]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr.c
spapr: Move DT memory node rendering to a helper
[mirror_qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
27 #include "sysemu/sysemu.h"
28 #include "hw/hw.h"
29 #include "hw/fw-path-provider.h"
30 #include "elf.h"
31 #include "net/net.h"
32 #include "sysemu/blockdev.h"
33 #include "sysemu/cpus.h"
34 #include "sysemu/kvm.h"
35 #include "kvm_ppc.h"
36 #include "mmu-hash64.h"
37 #include "qom/cpu.h"
38
39 #include "hw/boards.h"
40 #include "hw/ppc/ppc.h"
41 #include "hw/loader.h"
42
43 #include "hw/ppc/spapr.h"
44 #include "hw/ppc/spapr_vio.h"
45 #include "hw/pci-host/spapr.h"
46 #include "hw/ppc/xics.h"
47 #include "hw/pci/msi.h"
48
49 #include "hw/pci/pci.h"
50 #include "hw/scsi/scsi.h"
51 #include "hw/virtio/virtio-scsi.h"
52
53 #include "exec/address-spaces.h"
54 #include "hw/usb.h"
55 #include "qemu/config-file.h"
56 #include "qemu/error-report.h"
57 #include "trace.h"
58 #include "hw/nmi.h"
59
60 #include <libfdt.h>
61
62 /* SLOF memory layout:
63 *
64 * SLOF raw image loaded at 0, copies its romfs right below the flat
65 * device-tree, then position SLOF itself 31M below that
66 *
67 * So we set FW_OVERHEAD to 40MB which should account for all of that
68 * and more
69 *
70 * We load our kernel at 4M, leaving space for SLOF initial image
71 */
72 #define FDT_MAX_SIZE 0x40000
73 #define RTAS_MAX_SIZE 0x10000
74 #define FW_MAX_SIZE 0x400000
75 #define FW_FILE_NAME "slof.bin"
76 #define FW_OVERHEAD 0x2800000
77 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
78
79 #define MIN_RMA_SLOF 128UL
80
81 #define TIMEBASE_FREQ 512000000ULL
82
83 #define MAX_CPUS 256
84
85 #define PHANDLE_XICP 0x00001111
86
87 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
88
89 typedef struct sPAPRMachineState sPAPRMachineState;
90
91 #define TYPE_SPAPR_MACHINE "spapr-machine"
92 #define SPAPR_MACHINE(obj) \
93 OBJECT_CHECK(sPAPRMachineState, (obj), TYPE_SPAPR_MACHINE)
94
95 /**
96 * sPAPRMachineState:
97 */
98 struct sPAPRMachineState {
99 /*< private >*/
100 MachineState parent_obj;
101
102 /*< public >*/
103 char *kvm_type;
104 };
105
106 sPAPREnvironment *spapr;
107
108 static XICSState *try_create_xics(const char *type, int nr_servers,
109 int nr_irqs)
110 {
111 DeviceState *dev;
112
113 dev = qdev_create(NULL, type);
114 qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
115 qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
116 if (qdev_init(dev) < 0) {
117 return NULL;
118 }
119
120 return XICS_COMMON(dev);
121 }
122
123 static XICSState *xics_system_init(int nr_servers, int nr_irqs)
124 {
125 XICSState *icp = NULL;
126
127 if (kvm_enabled()) {
128 QemuOpts *machine_opts = qemu_get_machine_opts();
129 bool irqchip_allowed = qemu_opt_get_bool(machine_opts,
130 "kernel_irqchip", true);
131 bool irqchip_required = qemu_opt_get_bool(machine_opts,
132 "kernel_irqchip", false);
133 if (irqchip_allowed) {
134 icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs);
135 }
136
137 if (irqchip_required && !icp) {
138 perror("Failed to create in-kernel XICS\n");
139 abort();
140 }
141 }
142
143 if (!icp) {
144 icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs);
145 }
146
147 if (!icp) {
148 perror("Failed to create XICS\n");
149 abort();
150 }
151
152 return icp;
153 }
154
155 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
156 int smt_threads)
157 {
158 int i, ret = 0;
159 uint32_t servers_prop[smt_threads];
160 uint32_t gservers_prop[smt_threads * 2];
161 int index = ppc_get_vcpu_dt_id(cpu);
162
163 if (cpu->cpu_version) {
164 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
165 if (ret < 0) {
166 return ret;
167 }
168 }
169
170 /* Build interrupt servers and gservers properties */
171 for (i = 0; i < smt_threads; i++) {
172 servers_prop[i] = cpu_to_be32(index + i);
173 /* Hack, direct the group queues back to cpu 0 */
174 gservers_prop[i*2] = cpu_to_be32(index + i);
175 gservers_prop[i*2 + 1] = 0;
176 }
177 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
178 servers_prop, sizeof(servers_prop));
179 if (ret < 0) {
180 return ret;
181 }
182 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
183 gservers_prop, sizeof(gservers_prop));
184
185 return ret;
186 }
187
188 static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr)
189 {
190 int ret = 0, offset, cpus_offset;
191 CPUState *cs;
192 char cpu_model[32];
193 int smt = kvmppc_smt_threads();
194 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
195
196 CPU_FOREACH(cs) {
197 PowerPCCPU *cpu = POWERPC_CPU(cs);
198 DeviceClass *dc = DEVICE_GET_CLASS(cs);
199 int index = ppc_get_vcpu_dt_id(cpu);
200 uint32_t associativity[] = {cpu_to_be32(0x5),
201 cpu_to_be32(0x0),
202 cpu_to_be32(0x0),
203 cpu_to_be32(0x0),
204 cpu_to_be32(cs->numa_node),
205 cpu_to_be32(index)};
206
207 if ((index % smt) != 0) {
208 continue;
209 }
210
211 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
212
213 cpus_offset = fdt_path_offset(fdt, "/cpus");
214 if (cpus_offset < 0) {
215 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
216 "cpus");
217 if (cpus_offset < 0) {
218 return cpus_offset;
219 }
220 }
221 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
222 if (offset < 0) {
223 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
224 if (offset < 0) {
225 return offset;
226 }
227 }
228
229 if (nb_numa_nodes > 1) {
230 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
231 sizeof(associativity));
232 if (ret < 0) {
233 return ret;
234 }
235 }
236
237 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
238 pft_size_prop, sizeof(pft_size_prop));
239 if (ret < 0) {
240 return ret;
241 }
242
243 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
244 ppc_get_compat_smt_threads(cpu));
245 if (ret < 0) {
246 return ret;
247 }
248 }
249 return ret;
250 }
251
252
253 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
254 size_t maxsize)
255 {
256 size_t maxcells = maxsize / sizeof(uint32_t);
257 int i, j, count;
258 uint32_t *p = prop;
259
260 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
261 struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
262
263 if (!sps->page_shift) {
264 break;
265 }
266 for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
