]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr.c
hw/ppc/spapr: Reduce "vof.h" inclusion
[mirror_qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 */
26
27 #include "qemu/osdep.h"
28 #include "qemu/datadir.h"
29 #include "qemu/memalign.h"
30 #include "qemu/guest-random.h"
31 #include "qapi/error.h"
32 #include "qapi/qapi-events-machine.h"
33 #include "qapi/qapi-events-qdev.h"
34 #include "qapi/visitor.h"
35 #include "sysemu/sysemu.h"
36 #include "sysemu/hostmem.h"
37 #include "sysemu/numa.h"
38 #include "sysemu/qtest.h"
39 #include "sysemu/reset.h"
40 #include "sysemu/runstate.h"
41 #include "qemu/log.h"
42 #include "hw/fw-path-provider.h"
43 #include "elf.h"
44 #include "net/net.h"
45 #include "sysemu/device_tree.h"
46 #include "sysemu/cpus.h"
47 #include "sysemu/hw_accel.h"
48 #include "kvm_ppc.h"
49 #include "migration/misc.h"
50 #include "migration/qemu-file-types.h"
51 #include "migration/global_state.h"
52 #include "migration/register.h"
53 #include "migration/blocker.h"
54 #include "mmu-hash64.h"
55 #include "mmu-book3s-v3.h"
56 #include "cpu-models.h"
57 #include "hw/core/cpu.h"
58
59 #include "hw/ppc/ppc.h"
60 #include "hw/loader.h"
61
62 #include "hw/ppc/fdt.h"
63 #include "hw/ppc/spapr.h"
64 #include "hw/ppc/spapr_vio.h"
65 #include "hw/ppc/vof.h"
66 #include "hw/qdev-properties.h"
67 #include "hw/pci-host/spapr.h"
68 #include "hw/pci/msi.h"
69
70 #include "hw/pci/pci.h"
71 #include "hw/scsi/scsi.h"
72 #include "hw/virtio/virtio-scsi.h"
73 #include "hw/virtio/vhost-scsi-common.h"
74
75 #include "exec/ram_addr.h"
76 #include "hw/usb.h"
77 #include "qemu/config-file.h"
78 #include "qemu/error-report.h"
79 #include "trace.h"
80 #include "hw/nmi.h"
81 #include "hw/intc/intc.h"
82
83 #include "hw/ppc/spapr_cpu_core.h"
84 #include "hw/mem/memory-device.h"
85 #include "hw/ppc/spapr_tpm_proxy.h"
86 #include "hw/ppc/spapr_nvdimm.h"
87 #include "hw/ppc/spapr_numa.h"
88 #include "hw/ppc/pef.h"
89
90 #include "monitor/monitor.h"
91
92 #include <libfdt.h>
93
94 /* SLOF memory layout:
95 *
96 * SLOF raw image loaded at 0, copies its romfs right below the flat
97 * device-tree, then position SLOF itself 31M below that
98 *
99 * So we set FW_OVERHEAD to 40MB which should account for all of that
100 * and more
101 *
102 * We load our kernel at 4M, leaving space for SLOF initial image
103 */
104 #define FDT_MAX_ADDR 0x80000000 /* FDT must stay below that */
105 #define FW_MAX_SIZE 0x400000
106 #define FW_FILE_NAME "slof.bin"
107 #define FW_FILE_NAME_VOF "vof.bin"
108 #define FW_OVERHEAD 0x2800000
109 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
110
111 #define MIN_RMA_SLOF (128 * MiB)
112
113 #define PHANDLE_INTC 0x00001111
114
115 /* These two functions implement the VCPU id numbering: one to compute them
116 * all and one to identify thread 0 of a VCORE. Any change to the first one
117 * is likely to have an impact on the second one, so let's keep them close.
118 */
119 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
120 {
121 MachineState *ms = MACHINE(spapr);
122 unsigned int smp_threads = ms->smp.threads;
123
124 assert(spapr->vsmt);
125 return
126 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
127 }
128 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
129 PowerPCCPU *cpu)
130 {
131 assert(spapr->vsmt);
132 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
133 }
134
135 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
136 {
137 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
138 * and newer QEMUs don't even have them. In both cases, we don't want
139 * to send anything on the wire.
140 */
141 return false;
142 }
143
144 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
145 .name = "icp/server",
146 .version_id = 1,
147 .minimum_version_id = 1,
148 .needed = pre_2_10_vmstate_dummy_icp_needed,
149 .fields = (VMStateField[]) {
150 VMSTATE_UNUSED(4), /* uint32_t xirr */
151 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
152 VMSTATE_UNUSED(1), /* uint8_t mfrr */
153 VMSTATE_END_OF_LIST()
154 },
155 };
156
157 static void pre_2_10_vmstate_register_dummy_icp(int i)
158 {
159 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
160 (void *)(uintptr_t) i);
161 }
162
163 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
164 {
165 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
166 (void *)(uintptr_t) i);
167 }
168
169 int spapr_max_server_number(SpaprMachineState *spapr)
170 {
171 MachineState *ms = MACHINE(spapr);
172
173 assert(spapr->vsmt);
174 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
175 }
176
177 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
178 int smt_threads)
179 {
180 int i, ret = 0;
181 g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads);
182 g_autofree uint32_t *gservers_prop = g_new(uint32_t, smt_threads * 2);
183 int index = spapr_get_vcpu_id(cpu);
184
185 if (cpu->compat_pvr) {
186 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
187 if (ret < 0) {
188 return ret;
189 }
190 }
191
192 /* Build interrupt servers and gservers properties */
193 for (i = 0; i < smt_threads; i++) {
194 servers_prop[i] = cpu_to_be32(index + i);
195 /* Hack, direct the group queues back to cpu 0 */
196 gservers_prop[i*2] = cpu_to_be32(index + i);
197 gservers_prop[i*2 + 1] = 0;
198 }
199 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
200 servers_prop, sizeof(*servers_prop) * smt_threads);
201 if (ret < 0) {
202 return ret;
203 }
204 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
205 gservers_prop, sizeof(*gservers_prop) * smt_threads * 2);
206
207 return ret;
208 }
209
210 static void spapr_dt_pa_features(SpaprMachineState *spapr,
211 PowerPCCPU *cpu,
212 void *fdt, int offset)
213 {
214 uint8_t pa_features_206[] = { 6, 0,
215 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
216 uint8_t pa_features_207[] = { 24, 0,
217 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
218 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
219 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
220 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
221 uint8_t pa_features_300[] = { 66, 0,
222 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
223 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
224 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
225 /* 6: DS207 */
226 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
227 /* 16: Vector */
228 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
229 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
230 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
231 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
232 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
233 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
234 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
235 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
236 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
237 /* 42: PM, 44: PC RA, 46: SC vec'd */
238 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
239 /* 48: SIMD, 50: QP BFP, 52: String */
240 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
241 /* 54: DecFP, 56: DecI, 58: SHA */
242 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
243 /* 60: NM atomic, 62: RNG */
244 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
245 };
246 uint8_t *pa_features = NULL;
247 size_t pa_size;
248
249 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
250 pa_features = pa_features_206;
251 pa_size = sizeof(pa_features_206);
252 }
253 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
254 pa_features = pa_features_207;
255 pa_size = sizeof(pa_features_207);
256 }
257 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
258 pa_features = pa_features_300;
259 pa_size = sizeof(pa_features_300);
260 }
261 if (!pa_features) {
262 return;
263 }
264
265 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
266 /*
267 * Note: we keep CI large pages off by default because a 64K capable
268 * guest provisioned with large pages might otherwise try to map a qemu
269 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
270 * even if that qemu runs on a 4k host.
271 * We dd this bit back here if we are confident this is not an issue
272 */
273 pa_features[3] |= 0x20;
274 }
275 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
276 pa_features[24] |= 0x80; /* Transactional memory support */
277 }
278 if (spapr->cas_pre_isa3_guest && pa_size > 40) {
279 /* Workaround for broken kernels that attempt (guest) radix
280 * mode when they can't handle it, if they see the radix bit set
281 * in pa-features. So hide it from them. */
282 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
283 }
284
285 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
286 }
287
288 static hwaddr spapr_node0_size(MachineState *machine)
289 {
290 if (machine->numa_state->num_nodes) {
291 int i;
292 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
293 if (machine->numa_state->nodes[i].node_mem) {
294 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
295 machine->ram_size);
296 }
297 }
298 }
299 return machine->ram_size;
300 }
301
302 static void add_str(GString *s, const gchar *s1)
303 {
304 g_string_append_len(s, s1, strlen(s1) + 1);
305 }
306
307 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
308 hwaddr start, hwaddr size)
309 {
310 char mem_name[32];
311 uint64_t mem_reg_property[2];
312 int off;
313
314 mem_reg_property[0] = cpu_to_be64(start);
315 mem_reg_property[1] = cpu_to_be64(size);
316
317 sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
318 off = fdt_add_subnode(fdt, 0, mem_name);
319 _FDT(off);
320 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
321 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
322 sizeof(mem_reg_property))));
323 spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
324 return off;
325 }
326
327 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
328 {
329 MemoryDeviceInfoList *info;
330
331 for (info = list; info; info = info->next) {
332 MemoryDeviceInfo *value = info->value;
333
334 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
335 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
336
337 if (addr >= pcdimm_info->addr &&
338 addr < (pcdimm_info->addr + pcdimm_info->size)) {
339 return pcdimm_info->node;
340 }
341 }
342 }
343
344 return -1;
345 }
346
347 struct sPAPRDrconfCellV2 {
348 uint32_t seq_lmbs;
349 uint64_t base_addr;
350 uint32_t drc_index;
351 uint32_t aa_index;
352 uint32_t flags;
353 } QEMU_PACKED;
354
355 typedef struct DrconfCellQueue {
356 struct sPAPRDrconfCellV2 cell;
357 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
358 } DrconfCellQueue;
359
360 static DrconfCellQueue *
361 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
362 uint32_t drc_index, uint32_t aa_index,
363 uint32_t flags)
364 {
365 DrconfCellQueue *elem;
366
367 elem = g_malloc0(sizeof(*elem));
368 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
369 elem->cell.base_addr = cpu_to_be64(base_addr);
370 elem->cell.drc_index = cpu_to_be32(drc_index);
371 elem->cell.aa_index = cpu_to_be32(aa_index);
372 elem->cell.flags = cpu_to_be32(flags);
373
374 return elem;
375 }
376
377 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
378 int offset, MemoryDeviceInfoList *dimms)
379 {
380 MachineState *machine = MACHINE(spapr);
381 uint8_t *int_buf, *cur_index;
382 int ret;
383 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
384 uint64_t addr, cur_addr, size;
385 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
386 uint64_t mem_end = machine->device_memory->base +
387 memory_region_size(&machine->device_memory->mr);
388 uint32_t node, buf_len, nr_entries = 0;
389 SpaprDrc *drc;
390 DrconfCellQueue *elem, *next;
391 MemoryDeviceInfoList *info;
392 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
393 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
394
395 /* Entry to cover RAM and the gap area */
396 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
397 SPAPR_LMB_FLAGS_RESERVED |
398 SPAPR_LMB_FLAGS_DRC_INVALID);
399 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
400 nr_entries++;
401
402 cur_addr = machine->device_memory->base;
403 for (info = dimms; info; info = info->next) {
404 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
405
406 addr = di->addr;
407 size = di->size;
408 node = di->node;
409
410 /*
411 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
412 * area is marked hotpluggable in the next iteration for the bigger
413 * chunk including the NVDIMM occupied area.
414 */
415 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
416 continue;
417
418 /* Entry for hot-pluggable area */
419 if (cur_addr < addr) {
420 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
421 g_assert(drc);
422 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
423 cur_addr, spapr_drc_index(drc), -1, 0);
424 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
425 nr_entries++;
426 }
427
428 /* Entry for DIMM */
429 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
430 g_assert(drc);
431 elem = spapr_get_drconf_cell(size / lmb_size, addr,
432 spapr_drc_index(drc), node,
433 (SPAPR_LMB_FLAGS_ASSIGNED |
434 SPAPR_LMB_FLAGS_HOTREMOVABLE));
435 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
436 nr_entries++;
437 cur_addr = addr + size;
438 }
439
440 /* Entry for remaining hotpluggable area */
441 if (cur_addr < mem_end) {
442 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
443 g_assert(drc);
444 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
445 cur_addr, spapr_drc_index(drc), -1, 0);
446 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
447 nr_entries++;
448 }
449
450 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
451 int_buf = cur_index = g_malloc0(buf_len);
452 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
453 cur_index += sizeof(nr_entries);
454
455 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
456 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
457 cur_index += sizeof(elem->cell);
458 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
459 g_free(elem);
460 }
461
462 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
463 g_free(int_buf);
464 if (ret < 0) {
465 return -1;
466 }
467 return 0;
468 }
469
470 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
471 int offset, MemoryDeviceInfoList *dimms)
472 {
473 MachineState *machine = MACHINE(spapr);
474 int i, ret;
475 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
476 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
477 uint32_t nr_lmbs = (machine->device_memory->base +
478 memory_region_size(&machine->device_memory->mr)) /
479 lmb_size;
480 uint32_t *int_buf, *cur_index, buf_len;
481
482 /*
483 * Allocate enough buffer size to fit in ibm,dynamic-memory
484 */
485 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
486 cur_index = int_buf = g_malloc0(buf_len);
487 int_buf[0] = cpu_to_be32(nr_lmbs);
488 cur_index++;
489 for (i = 0; i < nr_lmbs; i++) {
490 uint64_t addr = i * lmb_size;
491 uint32_t *dynamic_memory = cur_index;
492
493 if (i >= device_lmb_start) {
494 SpaprDrc *drc;
495
496 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
497 g_assert(drc);
498
499 dynamic_memory[0] = cpu_to_be32(addr >> 32);
500 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
501 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
502 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
503 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
504 if (memory_region_present(get_system_memory(), addr)) {
505 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
506 } else {
507 dynamic_memory[5] = cpu_to_be32(0);
508 }
509 } else {
510 /*
511 * LMB information for RMA, boot time RAM and gap b/n RAM and
512 * device memory region -- all these are marked as reserved
513 * and as having no valid DRC.
514 */
515 dynamic_memory[0] = cpu_to_be32(addr >> 32);
516 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
517 dynamic_memory[2] = cpu_to_be32(0);
518 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
519 dynamic_memory[4] = cpu_to_be32(-1);
520 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
521 SPAPR_LMB_FLAGS_DRC_INVALID);
522 }
523
524 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
525 }
526 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
527 g_free(int_buf);
528 if (ret < 0) {
529 return -1;
530 }
531 return 0;
532 }
533
534 /*
535 * Adds ibm,dynamic-reconfiguration-memory node.
536 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
537 * of this device tree node.
538 */
539 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
540 void *fdt)
541 {
542 MachineState *machine = MACHINE(spapr);
543 int ret, offset;
544 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
545 uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
546 cpu_to_be32(lmb_size & 0xffffffff)};
547 MemoryDeviceInfoList *dimms = NULL;
548
549 /*
550 * Don't create the node if there is no device memory
551 */
552 if (machine->ram_size == machine->maxram_size) {
553 return 0;
554 }
555
556 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
557
558 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
559 sizeof(prop_lmb_size));
560 if (ret < 0) {
561 return ret;
562 }
563
564 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
565 if (ret < 0) {
566 return ret;
567 }
568
569 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
570 if (ret < 0) {
571 return ret;
572 }
573
574 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
575 dimms = qmp_memory_device_list();
576 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
577 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
578 } else {
579 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
580 }
581 qapi_free_MemoryDeviceInfoList(dimms);
582
583 if (ret < 0) {
584 return ret;
585 }
586
587 ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
588
589 return ret;
590 }
591
592 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
593 {
594 MachineState *machine = MACHINE(spapr);
595 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
596 hwaddr mem_start, node_size;
597 int i, nb_nodes = machine->numa_state->num_nodes;
598 NodeInfo *nodes = machine->numa_state->nodes;
599
600 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
601 if (!nodes[i].node_mem) {
602 continue;
603 }
604 if (mem_start >= machine->ram_size) {
605 node_size = 0;
606 } else {
607 node_size = nodes[i].node_mem;
608 if (node_size > machine->ram_size - mem_start) {
609 node_size = machine->ram_size - mem_start;
610 }
611 }
612 if (!mem_start) {
613 /* spapr_machine_init() checks for rma_size <= node0_size
614 * already */
615 spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
616 mem_start += spapr->rma_size;
617 node_size -= spapr->rma_size;
618 }
619 for ( ; node_size; ) {
620 hwaddr sizetmp = pow2floor(node_size);
621
622 /* mem_start != 0 here */
623 if (ctzl(mem_start) < ctzl(sizetmp)) {
624 sizetmp = 1ULL << ctzl(mem_start);
625 }
626
627 spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
628 node_size -= sizetmp;
629 mem_start += sizetmp;
630 }
631 }
632
633 /* Generate ibm,dynamic-reconfiguration-memory node if required */
634 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
635 int ret;
636
637 g_assert(smc->dr_lmb_enabled);
638 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
639 if (ret) {
640 return ret;
641 }
642 }
643
644 return 0;
645 }
646
647 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
648 SpaprMachineState *spapr)
649 {
650 MachineState *ms = MACHINE(spapr);
651 PowerPCCPU *cpu = POWERPC_CPU(cs);
652 CPUPPCState *env = &cpu->env;
653 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
654 int index = spapr_get_vcpu_id(cpu);
655 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
656 0xffffffff, 0xffffffff};
657 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
658 : SPAPR_TIMEBASE_FREQ;
659 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
660 uint32_t page_sizes_prop[64];
661 size_t page_sizes_prop_size;
662 unsigned int smp_threads = ms->smp.threads;
663 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
664 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
665 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
666 SpaprDrc *drc;
667 int drc_index;
668 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
669 int i;
670
671 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
672 if (drc) {
673 drc_index = spapr_drc_index(drc);
674 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
675 }
676
677 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
678 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
679
680 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
681 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
682 env->dcache_line_size)));
683 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
684 env->dcache_line_size)));
685 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
686 env->icache_line_size)));
687 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
688 env->icache_line_size)));
689
690 if (pcc->l1_dcache_size) {
691 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
692 pcc->l1_dcache_size)));
693 } else {
694 warn_report("Unknown L1 dcache size for cpu");
695 }
696 if (pcc->l1_icache_size) {
697 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
698 pcc->l1_icache_size)));
699 } else {
700 warn_report("Unknown L1 icache size for cpu");
701 }
702
703 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
704 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
705 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
706 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
707 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
708 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
709
710 if (ppc_has_spr(cpu, SPR_PURR)) {
711 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
712 }
713 if (ppc_has_spr(cpu, SPR_PURR)) {
714 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
715 }
716
717 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
718 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
719 segs, sizeof(segs))));
720 }
721
722 /* Advertise VSX (vector extensions) if available
723 * 1 == VMX / Altivec available
724 * 2 == VSX available
725 *
726 * Only CPUs for which we create core types in spapr_cpu_core.c
727 * are possible, and all of those have VMX */
728 if (env->insns_flags & PPC_ALTIVEC) {
729 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
730 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
731 } else {
732 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
733 }
734 }
735
736 /* Advertise DFP (Decimal Floating Point) if available
737 * 0 / no property == no DFP
738 * 1 == DFP available */
739 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
740 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
741 }
742
743 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
744 sizeof(page_sizes_prop));
745 if (page_sizes_prop_size) {
746 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
747 page_sizes_prop, page_sizes_prop_size)));
748 }
749
750 spapr_dt_pa_features(spapr, cpu, fdt, offset);
751
752 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
753 cs->cpu_index / vcpus_per_socket)));
754
755 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
756 pft_size_prop, sizeof(pft_size_prop))));
757
758 if (ms->numa_state->num_nodes > 1) {
759 _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
760 }
761
762 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
763
764 if (pcc->radix_page_info) {
765 for (i = 0; i < pcc->radix_page_info->count; i++) {
766 radix_AP_encodings[i] =
767 cpu_to_be32(pcc->radix_page_info->entries[i]);
768 }
769 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
770 radix_AP_encodings,
771 pcc->radix_page_info->count *
772 sizeof(radix_AP_encodings[0]))));
773 }
774
775 /*
776 * We set this property to let the guest know that it can use the large
777 * decrementer and its width in bits.
