]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr.c
Merge tag 'block-pull-request' of https://gitlab.com/stefanha/qemu into staging
[mirror_qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 */
26
27 #include "qemu/osdep.h"
28 #include "qemu/datadir.h"
29 #include "qemu/memalign.h"
30 #include "qemu/guest-random.h"
31 #include "qapi/error.h"
32 #include "qapi/qapi-events-machine.h"
33 #include "qapi/qapi-events-qdev.h"
34 #include "qapi/visitor.h"
35 #include "sysemu/sysemu.h"
36 #include "sysemu/hostmem.h"
37 #include "sysemu/numa.h"
38 #include "sysemu/qtest.h"
39 #include "sysemu/reset.h"
40 #include "sysemu/runstate.h"
41 #include "qemu/log.h"
42 #include "hw/fw-path-provider.h"
43 #include "elf.h"
44 #include "net/net.h"
45 #include "sysemu/device_tree.h"
46 #include "sysemu/cpus.h"
47 #include "sysemu/hw_accel.h"
48 #include "kvm_ppc.h"
49 #include "migration/misc.h"
50 #include "migration/qemu-file-types.h"
51 #include "migration/global_state.h"
52 #include "migration/register.h"
53 #include "migration/blocker.h"
54 #include "mmu-hash64.h"
55 #include "mmu-book3s-v3.h"
56 #include "cpu-models.h"
57 #include "hw/core/cpu.h"
58
59 #include "hw/ppc/ppc.h"
60 #include "hw/loader.h"
61
62 #include "hw/ppc/fdt.h"
63 #include "hw/ppc/spapr.h"
64 #include "hw/ppc/spapr_nested.h"
65 #include "hw/ppc/spapr_vio.h"
66 #include "hw/ppc/vof.h"
67 #include "hw/qdev-properties.h"
68 #include "hw/pci-host/spapr.h"
69 #include "hw/pci/msi.h"
70
71 #include "hw/pci/pci.h"
72 #include "hw/scsi/scsi.h"
73 #include "hw/virtio/virtio-scsi.h"
74 #include "hw/virtio/vhost-scsi-common.h"
75
76 #include "exec/ram_addr.h"
77 #include "hw/usb.h"
78 #include "qemu/config-file.h"
79 #include "qemu/error-report.h"
80 #include "trace.h"
81 #include "hw/nmi.h"
82 #include "hw/intc/intc.h"
83
84 #include "hw/ppc/spapr_cpu_core.h"
85 #include "hw/mem/memory-device.h"
86 #include "hw/ppc/spapr_tpm_proxy.h"
87 #include "hw/ppc/spapr_nvdimm.h"
88 #include "hw/ppc/spapr_numa.h"
89 #include "hw/ppc/pef.h"
90
91 #include "monitor/monitor.h"
92
93 #include <libfdt.h>
94
95 /* SLOF memory layout:
96 *
97 * SLOF raw image loaded at 0, copies its romfs right below the flat
98 * device-tree, then position SLOF itself 31M below that
99 *
100 * So we set FW_OVERHEAD to 40MB which should account for all of that
101 * and more
102 *
103 * We load our kernel at 4M, leaving space for SLOF initial image
104 */
105 #define FDT_MAX_ADDR 0x80000000 /* FDT must stay below that */
106 #define FW_MAX_SIZE 0x400000
107 #define FW_FILE_NAME "slof.bin"
108 #define FW_FILE_NAME_VOF "vof.bin"
109 #define FW_OVERHEAD 0x2800000
110 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
111
112 #define MIN_RMA_SLOF (128 * MiB)
113
114 #define PHANDLE_INTC 0x00001111
115
116 /* These two functions implement the VCPU id numbering: one to compute them
117 * all and one to identify thread 0 of a VCORE. Any change to the first one
118 * is likely to have an impact on the second one, so let's keep them close.
119 */
120 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
121 {
122 MachineState *ms = MACHINE(spapr);
123 unsigned int smp_threads = ms->smp.threads;
124
125 assert(spapr->vsmt);
126 return
127 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
128 }
129 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
130 PowerPCCPU *cpu)
131 {
132 assert(spapr->vsmt);
133 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
134 }
135
136 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
137 {
138 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
139 * and newer QEMUs don't even have them. In both cases, we don't want
140 * to send anything on the wire.
141 */
142 return false;
143 }
144
145 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
146 .name = "icp/server",
147 .version_id = 1,
148 .minimum_version_id = 1,
149 .needed = pre_2_10_vmstate_dummy_icp_needed,
150 .fields = (VMStateField[]) {
151 VMSTATE_UNUSED(4), /* uint32_t xirr */
152 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
153 VMSTATE_UNUSED(1), /* uint8_t mfrr */
154 VMSTATE_END_OF_LIST()
155 },
156 };
157
158 static void pre_2_10_vmstate_register_dummy_icp(int i)
159 {
160 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
161 (void *)(uintptr_t) i);
162 }
163
164 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
165 {
166 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
167 (void *)(uintptr_t) i);
168 }
169
170 int spapr_max_server_number(SpaprMachineState *spapr)
171 {
172 MachineState *ms = MACHINE(spapr);
173
174 assert(spapr->vsmt);
175 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
176 }
177
178 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
179 int smt_threads)
180 {
181 int i, ret = 0;
182 g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads);
183 g_autofree uint32_t *gservers_prop = g_new(uint32_t, smt_threads * 2);
184 int index = spapr_get_vcpu_id(cpu);
185
186 if (cpu->compat_pvr) {
187 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
188 if (ret < 0) {
189 return ret;
190 }
191 }
192
193 /* Build interrupt servers and gservers properties */
194 for (i = 0; i < smt_threads; i++) {
195 servers_prop[i] = cpu_to_be32(index + i);
196 /* Hack, direct the group queues back to cpu 0 */
197 gservers_prop[i*2] = cpu_to_be32(index + i);
198 gservers_prop[i*2 + 1] = 0;
199 }
200 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
201 servers_prop, sizeof(*servers_prop) * smt_threads);
202 if (ret < 0) {
203 return ret;
204 }
205 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
206 gservers_prop, sizeof(*gservers_prop) * smt_threads * 2);
207
208 return ret;
209 }
210
211 static void spapr_dt_pa_features(SpaprMachineState *spapr,
212 PowerPCCPU *cpu,
213 void *fdt, int offset)
214 {
215 uint8_t pa_features_206[] = { 6, 0,
216 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
217 uint8_t pa_features_207[] = { 24, 0,
218 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
219 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
220 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
221 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
222 uint8_t pa_features_300[] = { 66, 0,
223 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
224 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
225 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
226 /* 6: DS207 */
227 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
228 /* 16: Vector */
229 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
230 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
231 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
232 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
233 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
234 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
235 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
236 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
238 /* 42: PM, 44: PC RA, 46: SC vec'd */
239 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
240 /* 48: SIMD, 50: QP BFP, 52: String */
241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
242 /* 54: DecFP, 56: DecI, 58: SHA */
243 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
244 /* 60: NM atomic, 62: RNG */
245 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
246 };
247 uint8_t *pa_features = NULL;
248 size_t pa_size;
249
250 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
251 pa_features = pa_features_206;
252 pa_size = sizeof(pa_features_206);
253 }
254 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
255 pa_features = pa_features_207;
256 pa_size = sizeof(pa_features_207);
257 }
258 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
259 pa_features = pa_features_300;
260 pa_size = sizeof(pa_features_300);
261 }
262 if (!pa_features) {
263 return;
264 }
265
266 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
267 /*
268 * Note: we keep CI large pages off by default because a 64K capable
269 * guest provisioned with large pages might otherwise try to map a qemu
270 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
271 * even if that qemu runs on a 4k host.
272 * We dd this bit back here if we are confident this is not an issue
273 */
274 pa_features[3] |= 0x20;
275 }
276 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
277 pa_features[24] |= 0x80; /* Transactional memory support */
278 }
279 if (spapr->cas_pre_isa3_guest && pa_size > 40) {
280 /* Workaround for broken kernels that attempt (guest) radix
281 * mode when they can't handle it, if they see the radix bit set
282 * in pa-features. So hide it from them. */
283 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
284 }
285
286 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
287 }
288
289 static hwaddr spapr_node0_size(MachineState *machine)
290 {
291 if (machine->numa_state->num_nodes) {
292 int i;
293 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
294 if (machine->numa_state->nodes[i].node_mem) {
295 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
296 machine->ram_size);
297 }
298 }
299 }
300 return machine->ram_size;
301 }
302
303 static void add_str(GString *s, const gchar *s1)
304 {
305 g_string_append_len(s, s1, strlen(s1) + 1);
306 }
307
308 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
309 hwaddr start, hwaddr size)
310 {
311 char mem_name[32];
312 uint64_t mem_reg_property[2];
313 int off;
314
315 mem_reg_property[0] = cpu_to_be64(start);
316 mem_reg_property[1] = cpu_to_be64(size);
317
318 sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
319 off = fdt_add_subnode(fdt, 0, mem_name);
320 _FDT(off);
321 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
322 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
323 sizeof(mem_reg_property))));
324 spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
325 return off;
326 }
327
328 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
329 {
330 MemoryDeviceInfoList *info;
331
332 for (info = list; info; info = info->next) {
333 MemoryDeviceInfo *value = info->value;
334
335 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
336 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
337
338 if (addr >= pcdimm_info->addr &&
339 addr < (pcdimm_info->addr + pcdimm_info->size)) {
340 return pcdimm_info->node;
341 }
342 }
343 }
344
345 return -1;
346 }
347
348 struct sPAPRDrconfCellV2 {
349 uint32_t seq_lmbs;
350 uint64_t base_addr;
351 uint32_t drc_index;
352 uint32_t aa_index;
353 uint32_t flags;
354 } QEMU_PACKED;
355
356 typedef struct DrconfCellQueue {
357 struct sPAPRDrconfCellV2 cell;
358 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
359 } DrconfCellQueue;
360
361 static DrconfCellQueue *
362 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
363 uint32_t drc_index, uint32_t aa_index,
364 uint32_t flags)
365 {
366 DrconfCellQueue *elem;
367
368 elem = g_malloc0(sizeof(*elem));
369 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
370 elem->cell.base_addr = cpu_to_be64(base_addr);
371 elem->cell.drc_index = cpu_to_be32(drc_index);
372 elem->cell.aa_index = cpu_to_be32(aa_index);
373 elem->cell.flags = cpu_to_be32(flags);
374
375 return elem;
376 }
377
378 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
379 int offset, MemoryDeviceInfoList *dimms)
380 {
381 MachineState *machine = MACHINE(spapr);
382 uint8_t *int_buf, *cur_index;
383 int ret;
384 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
385 uint64_t addr, cur_addr, size;
386 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
387 uint64_t mem_end = machine->device_memory->base +
388 memory_region_size(&machine->device_memory->mr);
389 uint32_t node, buf_len, nr_entries = 0;
390 SpaprDrc *drc;
391 DrconfCellQueue *elem, *next;
392 MemoryDeviceInfoList *info;
393 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
394 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
395
396 /* Entry to cover RAM and the gap area */
397 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
398 SPAPR_LMB_FLAGS_RESERVED |
399 SPAPR_LMB_FLAGS_DRC_INVALID);
400 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
401 nr_entries++;
402
403 cur_addr = machine->device_memory->base;
404 for (info = dimms; info; info = info->next) {
405 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
406
407 addr = di->addr;
408 size = di->size;
409 node = di->node;
410
411 /*
412 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
413 * area is marked hotpluggable in the next iteration for the bigger
414 * chunk including the NVDIMM occupied area.
415 */
416 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
417 continue;
418
419 /* Entry for hot-pluggable area */
420 if (cur_addr < addr) {
421 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
422 g_assert(drc);
423 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
424 cur_addr, spapr_drc_index(drc), -1, 0);
425 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
426 nr_entries++;
427 }
428
429 /* Entry for DIMM */
430 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
431 g_assert(drc);
432 elem = spapr_get_drconf_cell(size / lmb_size, addr,
433 spapr_drc_index(drc), node,
434 (SPAPR_LMB_FLAGS_ASSIGNED |
435 SPAPR_LMB_FLAGS_HOTREMOVABLE));
436 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
437 nr_entries++;
438 cur_addr = addr + size;
439 }
440
441 /* Entry for remaining hotpluggable area */
442 if (cur_addr < mem_end) {
443 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
444 g_assert(drc);
445 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
446 cur_addr, spapr_drc_index(drc), -1, 0);
447 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
448 nr_entries++;
449 }
450
451 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
452 int_buf = cur_index = g_malloc0(buf_len);
453 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
454 cur_index += sizeof(nr_entries);
455
456 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
457 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
458 cur_index += sizeof(elem->cell);
459 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
460 g_free(elem);
461 }
462
463 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
464 g_free(int_buf);
465 if (ret < 0) {
466 return -1;
467 }
468 return 0;
469 }
470
471 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
472 int offset, MemoryDeviceInfoList *dimms)
473 {
474 MachineState *machine = MACHINE(spapr);
475 int i, ret;
476 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
477 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
478 uint32_t nr_lmbs = (machine->device_memory->base +
479 memory_region_size(&machine->device_memory->mr)) /
480 lmb_size;
481 uint32_t *int_buf, *cur_index, buf_len;
482
483 /*
484 * Allocate enough buffer size to fit in ibm,dynamic-memory
485 */
486 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
487 cur_index = int_buf = g_malloc0(buf_len);
488 int_buf[0] = cpu_to_be32(nr_lmbs);
489 cur_index++;
490 for (i = 0; i < nr_lmbs; i++) {
491 uint64_t addr = i * lmb_size;
492 uint32_t *dynamic_memory = cur_index;
493
494 if (i >= device_lmb_start) {
495 SpaprDrc *drc;
496
497 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
498 g_assert(drc);
499
500 dynamic_memory[0] = cpu_to_be32(addr >> 32);
501 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
502 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
503 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
504 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
505 if (memory_region_present(get_system_memory(), addr)) {
506 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
507 } else {
508 dynamic_memory[5] = cpu_to_be32(0);
509 }
510 } else {
511 /*
512 * LMB information for RMA, boot time RAM and gap b/n RAM and
513 * device memory region -- all these are marked as reserved
514 * and as having no valid DRC.
515 */
516 dynamic_memory[0] = cpu_to_be32(addr >> 32);
517 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
518 dynamic_memory[2] = cpu_to_be32(0);
519 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
520 dynamic_memory[4] = cpu_to_be32(-1);
521 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
522 SPAPR_LMB_FLAGS_DRC_INVALID);
523 }
524
525 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
526 }
527 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
528 g_free(int_buf);
529 if (ret < 0) {
530 return -1;
531 }
532 return 0;
533 }
534
535 /*
536 * Adds ibm,dynamic-reconfiguration-memory node.
537 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
538 * of this device tree node.
539 */
540 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
541 void *fdt)
542 {
543 MachineState *machine = MACHINE(spapr);
544 int ret, offset;
545 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
546 uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
547 cpu_to_be32(lmb_size & 0xffffffff)};
548 MemoryDeviceInfoList *dimms = NULL;
549
550 /* Don't create the node if there is no device memory. */
551 if (!machine->device_memory) {
552 return 0;
553 }
554
555 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
556
557 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
558 sizeof(prop_lmb_size));
559 if (ret < 0) {
560 return ret;
561 }
562
563 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
564 if (ret < 0) {
565 return ret;
566 }
567
568 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
569 if (ret < 0) {
570 return ret;
571 }
572
573 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
574 dimms = qmp_memory_device_list();
575 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
576 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
577 } else {
578 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
579 }
580 qapi_free_MemoryDeviceInfoList(dimms);
581
582 if (ret < 0) {
583 return ret;
584 }
585
586 ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
587
588 return ret;
589 }
590
591 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
592 {
593 MachineState *machine = MACHINE(spapr);
594 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
595 hwaddr mem_start, node_size;
596 int i, nb_nodes = machine->numa_state->num_nodes;
597 NodeInfo *nodes = machine->numa_state->nodes;
598
599 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
600 if (!nodes[i].node_mem) {
601 continue;
602 }
603 if (mem_start >= machine->ram_size) {
604 node_size = 0;
605 } else {
606 node_size = nodes[i].node_mem;
607 if (node_size > machine->ram_size - mem_start) {
608 node_size = machine->ram_size - mem_start;
609 }
610 }
611 if (!mem_start) {
612 /* spapr_machine_init() checks for rma_size <= node0_size
613 * already */
614 spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
615 mem_start += spapr->rma_size;
616 node_size -= spapr->rma_size;
617 }
618 for ( ; node_size; ) {
619 hwaddr sizetmp = pow2floor(node_size);
620
621 /* mem_start != 0 here */
622 if (ctzl(mem_start) < ctzl(sizetmp)) {
623 sizetmp = 1ULL << ctzl(mem_start);
624 }
625
626 spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
627 node_size -= sizetmp;
628 mem_start += sizetmp;
629 }
630 }
631
632 /* Generate ibm,dynamic-reconfiguration-memory node if required */
633 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
634 int ret;
635
636 g_assert(smc->dr_lmb_enabled);
637 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
638 if (ret) {
639 return ret;
640 }
641 }
642
643 return 0;
644 }
645
646 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
647 SpaprMachineState *spapr)
648 {
649 MachineState *ms = MACHINE(spapr);
650 PowerPCCPU *cpu = POWERPC_CPU(cs);
651 CPUPPCState *env = &cpu->env;
652 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
653 int index = spapr_get_vcpu_id(cpu);
654 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
655 0xffffffff, 0xffffffff};
656 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
657 : SPAPR_TIMEBASE_FREQ;
658 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
659 uint32_t page_sizes_prop[64];
660 size_t page_sizes_prop_size;
661 unsigned int smp_threads = ms->smp.threads;
662 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
663 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
664 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
665 SpaprDrc *drc;
666 int drc_index;
667 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
668 int i;
669
670 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
671 if (drc) {
672 drc_index = spapr_drc_index(drc);
673 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
674 }
675
676 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
677 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
678
679 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
680 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
681 env->dcache_line_size)));
682 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
683 env->dcache_line_size)));
684 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
685 env->icache_line_size)));
686 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
687 env->icache_line_size)));
688
689 if (pcc->l1_dcache_size) {
690 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
691 pcc->l1_dcache_size)));
692 } else {
693 warn_report("Unknown L1 dcache size for cpu");
694 }
695 if (pcc->l1_icache_size) {
696 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
697 pcc->l1_icache_size)));
698 } else {
699 warn_report("Unknown L1 icache size for cpu");
700 }
701
702 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
703 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
704 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
705 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
706 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
707 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
708
709 if (ppc_has_spr(cpu, SPR_PURR)) {
710 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
711 }
712 if (ppc_has_spr(cpu, SPR_PURR)) {
713 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
714 }
715
716 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
717 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
718 segs, sizeof(segs))));
719 }
720
721 /* Advertise VSX (vector extensions) if available
722 * 1 == VMX / Altivec available
723 * 2 == VSX available
724 *
725 * Only CPUs for which we create core types in spapr_cpu_core.c
726 * are possible, and all of those have VMX */
727 if (env->insns_flags & PPC_ALTIVEC) {
728 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
729 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
730 } else {
731 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
732 }
733 }
734
735 /* Advertise DFP (Decimal Floating Point) if available
736 * 0 / no property == no DFP
737 * 1 == DFP available */
738 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
739 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
740 }
741
742 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
743 sizeof(page_sizes_prop));
744 if (page_sizes_prop_size) {
745 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
746 page_sizes_prop, page_sizes_prop_size)));
747 }
748
749 spapr_dt_pa_features(spapr, cpu, fdt, offset);
750
751 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
752 cs->cpu_index / vcpus_per_socket)));
753
754 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
755 pft_size_prop, sizeof(pft_size_prop))));
756
757 if (ms->numa_state->num_nodes > 1) {
758 _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
759 }
760
761 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
762
763 if (pcc->radix_page_info) {
764 for (i = 0; i < pcc->radix_page_info->count; i++) {
765 radix_AP_encodings[i] =
766 cpu_to_be32(pcc->radix_page_info->entries[i]);
767 }
768 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
769 radix_AP_encodings,
770 pcc->radix_page_info->count *
771 sizeof(radix_AP_encodings[0]))));
772 }
773
774 /*
775 * We set this property to let the guest know that it can use the large
776 * decrementer and its width in bits.