267 if (sps->enc[count].page_shift == 0) {
268 break;
269 }
270 }
271 if ((p - prop) >= (maxcells - 3 - count * 2)) {
272 break;
273 }
274 *(p++) = cpu_to_be32(sps->page_shift);
275 *(p++) = cpu_to_be32(sps->slb_enc);
276 *(p++) = cpu_to_be32(count);
277 for (j = 0; j < count; j++) {
278 *(p++) = cpu_to_be32(sps->enc[j].page_shift);
279 *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
280 }
281 }
282
283 return (p - prop) * sizeof(uint32_t);
284 }
285
286 #define _FDT(exp) \
287 do { \
288 int ret = (exp); \
289 if (ret < 0) { \
290 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
291 #exp, fdt_strerror(ret)); \
292 exit(1); \
293 } \
294 } while (0)
295
296 static void add_str(GString *s, const gchar *s1)
297 {
298 g_string_append_len(s, s1, strlen(s1) + 1);
299 }
300
301 static void *spapr_create_fdt_skel(hwaddr initrd_base,
302 hwaddr initrd_size,
303 hwaddr kernel_size,
304 bool little_endian,
305 const char *boot_device,
306 const char *kernel_cmdline,
307 uint32_t epow_irq)
308 {
309 void *fdt;
310 CPUState *cs;
311 uint32_t start_prop = cpu_to_be32(initrd_base);
312 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
313 GString *hypertas = g_string_sized_new(256);
314 GString *qemu_hypertas = g_string_sized_new(256);
315 uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
316 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
317 int smt = kvmppc_smt_threads();
318 unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
319 QemuOpts *opts = qemu_opts_find(qemu_find_opts("smp-opts"), NULL);
320 unsigned sockets = opts ? qemu_opt_get_number(opts, "sockets", 0) : 0;
321 uint32_t cpus_per_socket = sockets ? (smp_cpus / sockets) : 1;
322 char *buf;
323
324 add_str(hypertas, "hcall-pft");
325 add_str(hypertas, "hcall-term");
326 add_str(hypertas, "hcall-dabr");
327 add_str(hypertas, "hcall-interrupt");
328 add_str(hypertas, "hcall-tce");
329 add_str(hypertas, "hcall-vio");
330 add_str(hypertas, "hcall-splpar");
331 add_str(hypertas, "hcall-bulk");
332 add_str(hypertas, "hcall-set-mode");
333 add_str(qemu_hypertas, "hcall-memop1");
334
335 fdt = g_malloc0(FDT_MAX_SIZE);
336 _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
337
338 if (kernel_size) {
339 _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
340 }
341 if (initrd_size) {
342 _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
343 }
344 _FDT((fdt_finish_reservemap(fdt)));
345
346 /* Root node */
347 _FDT((fdt_begin_node(fdt, "")));
348 _FDT((fdt_property_string(fdt, "device_type", "chrp")));
349 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
350 _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
351
352 if (kvm_enabled()) {
353 _FDT((fdt_property_string(fdt, "hypervisor", "kvm")));
354 }
355
356 /*
357 * Add info to guest to indentify which host is it being run on
358 * and what is the uuid of the guest
359 */
360 if (kvmppc_get_host_model(&buf)) {
361 _FDT((fdt_property_string(fdt, "host-model", buf)));
362 g_free(buf);
363 }
364 if (kvmppc_get_host_serial(&buf)) {
365 _FDT((fdt_property_string(fdt, "host-serial", buf)));
366 g_free(buf);
367 }
368
369 buf = g_strdup_printf(UUID_FMT, qemu_uuid[0], qemu_uuid[1],
370 qemu_uuid[2], qemu_uuid[3], qemu_uuid[4],
371 qemu_uuid[5], qemu_uuid[6], qemu_uuid[7],
372 qemu_uuid[8], qemu_uuid[9], qemu_uuid[10],
373 qemu_uuid[11], qemu_uuid[12], qemu_uuid[13],
374 qemu_uuid[14], qemu_uuid[15]);
375
376 _FDT((fdt_property_string(fdt, "vm,uuid", buf)));
377 g_free(buf);
378
379 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
380 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
381
382 /* /chosen */
383 _FDT((fdt_begin_node(fdt, "chosen")));
384
385 /* Set Form1_affinity */
386 _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
387
388 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
389 _FDT((fdt_property(fdt, "linux,initrd-start",
390 &start_prop, sizeof(start_prop))));
391 _FDT((fdt_property(fdt, "linux,initrd-end",
392 &end_prop, sizeof(end_prop))));
393 if (kernel_size) {
394 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
395 cpu_to_be64(kernel_size) };
396
397 _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
398 if (little_endian) {
399 _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
400 }
401 }
402 if (boot_device) {
403 _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
404 }
405 if (boot_menu) {
406 _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu)));
407 }
408 _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
409 _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
410 _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
411
412 _FDT((fdt_end_node(fdt)));
413
414 /* cpus */
415 _FDT((fdt_begin_node(fdt, "cpus")));
416
417 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
418 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
419
420 CPU_FOREACH(cs) {
421 PowerPCCPU *cpu = POWERPC_CPU(cs);
422 CPUPPCState *env = &cpu->env;
423 DeviceClass *dc = DEVICE_GET_CLASS(cs);
424 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
425 int index = ppc_get_vcpu_dt_id(cpu);
426 char *nodename;
427 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
428 0xffffffff, 0xffffffff};
429 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
430 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
431 uint32_t page_sizes_prop[64];
432 size_t page_sizes_prop_size;
433
434 if ((index % smt) != 0) {
435 continue;
436 }
437
438 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
439
440 _FDT((fdt_begin_node(fdt, nodename)));
441
442 g_free(nodename);
443
444 _FDT((fdt_property_cell(fdt, "reg", index)));
445 _FDT((fdt_property_string(fdt, "device_type", "cpu")));
446
447 _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
448 _FDT((fdt_property_cell(fdt, "d-cache-block-size",
449 env->dcache_line_size)));
450 _FDT((fdt_property_cell(fdt, "d-cache-line-size",
451 env->dcache_line_size)));
452 _FDT((fdt_property_cell(fdt, "i-cache-block-size",
453 env->icache_line_size)));
454 _FDT((fdt_property_cell(fdt, "i-cache-line-size",
455 env->icache_line_size)));
456
457 if (pcc->l1_dcache_size) {
458 _FDT((fdt_property_cell(fdt, "d-cache-size", pcc->l1_dcache_size)));
459 } else {
460 fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
461 }