778 */
779 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
780 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
781 pcc->lrg_decr_bits)));
782 }
783
784 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
785 {
786 CPUState **rev;
787 CPUState *cs;
788 int n_cpus;
789 int cpus_offset;
790 int i;
791
792 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
793 _FDT(cpus_offset);
794 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
795 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
796
797 /*
798 * We walk the CPUs in reverse order to ensure that CPU DT nodes
799 * created by fdt_add_subnode() end up in the right order in FDT
800 * for the guest kernel the enumerate the CPUs correctly.
801 *
802 * The CPU list cannot be traversed in reverse order, so we need
803 * to do extra work.
804 */
805 n_cpus = 0;
806 rev = NULL;
807 CPU_FOREACH(cs) {
808 rev = g_renew(CPUState *, rev, n_cpus + 1);
809 rev[n_cpus++] = cs;
810 }
811
812 for (i = n_cpus - 1; i >= 0; i--) {
813 CPUState *cs = rev[i];
814 PowerPCCPU *cpu = POWERPC_CPU(cs);
815 int index = spapr_get_vcpu_id(cpu);
816 DeviceClass *dc = DEVICE_GET_CLASS(cs);
817 g_autofree char *nodename = NULL;
818 int offset;
819
820 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
821 continue;
822 }
823
824 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
825 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
826 _FDT(offset);
827 spapr_dt_cpu(cs, fdt, offset, spapr);
828 }
829
830 g_free(rev);
831 }
832
833 static int spapr_dt_rng(void *fdt)
834 {
835 int node;
836 int ret;
837
838 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
839 if (node <= 0) {
840 return -1;
841 }
842 ret = fdt_setprop_string(fdt, node, "device_type",
843 "ibm,platform-facilities");
844 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
845 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
846
847 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
848 if (node <= 0) {
849 return -1;
850 }
851 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
852
853 return ret ? -1 : 0;
854 }
855
856 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
857 {
858 MachineState *ms = MACHINE(spapr);
859 int rtas;
860 GString *hypertas = g_string_sized_new(256);
861 GString *qemu_hypertas = g_string_sized_new(256);
862 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
863 memory_region_size(&MACHINE(spapr)->device_memory->mr);
864 uint32_t lrdr_capacity[] = {
865 cpu_to_be32(max_device_addr >> 32),
866 cpu_to_be32(max_device_addr & 0xffffffff),
867 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
868 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
869 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
870 };
871
872 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
873
874 /* hypertas */
875 add_str(hypertas, "hcall-pft");
876 add_str(hypertas, "hcall-term");
877 add_str(hypertas, "hcall-dabr");
878 add_str(hypertas, "hcall-interrupt");
879 add_str(hypertas, "hcall-tce");
880 add_str(hypertas, "hcall-vio");
881 add_str(hypertas, "hcall-splpar");
882 add_str(hypertas, "hcall-join");
883 add_str(hypertas, "hcall-bulk");
884 add_str(hypertas, "hcall-set-mode");
885 add_str(hypertas, "hcall-sprg0");
886 add_str(hypertas, "hcall-copy");
887 add_str(hypertas, "hcall-debug");
888 add_str(hypertas, "hcall-vphn");
889 if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) {
890 add_str(hypertas, "hcall-rpt-invalidate");
891 }
892
893 add_str(qemu_hypertas, "hcall-memop1");
894
895 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
896 add_str(hypertas, "hcall-multi-tce");
897 }
898
899 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
900 add_str(hypertas, "hcall-hpt-resize");
901 }
902
903 add_str(hypertas, "hcall-watchdog");
904
905 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
906 hypertas->str, hypertas->len));
907 g_string_free(hypertas, TRUE);
908 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
909 qemu_hypertas->str, qemu_hypertas->len));
910 g_string_free(qemu_hypertas, TRUE);
911
912 spapr_numa_write_rtas_dt(spapr, fdt, rtas);
913
914 /*
915 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
916 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
917 *
918 * The system reset requirements are driven by existing Linux and PowerVM
919 * implementation which (contrary to PAPR) saves r3 in the error log
920 * structure like machine check, so Linux expects to find the saved r3
921 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
922 * does not look at the error value).
923 *
924 * System reset interrupts are not subject to interlock like machine
925 * check, so this memory area could be corrupted if the sreset is
926 * interrupted by a machine check (or vice versa) if it was shared. To
927 * prevent this, system reset uses per-CPU areas for the sreset save
928 * area. A system reset that interrupts a system reset handler could
929 * still overwrite this area, but Linux doesn't try to recover in that
930 * case anyway.
931 *
932 * The extra 8 bytes is required because Linux's FWNMI error log check
933 * is off-by-one.
934 *
935 * RTAS_MIN_SIZE is required for the RTAS blob itself.
936 */
937 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE +
938 RTAS_ERROR_LOG_MAX +
939 ms->smp.max_cpus * sizeof(uint64_t) * 2 +
940 sizeof(uint64_t)));
941 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
942 RTAS_ERROR_LOG_MAX));
943 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
944 RTAS_EVENT_SCAN_RATE));
945
946 g_assert(msi_nonbroken);
947 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
948
949 /*
950 * According to PAPR, rtas ibm,os-term does not guarantee a return
951 * back to the guest cpu.
952 *
953 * While an additional ibm,extended-os-term property indicates
954 * that rtas call return will always occur. Set this property.
955 */
956 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
957
958 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
959 lrdr_capacity, sizeof(lrdr_capacity)));
960
961 spapr_dt_rtas_tokens(fdt, rtas);
962 }
963
964 /*
965 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
966 * and the XIVE features that the guest may request and thus the valid
967 * values for bytes 23..26 of option vector 5:
968 */
969 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
970 int chosen)
971 {
972 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
973
974 char val[2 * 4] = {
975 23, 0x00, /* XICS / XIVE mode */
976 24, 0x00, /* Hash/Radix, filled in below. */
977 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
978 26, 0x40, /* Radix options: GTSE == yes. */
979 };
980
981 if (spapr->irq->xics && spapr->irq->xive) {
982 val[1] = SPAPR_OV5_XIVE_BOTH;
983 } else if (spapr->irq->xive) {
984 val[1] = SPAPR_OV5_XIVE_EXPLOIT;
985 } else {
986 assert(spapr->irq->xics);
987 val[1] = SPAPR_OV5_XIVE_LEGACY;
988 }
989
990 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
991 first_ppc_cpu->compat_pvr)) {
992 /*
993 * If we're in a pre POWER9 compat mode then the guest should
994 * do hash and use the legacy interrupt mode
995 */
996 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
997 val[3] = 0x00; /* Hash */
998 spapr_check_mmu_mode(false);
999 } else if (kvm_enabled()) {
1000 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1001 val[3] = 0x80; /* OV5_MMU_BOTH */
1002 } else if (kvmppc_has_cap_mmu_radix()) {
1003 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1004 } else {
1005 val[3] = 0x00; /* Hash */
1006 }
1007 } else {
1008 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1009 val[3] = 0xC0;
1010 }
1011 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1012 val, sizeof(val)));
1013 }
1014
1015 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1016 {
1017 MachineState *machine = MACHINE(spapr);
1018 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1019 uint8_t rng_seed[32];
1020 int chosen;
1021
1022 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1023
1024 if (reset) {
1025 const char *boot_device = spapr->boot_device;
1026 g_autofree char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1027 size_t cb = 0;
1028 g_autofree char *bootlist = get_boot_devices_list(&cb);
1029
1030 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1031 _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1032 machine->kernel_cmdline));
1033 }
1034
1035 if (spapr->initrd_size) {
1036 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1037 spapr->initrd_base));
1038 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1039 spapr->initrd_base + spapr->initrd_size));
1040 }
1041
1042 if (spapr->kernel_size) {
1043 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1044 cpu_to_be64(spapr->kernel_size) };
1045
1046 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1047 &kprop, sizeof(kprop)));
1048 if (spapr->kernel_le) {
1049 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1050 }
1051 }
1052 if (machine->boot_config.has_menu && machine->boot_config.menu) {
1053 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", true)));
1054 }
1055 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1056 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1057 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1058
1059 if (cb && bootlist) {
1060 int i;
1061
1062 for (i = 0; i < cb; i++) {
1063 if (bootlist[i] == '\n') {
1064 bootlist[i] = ' ';
1065 }
1066 }
1067 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1068 }
1069
1070 if (boot_device && strlen(boot_device)) {
1071 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1072 }
1073
1074 if (spapr->want_stdout_path && stdout_path) {
1075 /*
1076 * "linux,stdout-path" and "stdout" properties are
1077 * deprecated by linux kernel. New platforms should only
1078 * use the "stdout-path" property. Set the new property
1079 * and continue using older property to remain compatible
1080 * with the existing firmware.
1081 */
1082 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1083 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1084 }
1085
1086 /*
1087 * We can deal with BAR reallocation just fine, advertise it
1088 * to the guest
1089 */
1090 if (smc->linux_pci_probe) {
1091 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1092 }
1093
1094 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1095 }
1096
1097 qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
1098 _FDT(fdt_setprop(fdt, chosen, "rng-seed", rng_seed, sizeof(rng_seed)));
1099
1100 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1101 }
1102
1103 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1104 {
1105 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1106 * KVM to work under pHyp with some guest co-operation */
1107 int hypervisor;
1108 uint8_t hypercall[16];
1109
1110 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1111 /* indicate KVM hypercall interface */
1112 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1113 if (kvmppc_has_cap_fixup_hcalls()) {
1114 /*
1115 * Older KVM versions with older guest kernels were broken
1116 * with the magic page, don't allow the guest to map it.
1117 */
1118 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1119 sizeof(hypercall))) {
1120 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1121 hypercall, sizeof(hypercall)));
1122 }
1123 }
1124 }
1125
1126 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1127 {
1128 MachineState *machine = MACHINE(spapr);
1129 MachineClass *mc = MACHINE_GET_CLASS(machine);
1130 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1131 uint32_t root_drc_type_mask = 0;
1132 int ret;
1133 void *fdt;
1134 SpaprPhbState *phb;
1135 char *buf;
1136
1137 fdt = g_malloc0(space);
1138 _FDT((fdt_create_empty_tree(fdt, space)));
1139
1140 /* Root node */
1141 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1142 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1143 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1144
1145 /* Guest UUID & Name*/
1146 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1147 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1148 if (qemu_uuid_set) {
1149 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1150 }
1151 g_free(buf);
1152
1153 if (qemu_get_vm_name()) {
1154 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1155 qemu_get_vm_name()));
1156 }
1157
1158 /* Host Model & Serial Number */
1159 if (spapr->host_model) {
1160 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1161 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1162 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1163 g_free(buf);
1164 }
1165
1166 if (spapr->host_serial) {
1167 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1168 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1169 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1170 g_free(buf);
1171 }
1172
1173 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1174 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1175
1176 /* /interrupt controller */
1177 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1178
1179 ret = spapr_dt_memory(spapr, fdt);
1180 if (ret < 0) {
1181 error_report("couldn't setup memory nodes in fdt");
1182 exit(1);
1183 }
1184
1185 /* /vdevice */
1186 spapr_dt_vdevice(spapr->vio_bus, fdt);
1187
1188 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1189 ret = spapr_dt_rng(fdt);
1190 if (ret < 0) {
1191 error_report("could not set up rng device in the fdt");
1192 exit(1);
1193 }
1194 }
1195
1196 QLIST_FOREACH(phb, &spapr->phbs, list) {
1197 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1198 if (ret < 0) {
1199 error_report("couldn't setup PCI devices in fdt");
1200 exit(1);
1201 }
1202 }
1203
1204 spapr_dt_cpus(fdt, spapr);
1205
1206 /* ibm,drc-indexes and friends */
1207 if (smc->dr_lmb_enabled) {
1208 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB;
1209 }
1210 if (smc->dr_phb_enabled) {
1211 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB;
1212 }
1213 if (mc->nvdimm_supported) {
1214 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM;
1215 }
1216 if (root_drc_type_mask) {
1217 _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask));
1218 }
1219
1220 if (mc->has_hotpluggable_cpus) {
1221 int offset = fdt_path_offset(fdt, "/cpus");
1222 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1223 if (ret < 0) {
1224 error_report("Couldn't set up CPU DR device tree properties");
1225 exit(1);
1226 }
1227 }
1228
1229 /* /event-sources */
1230 spapr_dt_events(spapr, fdt);
1231
1232 /* /rtas */
1233 spapr_dt_rtas(spapr, fdt);
1234
1235 /* /chosen */
1236 spapr_dt_chosen(spapr, fdt, reset);
1237
1238 /* /hypervisor */
1239 if (kvm_enabled()) {
1240 spapr_dt_hypervisor(spapr, fdt);
1241 }
1242
1243 /* Build memory reserve map */
1244 if (reset) {
1245 if (spapr->kernel_size) {
1246 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1247 spapr->kernel_size)));
1248 }
1249 if (spapr->initrd_size) {
1250 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1251 spapr->initrd_size)));
1252 }
1253 }
1254
1255 /* NVDIMM devices */
1256 if (mc->nvdimm_supported) {
1257 spapr_dt_persistent_memory(spapr, fdt);
1258 }
1259
1260 return fdt;
1261 }
1262
1263 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1264 {
1265 SpaprMachineState *spapr = opaque;
1266
1267 return (addr & 0x0fffffff) + spapr->kernel_addr;
1268 }
1269
1270 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1271 PowerPCCPU *cpu)
1272 {
1273 CPUPPCState *env = &cpu->env;
1274
1275 /* The TCG path should also be holding the BQL at this point */
1276 g_assert(qemu_mutex_iothread_locked());
1277
1278 g_assert(!vhyp_cpu_in_nested(cpu));
1279
1280 if (FIELD_EX64(env->msr, MSR, PR)) {
1281 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1282 env->gpr[3] = H_PRIVILEGE;
1283 } else {
1284 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1285 }
1286 }
1287
1288 struct LPCRSyncState {
1289 target_ulong value;
1290 target_ulong mask;
1291 };
1292
1293 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1294 {
1295 struct LPCRSyncState *s = arg.host_ptr;
1296 PowerPCCPU *cpu = POWERPC_CPU(cs);
1297 CPUPPCState *env = &cpu->env;
1298 target_ulong lpcr;
1299
1300 cpu_synchronize_state(cs);
1301 lpcr = env->spr[SPR_LPCR];
1302 lpcr &= ~s->mask;
1303 lpcr |= s->value;
1304 ppc_store_lpcr(cpu, lpcr);
1305 }
1306
1307 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1308 {
1309 CPUState *cs;
1310 struct LPCRSyncState s = {
1311 .value = value,
1312 .mask = mask
1313 };
1314 CPU_FOREACH(cs) {
1315 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1316 }
1317 }
1318
1319 static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu,
1320 target_ulong lpid, ppc_v3_pate_t *entry)
1321 {
1322 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1323 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1324
1325 if (!spapr_cpu->in_nested) {
1326 assert(lpid == 0);
1327
1328 /* Copy PATE1:GR into PATE0:HR */
1329 entry->dw0 = spapr->patb_entry & PATE0_HR;
1330 entry->dw1 = spapr->patb_entry;
1331
1332 } else {
1333 uint64_t patb, pats;
1334
1335 assert(lpid != 0);
1336
1337 patb = spapr->nested_ptcr & PTCR_PATB;
1338 pats = spapr->nested_ptcr & PTCR_PATS;
1339
1340 /* Check if partition table is properly aligned */
1341 if (patb & MAKE_64BIT_MASK(0, pats + 12)) {
1342 return false;
1343 }
1344
1345 /* Calculate number of entries */
1346 pats = 1ull << (pats + 12 - 4);
1347 if (pats <= lpid) {
1348 return false;
1349 }
1350
1351 /* Grab entry */
1352 patb += 16 * lpid;
1353 entry->dw0 = ldq_phys(CPU(cpu)->as, patb);
1354 entry->dw1 = ldq_phys(CPU(cpu)->as, patb + 8);
1355 }
1356
1357 return true;
1358 }
1359
1360 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1361 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1362 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1363 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1364 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1365
1366 /*
1367 * Get the fd to access the kernel htab, re-opening it if necessary
1368 */
1369 static int get_htab_fd(SpaprMachineState *spapr)
1370 {
1371 Error *local_err = NULL;
1372
1373 if (spapr->htab_fd >= 0) {
1374 return spapr->htab_fd;
1375 }
1376
1377 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1378 if (spapr->htab_fd < 0) {
1379 error_report_err(local_err);
1380 }
1381
1382 return spapr->htab_fd;
1383 }
1384
1385 void close_htab_fd(SpaprMachineState *spapr)
1386 {
1387 if (spapr->htab_fd >= 0) {
1388 close(spapr->htab_fd);
1389 }
1390 spapr->htab_fd = -1;
1391 }
1392
1393 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1394 {
1395 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1396
1397 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1398 }
1399
1400 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1401 {
1402 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1403
1404 assert(kvm_enabled());
1405
1406 if (!spapr->htab) {
1407 return 0;
1408 }
1409
1410 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1411 }
1412
1413 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1414 hwaddr ptex, int n)
1415 {
1416 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1417 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1418
1419 if (!spapr->htab) {
1420 /*
1421 * HTAB is controlled by KVM. Fetch into temporary buffer
1422 */
1423 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1424 kvmppc_read_hptes(hptes, ptex, n);
1425 return hptes;
1426 }
1427
1428 /*
1429 * HTAB is controlled by QEMU. Just point to the internally
1430 * accessible PTEG.
