 Error *local_err = NULL;
3227
3228 for (i = 0; i < nr_lmbs; i++) {
3229 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3230 addr / SPAPR_MEMORY_BLOCK_SIZE);
3231 g_assert(drc);
3232
3233 fdt = create_device_tree(&fdt_size);
3234 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
3235 SPAPR_MEMORY_BLOCK_SIZE);
3236
3237 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3238 if (local_err) {
3239 while (addr > addr_start) {
3240 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3241 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3242 addr / SPAPR_MEMORY_BLOCK_SIZE);
3243 spapr_drc_detach(drc);
3244 }
3245 g_free(fdt);
3246 error_propagate(errp, local_err);
3247 return;
3248 }
3249 if (!hotplugged) {
3250 spapr_drc_reset(drc);
3251 }
3252 addr += SPAPR_MEMORY_BLOCK_SIZE;
3253 }
3254 /* send hotplug notification to the
3255 * guest only in case of hotplugged memory
3256 */
3257 if (hotplugged) {
3258 if (dedicated_hp_event_source) {
3259 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3260 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3261 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3262 nr_lmbs,
3263 spapr_drc_index(drc));
3264 } else {
3265 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3266 nr_lmbs);
3267 }
3268 }
3269 }
3270
3271 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3272 Error **errp)
3273 {
3274 Error *local_err = NULL;
3275 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3276 PCDIMMDevice *dimm = PC_DIMM(dev);
3277 uint64_t size, addr;
3278 uint32_t node;
3279
3280 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3281
3282 pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3283 if (local_err) {
3284 goto out;
3285 }
3286
3287 addr = object_property_get_uint(OBJECT(dimm),
3288 PC_DIMM_ADDR_PROP, &local_err);
3289 if (local_err) {
3290 goto out_unplug;
3291 }
3292
3293 node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP,
3294 &error_abort);
3295 spapr_add_lmbs(dev, addr, size, node,
3296 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3297 &local_err);
3298 if (local_err) {
3299 goto out_unplug;
3300 }
3301
3302 return;
3303
3304 out_unplug:
3305 pc_dimm_unplug(dimm, MACHINE(ms));
3306 out:
3307 error_propagate(errp, local_err);
3308 }
3309
3310 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3311 Error **errp)
3312 {
3313 const sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3314 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3315 PCDIMMDevice *dimm = PC_DIMM(dev);
3316 Error *local_err = NULL;
3317 uint64_t size;
3318 Object *memdev;
3319 hwaddr pagesize;
3320
3321 if (!smc->dr_lmb_enabled) {
3322 error_setg(errp, "Memory hotplug not supported for this machine");
3323 return;
3324 }
3325
3326 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3327 if (local_err) {
3328 error_propagate(errp, local_err);
3329 return;
3330 }
3331
3332 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3333 error_setg(errp, "Hotplugged memory size must be a multiple of "
3334 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3335 return;
3336 }
3337
3338 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3339 &error_abort);
3340 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3341 spapr_check_pagesize(spapr, pagesize, &local_err);
3342 if (local_err) {
3343 error_propagate(errp, local_err);
3344 return;
3345 }
3346
3347 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3348 }
3349
3350 struct sPAPRDIMMState {
3351 PCDIMMDevice *dimm;
3352 uint32_t nr_lmbs;
3353 QTAILQ_ENTRY(sPAPRDIMMState) next;
3354 };
3355
3356 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
3357 PCDIMMDevice *dimm)
3358 {
3359 sPAPRDIMMState *dimm_state = NULL;
3360
3361 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3362 if (dimm_state->dimm == dimm) {
3363 break;
3364 }
3365 }
3366 return dimm_state;
3367 }
3368
3369 static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
3370 uint32_t nr_lmbs,
3371 PCDIMMDevice *dimm)
3372 {
3373 sPAPRDIMMState *ds = NULL;
3374
3375 /*
3376 * If this request is for a DIMM whose removal had failed earlier
3377 * (due to guest's refusal to remove the LMBs), we would have this
3378 * dimm already in the pending_dimm_unplugs list. In that
3379 * case don't add again.
