]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr.c
Merge tag 'pull-loongarch-20221215' of https://gitlab.com/gaosong/qemu into staging
[mirror_qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 */
26
27 #include "qemu/osdep.h"
28 #include "qemu/datadir.h"
29 #include "qemu/memalign.h"
30 #include "qemu/guest-random.h"
31 #include "qapi/error.h"
32 #include "qapi/qapi-events-machine.h"
33 #include "qapi/qapi-events-qdev.h"
34 #include "qapi/visitor.h"
35 #include "sysemu/sysemu.h"
36 #include "sysemu/hostmem.h"
37 #include "sysemu/numa.h"
38 #include "sysemu/qtest.h"
39 #include "sysemu/reset.h"
40 #include "sysemu/runstate.h"
41 #include "qemu/log.h"
42 #include "hw/fw-path-provider.h"
43 #include "elf.h"
44 #include "net/net.h"
45 #include "sysemu/device_tree.h"
46 #include "sysemu/cpus.h"
47 #include "sysemu/hw_accel.h"
48 #include "kvm_ppc.h"
49 #include "migration/misc.h"
50 #include "migration/qemu-file-types.h"
51 #include "migration/global_state.h"
52 #include "migration/register.h"
53 #include "migration/blocker.h"
54 #include "mmu-hash64.h"
55 #include "mmu-book3s-v3.h"
56 #include "cpu-models.h"
57 #include "hw/core/cpu.h"
58
59 #include "hw/ppc/ppc.h"
60 #include "hw/loader.h"
61
62 #include "hw/ppc/fdt.h"
63 #include "hw/ppc/spapr.h"
64 #include "hw/ppc/spapr_vio.h"
65 #include "hw/qdev-properties.h"
66 #include "hw/pci-host/spapr.h"
67 #include "hw/pci/msi.h"
68
69 #include "hw/pci/pci.h"
70 #include "hw/scsi/scsi.h"
71 #include "hw/virtio/virtio-scsi.h"
72 #include "hw/virtio/vhost-scsi-common.h"
73
74 #include "exec/ram_addr.h"
75 #include "hw/usb.h"
76 #include "qemu/config-file.h"
77 #include "qemu/error-report.h"
78 #include "trace.h"
79 #include "hw/nmi.h"
80 #include "hw/intc/intc.h"
81
82 #include "hw/ppc/spapr_cpu_core.h"
83 #include "hw/mem/memory-device.h"
84 #include "hw/ppc/spapr_tpm_proxy.h"
85 #include "hw/ppc/spapr_nvdimm.h"
86 #include "hw/ppc/spapr_numa.h"
87 #include "hw/ppc/pef.h"
88
89 #include "monitor/monitor.h"
90
91 #include <libfdt.h>
92
93 /* SLOF memory layout:
94 *
95 * SLOF raw image loaded at 0, copies its romfs right below the flat
96 * device-tree, then position SLOF itself 31M below that
97 *
98 * So we set FW_OVERHEAD to 40MB which should account for all of that
99 * and more
100 *
101 * We load our kernel at 4M, leaving space for SLOF initial image
102 */
103 #define FDT_MAX_ADDR 0x80000000 /* FDT must stay below that */
104 #define FW_MAX_SIZE 0x400000
105 #define FW_FILE_NAME "slof.bin"
106 #define FW_FILE_NAME_VOF "vof.bin"
107 #define FW_OVERHEAD 0x2800000
108 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
109
110 #define MIN_RMA_SLOF (128 * MiB)
111
112 #define PHANDLE_INTC 0x00001111
113
114 /* These two functions implement the VCPU id numbering: one to compute them
115 * all and one to identify thread 0 of a VCORE. Any change to the first one
116 * is likely to have an impact on the second one, so let's keep them close.
117 */
118 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
119 {
120 MachineState *ms = MACHINE(spapr);
121 unsigned int smp_threads = ms->smp.threads;
122
123 assert(spapr->vsmt);
124 return
125 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
126 }
127 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
128 PowerPCCPU *cpu)
129 {
130 assert(spapr->vsmt);
131 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
132 }
133
134 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
135 {
136 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
137 * and newer QEMUs don't even have them. In both cases, we don't want
138 * to send anything on the wire.
