]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr.c
spapr, xics, xive: Move print_info from SpaprIrq to SpaprInterruptController
[mirror_qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 */
26
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/hostmem.h"
33 #include "sysemu/numa.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/reset.h"
36 #include "sysemu/runstate.h"
37 #include "qemu/log.h"
38 #include "hw/fw-path-provider.h"
39 #include "elf.h"
40 #include "net/net.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/cpus.h"
43 #include "sysemu/hw_accel.h"
44 #include "kvm_ppc.h"
45 #include "migration/misc.h"
46 #include "migration/qemu-file-types.h"
47 #include "migration/global_state.h"
48 #include "migration/register.h"
49 #include "mmu-hash64.h"
50 #include "mmu-book3s-v3.h"
51 #include "cpu-models.h"
52 #include "hw/core/cpu.h"
53
54 #include "hw/boards.h"
55 #include "hw/ppc/ppc.h"
56 #include "hw/loader.h"
57
58 #include "hw/ppc/fdt.h"
59 #include "hw/ppc/spapr.h"
60 #include "hw/ppc/spapr_vio.h"
61 #include "hw/qdev-properties.h"
62 #include "hw/pci-host/spapr.h"
63 #include "hw/pci/msi.h"
64
65 #include "hw/pci/pci.h"
66 #include "hw/scsi/scsi.h"
67 #include "hw/virtio/virtio-scsi.h"
68 #include "hw/virtio/vhost-scsi-common.h"
69
70 #include "exec/address-spaces.h"
71 #include "exec/ram_addr.h"
72 #include "hw/usb.h"
73 #include "qemu/config-file.h"
74 #include "qemu/error-report.h"
75 #include "trace.h"
76 #include "hw/nmi.h"
77 #include "hw/intc/intc.h"
78
79 #include "qemu/cutils.h"
80 #include "hw/ppc/spapr_cpu_core.h"
81 #include "hw/mem/memory-device.h"
82 #include "hw/ppc/spapr_tpm_proxy.h"
83
84 #include "monitor/monitor.h"
85
86 #include <libfdt.h>
87
88 /* SLOF memory layout:
89 *
90 * SLOF raw image loaded at 0, copies its romfs right below the flat
91 * device-tree, then position SLOF itself 31M below that
92 *
93 * So we set FW_OVERHEAD to 40MB which should account for all of that
94 * and more
95 *
96 * We load our kernel at 4M, leaving space for SLOF initial image
97 */
98 #define FDT_MAX_SIZE 0x100000
99 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
100 #define FW_MAX_SIZE 0x400000
101 #define FW_FILE_NAME "slof.bin"
102 #define FW_OVERHEAD 0x2800000
103 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
104
105 #define MIN_RMA_SLOF 128UL
106
107 #define PHANDLE_INTC 0x00001111
108
109 /* These two functions implement the VCPU id numbering: one to compute them
110 * all and one to identify thread 0 of a VCORE. Any change to the first one
111 * is likely to have an impact on the second one, so let's keep them close.
112 */
113 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
114 {
115 MachineState *ms = MACHINE(spapr);
116 unsigned int smp_threads = ms->smp.threads;
117
118 assert(spapr->vsmt);
119 return
120 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
121 }
122 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
123 PowerPCCPU *cpu)
124 {
125 assert(spapr->vsmt);
126 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
127 }
128
129 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
130 {
131 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
132 * and newer QEMUs don't even have them. In both cases, we don't want
133 * to send anything on the wire.
134 */
135 return false;
136 }
137
138 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
139 .name = "icp/server",
140 .version_id = 1,
141 .minimum_version_id = 1,
142 .needed = pre_2_10_vmstate_dummy_icp_needed,
143 .fields = (VMStateField[]) {
144 VMSTATE_UNUSED(4), /* uint32_t xirr */
145 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
146 VMSTATE_UNUSED(1), /* uint8_t mfrr */
147 VMSTATE_END_OF_LIST()
148 },
149 };
150
151 static void pre_2_10_vmstate_register_dummy_icp(int i)
152 {
153 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
154 (void *)(uintptr_t) i);
155 }
156
157 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
158 {
159 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
160 (void *)(uintptr_t) i);
161 }
162
163 int spapr_max_server_number(SpaprMachineState *spapr)
164 {
165 MachineState *ms = MACHINE(spapr);
166
167 assert(spapr->vsmt);
168 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
169 }
170
171 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
172 int smt_threads)
173 {
174 int i, ret = 0;
175 uint32_t servers_prop[smt_threads];
176 uint32_t gservers_prop[smt_threads * 2];
177 int index = spapr_get_vcpu_id(cpu);
178
179 if (cpu->compat_pvr) {
180 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
181 if (ret < 0) {
182 return ret;
183 }
184 }
185
186 /* Build interrupt servers and gservers properties */
187 for (i = 0; i < smt_threads; i++) {
188 servers_prop[i] = cpu_to_be32(index + i);
189 /* Hack, direct the group queues back to cpu 0 */
190 gservers_prop[i*2] = cpu_to_be32(index + i);
191 gservers_prop[i*2 + 1] = 0;
192 }
193 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
194 servers_prop, sizeof(servers_prop));
195 if (ret < 0) {
196 return ret;
197 }
198 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
199 gservers_prop, sizeof(gservers_prop));
200
201 return ret;
202 }
203
204 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
205 {
206 int index = spapr_get_vcpu_id(cpu);
207 uint32_t associativity[] = {cpu_to_be32(0x5),
208 cpu_to_be32(0x0),
209 cpu_to_be32(0x0),
210 cpu_to_be32(0x0),
211 cpu_to_be32(cpu->node_id),
212 cpu_to_be32(index)};
213
214 /* Advertise NUMA via ibm,associativity */
215 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
216 sizeof(associativity));
217 }
218
219 /* Populate the "ibm,pa-features" property */
220 static void spapr_populate_pa_features(SpaprMachineState *spapr,
221 PowerPCCPU *cpu,
222 void *fdt, int offset)
223 {
224 uint8_t pa_features_206[] = { 6, 0,
225 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
226 uint8_t pa_features_207[] = { 24, 0,
227 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
228 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
229 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
230 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
231 uint8_t pa_features_300[] = { 66, 0,
232 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
233 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
234 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
235 /* 6: DS207 */
236 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
237 /* 16: Vector */
238 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
239 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
240 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
241 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
242 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
243 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
244 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
245 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
246 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
247 /* 42: PM, 44: PC RA, 46: SC vec'd */
248 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
249 /* 48: SIMD, 50: QP BFP, 52: String */
250 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
251 /* 54: DecFP, 56: DecI, 58: SHA */
252 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
253 /* 60: NM atomic, 62: RNG */
254 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
255 };
256 uint8_t *pa_features = NULL;
257 size_t pa_size;
258
259 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
260 pa_features = pa_features_206;
261 pa_size = sizeof(pa_features_206);
262 }
263 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
264 pa_features = pa_features_207;
265 pa_size = sizeof(pa_features_207);
266 }
267 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
268 pa_features = pa_features_300;
269 pa_size = sizeof(pa_features_300);
270 }
271 if (!pa_features) {
272 return;
273 }
274
275 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
276 /*
277 * Note: we keep CI large pages off by default because a 64K capable
278 * guest provisioned with large pages might otherwise try to map a qemu
279 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
280 * even if that qemu runs on a 4k host.
281 * We dd this bit back here if we are confident this is not an issue
282 */
283 pa_features[3] |= 0x20;
284 }
285 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
286 pa_features[24] |= 0x80; /* Transactional memory support */
287 }
288 if (spapr->cas_pre_isa3_guest && pa_size > 40) {
289 /* Workaround for broken kernels that attempt (guest) radix
290 * mode when they can't handle it, if they see the radix bit set
291 * in pa-features. So hide it from them. */
292 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
293 }
294
295 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
296 }
297
298 static hwaddr spapr_node0_size(MachineState *machine)
299 {
300 if (machine->numa_state->num_nodes) {
301 int i;
302 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
303 if (machine->numa_state->nodes[i].node_mem) {
304 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
305 machine->ram_size);
306 }
307 }
308 }
309 return machine->ram_size;
310 }
311
312 static void add_str(GString *s, const gchar *s1)
313 {
314 g_string_append_len(s, s1, strlen(s1) + 1);
315 }
316
317 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
318 hwaddr size)
319 {
320 uint32_t associativity[] = {
321 cpu_to_be32(0x4), /* length */
322 cpu_to_be32(0x0), cpu_to_be32(0x0),
323 cpu_to_be32(0x0), cpu_to_be32(nodeid)
324 };
325 char mem_name[32];
326 uint64_t mem_reg_property[2];
327 int off;
328
329 mem_reg_property[0] = cpu_to_be64(start);
330 mem_reg_property[1] = cpu_to_be64(size);
331
332 sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
333 off = fdt_add_subnode(fdt, 0, mem_name);
334 _FDT(off);
335 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
336 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
337 sizeof(mem_reg_property))));
338 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
339 sizeof(associativity))));
340 return off;
341 }
342
343 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt)
344 {
345 MachineState *machine = MACHINE(spapr);
346 hwaddr mem_start, node_size;
347 int i, nb_nodes = machine->numa_state->num_nodes;
348 NodeInfo *nodes = machine->numa_state->nodes;
349
350 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
351 if (!nodes[i].node_mem) {
352 continue;
353 }
354 if (mem_start >= machine->ram_size) {
355 node_size = 0;
356 } else {
357 node_size = nodes[i].node_mem;
358 if (node_size > machine->ram_size - mem_start) {
359 node_size = machine->ram_size - mem_start;
360 }
361 }
362 if (!mem_start) {
363 /* spapr_machine_init() checks for rma_size <= node0_size
364 * already */
365 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
366 mem_start += spapr->rma_size;
367 node_size -= spapr->rma_size;
368 }
369 for ( ; node_size; ) {
370 hwaddr sizetmp = pow2floor(node_size);
371
372 /* mem_start != 0 here */
373 if (ctzl(mem_start) < ctzl(sizetmp)) {
374 sizetmp = 1ULL << ctzl(mem_start);
375 }
376
377 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
378 node_size -= sizetmp;
379 mem_start += sizetmp;
380 }
381 }
382
383 return 0;
384 }
385
386 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
387 SpaprMachineState *spapr)
388 {
389 MachineState *ms = MACHINE(spapr);
390 PowerPCCPU *cpu = POWERPC_CPU(cs);
391 CPUPPCState *env = &cpu->env;
392 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
393 int index = spapr_get_vcpu_id(cpu);
394 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
395 0xffffffff, 0xffffffff};
396 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
397 : SPAPR_TIMEBASE_FREQ;
398 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
399 uint32_t page_sizes_prop[64];
400 size_t page_sizes_prop_size;
401 unsigned int smp_threads = ms->smp.threads;
402 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
403 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
404 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
405 SpaprDrc *drc;
406 int drc_index;
407 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
408 int i;
409
410 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
411 if (drc) {
412 drc_index = spapr_drc_index(drc);
413 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
414 }
415
416 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
417 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
418
419 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
420 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
421 env->dcache_line_size)));
422 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
423 env->dcache_line_size)));
424 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
425 env->icache_line_size)));
426 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
427 env->icache_line_size)));
428
429 if (pcc->l1_dcache_size) {
430 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
431 pcc->l1_dcache_size)));
432 } else {
433 warn_report("Unknown L1 dcache size for cpu");
434 }
435 if (pcc->l1_icache_size) {
436 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
437 pcc->l1_icache_size)));
438 } else {
439 warn_report("Unknown L1 icache size for cpu");
440 }
441
442 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
443 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
444 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
445 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
446 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
447 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
448
449 if (env->spr_cb[SPR_PURR].oea_read) {
450 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
451 }
452 if (env->spr_cb[SPR_SPURR].oea_read) {
453 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
454 }
455
456 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
457 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
458 segs, sizeof(segs))));
459 }
460
461 /* Advertise VSX (vector extensions) if available
462 * 1 == VMX / Altivec available
463 * 2 == VSX available
464 *
465 * Only CPUs for which we create core types in spapr_cpu_core.c
466 * are possible, and all of those have VMX */
467 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
468 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
469 } else {
470 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
471 }
472
473 /* Advertise DFP (Decimal Floating Point) if available
474 * 0 / no property == no DFP
475 * 1 == DFP available */
476 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
477 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
478 }
479
480 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
481 sizeof(page_sizes_prop));
482 if (page_sizes_prop_size) {
483 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
484 page_sizes_prop, page_sizes_prop_size)));
485 }
486
487 spapr_populate_pa_features(spapr, cpu, fdt, offset);
488
489 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
490 cs->cpu_index / vcpus_per_socket)));
491
492 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
493 pft_size_prop, sizeof(pft_size_prop))));
494
495 if (ms->numa_state->num_nodes > 1) {
496 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
497 }
498
499 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
500
501 if (pcc->radix_page_info) {
502 for (i = 0; i < pcc->radix_page_info->count; i++) {
503 radix_AP_encodings[i] =
504 cpu_to_be32(pcc->radix_page_info->entries[i]);
505 }
506 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
507 radix_AP_encodings,
508 pcc->radix_page_info->count *
509 sizeof(radix_AP_encodings[0]))));
510 }
511
512 /*
513 * We set this property to let the guest know that it can use the large
514 * decrementer and its width in bits.
515 */
516 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
517 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
518 pcc->lrg_decr_bits)));
519 }
520
521 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr)
522 {
523 CPUState **rev;
524 CPUState *cs;
525 int n_cpus;
526 int cpus_offset;
527 char *nodename;
528 int i;
529
530 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
531 _FDT(cpus_offset);
532 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
533 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
534
535 /*
536 * We walk the CPUs in reverse order to ensure that CPU DT nodes
537 * created by fdt_add_subnode() end up in the right order in FDT
538 * for the guest kernel the enumerate the CPUs correctly.
539 *
540 * The CPU list cannot be traversed in reverse order, so we need
541 * to do extra work.