777 */
778 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
779 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
780 pcc->lrg_decr_bits)));
781 }
782
783 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
784 {
785 CPUState **rev;
786 CPUState *cs;
787 int n_cpus;
788 int cpus_offset;
789 int i;
790
791 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
792 _FDT(cpus_offset);
793 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
794 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
795
796 /*
797 * We walk the CPUs in reverse order to ensure that CPU DT nodes
798 * created by fdt_add_subnode() end up in the right order in FDT
799 * for the guest kernel the enumerate the CPUs correctly.
800 *
801 * The CPU list cannot be traversed in reverse order, so we need
802 * to do extra work.
803 */
804 n_cpus = 0;
805 rev = NULL;
806 CPU_FOREACH(cs) {
807 rev = g_renew(CPUState *, rev, n_cpus + 1);
808 rev[n_cpus++] = cs;
809 }
810
811 for (i = n_cpus - 1; i >= 0; i--) {
812 CPUState *cs = rev[i];
813 PowerPCCPU *cpu = POWERPC_CPU(cs);
814 int index = spapr_get_vcpu_id(cpu);
815 DeviceClass *dc = DEVICE_GET_CLASS(cs);
816 g_autofree char *nodename = NULL;
817 int offset;
818
819 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
820 continue;
821 }
822
823 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
824 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
825 _FDT(offset);
826 spapr_dt_cpu(cs, fdt, offset, spapr);
827 }
828
829 g_free(rev);
830 }
831
832 static int spapr_dt_rng(void *fdt)
833 {
834 int node;
835 int ret;
836
837 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
838 if (node <= 0) {
839 return -1;
840 }
841 ret = fdt_setprop_string(fdt, node, "device_type",
842 "ibm,platform-facilities");
843 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
844 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
845
846 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
847 if (node <= 0) {
848 return -1;
849 }
850 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
851
852 return ret ? -1 : 0;
853 }
854
855 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
856 {
857 MachineState *ms = MACHINE(spapr);
858 int rtas;
859 GString *hypertas = g_string_sized_new(256);
860 GString *qemu_hypertas = g_string_sized_new(256);
861 uint32_t lrdr_capacity[] = {
862 0,
863 0,
864 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
865 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
866 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
867 };
868
869 /* Do we have device memory? */
870 if (MACHINE(spapr)->device_memory) {
871 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
872 memory_region_size(&MACHINE(spapr)->device_memory->mr);
873
874 lrdr_capacity[0] = cpu_to_be32(max_device_addr >> 32);
875 lrdr_capacity[1] = cpu_to_be32(max_device_addr & 0xffffffff);
876 }
877
878 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
879
880 /* hypertas */
881 add_str(hypertas, "hcall-pft");
882 add_str(hypertas, "hcall-term");
883 add_str(hypertas, "hcall-dabr");
884 add_str(hypertas, "hcall-interrupt");
885 add_str(hypertas, "hcall-tce");
886 add_str(hypertas, "hcall-vio");
887 add_str(hypertas, "hcall-splpar");
888 add_str(hypertas, "hcall-join");
889 add_str(hypertas, "hcall-bulk");
890 add_str(hypertas, "hcall-set-mode");
891 add_str(hypertas, "hcall-sprg0");
892 add_str(hypertas, "hcall-copy");
893 add_str(hypertas, "hcall-debug");
894 add_str(hypertas, "hcall-vphn");
895 if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) {
896 add_str(hypertas, "hcall-rpt-invalidate");
897 }
898
899 add_str(qemu_hypertas, "hcall-memop1");
900
901 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
902 add_str(hypertas, "hcall-multi-tce");
903 }
904
905 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
906 add_str(hypertas, "hcall-hpt-resize");
907 }
908
909 add_str(hypertas, "hcall-watchdog");
910
911 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
912 hypertas->str, hypertas->len));
913 g_string_free(hypertas, TRUE);
914 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
915 qemu_hypertas->str, qemu_hypertas->len));
916 g_string_free(qemu_hypertas, TRUE);
917
918 spapr_numa_write_rtas_dt(spapr, fdt, rtas);
919
920 /*
921 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
922 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
923 *
924 * The system reset requirements are driven by existing Linux and PowerVM
925 * implementation which (contrary to PAPR) saves r3 in the error log
926 * structure like machine check, so Linux expects to find the saved r3
927 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
928 * does not look at the error value).
929 *
930 * System reset interrupts are not subject to interlock like machine
931 * check, so this memory area could be corrupted if the sreset is
932 * interrupted by a machine check (or vice versa) if it was shared. To
933 * prevent this, system reset uses per-CPU areas for the sreset save
934 * area. A system reset that interrupts a system reset handler could
935 * still overwrite this area, but Linux doesn't try to recover in that
936 * case anyway.
937 *
938 * The extra 8 bytes is required because Linux's FWNMI error log check
939 * is off-by-one.
940 *
941 * RTAS_MIN_SIZE is required for the RTAS blob itself.
942 */
943 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE +
944 RTAS_ERROR_LOG_MAX +
945 ms->smp.max_cpus * sizeof(uint64_t) * 2 +
946 sizeof(uint64_t)));
947 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
948 RTAS_ERROR_LOG_MAX));
949 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
950 RTAS_EVENT_SCAN_RATE));
951
952 g_assert(msi_nonbroken);
953 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
954
955 /*
956 * According to PAPR, rtas ibm,os-term does not guarantee a return
957 * back to the guest cpu.
958 *
959 * While an additional ibm,extended-os-term property indicates
960 * that rtas call return will always occur. Set this property.
961 */
962 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
963
964 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
965 lrdr_capacity, sizeof(lrdr_capacity)));
966
967 spapr_dt_rtas_tokens(fdt, rtas);
968 }
969
970 /*
971 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
972 * and the XIVE features that the guest may request and thus the valid
973 * values for bytes 23..26 of option vector 5:
974 */
975 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
976 int chosen)
977 {
978 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
979
980 char val[2 * 4] = {
981 23, 0x00, /* XICS / XIVE mode */
982 24, 0x00, /* Hash/Radix, filled in below. */
983 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
984 26, 0x40, /* Radix options: GTSE == yes. */
985 };
986
987 if (spapr->irq->xics && spapr->irq->xive) {
988 val[1] = SPAPR_OV5_XIVE_BOTH;
989 } else if (spapr->irq->xive) {
990 val[1] = SPAPR_OV5_XIVE_EXPLOIT;
991 } else {
992 assert(spapr->irq->xics);
993 val[1] = SPAPR_OV5_XIVE_LEGACY;
994 }
995
996 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
997 first_ppc_cpu->compat_pvr)) {
998 /*
999 * If we're in a pre POWER9 compat mode then the guest should
1000 * do hash and use the legacy interrupt mode
1001 */
1002 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
1003 val[3] = 0x00; /* Hash */
1004 spapr_check_mmu_mode(false);
1005 } else if (kvm_enabled()) {
1006 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1007 val[3] = 0x80; /* OV5_MMU_BOTH */
1008 } else if (kvmppc_has_cap_mmu_radix()) {
1009 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1010 } else {
1011 val[3] = 0x00; /* Hash */
1012 }
1013 } else {
1014 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1015 val[3] = 0xC0;
1016 }
1017 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1018 val, sizeof(val)));
1019 }
1020
1021 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1022 {
1023 MachineState *machine = MACHINE(spapr);
1024 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1025 uint8_t rng_seed[32];
1026 int chosen;
1027
1028 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1029
1030 if (reset) {
1031 const char *boot_device = spapr->boot_device;
1032 g_autofree char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1033 size_t cb = 0;
1034 g_autofree char *bootlist = get_boot_devices_list(&cb);
1035
1036 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1037 _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1038 machine->kernel_cmdline));
1039 }
1040
1041 if (spapr->initrd_size) {
1042 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1043 spapr->initrd_base));
1044 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1045 spapr->initrd_base + spapr->initrd_size));
1046 }
1047
1048 if (spapr->kernel_size) {
1049 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1050 cpu_to_be64(spapr->kernel_size) };
1051
1052 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1053 &kprop, sizeof(kprop)));
1054 if (spapr->kernel_le) {
1055 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1056 }
1057 }
1058 if (machine->boot_config.has_menu && machine->boot_config.menu) {
1059 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", true)));
1060 }
1061 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1062 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1063 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1064
1065 if (cb && bootlist) {
1066 int i;
1067
1068 for (i = 0; i < cb; i++) {
1069 if (bootlist[i] == '\n') {
1070 bootlist[i] = ' ';
1071 }
1072 }
1073 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1074 }
1075
1076 if (boot_device && strlen(boot_device)) {
1077 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1078 }
1079
1080 if (spapr->want_stdout_path && stdout_path) {
1081 /*
1082 * "linux,stdout-path" and "stdout" properties are
1083 * deprecated by linux kernel. New platforms should only
1084 * use the "stdout-path" property. Set the new property
1085 * and continue using older property to remain compatible
1086 * with the existing firmware.
1087 */
1088 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1089 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1090 }
1091
1092 /*
1093 * We can deal with BAR reallocation just fine, advertise it
1094 * to the guest
1095 */
1096 if (smc->linux_pci_probe) {
1097 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1098 }
1099
1100 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1101 }
1102
1103 qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
1104 _FDT(fdt_setprop(fdt, chosen, "rng-seed", rng_seed, sizeof(rng_seed)));
1105
1106 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1107 }
1108
1109 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1110 {
1111 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1112 * KVM to work under pHyp with some guest co-operation */
1113 int hypervisor;
1114 uint8_t hypercall[16];
1115
1116 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1117 /* indicate KVM hypercall interface */
1118 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1119 if (kvmppc_has_cap_fixup_hcalls()) {
1120 /*
1121 * Older KVM versions with older guest kernels were broken
1122 * with the magic page, don't allow the guest to map it.
1123 */
1124 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1125 sizeof(hypercall))) {
1126 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1127 hypercall, sizeof(hypercall)));
1128 }
1129 }
1130 }
1131
1132 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1133 {
1134 MachineState *machine = MACHINE(spapr);
1135 MachineClass *mc = MACHINE_GET_CLASS(machine);
1136 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1137 uint32_t root_drc_type_mask = 0;
1138 int ret;
1139 void *fdt;
1140 SpaprPhbState *phb;
1141 char *buf;
1142
1143 fdt = g_malloc0(space);
1144 _FDT((fdt_create_empty_tree(fdt, space)));
1145
1146 /* Root node */
1147 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1148 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1149 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1150
1151 /* Guest UUID & Name*/
1152 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1153 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1154 if (qemu_uuid_set) {
1155 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1156 }
1157 g_free(buf);
1158
1159 if (qemu_get_vm_name()) {
1160 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1161 qemu_get_vm_name()));
1162 }
1163
1164 /* Host Model & Serial Number */
1165 if (spapr->host_model) {
1166 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1167 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1168 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1169 g_free(buf);
1170 }
1171
1172 if (spapr->host_serial) {
1173 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1174 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1175 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1176 g_free(buf);
1177 }
1178
1179 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1180 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1181
1182 /* /interrupt controller */
1183 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1184
1185 ret = spapr_dt_memory(spapr, fdt);
1186 if (ret < 0) {
1187 error_report("couldn't setup memory nodes in fdt");
1188 exit(1);
1189 }
1190
1191 /* /vdevice */
1192 spapr_dt_vdevice(spapr->vio_bus, fdt);
1193
1194 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1195 ret = spapr_dt_rng(fdt);
1196 if (ret < 0) {
1197 error_report("could not set up rng device in the fdt");
1198 exit(1);
1199 }
1200 }
1201
1202 QLIST_FOREACH(phb, &spapr->phbs, list) {
1203 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1204 if (ret < 0) {
1205 error_report("couldn't setup PCI devices in fdt");
1206 exit(1);
1207 }
1208 }
1209
1210 spapr_dt_cpus(fdt, spapr);
1211
1212 /* ibm,drc-indexes and friends */
1213 if (smc->dr_lmb_enabled) {
1214 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB;
1215 }
1216 if (smc->dr_phb_enabled) {
1217 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB;
1218 }
1219 if (mc->nvdimm_supported) {
1220 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM;
1221 }
1222 if (root_drc_type_mask) {
1223 _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask));
1224 }
1225
1226 if (mc->has_hotpluggable_cpus) {
1227 int offset = fdt_path_offset(fdt, "/cpus");
1228 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1229 if (ret < 0) {
1230 error_report("Couldn't set up CPU DR device tree properties");
1231 exit(1);
1232 }
1233 }
1234
1235 /* /event-sources */
1236 spapr_dt_events(spapr, fdt);
1237
1238 /* /rtas */
1239 spapr_dt_rtas(spapr, fdt);
1240
1241 /* /chosen */
1242 spapr_dt_chosen(spapr, fdt, reset);
1243
1244 /* /hypervisor */
1245 if (kvm_enabled()) {
1246 spapr_dt_hypervisor(spapr, fdt);
1247 }
1248
1249 /* Build memory reserve map */
1250 if (reset) {
1251 if (spapr->kernel_size) {
1252 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1253 spapr->kernel_size)));
1254 }
1255 if (spapr->initrd_size) {
1256 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1257 spapr->initrd_size)));
1258 }
1259 }
1260
1261 /* NVDIMM devices */
1262 if (mc->nvdimm_supported) {
1263 spapr_dt_persistent_memory(spapr, fdt);
1264 }
1265
1266 return fdt;
1267 }
1268
1269 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1270 {
1271 SpaprMachineState *spapr = opaque;
1272
1273 return (addr & 0x0fffffff) + spapr->kernel_addr;
1274 }
1275
1276 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1277 PowerPCCPU *cpu)
1278 {
1279 CPUPPCState *env = &cpu->env;
1280
1281 /* The TCG path should also be holding the BQL at this point */
1282 g_assert(qemu_mutex_iothread_locked());
1283
1284 g_assert(!vhyp_cpu_in_nested(cpu));
1285
1286 if (FIELD_EX64(env->msr, MSR, PR)) {
1287 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1288 env->gpr[3] = H_PRIVILEGE;
1289 } else {
1290 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1291 }
1292 }
1293
1294 struct LPCRSyncState {
1295 target_ulong value;
1296 target_ulong mask;
1297 };
1298
1299 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1300 {
1301 struct LPCRSyncState *s = arg.host_ptr;
1302 PowerPCCPU *cpu = POWERPC_CPU(cs);
1303 CPUPPCState *env = &cpu->env;
1304 target_ulong lpcr;
1305
1306 cpu_synchronize_state(cs);
1307 lpcr = env->spr[SPR_LPCR];
1308 lpcr &= ~s->mask;
1309 lpcr |= s->value;
1310 ppc_store_lpcr(cpu, lpcr);
1311 }
1312
1313 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1314 {
1315 CPUState *cs;
1316 struct LPCRSyncState s = {
1317 .value = value,
1318 .mask = mask
1319 };
1320 CPU_FOREACH(cs) {
1321 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1322 }
1323 }
1324
1325 static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu,
1326 target_ulong lpid, ppc_v3_pate_t *entry)
1327 {
1328 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1329 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1330
1331 if (!spapr_cpu->in_nested) {
1332 assert(lpid == 0);
1333
1334 /* Copy PATE1:GR into PATE0:HR */
1335 entry->dw0 = spapr->patb_entry & PATE0_HR;
1336 entry->dw1 = spapr->patb_entry;
1337
1338 } else {
1339 uint64_t patb, pats;
1340
1341 assert(lpid != 0);
1342
1343 patb = spapr->nested_ptcr & PTCR_PATB;
1344 pats = spapr->nested_ptcr & PTCR_PATS;
1345
1346 /* Check if partition table is properly aligned */
1347 if (patb & MAKE_64BIT_MASK(0, pats + 12)) {
1348 return false;
1349 }
1350
1351 /* Calculate number of entries */
1352 pats = 1ull << (pats + 12 - 4);
1353 if (pats <= lpid) {
1354 return false;
1355 }
1356
1357 /* Grab entry */
1358 patb += 16 * lpid;
1359 entry->dw0 = ldq_phys(CPU(cpu)->as, patb);
1360 entry->dw1 = ldq_phys(CPU(cpu)->as, patb + 8);
1361 }
1362
1363 return true;
1364 }
1365
1366 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1367 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1368 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1369 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1370 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1371
1372 /*
1373 * Get the fd to access the kernel htab, re-opening it if necessary
1374 */
1375 static int get_htab_fd(SpaprMachineState *spapr)
1376 {
1377 Error *local_err = NULL;
1378
1379 if (spapr->htab_fd >= 0) {
1380 return spapr->htab_fd;
1381 }
1382
1383 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1384 if (spapr->htab_fd < 0) {
1385 error_report_err(local_err);
1386 }
1387
1388 return spapr->htab_fd;
1389 }
1390
1391 void close_htab_fd(SpaprMachineState *spapr)
1392 {
1393 if (spapr->htab_fd >= 0) {
1394 close(spapr->htab_fd);
1395 }
1396 spapr->htab_fd = -1;
1397 }
1398
1399 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1400 {
1401 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1402
1403 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1404 }
1405
1406 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1407 {
1408 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1409
1410 assert(kvm_enabled());
1411
1412 if (!spapr->htab) {
1413 return 0;
1414 }
1415
1416 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1417 }
1418
1419 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1420 hwaddr ptex, int n)
1421 {
1422 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1423 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1424
1425 if (!spapr->htab) {
1426 /*
1427 * HTAB is controlled by KVM. Fetch into temporary buffer
1428 */
1429 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1430 kvmppc_read_hptes(hptes, ptex, n);
1431 return hptes;
1432 }
1433
1434 /*
1435 * HTAB is controlled by QEMU. Just point to the internally
1436 * accessible PTEG.