139 */
140 return false;
141 }
142
143 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
144 .name = "icp/server",
145 .version_id = 1,
146 .minimum_version_id = 1,
147 .needed = pre_2_10_vmstate_dummy_icp_needed,
148 .fields = (VMStateField[]) {
149 VMSTATE_UNUSED(4), /* uint32_t xirr */
150 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
151 VMSTATE_UNUSED(1), /* uint8_t mfrr */
152 VMSTATE_END_OF_LIST()
153 },
154 };
155
156 static void pre_2_10_vmstate_register_dummy_icp(int i)
157 {
158 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
159 (void *)(uintptr_t) i);
160 }
161
162 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
163 {
164 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
165 (void *)(uintptr_t) i);
166 }
167
168 int spapr_max_server_number(SpaprMachineState *spapr)
169 {
170 MachineState *ms = MACHINE(spapr);
171
172 assert(spapr->vsmt);
173 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
174 }
175
176 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
177 int smt_threads)
178 {
179 int i, ret = 0;
180 g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads);
181 g_autofree uint32_t *gservers_prop = g_new(uint32_t, smt_threads * 2);
182 int index = spapr_get_vcpu_id(cpu);
183
184 if (cpu->compat_pvr) {
185 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
186 if (ret < 0) {
187 return ret;
188 }
189 }
190
191 /* Build interrupt servers and gservers properties */
192 for (i = 0; i < smt_threads; i++) {
193 servers_prop[i] = cpu_to_be32(index + i);
194 /* Hack, direct the group queues back to cpu 0 */
195 gservers_prop[i*2] = cpu_to_be32(index + i);
196 gservers_prop[i*2 + 1] = 0;
197 }
198 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
199 servers_prop, sizeof(*servers_prop) * smt_threads);
200 if (ret < 0) {
201 return ret;
202 }
203 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
204 gservers_prop, sizeof(*gservers_prop) * smt_threads * 2);
205
206 return ret;
207 }
208
209 static void spapr_dt_pa_features(SpaprMachineState *spapr,
210 PowerPCCPU *cpu,
211 void *fdt, int offset)
212 {
213 uint8_t pa_features_206[] = { 6, 0,
214 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
215 uint8_t pa_features_207[] = { 24, 0,
216 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
217 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
218 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
219 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
220 uint8_t pa_features_300[] = { 66, 0,
221 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
222 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
223 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
224 /* 6: DS207 */
225 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
226 /* 16: Vector */
227 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
228 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
229 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
230 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
231 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
232 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
233 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
234 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
235 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
236 /* 42: PM, 44: PC RA, 46: SC vec'd */
237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
238 /* 48: SIMD, 50: QP BFP, 52: String */
239 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
240 /* 54: DecFP, 56: DecI, 58: SHA */
241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
242 /* 60: NM atomic, 62: RNG */
243 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
244 };
245 uint8_t *pa_features = NULL;
246 size_t pa_size;
247
248 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
249 pa_features = pa_features_206;
250 pa_size = sizeof(pa_features_206);
251 }
252 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
253 pa_features = pa_features_207;
254 pa_size = sizeof(pa_features_207);
255 }
256 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
257 pa_features = pa_features_300;
258 pa_size = sizeof(pa_features_300);
259 }
260 if (!pa_features) {
261 return;
262 }
263
264 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
265 /*
266 * Note: we keep CI large pages off by default because a 64K capable
267 * guest provisioned with large pages might otherwise try to map a qemu
268 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
269 * even if that qemu runs on a 4k host.
270 * We dd this bit back here if we are confident this is not an issue
271 */
272 pa_features[3] |= 0x20;
273 }
274 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
275 pa_features[24] |= 0x80; /* Transactional memory support */
276 }
277 if (spapr->cas_pre_isa3_guest && pa_size > 40) {
278 /* Workaround for broken kernels that attempt (guest) radix
279 * mode when they can't handle it, if they see the radix bit set
280 * in pa-features. So hide it from them. */
281 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
282 }
283
284 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
285 }
286
287 static hwaddr spapr_node0_size(MachineState *machine)
288 {
289 if (machine->numa_state->num_nodes) {
290 int i;
291 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
292 if (machine->numa_state->nodes[i].node_mem) {
293 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
294 machine->ram_size);
295 }
296 }
297 }
298 return machine->ram_size;
299 }
300
301 static void add_str(GString *s, const gchar *s1)
302 {
303 g_string_append_len(s, s1, strlen(s1) + 1);
304 }
305
306 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
307 hwaddr start, hwaddr size)
308 {
309 char mem_name[32];
310 uint64_t mem_reg_property[2];
311 int off;
312
313 mem_reg_property[0] = cpu_to_be64(start);
314 mem_reg_property[1] = cpu_to_be64(size);
315
316 sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
317 off = fdt_add_subnode(fdt, 0, mem_name);
318 _FDT(off);
319 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
320 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