462 if (pcc->l1_icache_size) {
463 _FDT((fdt_property_cell(fdt, "i-cache-size", pcc->l1_icache_size)));
464 } else {
465 fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
466 }
467
468 _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
469 _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
470 _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
471 _FDT((fdt_property_string(fdt, "status", "okay")));
472 _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
473
474 if (env->spr_cb[SPR_PURR].oea_read) {
475 _FDT((fdt_property(fdt, "ibm,purr", NULL, 0)));
476 }
477
478 if (env->mmu_model & POWERPC_MMU_1TSEG) {
479 _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
480 segs, sizeof(segs))));
481 }
482
483 /* Advertise VMX/VSX (vector extensions) if available
484 * 0 / no property == no vector extensions
485 * 1 == VMX / Altivec available
486 * 2 == VSX available */
487 if (env->insns_flags & PPC_ALTIVEC) {
488 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
489
490 _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
491 }
492
493 /* Advertise DFP (Decimal Floating Point) if available
494 * 0 / no property == no DFP
495 * 1 == DFP available */
496 if (env->insns_flags2 & PPC2_DFP) {
497 _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
498 }
499
500 page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
501 sizeof(page_sizes_prop));
502 if (page_sizes_prop_size) {
503 _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
504 page_sizes_prop, page_sizes_prop_size)));
505 }
506
507 _FDT((fdt_property_cell(fdt, "ibm,chip-id",
508 cs->cpu_index / cpus_per_socket)));
509
510 _FDT((fdt_end_node(fdt)));
511 }
512
513 _FDT((fdt_end_node(fdt)));
514
515 /* RTAS */
516 _FDT((fdt_begin_node(fdt, "rtas")));
517
518 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
519 add_str(hypertas, "hcall-multi-tce");
520 }
521 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
522 hypertas->len)));
523 g_string_free(hypertas, TRUE);
524 _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
525 qemu_hypertas->len)));
526 g_string_free(qemu_hypertas, TRUE);
527
528 _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
529 refpoints, sizeof(refpoints))));
530
531 _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
532
533 /*
534 * According to PAPR, rtas ibm,os-term, does not gaurantee a return
535 * back to the guest cpu.
536 *
537 * While an additional ibm,extended-os-term property indicates that
538 * rtas call return will always occur. Set this property.
539 */
540 _FDT((fdt_property(fdt, "ibm,extended-os-term", NULL, 0)));
541
542 _FDT((fdt_end_node(fdt)));
543
544 /* interrupt controller */
545 _FDT((fdt_begin_node(fdt, "interrupt-controller")));
546
547 _FDT((fdt_property_string(fdt, "device_type",
548 "PowerPC-External-Interrupt-Presentation")));
549 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
550 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
551 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
552 interrupt_server_ranges_prop,
553 sizeof(interrupt_server_ranges_prop))));
554 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
555 _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
556 _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
557
558 _FDT((fdt_end_node(fdt)));
559
560 /* vdevice */
561 _FDT((fdt_begin_node(fdt, "vdevice")));
562
563 _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
564 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
565 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
566 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
567 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
568 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
569
570 _FDT((fdt_end_node(fdt)));
571
572 /* event-sources */
573 spapr_events_fdt_skel(fdt, epow_irq);
574
575 /* /hypervisor node */
576 if (kvm_enabled()) {
577 uint8_t hypercall[16];
578
579 /* indicate KVM hypercall interface */
580 _FDT((fdt_begin_node(fdt, "hypervisor")));
581 _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
582 if (kvmppc_has_cap_fixup_hcalls()) {
583 /*
584 * Older KVM versions with older guest kernels were broken with the
585 * magic page, don't allow the guest to map it.
586 */
587 kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
588 sizeof(hypercall));
589 _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
590 sizeof(hypercall))));
591 }
592 _FDT((fdt_end_node(fdt)));
593 }
594
595 _FDT((fdt_end_node(fdt))); /* close root node */
596 _FDT((fdt_finish(fdt)));
597
598 return fdt;
599 }
600
601 int spapr_h_cas_compose_response(target_ulong addr, target_ulong size)
602 {
603 void *fdt, *fdt_skel;
604 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
605
606 size -= sizeof(hdr);
607
608 /* Create sceleton */
609 fdt_skel = g_malloc0(size);
610 _FDT((fdt_create(fdt_skel, size)));
611 _FDT((fdt_begin_node(fdt_skel, "")));
612 _FDT((fdt_end_node(fdt_skel)));
613 _FDT((fdt_finish(fdt_skel)));
614 fdt = g_malloc0(size);
615 _FDT((fdt_open_into(fdt_skel, fdt, size)));
616 g_free(fdt_skel);
617
618 /* Fix skeleton up */
619 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
620
621 /* Pack resulting tree */
622 _FDT((fdt_pack(fdt)));
623
624 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
625 trace_spapr_cas_failed(size);
626 return -1;
627 }
628
629 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
630 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
631 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
632 g_free(fdt);
633
634 return 0;
635 }
636
637 static void spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
638 hwaddr size)
639 {
640 uint32_t associativity[] = {
641 cpu_to_be32(0x4), /* length */
642 cpu_to_be32(0x0), cpu_to_be32(0x0),
643 cpu_to_be32(nodeid), cpu_to_be32(nodeid)
644 };
645 char mem_name[32];
646 uint64_t mem_reg_property[2];
647 int off;
648
649 mem_reg_property[0] = cpu_to_be64(start);
650 mem_reg_property[1] = cpu_to_be64(size);
651
652 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
653 off = fdt_add_subnode(fdt, 0, mem_name);
654 _FDT(off);
655 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
656 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
657 sizeof(mem_reg_property))));
