]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr.c
Merge remote-tracking branch 'remotes/mst/tags/for_upstream' into staging
[mirror_qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
27 #include "sysemu/sysemu.h"
28 #include "hw/hw.h"
29 #include "hw/fw-path-provider.h"
30 #include "elf.h"
31 #include "net/net.h"
32 #include "sysemu/blockdev.h"
33 #include "sysemu/cpus.h"
34 #include "sysemu/kvm.h"
35 #include "kvm_ppc.h"
36 #include "mmu-hash64.h"
37 #include "qom/cpu.h"
38
39 #include "hw/boards.h"
40 #include "hw/ppc/ppc.h"
41 #include "hw/loader.h"
42
43 #include "hw/ppc/spapr.h"
44 #include "hw/ppc/spapr_vio.h"
45 #include "hw/pci-host/spapr.h"
46 #include "hw/ppc/xics.h"
47 #include "hw/pci/msi.h"
48
49 #include "hw/pci/pci.h"
50 #include "hw/scsi/scsi.h"
51 #include "hw/virtio/virtio-scsi.h"
52
53 #include "exec/address-spaces.h"
54 #include "hw/usb.h"
55 #include "qemu/config-file.h"
56 #include "qemu/error-report.h"
57 #include "trace.h"
58
59 #include <libfdt.h>
60
61 /* SLOF memory layout:
62 *
63 * SLOF raw image loaded at 0, copies its romfs right below the flat
64 * device-tree, then position SLOF itself 31M below that
65 *
66 * So we set FW_OVERHEAD to 40MB which should account for all of that
67 * and more
68 *
69 * We load our kernel at 4M, leaving space for SLOF initial image
70 */
71 #define FDT_MAX_SIZE 0x40000
72 #define RTAS_MAX_SIZE 0x10000
73 #define FW_MAX_SIZE 0x400000
74 #define FW_FILE_NAME "slof.bin"
75 #define FW_OVERHEAD 0x2800000
76 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
77
78 #define MIN_RMA_SLOF 128UL
79
80 #define TIMEBASE_FREQ 512000000ULL
81
82 #define MAX_CPUS 256
83
84 #define PHANDLE_XICP 0x00001111
85
86 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
87
88 typedef struct sPAPRMachineState sPAPRMachineState;
89
90 #define TYPE_SPAPR_MACHINE "spapr-machine"
91 #define SPAPR_MACHINE(obj) \
92 OBJECT_CHECK(sPAPRMachineState, (obj), TYPE_SPAPR_MACHINE)
93
94 /**
95 * sPAPRMachineState:
96 */
97 struct sPAPRMachineState {
98 /*< private >*/
99 MachineState parent_obj;
100
101 /*< public >*/
102 char *kvm_type;
103 };
104
105 sPAPREnvironment *spapr;
106
107 static XICSState *try_create_xics(const char *type, int nr_servers,
108 int nr_irqs)
109 {
110 DeviceState *dev;
111
112 dev = qdev_create(NULL, type);
113 qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
114 qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
115 if (qdev_init(dev) < 0) {
116 return NULL;
117 }
118
119 return XICS_COMMON(dev);
120 }
121
122 static XICSState *xics_system_init(int nr_servers, int nr_irqs)
123 {
124 XICSState *icp = NULL;
125
126 if (kvm_enabled()) {
127 QemuOpts *machine_opts = qemu_get_machine_opts();
128 bool irqchip_allowed = qemu_opt_get_bool(machine_opts,
129 "kernel_irqchip", true);
130 bool irqchip_required = qemu_opt_get_bool(machine_opts,
131 "kernel_irqchip", false);
132 if (irqchip_allowed) {
133 icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs);
134 }
135
136 if (irqchip_required && !icp) {
137 perror("Failed to create in-kernel XICS\n");
138 abort();
139 }
140 }
141
142 if (!icp) {
143 icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs);
144 }
145
146 if (!icp) {
147 perror("Failed to create XICS\n");
148 abort();
149 }
150
151 return icp;
152 }
153
154 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
155 int smt_threads)
156 {
157 int i, ret = 0;
158 uint32_t servers_prop[smt_threads];
159 uint32_t gservers_prop[smt_threads * 2];
160 int index = ppc_get_vcpu_dt_id(cpu);
161
162 if (cpu->cpu_version) {
163 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
164 if (ret < 0) {
165 return ret;
166 }
167 }
168
169 /* Build interrupt servers and gservers properties */
170 for (i = 0; i < smt_threads; i++) {
171 servers_prop[i] = cpu_to_be32(index + i);
172 /* Hack, direct the group queues back to cpu 0 */
173 gservers_prop[i*2] = cpu_to_be32(index + i);
174 gservers_prop[i*2 + 1] = 0;
175 }
176 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
177 servers_prop, sizeof(servers_prop));
178 if (ret < 0) {
179 return ret;
180 }
181 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
182 gservers_prop, sizeof(gservers_prop));
183
184 return ret;
185 }
186
187 static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr)
188 {
189 int ret = 0, offset, cpus_offset;
190 CPUState *cs;
191 char cpu_model[32];
192 int smt = kvmppc_smt_threads();
193 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
194
195 CPU_FOREACH(cs) {
196 PowerPCCPU *cpu = POWERPC_CPU(cs);
197 DeviceClass *dc = DEVICE_GET_CLASS(cs);
198 int index = ppc_get_vcpu_dt_id(cpu);
199 uint32_t associativity[] = {cpu_to_be32(0x5),
200 cpu_to_be32(0x0),
201 cpu_to_be32(0x0),
202 cpu_to_be32(0x0),
203 cpu_to_be32(cs->numa_node),
204 cpu_to_be32(index)};
205
206 if ((index % smt) != 0) {
207 continue;
208 }
209
210 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
211
212 cpus_offset = fdt_path_offset(fdt, "/cpus");
213 if (cpus_offset < 0) {
214 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
215 "cpus");
216 if (cpus_offset < 0) {
217 return cpus_offset;
218 }
219 }
220 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
221 if (offset < 0) {
222 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
223 if (offset < 0) {
224 return offset;
225 }
226 }
227
228 if (nb_numa_nodes > 1) {
229 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
230 sizeof(associativity));
231 if (ret < 0) {
232 return ret;
233 }
234 }
235
236 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
237 pft_size_prop, sizeof(pft_size_prop));
238 if (ret < 0) {
239 return ret;
240 }
241
242 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
243 ppc_get_compat_smt_threads(cpu));
244 if (ret < 0) {
245 return ret;
246 }
247 }
248 return ret;
249 }
250
251
252 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
253 size_t maxsize)
254 {
255 size_t maxcells = maxsize / sizeof(uint32_t);
256 int i, j, count;