1431 */
1432 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1433 }
1434
1435 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1436 const ppc_hash_pte64_t *hptes,
1437 hwaddr ptex, int n)
1438 {
1439 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1440
1441 if (!spapr->htab) {
1442 g_free((void *)hptes);
1443 }
1444
1445 /* Nothing to do for qemu managed HPT */
1446 }
1447
1448 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1449 uint64_t pte0, uint64_t pte1)
1450 {
1451 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1452 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1453
1454 if (!spapr->htab) {
1455 kvmppc_write_hpte(ptex, pte0, pte1);
1456 } else {
1457 if (pte0 & HPTE64_V_VALID) {
1458 stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1459 /*
1460 * When setting valid, we write PTE1 first. This ensures
1461 * proper synchronization with the reading code in
1462 * ppc_hash64_pteg_search()
1463 */
1464 smp_wmb();
1465 stq_p(spapr->htab + offset, pte0);
1466 } else {
1467 stq_p(spapr->htab + offset, pte0);
1468 /*
1469 * When clearing it we set PTE0 first. This ensures proper
1470 * synchronization with the reading code in
1471 * ppc_hash64_pteg_search()
1472 */
1473 smp_wmb();
1474 stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1475 }
1476 }
1477 }
1478
1479 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1480 uint64_t pte1)
1481 {
1482 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C;
1483 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1484
1485 if (!spapr->htab) {
1486 /* There should always be a hash table when this is called */
1487 error_report("spapr_hpte_set_c called with no hash table !");
1488 return;
1489 }
1490
1491 /* The HW performs a non-atomic byte update */
1492 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1493 }
1494
1495 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1496 uint64_t pte1)
1497 {
1498 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R;
1499 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1500
1501 if (!spapr->htab) {
1502 /* There should always be a hash table when this is called */
1503 error_report("spapr_hpte_set_r called with no hash table !");
1504 return;
1505 }
1506
1507 /* The HW performs a non-atomic byte update */
1508 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1509 }
1510
1511 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1512 {
1513 int shift;
1514
1515 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1516 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1517 * that's much more than is needed for Linux guests */
1518 shift = ctz64(pow2ceil(ramsize)) - 7;
1519 shift = MAX(shift, 18); /* Minimum architected size */
1520 shift = MIN(shift, 46); /* Maximum architected size */
1521 return shift;
1522 }
1523
1524 void spapr_free_hpt(SpaprMachineState *spapr)
1525 {
1526 qemu_vfree(spapr->htab);
1527 spapr->htab = NULL;
1528 spapr->htab_shift = 0;
1529 close_htab_fd(spapr);
1530 }
1531
1532 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp)
1533 {
1534 ERRP_GUARD();
1535 long rc;
1536
1537 /* Clean up any HPT info from a previous boot */
1538 spapr_free_hpt(spapr);
1539
1540 rc = kvmppc_reset_htab(shift);
1541
1542 if (rc == -EOPNOTSUPP) {
1543 error_setg(errp, "HPT not supported in nested guests");
1544 return -EOPNOTSUPP;
1545 }
1546
1547 if (rc < 0) {
1548 /* kernel-side HPT needed, but couldn't allocate one */
1549 error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
1550 shift);
1551 error_append_hint(errp, "Try smaller maxmem?\n");
1552 return -errno;
1553 } else if (rc > 0) {
1554 /* kernel-side HPT allocated */
1555 if (rc != shift) {
1556 error_setg(errp,
1557 "Requested order %d HPT, but kernel allocated order %ld",
1558 shift, rc);
1559 error_append_hint(errp, "Try smaller maxmem?\n");
1560 return -ENOSPC;
1561 }
1562
1563 spapr->htab_shift = shift;
1564 spapr->htab = NULL;
1565 } else {
1566 /* kernel-side HPT not needed, allocate in userspace instead */
1567 size_t size = 1ULL << shift;
1568 int i;
1569
1570 spapr->htab = qemu_memalign(size, size);
1571 memset(spapr->htab, 0, size);
1572 spapr->htab_shift = shift;
1573
1574 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1575 DIRTY_HPTE(HPTE(spapr->htab, i));
1576 }
1577 }
1578 /* We're setting up a hash table, so that means we're not radix */
1579 spapr->patb_entry = 0;
1580 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1581 return 0;
1582 }
1583
1584 void spapr_setup_hpt(SpaprMachineState *spapr)
1585 {
1586 int hpt_shift;
1587
1588 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1589 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1590 } else {
1591 uint64_t current_ram_size;
1592
1593 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1594 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1595 }
1596 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1597
1598 if (kvm_enabled()) {
1599 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1600
1601 /* Check our RMA fits in the possible VRMA */
1602 if (vrma_limit < spapr->rma_size) {
1603 error_report("Unable to create %" HWADDR_PRIu
1604 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1605 spapr->rma_size / MiB, vrma_limit / MiB);
1606 exit(EXIT_FAILURE);
1607 }
1608 }
1609 }
1610
1611 void spapr_check_mmu_mode(bool guest_radix)
1612 {
1613 if (guest_radix) {
1614 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1615 error_report("Guest requested unavailable MMU mode (radix).");
1616 exit(EXIT_FAILURE);
1617 }
1618 } else {
1619 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1620 && !kvmppc_has_cap_mmu_hash_v3()) {
1621 error_report("Guest requested unavailable MMU mode (hash).");
1622 exit(EXIT_FAILURE);
1623 }
1624 }
1625 }
1626
1627 static void spapr_machine_reset(MachineState *machine, ShutdownCause reason)
1628 {
1629 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1630 PowerPCCPU *first_ppc_cpu;
1631 hwaddr fdt_addr;
1632 void *fdt;
1633 int rc;
1634
1635 pef_kvm_reset(machine->cgs, &error_fatal);
1636 spapr_caps_apply(spapr);
1637
1638 first_ppc_cpu = POWERPC_CPU(first_cpu);
1639 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1640 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1641 spapr->max_compat_pvr)) {
1642 /*
1643 * If using KVM with radix mode available, VCPUs can be started
1644 * without a HPT because KVM will start them in radix mode.
1645 * Set the GR bit in PATE so that we know there is no HPT.
1646 */
1647 spapr->patb_entry = PATE1_GR;
1648 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1649 } else {
1650 spapr_setup_hpt(spapr);
1651 }
1652
1653 qemu_devices_reset(reason);
1654
1655 spapr_ovec_cleanup(spapr->ov5_cas);
1656 spapr->ov5_cas = spapr_ovec_new();
1657
1658 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1659
1660 /*
1661 * This is fixing some of the default configuration of the XIVE
1662 * devices. To be called after the reset of the machine devices.
1663 */
1664 spapr_irq_reset(spapr, &error_fatal);
1665
1666 /*
1667 * There is no CAS under qtest. Simulate one to please the code that
1668 * depends on spapr->ov5_cas. This is especially needed to test device
1669 * unplug, so we do that before resetting the DRCs.
1670 */
1671 if (qtest_enabled()) {
1672 spapr_ovec_cleanup(spapr->ov5_cas);
1673 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1674 }
1675
1676 spapr_nvdimm_finish_flushes();
1677
1678 /* DRC reset may cause a device to be unplugged. This will cause troubles
1679 * if this device is used by another device (eg, a running vhost backend
1680 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1681 * situations, we reset DRCs after all devices have been reset.
1682 */
1683 spapr_drc_reset_all(spapr);
1684
1685 spapr_clear_pending_events(spapr);
1686
1687 /*
1688 * We place the device tree just below either the top of the RMA,
1689 * or just below 2GB, whichever is lower, so that it can be
1690 * processed with 32-bit real mode code if necessary
1691 */
1692 fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE;
1693
1694 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1695 if (spapr->vof) {
1696 spapr_vof_reset(spapr, fdt, &error_fatal);
1697 /*
1698 * Do not pack the FDT as the client may change properties.
1699 * VOF client does not expect the FDT so we do not load it to the VM.
1700 */
1701 } else {
1702 rc = fdt_pack(fdt);
1703 /* Should only fail if we've built a corrupted tree */
1704 assert(rc == 0);
1705
1706 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT,
1707 0, fdt_addr, 0);
1708 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1709 }
1710 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1711
1712 g_free(spapr->fdt_blob);
1713 spapr->fdt_size = fdt_totalsize(fdt);
1714 spapr->fdt_initial_size = spapr->fdt_size;
1715 spapr->fdt_blob = fdt;
1716
1717 /* Set machine->fdt for 'dumpdtb' QMP/HMP command */
1718 machine->fdt = fdt;
1719
1720 /* Set up the entry state */
1721 first_ppc_cpu->env.gpr[5] = 0;
1722
1723 spapr->fwnmi_system_reset_addr = -1;
1724 spapr->fwnmi_machine_check_addr = -1;
1725 spapr->fwnmi_machine_check_interlock = -1;
1726
1727 /* Signal all vCPUs waiting on this condition */
1728 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1729
1730 migrate_del_blocker(spapr->fwnmi_migration_blocker);
1731 }
1732
1733 static void spapr_create_nvram(SpaprMachineState *spapr)
1734 {
1735 DeviceState *dev = qdev_new("spapr-nvram");
1736 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1737
1738 if (dinfo) {
1739 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1740 &error_fatal);
1741 }
1742
1743 qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1744
1745 spapr->nvram = (struct SpaprNvram *)dev;
1746 }
1747
1748 static void spapr_rtc_create(SpaprMachineState *spapr)
1749 {
1750 object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1751 sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1752 &error_fatal, NULL);
1753 qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1754 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1755 "date");
1756 }
1757
1758 /* Returns whether we want to use VGA or not */
1759 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1760 {
1761 vga_interface_created = true;
1762 switch (vga_interface_type) {
1763 case VGA_NONE:
1764 return false;
1765 case VGA_DEVICE:
1766 return true;
1767 case VGA_STD:
1768 case VGA_VIRTIO:
1769 case VGA_CIRRUS:
1770 return pci_vga_init(pci_bus) != NULL;
1771 default:
1772 error_setg(errp,
1773 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1774 return false;
1775 }
1776 }
1777
1778 static int spapr_pre_load(void *opaque)
1779 {
1780 int rc;
1781
1782 rc = spapr_caps_pre_load(opaque);
1783 if (rc) {
1784 return rc;
1785 }
1786
1787 return 0;
1788 }
1789
1790 static int spapr_post_load(void *opaque, int version_id)
1791 {
1792 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1793 int err = 0;
1794
1795 err = spapr_caps_post_migration(spapr);
1796 if (err) {
1797 return err;
1798 }
1799
1800 /*
1801 * In earlier versions, there was no separate qdev for the PAPR
1802 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1803 * So when migrating from those versions, poke the incoming offset
1804 * value into the RTC device
1805 */
1806 if (version_id < 3) {
1807 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1808 if (err) {
1809 return err;
1810 }
1811 }
1812
1813 if (kvm_enabled() && spapr->patb_entry) {
1814 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1815 bool radix = !!(spapr->patb_entry & PATE1_GR);
1816 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1817
1818 /*
1819 * Update LPCR:HR and UPRT as they may not be set properly in
1820 * the stream
1821 */
1822 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1823 LPCR_HR | LPCR_UPRT);
1824
1825 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1826 if (err) {
1827 error_report("Process table config unsupported by the host");
1828 return -EINVAL;
1829 }
1830 }
1831
1832 err = spapr_irq_post_load(spapr, version_id);
1833 if (err) {
1834 return err;
1835 }
1836
1837 return err;
1838 }
1839
1840 static int spapr_pre_save(void *opaque)
1841 {
1842 int rc;
1843
1844 rc = spapr_caps_pre_save(opaque);
1845 if (rc) {
1846 return rc;
1847 }
1848
1849 return 0;
1850 }
1851
1852 static bool version_before_3(void *opaque, int version_id)
1853 {
1854 return version_id < 3;
1855 }
1856
1857 static bool spapr_pending_events_needed(void *opaque)
1858 {
1859 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1860 return !QTAILQ_EMPTY(&spapr->pending_events);
1861 }
1862
1863 static const VMStateDescription vmstate_spapr_event_entry = {
1864 .name = "spapr_event_log_entry",
1865 .version_id = 1,
1866 .minimum_version_id = 1,
1867 .fields = (VMStateField[]) {
1868 VMSTATE_UINT32(summary, SpaprEventLogEntry),
1869 VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1870 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1871 NULL, extended_length),
1872 VMSTATE_END_OF_LIST()
1873 },
1874 };
1875
1876 static const VMStateDescription vmstate_spapr_pending_events = {
1877 .name = "spapr_pending_events",
1878 .version_id = 1,
1879 .minimum_version_id = 1,
1880 .needed = spapr_pending_events_needed,
1881 .fields = (VMStateField[]) {
1882 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1883 vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1884 VMSTATE_END_OF_LIST()
1885 },
1886 };
1887
1888 static bool spapr_ov5_cas_needed(void *opaque)
1889 {
1890 SpaprMachineState *spapr = opaque;
1891 SpaprOptionVector *ov5_mask = spapr_ovec_new();
1892 bool cas_needed;
1893
1894 /* Prior to the introduction of SpaprOptionVector, we had two option
1895 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1896 * Both of these options encode machine topology into the device-tree
1897 * in such a way that the now-booted OS should still be able to interact
1898 * appropriately with QEMU regardless of what options were actually
1899 * negotiatied on the source side.
1900 *
1901 * As such, we can avoid migrating the CAS-negotiated options if these
1902 * are the only options available on the current machine/platform.
1903 * Since these are the only options available for pseries-2.7 and
1904 * earlier, this allows us to maintain old->new/new->old migration
1905 * compatibility.
1906 *
1907 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1908 * via default pseries-2.8 machines and explicit command-line parameters.
1909 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1910 * of the actual CAS-negotiated values to continue working properly. For
1911 * example, availability of memory unplug depends on knowing whether
1912 * OV5_HP_EVT was negotiated via CAS.
1913 *
1914 * Thus, for any cases where the set of available CAS-negotiatable
1915 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1916 * include the CAS-negotiated options in the migration stream, unless
1917 * if they affect boot time behaviour only.
1918 */
1919 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1920 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1921 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1922
1923 /* We need extra information if we have any bits outside the mask
1924 * defined above */
1925 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1926
1927 spapr_ovec_cleanup(ov5_mask);
1928
1929 return cas_needed;
1930 }
1931
1932 static const VMStateDescription vmstate_spapr_ov5_cas = {
1933 .name = "spapr_option_vector_ov5_cas",
1934 .version_id = 1,
1935 .minimum_version_id = 1,
1936 .needed = spapr_ov5_cas_needed,
1937 .fields = (VMStateField[]) {
1938 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1939 vmstate_spapr_ovec, SpaprOptionVector),
1940 VMSTATE_END_OF_LIST()
1941 },
1942 };
1943
1944 static bool spapr_patb_entry_needed(void *opaque)
1945 {
1946 SpaprMachineState *spapr = opaque;
1947
1948 return !!spapr->patb_entry;
1949 }
1950
1951 static const VMStateDescription vmstate_spapr_patb_entry = {
1952 .name = "spapr_patb_entry",
1953 .version_id = 1,
1954 .minimum_version_id = 1,
1955 .needed = spapr_patb_entry_needed,
1956 .fields = (VMStateField[]) {
1957 VMSTATE_UINT64(patb_entry, SpaprMachineState),
1958 VMSTATE_END_OF_LIST()
1959 },
1960 };
1961
1962 static bool spapr_irq_map_needed(void *opaque)
1963 {
1964 SpaprMachineState *spapr = opaque;
1965
1966 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1967 }
1968
1969 static const VMStateDescription vmstate_spapr_irq_map = {
1970 .name = "spapr_irq_map",
1971 .version_id = 1,
1972 .minimum_version_id = 1,
1973 .needed = spapr_irq_map_needed,
1974 .fields = (VMStateField[]) {
1975 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1976 VMSTATE_END_OF_LIST()
1977 },
1978 };
1979
1980 static bool spapr_dtb_needed(void *opaque)
1981 {
1982 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1983
1984 return smc->update_dt_enabled;
1985 }
1986
1987 static int spapr_dtb_pre_load(void *opaque)
1988 {
1989 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1990
1991 g_free(spapr->fdt_blob);
1992 spapr->fdt_blob = NULL;
1993 spapr->fdt_size = 0;
1994
1995 return 0;
1996 }
1997
1998 static const VMStateDescription vmstate_spapr_dtb = {
1999 .name = "spapr_dtb",
2000 .version_id = 1,
2001 .minimum_version_id = 1,
2002 .needed = spapr_dtb_needed,
2003 .pre_load = spapr_dtb_pre_load,
2004 .fields = (VMStateField[]) {
2005 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2006 VMSTATE_UINT32(fdt_size, SpaprMachineState),
2007 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2008 fdt_size),
2009 VMSTATE_END_OF_LIST()
2010 },
2011 };
2012
2013 static bool spapr_fwnmi_needed(void *opaque)
2014 {
2015 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2016
2017 return spapr->fwnmi_machine_check_addr != -1;
2018 }
2019
2020 static int spapr_fwnmi_pre_save(void *opaque)
2021 {
2022 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2023
2024 /*
2025 * Check if machine check handling is in progress and print a
2026 * warning message.