542 */
543 n_cpus = 0;
544 rev = NULL;
545 CPU_FOREACH(cs) {
546 rev = g_renew(CPUState *, rev, n_cpus + 1);
547 rev[n_cpus++] = cs;
548 }
549
550 for (i = n_cpus - 1; i >= 0; i--) {
551 CPUState *cs = rev[i];
552 PowerPCCPU *cpu = POWERPC_CPU(cs);
553 int index = spapr_get_vcpu_id(cpu);
554 DeviceClass *dc = DEVICE_GET_CLASS(cs);
555 int offset;
556
557 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
558 continue;
559 }
560
561 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
562 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
563 g_free(nodename);
564 _FDT(offset);
565 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
566 }
567
568 g_free(rev);
569 }
570
571 static int spapr_rng_populate_dt(void *fdt)
572 {
573 int node;
574 int ret;
575
576 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
577 if (node <= 0) {
578 return -1;
579 }
580 ret = fdt_setprop_string(fdt, node, "device_type",
581 "ibm,platform-facilities");
582 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
583 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
584
585 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
586 if (node <= 0) {
587 return -1;
588 }
589 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
590
591 return ret ? -1 : 0;
592 }
593
594 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
595 {
596 MemoryDeviceInfoList *info;
597
598 for (info = list; info; info = info->next) {
599 MemoryDeviceInfo *value = info->value;
600
601 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
602 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
603
604 if (addr >= pcdimm_info->addr &&
605 addr < (pcdimm_info->addr + pcdimm_info->size)) {
606 return pcdimm_info->node;
607 }
608 }
609 }
610
611 return -1;
612 }
613
614 struct sPAPRDrconfCellV2 {
615 uint32_t seq_lmbs;
616 uint64_t base_addr;
617 uint32_t drc_index;
618 uint32_t aa_index;
619 uint32_t flags;
620 } QEMU_PACKED;
621
622 typedef struct DrconfCellQueue {
623 struct sPAPRDrconfCellV2 cell;
624 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
625 } DrconfCellQueue;
626
627 static DrconfCellQueue *
628 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
629 uint32_t drc_index, uint32_t aa_index,
630 uint32_t flags)
631 {
632 DrconfCellQueue *elem;
633
634 elem = g_malloc0(sizeof(*elem));
635 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
636 elem->cell.base_addr = cpu_to_be64(base_addr);
637 elem->cell.drc_index = cpu_to_be32(drc_index);
638 elem->cell.aa_index = cpu_to_be32(aa_index);
639 elem->cell.flags = cpu_to_be32(flags);
640
641 return elem;
642 }
643
644 /* ibm,dynamic-memory-v2 */
645 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt,
646 int offset, MemoryDeviceInfoList *dimms)
647 {
648 MachineState *machine = MACHINE(spapr);
649 uint8_t *int_buf, *cur_index;
650 int ret;
651 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
652 uint64_t addr, cur_addr, size;
653 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
654 uint64_t mem_end = machine->device_memory->base +
655 memory_region_size(&machine->device_memory->mr);
656 uint32_t node, buf_len, nr_entries = 0;
657 SpaprDrc *drc;
658 DrconfCellQueue *elem, *next;
659 MemoryDeviceInfoList *info;
660 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
661 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
662
663 /* Entry to cover RAM and the gap area */
664 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
665 SPAPR_LMB_FLAGS_RESERVED |
666 SPAPR_LMB_FLAGS_DRC_INVALID);
667 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
668 nr_entries++;
669
670 cur_addr = machine->device_memory->base;
671 for (info = dimms; info; info = info->next) {
672 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
673
674 addr = di->addr;
675 size = di->size;
676 node = di->node;
677
678 /* Entry for hot-pluggable area */
679 if (cur_addr < addr) {
680 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
681 g_assert(drc);
682 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
683 cur_addr, spapr_drc_index(drc), -1, 0);
684 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
685 nr_entries++;
686 }
687
688 /* Entry for DIMM */
689 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
690 g_assert(drc);
691 elem = spapr_get_drconf_cell(size / lmb_size, addr,
692 spapr_drc_index(drc), node,
693 SPAPR_LMB_FLAGS_ASSIGNED);
694 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
695 nr_entries++;
696 cur_addr = addr + size;
697 }
698
699 /* Entry for remaining hotpluggable area */
700 if (cur_addr < mem_end) {
701 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
702 g_assert(drc);
703 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
704 cur_addr, spapr_drc_index(drc), -1, 0);
705 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
706 nr_entries++;
707 }
708
709 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
710 int_buf = cur_index = g_malloc0(buf_len);
711 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
712 cur_index += sizeof(nr_entries);
713
714 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
715 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
716 cur_index += sizeof(elem->cell);
717 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
718 g_free(elem);
719 }
720
721 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
722 g_free(int_buf);
723 if (ret < 0) {
724 return -1;
725 }
726 return 0;
727 }
728
729 /* ibm,dynamic-memory */
730 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt,
731 int offset, MemoryDeviceInfoList *dimms)
732 {
733 MachineState *machine = MACHINE(spapr);
734 int i, ret;
735 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
736 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
737 uint32_t nr_lmbs = (machine->device_memory->base +
738 memory_region_size(&machine->device_memory->mr)) /
739 lmb_size;
740 uint32_t *int_buf, *cur_index, buf_len;
741
742 /*
743 * Allocate enough buffer size to fit in ibm,dynamic-memory
744 */
745 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
746 cur_index = int_buf = g_malloc0(buf_len);
747 int_buf[0] = cpu_to_be32(nr_lmbs);
748 cur_index++;
749 for (i = 0; i < nr_lmbs; i++) {
750 uint64_t addr = i * lmb_size;
751 uint32_t *dynamic_memory = cur_index;
752
753 if (i >= device_lmb_start) {
754 SpaprDrc *drc;
755
756 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
757 g_assert(drc);
758
759 dynamic_memory[0] = cpu_to_be32(addr >> 32);
760 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
761 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
762 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
763 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
764 if (memory_region_present(get_system_memory(), addr)) {
765 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
766 } else {
767 dynamic_memory[5] = cpu_to_be32(0);
768 }
769 } else {
770 /*
771 * LMB information for RMA, boot time RAM and gap b/n RAM and
772 * device memory region -- all these are marked as reserved
773 * and as having no valid DRC.
774 */
775 dynamic_memory[0] = cpu_to_be32(addr >> 32);
776 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
777 dynamic_memory[2] = cpu_to_be32(0);
778 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
779 dynamic_memory[4] = cpu_to_be32(-1);
780 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
781 SPAPR_LMB_FLAGS_DRC_INVALID);
782 }
783
784 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
785 }
786 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
787 g_free(int_buf);
788 if (ret < 0) {
789 return -1;
790 }
791 return 0;
792 }
793
794 /*
795 * Adds ibm,dynamic-reconfiguration-memory node.
796 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
797 * of this device tree node.
798 */
799 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt)
800 {
801 MachineState *machine = MACHINE(spapr);
802 int nb_numa_nodes = machine->numa_state->num_nodes;
803 int ret, i, offset;
804 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
805 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
806 uint32_t *int_buf, *cur_index, buf_len;
807 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
808 MemoryDeviceInfoList *dimms = NULL;
809
810 /*
811 * Don't create the node if there is no device memory
812 */
813 if (machine->ram_size == machine->maxram_size) {
814 return 0;
815 }
816
817 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
818
819 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
820 sizeof(prop_lmb_size));
821 if (ret < 0) {
822 return ret;
823 }
824
825 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
826 if (ret < 0) {
827 return ret;
828 }
829
830 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
831 if (ret < 0) {
832 return ret;
833 }
834
835 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
836 dimms = qmp_memory_device_list();
837 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
838 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
839 } else {
840 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
841 }
842 qapi_free_MemoryDeviceInfoList(dimms);
843
844 if (ret < 0) {
845 return ret;
846 }
847
848 /* ibm,associativity-lookup-arrays */
849 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
850 cur_index = int_buf = g_malloc0(buf_len);
851 int_buf[0] = cpu_to_be32(nr_nodes);
852 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
853 cur_index += 2;
854 for (i = 0; i < nr_nodes; i++) {
855 uint32_t associativity[] = {
856 cpu_to_be32(0x0),
857 cpu_to_be32(0x0),
858 cpu_to_be32(0x0),
859 cpu_to_be32(i)
860 };
861 memcpy(cur_index, associativity, sizeof(associativity));
862 cur_index += 4;
863 }
864 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
865 (cur_index - int_buf) * sizeof(uint32_t));
866 g_free(int_buf);
867
868 return ret;
869 }
870
871 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt,
872 SpaprOptionVector *ov5_updates)
873 {
874 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
875 int ret = 0, offset;
876
877 /* Generate ibm,dynamic-reconfiguration-memory node if required */
878 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
879 g_assert(smc->dr_lmb_enabled);
880 ret = spapr_populate_drconf_memory(spapr, fdt);
881 if (ret) {
882 goto out;
883 }
884 }
885
886 offset = fdt_path_offset(fdt, "/chosen");
887 if (offset < 0) {
888 offset = fdt_add_subnode(fdt, 0, "chosen");
889 if (offset < 0) {
890 return offset;
891 }
892 }
893 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
894 "ibm,architecture-vec-5");
895
896 out:
897 return ret;
898 }
899
900 static bool spapr_hotplugged_dev_before_cas(void)
901 {
902 Object *drc_container, *obj;
903 ObjectProperty *prop;
904 ObjectPropertyIterator iter;
905
906 drc_container = container_get(object_get_root(), "/dr-connector");
907 object_property_iter_init(&iter, drc_container);
908 while ((prop = object_property_iter_next(&iter))) {
909 if (!strstart(prop->type, "link<", NULL)) {
910 continue;
911 }
912 obj = object_property_get_link(drc_container, prop->name, NULL);
913 if (spapr_drc_needed(obj)) {
914 return true;
915 }
916 }
917 return false;
918 }
919
920 static void *spapr_build_fdt(SpaprMachineState *spapr);
921
922 int spapr_h_cas_compose_response(SpaprMachineState *spapr,
923 target_ulong addr, target_ulong size,
924 SpaprOptionVector *ov5_updates)
925 {
926 void *fdt;
927 SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
928
929 if (spapr_hotplugged_dev_before_cas()) {
930 return 1;
931 }
932
933 if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
934 error_report("SLOF provided an unexpected CAS buffer size "
935 TARGET_FMT_lu " (min: %zu, max: %u)",
936 size, sizeof(hdr), FW_MAX_SIZE);
937 exit(EXIT_FAILURE);
938 }
939
940 size -= sizeof(hdr);
941
942 fdt = spapr_build_fdt(spapr);
943 _FDT((fdt_pack(fdt)));
944
945 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
946 g_free(fdt);
947 trace_spapr_cas_failed(size);
948 return -1;
949 }
950
951 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
952 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
953 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
954
955 g_free(spapr->fdt_blob);
956 spapr->fdt_size = fdt_totalsize(fdt);
957 spapr->fdt_initial_size = spapr->fdt_size;
958 spapr->fdt_blob = fdt;
959
960 return 0;
961 }
962
963 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
964 {
965 MachineState *ms = MACHINE(spapr);
966 int rtas;
967 GString *hypertas = g_string_sized_new(256);
968 GString *qemu_hypertas = g_string_sized_new(256);
969 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
970 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
971 memory_region_size(&MACHINE(spapr)->device_memory->mr);
972 uint32_t lrdr_capacity[] = {
973 cpu_to_be32(max_device_addr >> 32),
974 cpu_to_be32(max_device_addr & 0xffffffff),
975 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
976 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
977 };
978 uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
979 uint32_t maxdomains[] = {
980 cpu_to_be32(4),
981 maxdomain,
982 maxdomain,
983 maxdomain,
984 cpu_to_be32(spapr->gpu_numa_id),
985 };
986
987 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
988
989 /* hypertas */
990 add_str(hypertas, "hcall-pft");
991 add_str(hypertas, "hcall-term");
992 add_str(hypertas, "hcall-dabr");
993 add_str(hypertas, "hcall-interrupt");
994 add_str(hypertas, "hcall-tce");
995 add_str(hypertas, "hcall-vio");
996 add_str(hypertas, "hcall-splpar");
997 add_str(hypertas, "hcall-join");
998 add_str(hypertas, "hcall-bulk");
999 add_str(hypertas, "hcall-set-mode");
1000 add_str(hypertas, "hcall-sprg0");
1001 add_str(hypertas, "hcall-copy");
1002 add_str(hypertas, "hcall-debug");
1003 add_str(hypertas, "hcall-vphn");
1004 add_str(qemu_hypertas, "hcall-memop1");
1005
1006 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1007 add_str(hypertas, "hcall-multi-tce");
1008 }
1009
1010 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1011 add_str(hypertas, "hcall-hpt-resize");
1012 }
1013
1014 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1015 hypertas->str, hypertas->len));
1016 g_string_free(hypertas, TRUE);
1017 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1018 qemu_hypertas->str, qemu_hypertas->len));
1019 g_string_free(qemu_hypertas, TRUE);
1020
1021 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1022 refpoints, sizeof(refpoints)));
1023
1024 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1025 maxdomains, sizeof(maxdomains)));
1026
1027 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1028 RTAS_ERROR_LOG_MAX));
1029 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1030 RTAS_EVENT_SCAN_RATE));
1031
1032 g_assert(msi_nonbroken);
1033 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1034
1035 /*
1036 * According to PAPR, rtas ibm,os-term does not guarantee a return
1037 * back to the guest cpu.
1038 *
1039 * While an additional ibm,extended-os-term property indicates
1040 * that rtas call return will always occur. Set this property.
1041 */
1042 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1043
1044 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1045 lrdr_capacity, sizeof(lrdr_capacity)));
1046
1047 spapr_dt_rtas_tokens(fdt, rtas);
1048 }
1049
1050 /*
1051 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1052 * and the XIVE features that the guest may request and thus the valid
1053 * values for bytes 23..26 of option vector 5:
1054 */
1055 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
1056 int chosen)
1057 {
1058 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1059
1060 char val[2 * 4] = {
1061 23, 0x00, /* XICS / XIVE mode */
1062 24, 0x00, /* Hash/Radix, filled in below. */
1063 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1064 26, 0x40, /* Radix options: GTSE == yes. */
1065 };
1066
1067 if (spapr->irq->xics && spapr->irq->xive) {
1068 val[1] = SPAPR_OV5_XIVE_BOTH;
1069 } else if (spapr->irq->xive) {
1070 val[1] = SPAPR_OV5_XIVE_EXPLOIT;
1071 } else {
1072 assert(spapr->irq->xics);
1073 val[1] = SPAPR_OV5_XIVE_LEGACY;
1074 }
1075
1076 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1077 first_ppc_cpu->compat_pvr)) {
1078 /*
1079 * If we're in a pre POWER9 compat mode then the guest should
1080 * do hash and use the legacy interrupt mode
1081 */
1082 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
1083 val[3] = 0x00; /* Hash */
1084 } else if (kvm_enabled()) {
1085 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1086 val[3] = 0x80; /* OV5_MMU_BOTH */
1087 } else if (kvmppc_has_cap_mmu_radix()) {
1088 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1089 } else {
1090 val[3] = 0x00; /* Hash */
1091 }
1092 } else {
1093 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1094 val[3] = 0xC0;
1095 }
1096 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1097 val, sizeof(val)));
1098 }
1099
1100 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt)
1101 {
1102 MachineState *machine = MACHINE(spapr);
1103 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1104 int chosen;
1105 const char *boot_device = machine->boot_order;
1106 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1107 size_t cb = 0;
1108 char *bootlist = get_boot_devices_list(&cb);
1109
1110 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1111
1112 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1113 _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1114 machine->kernel_cmdline));
1115 }
1116 if (spapr->initrd_size) {
1117 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1118 spapr->initrd_base));
1119 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1120 spapr->initrd_base + spapr->initrd_size));
1121 }
1122
1123 if (spapr->kernel_size) {
1124 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1125 cpu_to_be64(spapr->kernel_size) };
1126
1127 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1128 &kprop, sizeof(kprop)));
1129 if (spapr->kernel_le) {
1130 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1131 }
1132 }
1133 if (boot_menu) {
1134 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1135 }
1136 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1137 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1138 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1139
1140 if (cb && bootlist) {
1141 int i;
1142
1143 for (i = 0; i < cb; i++) {
1144 if (bootlist[i] == '\n') {
1145 bootlist[i] = ' ';
1146 }
1147 }
1148 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1149 }
1150
1151 if (boot_device && strlen(boot_device)) {
1152 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1153 }
1154
1155 if (!spapr->has_graphics && stdout_path) {
1156 /*
1157 * "linux,stdout-path" and "stdout" properties are deprecated by linux
1158 * kernel. New platforms should only use the "stdout-path" property. Set
1159 * the new property and continue using older property to remain
1160 * compatible with the existing firmware.
1161 */
1162 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1163 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1164 }
1165
1166 /* We can deal with BAR reallocation just fine, advertise it to the guest */
1167 if (smc->linux_pci_probe) {
1168 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1169 }
1170
1171 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1172
1173 g_free(stdout_path);
1174 g_free(bootlist);
1175 }
1176
1177 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1178 {
1179 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1180 * KVM to work under pHyp with some guest co-operation */
1181 int hypervisor;
1182 uint8_t hypercall[16];
1183
1184 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1185 /* indicate KVM hypercall interface */
1186 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1187 if (kvmppc_has_cap_fixup_hcalls()) {
1188 /*
1189 * Older KVM versions with older guest kernels were broken
1190 * with the magic page, don't allow the guest to map it.