257 uint32_t *p = prop;
258
259 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
260 struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
261
262 if (!sps->page_shift) {
263 break;
264 }
265 for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
266 if (sps->enc[count].page_shift == 0) {
267 break;
268 }
269 }
270 if ((p - prop) >= (maxcells - 3 - count * 2)) {
271 break;
272 }
273 *(p++) = cpu_to_be32(sps->page_shift);
274 *(p++) = cpu_to_be32(sps->slb_enc);
275 *(p++) = cpu_to_be32(count);
276 for (j = 0; j < count; j++) {
277 *(p++) = cpu_to_be32(sps->enc[j].page_shift);
278 *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
279 }
280 }
281
282 return (p - prop) * sizeof(uint32_t);
283 }
284
285 #define _FDT(exp) \
286 do { \
287 int ret = (exp); \
288 if (ret < 0) { \
289 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
290 #exp, fdt_strerror(ret)); \
291 exit(1); \
292 } \
293 } while (0)
294
295 static void add_str(GString *s, const gchar *s1)
296 {
297 g_string_append_len(s, s1, strlen(s1) + 1);
298 }
299
300 static void *spapr_create_fdt_skel(hwaddr initrd_base,
301 hwaddr initrd_size,
302 hwaddr kernel_size,
303 bool little_endian,
304 const char *boot_device,
305 const char *kernel_cmdline,
306 uint32_t epow_irq)
307 {
308 void *fdt;
309 CPUState *cs;
310 uint32_t start_prop = cpu_to_be32(initrd_base);
311 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
312 GString *hypertas = g_string_sized_new(256);
313 GString *qemu_hypertas = g_string_sized_new(256);
314 uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
315 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
316 int smt = kvmppc_smt_threads();
317 unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
318 QemuOpts *opts = qemu_opts_find(qemu_find_opts("smp-opts"), NULL);
319 unsigned sockets = opts ? qemu_opt_get_number(opts, "sockets", 0) : 0;
320 uint32_t cpus_per_socket = sockets ? (smp_cpus / sockets) : 1;
321
322 add_str(hypertas, "hcall-pft");
323 add_str(hypertas, "hcall-term");
324 add_str(hypertas, "hcall-dabr");
325 add_str(hypertas, "hcall-interrupt");
326 add_str(hypertas, "hcall-tce");
327 add_str(hypertas, "hcall-vio");
328 add_str(hypertas, "hcall-splpar");
329 add_str(hypertas, "hcall-bulk");
330 add_str(hypertas, "hcall-set-mode");
331 add_str(qemu_hypertas, "hcall-memop1");
332
333 fdt = g_malloc0(FDT_MAX_SIZE);
334 _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
335
336 if (kernel_size) {
337 _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
338 }
339 if (initrd_size) {
340 _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
341 }
342 _FDT((fdt_finish_reservemap(fdt)));
343
344 /* Root node */
345 _FDT((fdt_begin_node(fdt, "")));
346 _FDT((fdt_property_string(fdt, "device_type", "chrp")));
347 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
348 _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
349
350 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
351 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
352
353 /* /chosen */
354 _FDT((fdt_begin_node(fdt, "chosen")));
355
356 /* Set Form1_affinity */
357 _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
358
359 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
360 _FDT((fdt_property(fdt, "linux,initrd-start",
361 &start_prop, sizeof(start_prop))));
362 _FDT((fdt_property(fdt, "linux,initrd-end",
363 &end_prop, sizeof(end_prop))));
364 if (kernel_size) {
365 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
366 cpu_to_be64(kernel_size) };
367
368 _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
369 if (little_endian) {
370 _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
371 }
372 }
373 if (boot_device) {
374 _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
375 }
376 if (boot_menu) {
377 _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu)));
378 }
379 _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
380 _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
381 _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
382
383 _FDT((fdt_end_node(fdt)));
384
385 /* cpus */
386 _FDT((fdt_begin_node(fdt, "cpus")));
387
388 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
389 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
390
391 CPU_FOREACH(cs) {
392 PowerPCCPU *cpu = POWERPC_CPU(cs);
393 CPUPPCState *env = &cpu->env;
394 DeviceClass *dc = DEVICE_GET_CLASS(cs);
395 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
396 int index = ppc_get_vcpu_dt_id(cpu);
397 char *nodename;
398 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
399 0xffffffff, 0xffffffff};
400 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
401 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
402 uint32_t page_sizes_prop[64];
403 size_t page_sizes_prop_size;
404
405 if ((index % smt) != 0) {
406 continue;
407 }
408
409 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
410
411 _FDT((fdt_begin_node(fdt, nodename)));
412
413 g_free(nodename);
414
415 _FDT((fdt_property_cell(fdt, "reg", index)));
416 _FDT((fdt_property_string(fdt, "device_type", "cpu")));
417
418 _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
419 _FDT((fdt_property_cell(fdt, "d-cache-block-size",
420 env->dcache_line_size)));
421 _FDT((fdt_property_cell(fdt, "d-cache-line-size",
422 env->dcache_line_size)));
423 _FDT((fdt_property_cell(fdt, "i-cache-block-size",
424 env->icache_line_size)));
425 _FDT((fdt_property_cell(fdt, "i-cache-line-size",
426 env->icache_line_size)));
427
428 if (pcc->l1_dcache_size) {
429 _FDT((fdt_property_cell(fdt, "d-cache-size", pcc->l1_dcache_size)));
430 } else {
431 fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
432 }
433 if (pcc->l1_icache_size) {
434 _FDT((fdt_property_cell(fdt, "i-cache-size", pcc->l1_icache_size)));
435 } else {
436 fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
437 }
438
439 _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
440 _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