2027 */
2028 if (spapr->fwnmi_machine_check_interlock != -1) {
2029 warn_report("A machine check is being handled during migration. The"
2030 "handler may run and log hardware error on the destination");
2031 }
2032
2033 return 0;
2034 }
2035
2036 static const VMStateDescription vmstate_spapr_fwnmi = {
2037 .name = "spapr_fwnmi",
2038 .version_id = 1,
2039 .minimum_version_id = 1,
2040 .needed = spapr_fwnmi_needed,
2041 .pre_save = spapr_fwnmi_pre_save,
2042 .fields = (VMStateField[]) {
2043 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
2044 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
2045 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
2046 VMSTATE_END_OF_LIST()
2047 },
2048 };
2049
2050 static const VMStateDescription vmstate_spapr = {
2051 .name = "spapr",
2052 .version_id = 3,
2053 .minimum_version_id = 1,
2054 .pre_load = spapr_pre_load,
2055 .post_load = spapr_post_load,
2056 .pre_save = spapr_pre_save,
2057 .fields = (VMStateField[]) {
2058 /* used to be @next_irq */
2059 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2060
2061 /* RTC offset */
2062 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2063
2064 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2065 VMSTATE_END_OF_LIST()
2066 },
2067 .subsections = (const VMStateDescription*[]) {
2068 &vmstate_spapr_ov5_cas,
2069 &vmstate_spapr_patb_entry,
2070 &vmstate_spapr_pending_events,
2071 &vmstate_spapr_cap_htm,
2072 &vmstate_spapr_cap_vsx,
2073 &vmstate_spapr_cap_dfp,
2074 &vmstate_spapr_cap_cfpc,
2075 &vmstate_spapr_cap_sbbc,
2076 &vmstate_spapr_cap_ibs,
2077 &vmstate_spapr_cap_hpt_maxpagesize,
2078 &vmstate_spapr_irq_map,
2079 &vmstate_spapr_cap_nested_kvm_hv,
2080 &vmstate_spapr_dtb,
2081 &vmstate_spapr_cap_large_decr,
2082 &vmstate_spapr_cap_ccf_assist,
2083 &vmstate_spapr_cap_fwnmi,
2084 &vmstate_spapr_fwnmi,
2085 &vmstate_spapr_cap_rpt_invalidate,
2086 NULL
2087 }
2088 };
2089
2090 static int htab_save_setup(QEMUFile *f, void *opaque)
2091 {
2092 SpaprMachineState *spapr = opaque;
2093
2094 /* "Iteration" header */
2095 if (!spapr->htab_shift) {
2096 qemu_put_be32(f, -1);
2097 } else {
2098 qemu_put_be32(f, spapr->htab_shift);
2099 }
2100
2101 if (spapr->htab) {
2102 spapr->htab_save_index = 0;
2103 spapr->htab_first_pass = true;
2104 } else {
2105 if (spapr->htab_shift) {
2106 assert(kvm_enabled());
2107 }
2108 }
2109
2110
2111 return 0;
2112 }
2113
2114 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2115 int chunkstart, int n_valid, int n_invalid)
2116 {
2117 qemu_put_be32(f, chunkstart);
2118 qemu_put_be16(f, n_valid);
2119 qemu_put_be16(f, n_invalid);
2120 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2121 HASH_PTE_SIZE_64 * n_valid);
2122 }
2123
2124 static void htab_save_end_marker(QEMUFile *f)
2125 {
2126 qemu_put_be32(f, 0);
2127 qemu_put_be16(f, 0);
2128 qemu_put_be16(f, 0);
2129 }
2130
2131 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2132 int64_t max_ns)
2133 {
2134 bool has_timeout = max_ns != -1;
2135 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2136 int index = spapr->htab_save_index;
2137 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2138
2139 assert(spapr->htab_first_pass);
2140
2141 do {
2142 int chunkstart;
2143
2144 /* Consume invalid HPTEs */
2145 while ((index < htabslots)
2146 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2147 CLEAN_HPTE(HPTE(spapr->htab, index));
2148 index++;
2149 }
2150
2151 /* Consume valid HPTEs */
2152 chunkstart = index;
2153 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2154 && HPTE_VALID(HPTE(spapr->htab, index))) {
2155 CLEAN_HPTE(HPTE(spapr->htab, index));
2156 index++;
2157 }
2158
2159 if (index > chunkstart) {
2160 int n_valid = index - chunkstart;
2161
2162 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2163
2164 if (has_timeout &&
2165 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2166 break;
2167 }
2168 }
2169 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2170
2171 if (index >= htabslots) {
2172 assert(index == htabslots);
2173 index = 0;
2174 spapr->htab_first_pass = false;
2175 }
2176 spapr->htab_save_index = index;
2177 }
2178
2179 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2180 int64_t max_ns)
2181 {
2182 bool final = max_ns < 0;
2183 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2184 int examined = 0, sent = 0;
2185 int index = spapr->htab_save_index;
2186 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2187
2188 assert(!spapr->htab_first_pass);
2189
2190 do {
2191 int chunkstart, invalidstart;
2192
2193 /* Consume non-dirty HPTEs */
2194 while ((index < htabslots)
2195 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2196 index++;
2197 examined++;
2198 }
2199
2200 chunkstart = index;
2201 /* Consume valid dirty HPTEs */
2202 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2203 && HPTE_DIRTY(HPTE(spapr->htab, index))
2204 && HPTE_VALID(HPTE(spapr->htab, index))) {
2205 CLEAN_HPTE(HPTE(spapr->htab, index));
2206 index++;
2207 examined++;
2208 }
2209
2210 invalidstart = index;
2211 /* Consume invalid dirty HPTEs */
2212 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2213 && HPTE_DIRTY(HPTE(spapr->htab, index))
2214 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2215 CLEAN_HPTE(HPTE(spapr->htab, index));
2216 index++;
2217 examined++;
2218 }
2219
2220 if (index > chunkstart) {
2221 int n_valid = invalidstart - chunkstart;
2222 int n_invalid = index - invalidstart;
2223
2224 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2225 sent += index - chunkstart;
2226
2227 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2228 break;
2229 }
2230 }
2231
2232 if (examined >= htabslots) {
2233 break;
2234 }
2235
2236 if (index >= htabslots) {
2237 assert(index == htabslots);
2238 index = 0;
2239 }
2240 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2241
2242 if (index >= htabslots) {
2243 assert(index == htabslots);
2244 index = 0;
2245 }
2246
2247 spapr->htab_save_index = index;
2248
2249 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2250 }
2251
2252 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2253 #define MAX_KVM_BUF_SIZE 2048
2254
2255 static int htab_save_iterate(QEMUFile *f, void *opaque)
2256 {
2257 SpaprMachineState *spapr = opaque;
2258 int fd;
2259 int rc = 0;
2260
2261 /* Iteration header */
2262 if (!spapr->htab_shift) {
2263 qemu_put_be32(f, -1);
2264 return 1;
2265 } else {
2266 qemu_put_be32(f, 0);
2267 }
2268
2269 if (!spapr->htab) {
2270 assert(kvm_enabled());
2271
2272 fd = get_htab_fd(spapr);
2273 if (fd < 0) {
2274 return fd;
2275 }
2276
2277 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2278 if (rc < 0) {
2279 return rc;
2280 }
2281 } else if (spapr->htab_first_pass) {
2282 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2283 } else {
2284 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2285 }
2286
2287 htab_save_end_marker(f);
2288
2289 return rc;
2290 }
2291
2292 static int htab_save_complete(QEMUFile *f, void *opaque)
2293 {
2294 SpaprMachineState *spapr = opaque;
2295 int fd;
2296
2297 /* Iteration header */
2298 if (!spapr->htab_shift) {
2299 qemu_put_be32(f, -1);
2300 return 0;
2301 } else {
2302 qemu_put_be32(f, 0);
2303 }
2304
2305 if (!spapr->htab) {
2306 int rc;
2307
2308 assert(kvm_enabled());
2309
2310 fd = get_htab_fd(spapr);
2311 if (fd < 0) {
2312 return fd;
2313 }
2314
2315 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2316 if (rc < 0) {
2317 return rc;
2318 }
2319 } else {
2320 if (spapr->htab_first_pass) {
2321 htab_save_first_pass(f, spapr, -1);
2322 }
2323 htab_save_later_pass(f, spapr, -1);
2324 }
2325
2326 /* End marker */
2327 htab_save_end_marker(f);
2328
2329 return 0;
2330 }
2331
2332 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2333 {
2334 SpaprMachineState *spapr = opaque;
2335 uint32_t section_hdr;
2336 int fd = -1;
2337 Error *local_err = NULL;
2338
2339 if (version_id < 1 || version_id > 1) {
2340 error_report("htab_load() bad version");
2341 return -EINVAL;
2342 }
2343
2344 section_hdr = qemu_get_be32(f);
2345
2346 if (section_hdr == -1) {
2347 spapr_free_hpt(spapr);
2348 return 0;
2349 }
2350
2351 if (section_hdr) {
2352 int ret;
2353
2354 /* First section gives the htab size */
2355 ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2356 if (ret < 0) {
2357 error_report_err(local_err);
2358 return ret;
2359 }
2360 return 0;
2361 }
2362
2363 if (!spapr->htab) {
2364 assert(kvm_enabled());
2365
2366 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2367 if (fd < 0) {
2368 error_report_err(local_err);
2369 return fd;
2370 }
2371 }
2372
2373 while (true) {
2374 uint32_t index;
2375 uint16_t n_valid, n_invalid;
2376
2377 index = qemu_get_be32(f);
2378 n_valid = qemu_get_be16(f);
2379 n_invalid = qemu_get_be16(f);
2380
2381 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2382 /* End of Stream */
2383 break;
2384 }
2385
2386 if ((index + n_valid + n_invalid) >
2387 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2388 /* Bad index in stream */
2389 error_report(
2390 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2391 index, n_valid, n_invalid, spapr->htab_shift);
2392 return -EINVAL;
2393 }
2394
2395 if (spapr->htab) {
2396 if (n_valid) {
2397 qemu_get_buffer(f, HPTE(spapr->htab, index),
2398 HASH_PTE_SIZE_64 * n_valid);
2399 }
2400 if (n_invalid) {
2401 memset(HPTE(spapr->htab, index + n_valid), 0,
2402 HASH_PTE_SIZE_64 * n_invalid);
2403 }
2404 } else {
2405 int rc;
2406
2407 assert(fd >= 0);
2408
2409 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid,
2410 &local_err);
2411 if (rc < 0) {
2412 error_report_err(local_err);
2413 return rc;
2414 }
2415 }
2416 }
2417
2418 if (!spapr->htab) {
2419 assert(fd >= 0);
2420 close(fd);
2421 }
2422
2423 return 0;
2424 }
2425
2426 static void htab_save_cleanup(void *opaque)
2427 {
2428 SpaprMachineState *spapr = opaque;
2429
2430 close_htab_fd(spapr);
2431 }
2432
2433 static SaveVMHandlers savevm_htab_handlers = {
2434 .save_setup = htab_save_setup,
2435 .save_live_iterate = htab_save_iterate,
2436 .save_live_complete_precopy = htab_save_complete,
2437 .save_cleanup = htab_save_cleanup,
2438 .load_state = htab_load,
2439 };
2440
2441 static void spapr_boot_set(void *opaque, const char *boot_device,
2442 Error **errp)
2443 {
2444 SpaprMachineState *spapr = SPAPR_MACHINE(opaque);
2445
2446 g_free(spapr->boot_device);
2447 spapr->boot_device = g_strdup(boot_device);
2448 }
2449
2450 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2451 {
2452 MachineState *machine = MACHINE(spapr);
2453 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2454 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2455 int i;
2456
2457 for (i = 0; i < nr_lmbs; i++) {
2458 uint64_t addr;
2459
2460 addr = i * lmb_size + machine->device_memory->base;
2461 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2462 addr / lmb_size);
2463 }
2464 }
2465
2466 /*
2467 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2468 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2469 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2470 */
2471 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2472 {
2473 int i;
2474
2475 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2476 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2477 " is not aligned to %" PRIu64 " MiB",
2478 machine->ram_size,
2479 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2480 return;
2481 }
2482
2483 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2484 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2485 " is not aligned to %" PRIu64 " MiB",
2486 machine->ram_size,
2487 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2488 return;
2489 }
2490
2491 for (i = 0; i < machine->numa_state->num_nodes; i++) {
2492 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2493 error_setg(errp,
2494 "Node %d memory size 0x%" PRIx64
2495 " is not aligned to %" PRIu64 " MiB",
2496 i, machine->numa_state->nodes[i].node_mem,
2497 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2498 return;
2499 }
2500 }
2501 }
2502
2503 /* find cpu slot in machine->possible_cpus by core_id */
2504 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2505 {
2506 int index = id / ms->smp.threads;
2507
2508 if (index >= ms->possible_cpus->len) {
2509 return NULL;
2510 }
2511 if (idx) {
2512 *idx = index;
2513 }
2514 return &ms->possible_cpus->cpus[index];
2515 }
2516
2517 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2518 {
2519 MachineState *ms = MACHINE(spapr);
2520 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2521 Error *local_err = NULL;
2522 bool vsmt_user = !!spapr->vsmt;
2523 int kvm_smt = kvmppc_smt_threads();
2524 int ret;
2525 unsigned int smp_threads = ms->smp.threads;
2526
2527 if (!kvm_enabled() && (smp_threads > 1)) {
2528 error_setg(errp, "TCG cannot support more than 1 thread/core "
2529 "on a pseries machine");
2530 return;
2531 }
2532 if (!is_power_of_2(smp_threads)) {
2533 error_setg(errp, "Cannot support %d threads/core on a pseries "
2534 "machine because it must be a power of 2", smp_threads);
2535 return;
2536 }
2537
2538 /* Detemine the VSMT mode to use: */
2539 if (vsmt_user) {
2540 if (spapr->vsmt < smp_threads) {
2541 error_setg(errp, "Cannot support VSMT mode %d"
2542 " because it must be >= threads/core (%d)",
2543 spapr->vsmt, smp_threads);
2544 return;
2545 }
2546 /* In this case, spapr->vsmt has been set by the command line */
2547 } else if (!smc->smp_threads_vsmt) {
2548 /*
2549 * Default VSMT value is tricky, because we need it to be as
2550 * consistent as possible (for migration), but this requires
2551 * changing it for at least some existing cases. We pick 8 as
2552 * the value that we'd get with KVM on POWER8, the
2553 * overwhelmingly common case in production systems.
2554 */
2555 spapr->vsmt = MAX(8, smp_threads);
2556 } else {
2557 spapr->vsmt = smp_threads;
2558 }
2559
2560 /* KVM: If necessary, set the SMT mode: */
2561 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2562 ret = kvmppc_set_smt_threads(spapr->vsmt);
2563 if (ret) {
2564 /* Looks like KVM isn't able to change VSMT mode */
2565 error_setg(&local_err,
2566 "Failed to set KVM's VSMT mode to %d (errno %d)",
2567 spapr->vsmt, ret);
2568 /* We can live with that if the default one is big enough
2569 * for the number of threads, and a submultiple of the one
2570 * we want. In this case we'll waste some vcpu ids, but
2571 * behaviour will be correct */
2572 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2573 warn_report_err(local_err);
2574 } else {
2575 if (!vsmt_user) {
2576 error_append_hint(&local_err,
2577 "On PPC, a VM with %d threads/core"
2578 " on a host with %d threads/core"
2579 " requires the use of VSMT mode %d.\n",
2580 smp_threads, kvm_smt, spapr->vsmt);
2581 }
2582 kvmppc_error_append_smt_possible_hint(&local_err);
2583 error_propagate(errp, local_err);
2584 }
2585 }
2586 }
2587 /* else TCG: nothing to do currently */
2588 }
2589
2590 static void spapr_init_cpus(SpaprMachineState *spapr)
2591 {
2592 MachineState *machine = MACHINE(spapr);
2593 MachineClass *mc = MACHINE_GET_CLASS(machine);
2594 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2595 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2596 const CPUArchIdList *possible_cpus;
2597 unsigned int smp_cpus = machine->smp.cpus;
2598 unsigned int smp_threads = machine->smp.threads;
2599 unsigned int max_cpus = machine->smp.max_cpus;
2600 int boot_cores_nr = smp_cpus / smp_threads;
2601 int i;
2602
2603 possible_cpus = mc->possible_cpu_arch_ids(machine);
2604 if (mc->has_hotpluggable_cpus) {
2605 if (smp_cpus % smp_threads) {
2606 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2607 smp_cpus, smp_threads);
2608 exit(1);
2609 }
2610 if (max_cpus % smp_threads) {
2611 error_report("max_cpus (%u) must be multiple of threads (%u)",
2612 max_cpus, smp_threads);
2613 exit(1);
2614 }
2615 } else {
2616 if (max_cpus != smp_cpus) {
2617 error_report("This machine version does not support CPU hotplug");
2618 exit(1);
2619 }
2620 boot_cores_nr = possible_cpus->len;
2621 }
2622
2623 if (smc->pre_2_10_has_unused_icps) {
2624 int i;
2625
2626 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2627 /* Dummy entries get deregistered when real ICPState objects
2628 * are registered during CPU core hotplug.