1437 */
1438 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1439 }
1440
1441 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1442 const ppc_hash_pte64_t *hptes,
1443 hwaddr ptex, int n)
1444 {
1445 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1446
1447 if (!spapr->htab) {
1448 g_free((void *)hptes);
1449 }
1450
1451 /* Nothing to do for qemu managed HPT */
1452 }
1453
1454 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1455 uint64_t pte0, uint64_t pte1)
1456 {
1457 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1458 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1459
1460 if (!spapr->htab) {
1461 kvmppc_write_hpte(ptex, pte0, pte1);
1462 } else {
1463 if (pte0 & HPTE64_V_VALID) {
1464 stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1465 /*
1466 * When setting valid, we write PTE1 first. This ensures
1467 * proper synchronization with the reading code in
1468 * ppc_hash64_pteg_search()
1469 */
1470 smp_wmb();
1471 stq_p(spapr->htab + offset, pte0);
1472 } else {
1473 stq_p(spapr->htab + offset, pte0);
1474 /*
1475 * When clearing it we set PTE0 first. This ensures proper
1476 * synchronization with the reading code in
1477 * ppc_hash64_pteg_search()
1478 */
1479 smp_wmb();
1480 stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1481 }
1482 }
1483 }
1484
1485 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1486 uint64_t pte1)
1487 {
1488 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C;
1489 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1490
1491 if (!spapr->htab) {
1492 /* There should always be a hash table when this is called */
1493 error_report("spapr_hpte_set_c called with no hash table !");
1494 return;
1495 }
1496
1497 /* The HW performs a non-atomic byte update */
1498 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1499 }
1500
1501 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1502 uint64_t pte1)
1503 {
1504 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R;
1505 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1506
1507 if (!spapr->htab) {
1508 /* There should always be a hash table when this is called */
1509 error_report("spapr_hpte_set_r called with no hash table !");
1510 return;
1511 }
1512
1513 /* The HW performs a non-atomic byte update */
1514 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1515 }
1516
1517 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1518 {
1519 int shift;
1520
1521 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1522 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1523 * that's much more than is needed for Linux guests */
1524 shift = ctz64(pow2ceil(ramsize)) - 7;
1525 shift = MAX(shift, 18); /* Minimum architected size */
1526 shift = MIN(shift, 46); /* Maximum architected size */
1527 return shift;
1528 }
1529
1530 void spapr_free_hpt(SpaprMachineState *spapr)
1531 {
1532 qemu_vfree(spapr->htab);
1533 spapr->htab = NULL;
1534 spapr->htab_shift = 0;
1535 close_htab_fd(spapr);
1536 }
1537
1538 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp)
1539 {
1540 ERRP_GUARD();
1541 long rc;
1542
1543 /* Clean up any HPT info from a previous boot */
1544 spapr_free_hpt(spapr);
1545
1546 rc = kvmppc_reset_htab(shift);
1547
1548 if (rc == -EOPNOTSUPP) {
1549 error_setg(errp, "HPT not supported in nested guests");
1550 return -EOPNOTSUPP;
1551 }
1552
1553 if (rc < 0) {
1554 /* kernel-side HPT needed, but couldn't allocate one */
1555 error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
1556 shift);
1557 error_append_hint(errp, "Try smaller maxmem?\n");
1558 return -errno;
1559 } else if (rc > 0) {
1560 /* kernel-side HPT allocated */
1561 if (rc != shift) {
1562 error_setg(errp,
1563 "Requested order %d HPT, but kernel allocated order %ld",
1564 shift, rc);
1565 error_append_hint(errp, "Try smaller maxmem?\n");
1566 return -ENOSPC;
1567 }
1568
1569 spapr->htab_shift = shift;
1570 spapr->htab = NULL;
1571 } else {
1572 /* kernel-side HPT not needed, allocate in userspace instead */
1573 size_t size = 1ULL << shift;
1574 int i;
1575
1576 spapr->htab = qemu_memalign(size, size);
1577 memset(spapr->htab, 0, size);
1578 spapr->htab_shift = shift;
1579
1580 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1581 DIRTY_HPTE(HPTE(spapr->htab, i));
1582 }
1583 }
1584 /* We're setting up a hash table, so that means we're not radix */
1585 spapr->patb_entry = 0;
1586 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1587 return 0;
1588 }
1589
1590 void spapr_setup_hpt(SpaprMachineState *spapr)
1591 {
1592 int hpt_shift;
1593
1594 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1595 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1596 } else {
1597 uint64_t current_ram_size;
1598
1599 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1600 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1601 }
1602 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1603
1604 if (kvm_enabled()) {
1605 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1606
1607 /* Check our RMA fits in the possible VRMA */
1608 if (vrma_limit < spapr->rma_size) {
1609 error_report("Unable to create %" HWADDR_PRIu
1610 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1611 spapr->rma_size / MiB, vrma_limit / MiB);
1612 exit(EXIT_FAILURE);
1613 }
1614 }
1615 }
1616
1617 void spapr_check_mmu_mode(bool guest_radix)
1618 {
1619 if (guest_radix) {
1620 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1621 error_report("Guest requested unavailable MMU mode (radix).");
1622 exit(EXIT_FAILURE);
1623 }
1624 } else {
1625 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1626 && !kvmppc_has_cap_mmu_hash_v3()) {
1627 error_report("Guest requested unavailable MMU mode (hash).");
1628 exit(EXIT_FAILURE);
1629 }
1630 }
1631 }
1632
1633 static void spapr_machine_reset(MachineState *machine, ShutdownCause reason)
1634 {
1635 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1636 PowerPCCPU *first_ppc_cpu;
1637 hwaddr fdt_addr;
1638 void *fdt;
1639 int rc;
1640
1641 pef_kvm_reset(machine->cgs, &error_fatal);
1642 spapr_caps_apply(spapr);
1643
1644 first_ppc_cpu = POWERPC_CPU(first_cpu);
1645 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1646 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1647 spapr->max_compat_pvr)) {
1648 /*
1649 * If using KVM with radix mode available, VCPUs can be started
1650 * without a HPT because KVM will start them in radix mode.
1651 * Set the GR bit in PATE so that we know there is no HPT.
1652 */
1653 spapr->patb_entry = PATE1_GR;
1654 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1655 } else {
1656 spapr_setup_hpt(spapr);
1657 }
1658
1659 qemu_devices_reset(reason);
1660
1661 spapr_ovec_cleanup(spapr->ov5_cas);
1662 spapr->ov5_cas = spapr_ovec_new();
1663
1664 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1665
1666 /*
1667 * This is fixing some of the default configuration of the XIVE
1668 * devices. To be called after the reset of the machine devices.
1669 */
1670 spapr_irq_reset(spapr, &error_fatal);
1671
1672 /*
1673 * There is no CAS under qtest. Simulate one to please the code that
1674 * depends on spapr->ov5_cas. This is especially needed to test device
1675 * unplug, so we do that before resetting the DRCs.
1676 */
1677 if (qtest_enabled()) {
1678 spapr_ovec_cleanup(spapr->ov5_cas);
1679 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1680 }
1681
1682 spapr_nvdimm_finish_flushes();
1683
1684 /* DRC reset may cause a device to be unplugged. This will cause troubles
1685 * if this device is used by another device (eg, a running vhost backend
1686 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1687 * situations, we reset DRCs after all devices have been reset.
1688 */
1689 spapr_drc_reset_all(spapr);
1690
1691 spapr_clear_pending_events(spapr);
1692
1693 /*
1694 * We place the device tree just below either the top of the RMA,
1695 * or just below 2GB, whichever is lower, so that it can be
1696 * processed with 32-bit real mode code if necessary
1697 */
1698 fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE;
1699
1700 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1701 if (spapr->vof) {
1702 spapr_vof_reset(spapr, fdt, &error_fatal);
1703 /*
1704 * Do not pack the FDT as the client may change properties.
1705 * VOF client does not expect the FDT so we do not load it to the VM.
1706 */
1707 } else {
1708 rc = fdt_pack(fdt);
1709 /* Should only fail if we've built a corrupted tree */
1710 assert(rc == 0);
1711
1712 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT,
1713 0, fdt_addr, 0);
1714 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1715 }
1716 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1717
1718 g_free(spapr->fdt_blob);
1719 spapr->fdt_size = fdt_totalsize(fdt);
1720 spapr->fdt_initial_size = spapr->fdt_size;
1721 spapr->fdt_blob = fdt;
1722
1723 /* Set machine->fdt for 'dumpdtb' QMP/HMP command */
1724 machine->fdt = fdt;
1725
1726 /* Set up the entry state */
1727 first_ppc_cpu->env.gpr[5] = 0;
1728
1729 spapr->fwnmi_system_reset_addr = -1;
1730 spapr->fwnmi_machine_check_addr = -1;
1731 spapr->fwnmi_machine_check_interlock = -1;
1732
1733 /* Signal all vCPUs waiting on this condition */
1734 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1735
1736 migrate_del_blocker(spapr->fwnmi_migration_blocker);
1737 }
1738
1739 static void spapr_create_nvram(SpaprMachineState *spapr)
1740 {
1741 DeviceState *dev = qdev_new("spapr-nvram");
1742 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1743
1744 if (dinfo) {
1745 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1746 &error_fatal);
1747 }
1748
1749 qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1750
1751 spapr->nvram = (struct SpaprNvram *)dev;
1752 }
1753
1754 static void spapr_rtc_create(SpaprMachineState *spapr)
1755 {
1756 object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1757 sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1758 &error_fatal, NULL);
1759 qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1760 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1761 "date");
1762 }
1763
1764 /* Returns whether we want to use VGA or not */
1765 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1766 {
1767 vga_interface_created = true;
1768 switch (vga_interface_type) {
1769 case VGA_NONE:
1770 return false;
1771 case VGA_DEVICE:
1772 return true;
1773 case VGA_STD:
1774 case VGA_VIRTIO:
1775 case VGA_CIRRUS:
1776 return pci_vga_init(pci_bus) != NULL;
1777 default:
1778 error_setg(errp,
1779 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1780 return false;
1781 }
1782 }
1783
1784 static int spapr_pre_load(void *opaque)
1785 {
1786 int rc;
1787
1788 rc = spapr_caps_pre_load(opaque);
1789 if (rc) {
1790 return rc;
1791 }
1792
1793 return 0;
1794 }
1795
1796 static int spapr_post_load(void *opaque, int version_id)
1797 {
1798 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1799 int err = 0;
1800
1801 err = spapr_caps_post_migration(spapr);
1802 if (err) {
1803 return err;
1804 }
1805
1806 /*
1807 * In earlier versions, there was no separate qdev for the PAPR
1808 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1809 * So when migrating from those versions, poke the incoming offset
1810 * value into the RTC device
1811 */
1812 if (version_id < 3) {
1813 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1814 if (err) {
1815 return err;
1816 }
1817 }
1818
1819 if (kvm_enabled() && spapr->patb_entry) {
1820 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1821 bool radix = !!(spapr->patb_entry & PATE1_GR);
1822 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1823
1824 /*
1825 * Update LPCR:HR and UPRT as they may not be set properly in
1826 * the stream
1827 */
1828 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1829 LPCR_HR | LPCR_UPRT);
1830
1831 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1832 if (err) {
1833 error_report("Process table config unsupported by the host");
1834 return -EINVAL;
1835 }
1836 }
1837
1838 err = spapr_irq_post_load(spapr, version_id);
1839 if (err) {
1840 return err;
1841 }
1842
1843 return err;
1844 }
1845
1846 static int spapr_pre_save(void *opaque)
1847 {
1848 int rc;
1849
1850 rc = spapr_caps_pre_save(opaque);
1851 if (rc) {
1852 return rc;
1853 }
1854
1855 return 0;
1856 }
1857
1858 static bool version_before_3(void *opaque, int version_id)
1859 {
1860 return version_id < 3;
1861 }
1862
1863 static bool spapr_pending_events_needed(void *opaque)
1864 {
1865 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1866 return !QTAILQ_EMPTY(&spapr->pending_events);
1867 }
1868
1869 static const VMStateDescription vmstate_spapr_event_entry = {
1870 .name = "spapr_event_log_entry",
1871 .version_id = 1,
1872 .minimum_version_id = 1,
1873 .fields = (VMStateField[]) {
1874 VMSTATE_UINT32(summary, SpaprEventLogEntry),
1875 VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1876 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1877 NULL, extended_length),
1878 VMSTATE_END_OF_LIST()
1879 },
1880 };
1881
1882 static const VMStateDescription vmstate_spapr_pending_events = {
1883 .name = "spapr_pending_events",
1884 .version_id = 1,
1885 .minimum_version_id = 1,
1886 .needed = spapr_pending_events_needed,
1887 .fields = (VMStateField[]) {
1888 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1889 vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1890 VMSTATE_END_OF_LIST()
1891 },
1892 };
1893
1894 static bool spapr_ov5_cas_needed(void *opaque)
1895 {
1896 SpaprMachineState *spapr = opaque;
1897 SpaprOptionVector *ov5_mask = spapr_ovec_new();
1898 bool cas_needed;
1899
1900 /* Prior to the introduction of SpaprOptionVector, we had two option
1901 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1902 * Both of these options encode machine topology into the device-tree
1903 * in such a way that the now-booted OS should still be able to interact
1904 * appropriately with QEMU regardless of what options were actually
1905 * negotiatied on the source side.
1906 *
1907 * As such, we can avoid migrating the CAS-negotiated options if these
1908 * are the only options available on the current machine/platform.
1909 * Since these are the only options available for pseries-2.7 and
1910 * earlier, this allows us to maintain old->new/new->old migration
1911 * compatibility.
1912 *
1913 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1914 * via default pseries-2.8 machines and explicit command-line parameters.
1915 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1916 * of the actual CAS-negotiated values to continue working properly. For
1917 * example, availability of memory unplug depends on knowing whether
1918 * OV5_HP_EVT was negotiated via CAS.
1919 *
1920 * Thus, for any cases where the set of available CAS-negotiatable
1921 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1922 * include the CAS-negotiated options in the migration stream, unless
1923 * if they affect boot time behaviour only.
1924 */
1925 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1926 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1927 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1928
1929 /* We need extra information if we have any bits outside the mask
1930 * defined above */
1931 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1932
1933 spapr_ovec_cleanup(ov5_mask);
1934
1935 return cas_needed;
1936 }
1937
1938 static const VMStateDescription vmstate_spapr_ov5_cas = {
1939 .name = "spapr_option_vector_ov5_cas",
1940 .version_id = 1,
1941 .minimum_version_id = 1,
1942 .needed = spapr_ov5_cas_needed,
1943 .fields = (VMStateField[]) {
1944 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1945 vmstate_spapr_ovec, SpaprOptionVector),
1946 VMSTATE_END_OF_LIST()
1947 },
1948 };
1949
1950 static bool spapr_patb_entry_needed(void *opaque)
1951 {
1952 SpaprMachineState *spapr = opaque;
1953
1954 return !!spapr->patb_entry;
1955 }
1956
1957 static const VMStateDescription vmstate_spapr_patb_entry = {
1958 .name = "spapr_patb_entry",
1959 .version_id = 1,
1960 .minimum_version_id = 1,
1961 .needed = spapr_patb_entry_needed,
1962 .fields = (VMStateField[]) {
1963 VMSTATE_UINT64(patb_entry, SpaprMachineState),
1964 VMSTATE_END_OF_LIST()
1965 },
1966 };
1967
1968 static bool spapr_irq_map_needed(void *opaque)
1969 {
1970 SpaprMachineState *spapr = opaque;
1971
1972 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1973 }
1974
1975 static const VMStateDescription vmstate_spapr_irq_map = {
1976 .name = "spapr_irq_map",
1977 .version_id = 1,
1978 .minimum_version_id = 1,
1979 .needed = spapr_irq_map_needed,
1980 .fields = (VMStateField[]) {
1981 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1982 VMSTATE_END_OF_LIST()
1983 },
1984 };
1985
1986 static bool spapr_dtb_needed(void *opaque)
1987 {
1988 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1989
1990 return smc->update_dt_enabled;
1991 }
1992
1993 static int spapr_dtb_pre_load(void *opaque)
1994 {
1995 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1996
1997 g_free(spapr->fdt_blob);
1998 spapr->fdt_blob = NULL;
1999 spapr->fdt_size = 0;
2000
2001 return 0;
2002 }
2003
2004 static const VMStateDescription vmstate_spapr_dtb = {
2005 .name = "spapr_dtb",
2006 .version_id = 1,
2007 .minimum_version_id = 1,
2008 .needed = spapr_dtb_needed,
2009 .pre_load = spapr_dtb_pre_load,
2010 .fields = (VMStateField[]) {
2011 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2012 VMSTATE_UINT32(fdt_size, SpaprMachineState),
2013 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2014 fdt_size),
2015 VMSTATE_END_OF_LIST()
2016 },
2017 };
2018
2019 static bool spapr_fwnmi_needed(void *opaque)
2020 {
2021 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2022
2023 return spapr->fwnmi_machine_check_addr != -1;
2024 }
2025
2026 static int spapr_fwnmi_pre_save(void *opaque)
2027 {
2028 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2029
2030 /*
2031 * Check if machine check handling is in progress and print a
2032 * warning message.