441 _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
442 _FDT((fdt_property_string(fdt, "status", "okay")));
443 _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
444
445 if (env->spr_cb[SPR_PURR].oea_read) {
446 _FDT((fdt_property(fdt, "ibm,purr", NULL, 0)));
447 }
448
449 if (env->mmu_model & POWERPC_MMU_1TSEG) {
450 _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
451 segs, sizeof(segs))));
452 }
453
454 /* Advertise VMX/VSX (vector extensions) if available
455 * 0 / no property == no vector extensions
456 * 1 == VMX / Altivec available
457 * 2 == VSX available */
458 if (env->insns_flags & PPC_ALTIVEC) {
459 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
460
461 _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
462 }
463
464 /* Advertise DFP (Decimal Floating Point) if available
465 * 0 / no property == no DFP
466 * 1 == DFP available */
467 if (env->insns_flags2 & PPC2_DFP) {
468 _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
469 }
470
471 page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
472 sizeof(page_sizes_prop));
473 if (page_sizes_prop_size) {
474 _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
475 page_sizes_prop, page_sizes_prop_size)));
476 }
477
478 _FDT((fdt_property_cell(fdt, "ibm,chip-id",
479 cs->cpu_index / cpus_per_socket)));
480
481 _FDT((fdt_end_node(fdt)));
482 }
483
484 _FDT((fdt_end_node(fdt)));
485
486 /* RTAS */
487 _FDT((fdt_begin_node(fdt, "rtas")));
488
489 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
490 add_str(hypertas, "hcall-multi-tce");
491 }
492 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
493 hypertas->len)));
494 g_string_free(hypertas, TRUE);
495 _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
496 qemu_hypertas->len)));
497 g_string_free(qemu_hypertas, TRUE);
498
499 _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
500 refpoints, sizeof(refpoints))));
501
502 _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
503
504 _FDT((fdt_end_node(fdt)));
505
506 /* interrupt controller */
507 _FDT((fdt_begin_node(fdt, "interrupt-controller")));
508
509 _FDT((fdt_property_string(fdt, "device_type",
510 "PowerPC-External-Interrupt-Presentation")));
511 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
512 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
513 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
514 interrupt_server_ranges_prop,
515 sizeof(interrupt_server_ranges_prop))));
516 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
517 _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
518 _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
519
520 _FDT((fdt_end_node(fdt)));
521
522 /* vdevice */
523 _FDT((fdt_begin_node(fdt, "vdevice")));
524
525 _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
526 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
527 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
528 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
529 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
530 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
531
532 _FDT((fdt_end_node(fdt)));
533
534 /* event-sources */
535 spapr_events_fdt_skel(fdt, epow_irq);
536
537 /* /hypervisor node */
538 if (kvm_enabled()) {
539 uint8_t hypercall[16];
540
541 /* indicate KVM hypercall interface */
542 _FDT((fdt_begin_node(fdt, "hypervisor")));
543 _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
544 if (kvmppc_has_cap_fixup_hcalls()) {
545 /*
546 * Older KVM versions with older guest kernels were broken with the
547 * magic page, don't allow the guest to map it.
548 */
549 kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
550 sizeof(hypercall));
551 _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
552 sizeof(hypercall))));
553 }
554 _FDT((fdt_end_node(fdt)));
555 }
556
557 _FDT((fdt_end_node(fdt))); /* close root node */
558 _FDT((fdt_finish(fdt)));
559
560 return fdt;
561 }
562
563 int spapr_h_cas_compose_response(target_ulong addr, target_ulong size)
564 {
565 void *fdt, *fdt_skel;
566 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
567
568 size -= sizeof(hdr);
569
570 /* Create sceleton */
571 fdt_skel = g_malloc0(size);
572 _FDT((fdt_create(fdt_skel, size)));
573 _FDT((fdt_begin_node(fdt_skel, "")));
574 _FDT((fdt_end_node(fdt_skel)));
575 _FDT((fdt_finish(fdt_skel)));
576 fdt = g_malloc0(size);
577 _FDT((fdt_open_into(fdt_skel, fdt, size)));
578 g_free(fdt_skel);
579
580 /* Fix skeleton up */
581 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
582
583 /* Pack resulting tree */
584 _FDT((fdt_pack(fdt)));
585
586 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
587 trace_spapr_cas_failed(size);
588 return -1;
589 }
590
591 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
592 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
593 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
594 g_free(fdt);
595
596 return 0;
597 }
598
599 static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt)
600 {
601 uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
602 cpu_to_be32(0x0), cpu_to_be32(0x0),
603 cpu_to_be32(0x0)};
604 char mem_name[32];
605 hwaddr node0_size, mem_start, node_size;
606 uint64_t mem_reg_property[2];
607 int i, off;
608
609 /* memory node(s) */
610 if (nb_numa_nodes > 1 && numa_info[0].node_mem < ram_size) {
611 node0_size = numa_info[0].node_mem;
612 } else {
613 node0_size = ram_size;
614 }
615
616 /* RMA */
617 mem_reg_property[0] = 0;
618 mem_reg_property[1] = cpu_to_be64(spapr->rma_size);
619 off = fdt_add_subnode(fdt, 0, "memory@0");
620 _FDT(off);
621 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
622 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
623 sizeof(mem_reg_property))));
624 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
625 sizeof(associativity))));
626
627 /* RAM: Node 0 */
628 if (node0_size > spapr->rma_size) {
629 mem_reg_property[0] = cpu_to_be64(spapr->rma_size);