658 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
659 sizeof(associativity))));
660 }
661
662 static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt)
663 {
664 uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
665 cpu_to_be32(0x0), cpu_to_be32(0x0),
666 cpu_to_be32(0x0)};
667 char mem_name[32];
668 hwaddr node0_size, mem_start, node_size;
669 uint64_t mem_reg_property[2];
670 int i, off;
671
672 /* memory node(s) */
673 if (nb_numa_nodes > 1 && numa_info[0].node_mem < ram_size) {
674 node0_size = numa_info[0].node_mem;
675 } else {
676 node0_size = ram_size;
677 }
678
679 /* RMA */
680 spapr_populate_memory_node(fdt, 0, 0, spapr->rma_size);
681
682 /* RAM: Node 0 */
683 if (node0_size > spapr->rma_size) {
684 spapr_populate_memory_node(fdt, 0, spapr->rma_size,
685 node0_size - spapr->rma_size);
686 }
687
688 /* RAM: Node 1 and beyond */
689 mem_start = node0_size;
690 for (i = 1; i < nb_numa_nodes; i++) {
691 mem_reg_property[0] = cpu_to_be64(mem_start);
692 if (mem_start >= ram_size) {
693 node_size = 0;
694 } else {
695 node_size = numa_info[i].node_mem;
696 if (node_size > ram_size - mem_start) {
697 node_size = ram_size - mem_start;
698 }
699 }
700 mem_reg_property[1] = cpu_to_be64(node_size);
701 associativity[3] = associativity[4] = cpu_to_be32(i);
702 sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start);
703 off = fdt_add_subnode(fdt, 0, mem_name);
704 _FDT(off);
705 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
706 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
707 sizeof(mem_reg_property))));
708 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
709 sizeof(associativity))));
710 mem_start += node_size;
711 }
712
713 return 0;
714 }
715
716 static void spapr_finalize_fdt(sPAPREnvironment *spapr,
717 hwaddr fdt_addr,
718 hwaddr rtas_addr,
719 hwaddr rtas_size)
720 {
721 int ret, i;
722 size_t cb = 0;
723 char *bootlist;
724 void *fdt;
725 sPAPRPHBState *phb;
726
727 fdt = g_malloc(FDT_MAX_SIZE);
728
729 /* open out the base tree into a temp buffer for the final tweaks */
730 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
731
732 ret = spapr_populate_memory(spapr, fdt);
733 if (ret < 0) {
734 fprintf(stderr, "couldn't setup memory nodes in fdt\n");
735 exit(1);
736 }
737
738 ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
739 if (ret < 0) {
740 fprintf(stderr, "couldn't setup vio devices in fdt\n");
741 exit(1);
742 }
743
744 QLIST_FOREACH(phb, &spapr->phbs, list) {
745 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
746 }
747
748 if (ret < 0) {
749 fprintf(stderr, "couldn't setup PCI devices in fdt\n");
750 exit(1);
751 }
752
753 /* RTAS */
754 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
755 if (ret < 0) {
756 fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
757 }
758
759 /* Advertise NUMA via ibm,associativity */
760 ret = spapr_fixup_cpu_dt(fdt, spapr);
761 if (ret < 0) {
762 fprintf(stderr, "Couldn't finalize CPU device tree properties\n");
763 }
764
765 bootlist = get_boot_devices_list(&cb, true);
766 if (cb && bootlist) {
767 int offset = fdt_path_offset(fdt, "/chosen");
768 if (offset < 0) {
769 exit(1);
770 }
771 for (i = 0; i < cb; i++) {
772 if (bootlist[i] == '\n') {
773 bootlist[i] = ' ';
774 }
775
776 }
777 ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
778 }
779
780 if (!spapr->has_graphics) {
781 spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
782 }
783
784 _FDT((fdt_pack(fdt)));
785
786 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
787 hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
788 fdt_totalsize(fdt), FDT_MAX_SIZE);
789 exit(1);
790 }
791
792 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
793
794 g_free(bootlist);
795 g_free(fdt);
796 }
797
798 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
799 {
800 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
801 }
802
803 static void emulate_spapr_hypercall(PowerPCCPU *cpu)
804 {
805 CPUPPCState *env = &cpu->env;
806
807 if (msr_pr) {
808 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
809 env->gpr[3] = H_PRIVILEGE;
810 } else {
811 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
812 }
813 }
814
815 static void spapr_reset_htab(sPAPREnvironment *spapr)
816 {
817 long shift;
818
819 /* allocate hash page table. For now we always make this 16mb,
820 * later we should probably make it scale to the size of guest
821 * RAM */
822
823 shift = kvmppc_reset_htab(spapr->htab_shift);
824
825 if (shift > 0) {
826 /* Kernel handles htab, we don't need to allocate one */
827 spapr->htab_shift = shift;
828 kvmppc_kern_htab = true;
829 } else {
830 if (!spapr->htab) {
831 /* Allocate an htab if we don't yet have one */
832 spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
833 }
834
835 /* And clear it */
836 memset(spapr->htab, 0, HTAB_SIZE(spapr));
837 }
838
839 /* Update the RMA size if necessary */
840 if (spapr->vrma_adjust) {
841 hwaddr node0_size = (nb_numa_nodes > 1) ?
842 numa_info[0].node_mem : ram_size;
843 spapr->rma_size = kvmppc_rma_size(node0_size, spapr->htab_shift);
844 }
845 }
846
847 static void ppc_spapr_reset(void)
848 {
849 PowerPCCPU *first_ppc_cpu;
850
851 /* Reset the hash table & recalc the RMA */
852 spapr_reset_htab(spapr);
853
854 qemu_devices_reset();
855
856 /* Load the fdt */
857 spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
858 spapr->rtas_size);
859
860 /* Set up the entry state */
861 first_ppc_cpu = POWERPC_CPU(first_cpu);
862 first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
863 first_ppc_cpu->env.gpr[5] = 0;
864 first_cpu->halted = 0;
865 first_ppc_cpu->env.nip = spapr->entry_point;
866
867 }
868
869 static void spapr_cpu_reset(void *opaque)
870 {
871 PowerPCCPU *cpu = opaque;
872 CPUState *cs = CPU(cpu);
873 CPUPPCState *env = &cpu->env;
874
875 cpu_reset(cs);
876
877 /* All CPUs start halted. CPU0 is unhalted from the machine level
878 * reset code and the rest are explicitly started up by the guest
879 * using an RTAS call */
880 cs->halted = 1;
881
882 env->spr[SPR_HIOR] = 0;
883
884 env->external_htab = (uint8_t *)spapr->htab;
885 if (kvm_enabled() && !env->external_htab) {
886 /*
887 * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte*
888 * functions do the right thing.