2629 */
2630 pre_2_10_vmstate_register_dummy_icp(i);
2631 }
2632 }
2633
2634 for (i = 0; i < possible_cpus->len; i++) {
2635 int core_id = i * smp_threads;
2636
2637 if (mc->has_hotpluggable_cpus) {
2638 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2639 spapr_vcpu_id(spapr, core_id));
2640 }
2641
2642 if (i < boot_cores_nr) {
2643 Object *core = object_new(type);
2644 int nr_threads = smp_threads;
2645
2646 /* Handle the partially filled core for older machine types */
2647 if ((i + 1) * smp_threads >= smp_cpus) {
2648 nr_threads = smp_cpus - i * smp_threads;
2649 }
2650
2651 object_property_set_int(core, "nr-threads", nr_threads,
2652 &error_fatal);
2653 object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2654 &error_fatal);
2655 qdev_realize(DEVICE(core), NULL, &error_fatal);
2656
2657 object_unref(core);
2658 }
2659 }
2660 }
2661
2662 static PCIHostState *spapr_create_default_phb(void)
2663 {
2664 DeviceState *dev;
2665
2666 dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2667 qdev_prop_set_uint32(dev, "index", 0);
2668 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2669
2670 return PCI_HOST_BRIDGE(dev);
2671 }
2672
2673 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2674 {
2675 MachineState *machine = MACHINE(spapr);
2676 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2677 hwaddr rma_size = machine->ram_size;
2678 hwaddr node0_size = spapr_node0_size(machine);
2679
2680 /* RMA has to fit in the first NUMA node */
2681 rma_size = MIN(rma_size, node0_size);
2682
2683 /*
2684 * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2685 * never exceed that
2686 */
2687 rma_size = MIN(rma_size, 1 * TiB);
2688
2689 /*
2690 * Clamp the RMA size based on machine type. This is for
2691 * migration compatibility with older qemu versions, which limited
2692 * the RMA size for complicated and mostly bad reasons.
2693 */
2694 if (smc->rma_limit) {
2695 rma_size = MIN(rma_size, smc->rma_limit);
2696 }
2697
2698 if (rma_size < MIN_RMA_SLOF) {
2699 error_setg(errp,
2700 "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2701 "ldMiB guest RMA (Real Mode Area memory)",
2702 MIN_RMA_SLOF / MiB);
2703 return 0;
2704 }
2705
2706 return rma_size;
2707 }
2708
2709 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
2710 {
2711 MachineState *machine = MACHINE(spapr);
2712 int i;
2713
2714 for (i = 0; i < machine->ram_slots; i++) {
2715 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
2716 }
2717 }
2718
2719 /* pSeries LPAR / sPAPR hardware init */
2720 static void spapr_machine_init(MachineState *machine)
2721 {
2722 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2723 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2724 MachineClass *mc = MACHINE_GET_CLASS(machine);
2725 const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME;
2726 const char *bios_name = machine->firmware ?: bios_default;
2727 g_autofree char *filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2728 const char *kernel_filename = machine->kernel_filename;
2729 const char *initrd_filename = machine->initrd_filename;
2730 PCIHostState *phb;
2731 bool has_vga;
2732 int i;
2733 MemoryRegion *sysmem = get_system_memory();
2734 long load_limit, fw_size;
2735 Error *resize_hpt_err = NULL;
2736
2737 if (!filename) {
2738 error_report("Could not find LPAR firmware '%s'", bios_name);
2739 exit(1);
2740 }
2741 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2742 if (fw_size <= 0) {
2743 error_report("Could not load LPAR firmware '%s'", filename);
2744 exit(1);
2745 }
2746
2747 /*
2748 * if Secure VM (PEF) support is configured, then initialize it
2749 */
2750 pef_kvm_init(machine->cgs, &error_fatal);
2751
2752 msi_nonbroken = true;
2753
2754 QLIST_INIT(&spapr->phbs);
2755 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2756
2757 /* Determine capabilities to run with */
2758 spapr_caps_init(spapr);
2759
2760 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2761 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2762 /*
2763 * If the user explicitly requested a mode we should either
2764 * supply it, or fail completely (which we do below). But if
2765 * it's not set explicitly, we reset our mode to something
2766 * that works
2767 */
2768 if (resize_hpt_err) {
2769 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2770 error_free(resize_hpt_err);
2771 resize_hpt_err = NULL;
2772 } else {
2773 spapr->resize_hpt = smc->resize_hpt_default;
2774 }
2775 }
2776
2777 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2778
2779 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2780 /*
2781 * User requested HPT resize, but this host can't supply it. Bail out
2782 */
2783 error_report_err(resize_hpt_err);
2784 exit(1);
2785 }
2786 error_free(resize_hpt_err);
2787
2788 spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2789
2790 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2791 load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD;
2792
2793 /*
2794 * VSMT must be set in order to be able to compute VCPU ids, ie to
2795 * call spapr_max_server_number() or spapr_vcpu_id().
2796 */
2797 spapr_set_vsmt_mode(spapr, &error_fatal);
2798
2799 /* Set up Interrupt Controller before we create the VCPUs */
2800 spapr_irq_init(spapr, &error_fatal);
2801
2802 /* Set up containers for ibm,client-architecture-support negotiated options
2803 */
2804 spapr->ov5 = spapr_ovec_new();
2805 spapr->ov5_cas = spapr_ovec_new();
2806
2807 if (smc->dr_lmb_enabled) {
2808 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2809 spapr_validate_node_memory(machine, &error_fatal);
2810 }
2811
2812 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2813
2814 /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */
2815 if (!smc->pre_6_2_numa_affinity) {
2816 spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY);
2817 }
2818
2819 /* advertise support for dedicated HP event source to guests */
2820 if (spapr->use_hotplug_event_source) {
2821 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2822 }
2823
2824 /* advertise support for HPT resizing */
2825 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2826 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2827 }
2828
2829 /* advertise support for ibm,dyamic-memory-v2 */
2830 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2831
2832 /* advertise XIVE on POWER9 machines */
2833 if (spapr->irq->xive) {
2834 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2835 }
2836
2837 /* init CPUs */
2838 spapr_init_cpus(spapr);
2839
2840 spapr->gpu_numa_id = spapr_numa_initial_nvgpu_numa_id(machine);
2841
2842 /* Init numa_assoc_array */
2843 spapr_numa_associativity_init(spapr, machine);
2844
2845 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2846 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2847 spapr->max_compat_pvr)) {
2848 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2849 /* KVM and TCG always allow GTSE with radix... */
2850 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2851 }
2852 /* ... but not with hash (currently). */
2853
2854 if (kvm_enabled()) {
2855 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2856 kvmppc_enable_logical_ci_hcalls();
2857 kvmppc_enable_set_mode_hcall();
2858
2859 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2860 kvmppc_enable_clear_ref_mod_hcalls();
2861
2862 /* Enable H_PAGE_INIT */
2863 kvmppc_enable_h_page_init();
2864 }
2865
2866 /* map RAM */
2867 memory_region_add_subregion(sysmem, 0, machine->ram);
2868
2869 /* always allocate the device memory information */
2870 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2871
2872 /* initialize hotplug memory address space */
2873 if (machine->ram_size < machine->maxram_size) {
2874 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2875 /*
2876 * Limit the number of hotpluggable memory slots to half the number
2877 * slots that KVM supports, leaving the other half for PCI and other
2878 * devices. However ensure that number of slots doesn't drop below 32.
2879 */
2880 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2881 SPAPR_MAX_RAM_SLOTS;
2882
2883 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2884 max_memslots = SPAPR_MAX_RAM_SLOTS;
2885 }
2886 if (machine->ram_slots > max_memslots) {
2887 error_report("Specified number of memory slots %"
2888 PRIu64" exceeds max supported %d",
2889 machine->ram_slots, max_memslots);
2890 exit(1);
2891 }
2892
2893 machine->device_memory->base = ROUND_UP(machine->ram_size,
2894 SPAPR_DEVICE_MEM_ALIGN);
2895 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2896 "device-memory", device_mem_size);
2897 memory_region_add_subregion(sysmem, machine->device_memory->base,
2898 &machine->device_memory->mr);
2899 }
2900
2901 if (smc->dr_lmb_enabled) {
2902 spapr_create_lmb_dr_connectors(spapr);
2903 }
2904
2905 if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2906 /* Create the error string for live migration blocker */
2907 error_setg(&spapr->fwnmi_migration_blocker,
2908 "A machine check is being handled during migration. The handler"
2909 "may run and log hardware error on the destination");
2910 }
2911
2912 if (mc->nvdimm_supported) {
2913 spapr_create_nvdimm_dr_connectors(spapr);
2914 }
2915
2916 /* Set up RTAS event infrastructure */
2917 spapr_events_init(spapr);
2918
2919 /* Set up the RTC RTAS interfaces */
2920 spapr_rtc_create(spapr);
2921
2922 /* Set up VIO bus */
2923 spapr->vio_bus = spapr_vio_bus_init();
2924
2925 for (i = 0; serial_hd(i); i++) {
2926 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2927 }
2928
2929 /* We always have at least the nvram device on VIO */
2930 spapr_create_nvram(spapr);
2931
2932 /*
2933 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2934 * connectors (described in root DT node's "ibm,drc-types" property)
2935 * are pre-initialized here. additional child connectors (such as
2936 * connectors for a PHBs PCI slots) are added as needed during their
2937 * parent's realization.
2938 */
2939 if (smc->dr_phb_enabled) {
2940 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2941 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2942 }
2943 }
2944
2945 /* Set up PCI */
2946 spapr_pci_rtas_init();
2947
2948 phb = spapr_create_default_phb();
2949
2950 for (i = 0; i < nb_nics; i++) {
2951 NICInfo *nd = &nd_table[i];
2952
2953 if (!nd->model) {
2954 nd->model = g_strdup("spapr-vlan");
2955 }
2956
2957 if (g_str_equal(nd->model, "spapr-vlan") ||
2958 g_str_equal(nd->model, "ibmveth")) {
2959 spapr_vlan_create(spapr->vio_bus, nd);
2960 } else {
2961 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2962 }
2963 }
2964
2965 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2966 spapr_vscsi_create(spapr->vio_bus);
2967 }
2968
2969 /* Graphics */
2970 has_vga = spapr_vga_init(phb->bus, &error_fatal);
2971 if (has_vga) {
2972 spapr->want_stdout_path = !machine->enable_graphics;
2973 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2974 } else {
2975 spapr->want_stdout_path = true;
2976 }
2977
2978 if (machine->usb) {
2979 if (smc->use_ohci_by_default) {
2980 pci_create_simple(phb->bus, -1, "pci-ohci");
2981 } else {
2982 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2983 }
2984
2985 if (has_vga) {
2986 USBBus *usb_bus = usb_bus_find(-1);
2987
2988 usb_create_simple(usb_bus, "usb-kbd");
2989 usb_create_simple(usb_bus, "usb-mouse");
2990 }
2991 }
2992
2993 if (kernel_filename) {
2994 uint64_t loaded_addr = 0;
2995
2996 spapr->kernel_size = load_elf(kernel_filename, NULL,
2997 translate_kernel_address, spapr,
2998 NULL, &loaded_addr, NULL, NULL, 1,
2999 PPC_ELF_MACHINE, 0, 0);
3000 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
3001 spapr->kernel_size = load_elf(kernel_filename, NULL,
3002 translate_kernel_address, spapr,
3003 NULL, &loaded_addr, NULL, NULL, 0,
3004 PPC_ELF_MACHINE, 0, 0);
3005 spapr->kernel_le = spapr->kernel_size > 0;
3006 }
3007 if (spapr->kernel_size < 0) {
3008 error_report("error loading %s: %s", kernel_filename,
3009 load_elf_strerror(spapr->kernel_size));
3010 exit(1);
3011 }
3012
3013 if (spapr->kernel_addr != loaded_addr) {
3014 warn_report("spapr: kernel_addr changed from 0x%"PRIx64
3015 " to 0x%"PRIx64,
3016 spapr->kernel_addr, loaded_addr);
3017 spapr->kernel_addr = loaded_addr;
3018 }
3019
3020 /* load initrd */
3021 if (initrd_filename) {
3022 /* Try to locate the initrd in the gap between the kernel
3023 * and the firmware. Add a bit of space just in case
3024 */
3025 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
3026 + 0x1ffff) & ~0xffff;
3027 spapr->initrd_size = load_image_targphys(initrd_filename,
3028 spapr->initrd_base,
3029 load_limit
3030 - spapr->initrd_base);
3031 if (spapr->initrd_size < 0) {
3032 error_report("could not load initial ram disk '%s'",
3033 initrd_filename);
3034 exit(1);
3035 }
3036 }
3037 }
3038
3039 /* FIXME: Should register things through the MachineState's qdev
3040 * interface, this is a legacy from the sPAPREnvironment structure
3041 * which predated MachineState but had a similar function */
3042 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3043 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
3044 &savevm_htab_handlers, spapr);
3045
3046 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
3047
3048 qemu_register_boot_set(spapr_boot_set, spapr);
3049
3050 /*
3051 * Nothing needs to be done to resume a suspended guest because
3052 * suspending does not change the machine state, so no need for
3053 * a ->wakeup method.
3054 */
3055 qemu_register_wakeup_support();
3056
3057 if (kvm_enabled()) {
3058 /* to stop and start vmclock */
3059 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3060 &spapr->tb);
3061
3062 kvmppc_spapr_enable_inkernel_multitce();
3063 }
3064
3065 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3066 if (spapr->vof) {
3067 spapr->vof->fw_size = fw_size; /* for claim() on itself */
3068 spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client);
3069 }
3070
3071 spapr_watchdog_init(spapr);
3072 }
3073
3074 #define DEFAULT_KVM_TYPE "auto"
3075 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3076 {
3077 /*
3078 * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3079 * accomodate the 'HV' and 'PV' formats that exists in the
3080 * wild. The 'auto' mode is being introduced already as
3081 * lower-case, thus we don't need to bother checking for
3082 * "AUTO".
3083 */
3084 if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) {
3085 return 0;
3086 }
3087
3088 if (!g_ascii_strcasecmp(vm_type, "hv")) {
3089 return 1;
3090 }
3091
3092 if (!g_ascii_strcasecmp(vm_type, "pr")) {
3093 return 2;
3094 }
3095
3096 error_report("Unknown kvm-type specified '%s'", vm_type);
3097 exit(1);
3098 }
3099
3100 /*
3101 * Implementation of an interface to adjust firmware path
3102 * for the bootindex property handling.
3103 */
3104 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3105 DeviceState *dev)
3106 {
3107 #define CAST(type, obj, name) \
3108 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3109 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3110 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3111 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3112 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3113
3114 if (d && bus) {
3115 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3116 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3117 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3118
3119 if (spapr) {
3120 /*
3121 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3122 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3123 * 0x8000 | (target << 8) | (bus << 5) | lun
3124 * (see the "Logical unit addressing format" table in SAM5)
3125 */
3126 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3127 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3128 (uint64_t)id << 48);
3129 } else if (virtio) {
3130 /*
3131 * We use SRP luns of the form 01000000 | (target << 8) | lun
3132 * in the top 32 bits of the 64-bit LUN
3133 * Note: the quote above is from SLOF and it is wrong,
3134 * the actual binding is:
3135 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3136 */
3137 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3138 if (d->lun >= 256) {
3139 /* Use the LUN "flat space addressing method" */
3140 id |= 0x4000;
3141 }
3142 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3143 (uint64_t)id << 32);
3144 } else if (usb) {
3145 /*
3146 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3147 * in the top 32 bits of the 64-bit LUN
3148 */
3149 unsigned usb_port = atoi(usb->port->path);
3150 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3151 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3152 (uint64_t)id << 32);
3153 }
3154 }
3155
3156 /*
3157 * SLOF probes the USB devices, and if it recognizes that the device is a
3158 * storage device, it changes its name to "storage" instead of "usb-host",
3159 * and additionally adds a child node for the SCSI LUN, so the correct
3160 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3161 */
3162 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3163 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3164 if (usb_device_is_scsi_storage(usbdev)) {
3165 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3166 }
3167 }
3168
3169 if (phb) {
3170 /* Replace "pci" with "pci@800000020000000" */
3171 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3172 }
3173
3174 if (vsc) {
3175 /* Same logic as virtio above */
3176 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3177 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3178 }
3179
3180 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3181 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3182 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3183 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3184 }
3185
3186 if (pcidev) {
3187 return spapr_pci_fw_dev_name(pcidev);
3188 }
3189
3190 return NULL;
3191 }
3192
3193 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3194 {
3195 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3196
3197 return g_strdup(spapr->kvm_type);
3198 }
3199
3200 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3201 {
3202 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3203
3204 g_free(spapr->kvm_type);
3205 spapr->kvm_type = g_strdup(value);
3206 }
3207
3208 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3209 {
3210 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3211
3212 return spapr->use_hotplug_event_source;
3213 }
3214
3215 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3216 Error **errp)
3217 {
3218 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3219
3220 spapr->use_hotplug_event_source = value;
3221 }
3222
3223 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3224 {
3225 return true;
3226 }
3227
3228 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3229 {
3230 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3231
3232 switch (spapr->resize_hpt) {
3233 case SPAPR_RESIZE_HPT_DEFAULT:
3234 return g_strdup("default");
3235 case SPAPR_RESIZE_HPT_DISABLED:
3236 return g_strdup("disabled");
3237 case SPAPR_RESIZE_HPT_ENABLED:
3238 return g_strdup("enabled");
3239 case SPAPR_RESIZE_HPT_REQUIRED:
3240 return g_strdup("required");
3241 }
3242 g_assert_not_reached();
3243 }
3244
3245 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3246 {
3247 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3248
3249 if (strcmp(value, "default") == 0) {
3250 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3251 } else if (strcmp(value, "disabled") == 0) {
3252 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3253 } else if (strcmp(value, "enabled") == 0) {
3254 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3255 } else if (strcmp(value, "required") == 0) {
3256 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3257 } else {
3258 error_setg(errp, "Bad value for \"resize-hpt\" property");
3259 }
3260 }
3261
3262 static bool spapr_get_vof(Object *obj, Error **errp)
3263 {
3264 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3265
3266 return spapr->vof != NULL;
3267 }
3268
3269 static void spapr_set_vof(Object *obj, bool value, Error **errp)
3270 {
3271 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3272
3273 if (spapr->vof) {
3274 vof_cleanup(spapr->vof);
3275 g_free(spapr->vof);
3276 spapr->vof = NULL;
3277 }
3278 if (!value) {
3279 return;
3280 }
3281 spapr->vof = g_malloc0(sizeof(*spapr->vof));
3282 }
3283
3284 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3285 {
3286 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3287
3288 if (spapr->irq == &spapr_irq_xics_legacy) {
3289 return g_strdup("legacy");
3290 } else if (spapr->irq == &spapr_irq_xics) {
3291 return g_strdup("xics");
3292 } else if (spapr->irq == &spapr_irq_xive) {
3293 return g_strdup("xive");
3294 } else if (spapr->irq == &spapr_irq_dual) {
3295 return g_strdup("dual");
3296 }
3297 g_assert_not_reached();
3298 }
3299
3300 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3301 {
3302 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3303
3304 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3305 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3306 return;
3307 }
3308
3309 /* The legacy IRQ backend can not be set */
3310 if (strcmp(value, "xics") == 0) {
3311 spapr->irq = &spapr_irq_xics;
3312 } else if (strcmp(value, "xive") == 0) {
3313 spapr->irq = &spapr_irq_xive;
3314 } else if (strcmp(value, "dual") == 0) {
3315 spapr->irq = &spapr_irq_dual;
3316 } else {
3317 error_setg(errp, "Bad value for \"ic-mode\" property");
3318 }
3319 }
3320
3321 static char *spapr_get_host_model(Object *obj, Error **errp)
3322 {
3323 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3324
3325 return g_strdup(spapr->host_model);
3326 }
3327
3328 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3329 {
3330 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3331
3332 g_free(spapr->host_model);
3333 spapr->host_model = g_strdup(value);
3334 }
3335
3336 static char *spapr_get_host_serial(Object *obj, Error **errp)
3337 {
3338 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3339
3340 return g_strdup(spapr->host_serial);
3341 }
3342
3343 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3344 {
3345 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3346
3347 g_free(spapr->host_serial);
3348 spapr->host_serial = g_strdup(value);
3349 }
3350
3351 static void spapr_instance_init(Object *obj)
3352 {
3353 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3354 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3355 MachineState *ms = MACHINE(spapr);
3356 MachineClass *mc = MACHINE_GET_CLASS(ms);
3357
3358 /*
3359 * NVDIMM support went live in 5.1 without considering that, in
3360 * other archs, the user needs to enable NVDIMM support with the
3361 * 'nvdimm' machine option and the default behavior is NVDIMM
3362 * support disabled. It is too late to roll back to the standard
3363 * behavior without breaking 5.1 guests.