1191 */
1192 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1193 sizeof(hypercall))) {
1194 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1195 hypercall, sizeof(hypercall)));
1196 }
1197 }
1198 }
1199
1200 static void *spapr_build_fdt(SpaprMachineState *spapr)
1201 {
1202 MachineState *machine = MACHINE(spapr);
1203 MachineClass *mc = MACHINE_GET_CLASS(machine);
1204 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1205 int ret;
1206 void *fdt;
1207 SpaprPhbState *phb;
1208 char *buf;
1209
1210 fdt = g_malloc0(FDT_MAX_SIZE);
1211 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1212
1213 /* Root node */
1214 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1215 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1216 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1217
1218 /* Guest UUID & Name*/
1219 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1220 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1221 if (qemu_uuid_set) {
1222 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1223 }
1224 g_free(buf);
1225
1226 if (qemu_get_vm_name()) {
1227 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1228 qemu_get_vm_name()));
1229 }
1230
1231 /* Host Model & Serial Number */
1232 if (spapr->host_model) {
1233 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1234 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1235 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1236 g_free(buf);
1237 }
1238
1239 if (spapr->host_serial) {
1240 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1241 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1242 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1243 g_free(buf);
1244 }
1245
1246 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1247 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1248
1249 /* /interrupt controller */
1250 spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt,
1251 PHANDLE_INTC);
1252
1253 ret = spapr_populate_memory(spapr, fdt);
1254 if (ret < 0) {
1255 error_report("couldn't setup memory nodes in fdt");
1256 exit(1);
1257 }
1258
1259 /* /vdevice */
1260 spapr_dt_vdevice(spapr->vio_bus, fdt);
1261
1262 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1263 ret = spapr_rng_populate_dt(fdt);
1264 if (ret < 0) {
1265 error_report("could not set up rng device in the fdt");
1266 exit(1);
1267 }
1268 }
1269
1270 QLIST_FOREACH(phb, &spapr->phbs, list) {
1271 ret = spapr_dt_phb(phb, PHANDLE_INTC, fdt, spapr->irq->nr_msis, NULL);
1272 if (ret < 0) {
1273 error_report("couldn't setup PCI devices in fdt");
1274 exit(1);
1275 }
1276 }
1277
1278 /* cpus */
1279 spapr_populate_cpus_dt_node(fdt, spapr);
1280
1281 if (smc->dr_lmb_enabled) {
1282 _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1283 }
1284
1285 if (mc->has_hotpluggable_cpus) {
1286 int offset = fdt_path_offset(fdt, "/cpus");
1287 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1288 if (ret < 0) {
1289 error_report("Couldn't set up CPU DR device tree properties");
1290 exit(1);
1291 }
1292 }
1293
1294 /* /event-sources */
1295 spapr_dt_events(spapr, fdt);
1296
1297 /* /rtas */
1298 spapr_dt_rtas(spapr, fdt);
1299
1300 /* /chosen */
1301 spapr_dt_chosen(spapr, fdt);
1302
1303 /* /hypervisor */
1304 if (kvm_enabled()) {
1305 spapr_dt_hypervisor(spapr, fdt);
1306 }
1307
1308 /* Build memory reserve map */
1309 if (spapr->kernel_size) {
1310 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1311 }
1312 if (spapr->initrd_size) {
1313 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1314 }
1315
1316 /* ibm,client-architecture-support updates */
1317 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1318 if (ret < 0) {
1319 error_report("couldn't setup CAS properties fdt");
1320 exit(1);
1321 }
1322
1323 if (smc->dr_phb_enabled) {
1324 ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1325 if (ret < 0) {
1326 error_report("Couldn't set up PHB DR device tree properties");
1327 exit(1);
1328 }
1329 }
1330
1331 return fdt;
1332 }
1333
1334 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1335 {
1336 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1337 }
1338
1339 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1340 PowerPCCPU *cpu)
1341 {
1342 CPUPPCState *env = &cpu->env;
1343
1344 /* The TCG path should also be holding the BQL at this point */
1345 g_assert(qemu_mutex_iothread_locked());
1346
1347 if (msr_pr) {
1348 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1349 env->gpr[3] = H_PRIVILEGE;
1350 } else {
1351 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1352 }
1353 }
1354
1355 struct LPCRSyncState {
1356 target_ulong value;
1357 target_ulong mask;
1358 };
1359
1360 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1361 {
1362 struct LPCRSyncState *s = arg.host_ptr;
1363 PowerPCCPU *cpu = POWERPC_CPU(cs);
1364 CPUPPCState *env = &cpu->env;
1365 target_ulong lpcr;
1366
1367 cpu_synchronize_state(cs);
1368 lpcr = env->spr[SPR_LPCR];
1369 lpcr &= ~s->mask;
1370 lpcr |= s->value;
1371 ppc_store_lpcr(cpu, lpcr);
1372 }
1373
1374 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1375 {
1376 CPUState *cs;
1377 struct LPCRSyncState s = {
1378 .value = value,
1379 .mask = mask
1380 };
1381 CPU_FOREACH(cs) {
1382 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1383 }
1384 }
1385
1386 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1387 {
1388 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1389
1390 /* Copy PATE1:GR into PATE0:HR */
1391 entry->dw0 = spapr->patb_entry & PATE0_HR;
1392 entry->dw1 = spapr->patb_entry;
1393 }
1394
1395 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1396 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1397 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1398 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1399 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1400
1401 /*
1402 * Get the fd to access the kernel htab, re-opening it if necessary
1403 */
1404 static int get_htab_fd(SpaprMachineState *spapr)
1405 {
1406 Error *local_err = NULL;
1407
1408 if (spapr->htab_fd >= 0) {
1409 return spapr->htab_fd;
1410 }
1411
1412 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1413 if (spapr->htab_fd < 0) {
1414 error_report_err(local_err);
1415 }
1416
1417 return spapr->htab_fd;
1418 }
1419
1420 void close_htab_fd(SpaprMachineState *spapr)
1421 {
1422 if (spapr->htab_fd >= 0) {
1423 close(spapr->htab_fd);
1424 }
1425 spapr->htab_fd = -1;
1426 }
1427
1428 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1429 {
1430 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1431
1432 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1433 }
1434
1435 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1436 {
1437 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1438
1439 assert(kvm_enabled());
1440
1441 if (!spapr->htab) {
1442 return 0;
1443 }
1444
1445 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1446 }
1447
1448 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1449 hwaddr ptex, int n)
1450 {
1451 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1452 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1453
1454 if (!spapr->htab) {
1455 /*
1456 * HTAB is controlled by KVM. Fetch into temporary buffer
1457 */
1458 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1459 kvmppc_read_hptes(hptes, ptex, n);
1460 return hptes;
1461 }
1462
1463 /*
1464 * HTAB is controlled by QEMU. Just point to the internally
1465 * accessible PTEG.
1466 */
1467 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1468 }
1469
1470 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1471 const ppc_hash_pte64_t *hptes,
1472 hwaddr ptex, int n)
1473 {
1474 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1475
1476 if (!spapr->htab) {
1477 g_free((void *)hptes);
1478 }
1479
1480 /* Nothing to do for qemu managed HPT */
1481 }
1482
1483 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1484 uint64_t pte0, uint64_t pte1)
1485 {
1486 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1487 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1488
1489 if (!spapr->htab) {
1490 kvmppc_write_hpte(ptex, pte0, pte1);
1491 } else {
1492 if (pte0 & HPTE64_V_VALID) {
1493 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1494 /*
1495 * When setting valid, we write PTE1 first. This ensures
1496 * proper synchronization with the reading code in
1497 * ppc_hash64_pteg_search()
1498 */
1499 smp_wmb();
1500 stq_p(spapr->htab + offset, pte0);
1501 } else {
1502 stq_p(spapr->htab + offset, pte0);
1503 /*
1504 * When clearing it we set PTE0 first. This ensures proper
1505 * synchronization with the reading code in
1506 * ppc_hash64_pteg_search()
1507 */
1508 smp_wmb();
1509 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1510 }
1511 }
1512 }
1513
1514 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1515 uint64_t pte1)
1516 {
1517 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1518 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1519
1520 if (!spapr->htab) {
1521 /* There should always be a hash table when this is called */
1522 error_report("spapr_hpte_set_c called with no hash table !");
1523 return;
1524 }
1525
1526 /* The HW performs a non-atomic byte update */
1527 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1528 }
1529
1530 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1531 uint64_t pte1)
1532 {
1533 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1534 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1535
1536 if (!spapr->htab) {
1537 /* There should always be a hash table when this is called */
1538 error_report("spapr_hpte_set_r called with no hash table !");
1539 return;
1540 }
1541
1542 /* The HW performs a non-atomic byte update */
1543 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1544 }
1545
1546 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1547 {
1548 int shift;
1549
1550 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1551 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1552 * that's much more than is needed for Linux guests */
1553 shift = ctz64(pow2ceil(ramsize)) - 7;
1554 shift = MAX(shift, 18); /* Minimum architected size */
1555 shift = MIN(shift, 46); /* Maximum architected size */
1556 return shift;
1557 }
1558
1559 void spapr_free_hpt(SpaprMachineState *spapr)
1560 {
1561 g_free(spapr->htab);
1562 spapr->htab = NULL;
1563 spapr->htab_shift = 0;
1564 close_htab_fd(spapr);
1565 }
1566
1567 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1568 Error **errp)
1569 {
1570 long rc;
1571
1572 /* Clean up any HPT info from a previous boot */
1573 spapr_free_hpt(spapr);
1574
1575 rc = kvmppc_reset_htab(shift);
1576 if (rc < 0) {
1577 /* kernel-side HPT needed, but couldn't allocate one */
1578 error_setg_errno(errp, errno,
1579 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1580 shift);
1581 /* This is almost certainly fatal, but if the caller really
1582 * wants to carry on with shift == 0, it's welcome to try */
1583 } else if (rc > 0) {
1584 /* kernel-side HPT allocated */
1585 if (rc != shift) {
1586 error_setg(errp,
1587 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1588 shift, rc);
1589 }
1590
1591 spapr->htab_shift = shift;
1592 spapr->htab = NULL;
1593 } else {
1594 /* kernel-side HPT not needed, allocate in userspace instead */
1595 size_t size = 1ULL << shift;
1596 int i;
1597
1598 spapr->htab = qemu_memalign(size, size);
1599 if (!spapr->htab) {
1600 error_setg_errno(errp, errno,
1601 "Could not allocate HPT of order %d", shift);
1602 return;
1603 }
1604
1605 memset(spapr->htab, 0, size);
1606 spapr->htab_shift = shift;
1607
1608 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1609 DIRTY_HPTE(HPTE(spapr->htab, i));
1610 }
1611 }
1612 /* We're setting up a hash table, so that means we're not radix */
1613 spapr->patb_entry = 0;
1614 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1615 }
1616
1617 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr)
1618 {
1619 int hpt_shift;
1620
1621 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1622 || (spapr->cas_reboot
1623 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1624 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1625 } else {
1626 uint64_t current_ram_size;
1627
1628 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1629 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1630 }
1631 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1632
1633 if (spapr->vrma_adjust) {
1634 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1635 spapr->htab_shift);
1636 }
1637 }
1638
1639 static int spapr_reset_drcs(Object *child, void *opaque)
1640 {
1641 SpaprDrc *drc =
1642 (SpaprDrc *) object_dynamic_cast(child,
1643 TYPE_SPAPR_DR_CONNECTOR);
1644
1645 if (drc) {
1646 spapr_drc_reset(drc);
1647 }
1648
1649 return 0;
1650 }
1651
1652 static void spapr_machine_reset(MachineState *machine)
1653 {
1654 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1655 PowerPCCPU *first_ppc_cpu;
1656 hwaddr fdt_addr;
1657 void *fdt;
1658 int rc;
1659
1660 spapr_caps_apply(spapr);
1661
1662 first_ppc_cpu = POWERPC_CPU(first_cpu);
1663 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1664 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1665 spapr->max_compat_pvr)) {
1666 /*
1667 * If using KVM with radix mode available, VCPUs can be started
1668 * without a HPT because KVM will start them in radix mode.
1669 * Set the GR bit in PATE so that we know there is no HPT.
1670 */
1671 spapr->patb_entry = PATE1_GR;
1672 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1673 } else {
1674 spapr_setup_hpt_and_vrma(spapr);
1675 }
1676
1677 qemu_devices_reset();
1678
1679 /*
1680 * If this reset wasn't generated by CAS, we should reset our
1681 * negotiated options and start from scratch
1682 */
1683 if (!spapr->cas_reboot) {
1684 spapr_ovec_cleanup(spapr->ov5_cas);
1685 spapr->ov5_cas = spapr_ovec_new();
1686
1687 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1688 }
1689
1690 /*
1691 * This is fixing some of the default configuration of the XIVE
1692 * devices. To be called after the reset of the machine devices.
1693 */
1694 spapr_irq_reset(spapr, &error_fatal);
1695
1696 /*
1697 * There is no CAS under qtest. Simulate one to please the code that
1698 * depends on spapr->ov5_cas. This is especially needed to test device
1699 * unplug, so we do that before resetting the DRCs.
1700 */
1701 if (qtest_enabled()) {
1702 spapr_ovec_cleanup(spapr->ov5_cas);
1703 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1704 }
1705
1706 /* DRC reset may cause a device to be unplugged. This will cause troubles
1707 * if this device is used by another device (eg, a running vhost backend
1708 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1709 * situations, we reset DRCs after all devices have been reset.
1710 */
1711 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1712
1713 spapr_clear_pending_events(spapr);
1714
1715 /*
1716 * We place the device tree and RTAS just below either the top of the RMA,
1717 * or just below 2GB, whichever is lower, so that it can be
1718 * processed with 32-bit real mode code if necessary
1719 */
1720 fdt_addr = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FDT_MAX_SIZE;
1721
1722 fdt = spapr_build_fdt(spapr);
1723
1724 rc = fdt_pack(fdt);
1725
1726 /* Should only fail if we've built a corrupted tree */
1727 assert(rc == 0);
1728
1729 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1730 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1731 fdt_totalsize(fdt), FDT_MAX_SIZE);
1732 exit(1);
1733 }
1734
1735 /* Load the fdt */
1736 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1737 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1738 g_free(spapr->fdt_blob);
1739 spapr->fdt_size = fdt_totalsize(fdt);
1740 spapr->fdt_initial_size = spapr->fdt_size;
1741 spapr->fdt_blob = fdt;
1742
1743 /* Set up the entry state */
1744 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1745 first_ppc_cpu->env.gpr[5] = 0;
1746
1747 spapr->cas_reboot = false;
1748 }
1749
1750 static void spapr_create_nvram(SpaprMachineState *spapr)
1751 {
1752 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1753 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1754
1755 if (dinfo) {
1756 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1757 &error_fatal);
1758 }
1759
1760 qdev_init_nofail(dev);
1761
1762 spapr->nvram = (struct SpaprNvram *)dev;
1763 }
1764
1765 static void spapr_rtc_create(SpaprMachineState *spapr)
1766 {
1767 object_initialize_child(OBJECT(spapr), "rtc",
1768 &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1769 &error_fatal, NULL);
1770 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1771 &error_fatal);
1772 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1773 "date", &error_fatal);
1774 }
1775
1776 /* Returns whether we want to use VGA or not */
1777 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1778 {
1779 switch (vga_interface_type) {
1780 case VGA_NONE:
1781 return false;
1782 case VGA_DEVICE:
1783 return true;
1784 case VGA_STD:
1785 case VGA_VIRTIO:
1786 case VGA_CIRRUS:
1787 return pci_vga_init(pci_bus) != NULL;
1788 default:
1789 error_setg(errp,
1790 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1791 return false;
1792 }
1793 }
1794
1795 static int spapr_pre_load(void *opaque)
1796 {
1797 int rc;
1798
1799 rc = spapr_caps_pre_load(opaque);
1800 if (rc) {
1801 return rc;
1802 }
1803
1804 return 0;
1805 }
1806
1807 static int spapr_post_load(void *opaque, int version_id)
1808 {
1809 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1810 int err = 0;
1811
1812 err = spapr_caps_post_migration(spapr);
1813 if (err) {
1814 return err;
1815 }
1816
1817 /*
1818 * In earlier versions, there was no separate qdev for the PAPR
1819 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1820 * So when migrating from those versions, poke the incoming offset
1821 * value into the RTC device
1822 */
1823 if (version_id < 3) {
1824 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1825 if (err) {
1826 return err;
1827 }
1828 }
1829
1830 if (kvm_enabled() && spapr->patb_entry) {
1831 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1832 bool radix = !!(spapr->patb_entry & PATE1_GR);
1833 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1834
1835 /*
1836 * Update LPCR:HR and UPRT as they may not be set properly in
1837 * the stream
1838 */
1839 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1840 LPCR_HR | LPCR_UPRT);
1841
1842 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1843 if (err) {
1844 error_report("Process table config unsupported by the host");
1845 return -EINVAL;
1846 }
1847 }
1848
1849 err = spapr_irq_post_load(spapr, version_id);
1850 if (err) {
1851 return err;
1852 }
1853
1854 return err;
1855 }
1856
1857 static int spapr_pre_save(void *opaque)
1858 {
1859 int rc;
1860
1861 rc = spapr_caps_pre_save(opaque);
1862 if (rc) {
1863 return rc;
1864 }
1865
1866 return 0;
1867 }
1868
1869 static bool version_before_3(void *opaque, int version_id)
1870 {
1871 return version_id < 3;
1872 }
1873
1874 static bool spapr_pending_events_needed(void *opaque)
1875 {
1876 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1877 return !QTAILQ_EMPTY(&spapr->pending_events);
1878 }
1879
1880 static const VMStateDescription vmstate_spapr_event_entry = {
1881 .name = "spapr_event_log_entry",
1882 .version_id = 1,
1883 .minimum_version_id = 1,
1884 .fields = (VMStateField[]) {
1885 VMSTATE_UINT32(summary, SpaprEventLogEntry),
1886 VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1887 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1888 NULL, extended_length),
1889 VMSTATE_END_OF_LIST()
1890 },
1891 };
1892
1893 static const VMStateDescription vmstate_spapr_pending_events = {
1894 .name = "spapr_pending_events",
1895 .version_id = 1,
1896 .minimum_version_id = 1,
1897 .needed = spapr_pending_events_needed,
1898 .fields = (VMStateField[]) {
1899 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1900 vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1901 VMSTATE_END_OF_LIST()
1902 },
1903 };
1904
1905 static bool spapr_ov5_cas_needed(void *opaque)
1906 {
1907 SpaprMachineState *spapr = opaque;
1908 SpaprOptionVector *ov5_mask = spapr_ovec_new();
1909 SpaprOptionVector *ov5_legacy = spapr_ovec_new();
1910 SpaprOptionVector *ov5_removed = spapr_ovec_new();
1911 bool cas_needed;
1912
1913 /* Prior to the introduction of SpaprOptionVector, we had two option
1914 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1915 * Both of these options encode machine topology into the device-tree
1916 * in such a way that the now-booted OS should still be able to interact
1917 * appropriately with QEMU regardless of what options were actually
1918 * negotiatied on the source side.