889 */
890 env->external_htab = (void *)1;
891 }
892 env->htab_base = -1;
893 /*
894 * htab_mask is the mask used to normalize hash value to PTEG index.
895 * htab_shift is log2 of hash table size.
896 * We have 8 hpte per group, and each hpte is 16 bytes.
897 * ie have 128 bytes per hpte entry.
898 */
899 env->htab_mask = (1ULL << ((spapr)->htab_shift - 7)) - 1;
900 env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
901 (spapr->htab_shift - 18);
902 }
903
904 static void spapr_create_nvram(sPAPREnvironment *spapr)
905 {
906 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
907 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
908
909 if (dinfo) {
910 qdev_prop_set_drive_nofail(dev, "drive", dinfo->bdrv);
911 }
912
913 qdev_init_nofail(dev);
914
915 spapr->nvram = (struct sPAPRNVRAM *)dev;
916 }
917
918 /* Returns whether we want to use VGA or not */
919 static int spapr_vga_init(PCIBus *pci_bus)
920 {
921 switch (vga_interface_type) {
922 case VGA_NONE:
923 return false;
924 case VGA_DEVICE:
925 return true;
926 case VGA_STD:
927 return pci_vga_init(pci_bus) != NULL;
928 default:
929 fprintf(stderr, "This vga model is not supported,"
930 "currently it only supports -vga std\n");
931 exit(0);
932 }
933 }
934
935 static const VMStateDescription vmstate_spapr = {
936 .name = "spapr",
937 .version_id = 2,
938 .minimum_version_id = 1,
939 .fields = (VMStateField[]) {
940 VMSTATE_UNUSED(4), /* used to be @next_irq */
941
942 /* RTC offset */
943 VMSTATE_UINT64(rtc_offset, sPAPREnvironment),
944 VMSTATE_PPC_TIMEBASE_V(tb, sPAPREnvironment, 2),
945 VMSTATE_END_OF_LIST()
946 },
947 };
948
949 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
950 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
951 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
952 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
953
954 static int htab_save_setup(QEMUFile *f, void *opaque)
955 {
956 sPAPREnvironment *spapr = opaque;
957
958 /* "Iteration" header */
959 qemu_put_be32(f, spapr->htab_shift);
960
961 if (spapr->htab) {
962 spapr->htab_save_index = 0;
963 spapr->htab_first_pass = true;
964 } else {
965 assert(kvm_enabled());
966
967 spapr->htab_fd = kvmppc_get_htab_fd(false);
968 if (spapr->htab_fd < 0) {
969 fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
970 strerror(errno));
971 return -1;
972 }
973 }
974
975
976 return 0;
977 }
978
979 static void htab_save_first_pass(QEMUFile *f, sPAPREnvironment *spapr,
980 int64_t max_ns)
981 {
982 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
983 int index = spapr->htab_save_index;
984 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
985
986 assert(spapr->htab_first_pass);
987
988 do {
989 int chunkstart;
990
991 /* Consume invalid HPTEs */
992 while ((index < htabslots)
993 && !HPTE_VALID(HPTE(spapr->htab, index))) {
994 index++;
995 CLEAN_HPTE(HPTE(spapr->htab, index));
996 }
997
998 /* Consume valid HPTEs */
999 chunkstart = index;
1000 while ((index < htabslots)
1001 && HPTE_VALID(HPTE(spapr->htab, index))) {
1002 index++;
1003 CLEAN_HPTE(HPTE(spapr->htab, index));
1004 }
1005
1006 if (index > chunkstart) {
1007 int n_valid = index - chunkstart;
1008
1009 qemu_put_be32(f, chunkstart);
1010 qemu_put_be16(f, n_valid);
1011 qemu_put_be16(f, 0);
1012 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1013 HASH_PTE_SIZE_64 * n_valid);
1014
1015 if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1016 break;
1017 }
1018 }
1019 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1020
1021 if (index >= htabslots) {
1022 assert(index == htabslots);
1023 index = 0;
1024 spapr->htab_first_pass = false;
1025 }
1026 spapr->htab_save_index = index;
1027 }
1028
1029 static int htab_save_later_pass(QEMUFile *f, sPAPREnvironment *spapr,
1030 int64_t max_ns)
1031 {
1032 bool final = max_ns < 0;
1033 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1034 int examined = 0, sent = 0;
1035 int index = spapr->htab_save_index;
1036 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1037
1038 assert(!spapr->htab_first_pass);
1039
1040 do {
1041 int chunkstart, invalidstart;
1042
1043 /* Consume non-dirty HPTEs */
1044 while ((index < htabslots)
1045 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1046 index++;
1047 examined++;
1048 }
1049
1050 chunkstart = index;
1051 /* Consume valid dirty HPTEs */
1052 while ((index < htabslots)
1053 && HPTE_DIRTY(HPTE(spapr->htab, index))
1054 && HPTE_VALID(HPTE(spapr->htab, index))) {
1055 CLEAN_HPTE(HPTE(spapr->htab, index));
1056 index++;
1057 examined++;
1058 }
1059
1060 invalidstart = index;
1061 /* Consume invalid dirty HPTEs */
1062 while ((index < htabslots)
1063 && HPTE_DIRTY(HPTE(spapr->htab, index))
1064 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1065 CLEAN_HPTE(HPTE(spapr->htab, index));
1066 index++;
1067 examined++;
1068 }
1069
1070 if (index > chunkstart) {
1071 int n_valid = invalidstart - chunkstart;
1072 int n_invalid = index - invalidstart;
1073
1074 qemu_put_be32(f, chunkstart);
1075 qemu_put_be16(f, n_valid);
1076 qemu_put_be16(f, n_invalid);
1077 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1078 HASH_PTE_SIZE_64 * n_valid);
1079 sent += index - chunkstart;
1080
1081 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1082 break;
1083 }
1084 }
1085
1086 if (examined >= htabslots) {
1087 break;
1088 }
1089
1090 if (index >= htabslots) {
1091 assert(index == htabslots);
1092 index = 0;
1093 }
1094 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1095
1096 if (index >= htabslots) {