321 sizeof(mem_reg_property))));
322 spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
323 return off;
324 }
325
326 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
327 {
328 MemoryDeviceInfoList *info;
329
330 for (info = list; info; info = info->next) {
331 MemoryDeviceInfo *value = info->value;
332
333 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
334 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
335
336 if (addr >= pcdimm_info->addr &&
337 addr < (pcdimm_info->addr + pcdimm_info->size)) {
338 return pcdimm_info->node;
339 }
340 }
341 }
342
343 return -1;
344 }
345
346 struct sPAPRDrconfCellV2 {
347 uint32_t seq_lmbs;
348 uint64_t base_addr;
349 uint32_t drc_index;
350 uint32_t aa_index;
351 uint32_t flags;
352 } QEMU_PACKED;
353
354 typedef struct DrconfCellQueue {
355 struct sPAPRDrconfCellV2 cell;
356 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
357 } DrconfCellQueue;
358
359 static DrconfCellQueue *
360 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
361 uint32_t drc_index, uint32_t aa_index,
362 uint32_t flags)
363 {
364 DrconfCellQueue *elem;
365
366 elem = g_malloc0(sizeof(*elem));
367 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
368 elem->cell.base_addr = cpu_to_be64(base_addr);
369 elem->cell.drc_index = cpu_to_be32(drc_index);
370 elem->cell.aa_index = cpu_to_be32(aa_index);
371 elem->cell.flags = cpu_to_be32(flags);
372
373 return elem;
374 }
375
376 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
377 int offset, MemoryDeviceInfoList *dimms)
378 {
379 MachineState *machine = MACHINE(spapr);
380 uint8_t *int_buf, *cur_index;
381 int ret;
382 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
383 uint64_t addr, cur_addr, size;
384 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
385 uint64_t mem_end = machine->device_memory->base +
386 memory_region_size(&machine->device_memory->mr);
387 uint32_t node, buf_len, nr_entries = 0;
388 SpaprDrc *drc;
389 DrconfCellQueue *elem, *next;
390 MemoryDeviceInfoList *info;
391 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
392 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
393
394 /* Entry to cover RAM and the gap area */
395 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
396 SPAPR_LMB_FLAGS_RESERVED |
397 SPAPR_LMB_FLAGS_DRC_INVALID);
398 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
399 nr_entries++;
400
401 cur_addr = machine->device_memory->base;
402 for (info = dimms; info; info = info->next) {
403 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
404
405 addr = di->addr;
406 size = di->size;
407 node = di->node;
408
409 /*
410 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
411 * area is marked hotpluggable in the next iteration for the bigger
412 * chunk including the NVDIMM occupied area.
413 */
414 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
415 continue;
416
417 /* Entry for hot-pluggable area */
418 if (cur_addr < addr) {
419 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
420 g_assert(drc);
421 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
422 cur_addr, spapr_drc_index(drc), -1, 0);
423 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
424 nr_entries++;
425 }
426
427 /* Entry for DIMM */
428 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
429 g_assert(drc);
430 elem = spapr_get_drconf_cell(size / lmb_size, addr,
431 spapr_drc_index(drc), node,
432 (SPAPR_LMB_FLAGS_ASSIGNED |
433 SPAPR_LMB_FLAGS_HOTREMOVABLE));
434 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
435 nr_entries++;
436 cur_addr = addr + size;
437 }
438
439 /* Entry for remaining hotpluggable area */
440 if (cur_addr < mem_end) {
441 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
442 g_assert(drc);
443 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
444 cur_addr, spapr_drc_index(drc), -1, 0);
445 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
446 nr_entries++;
447 }
448
449 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
450 int_buf = cur_index = g_malloc0(buf_len);
451 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
452 cur_index += sizeof(nr_entries);
453
454 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
455 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
456 cur_index += sizeof(elem->cell);
457 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
458 g_free(elem);
459 }
460
461 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
462 g_free(int_buf);
463 if (ret < 0) {
464 return -1;
465 }
466 return 0;
467 }
468
469 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
470 int offset, MemoryDeviceInfoList *dimms)
471 {
472 MachineState *machine = MACHINE(spapr);
473 int i, ret;
474 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
475 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
476 uint32_t nr_lmbs = (machine->device_memory->base +
477 memory_region_size(&machine->device_memory->mr)) /
478 lmb_size;
479 uint32_t *int_buf, *cur_index, buf_len;
480
481 /*
482 * Allocate enough buffer size to fit in ibm,dynamic-memory
483 */
484 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
485 cur_index = int_buf = g_malloc0(buf_len);
486 int_buf[0] = cpu_to_be32(nr_lmbs);
487 cur_index++;
488 for (i = 0; i < nr_lmbs; i++) {
489 uint64_t addr = i * lmb_size;
490 uint32_t *dynamic_memory = cur_index;
491
492 if (i >= device_lmb_start) {
493 SpaprDrc *drc;
494
495 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
496 g_assert(drc);
497
498 dynamic_memory[0] = cpu_to_be32(addr >> 32);
499 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
500 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
501 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
502 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
503 if (memory_region_present(get_system_memory(), addr)) {
504 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
505 } else {
506 dynamic_memory[5] = cpu_to_be32(0);
507 }
508 } else {
509 /*
510 * LMB information for RMA, boot time RAM and gap b/n RAM and
511 * device memory region -- all these are marked as reserved
512 * and as having no valid DRC.