2033 */
2034 if (spapr->fwnmi_machine_check_interlock != -1) {
2035 warn_report("A machine check is being handled during migration. The"
2036 "handler may run and log hardware error on the destination");
2037 }
2038
2039 return 0;
2040 }
2041
2042 static const VMStateDescription vmstate_spapr_fwnmi = {
2043 .name = "spapr_fwnmi",
2044 .version_id = 1,
2045 .minimum_version_id = 1,
2046 .needed = spapr_fwnmi_needed,
2047 .pre_save = spapr_fwnmi_pre_save,
2048 .fields = (VMStateField[]) {
2049 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
2050 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
2051 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
2052 VMSTATE_END_OF_LIST()
2053 },
2054 };
2055
2056 static const VMStateDescription vmstate_spapr = {
2057 .name = "spapr",
2058 .version_id = 3,
2059 .minimum_version_id = 1,
2060 .pre_load = spapr_pre_load,
2061 .post_load = spapr_post_load,
2062 .pre_save = spapr_pre_save,
2063 .fields = (VMStateField[]) {
2064 /* used to be @next_irq */
2065 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2066
2067 /* RTC offset */
2068 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2069
2070 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2071 VMSTATE_END_OF_LIST()
2072 },
2073 .subsections = (const VMStateDescription*[]) {
2074 &vmstate_spapr_ov5_cas,
2075 &vmstate_spapr_patb_entry,
2076 &vmstate_spapr_pending_events,
2077 &vmstate_spapr_cap_htm,
2078 &vmstate_spapr_cap_vsx,
2079 &vmstate_spapr_cap_dfp,
2080 &vmstate_spapr_cap_cfpc,
2081 &vmstate_spapr_cap_sbbc,
2082 &vmstate_spapr_cap_ibs,
2083 &vmstate_spapr_cap_hpt_maxpagesize,
2084 &vmstate_spapr_irq_map,
2085 &vmstate_spapr_cap_nested_kvm_hv,
2086 &vmstate_spapr_dtb,
2087 &vmstate_spapr_cap_large_decr,
2088 &vmstate_spapr_cap_ccf_assist,
2089 &vmstate_spapr_cap_fwnmi,
2090 &vmstate_spapr_fwnmi,
2091 &vmstate_spapr_cap_rpt_invalidate,
2092 NULL
2093 }
2094 };
2095
2096 static int htab_save_setup(QEMUFile *f, void *opaque)
2097 {
2098 SpaprMachineState *spapr = opaque;
2099
2100 /* "Iteration" header */
2101 if (!spapr->htab_shift) {
2102 qemu_put_be32(f, -1);
2103 } else {
2104 qemu_put_be32(f, spapr->htab_shift);
2105 }
2106
2107 if (spapr->htab) {
2108 spapr->htab_save_index = 0;
2109 spapr->htab_first_pass = true;
2110 } else {
2111 if (spapr->htab_shift) {
2112 assert(kvm_enabled());
2113 }
2114 }
2115
2116
2117 return 0;
2118 }
2119
2120 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2121 int chunkstart, int n_valid, int n_invalid)
2122 {
2123 qemu_put_be32(f, chunkstart);
2124 qemu_put_be16(f, n_valid);
2125 qemu_put_be16(f, n_invalid);
2126 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2127 HASH_PTE_SIZE_64 * n_valid);
2128 }
2129
2130 static void htab_save_end_marker(QEMUFile *f)
2131 {
2132 qemu_put_be32(f, 0);
2133 qemu_put_be16(f, 0);
2134 qemu_put_be16(f, 0);
2135 }
2136
2137 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2138 int64_t max_ns)
2139 {
2140 bool has_timeout = max_ns != -1;
2141 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2142 int index = spapr->htab_save_index;
2143 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2144
2145 assert(spapr->htab_first_pass);
2146
2147 do {
2148 int chunkstart;
2149
2150 /* Consume invalid HPTEs */
2151 while ((index < htabslots)
2152 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2153 CLEAN_HPTE(HPTE(spapr->htab, index));
2154 index++;
2155 }
2156
2157 /* Consume valid HPTEs */
2158 chunkstart = index;
2159 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2160 && HPTE_VALID(HPTE(spapr->htab, index))) {
2161 CLEAN_HPTE(HPTE(spapr->htab, index));
2162 index++;
2163 }
2164
2165 if (index > chunkstart) {
2166 int n_valid = index - chunkstart;
2167
2168 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2169
2170 if (has_timeout &&
2171 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2172 break;
2173 }
2174 }
2175 } while ((index < htabslots) && !migration_rate_exceeded(f));
2176
2177 if (index >= htabslots) {
2178 assert(index == htabslots);
2179 index = 0;
2180 spapr->htab_first_pass = false;
2181 }
2182 spapr->htab_save_index = index;
2183 }
2184
2185 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2186 int64_t max_ns)
2187 {
2188 bool final = max_ns < 0;
2189 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2190 int examined = 0, sent = 0;
2191 int index = spapr->htab_save_index;
2192 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2193
2194 assert(!spapr->htab_first_pass);
2195
2196 do {
2197 int chunkstart, invalidstart;
2198
2199 /* Consume non-dirty HPTEs */
2200 while ((index < htabslots)
2201 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2202 index++;
2203 examined++;
2204 }
2205
2206 chunkstart = index;
2207 /* Consume valid dirty HPTEs */
2208 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2209 && HPTE_DIRTY(HPTE(spapr->htab, index))
2210 && HPTE_VALID(HPTE(spapr->htab, index))) {
2211 CLEAN_HPTE(HPTE(spapr->htab, index));
2212 index++;
2213 examined++;
2214 }
2215
2216 invalidstart = index;
2217 /* Consume invalid dirty HPTEs */
2218 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2219 && HPTE_DIRTY(HPTE(spapr->htab, index))
2220 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2221 CLEAN_HPTE(HPTE(spapr->htab, index));
2222 index++;
2223 examined++;
2224 }
2225
2226 if (index > chunkstart) {
2227 int n_valid = invalidstart - chunkstart;
2228 int n_invalid = index - invalidstart;
2229
2230 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2231 sent += index - chunkstart;
2232
2233 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2234 break;
2235 }
2236 }
2237
2238 if (examined >= htabslots) {
2239 break;
2240 }
2241
2242 if (index >= htabslots) {
2243 assert(index == htabslots);
2244 index = 0;
2245 }
2246 } while ((examined < htabslots) && (!migration_rate_exceeded(f) || final));
2247
2248 if (index >= htabslots) {
2249 assert(index == htabslots);
2250 index = 0;
2251 }
2252
2253 spapr->htab_save_index = index;
2254
2255 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2256 }
2257
2258 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2259 #define MAX_KVM_BUF_SIZE 2048
2260
2261 static int htab_save_iterate(QEMUFile *f, void *opaque)
2262 {
2263 SpaprMachineState *spapr = opaque;
2264 int fd;
2265 int rc = 0;
2266
2267 /* Iteration header */
2268 if (!spapr->htab_shift) {
2269 qemu_put_be32(f, -1);
2270 return 1;
2271 } else {
2272 qemu_put_be32(f, 0);
2273 }
2274
2275 if (!spapr->htab) {
2276 assert(kvm_enabled());
2277
2278 fd = get_htab_fd(spapr);
2279 if (fd < 0) {
2280 return fd;
2281 }
2282
2283 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2284 if (rc < 0) {
2285 return rc;
2286 }
2287 } else if (spapr->htab_first_pass) {
2288 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2289 } else {
2290 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2291 }
2292
2293 htab_save_end_marker(f);
2294
2295 return rc;
2296 }
2297
2298 static int htab_save_complete(QEMUFile *f, void *opaque)
2299 {
2300 SpaprMachineState *spapr = opaque;
2301 int fd;
2302
2303 /* Iteration header */
2304 if (!spapr->htab_shift) {
2305 qemu_put_be32(f, -1);
2306 return 0;
2307 } else {
2308 qemu_put_be32(f, 0);
2309 }
2310
2311 if (!spapr->htab) {
2312 int rc;
2313
2314 assert(kvm_enabled());
2315
2316 fd = get_htab_fd(spapr);
2317 if (fd < 0) {
2318 return fd;
2319 }
2320
2321 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2322 if (rc < 0) {
2323 return rc;
2324 }
2325 } else {
2326 if (spapr->htab_first_pass) {
2327 htab_save_first_pass(f, spapr, -1);
2328 }
2329 htab_save_later_pass(f, spapr, -1);
2330 }
2331
2332 /* End marker */
2333 htab_save_end_marker(f);
2334
2335 return 0;
2336 }
2337
2338 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2339 {
2340 SpaprMachineState *spapr = opaque;
2341 uint32_t section_hdr;
2342 int fd = -1;
2343 Error *local_err = NULL;
2344
2345 if (version_id < 1 || version_id > 1) {
2346 error_report("htab_load() bad version");
2347 return -EINVAL;
2348 }
2349
2350 section_hdr = qemu_get_be32(f);
2351
2352 if (section_hdr == -1) {
2353 spapr_free_hpt(spapr);
2354 return 0;
2355 }
2356
2357 if (section_hdr) {
2358 int ret;
2359
2360 /* First section gives the htab size */
2361 ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2362 if (ret < 0) {
2363 error_report_err(local_err);
2364 return ret;
2365 }
2366 return 0;
2367 }
2368
2369 if (!spapr->htab) {
2370 assert(kvm_enabled());
2371
2372 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2373 if (fd < 0) {
2374 error_report_err(local_err);
2375 return fd;
2376 }
2377 }
2378
2379 while (true) {
2380 uint32_t index;
2381 uint16_t n_valid, n_invalid;
2382
2383 index = qemu_get_be32(f);
2384 n_valid = qemu_get_be16(f);
2385 n_invalid = qemu_get_be16(f);
2386
2387 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2388 /* End of Stream */
2389 break;
2390 }
2391
2392 if ((index + n_valid + n_invalid) >
2393 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2394 /* Bad index in stream */
2395 error_report(
2396 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2397 index, n_valid, n_invalid, spapr->htab_shift);
2398 return -EINVAL;
2399 }
2400
2401 if (spapr->htab) {
2402 if (n_valid) {
2403 qemu_get_buffer(f, HPTE(spapr->htab, index),
2404 HASH_PTE_SIZE_64 * n_valid);
2405 }
2406 if (n_invalid) {
2407 memset(HPTE(spapr->htab, index + n_valid), 0,
2408 HASH_PTE_SIZE_64 * n_invalid);
2409 }
2410 } else {
2411 int rc;
2412
2413 assert(fd >= 0);
2414
2415 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid,
2416 &local_err);
2417 if (rc < 0) {
2418 error_report_err(local_err);
2419 return rc;
2420 }
2421 }
2422 }
2423
2424 if (!spapr->htab) {
2425 assert(fd >= 0);
2426 close(fd);
2427 }
2428
2429 return 0;
2430 }
2431
2432 static void htab_save_cleanup(void *opaque)
2433 {
2434 SpaprMachineState *spapr = opaque;
2435
2436 close_htab_fd(spapr);
2437 }
2438
2439 static SaveVMHandlers savevm_htab_handlers = {
2440 .save_setup = htab_save_setup,
2441 .save_live_iterate = htab_save_iterate,
2442 .save_live_complete_precopy = htab_save_complete,
2443 .save_cleanup = htab_save_cleanup,
2444 .load_state = htab_load,
2445 };
2446
2447 static void spapr_boot_set(void *opaque, const char *boot_device,
2448 Error **errp)
2449 {
2450 SpaprMachineState *spapr = SPAPR_MACHINE(opaque);
2451
2452 g_free(spapr->boot_device);
2453 spapr->boot_device = g_strdup(boot_device);
2454 }
2455
2456 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2457 {
2458 MachineState *machine = MACHINE(spapr);
2459 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2460 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2461 int i;
2462
2463 g_assert(!nr_lmbs || machine->device_memory);
2464 for (i = 0; i < nr_lmbs; i++) {
2465 uint64_t addr;
2466
2467 addr = i * lmb_size + machine->device_memory->base;
2468 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2469 addr / lmb_size);
2470 }
2471 }
2472
2473 /*
2474 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2475 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2476 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2477 */
2478 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2479 {
2480 int i;
2481
2482 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2483 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2484 " is not aligned to %" PRIu64 " MiB",
2485 machine->ram_size,
2486 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2487 return;
2488 }
2489
2490 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2491 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2492 " is not aligned to %" PRIu64 " MiB",
2493 machine->ram_size,
2494 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2495 return;
2496 }
2497
2498 for (i = 0; i < machine->numa_state->num_nodes; i++) {
2499 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2500 error_setg(errp,
2501 "Node %d memory size 0x%" PRIx64
2502 " is not aligned to %" PRIu64 " MiB",
2503 i, machine->numa_state->nodes[i].node_mem,
2504 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2505 return;
2506 }
2507 }
2508 }
2509
2510 /* find cpu slot in machine->possible_cpus by core_id */
2511 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2512 {
2513 int index = id / ms->smp.threads;
2514
2515 if (index >= ms->possible_cpus->len) {
2516 return NULL;
2517 }
2518 if (idx) {
2519 *idx = index;
2520 }
2521 return &ms->possible_cpus->cpus[index];
2522 }
2523
2524 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2525 {
2526 MachineState *ms = MACHINE(spapr);
2527 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2528 Error *local_err = NULL;
2529 bool vsmt_user = !!spapr->vsmt;
2530 int kvm_smt = kvmppc_smt_threads();
2531 int ret;
2532 unsigned int smp_threads = ms->smp.threads;
2533
2534 if (tcg_enabled()) {
2535 if (smp_threads > 1 &&
2536 !ppc_type_check_compat(ms->cpu_type, CPU_POWERPC_LOGICAL_2_07, 0,
2537 spapr->max_compat_pvr)) {
2538 error_setg(errp, "TCG only supports SMT on POWER8 or newer CPUs");
2539 return;
2540 }
2541
2542 if (smp_threads > 8) {
2543 error_setg(errp, "TCG cannot support more than 8 threads/core "
2544 "on a pseries machine");
2545 return;
2546 }
2547 }
2548 if (!is_power_of_2(smp_threads)) {
2549 error_setg(errp, "Cannot support %d threads/core on a pseries "
2550 "machine because it must be a power of 2", smp_threads);
2551 return;
2552 }
2553
2554 /* Detemine the VSMT mode to use: */
2555 if (vsmt_user) {
2556 if (spapr->vsmt < smp_threads) {
2557 error_setg(errp, "Cannot support VSMT mode %d"
2558 " because it must be >= threads/core (%d)",
2559 spapr->vsmt, smp_threads);
2560 return;
2561 }
2562 /* In this case, spapr->vsmt has been set by the command line */
2563 } else if (!smc->smp_threads_vsmt) {
2564 /*
2565 * Default VSMT value is tricky, because we need it to be as
2566 * consistent as possible (for migration), but this requires
2567 * changing it for at least some existing cases. We pick 8 as
2568 * the value that we'd get with KVM on POWER8, the
2569 * overwhelmingly common case in production systems.
2570 */
2571 spapr->vsmt = MAX(8, smp_threads);
2572 } else {
2573 spapr->vsmt = smp_threads;
2574 }
2575
2576 /* KVM: If necessary, set the SMT mode: */
2577 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2578 ret = kvmppc_set_smt_threads(spapr->vsmt);
2579 if (ret) {
2580 /* Looks like KVM isn't able to change VSMT mode */
2581 error_setg(&local_err,
2582 "Failed to set KVM's VSMT mode to %d (errno %d)",
2583 spapr->vsmt, ret);
2584 /* We can live with that if the default one is big enough
2585 * for the number of threads, and a submultiple of the one
2586 * we want. In this case we'll waste some vcpu ids, but
2587 * behaviour will be correct */
2588 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2589 warn_report_err(local_err);
2590 } else {
2591 if (!vsmt_user) {
2592 error_append_hint(&local_err,
2593 "On PPC, a VM with %d threads/core"
2594 " on a host with %d threads/core"
2595 " requires the use of VSMT mode %d.\n",
2596 smp_threads, kvm_smt, spapr->vsmt);
2597 }
2598 kvmppc_error_append_smt_possible_hint(&local_err);
2599 error_propagate(errp, local_err);
2600 }
2601 }
2602 }
2603 /* else TCG: nothing to do currently */
2604 }
2605
2606 static void spapr_init_cpus(SpaprMachineState *spapr)
2607 {
2608 MachineState *machine = MACHINE(spapr);
2609 MachineClass *mc = MACHINE_GET_CLASS(machine);
2610 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2611 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2612 const CPUArchIdList *possible_cpus;
2613 unsigned int smp_cpus = machine->smp.cpus;
2614 unsigned int smp_threads = machine->smp.threads;
2615 unsigned int max_cpus = machine->smp.max_cpus;
2616 int boot_cores_nr = smp_cpus / smp_threads;
2617 int i;
2618
2619 possible_cpus = mc->possible_cpu_arch_ids(machine);
2620 if (mc->has_hotpluggable_cpus) {
2621 if (smp_cpus % smp_threads) {
2622 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2623 smp_cpus, smp_threads);
2624 exit(1);
2625 }
2626 if (max_cpus % smp_threads) {
2627 error_report("max_cpus (%u) must be multiple of threads (%u)",
2628 max_cpus, smp_threads);
2629 exit(1);
2630 }
2631 } else {
2632 if (max_cpus != smp_cpus) {
2633 error_report("This machine version does not support CPU hotplug");
2634 exit(1);
2635 }
2636 boot_cores_nr = possible_cpus->len;
2637 }
2638
2639 if (smc->pre_2_10_has_unused_icps) {
2640 int i;
2641
2642 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2643 /* Dummy entries get deregistered when real ICPState objects
2644 * are registered during CPU core hotplug.