1097 assert(index == htabslots);
1098 index = 0;
1099 }
1100
1101 spapr->htab_save_index = index;
1102
1103 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1104 }
1105
1106 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1107 #define MAX_KVM_BUF_SIZE 2048
1108
1109 static int htab_save_iterate(QEMUFile *f, void *opaque)
1110 {
1111 sPAPREnvironment *spapr = opaque;
1112 int rc = 0;
1113
1114 /* Iteration header */
1115 qemu_put_be32(f, 0);
1116
1117 if (!spapr->htab) {
1118 assert(kvm_enabled());
1119
1120 rc = kvmppc_save_htab(f, spapr->htab_fd,
1121 MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1122 if (rc < 0) {
1123 return rc;
1124 }
1125 } else if (spapr->htab_first_pass) {
1126 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1127 } else {
1128 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1129 }
1130
1131 /* End marker */
1132 qemu_put_be32(f, 0);
1133 qemu_put_be16(f, 0);
1134 qemu_put_be16(f, 0);
1135
1136 return rc;
1137 }
1138
1139 static int htab_save_complete(QEMUFile *f, void *opaque)
1140 {
1141 sPAPREnvironment *spapr = opaque;
1142
1143 /* Iteration header */
1144 qemu_put_be32(f, 0);
1145
1146 if (!spapr->htab) {
1147 int rc;
1148
1149 assert(kvm_enabled());
1150
1151 rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1);
1152 if (rc < 0) {
1153 return rc;
1154 }
1155 close(spapr->htab_fd);
1156 spapr->htab_fd = -1;
1157 } else {
1158 htab_save_later_pass(f, spapr, -1);
1159 }
1160
1161 /* End marker */
1162 qemu_put_be32(f, 0);
1163 qemu_put_be16(f, 0);
1164 qemu_put_be16(f, 0);
1165
1166 return 0;
1167 }
1168
1169 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1170 {
1171 sPAPREnvironment *spapr = opaque;
1172 uint32_t section_hdr;
1173 int fd = -1;
1174
1175 if (version_id < 1 || version_id > 1) {
1176 fprintf(stderr, "htab_load() bad version\n");
1177 return -EINVAL;
1178 }
1179
1180 section_hdr = qemu_get_be32(f);
1181
1182 if (section_hdr) {
1183 /* First section, just the hash shift */
1184 if (spapr->htab_shift != section_hdr) {
1185 return -EINVAL;
1186 }
1187 return 0;
1188 }
1189
1190 if (!spapr->htab) {
1191 assert(kvm_enabled());
1192
1193 fd = kvmppc_get_htab_fd(true);
1194 if (fd < 0) {
1195 fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n",
1196 strerror(errno));
1197 }
1198 }
1199
1200 while (true) {
1201 uint32_t index;
1202 uint16_t n_valid, n_invalid;
1203
1204 index = qemu_get_be32(f);
1205 n_valid = qemu_get_be16(f);
1206 n_invalid = qemu_get_be16(f);
1207
1208 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1209 /* End of Stream */
1210 break;
1211 }
1212
1213 if ((index + n_valid + n_invalid) >
1214 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1215 /* Bad index in stream */
1216 fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) "
1217 "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid,
1218 spapr->htab_shift);
1219 return -EINVAL;
1220 }
1221
1222 if (spapr->htab) {
1223 if (n_valid) {
1224 qemu_get_buffer(f, HPTE(spapr->htab, index),
1225 HASH_PTE_SIZE_64 * n_valid);
1226 }
1227 if (n_invalid) {
1228 memset(HPTE(spapr->htab, index + n_valid), 0,
1229 HASH_PTE_SIZE_64 * n_invalid);
1230 }
1231 } else {
1232 int rc;
1233
1234 assert(fd >= 0);
1235
1236 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1237 if (rc < 0) {
1238 return rc;
1239 }
1240 }
1241 }
1242
1243 if (!spapr->htab) {
1244 assert(fd >= 0);
1245 close(fd);
1246 }
1247
1248 return 0;
1249 }
1250
1251 static SaveVMHandlers savevm_htab_handlers = {
1252 .save_live_setup = htab_save_setup,
1253 .save_live_iterate = htab_save_iterate,
1254 .save_live_complete = htab_save_complete,
1255 .load_state = htab_load,
1256 };
1257
1258 /* pSeries LPAR / sPAPR hardware init */
1259 static void ppc_spapr_init(MachineState *machine)
1260 {
1261 ram_addr_t ram_size = machine->ram_size;
1262 const char *cpu_model = machine->cpu_model;
1263 const char *kernel_filename = machine->kernel_filename;
1264 const char *kernel_cmdline = machine->kernel_cmdline;
1265 const char *initrd_filename = machine->initrd_filename;
1266 const char *boot_device = machine->boot_order;
1267 PowerPCCPU *cpu;
1268 CPUPPCState *env;
1269 PCIHostState *phb;
1270 int i;
1271 MemoryRegion *sysmem = get_system_memory();
1272 MemoryRegion *ram = g_new(MemoryRegion, 1);
1273 MemoryRegion *rma_region;
1274 void *rma = NULL;
1275 hwaddr rma_alloc_size;
1276 hwaddr node0_size = (nb_numa_nodes > 1) ? numa_info[0].node_mem : ram_size;
1277 uint32_t initrd_base = 0;
1278 long kernel_size = 0, initrd_size = 0;
1279 long load_limit, rtas_limit, fw_size;
1280 bool kernel_le = false;
1281 char *filename;
1282
1283 msi_supported = true;
1284
1285 spapr = g_malloc0(sizeof(*spapr));
1286 QLIST_INIT(&spapr->phbs);
1287
1288 cpu_ppc_hypercall = emulate_spapr_hypercall;
1289
1290 /* Allocate RMA if necessary */
1291 rma_alloc_size = kvmppc_alloc_rma(&rma);
1292
1293 if (rma_alloc_size == -1) {
1294 hw_error("qemu: Unable to create RMA\n");
1295 exit(1);
1296 }
1297
1298 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1299 spapr->rma_size = rma_alloc_size;
1300 } else {
1301 spapr->rma_size = node0_size;
1302
1303 /* With KVM, we don't actually know whether KVM supports an
1304 * unbounded RMA (PR KVM) or is limited by the hash table size
1305 * (HV KVM using VRMA), so we always assume the latter
1306 *
1307 * In that case, we also limit the initial allocations for RTAS
1308 * etc... to 256M since we have no way to know what the VRMA size
1309 * is going to be as it depends on the size of the hash table
1310 * isn't determined yet.