3380 */
3381 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3382 if (!ds) {
3383 ds = g_malloc0(sizeof(sPAPRDIMMState));
3384 ds->nr_lmbs = nr_lmbs;
3385 ds->dimm = dimm;
3386 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3387 }
3388 return ds;
3389 }
3390
3391 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
3392 sPAPRDIMMState *dimm_state)
3393 {
3394 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3395 g_free(dimm_state);
3396 }
3397
3398 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
3399 PCDIMMDevice *dimm)
3400 {
3401 sPAPRDRConnector *drc;
3402 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3403 &error_abort);
3404 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3405 uint32_t avail_lmbs = 0;
3406 uint64_t addr_start, addr;
3407 int i;
3408
3409 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3410 &error_abort);
3411
3412 addr = addr_start;
3413 for (i = 0; i < nr_lmbs; i++) {
3414 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3415 addr / SPAPR_MEMORY_BLOCK_SIZE);
3416 g_assert(drc);
3417 if (drc->dev) {
3418 avail_lmbs++;
3419 }
3420 addr += SPAPR_MEMORY_BLOCK_SIZE;
3421 }
3422
3423 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3424 }
3425
3426 /* Callback to be called during DRC release. */
3427 void spapr_lmb_release(DeviceState *dev)
3428 {
3429 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3430 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3431 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3432
3433 /* This information will get lost if a migration occurs
3434 * during the unplug process. In this case recover it. */
3435 if (ds == NULL) {
3436 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3437 g_assert(ds);
3438 /* The DRC being examined by the caller at least must be counted */
3439 g_assert(ds->nr_lmbs);
3440 }
3441
3442 if (--ds->nr_lmbs) {
3443 return;
3444 }
3445
3446 /*
3447 * Now that all the LMBs have been removed by the guest, call the
3448 * unplug handler chain. This can never fail.
3449 */
3450 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3451 }
3452
3453 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3454 {
3455 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3456 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3457
3458 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3459 object_unparent(OBJECT(dev));
3460 spapr_pending_dimm_unplugs_remove(spapr, ds);
3461 }
3462
3463 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3464 DeviceState *dev, Error **errp)
3465 {
3466 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3467 Error *local_err = NULL;
3468 PCDIMMDevice *dimm = PC_DIMM(dev);
3469 uint32_t nr_lmbs;
3470 uint64_t size, addr_start, addr;
3471 int i;
3472 sPAPRDRConnector *drc;
3473
3474 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3475 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3476
3477 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3478 &local_err);
3479 if (local_err) {
3480 goto out;
3481 }
3482
3483 /*
3484 * An existing pending dimm state for this DIMM means that there is an
3485 * unplug operation in progress, waiting for the spapr_lmb_release
3486 * callback to complete the job (BQL can't cover that far). In this case,
3487 * bail out to avoid detaching DRCs that were already released.