3364 */
3365 if (mc->nvdimm_supported) {
3366 ms->nvdimms_state->is_enabled = true;
3367 }
3368
3369 spapr->htab_fd = -1;
3370 spapr->use_hotplug_event_source = true;
3371 spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE);
3372 object_property_add_str(obj, "kvm-type",
3373 spapr_get_kvm_type, spapr_set_kvm_type);
3374 object_property_set_description(obj, "kvm-type",
3375 "Specifies the KVM virtualization mode (auto,"
3376 " hv, pr). Defaults to 'auto'. This mode will use"
3377 " any available KVM module loaded in the host,"
3378 " where kvm_hv takes precedence if both kvm_hv and"
3379 " kvm_pr are loaded.");
3380 object_property_add_bool(obj, "modern-hotplug-events",
3381 spapr_get_modern_hotplug_events,
3382 spapr_set_modern_hotplug_events);
3383 object_property_set_description(obj, "modern-hotplug-events",
3384 "Use dedicated hotplug event mechanism in"
3385 " place of standard EPOW events when possible"
3386 " (required for memory hot-unplug support)");
3387 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3388 "Maximum permitted CPU compatibility mode");
3389
3390 object_property_add_str(obj, "resize-hpt",
3391 spapr_get_resize_hpt, spapr_set_resize_hpt);
3392 object_property_set_description(obj, "resize-hpt",
3393 "Resizing of the Hash Page Table (enabled, disabled, required)");
3394 object_property_add_uint32_ptr(obj, "vsmt",
3395 &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3396 object_property_set_description(obj, "vsmt",
3397 "Virtual SMT: KVM behaves as if this were"
3398 " the host's SMT mode");
3399
3400 object_property_add_bool(obj, "vfio-no-msix-emulation",
3401 spapr_get_msix_emulation, NULL);
3402
3403 object_property_add_uint64_ptr(obj, "kernel-addr",
3404 &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3405 object_property_set_description(obj, "kernel-addr",
3406 stringify(KERNEL_LOAD_ADDR)
3407 " for -kernel is the default");
3408 spapr->kernel_addr = KERNEL_LOAD_ADDR;
3409
3410 object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof);
3411 object_property_set_description(obj, "x-vof",
3412 "Enable Virtual Open Firmware (experimental)");
3413
3414 /* The machine class defines the default interrupt controller mode */
3415 spapr->irq = smc->irq;
3416 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3417 spapr_set_ic_mode);
3418 object_property_set_description(obj, "ic-mode",
3419 "Specifies the interrupt controller mode (xics, xive, dual)");
3420
3421 object_property_add_str(obj, "host-model",
3422 spapr_get_host_model, spapr_set_host_model);
3423 object_property_set_description(obj, "host-model",
3424 "Host model to advertise in guest device tree");
3425 object_property_add_str(obj, "host-serial",
3426 spapr_get_host_serial, spapr_set_host_serial);
3427 object_property_set_description(obj, "host-serial",
3428 "Host serial number to advertise in guest device tree");
3429 }
3430
3431 static void spapr_machine_finalizefn(Object *obj)
3432 {
3433 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3434
3435 g_free(spapr->kvm_type);
3436 }
3437
3438 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3439 {
3440 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3441 PowerPCCPU *cpu = POWERPC_CPU(cs);
3442 CPUPPCState *env = &cpu->env;
3443
3444 cpu_synchronize_state(cs);
3445 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3446 if (spapr->fwnmi_system_reset_addr != -1) {
3447 uint64_t rtas_addr, addr;
3448
3449 /* get rtas addr from fdt */
3450 rtas_addr = spapr_get_rtas_addr();
3451 if (!rtas_addr) {
3452 qemu_system_guest_panicked(NULL);
3453 return;
3454 }
3455
3456 addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3457 stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3458 stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3459 env->gpr[3] = addr;
3460 }
3461 ppc_cpu_do_system_reset(cs);
3462 if (spapr->fwnmi_system_reset_addr != -1) {
3463 env->nip = spapr->fwnmi_system_reset_addr;
3464 }
3465 }
3466
3467 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3468 {
3469 CPUState *cs;
3470
3471 CPU_FOREACH(cs) {
3472 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3473 }
3474 }
3475
3476 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3477 void *fdt, int *fdt_start_offset, Error **errp)
3478 {
3479 uint64_t addr;
3480 uint32_t node;
3481
3482 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3483 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3484 &error_abort);
3485 *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3486 SPAPR_MEMORY_BLOCK_SIZE);
3487 return 0;
3488 }
3489
3490 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3491 bool dedicated_hp_event_source)
3492 {
3493 SpaprDrc *drc;
3494 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3495 int i;
3496 uint64_t addr = addr_start;
3497 bool hotplugged = spapr_drc_hotplugged(dev);
3498
3499 for (i = 0; i < nr_lmbs; i++) {
3500 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3501 addr / SPAPR_MEMORY_BLOCK_SIZE);
3502 g_assert(drc);
3503
3504 /*
3505 * memory_device_get_free_addr() provided a range of free addresses
3506 * that doesn't overlap with any existing mapping at pre-plug. The
3507 * corresponding LMB DRCs are thus assumed to be all attachable.
3508 */
3509 spapr_drc_attach(drc, dev);
3510 if (!hotplugged) {
3511 spapr_drc_reset(drc);
3512 }
3513 addr += SPAPR_MEMORY_BLOCK_SIZE;
3514 }
3515 /* send hotplug notification to the
3516 * guest only in case of hotplugged memory
3517 */
3518 if (hotplugged) {
3519 if (dedicated_hp_event_source) {
3520 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3521 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3522 g_assert(drc);
3523 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3524 nr_lmbs,
3525 spapr_drc_index(drc));
3526 } else {
3527 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3528 nr_lmbs);
3529 }
3530 }
3531 }
3532
3533 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3534 {
3535 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3536 PCDIMMDevice *dimm = PC_DIMM(dev);
3537 uint64_t size, addr;
3538 int64_t slot;
3539 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3540
3541 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3542
3543 pc_dimm_plug(dimm, MACHINE(ms));
3544
3545 if (!is_nvdimm) {
3546 addr = object_property_get_uint(OBJECT(dimm),
3547 PC_DIMM_ADDR_PROP, &error_abort);
3548 spapr_add_lmbs(dev, addr, size,
3549 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT));
3550 } else {
3551 slot = object_property_get_int(OBJECT(dimm),
3552 PC_DIMM_SLOT_PROP, &error_abort);
3553 /* We should have valid slot number at this point */
3554 g_assert(slot >= 0);
3555 spapr_add_nvdimm(dev, slot);
3556 }
3557 }
3558
3559 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3560 Error **errp)
3561 {
3562 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3563 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3564 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3565 PCDIMMDevice *dimm = PC_DIMM(dev);
3566 Error *local_err = NULL;
3567 uint64_t size;
3568 Object *memdev;
3569 hwaddr pagesize;
3570
3571 if (!smc->dr_lmb_enabled) {
3572 error_setg(errp, "Memory hotplug not supported for this machine");
3573 return;
3574 }
3575
3576 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3577 if (local_err) {
3578 error_propagate(errp, local_err);
3579 return;
3580 }
3581
3582 if (is_nvdimm) {
3583 if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
3584 return;
3585 }
3586 } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3587 error_setg(errp, "Hotplugged memory size must be a multiple of "
3588 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3589 return;
3590 }
3591
3592 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3593 &error_abort);
3594 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3595 if (!spapr_check_pagesize(spapr, pagesize, errp)) {
3596 return;
3597 }
3598
3599 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3600 }
3601
3602 struct SpaprDimmState {
3603 PCDIMMDevice *dimm;
3604 uint32_t nr_lmbs;
3605 QTAILQ_ENTRY(SpaprDimmState) next;
3606 };
3607
3608 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3609 PCDIMMDevice *dimm)
3610 {
3611 SpaprDimmState *dimm_state = NULL;
3612
3613 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3614 if (dimm_state->dimm == dimm) {
3615 break;
3616 }
3617 }
3618 return dimm_state;
3619 }
3620
3621 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3622 uint32_t nr_lmbs,
3623 PCDIMMDevice *dimm)
3624 {
3625 SpaprDimmState *ds = NULL;
3626
3627 /*
3628 * If this request is for a DIMM whose removal had failed earlier
3629 * (due to guest's refusal to remove the LMBs), we would have this
3630 * dimm already in the pending_dimm_unplugs list. In that
3631 * case don't add again.
3632 */
3633 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3634 if (!ds) {
3635 ds = g_new0(SpaprDimmState, 1);
3636 ds->nr_lmbs = nr_lmbs;
3637 ds->dimm = dimm;
3638 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3639 }
3640 return ds;
3641 }
3642
3643 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3644 SpaprDimmState *dimm_state)
3645 {
3646 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3647 g_free(dimm_state);
3648 }
3649
3650 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3651 PCDIMMDevice *dimm)
3652 {
3653 SpaprDrc *drc;
3654 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3655 &error_abort);
3656 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3657 uint32_t avail_lmbs = 0;
3658 uint64_t addr_start, addr;
3659 int i;
3660
3661 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3662 &error_abort);
3663
3664 addr = addr_start;
3665 for (i = 0; i < nr_lmbs; i++) {
3666 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3667 addr / SPAPR_MEMORY_BLOCK_SIZE);
3668 g_assert(drc);
3669 if (drc->dev) {
3670 avail_lmbs++;
3671 }
3672 addr += SPAPR_MEMORY_BLOCK_SIZE;
3673 }
3674
3675 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3676 }
3677
3678 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev)
3679 {
3680 SpaprDimmState *ds;
3681 PCDIMMDevice *dimm;
3682 SpaprDrc *drc;
3683 uint32_t nr_lmbs;
3684 uint64_t size, addr_start, addr;
3685 g_autofree char *qapi_error = NULL;
3686 int i;
3687
3688 if (!dev) {
3689 return;
3690 }
3691
3692 dimm = PC_DIMM(dev);
3693 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3694
3695 /*
3696 * 'ds == NULL' would mean that the DIMM doesn't have a pending
3697 * unplug state, but one of its DRC is marked as unplug_requested.
3698 * This is bad and weird enough to g_assert() out.
3699 */
3700 g_assert(ds);
3701
3702 spapr_pending_dimm_unplugs_remove(spapr, ds);
3703
3704 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3705 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3706
3707 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3708 &error_abort);
3709
3710 addr = addr_start;
3711 for (i = 0; i < nr_lmbs; i++) {
3712 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3713 addr / SPAPR_MEMORY_BLOCK_SIZE);
3714 g_assert(drc);
3715
3716 drc->unplug_requested = false;
3717 addr += SPAPR_MEMORY_BLOCK_SIZE;
3718 }
3719
3720 /*
3721 * Tell QAPI that something happened and the memory
3722 * hotunplug wasn't successful. Keep sending
3723 * MEM_UNPLUG_ERROR even while sending
3724 * DEVICE_UNPLUG_GUEST_ERROR until the deprecation of
3725 * MEM_UNPLUG_ERROR is due.
3726 */
3727 qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest "
3728 "for device %s", dev->id);
3729
3730 qapi_event_send_mem_unplug_error(dev->id ? : "", qapi_error);
3731
3732 qapi_event_send_device_unplug_guest_error(dev->id,
3733 dev->canonical_path);
3734 }
3735
3736 /* Callback to be called during DRC release. */
3737 void spapr_lmb_release(DeviceState *dev)
3738 {
3739 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3740 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3741 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3742
3743 /* This information will get lost if a migration occurs
3744 * during the unplug process. In this case recover it. */
3745 if (ds == NULL) {
3746 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3747 g_assert(ds);
3748 /* The DRC being examined by the caller at least must be counted */
3749 g_assert(ds->nr_lmbs);
3750 }
3751
3752 if (--ds->nr_lmbs) {
3753 return;
3754 }
3755
3756 /*
3757 * Now that all the LMBs have been removed by the guest, call the
3758 * unplug handler chain. This can never fail.
3759 */
3760 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3761 object_unparent(OBJECT(dev));
3762 }
3763
3764 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3765 {
3766 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3767 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3768
3769 /* We really shouldn't get this far without anything to unplug */
3770 g_assert(ds);
3771
3772 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3773 qdev_unrealize(dev);
3774 spapr_pending_dimm_unplugs_remove(spapr, ds);
3775 }
3776
3777 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3778 DeviceState *dev, Error **errp)
3779 {
3780 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3781 PCDIMMDevice *dimm = PC_DIMM(dev);
3782 uint32_t nr_lmbs;
3783 uint64_t size, addr_start, addr;
3784 int i;
3785 SpaprDrc *drc;
3786
3787 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3788 error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3789 return;
3790 }
3791
3792 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3793 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3794
3795 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3796 &error_abort);
3797
3798 /*
3799 * An existing pending dimm state for this DIMM means that there is an
3800 * unplug operation in progress, waiting for the spapr_lmb_release
3801 * callback to complete the job (BQL can't cover that far). In this case,
3802 * bail out to avoid detaching DRCs that were already released.
3803 */
3804 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3805 error_setg(errp, "Memory unplug already in progress for device %s",
3806 dev->id);
3807 return;
3808 }
3809
3810 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3811
3812 addr = addr_start;
3813 for (i = 0; i < nr_lmbs; i++) {
3814 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3815 addr / SPAPR_MEMORY_BLOCK_SIZE);
3816 g_assert(drc);
3817
3818 spapr_drc_unplug_request(drc);
3819 addr += SPAPR_MEMORY_BLOCK_SIZE;
3820 }
3821
3822 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3823 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3824 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3825 nr_lmbs, spapr_drc_index(drc));
3826 }
3827
3828 /* Callback to be called during DRC release. */
3829 void spapr_core_release(DeviceState *dev)
3830 {
3831 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3832
3833 /* Call the unplug handler chain. This can never fail. */
3834 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3835 object_unparent(OBJECT(dev));
3836 }
3837
3838 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3839 {
3840 MachineState *ms = MACHINE(hotplug_dev);
3841 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3842 CPUCore *cc = CPU_CORE(dev);
3843 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3844
3845 if (smc->pre_2_10_has_unused_icps) {
3846 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3847 int i;
3848
3849 for (i = 0; i < cc->nr_threads; i++) {
3850 CPUState *cs = CPU(sc->threads[i]);
3851
3852 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3853 }
3854 }
3855
3856 assert(core_slot);
3857 core_slot->cpu = NULL;
3858 qdev_unrealize(dev);
3859 }
3860
3861 static
3862 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3863 Error **errp)
3864 {
3865 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3866 int index;
3867 SpaprDrc *drc;
3868 CPUCore *cc = CPU_CORE(dev);
3869
3870 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3871 error_setg(errp, "Unable to find CPU core with core-id: %d",
3872 cc->core_id);
3873 return;
3874 }
3875 if (index == 0) {
3876 error_setg(errp, "Boot CPU core may not be unplugged");
3877 return;
3878 }
3879
3880 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3881 spapr_vcpu_id(spapr, cc->core_id));
3882 g_assert(drc);
3883
3884 if (!spapr_drc_unplug_requested(drc)) {
3885 spapr_drc_unplug_request(drc);
3886 }
3887
3888 /*
3889 * spapr_hotplug_req_remove_by_index is left unguarded, out of the
3890 * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ
3891 * pulses removing the same CPU. Otherwise, in an failed hotunplug
3892 * attempt (e.g. the kernel will refuse to remove the last online
3893 * CPU), we will never attempt it again because unplug_requested
3894 * will still be 'true' in that case.