513 */
514 dynamic_memory[0] = cpu_to_be32(addr >> 32);
515 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
516 dynamic_memory[2] = cpu_to_be32(0);
517 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
518 dynamic_memory[4] = cpu_to_be32(-1);
519 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
520 SPAPR_LMB_FLAGS_DRC_INVALID);
521 }
522
523 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
524 }
525 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
526 g_free(int_buf);
527 if (ret < 0) {
528 return -1;
529 }
530 return 0;
531 }
532
533 /*
534 * Adds ibm,dynamic-reconfiguration-memory node.
535 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
536 * of this device tree node.
537 */
538 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
539 void *fdt)
540 {
541 MachineState *machine = MACHINE(spapr);
542 int ret, offset;
543 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
544 uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
545 cpu_to_be32(lmb_size & 0xffffffff)};
546 MemoryDeviceInfoList *dimms = NULL;
547
548 /*
549 * Don't create the node if there is no device memory
550 */
551 if (machine->ram_size == machine->maxram_size) {
552 return 0;
553 }
554
555 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
556
557 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
558 sizeof(prop_lmb_size));
559 if (ret < 0) {
560 return ret;
561 }
562
563 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
564 if (ret < 0) {
565 return ret;
566 }
567
568 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
569 if (ret < 0) {
570 return ret;
571 }
572
573 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
574 dimms = qmp_memory_device_list();
575 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
576 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
577 } else {
578 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
579 }
580 qapi_free_MemoryDeviceInfoList(dimms);
581
582 if (ret < 0) {
583 return ret;
584 }
585
586 ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
587
588 return ret;
589 }
590
591 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
592 {
593 MachineState *machine = MACHINE(spapr);
594 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
595 hwaddr mem_start, node_size;
596 int i, nb_nodes = machine->numa_state->num_nodes;
597 NodeInfo *nodes = machine->numa_state->nodes;
598
599 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
600 if (!nodes[i].node_mem) {
601 continue;
602 }
603 if (mem_start >= machine->ram_size) {
604 node_size = 0;
605 } else {
606 node_size = nodes[i].node_mem;
607 if (node_size > machine->ram_size - mem_start) {
608 node_size = machine->ram_size - mem_start;
609 }
610 }
611 if (!mem_start) {
612 /* spapr_machine_init() checks for rma_size <= node0_size
613 * already */
614 spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
615 mem_start += spapr->rma_size;
616 node_size -= spapr->rma_size;
617 }
618 for ( ; node_size; ) {
619 hwaddr sizetmp = pow2floor(node_size);
620
621 /* mem_start != 0 here */
622 if (ctzl(mem_start) < ctzl(sizetmp)) {
623 sizetmp = 1ULL << ctzl(mem_start);
624 }
625
626 spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
627 node_size -= sizetmp;
628 mem_start += sizetmp;
629 }
630 }
631
632 /* Generate ibm,dynamic-reconfiguration-memory node if required */
633 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
634 int ret;
635
636 g_assert(smc->dr_lmb_enabled);
637 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
638 if (ret) {
639 return ret;
640 }
641 }
642
643 return 0;
644 }
645
646 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
647 SpaprMachineState *spapr)
648 {
649 MachineState *ms = MACHINE(spapr);
650 PowerPCCPU *cpu = POWERPC_CPU(cs);
651 CPUPPCState *env = &cpu->env;
652 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
653 int index = spapr_get_vcpu_id(cpu);
654 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
655 0xffffffff, 0xffffffff};
656 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
657 : SPAPR_TIMEBASE_FREQ;
658 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
659 uint32_t page_sizes_prop[64];
660 size_t page_sizes_prop_size;
661 unsigned int smp_threads = ms->smp.threads;
662 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
663 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
664 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
665 SpaprDrc *drc;
666 int drc_index;
667 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
668 int i;
669
670 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
671 if (drc) {
672 drc_index = spapr_drc_index(drc);
673 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
674 }
675
676 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
677 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
678
679 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
680 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
681 env->dcache_line_size)));
682 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
683 env->dcache_line_size)));
684 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
685 env->icache_line_size)));
686 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
687 env->icache_line_size)));
688
689 if (pcc->l1_dcache_size) {
690 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
691 pcc->l1_dcache_size)));
692 } else {
693 warn_report("Unknown L1 dcache size for cpu");
694 }
695 if (pcc->l1_icache_size) {
696 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
697 pcc->l1_icache_size)));
698 } else {
699 warn_report("Unknown L1 icache size for cpu");
700 }
701
702 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
703 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
704 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
705 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
706 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
707 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
708
709 if (ppc_has_spr(cpu, SPR_PURR)) {
710 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
711 }
712 if (ppc_has_spr(cpu, SPR_PURR)) {
713 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
714 }
715
716 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
717 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
718 segs, sizeof(segs))));
719 }
720
721 /* Advertise VSX (vector extensions) if available
722 * 1 == VMX / Altivec available
723 * 2 == VSX available
724 *
725 * Only CPUs for which we create core types in spapr_cpu_core.c
726 * are possible, and all of those have VMX */
727 if (env->insns_flags & PPC_ALTIVEC) {
728 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
729 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
730 } else {
731 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
732 }
733 }
734
735 /* Advertise DFP (Decimal Floating Point) if available
736 * 0 / no property == no DFP
737 * 1 == DFP available */
738 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
739 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
740 }
741
742 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
743 sizeof(page_sizes_prop));
744 if (page_sizes_prop_size) {
745 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
746 page_sizes_prop, page_sizes_prop_size)));
747 }
748
749 spapr_dt_pa_features(spapr, cpu, fdt, offset);
750
751 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
752 cs->cpu_index / vcpus_per_socket)));
753
754 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
755 pft_size_prop, sizeof(pft_size_prop))));
756
757 if (ms->numa_state->num_nodes > 1) {
758 _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
759 }
760
761 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
762
763 if (pcc->radix_page_info) {
764 for (i = 0; i < pcc->radix_page_info->count; i++) {
765 radix_AP_encodings[i] =
766 cpu_to_be32(pcc->radix_page_info->entries[i]);
767 }
768 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
769 radix_AP_encodings,
770 pcc->radix_page_info->count *
771 sizeof(radix_AP_encodings[0]))));
772 }
773
774 /*
775 * We set this property to let the guest know that it can use the large
776 * decrementer and its width in bits.