3488 */
3489 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3490 error_setg(&local_err,
3491 "Memory unplug already in progress for device %s",
3492 dev->id);
3493 goto out;
3494 }
3495
3496 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3497
3498 addr = addr_start;
3499 for (i = 0; i < nr_lmbs; i++) {
3500 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3501 addr / SPAPR_MEMORY_BLOCK_SIZE);
3502 g_assert(drc);
3503
3504 spapr_drc_detach(drc);
3505 addr += SPAPR_MEMORY_BLOCK_SIZE;
3506 }
3507
3508 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3509 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3510 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3511 nr_lmbs, spapr_drc_index(drc));
3512 out:
3513 error_propagate(errp, local_err);
3514 }
3515
3516 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
3517 sPAPRMachineState *spapr)
3518 {
3519 PowerPCCPU *cpu = POWERPC_CPU(cs);
3520 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3521 int id = spapr_get_vcpu_id(cpu);
3522 void *fdt;
3523 int offset, fdt_size;
3524 char *nodename;
3525
3526 fdt = create_device_tree(&fdt_size);
3527 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3528 offset = fdt_add_subnode(fdt, 0, nodename);
3529
3530 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3531 g_free(nodename);
3532
3533 *fdt_offset = offset;
3534 return fdt;
3535 }
3536
3537 /* Callback to be called during DRC release. */
3538 void spapr_core_release(DeviceState *dev)
3539 {
3540 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3541
3542 /* Call the unplug handler chain. This can never fail. */
3543 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3544 }
3545
3546 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3547 {
3548 MachineState *ms = MACHINE(hotplug_dev);
3549 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3550 CPUCore *cc = CPU_CORE(dev);
3551 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3552
3553 if (smc->pre_2_10_has_unused_icps) {
3554 sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3555 int i;
3556
3557 for (i = 0; i < cc->nr_threads; i++) {
3558 CPUState *cs = CPU(sc->threads[i]);
3559
3560 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3561 }
3562 }
3563
3564 assert(core_slot);
3565 core_slot->cpu = NULL;
3566 object_unparent(OBJECT(dev));
3567 }
3568
3569 static
3570 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3571 Error **errp)
3572 {
3573 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3574 int index;
3575 sPAPRDRConnector *drc;
3576 CPUCore *cc = CPU_CORE(dev);
3577
3578 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3579 error_setg(errp, "Unable to find CPU core with core-id: %d",
3580 cc->core_id);
3581 return;
3582 }
3583 if (index == 0) {
3584 error_setg(errp, "Boot CPU core may not be unplugged");
3585 return;
3586 }
3587
3588 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3589 spapr_vcpu_id(spapr, cc->core_id));
3590 g_assert(drc);
3591
3592 spapr_drc_detach(drc);
3593
3594 spapr_hotplug_req_remove_by_index(drc);
3595 }
3596
3597 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3598 Error **errp)
3599 {
3600 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3601 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3602 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3603 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3604 CPUCore *cc = CPU_CORE(dev);
3605 CPUState *cs = CPU(core->threads[0]);
3606 sPAPRDRConnector *drc;
3607 Error *local_err = NULL;
3608 CPUArchId *core_slot;
3609 int index;
3610 bool hotplugged = spapr_drc_hotplugged(dev);
3611
3612 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3613 if (!core_slot) {
3614 error_setg(errp, "Unable to find CPU core with core-id: %d",
3615 cc->core_id);
3616 return;
3617 }
3618 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3619 spapr_vcpu_id(spapr, cc->core_id));
3620
3621 g_assert(drc || !mc->has_hotpluggable_cpus);
3622
3623 if (drc) {
3624 void *fdt;
3625 int fdt_offset;
3626
3627 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
3628
3629 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3630 if (local_err) {
3631 g_free(fdt);
3632 error_propagate(errp, local_err);
3633 return;
3634 }
3635
3636 if (hotplugged) {
3637 /*
3638 * Send hotplug notification interrupt to the guest only
3639 * in case of hotplugged CPUs.
3640 */
3641 spapr_hotplug_req_add_by_index(drc);
3642 } else {
3643 spapr_drc_reset(drc);
3644 }
3645 }
3646
3647 core_slot->cpu = OBJECT(dev);
3648
3649 if (smc->pre_2_10_has_unused_icps) {
3650 int i;
3651
3652 for (i = 0; i < cc->nr_threads; i++) {
3653 cs = CPU(core->threads[i]);
3654 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3655 }
3656 }
3657 }
3658
3659 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3660 Error **errp)
3661 {
3662 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3663 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3664 Error *local_err = NULL;
3665 CPUCore *cc = CPU_CORE(dev);
3666 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3667 const char *type = object_get_typename(OBJECT(dev));
3668 CPUArchId *core_slot;
3669 int index;
3670
3671 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3672 error_setg(&local_err, "CPU hotplug not supported for this machine");
3673 goto out;
3674 }
3675
3676 if (strcmp(base_core_type, type)) {
3677 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3678 goto out;
3679 }
3680
3681 if (cc->core_id % smp_threads) {
3682 error_setg(&local_err, "invalid core id %d", cc->core_id);
3683 goto out;
3684 }
3685
3686 /*
3687 * In general we should have homogeneous threads-per-core, but old
3688 * (pre hotplug support) machine types allow the last core to have
3689 * reduced threads as a compatibility hack for when we allowed
3690 * total vcpus not a multiple of threads-per-core.