1311 */
1312 if (kvm_enabled()) {
1313 spapr->vrma_adjust = 1;
1314 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1315 }
1316 }
1317
1318 if (spapr->rma_size > node0_size) {
1319 fprintf(stderr, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")\n",
1320 spapr->rma_size);
1321 exit(1);
1322 }
1323
1324 /* We place the device tree and RTAS just below either the top of the RMA,
1325 * or just below 2GB, whichever is lowere, so that it can be
1326 * processed with 32-bit real mode code if necessary */
1327 rtas_limit = MIN(spapr->rma_size, 0x80000000);
1328 spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1329 spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
1330 load_limit = spapr->fdt_addr - FW_OVERHEAD;
1331
1332 /* We aim for a hash table of size 1/128 the size of RAM. The
1333 * normal rule of thumb is 1/64 the size of RAM, but that's much
1334 * more than needed for the Linux guests we support. */
1335 spapr->htab_shift = 18; /* Minimum architected size */
1336 while (spapr->htab_shift <= 46) {
1337 if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) {
1338 break;
1339 }
1340 spapr->htab_shift++;
1341 }
1342
1343 /* Set up Interrupt Controller before we create the VCPUs */
1344 spapr->icp = xics_system_init(smp_cpus * kvmppc_smt_threads() / smp_threads,
1345 XICS_IRQS);
1346
1347 /* init CPUs */
1348 if (cpu_model == NULL) {
1349 cpu_model = kvm_enabled() ? "host" : "POWER7";
1350 }
1351 for (i = 0; i < smp_cpus; i++) {
1352 cpu = cpu_ppc_init(cpu_model);
1353 if (cpu == NULL) {
1354 fprintf(stderr, "Unable to find PowerPC CPU definition\n");
1355 exit(1);
1356 }
1357 env = &cpu->env;
1358
1359 /* Set time-base frequency to 512 MHz */
1360 cpu_ppc_tb_init(env, TIMEBASE_FREQ);
1361
1362 /* PAPR always has exception vectors in RAM not ROM. To ensure this,
1363 * MSR[IP] should never be set.
1364 */
1365 env->msr_mask &= ~(1 << 6);
1366
1367 /* Tell KVM that we're in PAPR mode */
1368 if (kvm_enabled()) {
1369 kvmppc_set_papr(cpu);
1370 }
1371
1372 if (cpu->max_compat) {
1373 if (ppc_set_compat(cpu, cpu->max_compat) < 0) {
1374 exit(1);
1375 }
1376 }
1377
1378 xics_cpu_setup(spapr->icp, cpu);
1379
1380 qemu_register_reset(spapr_cpu_reset, cpu);
1381 }
1382
1383 /* allocate RAM */
1384 spapr->ram_limit = ram_size;
1385 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
1386 spapr->ram_limit);
1387 memory_region_add_subregion(sysmem, 0, ram);
1388
1389 if (rma_alloc_size && rma) {
1390 rma_region = g_new(MemoryRegion, 1);
1391 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
1392 rma_alloc_size, rma);
1393 vmstate_register_ram_global(rma_region);
1394 memory_region_add_subregion(sysmem, 0, rma_region);
1395 }
1396
1397 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1398 spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
1399 rtas_limit - spapr->rtas_addr);
1400 if (spapr->rtas_size < 0) {
1401 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
1402 exit(1);
1403 }
1404 if (spapr->rtas_size > RTAS_MAX_SIZE) {
1405 hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
1406 spapr->rtas_size, RTAS_MAX_SIZE);
1407 exit(1);
1408 }
1409 g_free(filename);
1410
1411 /* Set up EPOW events infrastructure */
1412 spapr_events_init(spapr);
1413
1414 /* Set up VIO bus */
1415 spapr->vio_bus = spapr_vio_bus_init();
1416
1417 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1418 if (serial_hds[i]) {
1419 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1420 }
1421 }
1422
1423 /* We always have at least the nvram device on VIO */
1424 spapr_create_nvram(spapr);
1425
1426 /* Set up PCI */
1427 spapr_pci_msi_init(spapr, SPAPR_PCI_MSI_WINDOW);
1428 spapr_pci_rtas_init();
1429
1430 phb = spapr_create_phb(spapr, 0);
1431
1432 for (i = 0; i < nb_nics; i++) {
1433 NICInfo *nd = &nd_table[i];
1434
1435 if (!nd->model) {
1436 nd->model = g_strdup("ibmveth");
1437 }
1438
1439 if (strcmp(nd->model, "ibmveth") == 0) {
1440 spapr_vlan_create(spapr->vio_bus, nd);
1441 } else {
1442 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1443 }
1444 }
1445
1446 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1447 spapr_vscsi_create(spapr->vio_bus);
1448 }
1449
1450 /* Graphics */
1451 if (spapr_vga_init(phb->bus)) {
1452 spapr->has_graphics = true;
1453 }
1454
1455 if (usb_enabled(spapr->has_graphics)) {
1456 pci_create_simple(phb->bus, -1, "pci-ohci");
1457 if (spapr->has_graphics) {
1458 usbdevice_create("keyboard");
1459 usbdevice_create("mouse");
1460 }
1461 }
1462
1463 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1464 fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
1465 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
1466 exit(1);
1467 }
1468
1469 if (kernel_filename) {
1470 uint64_t lowaddr = 0;
1471
1472 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
1473 NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
1474 if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1475 kernel_size = load_elf(kernel_filename,
1476 translate_kernel_address, NULL,
1477 NULL, &lowaddr, NULL, 0, ELF_MACHINE, 0);
1478 kernel_le = kernel_size > 0;
1479 }
1480 if (kernel_size < 0) {
1481 fprintf(stderr, "qemu: error loading %s: %s\n",
1482 kernel_filename, load_elf_strerror(kernel_size));
1483 exit(1);
1484 }
1485
1486 /* load initrd */
1487 if (initrd_filename) {
1488 /* Try to locate the initrd in the gap between the kernel
1489 * and the firmware. Add a bit of space just in case
1490 */
1491 initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1492 initrd_size = load_image_targphys(initrd_filename, initrd_base,
1493 load_limit - initrd_base);
1494 if (initrd_size < 0) {
1495 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
1496 initrd_filename);
1497 exit(1);
1498 }
1499 } else {
1500 initrd_base = 0;
1501 initrd_size = 0;
1502 }
1503 }
1504
1505 if (bios_name == NULL) {
1506 bios_name = FW_FILE_NAME;
1507 }
1508 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1509 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
1510 if (fw_size < 0) {
1511 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
1512 exit(1);
1513 }
1514 g_free(filename);
1515
1516 spapr->entry_point = 0x100;
1517
1518 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
1519 register_savevm_live(NULL, "spapr/htab", -1, 1,
1520 &savevm_htab_handlers, spapr);
1521
1522 /* Prepare the device tree */
1523 spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
1524 kernel_size, kernel_le,
1525 boot_device, kernel_cmdline,
1526 spapr->epow_irq);
1527 assert(spapr->fdt_skel != NULL);
1528 }
1529
1530 static int spapr_kvm_type(const char *vm_type)
1531 {
1532 if (!vm_type) {
1533 return 0;
1534 }
1535
1536 if (!strcmp(vm_type, "HV")) {
1537 return 1;
1538 }
1539
1540 if (!strcmp(vm_type, "PR")) {
1541 return 2;
1542 }
1543
1544 error_report("Unknown kvm-type specified '%s'", vm_type);
1545 exit(1);
1546 }
1547
1548 /*
1549 * Implementation of an interface to adjust firmware patch
1550 * for the bootindex property handling.