3895 */
3896 spapr_hotplug_req_remove_by_index(drc);
3897 }
3898
3899 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3900 void *fdt, int *fdt_start_offset, Error **errp)
3901 {
3902 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3903 CPUState *cs = CPU(core->threads[0]);
3904 PowerPCCPU *cpu = POWERPC_CPU(cs);
3905 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3906 int id = spapr_get_vcpu_id(cpu);
3907 g_autofree char *nodename = NULL;
3908 int offset;
3909
3910 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3911 offset = fdt_add_subnode(fdt, 0, nodename);
3912
3913 spapr_dt_cpu(cs, fdt, offset, spapr);
3914
3915 /*
3916 * spapr_dt_cpu() does not fill the 'name' property in the
3917 * CPU node. The function is called during boot process, before
3918 * and after CAS, and overwriting the 'name' property written
3919 * by SLOF is not allowed.
3920 *
3921 * Write it manually after spapr_dt_cpu(). This makes the hotplug
3922 * CPUs more compatible with the coldplugged ones, which have
3923 * the 'name' property. Linux Kernel also relies on this
3924 * property to identify CPU nodes.
3925 */
3926 _FDT((fdt_setprop_string(fdt, offset, "name", nodename)));
3927
3928 *fdt_start_offset = offset;
3929 return 0;
3930 }
3931
3932 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3933 {
3934 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3935 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3936 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3937 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3938 CPUCore *cc = CPU_CORE(dev);
3939 CPUState *cs;
3940 SpaprDrc *drc;
3941 CPUArchId *core_slot;
3942 int index;
3943 bool hotplugged = spapr_drc_hotplugged(dev);
3944 int i;
3945
3946 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3947 g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */
3948
3949 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3950 spapr_vcpu_id(spapr, cc->core_id));
3951
3952 g_assert(drc || !mc->has_hotpluggable_cpus);
3953
3954 if (drc) {
3955 /*
3956 * spapr_core_pre_plug() already buys us this is a brand new
3957 * core being plugged into a free slot. Nothing should already
3958 * be attached to the corresponding DRC.
3959 */
3960 spapr_drc_attach(drc, dev);
3961
3962 if (hotplugged) {
3963 /*
3964 * Send hotplug notification interrupt to the guest only
3965 * in case of hotplugged CPUs.
3966 */
3967 spapr_hotplug_req_add_by_index(drc);
3968 } else {
3969 spapr_drc_reset(drc);
3970 }
3971 }
3972
3973 core_slot->cpu = OBJECT(dev);
3974
3975 /*
3976 * Set compatibility mode to match the boot CPU, which was either set
3977 * by the machine reset code or by CAS. This really shouldn't fail at
3978 * this point.
3979 */
3980 if (hotplugged) {
3981 for (i = 0; i < cc->nr_threads; i++) {
3982 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3983 &error_abort);
3984 }
3985 }
3986
3987 if (smc->pre_2_10_has_unused_icps) {
3988 for (i = 0; i < cc->nr_threads; i++) {
3989 cs = CPU(core->threads[i]);
3990 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3991 }
3992 }
3993 }
3994
3995 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3996 Error **errp)
3997 {
3998 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3999 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
4000 CPUCore *cc = CPU_CORE(dev);
4001 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
4002 const char *type = object_get_typename(OBJECT(dev));
4003 CPUArchId *core_slot;
4004 int index;
4005 unsigned int smp_threads = machine->smp.threads;
4006
4007 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
4008 error_setg(errp, "CPU hotplug not supported for this machine");
4009 return;
4010 }
4011
4012 if (strcmp(base_core_type, type)) {
4013 error_setg(errp, "CPU core type should be %s", base_core_type);
4014 return;
4015 }
4016
4017 if (cc->core_id % smp_threads) {
4018 error_setg(errp, "invalid core id %d", cc->core_id);
4019 return;
4020 }
4021
4022 /*
4023 * In general we should have homogeneous threads-per-core, but old
4024 * (pre hotplug support) machine types allow the last core to have
4025 * reduced threads as a compatibility hack for when we allowed
4026 * total vcpus not a multiple of threads-per-core.
4027 */
4028 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
4029 error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
4030 smp_threads);
4031 return;
4032 }
4033
4034 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
4035 if (!core_slot) {
4036 error_setg(errp, "core id %d out of range", cc->core_id);
4037 return;
4038 }
4039
4040 if (core_slot->cpu) {
4041 error_setg(errp, "core %d already populated", cc->core_id);
4042 return;
4043 }
4044
4045 numa_cpu_pre_plug(core_slot, dev, errp);
4046 }
4047
4048 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
4049 void *fdt, int *fdt_start_offset, Error **errp)
4050 {
4051 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
4052 int intc_phandle;
4053
4054 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
4055 if (intc_phandle <= 0) {
4056 return -1;
4057 }
4058
4059 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
4060 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
4061 return -1;
4062 }
4063
4064 /* generally SLOF creates these, for hotplug it's up to QEMU */
4065 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
4066
4067 return 0;
4068 }
4069
4070 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4071 Error **errp)
4072 {
4073 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4074 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4075 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4076 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
4077 SpaprDrc *drc;
4078
4079 if (dev->hotplugged && !smc->dr_phb_enabled) {
4080 error_setg(errp, "PHB hotplug not supported for this machine");
4081 return false;
4082 }
4083
4084 if (sphb->index == (uint32_t)-1) {
4085 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
4086 return false;
4087 }
4088
4089 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4090 if (drc && drc->dev) {
4091 error_setg(errp, "PHB %d already attached", sphb->index);
4092 return false;
4093 }
4094
4095 /*
4096 * This will check that sphb->index doesn't exceed the maximum number of
4097 * PHBs for the current machine type.
4098 */
4099 return
4100 smc->phb_placement(spapr, sphb->index,
4101 &sphb->buid, &sphb->io_win_addr,
4102 &sphb->mem_win_addr, &sphb->mem64_win_addr,
4103 windows_supported, sphb->dma_liobn,
4104 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
4105 errp);
4106 }
4107
4108 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4109 {
4110 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4111 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4112 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4113 SpaprDrc *drc;
4114 bool hotplugged = spapr_drc_hotplugged(dev);
4115
4116 if (!smc->dr_phb_enabled) {
4117 return;
4118 }
4119
4120 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4121 /* hotplug hooks should check it's enabled before getting this far */
4122 assert(drc);
4123
4124 /* spapr_phb_pre_plug() already checked the DRC is attachable */
4125 spapr_drc_attach(drc, dev);
4126
4127 if (hotplugged) {
4128 spapr_hotplug_req_add_by_index(drc);
4129 } else {
4130 spapr_drc_reset(drc);
4131 }
4132 }
4133
4134 void spapr_phb_release(DeviceState *dev)
4135 {
4136 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4137
4138 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4139 object_unparent(OBJECT(dev));
4140 }
4141
4142 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4143 {
4144 qdev_unrealize(dev);
4145 }
4146
4147 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4148 DeviceState *dev, Error **errp)
4149 {
4150 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4151 SpaprDrc *drc;
4152
4153 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4154 assert(drc);
4155
4156 if (!spapr_drc_unplug_requested(drc)) {
4157 spapr_drc_unplug_request(drc);
4158 spapr_hotplug_req_remove_by_index(drc);
4159 } else {
4160 error_setg(errp,
4161 "PCI Host Bridge unplug already in progress for device %s",
4162 dev->id);
4163 }
4164 }
4165
4166 static
4167 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4168 Error **errp)
4169 {
4170 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4171
4172 if (spapr->tpm_proxy != NULL) {
4173 error_setg(errp, "Only one TPM proxy can be specified for this machine");
4174 return false;
4175 }
4176
4177 return true;
4178 }
4179
4180 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4181 {
4182 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4183 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4184
4185 /* Already checked in spapr_tpm_proxy_pre_plug() */
4186 g_assert(spapr->tpm_proxy == NULL);
4187
4188 spapr->tpm_proxy = tpm_proxy;
4189 }
4190
4191 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4192 {
4193 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4194
4195 qdev_unrealize(dev);
4196 object_unparent(OBJECT(dev));
4197 spapr->tpm_proxy = NULL;
4198 }
4199
4200 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4201 DeviceState *dev, Error **errp)
4202 {
4203 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4204 spapr_memory_plug(hotplug_dev, dev);
4205 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4206 spapr_core_plug(hotplug_dev, dev);
4207 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4208 spapr_phb_plug(hotplug_dev, dev);
4209 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4210 spapr_tpm_proxy_plug(hotplug_dev, dev);
4211 }
4212 }
4213
4214 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4215 DeviceState *dev, Error **errp)
4216 {
4217 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4218 spapr_memory_unplug(hotplug_dev, dev);
4219 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4220 spapr_core_unplug(hotplug_dev, dev);
4221 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4222 spapr_phb_unplug(hotplug_dev, dev);
4223 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4224 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4225 }
4226 }
4227
4228 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr)
4229 {
4230 return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) ||
4231 /*
4232 * CAS will process all pending unplug requests.
4233 *
4234 * HACK: a guest could theoretically have cleared all bits in OV5,
4235 * but none of the guests we care for do.
4236 */
4237 spapr_ovec_empty(spapr->ov5_cas);
4238 }
4239
4240 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4241 DeviceState *dev, Error **errp)
4242 {
4243 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4244 MachineClass *mc = MACHINE_GET_CLASS(sms);
4245 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4246
4247 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4248 if (spapr_memory_hot_unplug_supported(sms)) {
4249 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4250 } else {
4251 error_setg(errp, "Memory hot unplug not supported for this guest");
4252 }
4253 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4254 if (!mc->has_hotpluggable_cpus) {
4255 error_setg(errp, "CPU hot unplug not supported on this machine");
4256 return;
4257 }
4258 spapr_core_unplug_request(hotplug_dev, dev, errp);
4259 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4260 if (!smc->dr_phb_enabled) {
4261 error_setg(errp, "PHB hot unplug not supported on this machine");
4262 return;
4263 }
4264 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4265 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4266 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4267 }
4268 }
4269
4270 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4271 DeviceState *dev, Error **errp)
4272 {
4273 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4274 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4275 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4276 spapr_core_pre_plug(hotplug_dev, dev, errp);
4277 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4278 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4279 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4280 spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp);
4281 }
4282 }
4283
4284 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4285 DeviceState *dev)
4286 {
4287 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4288 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4289 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4290 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4291 return HOTPLUG_HANDLER(machine);
4292 }
4293 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4294 PCIDevice *pcidev = PCI_DEVICE(dev);
4295 PCIBus *root = pci_device_root_bus(pcidev);
4296 SpaprPhbState *phb =
4297 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4298 TYPE_SPAPR_PCI_HOST_BRIDGE);
4299
4300 if (phb) {
4301 return HOTPLUG_HANDLER(phb);
4302 }
4303 }
4304 return NULL;
4305 }
4306
4307 static CpuInstanceProperties
4308 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4309 {
4310 CPUArchId *core_slot;
4311 MachineClass *mc = MACHINE_GET_CLASS(machine);
4312
4313 /* make sure possible_cpu are intialized */
4314 mc->possible_cpu_arch_ids(machine);
4315 /* get CPU core slot containing thread that matches cpu_index */
4316 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4317 assert(core_slot);
4318 return core_slot->props;
4319 }
4320
4321 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4322 {
4323 return idx / ms->smp.cores % ms->numa_state->num_nodes;
4324 }
4325
4326 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4327 {
4328 int i;
4329 unsigned int smp_threads = machine->smp.threads;
4330 unsigned int smp_cpus = machine->smp.cpus;
4331 const char *core_type;
4332 int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4333 MachineClass *mc = MACHINE_GET_CLASS(machine);
4334
4335 if (!mc->has_hotpluggable_cpus) {
4336 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4337 }
4338 if (machine->possible_cpus) {
4339 assert(machine->possible_cpus->len == spapr_max_cores);
4340 return machine->possible_cpus;
4341 }
4342
4343 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4344 if (!core_type) {
4345 error_report("Unable to find sPAPR CPU Core definition");
4346 exit(1);
4347 }
4348
4349 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4350 sizeof(CPUArchId) * spapr_max_cores);
4351 machine->possible_cpus->len = spapr_max_cores;
4352 for (i = 0; i < machine->possible_cpus->len; i++) {
4353 int core_id = i * smp_threads;
4354
4355 machine->possible_cpus->cpus[i].type = core_type;
4356 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4357 machine->possible_cpus->cpus[i].arch_id = core_id;
4358 machine->possible_cpus->cpus[i].props.has_core_id = true;
4359 machine->possible_cpus->cpus[i].props.core_id = core_id;
4360 }
4361 return machine->possible_cpus;
4362 }
4363
4364 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4365 uint64_t *buid, hwaddr *pio,
4366 hwaddr *mmio32, hwaddr *mmio64,
4367 unsigned n_dma, uint32_t *liobns,
4368 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4369 {
4370 /*
4371 * New-style PHB window placement.
4372 *
4373 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4374 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4375 * windows.
4376 *
4377 * Some guest kernels can't work with MMIO windows above 1<<46
4378 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4379 *
4380 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4381 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4382 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4383 * 1TiB 64-bit MMIO windows for each PHB.
4384 */
4385 const uint64_t base_buid = 0x800000020000000ULL;
4386 int i;
4387
4388 /* Sanity check natural alignments */
4389 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4390 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4391 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4392 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4393 /* Sanity check bounds */
4394 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4395 SPAPR_PCI_MEM32_WIN_SIZE);
4396 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4397 SPAPR_PCI_MEM64_WIN_SIZE);
4398
4399 if (index >= SPAPR_MAX_PHBS) {
4400 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4401 SPAPR_MAX_PHBS - 1);
4402 return false;
4403 }
4404
4405 *buid = base_buid + index;
4406 for (i = 0; i < n_dma; ++i) {
4407 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4408 }
4409
4410 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4411 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4412 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4413
4414 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4415 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4416 return true;
4417 }
4418
4419 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4420 {
4421 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4422
4423 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4424 }
4425
4426 static void spapr_ics_resend(XICSFabric *dev)
4427 {
4428 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4429
4430 ics_resend(spapr->ics);
4431 }
4432
4433 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4434 {
4435 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4436
4437 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4438 }
4439
4440 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4441 Monitor *mon)
4442 {
4443 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4444
4445 spapr_irq_print_info(spapr, mon);
4446 monitor_printf(mon, "irqchip: %s\n",
4447 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4448 }
4449
4450 /*
4451 * This is a XIVE only operation
4452 */
4453 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4454 uint8_t nvt_blk, uint32_t nvt_idx,
4455 bool cam_ignore, uint8_t priority,
4456 uint32_t logic_serv, XiveTCTXMatch *match)
4457 {
4458 SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4459 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4460 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4461 int count;
4462
4463 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4464 priority, logic_serv, match);
4465 if (count < 0) {
4466 return count;
4467 }
4468
4469 /*
4470 * When we implement the save and restore of the thread interrupt
4471 * contexts in the enter/exit CPU handlers of the machine and the
4472 * escalations in QEMU, we should be able to handle non dispatched
4473 * vCPUs.
4474 *
4475 * Until this is done, the sPAPR machine should find at least one
4476 * matching context always.
4477 */
4478 if (count == 0) {
4479 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4480 nvt_blk, nvt_idx);
4481 }
4482
4483 return count;
4484 }
4485
4486 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4487 {
4488 return cpu->vcpu_id;
4489 }
4490
4491 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4492 {
4493 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4494 MachineState *ms = MACHINE(spapr);
4495 int vcpu_id;
4496
4497 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4498
4499 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4500 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4501 error_append_hint(errp, "Adjust the number of cpus to %d "
4502 "or try to raise the number of threads per core\n",
4503 vcpu_id * ms->smp.threads / spapr->vsmt);
4504 return false;
4505 }
4506
4507 cpu->vcpu_id = vcpu_id;
4508 return true;
4509 }
4510
4511 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4512 {
4513 CPUState *cs;
4514
4515 CPU_FOREACH(cs) {
4516 PowerPCCPU *cpu = POWERPC_CPU(cs);
4517
4518 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4519 return cpu;
4520 }
4521 }
4522
4523 return NULL;
4524 }
4525
4526 static bool spapr_cpu_in_nested(PowerPCCPU *cpu)
4527 {
4528 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4529
4530 return spapr_cpu->in_nested;
4531 }
4532
4533 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4534 {
4535 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4536
4537 /* These are only called by TCG, KVM maintains dispatch state */
4538
4539 spapr_cpu->prod = false;
4540 if (spapr_cpu->vpa_addr) {
4541 CPUState *cs = CPU(cpu);
4542 uint32_t dispatch;
4543
4544 dispatch = ldl_be_phys(cs->as,
4545 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4546 dispatch++;
4547 if ((dispatch & 1) != 0) {
4548 qemu_log_mask(LOG_GUEST_ERROR,
4549 "VPA: incorrect dispatch counter value for "
4550 "dispatched partition %u, correcting.\n", dispatch);
4551 dispatch++;
4552 }
4553 stl_be_phys(cs->as,
4554 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4555 }
4556 }
4557
4558 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4559 {
4560 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4561
4562 if (spapr_cpu->vpa_addr) {
4563 CPUState *cs = CPU(cpu);
4564 uint32_t dispatch;
4565
4566 dispatch = ldl_be_phys(cs->as,
4567 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4568 dispatch++;
4569 if ((dispatch & 1) != 1) {
4570 qemu_log_mask(LOG_GUEST_ERROR,
4571 "VPA: incorrect dispatch counter value for "
4572 "preempted partition %u, correcting.\n", dispatch);
4573 dispatch++;
4574 }
4575 stl_be_phys(cs->as,
4576 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4577 }
4578 }
4579
4580 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4581 {
4582 MachineClass *mc = MACHINE_CLASS(oc);
4583 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4584 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4585 NMIClass *nc = NMI_CLASS(oc);
4586 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4587 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4588 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4589 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4590 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4591 VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc);
4592
4593 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4594 mc->ignore_boot_device_suffixes = true;
4595
4596 /*
4597 * We set up the default / latest behaviour here. The class_init
4598 * functions for the specific versioned machine types can override
4599 * these details for backwards compatibility
4600 */
4601 mc->init = spapr_machine_init;
4602 mc->reset = spapr_machine_reset;
4603 mc->block_default_type = IF_SCSI;
4604
4605 /*
4606 * Setting max_cpus to INT32_MAX. Both KVM and TCG max_cpus values
4607 * should be limited by the host capability instead of hardcoded.