630 mem_reg_property[1] = cpu_to_be64(node0_size - spapr->rma_size);
631
632 sprintf(mem_name, "memory@" TARGET_FMT_lx, spapr->rma_size);
633 off = fdt_add_subnode(fdt, 0, mem_name);
634 _FDT(off);
635 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
636 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
637 sizeof(mem_reg_property))));
638 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
639 sizeof(associativity))));
640 }
641
642 /* RAM: Node 1 and beyond */
643 mem_start = node0_size;
644 for (i = 1; i < nb_numa_nodes; i++) {
645 mem_reg_property[0] = cpu_to_be64(mem_start);
646 if (mem_start >= ram_size) {
647 node_size = 0;
648 } else {
649 node_size = numa_info[i].node_mem;
650 if (node_size > ram_size - mem_start) {
651 node_size = ram_size - mem_start;
652 }
653 }
654 mem_reg_property[1] = cpu_to_be64(node_size);
655 associativity[3] = associativity[4] = cpu_to_be32(i);
656 sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start);
657 off = fdt_add_subnode(fdt, 0, mem_name);
658 _FDT(off);
659 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
660 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
661 sizeof(mem_reg_property))));
662 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
663 sizeof(associativity))));
664 mem_start += node_size;
665 }
666
667 return 0;
668 }
669
670 static void spapr_finalize_fdt(sPAPREnvironment *spapr,
671 hwaddr fdt_addr,
672 hwaddr rtas_addr,
673 hwaddr rtas_size)
674 {
675 int ret, i;
676 size_t cb = 0;
677 char *bootlist;
678 void *fdt;
679 sPAPRPHBState *phb;
680
681 fdt = g_malloc(FDT_MAX_SIZE);
682
683 /* open out the base tree into a temp buffer for the final tweaks */
684 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
685
686 ret = spapr_populate_memory(spapr, fdt);
687 if (ret < 0) {
688 fprintf(stderr, "couldn't setup memory nodes in fdt\n");
689 exit(1);
690 }
691
692 ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
693 if (ret < 0) {
694 fprintf(stderr, "couldn't setup vio devices in fdt\n");
695 exit(1);
696 }
697
698 QLIST_FOREACH(phb, &spapr->phbs, list) {
699 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
700 }
701
702 if (ret < 0) {
703 fprintf(stderr, "couldn't setup PCI devices in fdt\n");
704 exit(1);
705 }
706
707 /* RTAS */
708 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
709 if (ret < 0) {
710 fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
711 }
712
713 /* Advertise NUMA via ibm,associativity */
714 ret = spapr_fixup_cpu_dt(fdt, spapr);
715 if (ret < 0) {
716 fprintf(stderr, "Couldn't finalize CPU device tree properties\n");
717 }
718
719 bootlist = get_boot_devices_list(&cb, true);
720 if (cb && bootlist) {
721 int offset = fdt_path_offset(fdt, "/chosen");
722 if (offset < 0) {
723 exit(1);
724 }
725 for (i = 0; i < cb; i++) {
726 if (bootlist[i] == '\n') {
727 bootlist[i] = ' ';
728 }
729
730 }
731 ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
732 }
733
734 if (!spapr->has_graphics) {
735 spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
736 }
737
738 _FDT((fdt_pack(fdt)));
739
740 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
741 hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
742 fdt_totalsize(fdt), FDT_MAX_SIZE);
743 exit(1);
744 }
745
746 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
747
748 g_free(fdt);
749 }
750
751 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
752 {
753 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
754 }
755
756 static void emulate_spapr_hypercall(PowerPCCPU *cpu)
757 {
758 CPUPPCState *env = &cpu->env;
759
760 if (msr_pr) {
761 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
762 env->gpr[3] = H_PRIVILEGE;
763 } else {
764 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
765 }
766 }
767
768 static void spapr_reset_htab(sPAPREnvironment *spapr)
769 {
770 long shift;
771
772 /* allocate hash page table. For now we always make this 16mb,
773 * later we should probably make it scale to the size of guest
774 * RAM */
775
776 shift = kvmppc_reset_htab(spapr->htab_shift);
777
778 if (shift > 0) {
779 /* Kernel handles htab, we don't need to allocate one */
780 spapr->htab_shift = shift;
781 kvmppc_kern_htab = true;
782 } else {
783 if (!spapr->htab) {
784 /* Allocate an htab if we don't yet have one */
785 spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
786 }
787
788 /* And clear it */
789 memset(spapr->htab, 0, HTAB_SIZE(spapr));
790 }
791
792 /* Update the RMA size if necessary */
793 if (spapr->vrma_adjust) {
794 hwaddr node0_size = (nb_numa_nodes > 1) ?
795 numa_info[0].node_mem : ram_size;
796 spapr->rma_size = kvmppc_rma_size(node0_size, spapr->htab_shift);
797 }
798 }
799
800 static void ppc_spapr_reset(void)
801 {
802 PowerPCCPU *first_ppc_cpu;
803
804 /* Reset the hash table & recalc the RMA */
805 spapr_reset_htab(spapr);
806
807 qemu_devices_reset();
808
809 /* Load the fdt */
810 spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
811 spapr->rtas_size);
812
813 /* Set up the entry state */
814 first_ppc_cpu = POWERPC_CPU(first_cpu);
815 first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
816 first_ppc_cpu->env.gpr[5] = 0;
817 first_cpu->halted = 0;
818 first_ppc_cpu->env.nip = spapr->entry_point;
819
820 }
821
822 static void spapr_cpu_reset(void *opaque)
823 {
824 PowerPCCPU *cpu = opaque;
825 CPUState *cs = CPU(cpu);
826 CPUPPCState *env = &cpu->env;
827
828 cpu_reset(cs);
829
830 /* All CPUs start halted. CPU0 is unhalted from the machine level
831 * reset code and the rest are explicitly started up by the guest
832 * using an RTAS call */
833 cs->halted = 1;
834
835 env->spr[SPR_HIOR] = 0;
836
837 env->external_htab = (uint8_t *)spapr->htab;
838 if (kvm_enabled() && !env->external_htab) {
839 /*
840 * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte*
841 * functions do the right thing.
842 */
843 env->external_htab = (void *)1;
844 }
845 env->htab_base = -1;
846 /*
847 * htab_mask is the mask used to normalize hash value to PTEG index.