1919 *
1920 * As such, we can avoid migrating the CAS-negotiated options if these
1921 * are the only options available on the current machine/platform.
1922 * Since these are the only options available for pseries-2.7 and
1923 * earlier, this allows us to maintain old->new/new->old migration
1924 * compatibility.
1925 *
1926 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1927 * via default pseries-2.8 machines and explicit command-line parameters.
1928 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1929 * of the actual CAS-negotiated values to continue working properly. For
1930 * example, availability of memory unplug depends on knowing whether
1931 * OV5_HP_EVT was negotiated via CAS.
1932 *
1933 * Thus, for any cases where the set of available CAS-negotiatable
1934 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1935 * include the CAS-negotiated options in the migration stream, unless
1936 * if they affect boot time behaviour only.
1937 */
1938 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1939 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1940 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1941
1942 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1943 * the mask itself since in the future it's possible "legacy" bits may be
1944 * removed via machine options, which could generate a false positive
1945 * that breaks migration.
1946 */
1947 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1948 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1949
1950 spapr_ovec_cleanup(ov5_mask);
1951 spapr_ovec_cleanup(ov5_legacy);
1952 spapr_ovec_cleanup(ov5_removed);
1953
1954 return cas_needed;
1955 }
1956
1957 static const VMStateDescription vmstate_spapr_ov5_cas = {
1958 .name = "spapr_option_vector_ov5_cas",
1959 .version_id = 1,
1960 .minimum_version_id = 1,
1961 .needed = spapr_ov5_cas_needed,
1962 .fields = (VMStateField[]) {
1963 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1964 vmstate_spapr_ovec, SpaprOptionVector),
1965 VMSTATE_END_OF_LIST()
1966 },
1967 };
1968
1969 static bool spapr_patb_entry_needed(void *opaque)
1970 {
1971 SpaprMachineState *spapr = opaque;
1972
1973 return !!spapr->patb_entry;
1974 }
1975
1976 static const VMStateDescription vmstate_spapr_patb_entry = {
1977 .name = "spapr_patb_entry",
1978 .version_id = 1,
1979 .minimum_version_id = 1,
1980 .needed = spapr_patb_entry_needed,
1981 .fields = (VMStateField[]) {
1982 VMSTATE_UINT64(patb_entry, SpaprMachineState),
1983 VMSTATE_END_OF_LIST()
1984 },
1985 };
1986
1987 static bool spapr_irq_map_needed(void *opaque)
1988 {
1989 SpaprMachineState *spapr = opaque;
1990
1991 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1992 }
1993
1994 static const VMStateDescription vmstate_spapr_irq_map = {
1995 .name = "spapr_irq_map",
1996 .version_id = 1,
1997 .minimum_version_id = 1,
1998 .needed = spapr_irq_map_needed,
1999 .fields = (VMStateField[]) {
2000 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
2001 VMSTATE_END_OF_LIST()
2002 },
2003 };
2004
2005 static bool spapr_dtb_needed(void *opaque)
2006 {
2007 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2008
2009 return smc->update_dt_enabled;
2010 }
2011
2012 static int spapr_dtb_pre_load(void *opaque)
2013 {
2014 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2015
2016 g_free(spapr->fdt_blob);
2017 spapr->fdt_blob = NULL;
2018 spapr->fdt_size = 0;
2019
2020 return 0;
2021 }
2022
2023 static const VMStateDescription vmstate_spapr_dtb = {
2024 .name = "spapr_dtb",
2025 .version_id = 1,
2026 .minimum_version_id = 1,
2027 .needed = spapr_dtb_needed,
2028 .pre_load = spapr_dtb_pre_load,
2029 .fields = (VMStateField[]) {
2030 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2031 VMSTATE_UINT32(fdt_size, SpaprMachineState),
2032 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2033 fdt_size),
2034 VMSTATE_END_OF_LIST()
2035 },
2036 };
2037
2038 static const VMStateDescription vmstate_spapr = {
2039 .name = "spapr",
2040 .version_id = 3,
2041 .minimum_version_id = 1,
2042 .pre_load = spapr_pre_load,
2043 .post_load = spapr_post_load,
2044 .pre_save = spapr_pre_save,
2045 .fields = (VMStateField[]) {
2046 /* used to be @next_irq */
2047 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2048
2049 /* RTC offset */
2050 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2051
2052 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2053 VMSTATE_END_OF_LIST()
2054 },
2055 .subsections = (const VMStateDescription*[]) {
2056 &vmstate_spapr_ov5_cas,
2057 &vmstate_spapr_patb_entry,
2058 &vmstate_spapr_pending_events,
2059 &vmstate_spapr_cap_htm,
2060 &vmstate_spapr_cap_vsx,
2061 &vmstate_spapr_cap_dfp,
2062 &vmstate_spapr_cap_cfpc,
2063 &vmstate_spapr_cap_sbbc,
2064 &vmstate_spapr_cap_ibs,
2065 &vmstate_spapr_cap_hpt_maxpagesize,
2066 &vmstate_spapr_irq_map,
2067 &vmstate_spapr_cap_nested_kvm_hv,
2068 &vmstate_spapr_dtb,
2069 &vmstate_spapr_cap_large_decr,
2070 &vmstate_spapr_cap_ccf_assist,
2071 NULL
2072 }
2073 };
2074
2075 static int htab_save_setup(QEMUFile *f, void *opaque)
2076 {
2077 SpaprMachineState *spapr = opaque;
2078
2079 /* "Iteration" header */
2080 if (!spapr->htab_shift) {
2081 qemu_put_be32(f, -1);
2082 } else {
2083 qemu_put_be32(f, spapr->htab_shift);
2084 }
2085
2086 if (spapr->htab) {
2087 spapr->htab_save_index = 0;
2088 spapr->htab_first_pass = true;
2089 } else {
2090 if (spapr->htab_shift) {
2091 assert(kvm_enabled());
2092 }
2093 }
2094
2095
2096 return 0;
2097 }
2098
2099 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2100 int chunkstart, int n_valid, int n_invalid)
2101 {
2102 qemu_put_be32(f, chunkstart);
2103 qemu_put_be16(f, n_valid);
2104 qemu_put_be16(f, n_invalid);
2105 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2106 HASH_PTE_SIZE_64 * n_valid);
2107 }
2108
2109 static void htab_save_end_marker(QEMUFile *f)
2110 {
2111 qemu_put_be32(f, 0);
2112 qemu_put_be16(f, 0);
2113 qemu_put_be16(f, 0);
2114 }
2115
2116 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2117 int64_t max_ns)
2118 {
2119 bool has_timeout = max_ns != -1;
2120 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2121 int index = spapr->htab_save_index;
2122 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2123
2124 assert(spapr->htab_first_pass);
2125
2126 do {
2127 int chunkstart;
2128
2129 /* Consume invalid HPTEs */
2130 while ((index < htabslots)
2131 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2132 CLEAN_HPTE(HPTE(spapr->htab, index));
2133 index++;
2134 }
2135
2136 /* Consume valid HPTEs */
2137 chunkstart = index;
2138 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2139 && HPTE_VALID(HPTE(spapr->htab, index))) {
2140 CLEAN_HPTE(HPTE(spapr->htab, index));
2141 index++;
2142 }
2143
2144 if (index > chunkstart) {
2145 int n_valid = index - chunkstart;
2146
2147 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2148
2149 if (has_timeout &&
2150 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2151 break;
2152 }
2153 }
2154 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2155
2156 if (index >= htabslots) {
2157 assert(index == htabslots);
2158 index = 0;
2159 spapr->htab_first_pass = false;
2160 }
2161 spapr->htab_save_index = index;
2162 }
2163
2164 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2165 int64_t max_ns)
2166 {
2167 bool final = max_ns < 0;
2168 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2169 int examined = 0, sent = 0;
2170 int index = spapr->htab_save_index;
2171 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2172
2173 assert(!spapr->htab_first_pass);
2174
2175 do {
2176 int chunkstart, invalidstart;
2177
2178 /* Consume non-dirty HPTEs */
2179 while ((index < htabslots)
2180 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2181 index++;
2182 examined++;
2183 }
2184
2185 chunkstart = index;
2186 /* Consume valid dirty HPTEs */
2187 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2188 && HPTE_DIRTY(HPTE(spapr->htab, index))
2189 && HPTE_VALID(HPTE(spapr->htab, index))) {
2190 CLEAN_HPTE(HPTE(spapr->htab, index));
2191 index++;
2192 examined++;
2193 }
2194
2195 invalidstart = index;
2196 /* Consume invalid dirty HPTEs */
2197 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2198 && HPTE_DIRTY(HPTE(spapr->htab, index))
2199 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2200 CLEAN_HPTE(HPTE(spapr->htab, index));
2201 index++;
2202 examined++;
2203 }
2204
2205 if (index > chunkstart) {
2206 int n_valid = invalidstart - chunkstart;
2207 int n_invalid = index - invalidstart;
2208
2209 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2210 sent += index - chunkstart;
2211
2212 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2213 break;
2214 }
2215 }
2216
2217 if (examined >= htabslots) {
2218 break;
2219 }
2220
2221 if (index >= htabslots) {
2222 assert(index == htabslots);
2223 index = 0;
2224 }
2225 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2226
2227 if (index >= htabslots) {
2228 assert(index == htabslots);
2229 index = 0;
2230 }
2231
2232 spapr->htab_save_index = index;
2233
2234 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2235 }
2236
2237 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2238 #define MAX_KVM_BUF_SIZE 2048
2239
2240 static int htab_save_iterate(QEMUFile *f, void *opaque)
2241 {
2242 SpaprMachineState *spapr = opaque;
2243 int fd;
2244 int rc = 0;
2245
2246 /* Iteration header */
2247 if (!spapr->htab_shift) {
2248 qemu_put_be32(f, -1);
2249 return 1;
2250 } else {
2251 qemu_put_be32(f, 0);
2252 }
2253
2254 if (!spapr->htab) {
2255 assert(kvm_enabled());
2256
2257 fd = get_htab_fd(spapr);
2258 if (fd < 0) {
2259 return fd;
2260 }
2261
2262 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2263 if (rc < 0) {
2264 return rc;
2265 }
2266 } else if (spapr->htab_first_pass) {
2267 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2268 } else {
2269 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2270 }
2271
2272 htab_save_end_marker(f);
2273
2274 return rc;
2275 }
2276
2277 static int htab_save_complete(QEMUFile *f, void *opaque)
2278 {
2279 SpaprMachineState *spapr = opaque;
2280 int fd;
2281
2282 /* Iteration header */
2283 if (!spapr->htab_shift) {
2284 qemu_put_be32(f, -1);
2285 return 0;
2286 } else {
2287 qemu_put_be32(f, 0);
2288 }
2289
2290 if (!spapr->htab) {
2291 int rc;
2292
2293 assert(kvm_enabled());
2294
2295 fd = get_htab_fd(spapr);
2296 if (fd < 0) {
2297 return fd;
2298 }
2299
2300 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2301 if (rc < 0) {
2302 return rc;
2303 }
2304 } else {
2305 if (spapr->htab_first_pass) {
2306 htab_save_first_pass(f, spapr, -1);
2307 }
2308 htab_save_later_pass(f, spapr, -1);
2309 }
2310
2311 /* End marker */
2312 htab_save_end_marker(f);
2313
2314 return 0;
2315 }
2316
2317 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2318 {
2319 SpaprMachineState *spapr = opaque;
2320 uint32_t section_hdr;
2321 int fd = -1;
2322 Error *local_err = NULL;
2323
2324 if (version_id < 1 || version_id > 1) {
2325 error_report("htab_load() bad version");
2326 return -EINVAL;
2327 }
2328
2329 section_hdr = qemu_get_be32(f);
2330
2331 if (section_hdr == -1) {
2332 spapr_free_hpt(spapr);
2333 return 0;
2334 }
2335
2336 if (section_hdr) {
2337 /* First section gives the htab size */
2338 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2339 if (local_err) {
2340 error_report_err(local_err);
2341 return -EINVAL;
2342 }
2343 return 0;
2344 }
2345
2346 if (!spapr->htab) {
2347 assert(kvm_enabled());
2348
2349 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2350 if (fd < 0) {
2351 error_report_err(local_err);
2352 return fd;
2353 }
2354 }
2355
2356 while (true) {
2357 uint32_t index;
2358 uint16_t n_valid, n_invalid;
2359
2360 index = qemu_get_be32(f);
2361 n_valid = qemu_get_be16(f);
2362 n_invalid = qemu_get_be16(f);
2363
2364 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2365 /* End of Stream */
2366 break;
2367 }
2368
2369 if ((index + n_valid + n_invalid) >
2370 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2371 /* Bad index in stream */
2372 error_report(
2373 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2374 index, n_valid, n_invalid, spapr->htab_shift);
2375 return -EINVAL;
2376 }
2377
2378 if (spapr->htab) {
2379 if (n_valid) {
2380 qemu_get_buffer(f, HPTE(spapr->htab, index),
2381 HASH_PTE_SIZE_64 * n_valid);
2382 }
2383 if (n_invalid) {
2384 memset(HPTE(spapr->htab, index + n_valid), 0,
2385 HASH_PTE_SIZE_64 * n_invalid);
2386 }
2387 } else {
2388 int rc;
2389
2390 assert(fd >= 0);
2391
2392 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2393 if (rc < 0) {
2394 return rc;
2395 }
2396 }
2397 }
2398
2399 if (!spapr->htab) {
2400 assert(fd >= 0);
2401 close(fd);
2402 }
2403
2404 return 0;
2405 }
2406
2407 static void htab_save_cleanup(void *opaque)
2408 {
2409 SpaprMachineState *spapr = opaque;
2410
2411 close_htab_fd(spapr);
2412 }
2413
2414 static SaveVMHandlers savevm_htab_handlers = {
2415 .save_setup = htab_save_setup,
2416 .save_live_iterate = htab_save_iterate,
2417 .save_live_complete_precopy = htab_save_complete,
2418 .save_cleanup = htab_save_cleanup,
2419 .load_state = htab_load,
2420 };
2421
2422 static void spapr_boot_set(void *opaque, const char *boot_device,
2423 Error **errp)
2424 {
2425 MachineState *machine = MACHINE(opaque);
2426 machine->boot_order = g_strdup(boot_device);
2427 }
2428
2429 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2430 {
2431 MachineState *machine = MACHINE(spapr);
2432 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2433 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2434 int i;
2435
2436 for (i = 0; i < nr_lmbs; i++) {
2437 uint64_t addr;
2438
2439 addr = i * lmb_size + machine->device_memory->base;
2440 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2441 addr / lmb_size);
2442 }
2443 }
2444
2445 /*
2446 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2447 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2448 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2449 */
2450 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2451 {
2452 int i;
2453
2454 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2455 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2456 " is not aligned to %" PRIu64 " MiB",
2457 machine->ram_size,
2458 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2459 return;
2460 }
2461
2462 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2463 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2464 " is not aligned to %" PRIu64 " MiB",
2465 machine->ram_size,
2466 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2467 return;
2468 }
2469
2470 for (i = 0; i < machine->numa_state->num_nodes; i++) {
2471 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2472 error_setg(errp,
2473 "Node %d memory size 0x%" PRIx64
2474 " is not aligned to %" PRIu64 " MiB",
2475 i, machine->numa_state->nodes[i].node_mem,
2476 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2477 return;
2478 }
2479 }
2480 }
2481
2482 /* find cpu slot in machine->possible_cpus by core_id */
2483 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2484 {
2485 int index = id / ms->smp.threads;
2486
2487 if (index >= ms->possible_cpus->len) {
2488 return NULL;
2489 }
2490 if (idx) {
2491 *idx = index;
2492 }
2493 return &ms->possible_cpus->cpus[index];
2494 }
2495
2496 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2497 {
2498 MachineState *ms = MACHINE(spapr);
2499 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2500 Error *local_err = NULL;
2501 bool vsmt_user = !!spapr->vsmt;
2502 int kvm_smt = kvmppc_smt_threads();
2503 int ret;
2504 unsigned int smp_threads = ms->smp.threads;
2505
2506 if (!kvm_enabled() && (smp_threads > 1)) {
2507 error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2508 "on a pseries machine");
2509 goto out;
2510 }
2511 if (!is_power_of_2(smp_threads)) {
2512 error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2513 "machine because it must be a power of 2", smp_threads);
2514 goto out;
2515 }
2516
2517 /* Detemine the VSMT mode to use: */
2518 if (vsmt_user) {
2519 if (spapr->vsmt < smp_threads) {
2520 error_setg(&local_err, "Cannot support VSMT mode %d"
2521 " because it must be >= threads/core (%d)",
2522 spapr->vsmt, smp_threads);
2523 goto out;
2524 }
2525 /* In this case, spapr->vsmt has been set by the command line */
2526 } else if (!smc->smp_threads_vsmt) {
2527 /*
2528 * Default VSMT value is tricky, because we need it to be as
2529 * consistent as possible (for migration), but this requires
2530 * changing it for at least some existing cases. We pick 8 as
2531 * the value that we'd get with KVM on POWER8, the
2532 * overwhelmingly common case in production systems.