777 */
778 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
779 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
780 pcc->lrg_decr_bits)));
781 }
782
783 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
784 {
785 CPUState **rev;
786 CPUState *cs;
787 int n_cpus;
788 int cpus_offset;
789 int i;
790
791 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
792 _FDT(cpus_offset);
793 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
794 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
795
796 /*
797 * We walk the CPUs in reverse order to ensure that CPU DT nodes
798 * created by fdt_add_subnode() end up in the right order in FDT
799 * for the guest kernel the enumerate the CPUs correctly.
800 *
801 * The CPU list cannot be traversed in reverse order, so we need
802 * to do extra work.
803 */
804 n_cpus = 0;
805 rev = NULL;
806 CPU_FOREACH(cs) {
807 rev = g_renew(CPUState *, rev, n_cpus + 1);
808 rev[n_cpus++] = cs;
809 }
810
811 for (i = n_cpus - 1; i >= 0; i--) {
812 CPUState *cs = rev[i];
813 PowerPCCPU *cpu = POWERPC_CPU(cs);
814 int index = spapr_get_vcpu_id(cpu);
815 DeviceClass *dc = DEVICE_GET_CLASS(cs);
816 g_autofree char *nodename = NULL;
817 int offset;
818
819 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
820 continue;
821 }
822
823 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
824 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
825 _FDT(offset);
826 spapr_dt_cpu(cs, fdt, offset, spapr);
827 }
828
829 g_free(rev);
830 }
831
832 static int spapr_dt_rng(void *fdt)
833 {
834 int node;
835 int ret;
836
837 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
838 if (node <= 0) {
839 return -1;
840 }
841 ret = fdt_setprop_string(fdt, node, "device_type",
842 "ibm,platform-facilities");
843 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
844 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
845
846 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
847 if (node <= 0) {
848 return -1;
849 }
850 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
851
852 return ret ? -1 : 0;
853 }
854
855 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
856 {
857 MachineState *ms = MACHINE(spapr);
858 int rtas;
859 GString *hypertas = g_string_sized_new(256);
860 GString *qemu_hypertas = g_string_sized_new(256);
861 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
862 memory_region_size(&MACHINE(spapr)->device_memory->mr);
863 uint32_t lrdr_capacity[] = {
864 cpu_to_be32(max_device_addr >> 32),
865 cpu_to_be32(max_device_addr & 0xffffffff),
866 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
867 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
868 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
869 };
870
871 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
872
873 /* hypertas */
874 add_str(hypertas, "hcall-pft");
875 add_str(hypertas, "hcall-term");
876 add_str(hypertas, "hcall-dabr");
877 add_str(hypertas, "hcall-interrupt");
878 add_str(hypertas, "hcall-tce");
879 add_str(hypertas, "hcall-vio");
880 add_str(hypertas, "hcall-splpar");
881 add_str(hypertas, "hcall-join");
882 add_str(hypertas, "hcall-bulk");
883 add_str(hypertas, "hcall-set-mode");
884 add_str(hypertas, "hcall-sprg0");
885 add_str(hypertas, "hcall-copy");
886 add_str(hypertas, "hcall-debug");
887 add_str(hypertas, "hcall-vphn");
888 if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) {
889 add_str(hypertas, "hcall-rpt-invalidate");
890 }
891
892 add_str(qemu_hypertas, "hcall-memop1");
893
894 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
895 add_str(hypertas, "hcall-multi-tce");
896 }
897
898 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
899 add_str(hypertas, "hcall-hpt-resize");
900 }
901
902 add_str(hypertas, "hcall-watchdog");
903
904 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
905 hypertas->str, hypertas->len));
906 g_string_free(hypertas, TRUE);
907 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
908 qemu_hypertas->str, qemu_hypertas->len));
909 g_string_free(qemu_hypertas, TRUE);
910
911 spapr_numa_write_rtas_dt(spapr, fdt, rtas);
912
913 /*
914 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
915 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
916 *
917 * The system reset requirements are driven by existing Linux and PowerVM
918 * implementation which (contrary to PAPR) saves r3 in the error log
919 * structure like machine check, so Linux expects to find the saved r3
920 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
921 * does not look at the error value).