4608 * max_cpus for KVM guests will be checked in kvm_init(), and TCG
4609 * guests are welcome to have as many CPUs as the host are capable
4610 * of emulate.
4611 */
4612 mc->max_cpus = INT32_MAX;
4613
4614 mc->no_parallel = 1;
4615 mc->default_boot_order = "";
4616 mc->default_ram_size = 512 * MiB;
4617 mc->default_ram_id = "ppc_spapr.ram";
4618 mc->default_display = "std";
4619 mc->kvm_type = spapr_kvm_type;
4620 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4621 mc->pci_allow_0_address = true;
4622 assert(!mc->get_hotplug_handler);
4623 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4624 hc->pre_plug = spapr_machine_device_pre_plug;
4625 hc->plug = spapr_machine_device_plug;
4626 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4627 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4628 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4629 hc->unplug_request = spapr_machine_device_unplug_request;
4630 hc->unplug = spapr_machine_device_unplug;
4631
4632 smc->dr_lmb_enabled = true;
4633 smc->update_dt_enabled = true;
4634 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4635 mc->has_hotpluggable_cpus = true;
4636 mc->nvdimm_supported = true;
4637 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4638 fwc->get_dev_path = spapr_get_fw_dev_path;
4639 nc->nmi_monitor_handler = spapr_nmi;
4640 smc->phb_placement = spapr_phb_placement;
4641 vhc->cpu_in_nested = spapr_cpu_in_nested;
4642 vhc->deliver_hv_excp = spapr_exit_nested;
4643 vhc->hypercall = emulate_spapr_hypercall;
4644 vhc->hpt_mask = spapr_hpt_mask;
4645 vhc->map_hptes = spapr_map_hptes;
4646 vhc->unmap_hptes = spapr_unmap_hptes;
4647 vhc->hpte_set_c = spapr_hpte_set_c;
4648 vhc->hpte_set_r = spapr_hpte_set_r;
4649 vhc->get_pate = spapr_get_pate;
4650 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4651 vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4652 vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4653 xic->ics_get = spapr_ics_get;
4654 xic->ics_resend = spapr_ics_resend;
4655 xic->icp_get = spapr_icp_get;
4656 ispc->print_info = spapr_pic_print_info;
4657 /* Force NUMA node memory size to be a multiple of
4658 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4659 * in which LMBs are represented and hot-added
4660 */
4661 mc->numa_mem_align_shift = 28;
4662 mc->auto_enable_numa = true;
4663
4664 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4665 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4666 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4667 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4668 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4669 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4670 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4671 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4672 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4673 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4674 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4675 smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF;
4676 spapr_caps_add_properties(smc);
4677 smc->irq = &spapr_irq_dual;
4678 smc->dr_phb_enabled = true;
4679 smc->linux_pci_probe = true;
4680 smc->smp_threads_vsmt = true;
4681 smc->nr_xirqs = SPAPR_NR_XIRQS;
4682 xfc->match_nvt = spapr_match_nvt;
4683 vmc->client_architecture_support = spapr_vof_client_architecture_support;
4684 vmc->quiesce = spapr_vof_quiesce;
4685 vmc->setprop = spapr_vof_setprop;
4686 }
4687
4688 static const TypeInfo spapr_machine_info = {
4689 .name = TYPE_SPAPR_MACHINE,
4690 .parent = TYPE_MACHINE,
4691 .abstract = true,
4692 .instance_size = sizeof(SpaprMachineState),
4693 .instance_init = spapr_instance_init,
4694 .instance_finalize = spapr_machine_finalizefn,
4695 .class_size = sizeof(SpaprMachineClass),
4696 .class_init = spapr_machine_class_init,
4697 .interfaces = (InterfaceInfo[]) {
4698 { TYPE_FW_PATH_PROVIDER },
4699 { TYPE_NMI },
4700 { TYPE_HOTPLUG_HANDLER },
4701 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4702 { TYPE_XICS_FABRIC },
4703 { TYPE_INTERRUPT_STATS_PROVIDER },
4704 { TYPE_XIVE_FABRIC },
4705 { TYPE_VOF_MACHINE_IF },
4706 { }
4707 },
4708 };
4709
4710 static void spapr_machine_latest_class_options(MachineClass *mc)
4711 {
4712 mc->alias = "pseries";
4713 mc->is_default = true;
4714 }
4715
4716 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4717 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4718 void *data) \
4719 { \
4720 MachineClass *mc = MACHINE_CLASS(oc); \
4721 spapr_machine_##suffix##_class_options(mc); \
4722 if (latest) { \
4723 spapr_machine_latest_class_options(mc); \
4724 } \
4725 } \
4726 static const TypeInfo spapr_machine_##suffix##_info = { \
4727 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4728 .parent = TYPE_SPAPR_MACHINE, \
4729 .class_init = spapr_machine_##suffix##_class_init, \
4730 }; \
4731 static void spapr_machine_register_##suffix(void) \
4732 { \
4733 type_register(&spapr_machine_##suffix##_info); \
4734 } \
4735 type_init(spapr_machine_register_##suffix)
4736
4737 /*
4738 * pseries-7.2
4739 */
4740 static void spapr_machine_7_2_class_options(MachineClass *mc)
4741 {
4742 /* Defaults for the latest behaviour inherited from the base class */
4743 }
4744
4745 DEFINE_SPAPR_MACHINE(7_2, "7.2", true);
4746
4747 /*
4748 * pseries-7.1
4749 */
4750 static void spapr_machine_7_1_class_options(MachineClass *mc)
4751 {
4752 spapr_machine_7_2_class_options(mc);
4753 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
4754 }
4755
4756 DEFINE_SPAPR_MACHINE(7_1, "7.1", false);
4757
4758 /*
4759 * pseries-7.0
4760 */
4761 static void spapr_machine_7_0_class_options(MachineClass *mc)
4762 {
4763 spapr_machine_7_1_class_options(mc);
4764 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
4765 }
4766
4767 DEFINE_SPAPR_MACHINE(7_0, "7.0", false);
4768
4769 /*
4770 * pseries-6.2
4771 */
4772 static void spapr_machine_6_2_class_options(MachineClass *mc)
4773 {
4774 spapr_machine_7_0_class_options(mc);
4775 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
4776 }
4777
4778 DEFINE_SPAPR_MACHINE(6_2, "6.2", false);
4779
4780 /*
4781 * pseries-6.1
4782 */
4783 static void spapr_machine_6_1_class_options(MachineClass *mc)
4784 {
4785 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4786
4787 spapr_machine_6_2_class_options(mc);
4788 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
4789 smc->pre_6_2_numa_affinity = true;
4790 mc->smp_props.prefer_sockets = true;
4791 }
4792
4793 DEFINE_SPAPR_MACHINE(6_1, "6.1", false);
4794
4795 /*
4796 * pseries-6.0
4797 */
4798 static void spapr_machine_6_0_class_options(MachineClass *mc)
4799 {
4800 spapr_machine_6_1_class_options(mc);
4801 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
4802 }
4803
4804 DEFINE_SPAPR_MACHINE(6_0, "6.0", false);
4805
4806 /*
4807 * pseries-5.2
4808 */
4809 static void spapr_machine_5_2_class_options(MachineClass *mc)
4810 {
4811 spapr_machine_6_0_class_options(mc);
4812 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
4813 }
4814
4815 DEFINE_SPAPR_MACHINE(5_2, "5.2", false);
4816
4817 /*
4818 * pseries-5.1
4819 */
4820 static void spapr_machine_5_1_class_options(MachineClass *mc)
4821 {
4822 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4823
4824 spapr_machine_5_2_class_options(mc);
4825 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4826 smc->pre_5_2_numa_associativity = true;
4827 }
4828
4829 DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4830
4831 /*
4832 * pseries-5.0
4833 */
4834 static void spapr_machine_5_0_class_options(MachineClass *mc)
4835 {
4836 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4837 static GlobalProperty compat[] = {
4838 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4839 };
4840
4841 spapr_machine_5_1_class_options(mc);
4842 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4843 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4844 mc->numa_mem_supported = true;
4845 smc->pre_5_1_assoc_refpoints = true;
4846 }
4847
4848 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4849
4850 /*
4851 * pseries-4.2
4852 */
4853 static void spapr_machine_4_2_class_options(MachineClass *mc)
4854 {
4855 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4856
4857 spapr_machine_5_0_class_options(mc);
4858 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4859 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4860 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4861 smc->rma_limit = 16 * GiB;
4862 mc->nvdimm_supported = false;
4863 }
4864
4865 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4866
4867 /*
4868 * pseries-4.1
4869 */
4870 static void spapr_machine_4_1_class_options(MachineClass *mc)
4871 {
4872 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4873 static GlobalProperty compat[] = {
4874 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4875 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4876 };
4877
4878 spapr_machine_4_2_class_options(mc);
4879 smc->linux_pci_probe = false;
4880 smc->smp_threads_vsmt = false;
4881 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4882 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4883 }
4884
4885 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4886
4887 /*
4888 * pseries-4.0
4889 */
4890 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4891 uint64_t *buid, hwaddr *pio,
4892 hwaddr *mmio32, hwaddr *mmio64,
4893 unsigned n_dma, uint32_t *liobns,
4894 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4895 {
4896 if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma,
4897 liobns, nv2gpa, nv2atsd, errp)) {
4898 return false;
4899 }
4900
4901 *nv2gpa = 0;
4902 *nv2atsd = 0;
4903 return true;
4904 }
4905 static void spapr_machine_4_0_class_options(MachineClass *mc)
4906 {
4907 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4908
4909 spapr_machine_4_1_class_options(mc);
4910 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4911 smc->phb_placement = phb_placement_4_0;
4912 smc->irq = &spapr_irq_xics;
4913 smc->pre_4_1_migration = true;
4914 }
4915
4916 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4917
4918 /*
4919 * pseries-3.1
4920 */
4921 static void spapr_machine_3_1_class_options(MachineClass *mc)
4922 {
4923 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4924
4925 spapr_machine_4_0_class_options(mc);
4926 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4927
4928 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4929 smc->update_dt_enabled = false;
4930 smc->dr_phb_enabled = false;
4931 smc->broken_host_serial_model = true;
4932 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4933 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4934 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4935 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4936 }
4937
4938 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4939
4940 /*
4941 * pseries-3.0
4942 */
4943
4944 static void spapr_machine_3_0_class_options(MachineClass *mc)
4945 {
4946 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4947
4948 spapr_machine_3_1_class_options(mc);
4949 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4950
4951 smc->legacy_irq_allocation = true;
4952 smc->nr_xirqs = 0x400;
4953 smc->irq = &spapr_irq_xics_legacy;
4954 }
4955
4956 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4957
4958 /*
4959 * pseries-2.12
4960 */
4961 static void spapr_machine_2_12_class_options(MachineClass *mc)
4962 {
4963 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4964 static GlobalProperty compat[] = {
4965 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4966 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4967 };
4968
4969 spapr_machine_3_0_class_options(mc);
4970 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4971 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4972
4973 /* We depend on kvm_enabled() to choose a default value for the
4974 * hpt-max-page-size capability. Of course we can't do it here
4975 * because this is too early and the HW accelerator isn't initialzed
4976 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4977 */
4978 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4979 }
4980
4981 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4982
4983 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4984 {
4985 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4986
4987 spapr_machine_2_12_class_options(mc);
4988 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4989 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4990 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4991 }
4992
4993 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4994
4995 /*
4996 * pseries-2.11
4997 */
4998
4999 static void spapr_machine_2_11_class_options(MachineClass *mc)
5000 {
5001 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5002
5003 spapr_machine_2_12_class_options(mc);
5004 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
5005 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
5006 }
5007
5008 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
5009
5010 /*
5011 * pseries-2.10
5012 */
5013
5014 static void spapr_machine_2_10_class_options(MachineClass *mc)
5015 {
5016 spapr_machine_2_11_class_options(mc);
5017 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
5018 }
5019
5020 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
5021
5022 /*
5023 * pseries-2.9
5024 */
5025
5026 static void spapr_machine_2_9_class_options(MachineClass *mc)
5027 {
5028 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5029 static GlobalProperty compat[] = {
5030 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
5031 };
5032
5033 spapr_machine_2_10_class_options(mc);
5034 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
5035 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5036 smc->pre_2_10_has_unused_icps = true;
5037 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
5038 }
5039
5040 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
5041
5042 /*
5043 * pseries-2.8
5044 */
5045
5046 static void spapr_machine_2_8_class_options(MachineClass *mc)
5047 {
5048 static GlobalProperty compat[] = {
5049 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
5050 };
5051
5052 spapr_machine_2_9_class_options(mc);
5053 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
5054 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5055 mc->numa_mem_align_shift = 23;
5056 }
5057
5058 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
5059
5060 /*
5061 * pseries-2.7
5062 */
5063
5064 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
5065 uint64_t *buid, hwaddr *pio,
5066 hwaddr *mmio32, hwaddr *mmio64,
5067 unsigned n_dma, uint32_t *liobns,
5068 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
5069 {
5070 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
5071 const uint64_t base_buid = 0x800000020000000ULL;
5072 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
5073 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
5074 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
5075 const uint32_t max_index = 255;
5076 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
5077
5078 uint64_t ram_top = MACHINE(spapr)->ram_size;
5079 hwaddr phb0_base, phb_base;
5080 int i;
5081
5082 /* Do we have device memory? */
5083 if (MACHINE(spapr)->maxram_size > ram_top) {
5084 /* Can't just use maxram_size, because there may be an
5085 * alignment gap between normal and device memory regions
5086 */
5087 ram_top = MACHINE(spapr)->device_memory->base +
5088 memory_region_size(&MACHINE(spapr)->device_memory->mr);
5089 }
5090
5091 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
5092
5093 if (index > max_index) {
5094 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
5095 max_index);
5096 return false;
5097 }
5098
5099 *buid = base_buid + index;
5100 for (i = 0; i < n_dma; ++i) {
5101 liobns[i] = SPAPR_PCI_LIOBN(index, i);
5102 }
5103
5104 phb_base = phb0_base + index * phb_spacing;
5105 *pio = phb_base + pio_offset;
5106 *mmio32 = phb_base + mmio_offset;
5107 /*
5108 * We don't set the 64-bit MMIO window, relying on the PHB's
5109 * fallback behaviour of automatically splitting a large "32-bit"
5110 * window into contiguous 32-bit and 64-bit windows
5111 */
5112
5113 *nv2gpa = 0;
5114 *nv2atsd = 0;
5115 return true;
5116 }
5117
5118 static void spapr_machine_2_7_class_options(MachineClass *mc)
5119 {
5120 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5121 static GlobalProperty compat[] = {
5122 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
5123 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
5124 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
5125 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
5126 };
5127
5128 spapr_machine_2_8_class_options(mc);
5129 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
5130 mc->default_machine_opts = "modern-hotplug-events=off";
5131 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
5132 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5133 smc->phb_placement = phb_placement_2_7;
5134 }
5135
5136 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
5137
5138 /*
5139 * pseries-2.6
5140 */
5141
5142 static void spapr_machine_2_6_class_options(MachineClass *mc)
5143 {
5144 static GlobalProperty compat[] = {
5145 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
5146 };
5147
5148 spapr_machine_2_7_class_options(mc);
5149 mc->has_hotpluggable_cpus = false;
5150 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
5151 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5152 }
5153
5154 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
5155
5156 /*
5157 * pseries-2.5
5158 */
5159
5160 static void spapr_machine_2_5_class_options(MachineClass *mc)
5161 {
5162 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5163 static GlobalProperty compat[] = {
5164 { "spapr-vlan", "use-rx-buffer-pools", "off" },
5165 };
5166
5167 spapr_machine_2_6_class_options(mc);
5168 smc->use_ohci_by_default = true;
5169 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
5170 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5171 }
5172
5173 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
5174
5175 /*
5176 * pseries-2.4
5177 */
5178
5179 static void spapr_machine_2_4_class_options(MachineClass *mc)
5180 {
5181 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5182
5183 spapr_machine_2_5_class_options(mc);
5184 smc->dr_lmb_enabled = false;
5185 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
5186 }
5187
5188 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
5189
5190 /*
5191 * pseries-2.3
5192 */
5193
5194 static void spapr_machine_2_3_class_options(MachineClass *mc)
5195 {
5196 static GlobalProperty compat[] = {
5197 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
5198 };
5199 spapr_machine_2_4_class_options(mc);
5200 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
5201 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5202 }
5203 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
5204
5205 /*
5206 * pseries-2.2
5207 */
5208
5209 static void spapr_machine_2_2_class_options(MachineClass *mc)
5210 {
5211 static GlobalProperty compat[] = {
5212 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
5213 };
5214
5215 spapr_machine_2_3_class_options(mc);
5216 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
5217 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5218 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
5219 }
5220 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
5221
5222 /*
5223 * pseries-2.1
5224 */
5225
5226 static void spapr_machine_2_1_class_options(MachineClass *mc)
5227 {
5228 spapr_machine_2_2_class_options(mc);
5229 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
5230 }
5231 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
5232
5233 static void spapr_machine_register_types(void)
5234 {
5235 type_register_static(&spapr_machine_info);
5236 }
5237
5238 type_init(spapr_machine_register_types)