848 * htab_shift is log2 of hash table size.
849 * We have 8 hpte per group, and each hpte is 16 bytes.
850 * ie have 128 bytes per hpte entry.
851 */
852 env->htab_mask = (1ULL << ((spapr)->htab_shift - 7)) - 1;
853 env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
854 (spapr->htab_shift - 18);
855 }
856
857 static void spapr_create_nvram(sPAPREnvironment *spapr)
858 {
859 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
860 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
861
862 if (dinfo) {
863 qdev_prop_set_drive_nofail(dev, "drive", dinfo->bdrv);
864 }
865
866 qdev_init_nofail(dev);
867
868 spapr->nvram = (struct sPAPRNVRAM *)dev;
869 }
870
871 /* Returns whether we want to use VGA or not */
872 static int spapr_vga_init(PCIBus *pci_bus)
873 {
874 switch (vga_interface_type) {
875 case VGA_NONE:
876 return false;
877 case VGA_DEVICE:
878 return true;
879 case VGA_STD:
880 return pci_vga_init(pci_bus) != NULL;
881 default:
882 fprintf(stderr, "This vga model is not supported,"
883 "currently it only supports -vga std\n");
884 exit(0);
885 }
886 }
887
888 static const VMStateDescription vmstate_spapr = {
889 .name = "spapr",
890 .version_id = 2,
891 .minimum_version_id = 1,
892 .fields = (VMStateField[]) {
893 VMSTATE_UNUSED(4), /* used to be @next_irq */
894
895 /* RTC offset */
896 VMSTATE_UINT64(rtc_offset, sPAPREnvironment),
897 VMSTATE_PPC_TIMEBASE_V(tb, sPAPREnvironment, 2),
898 VMSTATE_END_OF_LIST()
899 },
900 };
901
902 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
903 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
904 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
905 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
906
907 static int htab_save_setup(QEMUFile *f, void *opaque)
908 {
909 sPAPREnvironment *spapr = opaque;
910
911 /* "Iteration" header */
912 qemu_put_be32(f, spapr->htab_shift);
913
914 if (spapr->htab) {
915 spapr->htab_save_index = 0;
916 spapr->htab_first_pass = true;
917 } else {
918 assert(kvm_enabled());
919
920 spapr->htab_fd = kvmppc_get_htab_fd(false);
921 if (spapr->htab_fd < 0) {
922 fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
923 strerror(errno));
924 return -1;
925 }
926 }
927
928
929 return 0;
930 }
931
932 static void htab_save_first_pass(QEMUFile *f, sPAPREnvironment *spapr,
933 int64_t max_ns)
934 {
935 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
936 int index = spapr->htab_save_index;
937 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
938
939 assert(spapr->htab_first_pass);
940
941 do {
942 int chunkstart;
943
944 /* Consume invalid HPTEs */
945 while ((index < htabslots)
946 && !HPTE_VALID(HPTE(spapr->htab, index))) {
947 index++;
948 CLEAN_HPTE(HPTE(spapr->htab, index));
949 }
950
951 /* Consume valid HPTEs */
952 chunkstart = index;
953 while ((index < htabslots)
954 && HPTE_VALID(HPTE(spapr->htab, index))) {
955 index++;
956 CLEAN_HPTE(HPTE(spapr->htab, index));
957 }
958
959 if (index > chunkstart) {
960 int n_valid = index - chunkstart;
961
962 qemu_put_be32(f, chunkstart);
963 qemu_put_be16(f, n_valid);
964 qemu_put_be16(f, 0);
965 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
966 HASH_PTE_SIZE_64 * n_valid);
967
968 if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
969 break;
970 }
971 }
972 } while ((index < htabslots) && !qemu_file_rate_limit(f));
973
974 if (index >= htabslots) {
975 assert(index == htabslots);
976 index = 0;
977 spapr->htab_first_pass = false;
978 }
979 spapr->htab_save_index = index;
980 }
981
982 static int htab_save_later_pass(QEMUFile *f, sPAPREnvironment *spapr,
983 int64_t max_ns)
984 {
985 bool final = max_ns < 0;
986 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
987 int examined = 0, sent = 0;
988 int index = spapr->htab_save_index;
989 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
990
991 assert(!spapr->htab_first_pass);
992
993 do {
994 int chunkstart, invalidstart;
995
996 /* Consume non-dirty HPTEs */
997 while ((index < htabslots)
998 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
999 index++;
1000 examined++;
1001 }
1002
1003 chunkstart = index;
1004 /* Consume valid dirty HPTEs */
1005 while ((index < htabslots)
1006 && HPTE_DIRTY(HPTE(spapr->htab, index))
1007 && HPTE_VALID(HPTE(spapr->htab, index))) {
1008 CLEAN_HPTE(HPTE(spapr->htab, index));
1009 index++;
1010 examined++;
1011 }
1012
1013 invalidstart = index;
1014 /* Consume invalid dirty HPTEs */
1015 while ((index < htabslots)
1016 && HPTE_DIRTY(HPTE(spapr->htab, index))
1017 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1018 CLEAN_HPTE(HPTE(spapr->htab, index));
1019 index++;
1020 examined++;
1021 }
1022
1023 if (index > chunkstart) {
1024 int n_valid = invalidstart - chunkstart;
1025 int n_invalid = index - invalidstart;
1026
1027 qemu_put_be32(f, chunkstart);
1028 qemu_put_be16(f, n_valid);
1029 qemu_put_be16(f, n_invalid);
1030 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1031 HASH_PTE_SIZE_64 * n_valid);
1032 sent += index - chunkstart;
1033
1034 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1035 break;
1036 }
1037 }
1038
1039 if (examined >= htabslots) {
1040 break;
1041 }
1042
1043 if (index >= htabslots) {
1044 assert(index == htabslots);
1045 index = 0;
1046 }
1047 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1048
1049 if (index >= htabslots) {
1050 assert(index == htabslots);
1051 index = 0;
1052 }
1053
1054 spapr->htab_save_index = index;
1055