2533 */
2534 spapr->vsmt = MAX(8, smp_threads);
2535 } else {
2536 spapr->vsmt = smp_threads;
2537 }
2538
2539 /* KVM: If necessary, set the SMT mode: */
2540 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2541 ret = kvmppc_set_smt_threads(spapr->vsmt);
2542 if (ret) {
2543 /* Looks like KVM isn't able to change VSMT mode */
2544 error_setg(&local_err,
2545 "Failed to set KVM's VSMT mode to %d (errno %d)",
2546 spapr->vsmt, ret);
2547 /* We can live with that if the default one is big enough
2548 * for the number of threads, and a submultiple of the one
2549 * we want. In this case we'll waste some vcpu ids, but
2550 * behaviour will be correct */
2551 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2552 warn_report_err(local_err);
2553 local_err = NULL;
2554 goto out;
2555 } else {
2556 if (!vsmt_user) {
2557 error_append_hint(&local_err,
2558 "On PPC, a VM with %d threads/core"
2559 " on a host with %d threads/core"
2560 " requires the use of VSMT mode %d.\n",
2561 smp_threads, kvm_smt, spapr->vsmt);
2562 }
2563 kvmppc_hint_smt_possible(&local_err);
2564 goto out;
2565 }
2566 }
2567 }
2568 /* else TCG: nothing to do currently */
2569 out:
2570 error_propagate(errp, local_err);
2571 }
2572
2573 static void spapr_init_cpus(SpaprMachineState *spapr)
2574 {
2575 MachineState *machine = MACHINE(spapr);
2576 MachineClass *mc = MACHINE_GET_CLASS(machine);
2577 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2578 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2579 const CPUArchIdList *possible_cpus;
2580 unsigned int smp_cpus = machine->smp.cpus;
2581 unsigned int smp_threads = machine->smp.threads;
2582 unsigned int max_cpus = machine->smp.max_cpus;
2583 int boot_cores_nr = smp_cpus / smp_threads;
2584 int i;
2585
2586 possible_cpus = mc->possible_cpu_arch_ids(machine);
2587 if (mc->has_hotpluggable_cpus) {
2588 if (smp_cpus % smp_threads) {
2589 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2590 smp_cpus, smp_threads);
2591 exit(1);
2592 }
2593 if (max_cpus % smp_threads) {
2594 error_report("max_cpus (%u) must be multiple of threads (%u)",
2595 max_cpus, smp_threads);
2596 exit(1);
2597 }
2598 } else {
2599 if (max_cpus != smp_cpus) {
2600 error_report("This machine version does not support CPU hotplug");
2601 exit(1);
2602 }
2603 boot_cores_nr = possible_cpus->len;
2604 }
2605
2606 if (smc->pre_2_10_has_unused_icps) {
2607 int i;
2608
2609 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2610 /* Dummy entries get deregistered when real ICPState objects
2611 * are registered during CPU core hotplug.
2612 */
2613 pre_2_10_vmstate_register_dummy_icp(i);
2614 }
2615 }
2616
2617 for (i = 0; i < possible_cpus->len; i++) {
2618 int core_id = i * smp_threads;
2619
2620 if (mc->has_hotpluggable_cpus) {
2621 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2622 spapr_vcpu_id(spapr, core_id));
2623 }
2624
2625 if (i < boot_cores_nr) {
2626 Object *core = object_new(type);
2627 int nr_threads = smp_threads;
2628
2629 /* Handle the partially filled core for older machine types */
2630 if ((i + 1) * smp_threads >= smp_cpus) {
2631 nr_threads = smp_cpus - i * smp_threads;
2632 }
2633
2634 object_property_set_int(core, nr_threads, "nr-threads",
2635 &error_fatal);
2636 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2637 &error_fatal);
2638 object_property_set_bool(core, true, "realized", &error_fatal);
2639
2640 object_unref(core);
2641 }
2642 }
2643 }
2644
2645 static PCIHostState *spapr_create_default_phb(void)
2646 {
2647 DeviceState *dev;
2648
2649 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2650 qdev_prop_set_uint32(dev, "index", 0);
2651 qdev_init_nofail(dev);
2652
2653 return PCI_HOST_BRIDGE(dev);
2654 }
2655
2656 /* pSeries LPAR / sPAPR hardware init */
2657 static void spapr_machine_init(MachineState *machine)
2658 {
2659 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2660 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2661 const char *kernel_filename = machine->kernel_filename;
2662 const char *initrd_filename = machine->initrd_filename;
2663 PCIHostState *phb;
2664 int i;
2665 MemoryRegion *sysmem = get_system_memory();
2666 MemoryRegion *ram = g_new(MemoryRegion, 1);
2667 hwaddr node0_size = spapr_node0_size(machine);
2668 long load_limit, fw_size;
2669 char *filename;
2670 Error *resize_hpt_err = NULL;
2671
2672 msi_nonbroken = true;
2673
2674 QLIST_INIT(&spapr->phbs);
2675 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2676
2677 /* Determine capabilities to run with */
2678 spapr_caps_init(spapr);
2679
2680 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2681 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2682 /*
2683 * If the user explicitly requested a mode we should either
2684 * supply it, or fail completely (which we do below). But if
2685 * it's not set explicitly, we reset our mode to something
2686 * that works
2687 */
2688 if (resize_hpt_err) {
2689 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2690 error_free(resize_hpt_err);
2691 resize_hpt_err = NULL;
2692 } else {
2693 spapr->resize_hpt = smc->resize_hpt_default;
2694 }
2695 }
2696
2697 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2698
2699 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2700 /*
2701 * User requested HPT resize, but this host can't supply it. Bail out
2702 */
2703 error_report_err(resize_hpt_err);
2704 exit(1);
2705 }
2706
2707 spapr->rma_size = node0_size;
2708
2709 /* With KVM, we don't actually know whether KVM supports an
2710 * unbounded RMA (PR KVM) or is limited by the hash table size
2711 * (HV KVM using VRMA), so we always assume the latter
2712 *
2713 * In that case, we also limit the initial allocations for RTAS
2714 * etc... to 256M since we have no way to know what the VRMA size
2715 * is going to be as it depends on the size of the hash table
2716 * which isn't determined yet.
2717 */
2718 if (kvm_enabled()) {
2719 spapr->vrma_adjust = 1;
2720 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2721 }
2722
2723 /* Actually we don't support unbounded RMA anymore since we added
2724 * proper emulation of HV mode. The max we can get is 16G which
2725 * also happens to be what we configure for PAPR mode so make sure
2726 * we don't do anything bigger than that
2727 */
2728 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2729
2730 if (spapr->rma_size > node0_size) {
2731 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2732 spapr->rma_size);
2733 exit(1);
2734 }
2735
2736 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2737 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2738
2739 /*
2740 * VSMT must be set in order to be able to compute VCPU ids, ie to
2741 * call spapr_max_server_number() or spapr_vcpu_id().
2742 */
2743 spapr_set_vsmt_mode(spapr, &error_fatal);
2744
2745 /* Set up Interrupt Controller before we create the VCPUs */
2746 spapr_irq_init(spapr, &error_fatal);
2747
2748 /* Set up containers for ibm,client-architecture-support negotiated options
2749 */
2750 spapr->ov5 = spapr_ovec_new();
2751 spapr->ov5_cas = spapr_ovec_new();
2752
2753 if (smc->dr_lmb_enabled) {
2754 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2755 spapr_validate_node_memory(machine, &error_fatal);
2756 }
2757
2758 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2759
2760 /* advertise support for dedicated HP event source to guests */
2761 if (spapr->use_hotplug_event_source) {
2762 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2763 }
2764
2765 /* advertise support for HPT resizing */
2766 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2767 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2768 }
2769
2770 /* advertise support for ibm,dyamic-memory-v2 */
2771 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2772
2773 /* advertise XIVE on POWER9 machines */
2774 if (spapr->irq->xive) {
2775 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2776 }
2777
2778 /* init CPUs */
2779 spapr_init_cpus(spapr);
2780
2781 /*
2782 * check we don't have a memory-less/cpu-less NUMA node
2783 * Firmware relies on the existing memory/cpu topology to provide the
2784 * NUMA topology to the kernel.
2785 * And the linux kernel needs to know the NUMA topology at start
2786 * to be able to hotplug CPUs later.
2787 */
2788 if (machine->numa_state->num_nodes) {
2789 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
2790 /* check for memory-less node */
2791 if (machine->numa_state->nodes[i].node_mem == 0) {
2792 CPUState *cs;
2793 int found = 0;
2794 /* check for cpu-less node */
2795 CPU_FOREACH(cs) {
2796 PowerPCCPU *cpu = POWERPC_CPU(cs);
2797 if (cpu->node_id == i) {
2798 found = 1;
2799 break;
2800 }
2801 }
2802 /* memory-less and cpu-less node */
2803 if (!found) {
2804 error_report(
2805 "Memory-less/cpu-less nodes are not supported (node %d)",
2806 i);
2807 exit(1);
2808 }
2809 }
2810 }
2811
2812 }
2813
2814 /*
2815 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
2816 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
2817 * called from vPHB reset handler so we initialize the counter here.
2818 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
2819 * must be equally distant from any other node.
2820 * The final value of spapr->gpu_numa_id is going to be written to
2821 * max-associativity-domains in spapr_build_fdt().
2822 */
2823 spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes);
2824
2825 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2826 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2827 spapr->max_compat_pvr)) {
2828 /* KVM and TCG always allow GTSE with radix... */
2829 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2830 }
2831 /* ... but not with hash (currently). */
2832
2833 if (kvm_enabled()) {
2834 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2835 kvmppc_enable_logical_ci_hcalls();
2836 kvmppc_enable_set_mode_hcall();
2837
2838 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2839 kvmppc_enable_clear_ref_mod_hcalls();
2840
2841 /* Enable H_PAGE_INIT */
2842 kvmppc_enable_h_page_init();
2843 }
2844
2845 /* allocate RAM */
2846 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2847 machine->ram_size);
2848 memory_region_add_subregion(sysmem, 0, ram);
2849
2850 /* always allocate the device memory information */
2851 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2852
2853 /* initialize hotplug memory address space */
2854 if (machine->ram_size < machine->maxram_size) {
2855 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2856 /*
2857 * Limit the number of hotpluggable memory slots to half the number
2858 * slots that KVM supports, leaving the other half for PCI and other
2859 * devices. However ensure that number of slots doesn't drop below 32.
2860 */
2861 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2862 SPAPR_MAX_RAM_SLOTS;
2863
2864 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2865 max_memslots = SPAPR_MAX_RAM_SLOTS;
2866 }
2867 if (machine->ram_slots > max_memslots) {
2868 error_report("Specified number of memory slots %"
2869 PRIu64" exceeds max supported %d",
2870 machine->ram_slots, max_memslots);
2871 exit(1);
2872 }
2873
2874 machine->device_memory->base = ROUND_UP(machine->ram_size,
2875 SPAPR_DEVICE_MEM_ALIGN);
2876 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2877 "device-memory", device_mem_size);
2878 memory_region_add_subregion(sysmem, machine->device_memory->base,
2879 &machine->device_memory->mr);
2880 }
2881
2882 if (smc->dr_lmb_enabled) {
2883 spapr_create_lmb_dr_connectors(spapr);
2884 }
2885
2886 /* Set up RTAS event infrastructure */
2887 spapr_events_init(spapr);
2888
2889 /* Set up the RTC RTAS interfaces */
2890 spapr_rtc_create(spapr);
2891
2892 /* Set up VIO bus */
2893 spapr->vio_bus = spapr_vio_bus_init();
2894
2895 for (i = 0; i < serial_max_hds(); i++) {
2896 if (serial_hd(i)) {
2897 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2898 }
2899 }
2900
2901 /* We always have at least the nvram device on VIO */
2902 spapr_create_nvram(spapr);
2903
2904 /*
2905 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2906 * connectors (described in root DT node's "ibm,drc-types" property)
2907 * are pre-initialized here. additional child connectors (such as
2908 * connectors for a PHBs PCI slots) are added as needed during their
2909 * parent's realization.