922 *
923 * System reset interrupts are not subject to interlock like machine
924 * check, so this memory area could be corrupted if the sreset is
925 * interrupted by a machine check (or vice versa) if it was shared. To
926 * prevent this, system reset uses per-CPU areas for the sreset save
927 * area. A system reset that interrupts a system reset handler could
928 * still overwrite this area, but Linux doesn't try to recover in that
929 * case anyway.
930 *
931 * The extra 8 bytes is required because Linux's FWNMI error log check
932 * is off-by-one.
933 *
934 * RTAS_MIN_SIZE is required for the RTAS blob itself.
935 */
936 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE +
937 RTAS_ERROR_LOG_MAX +
938 ms->smp.max_cpus * sizeof(uint64_t) * 2 +
939 sizeof(uint64_t)));
940 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
941 RTAS_ERROR_LOG_MAX));
942 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
943 RTAS_EVENT_SCAN_RATE));
944
945 g_assert(msi_nonbroken);
946 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
947
948 /*
949 * According to PAPR, rtas ibm,os-term does not guarantee a return
950 * back to the guest cpu.
951 *
952 * While an additional ibm,extended-os-term property indicates
953 * that rtas call return will always occur. Set this property.
954 */
955 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
956
957 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
958 lrdr_capacity, sizeof(lrdr_capacity)));
959
960 spapr_dt_rtas_tokens(fdt, rtas);
961 }
962
963 /*
964 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
965 * and the XIVE features that the guest may request and thus the valid
966 * values for bytes 23..26 of option vector 5:
967 */
968 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
969 int chosen)
970 {
971 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
972
973 char val[2 * 4] = {
974 23, 0x00, /* XICS / XIVE mode */
975 24, 0x00, /* Hash/Radix, filled in below. */
976 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
977 26, 0x40, /* Radix options: GTSE == yes. */
978 };
979
980 if (spapr->irq->xics && spapr->irq->xive) {
981 val[1] = SPAPR_OV5_XIVE_BOTH;
982 } else if (spapr->irq->xive) {
983 val[1] = SPAPR_OV5_XIVE_EXPLOIT;
984 } else {
985 assert(spapr->irq->xics);
986 val[1] = SPAPR_OV5_XIVE_LEGACY;
987 }
988
989 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
990 first_ppc_cpu->compat_pvr)) {
991 /*
992 * If we're in a pre POWER9 compat mode then the guest should
993 * do hash and use the legacy interrupt mode
994 */
995 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
996 val[3] = 0x00; /* Hash */
997 spapr_check_mmu_mode(false);
998 } else if (kvm_enabled()) {
999 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1000 val[3] = 0x80; /* OV5_MMU_BOTH */
1001 } else if (kvmppc_has_cap_mmu_radix()) {
1002 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1003 } else {
1004 val[3] = 0x00; /* Hash */
1005 }
1006 } else {
1007 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1008 val[3] = 0xC0;
1009 }
1010 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1011 val, sizeof(val)));
1012 }
1013
1014 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1015 {
1016 MachineState *machine = MACHINE(spapr);
1017 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1018 uint8_t rng_seed[32];
1019 int chosen;
1020
1021 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1022
1023 if (reset) {
1024 const char *boot_device = spapr->boot_device;
1025 g_autofree char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1026 size_t cb = 0;
1027 g_autofree char *bootlist = get_boot_devices_list(&cb);
1028
1029 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1030 _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1031 machine->kernel_cmdline));
1032 }
1033
1034 if (spapr->initrd_size) {
1035 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1036 spapr->initrd_base));
1037 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1038 spapr->initrd_base + spapr->initrd_size));
1039 }
1040
1041 if (spapr->kernel_size) {
1042 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1043 cpu_to_be64(spapr->kernel_size) };
1044
1045 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1046 &kprop, sizeof(kprop)));
1047 if (spapr->kernel_le) {
1048 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1049 }
1050 }
1051 if (machine->boot_config.has_menu && machine->boot_config.menu) {
1052 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", true)));
1053 }
1054 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1055 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1056 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1057
1058 if (cb && bootlist) {
1059 int i;
1060
1061 for (i = 0; i < cb; i++) {
1062 if (bootlist[i] == '\n') {
1063 bootlist[i] = ' ';
1064 }
1065 }
1066 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1067 }
1068
1069 if (boot_device && strlen(boot_device)) {
1070 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1071 }
1072
1073 if (spapr->want_stdout_path && stdout_path) {
1074 /*
1075 * "linux,stdout-path" and "stdout" properties are
1076 * deprecated by linux kernel. New platforms should only
1077 * use the "stdout-path" property. Set the new property
1078 * and continue using older property to remain compatible
1079 * with the existing firmware.