1551 */
1552 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
1553 DeviceState *dev)
1554 {
1555 #define CAST(type, obj, name) \
1556 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
1557 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
1558 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
1559
1560 if (d) {
1561 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
1562 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
1563 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
1564
1565 if (spapr) {
1566 /*
1567 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
1568 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
1569 * in the top 16 bits of the 64-bit LUN
1570 */
1571 unsigned id = 0x8000 | (d->id << 8) | d->lun;
1572 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1573 (uint64_t)id << 48);
1574 } else if (virtio) {
1575 /*
1576 * We use SRP luns of the form 01000000 | (target << 8) | lun
1577 * in the top 32 bits of the 64-bit LUN
1578 * Note: the quote above is from SLOF and it is wrong,
1579 * the actual binding is:
1580 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
1581 */
1582 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
1583 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1584 (uint64_t)id << 32);
1585 } else if (usb) {
1586 /*
1587 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
1588 * in the top 32 bits of the 64-bit LUN
1589 */
1590 unsigned usb_port = atoi(usb->port->path);
1591 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
1592 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1593 (uint64_t)id << 32);
1594 }
1595 }
1596
1597 if (phb) {
1598 /* Replace "pci" with "pci@800000020000000" */
1599 return g_strdup_printf("pci@%"PRIX64, phb->buid);
1600 }
1601
1602 return NULL;
1603 }
1604
1605 static char *spapr_get_kvm_type(Object *obj, Error **errp)
1606 {
1607 sPAPRMachineState *sm = SPAPR_MACHINE(obj);
1608
1609 return g_strdup(sm->kvm_type);
1610 }
1611
1612 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
1613 {
1614 sPAPRMachineState *sm = SPAPR_MACHINE(obj);
1615
1616 g_free(sm->kvm_type);
1617 sm->kvm_type = g_strdup(value);
1618 }
1619
1620 static void spapr_machine_initfn(Object *obj)
1621 {
1622 object_property_add_str(obj, "kvm-type",
1623 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
1624 }
1625
1626 static void ppc_cpu_do_nmi_on_cpu(void *arg)
1627 {
1628 CPUState *cs = arg;
1629
1630 cpu_synchronize_state(cs);
1631 ppc_cpu_do_system_reset(cs);
1632 }
1633
1634 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
1635 {
1636 CPUState *cs;
1637
1638 CPU_FOREACH(cs) {
1639 async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, cs);
1640 }
1641 }
1642
1643 static void spapr_machine_class_init(ObjectClass *oc, void *data)
1644 {
1645 MachineClass *mc = MACHINE_CLASS(oc);
1646 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
1647 NMIClass *nc = NMI_CLASS(oc);
1648
1649 mc->name = "pseries";
1650 mc->desc = "pSeries Logical Partition (PAPR compliant)";
1651 mc->is_default = 1;
1652 mc->init = ppc_spapr_init;
1653 mc->reset = ppc_spapr_reset;
1654 mc->block_default_type = IF_SCSI;
1655 mc->max_cpus = MAX_CPUS;
1656 mc->no_parallel = 1;
1657 mc->default_boot_order = NULL;
1658 mc->kvm_type = spapr_kvm_type;
1659
1660 fwc->get_dev_path = spapr_get_fw_dev_path;
1661 nc->nmi_monitor_handler = spapr_nmi;
1662 }
1663
1664 static const TypeInfo spapr_machine_info = {
1665 .name = TYPE_SPAPR_MACHINE,
1666 .parent = TYPE_MACHINE,
1667 .instance_size = sizeof(sPAPRMachineState),
1668 .instance_init = spapr_machine_initfn,
1669 .class_init = spapr_machine_class_init,
1670 .interfaces = (InterfaceInfo[]) {
1671 { TYPE_FW_PATH_PROVIDER },
1672 { TYPE_NMI },
1673 { }
1674 },
1675 };
1676
1677 static void spapr_machine_2_1_class_init(ObjectClass *oc, void *data)
1678 {
1679 MachineClass *mc = MACHINE_CLASS(oc);
1680
1681 mc->name = "pseries-2.1";
1682 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.1";
1683 mc->is_default = 0;
1684 }
1685
1686 static const TypeInfo spapr_machine_2_1_info = {
1687 .name = TYPE_SPAPR_MACHINE "2.1",
1688 .parent = TYPE_SPAPR_MACHINE,
1689 .class_init = spapr_machine_2_1_class_init,
1690 };
1691
1692 static void spapr_machine_register_types(void)
1693 {
1694 type_register_static(&spapr_machine_info);
1695 type_register_static(&spapr_machine_2_1_info);
1696 }
1697
1698 type_init(spapr_machine_register_types)