3691 */
3692 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3693 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3694 cc->nr_threads, smp_threads);
3695 goto out;
3696 }
3697
3698 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3699 if (!core_slot) {
3700 error_setg(&local_err, "core id %d out of range", cc->core_id);
3701 goto out;
3702 }
3703
3704 if (core_slot->cpu) {
3705 error_setg(&local_err, "core %d already populated", cc->core_id);
3706 goto out;
3707 }
3708
3709 numa_cpu_pre_plug(core_slot, dev, &local_err);
3710
3711 out:
3712 error_propagate(errp, local_err);
3713 }
3714
3715 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3716 DeviceState *dev, Error **errp)
3717 {
3718 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3719 spapr_memory_plug(hotplug_dev, dev, errp);
3720 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3721 spapr_core_plug(hotplug_dev, dev, errp);
3722 }
3723 }
3724
3725 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
3726 DeviceState *dev, Error **errp)
3727 {
3728 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3729 spapr_memory_unplug(hotplug_dev, dev);
3730 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3731 spapr_core_unplug(hotplug_dev, dev);
3732 }
3733 }
3734
3735 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3736 DeviceState *dev, Error **errp)
3737 {
3738 sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
3739 MachineClass *mc = MACHINE_GET_CLASS(sms);
3740
3741 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3742 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3743 spapr_memory_unplug_request(hotplug_dev, dev, errp);
3744 } else {
3745 /* NOTE: this means there is a window after guest reset, prior to
3746 * CAS negotiation, where unplug requests will fail due to the
3747 * capability not being detected yet. This is a bit different than
3748 * the case with PCI unplug, where the events will be queued and
3749 * eventually handled by the guest after boot
3750 */
3751 error_setg(errp, "Memory hot unplug not supported for this guest");
3752 }
3753 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3754 if (!mc->has_hotpluggable_cpus) {
3755 error_setg(errp, "CPU hot unplug not supported on this machine");
3756 return;
3757 }
3758 spapr_core_unplug_request(hotplug_dev, dev, errp);
3759 }
3760 }
3761
3762 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3763 DeviceState *dev, Error **errp)
3764 {
3765 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3766 spapr_memory_pre_plug(hotplug_dev, dev, errp);
3767 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3768 spapr_core_pre_plug(hotplug_dev, dev, errp);
3769 }
3770 }
3771
3772 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3773 DeviceState *dev)
3774 {
3775 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3776 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3777 return HOTPLUG_HANDLER(machine);
3778 }
3779 return NULL;
3780 }
3781
3782 static CpuInstanceProperties
3783 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3784 {
3785 CPUArchId *core_slot;
3786 MachineClass *mc = MACHINE_GET_CLASS(machine);
3787
3788 /* make sure possible_cpu are intialized */
3789 mc->possible_cpu_arch_ids(machine);
3790 /* get CPU core slot containing thread that matches cpu_index */
3791 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3792 assert(core_slot);
3793 return core_slot->props;
3794 }
3795
3796 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
3797 {
3798 return idx / smp_cores % nb_numa_nodes;
3799 }
3800
3801 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3802 {
3803 int i;
3804 const char *core_type;
3805 int spapr_max_cores = max_cpus / smp_threads;
3806 MachineClass *mc = MACHINE_GET_CLASS(machine);
3807
3808 if (!mc->has_hotpluggable_cpus) {
3809 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3810 }
3811 if (machine->possible_cpus) {
3812 assert(machine->possible_cpus->len == spapr_max_cores);
3813 return machine->possible_cpus;
3814 }
3815
3816 core_type = spapr_get_cpu_core_type(machine->cpu_type);
3817 if (!core_type) {
3818 error_report("Unable to find sPAPR CPU Core definition");
3819 exit(1);
3820 }
3821
3822 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3823 sizeof(CPUArchId) * spapr_max_cores);
3824 machine->possible_cpus->len = spapr_max_cores;
3825 for (i = 0; i < machine->possible_cpus->len; i++) {
3826 int core_id = i * smp_threads;
3827
3828 machine->possible_cpus->cpus[i].type = core_type;