1056 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1057 }
1058
1059 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1060 #define MAX_KVM_BUF_SIZE 2048
1061
1062 static int htab_save_iterate(QEMUFile *f, void *opaque)
1063 {
1064 sPAPREnvironment *spapr = opaque;
1065 int rc = 0;
1066
1067 /* Iteration header */
1068 qemu_put_be32(f, 0);
1069
1070 if (!spapr->htab) {
1071 assert(kvm_enabled());
1072
1073 rc = kvmppc_save_htab(f, spapr->htab_fd,
1074 MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1075 if (rc < 0) {
1076 return rc;
1077 }
1078 } else if (spapr->htab_first_pass) {
1079 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1080 } else {
1081 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1082 }
1083
1084 /* End marker */
1085 qemu_put_be32(f, 0);
1086 qemu_put_be16(f, 0);
1087 qemu_put_be16(f, 0);
1088
1089 return rc;
1090 }
1091
1092 static int htab_save_complete(QEMUFile *f, void *opaque)
1093 {
1094 sPAPREnvironment *spapr = opaque;
1095
1096 /* Iteration header */
1097 qemu_put_be32(f, 0);
1098
1099 if (!spapr->htab) {
1100 int rc;
1101
1102 assert(kvm_enabled());
1103
1104 rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1);
1105 if (rc < 0) {
1106 return rc;
1107 }
1108 close(spapr->htab_fd);
1109 spapr->htab_fd = -1;
1110 } else {
1111 htab_save_later_pass(f, spapr, -1);
1112 }
1113
1114 /* End marker */
1115 qemu_put_be32(f, 0);
1116 qemu_put_be16(f, 0);
1117 qemu_put_be16(f, 0);
1118
1119 return 0;
1120 }
1121
1122 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1123 {
1124 sPAPREnvironment *spapr = opaque;
1125 uint32_t section_hdr;
1126 int fd = -1;
1127
1128 if (version_id < 1 || version_id > 1) {
1129 fprintf(stderr, "htab_load() bad version\n");
1130 return -EINVAL;
1131 }
1132
1133 section_hdr = qemu_get_be32(f);
1134
1135 if (section_hdr) {
1136 /* First section, just the hash shift */
1137 if (spapr->htab_shift != section_hdr) {
1138 return -EINVAL;
1139 }
1140 return 0;
1141 }
1142
1143 if (!spapr->htab) {
1144 assert(kvm_enabled());
1145
1146 fd = kvmppc_get_htab_fd(true);
1147 if (fd < 0) {
1148 fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n",
1149 strerror(errno));
1150 }
1151 }
1152
1153 while (true) {
1154 uint32_t index;
1155 uint16_t n_valid, n_invalid;
1156
1157 index = qemu_get_be32(f);
1158 n_valid = qemu_get_be16(f);
1159 n_invalid = qemu_get_be16(f);
1160
1161 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1162 /* End of Stream */
1163 break;
1164 }
1165
1166 if ((index + n_valid + n_invalid) >
1167 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1168 /* Bad index in stream */
1169 fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) "
1170 "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid,
1171 spapr->htab_shift);
1172 return -EINVAL;
1173 }
1174
1175 if (spapr->htab) {
1176 if (n_valid) {
1177 qemu_get_buffer(f, HPTE(spapr->htab, index),
1178 HASH_PTE_SIZE_64 * n_valid);
1179 }
1180 if (n_invalid) {
1181 memset(HPTE(spapr->htab, index + n_valid), 0,
1182 HASH_PTE_SIZE_64 * n_invalid);
1183 }
1184 } else {
1185 int rc;
1186
1187 assert(fd >= 0);
1188
1189 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1190 if (rc < 0) {
1191 return rc;
1192 }
1193 }
1194 }
1195
1196 if (!spapr->htab) {
1197 assert(fd >= 0);
1198 close(fd);
1199 }
1200
1201 return 0;
1202 }
1203
1204 static SaveVMHandlers savevm_htab_handlers = {
1205 .save_live_setup = htab_save_setup,
1206 .save_live_iterate = htab_save_iterate,
1207 .save_live_complete = htab_save_complete,
1208 .load_state = htab_load,
1209 };
1210
1211 /* pSeries LPAR / sPAPR hardware init */
1212 static void ppc_spapr_init(MachineState *machine)
1213 {
1214 ram_addr_t ram_size = machine->ram_size;
1215 const char *cpu_model = machine->cpu_model;
1216 const char *kernel_filename = machine->kernel_filename;
1217 const char *kernel_cmdline = machine->kernel_cmdline;
1218 const char *initrd_filename = machine->initrd_filename;
1219 const char *boot_device = machine->boot_order;
1220 PowerPCCPU *cpu;
1221 CPUPPCState *env;
1222 PCIHostState *phb;
1223 int i;
1224 MemoryRegion *sysmem = get_system_memory();
1225 MemoryRegion *ram = g_new(MemoryRegion, 1);
1226 MemoryRegion *rma_region;
1227 void *rma = NULL;
1228 hwaddr rma_alloc_size;
1229 hwaddr node0_size = (nb_numa_nodes > 1) ? numa_info[0].node_mem : ram_size;
1230 uint32_t initrd_base = 0;
1231 long kernel_size = 0, initrd_size = 0;
1232 long load_limit, rtas_limit, fw_size;
1233 bool kernel_le = false;
1234 char *filename;
1235
1236 msi_supported = true;
1237
1238 spapr = g_malloc0(sizeof(*spapr));
1239 QLIST_INIT(&spapr->phbs);
1240
1241 cpu_ppc_hypercall = emulate_spapr_hypercall;
1242
1243 /* Allocate RMA if necessary */
1244 rma_alloc_size = kvmppc_alloc_rma(&rma);
1245
1246 if (rma_alloc_size == -1) {
1247 hw_error("qemu: Unable to create RMA\n");
1248 exit(1);
1249 }
1250
1251 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1252 spapr->rma_size = rma_alloc_size;
1253 } else {
1254 spapr->rma_size = node0_size;
1255
1256 /* With KVM, we don't actually know whether KVM supports an
1257 * unbounded RMA (PR KVM) or is limited by the hash table size
1258 * (HV KVM using VRMA), so we always assume the latter
1259 *
1260 * In that case, we also limit the initial allocations for RTAS
1261 * etc... to 256M since we have no way to know what the VRMA size
1262 * is going to be as it depends on the size of the hash table
1263 * isn't determined yet.