2645 */
2646 pre_2_10_vmstate_register_dummy_icp(i);
2647 }
2648 }
2649
2650 for (i = 0; i < possible_cpus->len; i++) {
2651 int core_id = i * smp_threads;
2652
2653 if (mc->has_hotpluggable_cpus) {
2654 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2655 spapr_vcpu_id(spapr, core_id));
2656 }
2657
2658 if (i < boot_cores_nr) {
2659 Object *core = object_new(type);
2660 int nr_threads = smp_threads;
2661
2662 /* Handle the partially filled core for older machine types */
2663 if ((i + 1) * smp_threads >= smp_cpus) {
2664 nr_threads = smp_cpus - i * smp_threads;
2665 }
2666
2667 object_property_set_int(core, "nr-threads", nr_threads,
2668 &error_fatal);
2669 object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2670 &error_fatal);
2671 qdev_realize(DEVICE(core), NULL, &error_fatal);
2672
2673 object_unref(core);
2674 }
2675 }
2676 }
2677
2678 static PCIHostState *spapr_create_default_phb(void)
2679 {
2680 DeviceState *dev;
2681
2682 dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2683 qdev_prop_set_uint32(dev, "index", 0);
2684 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2685
2686 return PCI_HOST_BRIDGE(dev);
2687 }
2688
2689 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2690 {
2691 MachineState *machine = MACHINE(spapr);
2692 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2693 hwaddr rma_size = machine->ram_size;
2694 hwaddr node0_size = spapr_node0_size(machine);
2695
2696 /* RMA has to fit in the first NUMA node */
2697 rma_size = MIN(rma_size, node0_size);
2698
2699 /*
2700 * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2701 * never exceed that
2702 */
2703 rma_size = MIN(rma_size, 1 * TiB);
2704
2705 /*
2706 * Clamp the RMA size based on machine type. This is for
2707 * migration compatibility with older qemu versions, which limited
2708 * the RMA size for complicated and mostly bad reasons.
2709 */
2710 if (smc->rma_limit) {
2711 rma_size = MIN(rma_size, smc->rma_limit);
2712 }
2713
2714 if (rma_size < MIN_RMA_SLOF) {
2715 error_setg(errp,
2716 "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2717 "ldMiB guest RMA (Real Mode Area memory)",
2718 MIN_RMA_SLOF / MiB);
2719 return 0;
2720 }
2721
2722 return rma_size;
2723 }
2724
2725 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
2726 {
2727 MachineState *machine = MACHINE(spapr);
2728 int i;
2729
2730 for (i = 0; i < machine->ram_slots; i++) {
2731 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
2732 }
2733 }
2734
2735 /* pSeries LPAR / sPAPR hardware init */
2736 static void spapr_machine_init(MachineState *machine)
2737 {
2738 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2739 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2740 MachineClass *mc = MACHINE_GET_CLASS(machine);
2741 const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME;
2742 const char *bios_name = machine->firmware ?: bios_default;
2743 g_autofree char *filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2744 const char *kernel_filename = machine->kernel_filename;
2745 const char *initrd_filename = machine->initrd_filename;
2746 PCIHostState *phb;
2747 bool has_vga;
2748 int i;
2749 MemoryRegion *sysmem = get_system_memory();
2750 long load_limit, fw_size;
2751 Error *resize_hpt_err = NULL;
2752
2753 if (!filename) {
2754 error_report("Could not find LPAR firmware '%s'", bios_name);
2755 exit(1);
2756 }
2757 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2758 if (fw_size <= 0) {
2759 error_report("Could not load LPAR firmware '%s'", filename);
2760 exit(1);
2761 }
2762
2763 /*
2764 * if Secure VM (PEF) support is configured, then initialize it
2765 */
2766 pef_kvm_init(machine->cgs, &error_fatal);
2767
2768 msi_nonbroken = true;
2769
2770 QLIST_INIT(&spapr->phbs);
2771 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2772
2773 /* Determine capabilities to run with */
2774 spapr_caps_init(spapr);
2775
2776 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2777 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2778 /*
2779 * If the user explicitly requested a mode we should either
2780 * supply it, or fail completely (which we do below). But if
2781 * it's not set explicitly, we reset our mode to something
2782 * that works
2783 */
2784 if (resize_hpt_err) {
2785 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2786 error_free(resize_hpt_err);
2787 resize_hpt_err = NULL;
2788 } else {
2789 spapr->resize_hpt = smc->resize_hpt_default;
2790 }
2791 }
2792
2793 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2794
2795 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2796 /*
2797 * User requested HPT resize, but this host can't supply it. Bail out
2798 */
2799 error_report_err(resize_hpt_err);
2800 exit(1);
2801 }
2802 error_free(resize_hpt_err);
2803
2804 spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2805
2806 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2807 load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD;
2808
2809 /*
2810 * VSMT must be set in order to be able to compute VCPU ids, ie to
2811 * call spapr_max_server_number() or spapr_vcpu_id().
2812 */
2813 spapr_set_vsmt_mode(spapr, &error_fatal);
2814
2815 /* Set up Interrupt Controller before we create the VCPUs */
2816 spapr_irq_init(spapr, &error_fatal);
2817
2818 /* Set up containers for ibm,client-architecture-support negotiated options
2819 */
2820 spapr->ov5 = spapr_ovec_new();
2821 spapr->ov5_cas = spapr_ovec_new();
2822
2823 if (smc->dr_lmb_enabled) {
2824 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2825 spapr_validate_node_memory(machine, &error_fatal);
2826 }
2827
2828 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2829
2830 /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */
2831 if (!smc->pre_6_2_numa_affinity) {
2832 spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY);
2833 }
2834
2835 /* advertise support for dedicated HP event source to guests */
2836 if (spapr->use_hotplug_event_source) {
2837 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2838 }
2839
2840 /* advertise support for HPT resizing */
2841 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2842 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2843 }
2844
2845 /* advertise support for ibm,dyamic-memory-v2 */
2846 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2847
2848 /* advertise XIVE on POWER9 machines */
2849 if (spapr->irq->xive) {
2850 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2851 }
2852
2853 /* init CPUs */
2854 spapr_init_cpus(spapr);
2855
2856 spapr->gpu_numa_id = spapr_numa_initial_nvgpu_numa_id(machine);
2857
2858 /* Init numa_assoc_array */
2859 spapr_numa_associativity_init(spapr, machine);
2860
2861 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2862 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2863 spapr->max_compat_pvr)) {
2864 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2865 /* KVM and TCG always allow GTSE with radix... */
2866 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2867 }
2868 /* ... but not with hash (currently). */
2869
2870 if (kvm_enabled()) {
2871 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2872 kvmppc_enable_logical_ci_hcalls();
2873 kvmppc_enable_set_mode_hcall();
2874
2875 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2876 kvmppc_enable_clear_ref_mod_hcalls();
2877
2878 /* Enable H_PAGE_INIT */
2879 kvmppc_enable_h_page_init();
2880 }
2881
2882 /* map RAM */
2883 memory_region_add_subregion(sysmem, 0, machine->ram);
2884
2885 /* initialize hotplug memory address space */
2886 if (machine->ram_size < machine->maxram_size) {
2887 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2888 hwaddr device_mem_base;
2889
2890 /*
2891 * Limit the number of hotpluggable memory slots to half the number
2892 * slots that KVM supports, leaving the other half for PCI and other
2893 * devices. However ensure that number of slots doesn't drop below 32.
2894 */
2895 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2896 SPAPR_MAX_RAM_SLOTS;
2897
2898 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2899 max_memslots = SPAPR_MAX_RAM_SLOTS;
2900 }
2901 if (machine->ram_slots > max_memslots) {
2902 error_report("Specified number of memory slots %"
2903 PRIu64" exceeds max supported %d",
2904 machine->ram_slots, max_memslots);
2905 exit(1);
2906 }
2907
2908 device_mem_base = ROUND_UP(machine->ram_size, SPAPR_DEVICE_MEM_ALIGN);
2909 machine_memory_devices_init(machine, device_mem_base, device_mem_size);
2910 }
2911
2912 if (smc->dr_lmb_enabled) {
2913 spapr_create_lmb_dr_connectors(spapr);
2914 }
2915
2916 if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2917 /* Create the error string for live migration blocker */
2918 error_setg(&spapr->fwnmi_migration_blocker,
2919 "A machine check is being handled during migration. The handler"
2920 "may run and log hardware error on the destination");
2921 }
2922
2923 if (mc->nvdimm_supported) {
2924 spapr_create_nvdimm_dr_connectors(spapr);
2925 }
2926
2927 /* Set up RTAS event infrastructure */
2928 spapr_events_init(spapr);
2929
2930 /* Set up the RTC RTAS interfaces */
2931 spapr_rtc_create(spapr);
2932
2933 /* Set up VIO bus */
2934 spapr->vio_bus = spapr_vio_bus_init();
2935
2936 for (i = 0; serial_hd(i); i++) {
2937 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2938 }
2939
2940 /* We always have at least the nvram device on VIO */
2941 spapr_create_nvram(spapr);
2942
2943 /*
2944 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2945 * connectors (described in root DT node's "ibm,drc-types" property)
2946 * are pre-initialized here. additional child connectors (such as
2947 * connectors for a PHBs PCI slots) are added as needed during their
2948 * parent's realization.
2949 */
2950 if (smc->dr_phb_enabled) {
2951 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2952 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2953 }
2954 }
2955
2956 /* Set up PCI */
2957 spapr_pci_rtas_init();
2958
2959 phb = spapr_create_default_phb();
2960
2961 for (i = 0; i < nb_nics; i++) {
2962 NICInfo *nd = &nd_table[i];
2963
2964 if (!nd->model) {
2965 nd->model = g_strdup("spapr-vlan");
2966 }
2967
2968 if (g_str_equal(nd->model, "spapr-vlan") ||
2969 g_str_equal(nd->model, "ibmveth")) {
2970 spapr_vlan_create(spapr->vio_bus, nd);
2971 } else {
2972 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2973 }
2974 }
2975
2976 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2977 spapr_vscsi_create(spapr->vio_bus);
2978 }
2979
2980 /* Graphics */
2981 has_vga = spapr_vga_init(phb->bus, &error_fatal);
2982 if (has_vga) {
2983 spapr->want_stdout_path = !machine->enable_graphics;
2984 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2985 } else {
2986 spapr->want_stdout_path = true;
2987 }
2988
2989 if (machine->usb) {
2990 if (smc->use_ohci_by_default) {
2991 pci_create_simple(phb->bus, -1, "pci-ohci");
2992 } else {
2993 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2994 }
2995
2996 if (has_vga) {
2997 USBBus *usb_bus = usb_bus_find(-1);
2998
2999 usb_create_simple(usb_bus, "usb-kbd");
3000 usb_create_simple(usb_bus, "usb-mouse");
3001 }
3002 }
3003
3004 if (kernel_filename) {
3005 uint64_t loaded_addr = 0;
3006
3007 spapr->kernel_size = load_elf(kernel_filename, NULL,
3008 translate_kernel_address, spapr,
3009 NULL, &loaded_addr, NULL, NULL, 1,
3010 PPC_ELF_MACHINE, 0, 0);
3011 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
3012 spapr->kernel_size = load_elf(kernel_filename, NULL,
3013 translate_kernel_address, spapr,
3014 NULL, &loaded_addr, NULL, NULL, 0,
3015 PPC_ELF_MACHINE, 0, 0);
3016 spapr->kernel_le = spapr->kernel_size > 0;
3017 }
3018 if (spapr->kernel_size < 0) {
3019 error_report("error loading %s: %s", kernel_filename,
3020 load_elf_strerror(spapr->kernel_size));
3021 exit(1);
3022 }
3023
3024 if (spapr->kernel_addr != loaded_addr) {
3025 warn_report("spapr: kernel_addr changed from 0x%"PRIx64
3026 " to 0x%"PRIx64,
3027 spapr->kernel_addr, loaded_addr);
3028 spapr->kernel_addr = loaded_addr;
3029 }
3030
3031 /* load initrd */
3032 if (initrd_filename) {
3033 /* Try to locate the initrd in the gap between the kernel
3034 * and the firmware. Add a bit of space just in case
3035 */
3036 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
3037 + 0x1ffff) & ~0xffff;
3038 spapr->initrd_size = load_image_targphys(initrd_filename,
3039 spapr->initrd_base,
3040 load_limit
3041 - spapr->initrd_base);
3042 if (spapr->initrd_size < 0) {
3043 error_report("could not load initial ram disk '%s'",
3044 initrd_filename);
3045 exit(1);
3046 }
3047 }
3048 }
3049
3050 /* FIXME: Should register things through the MachineState's qdev
3051 * interface, this is a legacy from the sPAPREnvironment structure
3052 * which predated MachineState but had a similar function */
3053 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3054 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
3055 &savevm_htab_handlers, spapr);
3056
3057 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
3058
3059 qemu_register_boot_set(spapr_boot_set, spapr);
3060
3061 /*
3062 * Nothing needs to be done to resume a suspended guest because
3063 * suspending does not change the machine state, so no need for
3064 * a ->wakeup method.
3065 */
3066 qemu_register_wakeup_support();
3067
3068 if (kvm_enabled()) {
3069 /* to stop and start vmclock */
3070 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3071 &spapr->tb);
3072
3073 kvmppc_spapr_enable_inkernel_multitce();
3074 }
3075
3076 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3077 if (spapr->vof) {
3078 spapr->vof->fw_size = fw_size; /* for claim() on itself */
3079 spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client);
3080 }
3081
3082 spapr_watchdog_init(spapr);
3083 }
3084
3085 #define DEFAULT_KVM_TYPE "auto"
3086 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3087 {
3088 /*
3089 * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3090 * accomodate the 'HV' and 'PV' formats that exists in the
3091 * wild. The 'auto' mode is being introduced already as
3092 * lower-case, thus we don't need to bother checking for
3093 * "AUTO".
3094 */
3095 if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) {
3096 return 0;
3097 }
3098
3099 if (!g_ascii_strcasecmp(vm_type, "hv")) {
3100 return 1;
3101 }
3102
3103 if (!g_ascii_strcasecmp(vm_type, "pr")) {
3104 return 2;
3105 }
3106
3107 error_report("Unknown kvm-type specified '%s'", vm_type);
3108 exit(1);
3109 }
3110
3111 /*
3112 * Implementation of an interface to adjust firmware path
3113 * for the bootindex property handling.
3114 */
3115 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3116 DeviceState *dev)
3117 {
3118 #define CAST(type, obj, name) \
3119 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3120 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3121 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3122 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3123 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3124
3125 if (d && bus) {
3126 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3127 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3128 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3129
3130 if (spapr) {
3131 /*
3132 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3133 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3134 * 0x8000 | (target << 8) | (bus << 5) | lun
3135 * (see the "Logical unit addressing format" table in SAM5)
3136 */
3137 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3138 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3139 (uint64_t)id << 48);
3140 } else if (virtio) {
3141 /*
3142 * We use SRP luns of the form 01000000 | (target << 8) | lun
3143 * in the top 32 bits of the 64-bit LUN
3144 * Note: the quote above is from SLOF and it is wrong,
3145 * the actual binding is:
3146 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3147 */
3148 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3149 if (d->lun >= 256) {
3150 /* Use the LUN "flat space addressing method" */
3151 id |= 0x4000;
3152 }
3153 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3154 (uint64_t)id << 32);
3155 } else if (usb) {
3156 /*
3157 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3158 * in the top 32 bits of the 64-bit LUN
3159 */
3160 unsigned usb_port = atoi(usb->port->path);
3161 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3162 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3163 (uint64_t)id << 32);
3164 }
3165 }
3166
3167 /*
3168 * SLOF probes the USB devices, and if it recognizes that the device is a
3169 * storage device, it changes its name to "storage" instead of "usb-host",
3170 * and additionally adds a child node for the SCSI LUN, so the correct
3171 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3172 */
3173 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3174 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3175 if (usb_device_is_scsi_storage(usbdev)) {
3176 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3177 }
3178 }
3179
3180 if (phb) {
3181 /* Replace "pci" with "pci@800000020000000" */
3182 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3183 }
3184
3185 if (vsc) {
3186 /* Same logic as virtio above */
3187 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3188 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3189 }
3190
3191 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3192 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3193 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3194 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3195 }
3196
3197 if (pcidev) {
3198 return spapr_pci_fw_dev_name(pcidev);
3199 }
3200
3201 return NULL;
3202 }
3203
3204 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3205 {
3206 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3207
3208 return g_strdup(spapr->kvm_type);
3209 }
3210
3211 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3212 {
3213 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3214
3215 g_free(spapr->kvm_type);
3216 spapr->kvm_type = g_strdup(value);
3217 }
3218
3219 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3220 {
3221 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3222
3223 return spapr->use_hotplug_event_source;
3224 }
3225
3226 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3227 Error **errp)
3228 {
3229 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3230
3231 spapr->use_hotplug_event_source = value;
3232 }
3233
3234 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3235 {
3236 return true;
3237 }
3238
3239 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3240 {
3241 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3242
3243 switch (spapr->resize_hpt) {
3244 case SPAPR_RESIZE_HPT_DEFAULT:
3245 return g_strdup("default");
3246 case SPAPR_RESIZE_HPT_DISABLED:
3247 return g_strdup("disabled");
3248 case SPAPR_RESIZE_HPT_ENABLED:
3249 return g_strdup("enabled");
3250 case SPAPR_RESIZE_HPT_REQUIRED:
3251 return g_strdup("required");
3252 }
3253 g_assert_not_reached();
3254 }
3255
3256 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3257 {
3258 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3259
3260 if (strcmp(value, "default") == 0) {
3261 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3262 } else if (strcmp(value, "disabled") == 0) {
3263 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3264 } else if (strcmp(value, "enabled") == 0) {
3265 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3266 } else if (strcmp(value, "required") == 0) {
3267 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3268 } else {
3269 error_setg(errp, "Bad value for \"resize-hpt\" property");
3270 }
3271 }
3272
3273 static bool spapr_get_vof(Object *obj, Error **errp)
3274 {
3275 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3276
3277 return spapr->vof != NULL;
3278 }
3279
3280 static void spapr_set_vof(Object *obj, bool value, Error **errp)
3281 {
3282 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3283
3284 if (spapr->vof) {
3285 vof_cleanup(spapr->vof);
3286 g_free(spapr->vof);
3287 spapr->vof = NULL;
3288 }
3289 if (!value) {
3290 return;
3291 }
3292 spapr->vof = g_malloc0(sizeof(*spapr->vof));
3293 }
3294
3295 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3296 {
3297 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3298
3299 if (spapr->irq == &spapr_irq_xics_legacy) {
3300 return g_strdup("legacy");
3301 } else if (spapr->irq == &spapr_irq_xics) {
3302 return g_strdup("xics");
3303 } else if (spapr->irq == &spapr_irq_xive) {
3304 return g_strdup("xive");
3305 } else if (spapr->irq == &spapr_irq_dual) {
3306 return g_strdup("dual");
3307 }
3308 g_assert_not_reached();
3309 }
3310
3311 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3312 {
3313 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3314
3315 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3316 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3317 return;
3318 }
3319
3320 /* The legacy IRQ backend can not be set */
3321 if (strcmp(value, "xics") == 0) {
3322 spapr->irq = &spapr_irq_xics;
3323 } else if (strcmp(value, "xive") == 0) {
3324 spapr->irq = &spapr_irq_xive;
3325 } else if (strcmp(value, "dual") == 0) {
3326 spapr->irq = &spapr_irq_dual;
3327 } else {
3328 error_setg(errp, "Bad value for \"ic-mode\" property");
3329 }
3330 }
3331
3332 static char *spapr_get_host_model(Object *obj, Error **errp)
3333 {
3334 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3335
3336 return g_strdup(spapr->host_model);
3337 }
3338
3339 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3340 {
3341 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3342
3343 g_free(spapr->host_model);
3344 spapr->host_model = g_strdup(value);
3345 }
3346
3347 static char *spapr_get_host_serial(Object *obj, Error **errp)
3348 {
3349 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3350
3351 return g_strdup(spapr->host_serial);
3352 }
3353
3354 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3355 {
3356 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3357
3358 g_free(spapr->host_serial);
3359 spapr->host_serial = g_strdup(value);
3360 }
3361
3362 static void spapr_instance_init(Object *obj)
3363 {
3364 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3365 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3366 MachineState *ms = MACHINE(spapr);
3367 MachineClass *mc = MACHINE_GET_CLASS(ms);
3368
3369 /*
3370 * NVDIMM support went live in 5.1 without considering that, in
3371 * other archs, the user needs to enable NVDIMM support with the
3372 * 'nvdimm' machine option and the default behavior is NVDIMM
3373 * support disabled. It is too late to roll back to the standard
3374 * behavior without breaking 5.1 guests.