3829 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3830 machine->possible_cpus->cpus[i].arch_id = core_id;
3831 machine->possible_cpus->cpus[i].props.has_core_id = true;
3832 machine->possible_cpus->cpus[i].props.core_id = core_id;
3833 }
3834 return machine->possible_cpus;
3835 }
3836
3837 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3838 uint64_t *buid, hwaddr *pio,
3839 hwaddr *mmio32, hwaddr *mmio64,
3840 unsigned n_dma, uint32_t *liobns, Error **errp)
3841 {
3842 /*
3843 * New-style PHB window placement.
3844 *
3845 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3846 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3847 * windows.
3848 *
3849 * Some guest kernels can't work with MMIO windows above 1<<46
3850 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3851 *
3852 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3853 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
3854 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
3855 * 1TiB 64-bit MMIO windows for each PHB.
3856 */
3857 const uint64_t base_buid = 0x800000020000000ULL;
3858 int i;
3859
3860 /* Sanity check natural alignments */
3861 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3862 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3863 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3864 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3865 /* Sanity check bounds */
3866 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3867 SPAPR_PCI_MEM32_WIN_SIZE);
3868 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3869 SPAPR_PCI_MEM64_WIN_SIZE);
3870
3871 if (index >= SPAPR_MAX_PHBS) {
3872 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3873 SPAPR_MAX_PHBS - 1);
3874 return;
3875 }
3876
3877 *buid = base_buid + index;
3878 for (i = 0; i < n_dma; ++i) {
3879 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3880 }
3881
3882 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3883 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3884 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3885 }
3886
3887 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3888 {
3889 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3890
3891 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3892 }
3893
3894 static void spapr_ics_resend(XICSFabric *dev)
3895 {
3896 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3897
3898 ics_resend(spapr->ics);
3899 }
3900
3901 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
3902 {
3903 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
3904
3905 return cpu ? cpu->icp : NULL;
3906 }
3907
3908 static void spapr_pic_print_info(InterruptStatsProvider *obj,
3909 Monitor *mon)
3910 {
3911 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3912
3913 spapr->irq->print_info(spapr, mon);
3914 }
3915
3916 int spapr_get_vcpu_id(PowerPCCPU *cpu)
3917 {
3918 return cpu->vcpu_id;
3919 }
3920
3921 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
3922 {
3923 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3924 int vcpu_id;
3925
3926 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
3927
3928 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
3929 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
3930 error_append_hint(errp, "Adjust the number of cpus to %d "
3931 "or try to raise the number of threads per core\n",
3932 vcpu_id * smp_threads / spapr->vsmt);
3933 return;
3934 }
3935
3936 cpu->vcpu_id = vcpu_id;
3937 }
3938
3939 PowerPCCPU *spapr_find_cpu(int vcpu_id)
3940 {
3941 CPUState *cs;
3942
3943 CPU_FOREACH(cs) {
3944 PowerPCCPU *cpu = POWERPC_CPU(cs);
3945
3946 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
3947 return cpu;
3948 }
3949 }
3950
3951 return NULL;
3952 }
3953
3954 static void spapr_machine_class_init(ObjectClass *oc, void *data)
3955 {
3956 MachineClass *mc = MACHINE_CLASS(oc);
3957 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3958 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3959 NMIClass *nc = NMI_CLASS(oc);
3960 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3961 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3962 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3963 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3964
3965 mc->desc = "pSeries Logical Partition (PAPR compliant)";
3966 mc->ignore_boot_device_suffixes = true;
3967
3968 /*
3969 * We set up the default / latest behaviour here. The class_init
3970 * functions for the specific versioned machine types can override
3971 * these details for backwards compatibility
3972 */