1264 */
1265 if (kvm_enabled()) {
1266 spapr->vrma_adjust = 1;
1267 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1268 }
1269 }
1270
1271 if (spapr->rma_size > node0_size) {
1272 fprintf(stderr, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")\n",
1273 spapr->rma_size);
1274 exit(1);
1275 }
1276
1277 /* We place the device tree and RTAS just below either the top of the RMA,
1278 * or just below 2GB, whichever is lowere, so that it can be
1279 * processed with 32-bit real mode code if necessary */
1280 rtas_limit = MIN(spapr->rma_size, 0x80000000);
1281 spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1282 spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
1283 load_limit = spapr->fdt_addr - FW_OVERHEAD;
1284
1285 /* We aim for a hash table of size 1/128 the size of RAM. The
1286 * normal rule of thumb is 1/64 the size of RAM, but that's much
1287 * more than needed for the Linux guests we support. */
1288 spapr->htab_shift = 18; /* Minimum architected size */
1289 while (spapr->htab_shift <= 46) {
1290 if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) {
1291 break;
1292 }
1293 spapr->htab_shift++;
1294 }
1295
1296 /* Set up Interrupt Controller before we create the VCPUs */
1297 spapr->icp = xics_system_init(smp_cpus * kvmppc_smt_threads() / smp_threads,
1298 XICS_IRQS);
1299
1300 /* init CPUs */
1301 if (cpu_model == NULL) {
1302 cpu_model = kvm_enabled() ? "host" : "POWER7";
1303 }
1304 for (i = 0; i < smp_cpus; i++) {
1305 cpu = cpu_ppc_init(cpu_model);
1306 if (cpu == NULL) {
1307 fprintf(stderr, "Unable to find PowerPC CPU definition\n");
1308 exit(1);
1309 }
1310 env = &cpu->env;
1311
1312 /* Set time-base frequency to 512 MHz */
1313 cpu_ppc_tb_init(env, TIMEBASE_FREQ);
1314
1315 /* PAPR always has exception vectors in RAM not ROM. To ensure this,
1316 * MSR[IP] should never be set.
1317 */
1318 env->msr_mask &= ~(1 << 6);
1319
1320 /* Tell KVM that we're in PAPR mode */
1321 if (kvm_enabled()) {
1322 kvmppc_set_papr(cpu);
1323 }
1324
1325 if (cpu->max_compat) {
1326 if (ppc_set_compat(cpu, cpu->max_compat) < 0) {
1327 exit(1);
1328 }
1329 }
1330
1331 xics_cpu_setup(spapr->icp, cpu);
1332
1333 qemu_register_reset(spapr_cpu_reset, cpu);
1334 }
1335
1336 /* allocate RAM */
1337 spapr->ram_limit = ram_size;
1338 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
1339 spapr->ram_limit);
1340 memory_region_add_subregion(sysmem, 0, ram);
1341
1342 if (rma_alloc_size && rma) {
1343 rma_region = g_new(MemoryRegion, 1);
1344 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
1345 rma_alloc_size, rma);
1346 vmstate_register_ram_global(rma_region);
1347 memory_region_add_subregion(sysmem, 0, rma_region);
1348 }
1349
1350 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1351 spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
1352 rtas_limit - spapr->rtas_addr);
1353 if (spapr->rtas_size < 0) {
1354 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
1355 exit(1);
1356 }
1357 if (spapr->rtas_size > RTAS_MAX_SIZE) {
1358 hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
1359 spapr->rtas_size, RTAS_MAX_SIZE);
1360 exit(1);
1361 }
1362 g_free(filename);
1363
1364 /* Set up EPOW events infrastructure */
1365 spapr_events_init(spapr);
1366
1367 /* Set up VIO bus */
1368 spapr->vio_bus = spapr_vio_bus_init();
1369
1370 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1371 if (serial_hds[i]) {
1372 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1373 }
1374 }
1375
1376 /* We always have at least the nvram device on VIO */
1377 spapr_create_nvram(spapr);
1378
1379 /* Set up PCI */
1380 spapr_pci_msi_init(spapr, SPAPR_PCI_MSI_WINDOW);
1381 spapr_pci_rtas_init();
1382
1383 phb = spapr_create_phb(spapr, 0);
1384
1385 for (i = 0; i < nb_nics; i++) {
1386 NICInfo *nd = &nd_table[i];
1387
1388 if (!nd->model) {
1389 nd->model = g_strdup("ibmveth");
1390 }
1391
1392 if (strcmp(nd->model, "ibmveth") == 0) {
1393 spapr_vlan_create(spapr->vio_bus, nd);
1394 } else {
1395 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1396 }
1397 }
1398
1399 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1400 spapr_vscsi_create(spapr->vio_bus);
1401 }
1402
1403 /* Graphics */
1404 if (spapr_vga_init(phb->bus)) {
1405 spapr->has_graphics = true;
1406 }
1407
1408 if (usb_enabled(spapr->has_graphics)) {
1409 pci_create_simple(phb->bus, -1, "pci-ohci");
1410 if (spapr->has_graphics) {
1411 usbdevice_create("keyboard");
1412 usbdevice_create("mouse");
1413 }
1414 }
1415
1416 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1417 fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
1418 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
1419 exit(1);
1420 }
1421
1422 if (kernel_filename) {
1423 uint64_t lowaddr = 0;
1424
1425 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
1426 NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
1427 if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1428 kernel_size = load_elf(kernel_filename,
1429 translate_kernel_address, NULL,
1430 NULL, &lowaddr, NULL, 0, ELF_MACHINE, 0);
1431 kernel_le = kernel_size > 0;
1432 }
1433 if (kernel_size < 0) {
1434 fprintf(stderr, "qemu: error loading %s: %s\n",
1435 kernel_filename, load_elf_strerror(kernel_size));
1436 exit(1);
1437 }
1438
1439 /* load initrd */
1440 if (initrd_filename) {
1441 /* Try to locate the initrd in the gap between the kernel
1442 * and the firmware. Add a bit of space just in case
1443 */