1080 */
1081 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1082 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1083 }
1084
1085 /*
1086 * We can deal with BAR reallocation just fine, advertise it
1087 * to the guest
1088 */
1089 if (smc->linux_pci_probe) {
1090 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1091 }
1092
1093 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1094 }
1095
1096 qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
1097 _FDT(fdt_setprop(fdt, chosen, "rng-seed", rng_seed, sizeof(rng_seed)));
1098
1099 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1100 }
1101
1102 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1103 {
1104 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1105 * KVM to work under pHyp with some guest co-operation */
1106 int hypervisor;
1107 uint8_t hypercall[16];
1108
1109 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1110 /* indicate KVM hypercall interface */
1111 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1112 if (kvmppc_has_cap_fixup_hcalls()) {
1113 /*
1114 * Older KVM versions with older guest kernels were broken
1115 * with the magic page, don't allow the guest to map it.
1116 */
1117 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1118 sizeof(hypercall))) {
1119 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1120 hypercall, sizeof(hypercall)));
1121 }
1122 }
1123 }
1124
1125 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1126 {
1127 MachineState *machine = MACHINE(spapr);
1128 MachineClass *mc = MACHINE_GET_CLASS(machine);
1129 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1130 uint32_t root_drc_type_mask = 0;
1131 int ret;
1132 void *fdt;
1133 SpaprPhbState *phb;
1134 char *buf;
1135
1136 fdt = g_malloc0(space);
1137 _FDT((fdt_create_empty_tree(fdt, space)));
1138
1139 /* Root node */
1140 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1141 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1142 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1143
1144 /* Guest UUID & Name*/
1145 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1146 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1147 if (qemu_uuid_set) {
1148 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1149 }
1150 g_free(buf);
1151
1152 if (qemu_get_vm_name()) {
1153 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1154 qemu_get_vm_name()));
1155 }
1156
1157 /* Host Model & Serial Number */
1158 if (spapr->host_model) {
1159 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1160 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1161 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1162 g_free(buf);
1163 }
1164
1165 if (spapr->host_serial) {
1166 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1167 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1168 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1169 g_free(buf);
1170 }
1171
1172 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1173 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1174
1175 /* /interrupt controller */
1176 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1177
1178 ret = spapr_dt_memory(spapr, fdt);
1179 if (ret < 0) {
1180 error_report("couldn't setup memory nodes in fdt");
1181 exit(1);
1182 }
1183
1184 /* /vdevice */
1185 spapr_dt_vdevice(spapr->vio_bus, fdt);
1186
1187 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1188 ret = spapr_dt_rng(fdt);
1189 if (ret < 0) {
1190 error_report("could not set up rng device in the fdt");
1191 exit(1);
1192 }
1193 }
1194
1195 QLIST_FOREACH(phb, &spapr->phbs, list) {
1196 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1197 if (ret < 0) {
1198 error_report("couldn't setup PCI devices in fdt");
1199 exit(1);
1200 }
1201 }
1202
1203 spapr_dt_cpus(fdt, spapr);
1204
1205 /* ibm,drc-indexes and friends */
1206 if (smc->dr_lmb_enabled) {
1207 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB;
1208 }
1209 if (smc->dr_phb_enabled) {
1210 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB;
1211 }
1212 if (mc->nvdimm_supported) {
1213 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM;
1214 }
1215 if (root_drc_type_mask) {
1216 _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask));
1217 }
1218
1219 if (mc->has_hotpluggable_cpus) {
1220 int offset = fdt_path_offset(fdt, "/cpus");
1221 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1222 if (ret < 0) {
1223 error_report("Couldn't set up CPU DR device tree properties");
1224 exit(1);
1225 }
1226 }
1227
1228 /* /event-sources */
1229 spapr_dt_events(spapr, fdt);
1230
1231 /* /rtas */
1232 spapr_dt_rtas(spapr, fdt);
1233
1234 /* /chosen */
1235 spapr_dt_chosen(spapr, fdt, reset);
1236
1237 /* /hypervisor */
1238 if (kvm_enabled()) {
1239 spapr_dt_hypervisor(spapr, fdt);
1240 }
1241
1242 /* Build memory reserve map */
1243 if (reset) {
1244 if (spapr->kernel_size) {