3973 mc->init = spapr_machine_init;
3974 mc->reset = spapr_machine_reset;
3975 mc->block_default_type = IF_SCSI;
3976 mc->max_cpus = 1024;
3977 mc->no_parallel = 1;
3978 mc->default_boot_order = "";
3979 mc->default_ram_size = 512 * MiB;
3980 mc->default_display = "std";
3981 mc->kvm_type = spapr_kvm_type;
3982 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
3983 mc->pci_allow_0_address = true;
3984 assert(!mc->get_hotplug_handler);
3985 mc->get_hotplug_handler = spapr_get_hotplug_handler;
3986 hc->pre_plug = spapr_machine_device_pre_plug;
3987 hc->plug = spapr_machine_device_plug;
3988 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
3989 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
3990 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3991 hc->unplug_request = spapr_machine_device_unplug_request;
3992 hc->unplug = spapr_machine_device_unplug;
3993
3994 smc->dr_lmb_enabled = true;
3995 smc->update_dt_enabled = true;
3996 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
3997 mc->has_hotpluggable_cpus = true;
3998 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
3999 fwc->get_dev_path = spapr_get_fw_dev_path;
4000 nc->nmi_monitor_handler = spapr_nmi;
4001 smc->phb_placement = spapr_phb_placement;
4002 vhc->hypercall = emulate_spapr_hypercall;
4003 vhc->hpt_mask = spapr_hpt_mask;
4004 vhc->map_hptes = spapr_map_hptes;
4005 vhc->unmap_hptes = spapr_unmap_hptes;
4006 vhc->store_hpte = spapr_store_hpte;
4007 vhc->get_patbe = spapr_get_patbe;
4008 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4009 xic->ics_get = spapr_ics_get;
4010 xic->ics_resend = spapr_ics_resend;
4011 xic->icp_get = spapr_icp_get;
4012 ispc->print_info = spapr_pic_print_info;
4013 /* Force NUMA node memory size to be a multiple of
4014 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4015 * in which LMBs are represented and hot-added
4016 */
4017 mc->numa_mem_align_shift = 28;
4018
4019 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4020 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4021 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4022 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4023 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4024 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4025 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4026 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4027 spapr_caps_add_properties(smc, &error_abort);
4028 smc->irq = &spapr_irq_xics;
4029 }
4030
4031 static const TypeInfo spapr_machine_info = {
4032 .name = TYPE_SPAPR_MACHINE,
4033 .parent = TYPE_MACHINE,
4034 .abstract = true,
4035 .instance_size = sizeof(sPAPRMachineState),
4036 .instance_init = spapr_instance_init,
4037 .instance_finalize = spapr_machine_finalizefn,
4038 .class_size = sizeof(sPAPRMachineClass),
4039 .class_init = spapr_machine_class_init,
4040 .interfaces = (InterfaceInfo[]) {
4041 { TYPE_FW_PATH_PROVIDER },
4042 { TYPE_NMI },
4043 { TYPE_HOTPLUG_HANDLER },
4044 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4045 { TYPE_XICS_FABRIC },
4046 { TYPE_INTERRUPT_STATS_PROVIDER },
4047 { }
4048 },
4049 };
4050
4051 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4052 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4053 void *data) \
4054 { \
4055 MachineClass *mc = MACHINE_CLASS(oc); \
4056 spapr_machine_##suffix##_class_options(mc); \
4057 if (latest) { \
4058 mc->alias = "pseries"; \
4059 mc->is_default = 1; \
4060 } \
4061 } \
4062 static const TypeInfo spapr_machine_##suffix##_info = { \
4063 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4064 .parent = TYPE_SPAPR_MACHINE, \
4065 .class_init = spapr_machine_##suffix##_class_init, \
4066 }; \
4067 static void spapr_machine_register_##suffix(void) \
4068 { \
4069 type_register(&spapr_machine_##suffix##_info); \
4070 } \
4071 type_init(spapr_machine_register_##suffix)
4072
4073 /*
4074 * pseries-4.0
4075 */
4076 static void spapr_machine_4_0_class_options(MachineClass *mc)
4077 {
4078 /* Defaults for the latest behaviour inherited from the base class */
4079 }
4080
4081 DEFINE_SPAPR_MACHINE(4_0, "4.0", true);
4082
4083 /*
4084 * pseries-3.1
4085 */
4086 static void spapr_machine_3_1_class_options(MachineClass *mc)
4087 {
4088 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4089
4090 spapr_machine_4_0_class_options(mc);
4091 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4092 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4093 smc->update_dt_enabled = false;
4094 }
4095
4096 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4097