3375 */
3376 if (mc->nvdimm_supported) {
3377 ms->nvdimms_state->is_enabled = true;
3378 }
3379
3380 spapr->htab_fd = -1;
3381 spapr->use_hotplug_event_source = true;
3382 spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE);
3383 object_property_add_str(obj, "kvm-type",
3384 spapr_get_kvm_type, spapr_set_kvm_type);
3385 object_property_set_description(obj, "kvm-type",
3386 "Specifies the KVM virtualization mode (auto,"
3387 " hv, pr). Defaults to 'auto'. This mode will use"
3388 " any available KVM module loaded in the host,"
3389 " where kvm_hv takes precedence if both kvm_hv and"
3390 " kvm_pr are loaded.");
3391 object_property_add_bool(obj, "modern-hotplug-events",
3392 spapr_get_modern_hotplug_events,
3393 spapr_set_modern_hotplug_events);
3394 object_property_set_description(obj, "modern-hotplug-events",
3395 "Use dedicated hotplug event mechanism in"
3396 " place of standard EPOW events when possible"
3397 " (required for memory hot-unplug support)");
3398 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3399 "Maximum permitted CPU compatibility mode");
3400
3401 object_property_add_str(obj, "resize-hpt",
3402 spapr_get_resize_hpt, spapr_set_resize_hpt);
3403 object_property_set_description(obj, "resize-hpt",
3404 "Resizing of the Hash Page Table (enabled, disabled, required)");
3405 object_property_add_uint32_ptr(obj, "vsmt",
3406 &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3407 object_property_set_description(obj, "vsmt",
3408 "Virtual SMT: KVM behaves as if this were"
3409 " the host's SMT mode");
3410
3411 object_property_add_bool(obj, "vfio-no-msix-emulation",
3412 spapr_get_msix_emulation, NULL);
3413
3414 object_property_add_uint64_ptr(obj, "kernel-addr",
3415 &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3416 object_property_set_description(obj, "kernel-addr",
3417 stringify(KERNEL_LOAD_ADDR)
3418 " for -kernel is the default");
3419 spapr->kernel_addr = KERNEL_LOAD_ADDR;
3420
3421 object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof);
3422 object_property_set_description(obj, "x-vof",
3423 "Enable Virtual Open Firmware (experimental)");
3424
3425 /* The machine class defines the default interrupt controller mode */
3426 spapr->irq = smc->irq;
3427 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3428 spapr_set_ic_mode);
3429 object_property_set_description(obj, "ic-mode",
3430 "Specifies the interrupt controller mode (xics, xive, dual)");
3431
3432 object_property_add_str(obj, "host-model",
3433 spapr_get_host_model, spapr_set_host_model);
3434 object_property_set_description(obj, "host-model",
3435 "Host model to advertise in guest device tree");
3436 object_property_add_str(obj, "host-serial",
3437 spapr_get_host_serial, spapr_set_host_serial);
3438 object_property_set_description(obj, "host-serial",
3439 "Host serial number to advertise in guest device tree");
3440 }
3441
3442 static void spapr_machine_finalizefn(Object *obj)
3443 {
3444 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3445
3446 g_free(spapr->kvm_type);
3447 }
3448
3449 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3450 {
3451 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3452 PowerPCCPU *cpu = POWERPC_CPU(cs);
3453 CPUPPCState *env = &cpu->env;
3454
3455 cpu_synchronize_state(cs);
3456 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3457 if (spapr->fwnmi_system_reset_addr != -1) {
3458 uint64_t rtas_addr, addr;
3459
3460 /* get rtas addr from fdt */
3461 rtas_addr = spapr_get_rtas_addr();
3462 if (!rtas_addr) {
3463 qemu_system_guest_panicked(NULL);
3464 return;
3465 }
3466
3467 addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3468 stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3469 stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3470 env->gpr[3] = addr;
3471 }
3472 ppc_cpu_do_system_reset(cs);
3473 if (spapr->fwnmi_system_reset_addr != -1) {
3474 env->nip = spapr->fwnmi_system_reset_addr;
3475 }
3476 }
3477
3478 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3479 {
3480 CPUState *cs;
3481
3482 CPU_FOREACH(cs) {
3483 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3484 }
3485 }
3486
3487 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3488 void *fdt, int *fdt_start_offset, Error **errp)
3489 {
3490 uint64_t addr;
3491 uint32_t node;
3492
3493 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3494 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3495 &error_abort);
3496 *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3497 SPAPR_MEMORY_BLOCK_SIZE);
3498 return 0;
3499 }
3500
3501 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3502 bool dedicated_hp_event_source)
3503 {
3504 SpaprDrc *drc;
3505 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3506 int i;
3507 uint64_t addr = addr_start;
3508 bool hotplugged = spapr_drc_hotplugged(dev);
3509
3510 for (i = 0; i < nr_lmbs; i++) {
3511 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3512 addr / SPAPR_MEMORY_BLOCK_SIZE);
3513 g_assert(drc);
3514
3515 /*
3516 * memory_device_get_free_addr() provided a range of free addresses
3517 * that doesn't overlap with any existing mapping at pre-plug. The
3518 * corresponding LMB DRCs are thus assumed to be all attachable.
3519 */
3520 spapr_drc_attach(drc, dev);
3521 if (!hotplugged) {
3522 spapr_drc_reset(drc);
3523 }
3524 addr += SPAPR_MEMORY_BLOCK_SIZE;
3525 }
3526 /* send hotplug notification to the
3527 * guest only in case of hotplugged memory
3528 */
3529 if (hotplugged) {
3530 if (dedicated_hp_event_source) {
3531 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3532 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3533 g_assert(drc);
3534 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3535 nr_lmbs,
3536 spapr_drc_index(drc));
3537 } else {
3538 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3539 nr_lmbs);
3540 }
3541 }
3542 }
3543
3544 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3545 {
3546 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3547 PCDIMMDevice *dimm = PC_DIMM(dev);
3548 uint64_t size, addr;
3549 int64_t slot;
3550 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3551
3552 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3553
3554 pc_dimm_plug(dimm, MACHINE(ms));
3555
3556 if (!is_nvdimm) {
3557 addr = object_property_get_uint(OBJECT(dimm),
3558 PC_DIMM_ADDR_PROP, &error_abort);
3559 spapr_add_lmbs(dev, addr, size,
3560 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT));
3561 } else {
3562 slot = object_property_get_int(OBJECT(dimm),
3563 PC_DIMM_SLOT_PROP, &error_abort);
3564 /* We should have valid slot number at this point */
3565 g_assert(slot >= 0);
3566 spapr_add_nvdimm(dev, slot);
3567 }
3568 }
3569
3570 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3571 Error **errp)
3572 {
3573 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3574 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3575 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3576 PCDIMMDevice *dimm = PC_DIMM(dev);
3577 Error *local_err = NULL;
3578 uint64_t size;
3579 Object *memdev;
3580 hwaddr pagesize;
3581
3582 if (!smc->dr_lmb_enabled) {
3583 error_setg(errp, "Memory hotplug not supported for this machine");
3584 return;
3585 }
3586
3587 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3588 if (local_err) {
3589 error_propagate(errp, local_err);
3590 return;
3591 }
3592
3593 if (is_nvdimm) {
3594 if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
3595 return;
3596 }
3597 } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3598 error_setg(errp, "Hotplugged memory size must be a multiple of "
3599 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3600 return;
3601 }
3602
3603 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3604 &error_abort);
3605 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3606 if (!spapr_check_pagesize(spapr, pagesize, errp)) {
3607 return;
3608 }
3609
3610 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3611 }
3612
3613 struct SpaprDimmState {
3614 PCDIMMDevice *dimm;
3615 uint32_t nr_lmbs;
3616 QTAILQ_ENTRY(SpaprDimmState) next;
3617 };
3618
3619 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3620 PCDIMMDevice *dimm)
3621 {
3622 SpaprDimmState *dimm_state = NULL;
3623
3624 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3625 if (dimm_state->dimm == dimm) {
3626 break;
3627 }
3628 }
3629 return dimm_state;
3630 }
3631
3632 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3633 uint32_t nr_lmbs,
3634 PCDIMMDevice *dimm)
3635 {
3636 SpaprDimmState *ds = NULL;
3637
3638 /*
3639 * If this request is for a DIMM whose removal had failed earlier
3640 * (due to guest's refusal to remove the LMBs), we would have this
3641 * dimm already in the pending_dimm_unplugs list. In that
3642 * case don't add again.
3643 */
3644 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3645 if (!ds) {
3646 ds = g_new0(SpaprDimmState, 1);
3647 ds->nr_lmbs = nr_lmbs;
3648 ds->dimm = dimm;
3649 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3650 }
3651 return ds;
3652 }
3653
3654 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3655 SpaprDimmState *dimm_state)
3656 {
3657 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3658 g_free(dimm_state);
3659 }
3660
3661 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3662 PCDIMMDevice *dimm)
3663 {
3664 SpaprDrc *drc;
3665 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3666 &error_abort);
3667 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3668 uint32_t avail_lmbs = 0;
3669 uint64_t addr_start, addr;
3670 int i;
3671
3672 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3673 &error_abort);
3674
3675 addr = addr_start;
3676 for (i = 0; i < nr_lmbs; i++) {
3677 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3678 addr / SPAPR_MEMORY_BLOCK_SIZE);
3679 g_assert(drc);
3680 if (drc->dev) {
3681 avail_lmbs++;
3682 }
3683 addr += SPAPR_MEMORY_BLOCK_SIZE;
3684 }
3685
3686 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3687 }
3688
3689 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev)
3690 {
3691 SpaprDimmState *ds;
3692 PCDIMMDevice *dimm;
3693 SpaprDrc *drc;
3694 uint32_t nr_lmbs;
3695 uint64_t size, addr_start, addr;
3696 g_autofree char *qapi_error = NULL;
3697 int i;
3698
3699 if (!dev) {
3700 return;
3701 }
3702
3703 dimm = PC_DIMM(dev);
3704 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3705
3706 /*
3707 * 'ds == NULL' would mean that the DIMM doesn't have a pending
3708 * unplug state, but one of its DRC is marked as unplug_requested.
3709 * This is bad and weird enough to g_assert() out.
3710 */
3711 g_assert(ds);
3712
3713 spapr_pending_dimm_unplugs_remove(spapr, ds);
3714
3715 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3716 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3717
3718 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3719 &error_abort);
3720
3721 addr = addr_start;
3722 for (i = 0; i < nr_lmbs; i++) {
3723 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3724 addr / SPAPR_MEMORY_BLOCK_SIZE);
3725 g_assert(drc);
3726
3727 drc->unplug_requested = false;
3728 addr += SPAPR_MEMORY_BLOCK_SIZE;
3729 }
3730
3731 /*
3732 * Tell QAPI that something happened and the memory
3733 * hotunplug wasn't successful. Keep sending
3734 * MEM_UNPLUG_ERROR even while sending
3735 * DEVICE_UNPLUG_GUEST_ERROR until the deprecation of
3736 * MEM_UNPLUG_ERROR is due.
3737 */
3738 qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest "
3739 "for device %s", dev->id);
3740
3741 qapi_event_send_mem_unplug_error(dev->id ? : "", qapi_error);
3742
3743 qapi_event_send_device_unplug_guest_error(dev->id,
3744 dev->canonical_path);
3745 }
3746
3747 /* Callback to be called during DRC release. */
3748 void spapr_lmb_release(DeviceState *dev)
3749 {
3750 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3751 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3752 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3753
3754 /* This information will get lost if a migration occurs
3755 * during the unplug process. In this case recover it. */
3756 if (ds == NULL) {
3757 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3758 g_assert(ds);
3759 /* The DRC being examined by the caller at least must be counted */
3760 g_assert(ds->nr_lmbs);
3761 }
3762
3763 if (--ds->nr_lmbs) {
3764 return;
3765 }
3766
3767 /*
3768 * Now that all the LMBs have been removed by the guest, call the
3769 * unplug handler chain. This can never fail.
3770 */
3771 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3772 object_unparent(OBJECT(dev));
3773 }
3774
3775 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3776 {
3777 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3778 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3779
3780 /* We really shouldn't get this far without anything to unplug */
3781 g_assert(ds);
3782
3783 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3784 qdev_unrealize(dev);
3785 spapr_pending_dimm_unplugs_remove(spapr, ds);
3786 }
3787
3788 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3789 DeviceState *dev, Error **errp)
3790 {
3791 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3792 PCDIMMDevice *dimm = PC_DIMM(dev);
3793 uint32_t nr_lmbs;
3794 uint64_t size, addr_start, addr;
3795 int i;
3796 SpaprDrc *drc;
3797
3798 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3799 error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3800 return;
3801 }
3802
3803 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3804 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3805
3806 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3807 &error_abort);
3808
3809 /*
3810 * An existing pending dimm state for this DIMM means that there is an
3811 * unplug operation in progress, waiting for the spapr_lmb_release
3812 * callback to complete the job (BQL can't cover that far). In this case,
3813 * bail out to avoid detaching DRCs that were already released.
3814 */
3815 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3816 error_setg(errp, "Memory unplug already in progress for device %s",
3817 dev->id);
3818 return;
3819 }
3820
3821 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3822
3823 addr = addr_start;
3824 for (i = 0; i < nr_lmbs; i++) {
3825 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3826 addr / SPAPR_MEMORY_BLOCK_SIZE);
3827 g_assert(drc);
3828
3829 spapr_drc_unplug_request(drc);
3830 addr += SPAPR_MEMORY_BLOCK_SIZE;
3831 }
3832
3833 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3834 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3835 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3836 nr_lmbs, spapr_drc_index(drc));
3837 }
3838
3839 /* Callback to be called during DRC release. */
3840 void spapr_core_release(DeviceState *dev)
3841 {
3842 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3843
3844 /* Call the unplug handler chain. This can never fail. */
3845 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3846 object_unparent(OBJECT(dev));
3847 }
3848
3849 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3850 {
3851 MachineState *ms = MACHINE(hotplug_dev);
3852 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3853 CPUCore *cc = CPU_CORE(dev);
3854 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3855
3856 if (smc->pre_2_10_has_unused_icps) {
3857 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3858 int i;
3859
3860 for (i = 0; i < cc->nr_threads; i++) {
3861 CPUState *cs = CPU(sc->threads[i]);
3862
3863 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3864 }
3865 }
3866
3867 assert(core_slot);
3868 core_slot->cpu = NULL;
3869 qdev_unrealize(dev);
3870 }
3871
3872 static
3873 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3874 Error **errp)
3875 {
3876 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3877 int index;
3878 SpaprDrc *drc;
3879 CPUCore *cc = CPU_CORE(dev);
3880
3881 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3882 error_setg(errp, "Unable to find CPU core with core-id: %d",
3883 cc->core_id);
3884 return;
3885 }
3886 if (index == 0) {
3887 error_setg(errp, "Boot CPU core may not be unplugged");
3888 return;
3889 }
3890
3891 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3892 spapr_vcpu_id(spapr, cc->core_id));
3893 g_assert(drc);
3894
3895 if (!spapr_drc_unplug_requested(drc)) {
3896 spapr_drc_unplug_request(drc);
3897 }
3898
3899 /*
3900 * spapr_hotplug_req_remove_by_index is left unguarded, out of the
3901 * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ
3902 * pulses removing the same CPU. Otherwise, in an failed hotunplug
3903 * attempt (e.g. the kernel will refuse to remove the last online
3904 * CPU), we will never attempt it again because unplug_requested
3905 * will still be 'true' in that case.