2910 */
2911 if (smc->dr_phb_enabled) {
2912 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2913 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2914 }
2915 }
2916
2917 /* Set up PCI */
2918 spapr_pci_rtas_init();
2919
2920 phb = spapr_create_default_phb();
2921
2922 for (i = 0; i < nb_nics; i++) {
2923 NICInfo *nd = &nd_table[i];
2924
2925 if (!nd->model) {
2926 nd->model = g_strdup("spapr-vlan");
2927 }
2928
2929 if (g_str_equal(nd->model, "spapr-vlan") ||
2930 g_str_equal(nd->model, "ibmveth")) {
2931 spapr_vlan_create(spapr->vio_bus, nd);
2932 } else {
2933 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2934 }
2935 }
2936
2937 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2938 spapr_vscsi_create(spapr->vio_bus);
2939 }
2940
2941 /* Graphics */
2942 if (spapr_vga_init(phb->bus, &error_fatal)) {
2943 spapr->has_graphics = true;
2944 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2945 }
2946
2947 if (machine->usb) {
2948 if (smc->use_ohci_by_default) {
2949 pci_create_simple(phb->bus, -1, "pci-ohci");
2950 } else {
2951 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2952 }
2953
2954 if (spapr->has_graphics) {
2955 USBBus *usb_bus = usb_bus_find(-1);
2956
2957 usb_create_simple(usb_bus, "usb-kbd");
2958 usb_create_simple(usb_bus, "usb-mouse");
2959 }
2960 }
2961
2962 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
2963 error_report(
2964 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2965 MIN_RMA_SLOF);
2966 exit(1);
2967 }
2968
2969 if (kernel_filename) {
2970 uint64_t lowaddr = 0;
2971
2972 spapr->kernel_size = load_elf(kernel_filename, NULL,
2973 translate_kernel_address, NULL,
2974 NULL, &lowaddr, NULL, 1,
2975 PPC_ELF_MACHINE, 0, 0);
2976 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2977 spapr->kernel_size = load_elf(kernel_filename, NULL,
2978 translate_kernel_address, NULL, NULL,
2979 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2980 0, 0);
2981 spapr->kernel_le = spapr->kernel_size > 0;
2982 }
2983 if (spapr->kernel_size < 0) {
2984 error_report("error loading %s: %s", kernel_filename,
2985 load_elf_strerror(spapr->kernel_size));
2986 exit(1);
2987 }
2988
2989 /* load initrd */
2990 if (initrd_filename) {
2991 /* Try to locate the initrd in the gap between the kernel
2992 * and the firmware. Add a bit of space just in case
2993 */
2994 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2995 + 0x1ffff) & ~0xffff;
2996 spapr->initrd_size = load_image_targphys(initrd_filename,
2997 spapr->initrd_base,
2998 load_limit
2999 - spapr->initrd_base);
3000 if (spapr->initrd_size < 0) {
3001 error_report("could not load initial ram disk '%s'",
3002 initrd_filename);
3003 exit(1);
3004 }
3005 }
3006 }
3007
3008 if (bios_name == NULL) {
3009 bios_name = FW_FILE_NAME;
3010 }
3011 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
3012 if (!filename) {
3013 error_report("Could not find LPAR firmware '%s'", bios_name);
3014 exit(1);
3015 }
3016 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3017 if (fw_size <= 0) {
3018 error_report("Could not load LPAR firmware '%s'", filename);
3019 exit(1);
3020 }
3021 g_free(filename);
3022
3023 /* FIXME: Should register things through the MachineState's qdev
3024 * interface, this is a legacy from the sPAPREnvironment structure
3025 * which predated MachineState but had a similar function */
3026 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3027 register_savevm_live("spapr/htab", -1, 1,
3028 &savevm_htab_handlers, spapr);
3029
3030 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine),
3031 &error_fatal);
3032
3033 qemu_register_boot_set(spapr_boot_set, spapr);
3034
3035 /*
3036 * Nothing needs to be done to resume a suspended guest because
3037 * suspending does not change the machine state, so no need for
3038 * a ->wakeup method.
3039 */
3040 qemu_register_wakeup_support();
3041
3042 if (kvm_enabled()) {
3043 /* to stop and start vmclock */
3044 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3045 &spapr->tb);
3046
3047 kvmppc_spapr_enable_inkernel_multitce();
3048 }
3049 }
3050
3051 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3052 {
3053 if (!vm_type) {
3054 return 0;
3055 }
3056
3057 if (!strcmp(vm_type, "HV")) {
3058 return 1;
3059 }
3060
3061 if (!strcmp(vm_type, "PR")) {
3062 return 2;
3063 }
3064
3065 error_report("Unknown kvm-type specified '%s'", vm_type);
3066 exit(1);
3067 }
3068
3069 /*
3070 * Implementation of an interface to adjust firmware path
3071 * for the bootindex property handling.
3072 */
3073 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3074 DeviceState *dev)
3075 {
3076 #define CAST(type, obj, name) \
3077 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3078 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3079 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3080 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3081
3082 if (d) {
3083 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3084 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3085 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3086
3087 if (spapr) {
3088 /*
3089 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3090 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3091 * 0x8000 | (target << 8) | (bus << 5) | lun
3092 * (see the "Logical unit addressing format" table in SAM5)
3093 */
3094 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3095 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3096 (uint64_t)id << 48);
3097 } else if (virtio) {
3098 /*
3099 * We use SRP luns of the form 01000000 | (target << 8) | lun
3100 * in the top 32 bits of the 64-bit LUN
3101 * Note: the quote above is from SLOF and it is wrong,
3102 * the actual binding is:
3103 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3104 */
3105 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3106 if (d->lun >= 256) {
3107 /* Use the LUN "flat space addressing method" */
3108 id |= 0x4000;
3109 }
3110 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3111 (uint64_t)id << 32);
3112 } else if (usb) {
3113 /*
3114 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3115 * in the top 32 bits of the 64-bit LUN
3116 */
3117 unsigned usb_port = atoi(usb->port->path);
3118 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3119 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3120 (uint64_t)id << 32);
3121 }
3122 }
3123
3124 /*
3125 * SLOF probes the USB devices, and if it recognizes that the device is a
3126 * storage device, it changes its name to "storage" instead of "usb-host",
3127 * and additionally adds a child node for the SCSI LUN, so the correct
3128 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3129 */
3130 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3131 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3132 if (usb_host_dev_is_scsi_storage(usbdev)) {
3133 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3134 }
3135 }
3136
3137 if (phb) {
3138 /* Replace "pci" with "pci@800000020000000" */
3139 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3140 }
3141
3142 if (vsc) {
3143 /* Same logic as virtio above */
3144 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3145 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3146 }
3147
3148 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3149 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3150 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3151 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3152 }
3153
3154 return NULL;
3155 }
3156
3157 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3158 {
3159 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3160
3161 return g_strdup(spapr->kvm_type);
3162 }
3163
3164 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3165 {
3166 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3167
3168 g_free(spapr->kvm_type);
3169 spapr->kvm_type = g_strdup(value);
3170 }
3171
3172 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3173 {
3174 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3175
3176 return spapr->use_hotplug_event_source;
3177 }
3178
3179 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3180 Error **errp)
3181 {
3182 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3183
3184 spapr->use_hotplug_event_source = value;
3185 }
3186
3187 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3188 {
3189 return true;
3190 }
3191
3192 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3193 {
3194 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3195
3196 switch (spapr->resize_hpt) {
3197 case SPAPR_RESIZE_HPT_DEFAULT:
3198 return g_strdup("default");
3199 case SPAPR_RESIZE_HPT_DISABLED:
3200 return g_strdup("disabled");
3201 case SPAPR_RESIZE_HPT_ENABLED:
3202 return g_strdup("enabled");
3203 case SPAPR_RESIZE_HPT_REQUIRED:
3204 return g_strdup("required");
3205 }
3206 g_assert_not_reached();
3207 }
3208
3209 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3210 {
3211 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3212
3213 if (strcmp(value, "default") == 0) {
3214 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3215 } else if (strcmp(value, "disabled") == 0) {
3216 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3217 } else if (strcmp(value, "enabled") == 0) {
3218 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3219 } else if (strcmp(value, "required") == 0) {
3220 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3221 } else {
3222 error_setg(errp, "Bad value for \"resize-hpt\" property");
3223 }
3224 }
3225
3226 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3227 void *opaque, Error **errp)
3228 {
3229 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3230 }
3231
3232 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3233 void *opaque, Error **errp)
3234 {
3235 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3236 }
3237
3238 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3239 {
3240 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3241
3242 if (spapr->irq == &spapr_irq_xics_legacy) {
3243 return g_strdup("legacy");
3244 } else if (spapr->irq == &spapr_irq_xics) {
3245 return g_strdup("xics");
3246 } else if (spapr->irq == &spapr_irq_xive) {
3247 return g_strdup("xive");
3248 } else if (spapr->irq == &spapr_irq_dual) {
3249 return g_strdup("dual");
3250 }
3251 g_assert_not_reached();
3252 }
3253
3254 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3255 {
3256 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3257
3258 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3259 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3260 return;
3261 }
3262
3263 /* The legacy IRQ backend can not be set */
3264 if (strcmp(value, "xics") == 0) {
3265 spapr->irq = &spapr_irq_xics;
3266 } else if (strcmp(value, "xive") == 0) {
3267 spapr->irq = &spapr_irq_xive;
3268 } else if (strcmp(value, "dual") == 0) {
3269 spapr->irq = &spapr_irq_dual;
3270 } else {
3271 error_setg(errp, "Bad value for \"ic-mode\" property");
3272 }
3273 }
3274
3275 static char *spapr_get_host_model(Object *obj, Error **errp)
3276 {
3277 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3278
3279 return g_strdup(spapr->host_model);
3280 }
3281
3282 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3283 {
3284 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3285
3286 g_free(spapr->host_model);
3287 spapr->host_model = g_strdup(value);
3288 }
3289
3290 static char *spapr_get_host_serial(Object *obj, Error **errp)
3291 {
3292 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3293
3294 return g_strdup(spapr->host_serial);
3295 }
3296
3297 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3298 {
3299 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3300
3301 g_free(spapr->host_serial);
3302 spapr->host_serial = g_strdup(value);
3303 }
3304
3305 static void spapr_instance_init(Object *obj)
3306 {
3307 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3308 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3309
3310 spapr->htab_fd = -1;
3311 spapr->use_hotplug_event_source = true;
3312 object_property_add_str(obj, "kvm-type",
3313 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3314 object_property_set_description(obj, "kvm-type",
3315 "Specifies the KVM virtualization mode (HV, PR)",
3316 NULL);
3317 object_property_add_bool(obj, "modern-hotplug-events",
3318 spapr_get_modern_hotplug_events,
3319 spapr_set_modern_hotplug_events,
3320 NULL);
3321 object_property_set_description(obj, "modern-hotplug-events",
3322 "Use dedicated hotplug event mechanism in"
3323 " place of standard EPOW events when possible"
3324 " (required for memory hot-unplug support)",
3325 NULL);
3326 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3327 "Maximum permitted CPU compatibility mode",
3328 &error_fatal);
3329
3330 object_property_add_str(obj, "resize-hpt",
3331 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3332 object_property_set_description(obj, "resize-hpt",
3333 "Resizing of the Hash Page Table (enabled, disabled, required)",
3334 NULL);
3335 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3336 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3337 object_property_set_description(obj, "vsmt",
3338 "Virtual SMT: KVM behaves as if this were"
3339 " the host's SMT mode", &error_abort);
3340 object_property_add_bool(obj, "vfio-no-msix-emulation",
3341 spapr_get_msix_emulation, NULL, NULL);
3342
3343 /* The machine class defines the default interrupt controller mode */
3344 spapr->irq = smc->irq;
3345 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3346 spapr_set_ic_mode, NULL);
3347 object_property_set_description(obj, "ic-mode",
3348 "Specifies the interrupt controller mode (xics, xive, dual)",
3349 NULL);
3350
3351 object_property_add_str(obj, "host-model",
3352 spapr_get_host_model, spapr_set_host_model,
3353 &error_abort);
3354 object_property_set_description(obj, "host-model",
3355 "Host model to advertise in guest device tree", &error_abort);
3356 object_property_add_str(obj, "host-serial",
3357 spapr_get_host_serial, spapr_set_host_serial,
3358 &error_abort);
3359 object_property_set_description(obj, "host-serial",
3360 "Host serial number to advertise in guest device tree", &error_abort);
3361 }
3362
3363 static void spapr_machine_finalizefn(Object *obj)
3364 {
3365 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3366
3367 g_free(spapr->kvm_type);
3368 }
3369
3370 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3371 {
3372 cpu_synchronize_state(cs);
3373 ppc_cpu_do_system_reset(cs);
3374 }
3375
3376 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3377 {
3378 CPUState *cs;
3379
3380 CPU_FOREACH(cs) {
3381 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3382 }
3383 }
3384
3385 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3386 void *fdt, int *fdt_start_offset, Error **errp)
3387 {
3388 uint64_t addr;
3389 uint32_t node;
3390
3391 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3392 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3393 &error_abort);
3394 *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr,
3395 SPAPR_MEMORY_BLOCK_SIZE);
3396 return 0;
3397 }
3398
3399 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3400 bool dedicated_hp_event_source, Error **errp)
3401 {
3402 SpaprDrc *drc;
3403 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3404 int i;
3405 uint64_t addr = addr_start;
3406 bool hotplugged = spapr_drc_hotplugged(dev);
3407 Error *local_err = NULL;
3408
3409 for (i = 0; i < nr_lmbs; i++) {
3410 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3411 addr / SPAPR_MEMORY_BLOCK_SIZE);
3412 g_assert(drc);
3413
3414 spapr_drc_attach(drc, dev, &local_err);
3415 if (local_err) {
3416 while (addr > addr_start) {
3417 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3418 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3419 addr / SPAPR_MEMORY_BLOCK_SIZE);
3420 spapr_drc_detach(drc);
3421 }
3422 error_propagate(errp, local_err);
3423 return;
3424 }
3425 if (!hotplugged) {
3426 spapr_drc_reset(drc);
3427 }
3428 addr += SPAPR_MEMORY_BLOCK_SIZE;
3429 }
3430 /* send hotplug notification to the
3431 * guest only in case of hotplugged memory
3432 */
3433 if (hotplugged) {
3434 if (dedicated_hp_event_source) {
3435 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3436 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3437 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3438 nr_lmbs,
3439 spapr_drc_index(drc));
3440 } else {
3441 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3442 nr_lmbs);
3443 }
3444 }
3445 }
3446
3447 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3448 Error **errp)
3449 {
3450 Error *local_err = NULL;
3451 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3452 PCDIMMDevice *dimm = PC_DIMM(dev);
3453 uint64_t size, addr;
3454
3455 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3456
3457 pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3458 if (local_err) {
3459 goto out;
3460 }
3461
3462 addr = object_property_get_uint(OBJECT(dimm),
3463 PC_DIMM_ADDR_PROP, &local_err);
3464 if (local_err) {
3465 goto out_unplug;
3466 }
3467
3468 spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3469 &local_err);
3470 if (local_err) {
3471 goto out_unplug;
3472 }
3473
3474 return;
3475
3476 out_unplug:
3477 pc_dimm_unplug(dimm, MACHINE(ms));
3478 out:
3479 error_propagate(errp, local_err);
3480 }
3481
3482 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3483 Error **errp)
3484 {
3485 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3486 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3487 PCDIMMDevice *dimm = PC_DIMM(dev);
3488 Error *local_err = NULL;
3489 uint64_t size;
3490 Object *memdev;
3491 hwaddr pagesize;
3492
3493 if (!smc->dr_lmb_enabled) {
3494 error_setg(errp, "Memory hotplug not supported for this machine");
3495 return;
3496 }
3497
3498 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3499 if (local_err) {
3500 error_propagate(errp, local_err);
3501 return;
3502 }
3503
3504 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3505 error_setg(errp, "Hotplugged memory size must be a multiple of "
3506 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3507 return;
3508 }
3509
3510 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3511 &error_abort);
3512 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3513 spapr_check_pagesize(spapr, pagesize, &local_err);
3514 if (local_err) {
3515 error_propagate(errp, local_err);
3516 return;
3517 }
3518
3519 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3520 }
3521
3522 struct SpaprDimmState {
3523 PCDIMMDevice *dimm;
3524 uint32_t nr_lmbs;
3525 QTAILQ_ENTRY(SpaprDimmState) next;
3526 };
3527
3528 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3529 PCDIMMDevice *dimm)
3530 {
3531 SpaprDimmState *dimm_state = NULL;
3532
3533 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3534 if (dimm_state->dimm == dimm) {
3535 break;
3536 }
3537 }
3538 return dimm_state;
3539 }
3540
3541 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3542 uint32_t nr_lmbs,
3543 PCDIMMDevice *dimm)
3544 {
3545 SpaprDimmState *ds = NULL;
3546
3547 /*
3548 * If this request is for a DIMM whose removal had failed earlier
3549 * (due to guest's refusal to remove the LMBs), we would have this
3550 * dimm already in the pending_dimm_unplugs list. In that
3551 * case don't add again.
3552 */
3553 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3554 if (!ds) {
3555 ds = g_malloc0(sizeof(SpaprDimmState));
3556 ds->nr_lmbs = nr_lmbs;
3557 ds->dimm = dimm;
3558 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3559 }
3560 return ds;
3561 }
3562
3563 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3564 SpaprDimmState *dimm_state)
3565 {
3566 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3567 g_free(dimm_state);
3568 }
3569
3570 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3571 PCDIMMDevice *dimm)
3572 {
3573 SpaprDrc *drc;
3574 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3575 &error_abort);
3576 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3577 uint32_t avail_lmbs = 0;
3578 uint64_t addr_start, addr;
3579 int i;
3580
3581 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3582 &error_abort);
3583
3584 addr = addr_start;
3585 for (i = 0; i < nr_lmbs; i++) {
3586 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3587 addr / SPAPR_MEMORY_BLOCK_SIZE);
3588 g_assert(drc);
3589 if (drc->dev) {
3590 avail_lmbs++;
3591 }
3592 addr += SPAPR_MEMORY_BLOCK_SIZE;
3593 }
3594
3595 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3596 }
3597
3598 /* Callback to be called during DRC release. */
3599 void spapr_lmb_release(DeviceState *dev)
3600 {
3601 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3602 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3603 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3604
3605 /* This information will get lost if a migration occurs
3606 * during the unplug process. In this case recover it. */
3607 if (ds == NULL) {
3608 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3609 g_assert(ds);
3610 /* The DRC being examined by the caller at least must be counted */
3611 g_assert(ds->nr_lmbs);
3612 }
3613
3614 if (--ds->nr_lmbs) {
3615 return;
3616 }
3617
3618 /*
3619 * Now that all the LMBs have been removed by the guest, call the
3620 * unplug handler chain. This can never fail.