1444 initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1445 initrd_size = load_image_targphys(initrd_filename, initrd_base,
1446 load_limit - initrd_base);
1447 if (initrd_size < 0) {
1448 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
1449 initrd_filename);
1450 exit(1);
1451 }
1452 } else {
1453 initrd_base = 0;
1454 initrd_size = 0;
1455 }
1456 }
1457
1458 if (bios_name == NULL) {
1459 bios_name = FW_FILE_NAME;
1460 }
1461 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1462 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
1463 if (fw_size < 0) {
1464 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
1465 exit(1);
1466 }
1467 g_free(filename);
1468
1469 spapr->entry_point = 0x100;
1470
1471 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
1472 register_savevm_live(NULL, "spapr/htab", -1, 1,
1473 &savevm_htab_handlers, spapr);
1474
1475 /* Prepare the device tree */
1476 spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
1477 kernel_size, kernel_le,
1478 boot_device, kernel_cmdline,
1479 spapr->epow_irq);
1480 assert(spapr->fdt_skel != NULL);
1481 }
1482
1483 static int spapr_kvm_type(const char *vm_type)
1484 {
1485 if (!vm_type) {
1486 return 0;
1487 }
1488
1489 if (!strcmp(vm_type, "HV")) {
1490 return 1;
1491 }
1492
1493 if (!strcmp(vm_type, "PR")) {
1494 return 2;
1495 }
1496
1497 error_report("Unknown kvm-type specified '%s'", vm_type);
1498 exit(1);
1499 }
1500
1501 /*
1502 * Implementation of an interface to adjust firmware patch
1503 * for the bootindex property handling.
1504 */
1505 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
1506 DeviceState *dev)
1507 {
1508 #define CAST(type, obj, name) \
1509 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
1510 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
1511 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
1512
1513 if (d) {
1514 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
1515 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
1516 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
1517
1518 if (spapr) {
1519 /*
1520 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
1521 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
1522 * in the top 16 bits of the 64-bit LUN
1523 */
1524 unsigned id = 0x8000 | (d->id << 8) | d->lun;
1525 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1526 (uint64_t)id << 48);
1527 } else if (virtio) {
1528 /*
1529 * We use SRP luns of the form 01000000 | (target << 8) | lun
1530 * in the top 32 bits of the 64-bit LUN
1531 * Note: the quote above is from SLOF and it is wrong,
1532 * the actual binding is:
1533 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
1534 */
1535 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
1536 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1537 (uint64_t)id << 32);
1538 } else if (usb) {
1539 /*
1540 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
1541 * in the top 32 bits of the 64-bit LUN
1542 */
1543 unsigned usb_port = atoi(usb->port->path);
1544 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
1545 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1546 (uint64_t)id << 32);
1547 }
1548 }
1549
1550 if (phb) {
1551 /* Replace "pci" with "pci@800000020000000" */
1552 return g_strdup_printf("pci@%"PRIX64, phb->buid);
1553 }
1554
1555 return NULL;
1556 }
1557
1558 static char *spapr_get_kvm_type(Object *obj, Error **errp)
1559 {
1560 sPAPRMachineState *sm = SPAPR_MACHINE(obj);
1561
1562 return g_strdup(sm->kvm_type);
1563 }
1564
1565 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
1566 {
1567 sPAPRMachineState *sm = SPAPR_MACHINE(obj);
1568
1569 g_free(sm->kvm_type);
1570 sm->kvm_type = g_strdup(value);
1571 }
1572
1573 static void spapr_machine_initfn(Object *obj)
1574 {
1575 object_property_add_str(obj, "kvm-type",
1576 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
1577 }
1578
1579 static void spapr_machine_class_init(ObjectClass *oc, void *data)
1580 {
1581 MachineClass *mc = MACHINE_CLASS(oc);
1582 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
1583
1584 mc->name = "pseries";
1585 mc->desc = "pSeries Logical Partition (PAPR compliant)";
1586 mc->is_default = 1;
1587 mc->init = ppc_spapr_init;
1588 mc->reset = ppc_spapr_reset;
1589 mc->block_default_type = IF_SCSI;
1590 mc->max_cpus = MAX_CPUS;
1591 mc->no_parallel = 1;
1592 mc->default_boot_order = NULL;
1593 mc->kvm_type = spapr_kvm_type;
1594
1595 fwc->get_dev_path = spapr_get_fw_dev_path;
1596 }
1597
1598 static const TypeInfo spapr_machine_info = {
1599 .name = TYPE_SPAPR_MACHINE,
1600 .parent = TYPE_MACHINE,
1601 .instance_size = sizeof(sPAPRMachineState),
1602 .instance_init = spapr_machine_initfn,
1603 .class_init = spapr_machine_class_init,
1604 .interfaces = (InterfaceInfo[]) {
1605 { TYPE_FW_PATH_PROVIDER },
1606 { }
1607 },
1608 };
1609
1610 static void spapr_machine_2_1_class_init(ObjectClass *oc, void *data)
1611 {
1612 MachineClass *mc = MACHINE_CLASS(oc);
1613
1614 mc->name = "pseries-2.1";
1615 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.1";
1616 mc->is_default = 0;
1617 }
1618
1619 static const TypeInfo spapr_machine_2_1_info = {
1620 .name = TYPE_SPAPR_MACHINE "2.1",
1621 .parent = TYPE_SPAPR_MACHINE,
1622 .class_init = spapr_machine_2_1_class_init,
1623 };
1624
1625 static void spapr_machine_register_types(void)
1626 {
1627 type_register_static(&spapr_machine_info);
1628 type_register_static(&spapr_machine_2_1_info);
1629 }
1630
1631 type_init(spapr_machine_register_types)