3906 */
3907 spapr_hotplug_req_remove_by_index(drc);
3908 }
3909
3910 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3911 void *fdt, int *fdt_start_offset, Error **errp)
3912 {
3913 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3914 CPUState *cs = CPU(core->threads[0]);
3915 PowerPCCPU *cpu = POWERPC_CPU(cs);
3916 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3917 int id = spapr_get_vcpu_id(cpu);
3918 g_autofree char *nodename = NULL;
3919 int offset;
3920
3921 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3922 offset = fdt_add_subnode(fdt, 0, nodename);
3923
3924 spapr_dt_cpu(cs, fdt, offset, spapr);
3925
3926 /*
3927 * spapr_dt_cpu() does not fill the 'name' property in the
3928 * CPU node. The function is called during boot process, before
3929 * and after CAS, and overwriting the 'name' property written
3930 * by SLOF is not allowed.
3931 *
3932 * Write it manually after spapr_dt_cpu(). This makes the hotplug
3933 * CPUs more compatible with the coldplugged ones, which have
3934 * the 'name' property. Linux Kernel also relies on this
3935 * property to identify CPU nodes.
3936 */
3937 _FDT((fdt_setprop_string(fdt, offset, "name", nodename)));
3938
3939 *fdt_start_offset = offset;
3940 return 0;
3941 }
3942
3943 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3944 {
3945 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3946 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3947 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3948 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3949 CPUCore *cc = CPU_CORE(dev);
3950 CPUState *cs;
3951 SpaprDrc *drc;
3952 CPUArchId *core_slot;
3953 int index;
3954 bool hotplugged = spapr_drc_hotplugged(dev);
3955 int i;
3956
3957 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3958 g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */
3959
3960 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3961 spapr_vcpu_id(spapr, cc->core_id));
3962
3963 g_assert(drc || !mc->has_hotpluggable_cpus);
3964
3965 if (drc) {
3966 /*
3967 * spapr_core_pre_plug() already buys us this is a brand new
3968 * core being plugged into a free slot. Nothing should already
3969 * be attached to the corresponding DRC.
3970 */
3971 spapr_drc_attach(drc, dev);
3972
3973 if (hotplugged) {
3974 /*
3975 * Send hotplug notification interrupt to the guest only
3976 * in case of hotplugged CPUs.
3977 */
3978 spapr_hotplug_req_add_by_index(drc);
3979 } else {
3980 spapr_drc_reset(drc);
3981 }
3982 }
3983
3984 core_slot->cpu = OBJECT(dev);
3985
3986 /*
3987 * Set compatibility mode to match the boot CPU, which was either set
3988 * by the machine reset code or by CAS. This really shouldn't fail at
3989 * this point.
3990 */
3991 if (hotplugged) {
3992 for (i = 0; i < cc->nr_threads; i++) {
3993 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3994 &error_abort);
3995 }
3996 }
3997
3998 if (smc->pre_2_10_has_unused_icps) {
3999 for (i = 0; i < cc->nr_threads; i++) {
4000 cs = CPU(core->threads[i]);
4001 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
4002 }
4003 }
4004 }
4005
4006 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4007 Error **errp)
4008 {
4009 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
4010 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
4011 CPUCore *cc = CPU_CORE(dev);
4012 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
4013 const char *type = object_get_typename(OBJECT(dev));
4014 CPUArchId *core_slot;
4015 int index;
4016 unsigned int smp_threads = machine->smp.threads;
4017
4018 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
4019 error_setg(errp, "CPU hotplug not supported for this machine");
4020 return;
4021 }
4022
4023 if (strcmp(base_core_type, type)) {
4024 error_setg(errp, "CPU core type should be %s", base_core_type);
4025 return;
4026 }
4027
4028 if (cc->core_id % smp_threads) {
4029 error_setg(errp, "invalid core id %d", cc->core_id);
4030 return;
4031 }
4032
4033 /*
4034 * In general we should have homogeneous threads-per-core, but old
4035 * (pre hotplug support) machine types allow the last core to have
4036 * reduced threads as a compatibility hack for when we allowed
4037 * total vcpus not a multiple of threads-per-core.
4038 */
4039 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
4040 error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
4041 smp_threads);
4042 return;
4043 }
4044
4045 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
4046 if (!core_slot) {
4047 error_setg(errp, "core id %d out of range", cc->core_id);
4048 return;
4049 }
4050
4051 if (core_slot->cpu) {
4052 error_setg(errp, "core %d already populated", cc->core_id);
4053 return;
4054 }
4055
4056 numa_cpu_pre_plug(core_slot, dev, errp);
4057 }
4058
4059 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
4060 void *fdt, int *fdt_start_offset, Error **errp)
4061 {
4062 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
4063 int intc_phandle;
4064
4065 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
4066 if (intc_phandle <= 0) {
4067 return -1;
4068 }
4069
4070 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
4071 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
4072 return -1;
4073 }
4074
4075 /* generally SLOF creates these, for hotplug it's up to QEMU */
4076 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
4077
4078 return 0;
4079 }
4080
4081 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4082 Error **errp)
4083 {
4084 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4085 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4086 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4087 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
4088 SpaprDrc *drc;
4089
4090 if (dev->hotplugged && !smc->dr_phb_enabled) {
4091 error_setg(errp, "PHB hotplug not supported for this machine");
4092 return false;
4093 }
4094
4095 if (sphb->index == (uint32_t)-1) {
4096 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
4097 return false;
4098 }
4099
4100 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4101 if (drc && drc->dev) {
4102 error_setg(errp, "PHB %d already attached", sphb->index);
4103 return false;
4104 }
4105
4106 /*
4107 * This will check that sphb->index doesn't exceed the maximum number of
4108 * PHBs for the current machine type.
4109 */
4110 return
4111 smc->phb_placement(spapr, sphb->index,
4112 &sphb->buid, &sphb->io_win_addr,
4113 &sphb->mem_win_addr, &sphb->mem64_win_addr,
4114 windows_supported, sphb->dma_liobn,
4115 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
4116 errp);
4117 }
4118
4119 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4120 {
4121 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4122 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4123 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4124 SpaprDrc *drc;
4125 bool hotplugged = spapr_drc_hotplugged(dev);
4126
4127 if (!smc->dr_phb_enabled) {
4128 return;
4129 }
4130
4131 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4132 /* hotplug hooks should check it's enabled before getting this far */
4133 assert(drc);
4134
4135 /* spapr_phb_pre_plug() already checked the DRC is attachable */
4136 spapr_drc_attach(drc, dev);
4137
4138 if (hotplugged) {
4139 spapr_hotplug_req_add_by_index(drc);
4140 } else {
4141 spapr_drc_reset(drc);
4142 }
4143 }
4144
4145 void spapr_phb_release(DeviceState *dev)
4146 {
4147 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4148
4149 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4150 object_unparent(OBJECT(dev));
4151 }
4152
4153 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4154 {
4155 qdev_unrealize(dev);
4156 }
4157
4158 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4159 DeviceState *dev, Error **errp)
4160 {
4161 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4162 SpaprDrc *drc;
4163
4164 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4165 assert(drc);
4166
4167 if (!spapr_drc_unplug_requested(drc)) {
4168 spapr_drc_unplug_request(drc);
4169 spapr_hotplug_req_remove_by_index(drc);
4170 } else {
4171 error_setg(errp,
4172 "PCI Host Bridge unplug already in progress for device %s",
4173 dev->id);
4174 }
4175 }
4176
4177 static
4178 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4179 Error **errp)
4180 {
4181 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4182
4183 if (spapr->tpm_proxy != NULL) {
4184 error_setg(errp, "Only one TPM proxy can be specified for this machine");
4185 return false;
4186 }
4187
4188 return true;
4189 }
4190
4191 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4192 {
4193 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4194 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4195
4196 /* Already checked in spapr_tpm_proxy_pre_plug() */
4197 g_assert(spapr->tpm_proxy == NULL);
4198
4199 spapr->tpm_proxy = tpm_proxy;
4200 }
4201
4202 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4203 {
4204 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4205
4206 qdev_unrealize(dev);
4207 object_unparent(OBJECT(dev));
4208 spapr->tpm_proxy = NULL;
4209 }
4210
4211 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4212 DeviceState *dev, Error **errp)
4213 {
4214 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4215 spapr_memory_plug(hotplug_dev, dev);
4216 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4217 spapr_core_plug(hotplug_dev, dev);
4218 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4219 spapr_phb_plug(hotplug_dev, dev);
4220 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4221 spapr_tpm_proxy_plug(hotplug_dev, dev);
4222 }
4223 }
4224
4225 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4226 DeviceState *dev, Error **errp)
4227 {
4228 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4229 spapr_memory_unplug(hotplug_dev, dev);
4230 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4231 spapr_core_unplug(hotplug_dev, dev);
4232 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4233 spapr_phb_unplug(hotplug_dev, dev);
4234 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4235 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4236 }
4237 }
4238
4239 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr)
4240 {
4241 return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) ||
4242 /*
4243 * CAS will process all pending unplug requests.
4244 *
4245 * HACK: a guest could theoretically have cleared all bits in OV5,
4246 * but none of the guests we care for do.
4247 */
4248 spapr_ovec_empty(spapr->ov5_cas);
4249 }
4250
4251 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4252 DeviceState *dev, Error **errp)
4253 {
4254 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4255 MachineClass *mc = MACHINE_GET_CLASS(sms);
4256 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4257
4258 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4259 if (spapr_memory_hot_unplug_supported(sms)) {
4260 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4261 } else {
4262 error_setg(errp, "Memory hot unplug not supported for this guest");
4263 }
4264 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4265 if (!mc->has_hotpluggable_cpus) {
4266 error_setg(errp, "CPU hot unplug not supported on this machine");
4267 return;
4268 }
4269 spapr_core_unplug_request(hotplug_dev, dev, errp);
4270 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4271 if (!smc->dr_phb_enabled) {
4272 error_setg(errp, "PHB hot unplug not supported on this machine");
4273 return;
4274 }
4275 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4276 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4277 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4278 }
4279 }
4280
4281 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4282 DeviceState *dev, Error **errp)
4283 {
4284 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4285 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4286 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4287 spapr_core_pre_plug(hotplug_dev, dev, errp);
4288 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4289 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4290 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4291 spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp);
4292 }
4293 }
4294
4295 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4296 DeviceState *dev)
4297 {
4298 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4299 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4300 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4301 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4302 return HOTPLUG_HANDLER(machine);
4303 }
4304 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4305 PCIDevice *pcidev = PCI_DEVICE(dev);
4306 PCIBus *root = pci_device_root_bus(pcidev);
4307 SpaprPhbState *phb =
4308 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4309 TYPE_SPAPR_PCI_HOST_BRIDGE);
4310
4311 if (phb) {
4312 return HOTPLUG_HANDLER(phb);
4313 }
4314 }
4315 return NULL;
4316 }
4317
4318 static CpuInstanceProperties
4319 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4320 {
4321 CPUArchId *core_slot;
4322 MachineClass *mc = MACHINE_GET_CLASS(machine);
4323
4324 /* make sure possible_cpu are intialized */
4325 mc->possible_cpu_arch_ids(machine);
4326 /* get CPU core slot containing thread that matches cpu_index */
4327 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4328 assert(core_slot);
4329 return core_slot->props;
4330 }
4331
4332 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4333 {
4334 return idx / ms->smp.cores % ms->numa_state->num_nodes;
4335 }
4336
4337 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4338 {
4339 int i;
4340 unsigned int smp_threads = machine->smp.threads;
4341 unsigned int smp_cpus = machine->smp.cpus;
4342 const char *core_type;
4343 int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4344 MachineClass *mc = MACHINE_GET_CLASS(machine);
4345
4346 if (!mc->has_hotpluggable_cpus) {
4347 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4348 }
4349 if (machine->possible_cpus) {
4350 assert(machine->possible_cpus->len == spapr_max_cores);
4351 return machine->possible_cpus;
4352 }
4353
4354 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4355 if (!core_type) {
4356 error_report("Unable to find sPAPR CPU Core definition");
4357 exit(1);
4358 }
4359
4360 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4361 sizeof(CPUArchId) * spapr_max_cores);
4362 machine->possible_cpus->len = spapr_max_cores;
4363 for (i = 0; i < machine->possible_cpus->len; i++) {
4364 int core_id = i * smp_threads;
4365
4366 machine->possible_cpus->cpus[i].type = core_type;
4367 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4368 machine->possible_cpus->cpus[i].arch_id = core_id;
4369 machine->possible_cpus->cpus[i].props.has_core_id = true;
4370 machine->possible_cpus->cpus[i].props.core_id = core_id;
4371 }
4372 return machine->possible_cpus;
4373 }
4374
4375 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4376 uint64_t *buid, hwaddr *pio,
4377 hwaddr *mmio32, hwaddr *mmio64,
4378 unsigned n_dma, uint32_t *liobns,
4379 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4380 {
4381 /*
4382 * New-style PHB window placement.
4383 *
4384 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4385 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4386 * windows.
4387 *
4388 * Some guest kernels can't work with MMIO windows above 1<<46
4389 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4390 *
4391 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4392 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4393 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4394 * 1TiB 64-bit MMIO windows for each PHB.
4395 */
4396 const uint64_t base_buid = 0x800000020000000ULL;
4397 int i;
4398
4399 /* Sanity check natural alignments */
4400 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4401 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4402 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4403 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4404 /* Sanity check bounds */
4405 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4406 SPAPR_PCI_MEM32_WIN_SIZE);
4407 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4408 SPAPR_PCI_MEM64_WIN_SIZE);
4409
4410 if (index >= SPAPR_MAX_PHBS) {
4411 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4412 SPAPR_MAX_PHBS - 1);
4413 return false;
4414 }
4415
4416 *buid = base_buid + index;
4417 for (i = 0; i < n_dma; ++i) {
4418 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4419 }
4420
4421 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4422 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4423 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4424
4425 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4426 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4427 return true;
4428 }
4429
4430 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4431 {
4432 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4433
4434 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4435 }
4436
4437 static void spapr_ics_resend(XICSFabric *dev)
4438 {
4439 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4440
4441 ics_resend(spapr->ics);
4442 }
4443
4444 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4445 {
4446 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4447
4448 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4449 }
4450
4451 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4452 Monitor *mon)
4453 {
4454 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4455
4456 spapr_irq_print_info(spapr, mon);
4457 monitor_printf(mon, "irqchip: %s\n",
4458 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4459 }
4460
4461 /*
4462 * This is a XIVE only operation
4463 */
4464 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4465 uint8_t nvt_blk, uint32_t nvt_idx,
4466 bool cam_ignore, uint8_t priority,
4467 uint32_t logic_serv, XiveTCTXMatch *match)
4468 {
4469 SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4470 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4471 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4472 int count;
4473
4474 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4475 priority, logic_serv, match);
4476 if (count < 0) {
4477 return count;
4478 }
4479
4480 /*
4481 * When we implement the save and restore of the thread interrupt
4482 * contexts in the enter/exit CPU handlers of the machine and the
4483 * escalations in QEMU, we should be able to handle non dispatched
4484 * vCPUs.
4485 *
4486 * Until this is done, the sPAPR machine should find at least one
4487 * matching context always.
4488 */
4489 if (count == 0) {
4490 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4491 nvt_blk, nvt_idx);
4492 }
4493
4494 return count;
4495 }
4496
4497 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4498 {
4499 return cpu->vcpu_id;
4500 }
4501
4502 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4503 {
4504 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4505 MachineState *ms = MACHINE(spapr);
4506 int vcpu_id;
4507
4508 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4509
4510 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4511 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4512 error_append_hint(errp, "Adjust the number of cpus to %d "
4513 "or try to raise the number of threads per core\n",
4514 vcpu_id * ms->smp.threads / spapr->vsmt);
4515 return false;
4516 }
4517
4518 cpu->vcpu_id = vcpu_id;
4519 return true;
4520 }
4521
4522 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4523 {
4524 CPUState *cs;
4525
4526 CPU_FOREACH(cs) {
4527 PowerPCCPU *cpu = POWERPC_CPU(cs);
4528
4529 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4530 return cpu;
4531 }
4532 }
4533
4534 return NULL;
4535 }
4536
4537 static bool spapr_cpu_in_nested(PowerPCCPU *cpu)
4538 {
4539 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4540
4541 return spapr_cpu->in_nested;
4542 }
4543
4544 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4545 {
4546 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4547
4548 /* These are only called by TCG, KVM maintains dispatch state */
4549
4550 spapr_cpu->prod = false;
4551 if (spapr_cpu->vpa_addr) {
4552 CPUState *cs = CPU(cpu);
4553 uint32_t dispatch;
4554
4555 dispatch = ldl_be_phys(cs->as,
4556 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4557 dispatch++;
4558 if ((dispatch & 1) != 0) {
4559 qemu_log_mask(LOG_GUEST_ERROR,
4560 "VPA: incorrect dispatch counter value for "
4561 "dispatched partition %u, correcting.\n", dispatch);
4562 dispatch++;
4563 }
4564 stl_be_phys(cs->as,
4565 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4566 }
4567 }
4568
4569 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4570 {
4571 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4572
4573 if (spapr_cpu->vpa_addr) {
4574 CPUState *cs = CPU(cpu);
4575 uint32_t dispatch;
4576
4577 dispatch = ldl_be_phys(cs->as,
4578 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4579 dispatch++;
4580 if ((dispatch & 1) != 1) {
4581 qemu_log_mask(LOG_GUEST_ERROR,
4582 "VPA: incorrect dispatch counter value for "
4583 "preempted partition %u, correcting.\n", dispatch);
4584 dispatch++;
4585 }
4586 stl_be_phys(cs->as,
4587 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4588 }
4589 }
4590
4591 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4592 {
4593 MachineClass *mc = MACHINE_CLASS(oc);
4594 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4595 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4596 NMIClass *nc = NMI_CLASS(oc);
4597 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4598 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4599 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4600 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4601 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4602 VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc);
4603
4604 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4605 mc->ignore_boot_device_suffixes = true;
4606
4607 /*
4608 * We set up the default / latest behaviour here. The class_init
4609 * functions for the specific versioned machine types can override
4610 * these details for backwards compatibility
4611 */
4612 mc->init = spapr_machine_init;
4613 mc->reset = spapr_machine_reset;
4614 mc->block_default_type = IF_SCSI;
4615
4616 /*
4617 * Setting max_cpus to INT32_MAX. Both KVM and TCG max_cpus values
4618 * should be limited by the host capability instead of hardcoded.