4098 /*
4099 * pseries-3.0
4100 */
4101
4102 static void spapr_machine_3_0_class_options(MachineClass *mc)
4103 {
4104 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4105
4106 spapr_machine_3_1_class_options(mc);
4107 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4108
4109 smc->legacy_irq_allocation = true;
4110 smc->irq = &spapr_irq_xics_legacy;
4111 }
4112
4113 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4114
4115 /*
4116 * pseries-2.12
4117 */
4118 static void spapr_machine_2_12_class_options(MachineClass *mc)
4119 {
4120 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4121 static GlobalProperty compat[] = {
4122 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4123 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4124 };
4125
4126 spapr_machine_3_0_class_options(mc);
4127 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4128 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4129
4130 /* We depend on kvm_enabled() to choose a default value for the
4131 * hpt-max-page-size capability. Of course we can't do it here
4132 * because this is too early and the HW accelerator isn't initialzed
4133 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4134 */
4135 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4136 }
4137
4138 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4139
4140 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4141 {
4142 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4143
4144 spapr_machine_2_12_class_options(mc);
4145 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4146 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4147 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4148 }
4149
4150 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4151
4152 /*
4153 * pseries-2.11
4154 */
4155
4156 static void spapr_machine_2_11_class_options(MachineClass *mc)
4157 {
4158 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4159
4160 spapr_machine_2_12_class_options(mc);
4161 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4162 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4163 }
4164
4165 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4166
4167 /*
4168 * pseries-2.10
4169 */
4170
4171 static void spapr_machine_2_10_class_options(MachineClass *mc)
4172 {
4173 spapr_machine_2_11_class_options(mc);
4174 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4175 }
4176
4177 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4178
4179 /*
4180 * pseries-2.9
4181 */
4182
4183 static void spapr_machine_2_9_class_options(MachineClass *mc)
4184 {
4185 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4186 static GlobalProperty compat[] = {
4187 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4188 };
4189
4190 spapr_machine_2_10_class_options(mc);
4191 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4192 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4193 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4194 smc->pre_2_10_has_unused_icps = true;
4195 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4196 }
4197
4198 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4199
4200 /*
4201 * pseries-2.8
4202 */
4203
4204 static void spapr_machine_2_8_class_options(MachineClass *mc)
4205 {
4206 static GlobalProperty compat[] = {
4207 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4208 };
4209
4210 spapr_machine_2_9_class_options(mc);
4211 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4212 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4213 mc->numa_mem_align_shift = 23;
4214 }
4215
4216 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4217
4218 /*
4219 * pseries-2.7
4220 */
4221
4222 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
4223 uint64_t *buid, hwaddr *pio,
4224 hwaddr *mmio32, hwaddr *mmio64,
4225 unsigned n_dma, uint32_t *liobns, Error **errp)
4226 {
4227 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4228 const uint64_t base_buid = 0x800000020000000ULL;
4229 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4230 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4231 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4232 const uint32_t max_index = 255;
4233 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4234
4235 uint64_t ram_top = MACHINE(spapr)->ram_size;
4236 hwaddr phb0_base, phb_base;
4237 int i;
4238
4239 /* Do we have device memory? */
4240 if (MACHINE(spapr)->maxram_size > ram_top) {
4241 /* Can't just use maxram_size, because there may be an