3621 */
3622 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3623 object_unparent(OBJECT(dev));
3624 }
3625
3626 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3627 {
3628 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3629 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3630
3631 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3632 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3633 spapr_pending_dimm_unplugs_remove(spapr, ds);
3634 }
3635
3636 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3637 DeviceState *dev, Error **errp)
3638 {
3639 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3640 Error *local_err = NULL;
3641 PCDIMMDevice *dimm = PC_DIMM(dev);
3642 uint32_t nr_lmbs;
3643 uint64_t size, addr_start, addr;
3644 int i;
3645 SpaprDrc *drc;
3646
3647 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3648 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3649
3650 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3651 &local_err);
3652 if (local_err) {
3653 goto out;
3654 }
3655
3656 /*
3657 * An existing pending dimm state for this DIMM means that there is an
3658 * unplug operation in progress, waiting for the spapr_lmb_release
3659 * callback to complete the job (BQL can't cover that far). In this case,
3660 * bail out to avoid detaching DRCs that were already released.
3661 */
3662 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3663 error_setg(&local_err,
3664 "Memory unplug already in progress for device %s",
3665 dev->id);
3666 goto out;
3667 }
3668
3669 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3670
3671 addr = addr_start;
3672 for (i = 0; i < nr_lmbs; i++) {
3673 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3674 addr / SPAPR_MEMORY_BLOCK_SIZE);
3675 g_assert(drc);
3676
3677 spapr_drc_detach(drc);
3678 addr += SPAPR_MEMORY_BLOCK_SIZE;
3679 }
3680
3681 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3682 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3683 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3684 nr_lmbs, spapr_drc_index(drc));
3685 out:
3686 error_propagate(errp, local_err);
3687 }
3688
3689 /* Callback to be called during DRC release. */
3690 void spapr_core_release(DeviceState *dev)
3691 {
3692 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3693
3694 /* Call the unplug handler chain. This can never fail. */
3695 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3696 object_unparent(OBJECT(dev));
3697 }
3698
3699 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3700 {
3701 MachineState *ms = MACHINE(hotplug_dev);
3702 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3703 CPUCore *cc = CPU_CORE(dev);
3704 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3705
3706 if (smc->pre_2_10_has_unused_icps) {
3707 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3708 int i;
3709
3710 for (i = 0; i < cc->nr_threads; i++) {
3711 CPUState *cs = CPU(sc->threads[i]);
3712
3713 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3714 }
3715 }
3716
3717 assert(core_slot);
3718 core_slot->cpu = NULL;
3719 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3720 }
3721
3722 static
3723 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3724 Error **errp)
3725 {
3726 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3727 int index;
3728 SpaprDrc *drc;
3729 CPUCore *cc = CPU_CORE(dev);
3730
3731 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3732 error_setg(errp, "Unable to find CPU core with core-id: %d",
3733 cc->core_id);
3734 return;
3735 }
3736 if (index == 0) {
3737 error_setg(errp, "Boot CPU core may not be unplugged");
3738 return;
3739 }
3740
3741 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3742 spapr_vcpu_id(spapr, cc->core_id));
3743 g_assert(drc);
3744
3745 spapr_drc_detach(drc);
3746
3747 spapr_hotplug_req_remove_by_index(drc);
3748 }
3749
3750 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3751 void *fdt, int *fdt_start_offset, Error **errp)
3752 {
3753 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3754 CPUState *cs = CPU(core->threads[0]);
3755 PowerPCCPU *cpu = POWERPC_CPU(cs);
3756 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3757 int id = spapr_get_vcpu_id(cpu);
3758 char *nodename;
3759 int offset;
3760
3761 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3762 offset = fdt_add_subnode(fdt, 0, nodename);
3763 g_free(nodename);
3764
3765 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3766
3767 *fdt_start_offset = offset;
3768 return 0;
3769 }
3770
3771 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3772 Error **errp)
3773 {
3774 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3775 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3776 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3777 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3778 CPUCore *cc = CPU_CORE(dev);
3779 CPUState *cs;
3780 SpaprDrc *drc;
3781 Error *local_err = NULL;
3782 CPUArchId *core_slot;
3783 int index;
3784 bool hotplugged = spapr_drc_hotplugged(dev);
3785 int i;
3786
3787 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3788 if (!core_slot) {
3789 error_setg(errp, "Unable to find CPU core with core-id: %d",
3790 cc->core_id);
3791 return;
3792 }
3793 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3794 spapr_vcpu_id(spapr, cc->core_id));
3795
3796 g_assert(drc || !mc->has_hotpluggable_cpus);
3797
3798 if (drc) {
3799 spapr_drc_attach(drc, dev, &local_err);
3800 if (local_err) {
3801 error_propagate(errp, local_err);
3802 return;
3803 }
3804
3805 if (hotplugged) {
3806 /*
3807 * Send hotplug notification interrupt to the guest only
3808 * in case of hotplugged CPUs.
3809 */
3810 spapr_hotplug_req_add_by_index(drc);
3811 } else {
3812 spapr_drc_reset(drc);
3813 }
3814 }
3815
3816 core_slot->cpu = OBJECT(dev);
3817
3818 if (smc->pre_2_10_has_unused_icps) {
3819 for (i = 0; i < cc->nr_threads; i++) {
3820 cs = CPU(core->threads[i]);
3821 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3822 }
3823 }
3824
3825 /*
3826 * Set compatibility mode to match the boot CPU, which was either set
3827 * by the machine reset code or by CAS.
3828 */
3829 if (hotplugged) {
3830 for (i = 0; i < cc->nr_threads; i++) {
3831 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3832 &local_err);
3833 if (local_err) {
3834 error_propagate(errp, local_err);
3835 return;
3836 }
3837 }
3838 }
3839 }
3840
3841 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3842 Error **errp)
3843 {
3844 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3845 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3846 Error *local_err = NULL;
3847 CPUCore *cc = CPU_CORE(dev);
3848 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3849 const char *type = object_get_typename(OBJECT(dev));
3850 CPUArchId *core_slot;
3851 int index;
3852 unsigned int smp_threads = machine->smp.threads;
3853
3854 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3855 error_setg(&local_err, "CPU hotplug not supported for this machine");
3856 goto out;
3857 }
3858
3859 if (strcmp(base_core_type, type)) {
3860 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3861 goto out;
3862 }
3863
3864 if (cc->core_id % smp_threads) {
3865 error_setg(&local_err, "invalid core id %d", cc->core_id);
3866 goto out;
3867 }
3868
3869 /*
3870 * In general we should have homogeneous threads-per-core, but old
3871 * (pre hotplug support) machine types allow the last core to have
3872 * reduced threads as a compatibility hack for when we allowed
3873 * total vcpus not a multiple of threads-per-core.
3874 */
3875 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3876 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3877 cc->nr_threads, smp_threads);
3878 goto out;
3879 }
3880
3881 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3882 if (!core_slot) {
3883 error_setg(&local_err, "core id %d out of range", cc->core_id);
3884 goto out;
3885 }
3886
3887 if (core_slot->cpu) {
3888 error_setg(&local_err, "core %d already populated", cc->core_id);
3889 goto out;
3890 }
3891
3892 numa_cpu_pre_plug(core_slot, dev, &local_err);
3893
3894 out:
3895 error_propagate(errp, local_err);
3896 }
3897
3898 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3899 void *fdt, int *fdt_start_offset, Error **errp)
3900 {
3901 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3902 int intc_phandle;
3903
3904 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3905 if (intc_phandle <= 0) {
3906 return -1;
3907 }
3908
3909 if (spapr_dt_phb(sphb, intc_phandle, fdt, spapr->irq->nr_msis,
3910 fdt_start_offset)) {
3911 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3912 return -1;
3913 }
3914
3915 /* generally SLOF creates these, for hotplug it's up to QEMU */
3916 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3917
3918 return 0;
3919 }
3920
3921 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3922 Error **errp)
3923 {
3924 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3925 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3926 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3927 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3928
3929 if (dev->hotplugged && !smc->dr_phb_enabled) {
3930 error_setg(errp, "PHB hotplug not supported for this machine");
3931 return;
3932 }
3933
3934 if (sphb->index == (uint32_t)-1) {
3935 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3936 return;
3937 }
3938
3939 /*
3940 * This will check that sphb->index doesn't exceed the maximum number of
3941 * PHBs for the current machine type.
3942 */
3943 smc->phb_placement(spapr, sphb->index,
3944 &sphb->buid, &sphb->io_win_addr,
3945 &sphb->mem_win_addr, &sphb->mem64_win_addr,
3946 windows_supported, sphb->dma_liobn,
3947 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3948 errp);
3949 }
3950
3951 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3952 Error **errp)
3953 {
3954 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3955 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3956 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3957 SpaprDrc *drc;
3958 bool hotplugged = spapr_drc_hotplugged(dev);
3959 Error *local_err = NULL;
3960
3961 if (!smc->dr_phb_enabled) {
3962 return;
3963 }
3964
3965 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3966 /* hotplug hooks should check it's enabled before getting this far */
3967 assert(drc);
3968
3969 spapr_drc_attach(drc, DEVICE(dev), &local_err);
3970 if (local_err) {
3971 error_propagate(errp, local_err);
3972 return;
3973 }
3974
3975 if (hotplugged) {
3976 spapr_hotplug_req_add_by_index(drc);
3977 } else {
3978 spapr_drc_reset(drc);
3979 }
3980 }
3981
3982 void spapr_phb_release(DeviceState *dev)
3983 {
3984 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3985
3986 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3987 object_unparent(OBJECT(dev));
3988 }
3989
3990 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3991 {
3992 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3993 }
3994
3995 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
3996 DeviceState *dev, Error **errp)
3997 {
3998 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3999 SpaprDrc *drc;
4000
4001 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4002 assert(drc);
4003
4004 if (!spapr_drc_unplug_requested(drc)) {
4005 spapr_drc_detach(drc);
4006 spapr_hotplug_req_remove_by_index(drc);
4007 }
4008 }
4009
4010 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4011 Error **errp)
4012 {
4013 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4014 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4015
4016 if (spapr->tpm_proxy != NULL) {
4017 error_setg(errp, "Only one TPM proxy can be specified for this machine");
4018 return;
4019 }
4020
4021 spapr->tpm_proxy = tpm_proxy;
4022 }
4023
4024 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4025 {
4026 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4027
4028 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4029 object_unparent(OBJECT(dev));
4030 spapr->tpm_proxy = NULL;
4031 }
4032
4033 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4034 DeviceState *dev, Error **errp)
4035 {
4036 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4037 spapr_memory_plug(hotplug_dev, dev, errp);
4038 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4039 spapr_core_plug(hotplug_dev, dev, errp);
4040 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4041 spapr_phb_plug(hotplug_dev, dev, errp);
4042 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4043 spapr_tpm_proxy_plug(hotplug_dev, dev, errp);
4044 }
4045 }
4046
4047 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4048 DeviceState *dev, Error **errp)
4049 {
4050 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4051 spapr_memory_unplug(hotplug_dev, dev);
4052 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4053 spapr_core_unplug(hotplug_dev, dev);
4054 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4055 spapr_phb_unplug(hotplug_dev, dev);
4056 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4057 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4058 }
4059 }
4060
4061 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4062 DeviceState *dev, Error **errp)
4063 {
4064 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4065 MachineClass *mc = MACHINE_GET_CLASS(sms);
4066 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4067
4068 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4069 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4070 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4071 } else {
4072 /* NOTE: this means there is a window after guest reset, prior to
4073 * CAS negotiation, where unplug requests will fail due to the
4074 * capability not being detected yet. This is a bit different than
4075 * the case with PCI unplug, where the events will be queued and
4076 * eventually handled by the guest after boot
4077 */
4078 error_setg(errp, "Memory hot unplug not supported for this guest");
4079 }
4080 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4081 if (!mc->has_hotpluggable_cpus) {
4082 error_setg(errp, "CPU hot unplug not supported on this machine");
4083 return;
4084 }
4085 spapr_core_unplug_request(hotplug_dev, dev, errp);
4086 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4087 if (!smc->dr_phb_enabled) {
4088 error_setg(errp, "PHB hot unplug not supported on this machine");
4089 return;
4090 }
4091 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4092 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4093 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4094 }
4095 }
4096
4097 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4098 DeviceState *dev, Error **errp)
4099 {
4100 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4101 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4102 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4103 spapr_core_pre_plug(hotplug_dev, dev, errp);
4104 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4105 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4106 }
4107 }
4108
4109 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4110 DeviceState *dev)
4111 {
4112 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4113 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4114 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4115 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4116 return HOTPLUG_HANDLER(machine);
4117 }
4118 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4119 PCIDevice *pcidev = PCI_DEVICE(dev);
4120 PCIBus *root = pci_device_root_bus(pcidev);
4121 SpaprPhbState *phb =
4122 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4123 TYPE_SPAPR_PCI_HOST_BRIDGE);
4124
4125 if (phb) {
4126 return HOTPLUG_HANDLER(phb);
4127 }
4128 }
4129 return NULL;
4130 }
4131
4132 static CpuInstanceProperties
4133 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4134 {
4135 CPUArchId *core_slot;
4136 MachineClass *mc = MACHINE_GET_CLASS(machine);
4137
4138 /* make sure possible_cpu are intialized */
4139 mc->possible_cpu_arch_ids(machine);
4140 /* get CPU core slot containing thread that matches cpu_index */
4141 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4142 assert(core_slot);
4143 return core_slot->props;
4144 }
4145
4146 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4147 {
4148 return idx / ms->smp.cores % ms->numa_state->num_nodes;
4149 }
4150
4151 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4152 {
4153 int i;
4154 unsigned int smp_threads = machine->smp.threads;
4155 unsigned int smp_cpus = machine->smp.cpus;
4156 const char *core_type;
4157 int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4158 MachineClass *mc = MACHINE_GET_CLASS(machine);
4159
4160 if (!mc->has_hotpluggable_cpus) {
4161 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4162 }
4163 if (machine->possible_cpus) {
4164 assert(machine->possible_cpus->len == spapr_max_cores);
4165 return machine->possible_cpus;
4166 }
4167
4168 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4169 if (!core_type) {
4170 error_report("Unable to find sPAPR CPU Core definition");
4171 exit(1);
4172 }
4173
4174 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4175 sizeof(CPUArchId) * spapr_max_cores);
4176 machine->possible_cpus->len = spapr_max_cores;
4177 for (i = 0; i < machine->possible_cpus->len; i++) {
4178 int core_id = i * smp_threads;
4179
4180 machine->possible_cpus->cpus[i].type = core_type;
4181 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4182 machine->possible_cpus->cpus[i].arch_id = core_id;
4183 machine->possible_cpus->cpus[i].props.has_core_id = true;
4184 machine->possible_cpus->cpus[i].props.core_id = core_id;
4185 }
4186 return machine->possible_cpus;
4187 }
4188
4189 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4190 uint64_t *buid, hwaddr *pio,
4191 hwaddr *mmio32, hwaddr *mmio64,
4192 unsigned n_dma, uint32_t *liobns,
4193 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4194 {
4195 /*
4196 * New-style PHB window placement.
4197 *
4198 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4199 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4200 * windows.
4201 *
4202 * Some guest kernels can't work with MMIO windows above 1<<46
4203 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4204 *
4205 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4206 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4207 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4208 * 1TiB 64-bit MMIO windows for each PHB.