4619 * max_cpus for KVM guests will be checked in kvm_init(), and TCG
4620 * guests are welcome to have as many CPUs as the host are capable
4621 * of emulate.
4622 */
4623 mc->max_cpus = INT32_MAX;
4624
4625 mc->no_parallel = 1;
4626 mc->default_boot_order = "";
4627 mc->default_ram_size = 512 * MiB;
4628 mc->default_ram_id = "ppc_spapr.ram";
4629 mc->default_display = "std";
4630 mc->kvm_type = spapr_kvm_type;
4631 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4632 mc->pci_allow_0_address = true;
4633 assert(!mc->get_hotplug_handler);
4634 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4635 hc->pre_plug = spapr_machine_device_pre_plug;
4636 hc->plug = spapr_machine_device_plug;
4637 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4638 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4639 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4640 hc->unplug_request = spapr_machine_device_unplug_request;
4641 hc->unplug = spapr_machine_device_unplug;
4642
4643 smc->dr_lmb_enabled = true;
4644 smc->update_dt_enabled = true;
4645 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2");
4646 mc->has_hotpluggable_cpus = true;
4647 mc->nvdimm_supported = true;
4648 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4649 fwc->get_dev_path = spapr_get_fw_dev_path;
4650 nc->nmi_monitor_handler = spapr_nmi;
4651 smc->phb_placement = spapr_phb_placement;
4652 vhc->cpu_in_nested = spapr_cpu_in_nested;
4653 vhc->deliver_hv_excp = spapr_exit_nested;
4654 vhc->hypercall = emulate_spapr_hypercall;
4655 vhc->hpt_mask = spapr_hpt_mask;
4656 vhc->map_hptes = spapr_map_hptes;
4657 vhc->unmap_hptes = spapr_unmap_hptes;
4658 vhc->hpte_set_c = spapr_hpte_set_c;
4659 vhc->hpte_set_r = spapr_hpte_set_r;
4660 vhc->get_pate = spapr_get_pate;
4661 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4662 vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4663 vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4664 xic->ics_get = spapr_ics_get;
4665 xic->ics_resend = spapr_ics_resend;
4666 xic->icp_get = spapr_icp_get;
4667 ispc->print_info = spapr_pic_print_info;
4668 /* Force NUMA node memory size to be a multiple of
4669 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4670 * in which LMBs are represented and hot-added
4671 */
4672 mc->numa_mem_align_shift = 28;
4673 mc->auto_enable_numa = true;
4674
4675 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4676 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4677 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4678 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4679 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4680 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4681 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4682 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4683 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4684 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4685 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4686 smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF;
4687
4688 /*
4689 * This cap specifies whether the AIL 3 mode for
4690 * H_SET_RESOURCE is supported. The default is modified
4691 * by default_caps_with_cpu().
4692 */
4693 smc->default_caps.caps[SPAPR_CAP_AIL_MODE_3] = SPAPR_CAP_ON;
4694 spapr_caps_add_properties(smc);
4695 smc->irq = &spapr_irq_dual;
4696 smc->dr_phb_enabled = true;
4697 smc->linux_pci_probe = true;
4698 smc->smp_threads_vsmt = true;
4699 smc->nr_xirqs = SPAPR_NR_XIRQS;
4700 xfc->match_nvt = spapr_match_nvt;
4701 vmc->client_architecture_support = spapr_vof_client_architecture_support;
4702 vmc->quiesce = spapr_vof_quiesce;
4703 vmc->setprop = spapr_vof_setprop;
4704 }
4705
4706 static const TypeInfo spapr_machine_info = {
4707 .name = TYPE_SPAPR_MACHINE,
4708 .parent = TYPE_MACHINE,
4709 .abstract = true,
4710 .instance_size = sizeof(SpaprMachineState),
4711 .instance_init = spapr_instance_init,
4712 .instance_finalize = spapr_machine_finalizefn,
4713 .class_size = sizeof(SpaprMachineClass),
4714 .class_init = spapr_machine_class_init,
4715 .interfaces = (InterfaceInfo[]) {
4716 { TYPE_FW_PATH_PROVIDER },
4717 { TYPE_NMI },
4718 { TYPE_HOTPLUG_HANDLER },
4719 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4720 { TYPE_XICS_FABRIC },
4721 { TYPE_INTERRUPT_STATS_PROVIDER },
4722 { TYPE_XIVE_FABRIC },
4723 { TYPE_VOF_MACHINE_IF },
4724 { }
4725 },
4726 };
4727
4728 static void spapr_machine_latest_class_options(MachineClass *mc)
4729 {
4730 mc->alias = "pseries";
4731 mc->is_default = true;
4732 }
4733
4734 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4735 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4736 void *data) \
4737 { \
4738 MachineClass *mc = MACHINE_CLASS(oc); \
4739 spapr_machine_##suffix##_class_options(mc); \
4740 if (latest) { \
4741 spapr_machine_latest_class_options(mc); \
4742 } \
4743 } \
4744 static const TypeInfo spapr_machine_##suffix##_info = { \
4745 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4746 .parent = TYPE_SPAPR_MACHINE, \
4747 .class_init = spapr_machine_##suffix##_class_init, \
4748 }; \
4749 static void spapr_machine_register_##suffix(void) \
4750 { \
4751 type_register(&spapr_machine_##suffix##_info); \
4752 } \
4753 type_init(spapr_machine_register_##suffix)
4754
4755 /*
4756 * pseries-8.1
4757 */
4758 static void spapr_machine_8_1_class_options(MachineClass *mc)
4759 {
4760 /* Defaults for the latest behaviour inherited from the base class */
4761 }
4762
4763 DEFINE_SPAPR_MACHINE(8_1, "8.1", true);
4764
4765 /*
4766 * pseries-8.0
4767 */
4768 static void spapr_machine_8_0_class_options(MachineClass *mc)
4769 {
4770 spapr_machine_8_1_class_options(mc);
4771 compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len);
4772 }
4773
4774 DEFINE_SPAPR_MACHINE(8_0, "8.0", false);
4775
4776 /*
4777 * pseries-7.2
4778 */
4779 static void spapr_machine_7_2_class_options(MachineClass *mc)
4780 {
4781 spapr_machine_8_0_class_options(mc);
4782 compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len);
4783 }
4784
4785 DEFINE_SPAPR_MACHINE(7_2, "7.2", false);
4786
4787 /*
4788 * pseries-7.1
4789 */
4790 static void spapr_machine_7_1_class_options(MachineClass *mc)
4791 {
4792 spapr_machine_7_2_class_options(mc);
4793 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
4794 }
4795
4796 DEFINE_SPAPR_MACHINE(7_1, "7.1", false);
4797
4798 /*
4799 * pseries-7.0
4800 */
4801 static void spapr_machine_7_0_class_options(MachineClass *mc)
4802 {
4803 spapr_machine_7_1_class_options(mc);
4804 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
4805 }
4806
4807 DEFINE_SPAPR_MACHINE(7_0, "7.0", false);
4808
4809 /*
4810 * pseries-6.2
4811 */
4812 static void spapr_machine_6_2_class_options(MachineClass *mc)
4813 {
4814 spapr_machine_7_0_class_options(mc);
4815 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
4816 }
4817
4818 DEFINE_SPAPR_MACHINE(6_2, "6.2", false);
4819
4820 /*
4821 * pseries-6.1
4822 */
4823 static void spapr_machine_6_1_class_options(MachineClass *mc)
4824 {
4825 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4826
4827 spapr_machine_6_2_class_options(mc);
4828 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
4829 smc->pre_6_2_numa_affinity = true;
4830 mc->smp_props.prefer_sockets = true;
4831 }
4832
4833 DEFINE_SPAPR_MACHINE(6_1, "6.1", false);
4834
4835 /*
4836 * pseries-6.0
4837 */
4838 static void spapr_machine_6_0_class_options(MachineClass *mc)
4839 {
4840 spapr_machine_6_1_class_options(mc);
4841 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
4842 }
4843
4844 DEFINE_SPAPR_MACHINE(6_0, "6.0", false);
4845
4846 /*
4847 * pseries-5.2
4848 */
4849 static void spapr_machine_5_2_class_options(MachineClass *mc)
4850 {
4851 spapr_machine_6_0_class_options(mc);
4852 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
4853 }
4854
4855 DEFINE_SPAPR_MACHINE(5_2, "5.2", false);
4856
4857 /*
4858 * pseries-5.1
4859 */
4860 static void spapr_machine_5_1_class_options(MachineClass *mc)
4861 {
4862 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4863
4864 spapr_machine_5_2_class_options(mc);
4865 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4866 smc->pre_5_2_numa_associativity = true;
4867 }
4868
4869 DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4870
4871 /*
4872 * pseries-5.0
4873 */
4874 static void spapr_machine_5_0_class_options(MachineClass *mc)
4875 {
4876 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4877 static GlobalProperty compat[] = {
4878 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4879 };
4880
4881 spapr_machine_5_1_class_options(mc);
4882 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4883 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4884 mc->numa_mem_supported = true;
4885 smc->pre_5_1_assoc_refpoints = true;
4886 }
4887
4888 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4889
4890 /*
4891 * pseries-4.2
4892 */
4893 static void spapr_machine_4_2_class_options(MachineClass *mc)
4894 {
4895 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4896
4897 spapr_machine_5_0_class_options(mc);
4898 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4899 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4900 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4901 smc->rma_limit = 16 * GiB;
4902 mc->nvdimm_supported = false;
4903 }
4904
4905 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4906
4907 /*
4908 * pseries-4.1
4909 */
4910 static void spapr_machine_4_1_class_options(MachineClass *mc)
4911 {
4912 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4913 static GlobalProperty compat[] = {
4914 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4915 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4916 };
4917
4918 spapr_machine_4_2_class_options(mc);
4919 smc->linux_pci_probe = false;
4920 smc->smp_threads_vsmt = false;
4921 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4922 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4923 }
4924
4925 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4926
4927 /*
4928 * pseries-4.0
4929 */
4930 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4931 uint64_t *buid, hwaddr *pio,
4932 hwaddr *mmio32, hwaddr *mmio64,
4933 unsigned n_dma, uint32_t *liobns,
4934 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4935 {
4936 if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma,
4937 liobns, nv2gpa, nv2atsd, errp)) {
4938 return false;
4939 }
4940
4941 *nv2gpa = 0;
4942 *nv2atsd = 0;
4943 return true;
4944 }
4945 static void spapr_machine_4_0_class_options(MachineClass *mc)
4946 {
4947 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4948
4949 spapr_machine_4_1_class_options(mc);
4950 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4951 smc->phb_placement = phb_placement_4_0;
4952 smc->irq = &spapr_irq_xics;
4953 smc->pre_4_1_migration = true;
4954 }
4955
4956 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4957
4958 /*
4959 * pseries-3.1
4960 */
4961 static void spapr_machine_3_1_class_options(MachineClass *mc)
4962 {
4963 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4964
4965 spapr_machine_4_0_class_options(mc);
4966 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4967
4968 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4969 smc->update_dt_enabled = false;
4970 smc->dr_phb_enabled = false;
4971 smc->broken_host_serial_model = true;
4972 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4973 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4974 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4975 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4976 }
4977
4978 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4979
4980 /*
4981 * pseries-3.0
4982 */
4983
4984 static void spapr_machine_3_0_class_options(MachineClass *mc)
4985 {
4986 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4987
4988 spapr_machine_3_1_class_options(mc);
4989 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4990
4991 smc->legacy_irq_allocation = true;
4992 smc->nr_xirqs = 0x400;
4993 smc->irq = &spapr_irq_xics_legacy;
4994 }
4995
4996 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4997
4998 /*
4999 * pseries-2.12
5000 */
5001 static void spapr_machine_2_12_class_options(MachineClass *mc)
5002 {
5003 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5004 static GlobalProperty compat[] = {
5005 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
5006 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
5007 };
5008
5009 spapr_machine_3_0_class_options(mc);
5010 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
5011 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5012
5013 /* We depend on kvm_enabled() to choose a default value for the
5014 * hpt-max-page-size capability. Of course we can't do it here
5015 * because this is too early and the HW accelerator isn't initialzed
5016 * yet. Postpone this to machine init (see default_caps_with_cpu()).
5017 */
5018 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
5019 }
5020
5021 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
5022
5023 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
5024 {
5025 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5026
5027 spapr_machine_2_12_class_options(mc);
5028 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
5029 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
5030 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
5031 }
5032
5033 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
5034
5035 /*
5036 * pseries-2.11
5037 */
5038
5039 static void spapr_machine_2_11_class_options(MachineClass *mc)
5040 {
5041 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5042
5043 spapr_machine_2_12_class_options(mc);
5044 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
5045 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
5046 }
5047
5048 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
5049
5050 /*
5051 * pseries-2.10
5052 */
5053
5054 static void spapr_machine_2_10_class_options(MachineClass *mc)
5055 {
5056 spapr_machine_2_11_class_options(mc);
5057 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
5058 }
5059
5060 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
5061
5062 /*
5063 * pseries-2.9
5064 */
5065
5066 static void spapr_machine_2_9_class_options(MachineClass *mc)
5067 {
5068 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5069 static GlobalProperty compat[] = {
5070 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
5071 };
5072
5073 spapr_machine_2_10_class_options(mc);
5074 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
5075 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5076 smc->pre_2_10_has_unused_icps = true;
5077 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
5078 }
5079
5080 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
5081
5082 /*
5083 * pseries-2.8
5084 */
5085
5086 static void spapr_machine_2_8_class_options(MachineClass *mc)
5087 {
5088 static GlobalProperty compat[] = {
5089 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
5090 };
5091
5092 spapr_machine_2_9_class_options(mc);
5093 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
5094 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5095 mc->numa_mem_align_shift = 23;
5096 }
5097
5098 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
5099
5100 /*
5101 * pseries-2.7
5102 */
5103
5104 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
5105 uint64_t *buid, hwaddr *pio,
5106 hwaddr *mmio32, hwaddr *mmio64,
5107 unsigned n_dma, uint32_t *liobns,
5108 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
5109 {
5110 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
5111 const uint64_t base_buid = 0x800000020000000ULL;
5112 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
5113 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
5114 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
5115 const uint32_t max_index = 255;
5116 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
5117
5118 uint64_t ram_top = MACHINE(spapr)->ram_size;
5119 hwaddr phb0_base, phb_base;
5120 int i;
5121
5122 /* Do we have device memory? */
5123 if (MACHINE(spapr)->device_memory) {
5124 /* Can't just use maxram_size, because there may be an
5125 * alignment gap between normal and device memory regions
5126 */
5127 ram_top = MACHINE(spapr)->device_memory->base +
5128 memory_region_size(&MACHINE(spapr)->device_memory->mr);
5129 }
5130
5131 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
5132
5133 if (index > max_index) {
5134 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
5135 max_index);
5136 return false;
5137 }
5138
5139 *buid = base_buid + index;
5140 for (i = 0; i < n_dma; ++i) {
5141 liobns[i] = SPAPR_PCI_LIOBN(index, i);
5142 }
5143
5144 phb_base = phb0_base + index * phb_spacing;
5145 *pio = phb_base + pio_offset;
5146 *mmio32 = phb_base + mmio_offset;
5147 /*
5148 * We don't set the 64-bit MMIO window, relying on the PHB's
5149 * fallback behaviour of automatically splitting a large "32-bit"
5150 * window into contiguous 32-bit and 64-bit windows
5151 */
5152
5153 *nv2gpa = 0;
5154 *nv2atsd = 0;
5155 return true;
5156 }
5157
5158 static void spapr_machine_2_7_class_options(MachineClass *mc)
5159 {
5160 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5161 static GlobalProperty compat[] = {
5162 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
5163 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
5164 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
5165 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
5166 };
5167
5168 spapr_machine_2_8_class_options(mc);
5169 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
5170 mc->default_machine_opts = "modern-hotplug-events=off";
5171 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
5172 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5173 smc->phb_placement = phb_placement_2_7;
5174 }
5175
5176 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
5177
5178 /*
5179 * pseries-2.6
5180 */
5181
5182 static void spapr_machine_2_6_class_options(MachineClass *mc)
5183 {
5184 static GlobalProperty compat[] = {
5185 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
5186 };
5187
5188 spapr_machine_2_7_class_options(mc);
5189 mc->has_hotpluggable_cpus = false;
5190 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
5191 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5192 }
5193
5194 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
5195
5196 /*
5197 * pseries-2.5
5198 */
5199
5200 static void spapr_machine_2_5_class_options(MachineClass *mc)
5201 {
5202 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5203 static GlobalProperty compat[] = {
5204 { "spapr-vlan", "use-rx-buffer-pools", "off" },
5205 };
5206
5207 spapr_machine_2_6_class_options(mc);
5208 smc->use_ohci_by_default = true;
5209 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
5210 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5211 }
5212
5213 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
5214
5215 /*
5216 * pseries-2.4
5217 */
5218
5219 static void spapr_machine_2_4_class_options(MachineClass *mc)
5220 {
5221 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5222
5223 spapr_machine_2_5_class_options(mc);
5224 smc->dr_lmb_enabled = false;
5225 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
5226 }
5227
5228 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
5229
5230 /*
5231 * pseries-2.3
5232 */
5233
5234 static void spapr_machine_2_3_class_options(MachineClass *mc)
5235 {
5236 static GlobalProperty compat[] = {
5237 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
5238 };
5239 spapr_machine_2_4_class_options(mc);
5240 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
5241 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5242 }
5243 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
5244
5245 /*
5246 * pseries-2.2
5247 */
5248
5249 static void spapr_machine_2_2_class_options(MachineClass *mc)
5250 {
5251 static GlobalProperty compat[] = {
5252 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
5253 };
5254
5255 spapr_machine_2_3_class_options(mc);
5256 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
5257 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5258 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
5259 }
5260 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
5261
5262 /*
5263 * pseries-2.1
5264 */
5265
5266 static void spapr_machine_2_1_class_options(MachineClass *mc)
5267 {
5268 spapr_machine_2_2_class_options(mc);
5269 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
5270 }
5271 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
5272
5273 static void spapr_machine_register_types(void)
5274 {
5275 type_register_static(&spapr_machine_info);
5276 }
5277
5278 type_init(spapr_machine_register_types)