4242 * alignment gap between normal and device memory regions
4243 */
4244 ram_top = MACHINE(spapr)->device_memory->base +
4245 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4246 }
4247
4248 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4249
4250 if (index > max_index) {
4251 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4252 max_index);
4253 return;
4254 }
4255
4256 *buid = base_buid + index;
4257 for (i = 0; i < n_dma; ++i) {
4258 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4259 }
4260
4261 phb_base = phb0_base + index * phb_spacing;
4262 *pio = phb_base + pio_offset;
4263 *mmio32 = phb_base + mmio_offset;
4264 /*
4265 * We don't set the 64-bit MMIO window, relying on the PHB's
4266 * fallback behaviour of automatically splitting a large "32-bit"
4267 * window into contiguous 32-bit and 64-bit windows
4268 */
4269 }
4270
4271 static void spapr_machine_2_7_class_options(MachineClass *mc)
4272 {
4273 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4274 static GlobalProperty compat[] = {
4275 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4276 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4277 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4278 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4279 };
4280
4281 spapr_machine_2_8_class_options(mc);
4282 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4283 mc->default_machine_opts = "modern-hotplug-events=off";
4284 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4285 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4286 smc->phb_placement = phb_placement_2_7;
4287 }
4288
4289 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4290
4291 /*
4292 * pseries-2.6
4293 */
4294
4295 static void spapr_machine_2_6_class_options(MachineClass *mc)
4296 {
4297 static GlobalProperty compat[] = {
4298 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4299 };
4300
4301 spapr_machine_2_7_class_options(mc);
4302 mc->has_hotpluggable_cpus = false;
4303 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4304 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4305 }
4306
4307 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4308
4309 /*
4310 * pseries-2.5
4311 */
4312
4313 static void spapr_machine_2_5_class_options(MachineClass *mc)
4314 {
4315 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4316 static GlobalProperty compat[] = {
4317 { "spapr-vlan", "use-rx-buffer-pools", "off" },
4318 };
4319
4320 spapr_machine_2_6_class_options(mc);
4321 smc->use_ohci_by_default = true;
4322 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4323 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4324 }
4325
4326 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4327
4328 /*
4329 * pseries-2.4
4330 */
4331
4332 static void spapr_machine_2_4_class_options(MachineClass *mc)
4333 {
4334 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4335
4336 spapr_machine_2_5_class_options(mc);
4337 smc->dr_lmb_enabled = false;
4338 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4339 }
4340
4341 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4342
4343 /*
4344 * pseries-2.3
4345 */
4346
4347 static void spapr_machine_2_3_class_options(MachineClass *mc)
4348 {
4349 static GlobalProperty compat[] = {
4350 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4351 };
4352 spapr_machine_2_4_class_options(mc);
4353 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4354 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4355 }
4356 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4357
4358 /*
4359 * pseries-2.2
4360 */
4361
4362 static void spapr_machine_2_2_class_options(MachineClass *mc)
4363 {
4364 static GlobalProperty compat[] = {
4365 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4366 };
4367
4368 spapr_machine_2_3_class_options(mc);
4369 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4370 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4371 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4372 }
4373 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4374
4375 /*
4376 * pseries-2.1
4377 */
4378
4379 static void spapr_machine_2_1_class_options(MachineClass *mc)
4380 {
4381 spapr_machine_2_2_class_options(mc);
4382 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4383 }
4384 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4385
4386 static void spapr_machine_register_types(void)
4387 {
4388 type_register_static(&spapr_machine_info);
4389 }
4390
4391 type_init(spapr_machine_register_types)