4209 */
4210 const uint64_t base_buid = 0x800000020000000ULL;
4211 int i;
4212
4213 /* Sanity check natural alignments */
4214 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4215 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4216 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4217 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4218 /* Sanity check bounds */
4219 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4220 SPAPR_PCI_MEM32_WIN_SIZE);
4221 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4222 SPAPR_PCI_MEM64_WIN_SIZE);
4223
4224 if (index >= SPAPR_MAX_PHBS) {
4225 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4226 SPAPR_MAX_PHBS - 1);
4227 return;
4228 }
4229
4230 *buid = base_buid + index;
4231 for (i = 0; i < n_dma; ++i) {
4232 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4233 }
4234
4235 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4236 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4237 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4238
4239 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4240 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4241 }
4242
4243 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4244 {
4245 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4246
4247 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4248 }
4249
4250 static void spapr_ics_resend(XICSFabric *dev)
4251 {
4252 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4253
4254 ics_resend(spapr->ics);
4255 }
4256
4257 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4258 {
4259 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4260
4261 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4262 }
4263
4264 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4265 Monitor *mon)
4266 {
4267 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4268
4269 spapr_irq_print_info(spapr, mon);
4270 monitor_printf(mon, "irqchip: %s\n",
4271 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4272 }
4273
4274 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4275 {
4276 return cpu->vcpu_id;
4277 }
4278
4279 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4280 {
4281 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4282 MachineState *ms = MACHINE(spapr);
4283 int vcpu_id;
4284
4285 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4286
4287 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4288 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4289 error_append_hint(errp, "Adjust the number of cpus to %d "
4290 "or try to raise the number of threads per core\n",
4291 vcpu_id * ms->smp.threads / spapr->vsmt);
4292 return;
4293 }
4294
4295 cpu->vcpu_id = vcpu_id;
4296 }
4297
4298 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4299 {
4300 CPUState *cs;
4301
4302 CPU_FOREACH(cs) {
4303 PowerPCCPU *cpu = POWERPC_CPU(cs);
4304
4305 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4306 return cpu;
4307 }
4308 }
4309
4310 return NULL;
4311 }
4312
4313 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4314 {
4315 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4316
4317 /* These are only called by TCG, KVM maintains dispatch state */
4318
4319 spapr_cpu->prod = false;
4320 if (spapr_cpu->vpa_addr) {
4321 CPUState *cs = CPU(cpu);
4322 uint32_t dispatch;
4323
4324 dispatch = ldl_be_phys(cs->as,
4325 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4326 dispatch++;
4327 if ((dispatch & 1) != 0) {
4328 qemu_log_mask(LOG_GUEST_ERROR,
4329 "VPA: incorrect dispatch counter value for "
4330 "dispatched partition %u, correcting.\n", dispatch);
4331 dispatch++;
4332 }
4333 stl_be_phys(cs->as,
4334 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4335 }
4336 }
4337
4338 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4339 {
4340 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4341
4342 if (spapr_cpu->vpa_addr) {
4343 CPUState *cs = CPU(cpu);
4344 uint32_t dispatch;
4345
4346 dispatch = ldl_be_phys(cs->as,
4347 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4348 dispatch++;
4349 if ((dispatch & 1) != 1) {
4350 qemu_log_mask(LOG_GUEST_ERROR,
4351 "VPA: incorrect dispatch counter value for "
4352 "preempted partition %u, correcting.\n", dispatch);
4353 dispatch++;
4354 }
4355 stl_be_phys(cs->as,
4356 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4357 }
4358 }
4359
4360 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4361 {
4362 MachineClass *mc = MACHINE_CLASS(oc);
4363 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4364 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4365 NMIClass *nc = NMI_CLASS(oc);
4366 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4367 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4368 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4369 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4370
4371 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4372 mc->ignore_boot_device_suffixes = true;
4373
4374 /*
4375 * We set up the default / latest behaviour here. The class_init
4376 * functions for the specific versioned machine types can override
4377 * these details for backwards compatibility
4378 */
4379 mc->init = spapr_machine_init;
4380 mc->reset = spapr_machine_reset;
4381 mc->block_default_type = IF_SCSI;
4382 mc->max_cpus = 1024;
4383 mc->no_parallel = 1;
4384 mc->default_boot_order = "";
4385 mc->default_ram_size = 512 * MiB;
4386 mc->default_display = "std";
4387 mc->kvm_type = spapr_kvm_type;
4388 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4389 mc->pci_allow_0_address = true;
4390 assert(!mc->get_hotplug_handler);
4391 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4392 hc->pre_plug = spapr_machine_device_pre_plug;
4393 hc->plug = spapr_machine_device_plug;
4394 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4395 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4396 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4397 hc->unplug_request = spapr_machine_device_unplug_request;
4398 hc->unplug = spapr_machine_device_unplug;
4399
4400 smc->dr_lmb_enabled = true;
4401 smc->update_dt_enabled = true;
4402 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4403 mc->has_hotpluggable_cpus = true;
4404 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4405 fwc->get_dev_path = spapr_get_fw_dev_path;
4406 nc->nmi_monitor_handler = spapr_nmi;
4407 smc->phb_placement = spapr_phb_placement;
4408 vhc->hypercall = emulate_spapr_hypercall;
4409 vhc->hpt_mask = spapr_hpt_mask;
4410 vhc->map_hptes = spapr_map_hptes;
4411 vhc->unmap_hptes = spapr_unmap_hptes;
4412 vhc->hpte_set_c = spapr_hpte_set_c;
4413 vhc->hpte_set_r = spapr_hpte_set_r;
4414 vhc->get_pate = spapr_get_pate;
4415 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4416 vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4417 vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4418 xic->ics_get = spapr_ics_get;
4419 xic->ics_resend = spapr_ics_resend;
4420 xic->icp_get = spapr_icp_get;
4421 ispc->print_info = spapr_pic_print_info;
4422 /* Force NUMA node memory size to be a multiple of
4423 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4424 * in which LMBs are represented and hot-added
4425 */
4426 mc->numa_mem_align_shift = 28;
4427 mc->numa_mem_supported = true;
4428 mc->auto_enable_numa = true;
4429
4430 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4431 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4432 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4433 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4434 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4435 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4436 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4437 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4438 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4439 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4440 spapr_caps_add_properties(smc, &error_abort);
4441 smc->irq = &spapr_irq_dual;
4442 smc->dr_phb_enabled = true;
4443 smc->linux_pci_probe = true;
4444 smc->smp_threads_vsmt = true;
4445 }
4446
4447 static const TypeInfo spapr_machine_info = {
4448 .name = TYPE_SPAPR_MACHINE,
4449 .parent = TYPE_MACHINE,
4450 .abstract = true,
4451 .instance_size = sizeof(SpaprMachineState),
4452 .instance_init = spapr_instance_init,
4453 .instance_finalize = spapr_machine_finalizefn,
4454 .class_size = sizeof(SpaprMachineClass),
4455 .class_init = spapr_machine_class_init,
4456 .interfaces = (InterfaceInfo[]) {
4457 { TYPE_FW_PATH_PROVIDER },
4458 { TYPE_NMI },
4459 { TYPE_HOTPLUG_HANDLER },
4460 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4461 { TYPE_XICS_FABRIC },
4462 { TYPE_INTERRUPT_STATS_PROVIDER },
4463 { }
4464 },
4465 };
4466
4467 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4468 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4469 void *data) \
4470 { \
4471 MachineClass *mc = MACHINE_CLASS(oc); \
4472 spapr_machine_##suffix##_class_options(mc); \
4473 if (latest) { \
4474 mc->alias = "pseries"; \
4475 mc->is_default = 1; \
4476 } \
4477 } \
4478 static const TypeInfo spapr_machine_##suffix##_info = { \
4479 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4480 .parent = TYPE_SPAPR_MACHINE, \
4481 .class_init = spapr_machine_##suffix##_class_init, \
4482 }; \
4483 static void spapr_machine_register_##suffix(void) \
4484 { \
4485 type_register(&spapr_machine_##suffix##_info); \
4486 } \
4487 type_init(spapr_machine_register_##suffix)
4488
4489 /*
4490 * pseries-4.2
4491 */
4492 static void spapr_machine_4_2_class_options(MachineClass *mc)
4493 {
4494 /* Defaults for the latest behaviour inherited from the base class */
4495 }
4496
4497 DEFINE_SPAPR_MACHINE(4_2, "4.2", true);
4498
4499 /*
4500 * pseries-4.1
4501 */
4502 static void spapr_machine_4_1_class_options(MachineClass *mc)
4503 {
4504 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4505 static GlobalProperty compat[] = {
4506 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4507 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4508 };
4509
4510 spapr_machine_4_2_class_options(mc);
4511 smc->linux_pci_probe = false;
4512 smc->smp_threads_vsmt = false;
4513 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4514 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4515 }
4516
4517 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4518
4519 /*
4520 * pseries-4.0
4521 */
4522 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4523 uint64_t *buid, hwaddr *pio,
4524 hwaddr *mmio32, hwaddr *mmio64,
4525 unsigned n_dma, uint32_t *liobns,
4526 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4527 {
4528 spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4529 nv2gpa, nv2atsd, errp);
4530 *nv2gpa = 0;
4531 *nv2atsd = 0;
4532 }
4533
4534 static void spapr_machine_4_0_class_options(MachineClass *mc)
4535 {
4536 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4537
4538 spapr_machine_4_1_class_options(mc);
4539 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4540 smc->phb_placement = phb_placement_4_0;
4541 smc->irq = &spapr_irq_xics;
4542 smc->pre_4_1_migration = true;
4543 }
4544
4545 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4546
4547 /*
4548 * pseries-3.1
4549 */
4550 static void spapr_machine_3_1_class_options(MachineClass *mc)
4551 {
4552 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4553
4554 spapr_machine_4_0_class_options(mc);
4555 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4556
4557 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4558 smc->update_dt_enabled = false;
4559 smc->dr_phb_enabled = false;
4560 smc->broken_host_serial_model = true;
4561 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4562 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4563 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4564 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4565 }
4566
4567 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4568
4569 /*
4570 * pseries-3.0
4571 */
4572
4573 static void spapr_machine_3_0_class_options(MachineClass *mc)
4574 {
4575 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4576
4577 spapr_machine_3_1_class_options(mc);
4578 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4579
4580 smc->legacy_irq_allocation = true;
4581 smc->irq = &spapr_irq_xics_legacy;
4582 }
4583
4584 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4585
4586 /*
4587 * pseries-2.12
4588 */
4589 static void spapr_machine_2_12_class_options(MachineClass *mc)
4590 {
4591 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4592 static GlobalProperty compat[] = {
4593 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4594 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4595 };
4596
4597 spapr_machine_3_0_class_options(mc);
4598 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4599 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4600
4601 /* We depend on kvm_enabled() to choose a default value for the
4602 * hpt-max-page-size capability. Of course we can't do it here
4603 * because this is too early and the HW accelerator isn't initialzed
4604 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4605 */
4606 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4607 }
4608
4609 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4610
4611 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4612 {
4613 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4614
4615 spapr_machine_2_12_class_options(mc);
4616 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4617 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4618 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4619 }
4620
4621 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4622
4623 /*
4624 * pseries-2.11
4625 */
4626
4627 static void spapr_machine_2_11_class_options(MachineClass *mc)
4628 {
4629 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4630
4631 spapr_machine_2_12_class_options(mc);
4632 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4633 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4634 }
4635
4636 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4637
4638 /*
4639 * pseries-2.10
4640 */
4641
4642 static void spapr_machine_2_10_class_options(MachineClass *mc)
4643 {
4644 spapr_machine_2_11_class_options(mc);
4645 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4646 }
4647
4648 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4649
4650 /*
4651 * pseries-2.9
4652 */
4653
4654 static void spapr_machine_2_9_class_options(MachineClass *mc)
4655 {
4656 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4657 static GlobalProperty compat[] = {
4658 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4659 };
4660
4661 spapr_machine_2_10_class_options(mc);
4662 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4663 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4664 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4665 smc->pre_2_10_has_unused_icps = true;
4666 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4667 }
4668
4669 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4670
4671 /*
4672 * pseries-2.8
4673 */
4674
4675 static void spapr_machine_2_8_class_options(MachineClass *mc)
4676 {
4677 static GlobalProperty compat[] = {
4678 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4679 };
4680
4681 spapr_machine_2_9_class_options(mc);
4682 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4683 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4684 mc->numa_mem_align_shift = 23;
4685 }
4686
4687 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4688
4689 /*
4690 * pseries-2.7
4691 */
4692
4693 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4694 uint64_t *buid, hwaddr *pio,
4695 hwaddr *mmio32, hwaddr *mmio64,
4696 unsigned n_dma, uint32_t *liobns,
4697 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4698 {
4699 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4700 const uint64_t base_buid = 0x800000020000000ULL;
4701 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4702 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4703 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4704 const uint32_t max_index = 255;
4705 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4706
4707 uint64_t ram_top = MACHINE(spapr)->ram_size;
4708 hwaddr phb0_base, phb_base;
4709 int i;
4710
4711 /* Do we have device memory? */
4712 if (MACHINE(spapr)->maxram_size > ram_top) {
4713 /* Can't just use maxram_size, because there may be an
4714 * alignment gap between normal and device memory regions
4715 */
4716 ram_top = MACHINE(spapr)->device_memory->base +
4717 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4718 }
4719
4720 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4721
4722 if (index > max_index) {
4723 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4724 max_index);
4725 return;
4726 }
4727
4728 *buid = base_buid + index;
4729 for (i = 0; i < n_dma; ++i) {
4730 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4731 }
4732
4733 phb_base = phb0_base + index * phb_spacing;
4734 *pio = phb_base + pio_offset;
4735 *mmio32 = phb_base + mmio_offset;
4736 /*
4737 * We don't set the 64-bit MMIO window, relying on the PHB's
4738 * fallback behaviour of automatically splitting a large "32-bit"
4739 * window into contiguous 32-bit and 64-bit windows
4740 */
4741
4742 *nv2gpa = 0;
4743 *nv2atsd = 0;
4744 }
4745
4746 static void spapr_machine_2_7_class_options(MachineClass *mc)
4747 {
4748 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4749 static GlobalProperty compat[] = {
4750 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4751 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4752 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4753 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4754 };
4755
4756 spapr_machine_2_8_class_options(mc);
4757 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4758 mc->default_machine_opts = "modern-hotplug-events=off";
4759 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4760 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4761 smc->phb_placement = phb_placement_2_7;
4762 }
4763
4764 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4765
4766 /*
4767 * pseries-2.6
4768 */
4769
4770 static void spapr_machine_2_6_class_options(MachineClass *mc)
4771 {
4772 static GlobalProperty compat[] = {
4773 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4774 };
4775
4776 spapr_machine_2_7_class_options(mc);
4777 mc->has_hotpluggable_cpus = false;
4778 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4779 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4780 }
4781
4782 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4783
4784 /*
4785 * pseries-2.5
4786 */
4787
4788 static void spapr_machine_2_5_class_options(MachineClass *mc)
4789 {
4790 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4791 static GlobalProperty compat[] = {
4792 { "spapr-vlan", "use-rx-buffer-pools", "off" },
4793 };
4794
4795 spapr_machine_2_6_class_options(mc);
4796 smc->use_ohci_by_default = true;
4797 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4798 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4799 }
4800
4801 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4802
4803 /*
4804 * pseries-2.4
4805 */
4806
4807 static void spapr_machine_2_4_class_options(MachineClass *mc)
4808 {
4809 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4810
4811 spapr_machine_2_5_class_options(mc);
4812 smc->dr_lmb_enabled = false;
4813 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4814 }
4815
4816 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4817
4818 /*
4819 * pseries-2.3
4820 */
4821
4822 static void spapr_machine_2_3_class_options(MachineClass *mc)
4823 {
4824 static GlobalProperty compat[] = {
4825 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4826 };
4827 spapr_machine_2_4_class_options(mc);
4828 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4829 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4830 }
4831 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4832
4833 /*
4834 * pseries-2.2
4835 */
4836
4837 static void spapr_machine_2_2_class_options(MachineClass *mc)
4838 {
4839 static GlobalProperty compat[] = {
4840 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4841 };
4842
4843 spapr_machine_2_3_class_options(mc);
4844 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4845 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4846 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4847 }
4848 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4849
4850 /*
4851 * pseries-2.1
4852 */
4853
4854 static void spapr_machine_2_1_class_options(MachineClass *mc)
4855 {
4856 spapr_machine_2_2_class_options(mc);
4857 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4858 }
4859 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4860
4861 static void spapr_machine_register_types(void)
4862 {
4863 type_register_static(&spapr_machine_info);
4864 }
4865
4866 type_init(spapr_machine_register_types)