1245 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1246 spapr->kernel_size)));
1247 }
1248 if (spapr->initrd_size) {
1249 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1250 spapr->initrd_size)));
1251 }
1252 }
1253
1254 /* NVDIMM devices */
1255 if (mc->nvdimm_supported) {
1256 spapr_dt_persistent_memory(spapr, fdt);
1257 }
1258
1259 return fdt;
1260 }
1261
1262 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1263 {
1264 SpaprMachineState *spapr = opaque;
1265
1266 return (addr & 0x0fffffff) + spapr->kernel_addr;
1267 }
1268
1269 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1270 PowerPCCPU *cpu)
1271 {
1272 CPUPPCState *env = &cpu->env;
1273
1274 /* The TCG path should also be holding the BQL at this point */
1275 g_assert(qemu_mutex_iothread_locked());
1276
1277 g_assert(!vhyp_cpu_in_nested(cpu));
1278
1279 if (FIELD_EX64(env->msr, MSR, PR)) {
1280 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1281 env->gpr[3] = H_PRIVILEGE;
1282 } else {
1283 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1284 }
1285 }
1286
1287 struct LPCRSyncState {
1288 target_ulong value;
1289 target_ulong mask;
1290 };
1291
1292 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1293 {
1294 struct LPCRSyncState *s = arg.host_ptr;
1295 PowerPCCPU *cpu = POWERPC_CPU(cs);
1296 CPUPPCState *env = &cpu->env;
1297 target_ulong lpcr;
1298
1299 cpu_synchronize_state(cs);
1300 lpcr = env->spr[SPR_LPCR];
1301 lpcr &= ~s->mask;
1302 lpcr |= s->value;
1303 ppc_store_lpcr(cpu, lpcr);
1304 }
1305
1306 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1307 {
1308 CPUState *cs;
1309 struct LPCRSyncState s = {
1310 .value = value,
1311 .mask = mask
1312 };
1313 CPU_FOREACH(cs) {
1314 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1315 }
1316 }
1317
1318 static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu,
1319 target_ulong lpid, ppc_v3_pate_t *entry)
1320 {
1321 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1322 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1323
1324 if (!spapr_cpu->in_nested) {
1325 assert(lpid == 0);
1326
1327 /* Copy PATE1:GR into PATE0:HR */
1328 entry->dw0 = spapr->patb_entry & PATE0_HR;
1329 entry->dw1 = spapr->patb_entry;
1330
1331 } else {
1332 uint64_t patb, pats;
1333
1334 assert(lpid != 0);
1335
1336 patb = spapr->nested_ptcr & PTCR_PATB;
1337 pats = spapr->nested_ptcr & PTCR_PATS;
1338
1339 /* Check if partition table is properly aligned */
1340 if (patb & MAKE_64BIT_MASK(0, pats + 12)) {
1341 return false;
1342 }
1343
1344 /* Calculate number of entries */
1345 pats = 1ull << (pats + 12 - 4);
1346 if (pats <= lpid) {
1347 return false;
1348 }
1349
1350 /* Grab entry */
1351 patb += 16 * lpid;
1352 entry->dw0 = ldq_phys(CPU(cpu)->as, patb);
1353 entry->dw1 = ldq_phys(CPU(cpu)->as, patb + 8);
1354 }
1355
1356 return true;
1357 }
1358
1359 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1360 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1361 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1362 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1363 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1364
1365 /*
1366 * Get the fd to access the kernel htab, re-opening it if necessary
1367 */
1368 static int get_htab_fd(SpaprMachineState *spapr)
1369 {
1370 Error *local_err = NULL;
1371
1372 if (spapr->htab_fd >= 0) {
1373 return spapr->htab_fd;
1374 }
1375
1376 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1377 if (spapr->htab_fd < 0) {
1378 error_report_err(local_err);
1379 }
1380
1381 return spapr->htab_fd;
1382 }
1383
1384 void close_htab_fd(SpaprMachineState *spapr)
1385 {
1386 if (spapr->htab_fd >= 0) {
1387 close(spapr->htab_fd);
1388 }
1389 spapr->htab_fd = -1;
1390 }
1391
1392 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1393 {
1394 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1395
1396 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1397 }
1398
1399 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1400 {
1401 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1402
1403 assert(kvm_enabled());
1404
1405 if (!spapr->htab) {
1406 return 0;
1407 }
1408
1409 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1410 }
1411
1412 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1413 hwaddr ptex, int n)
1414 {
1415 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1416 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1417
1418 if (!spapr->htab) {
1419 /*
1420 * HTAB is controlled by KVM. Fetch into temporary buffer
1421 */
1422 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1423 kvmppc_read_hptes(hptes, ptex, n);
1424 return hptes;
1425 }
1426
1427 /*
1428 * HTAB is controlled by QEMU. Just point to the internally
1429 * accessible PTEG.
1430 */
1431 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1432 }
1433
1434 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1435 const ppc_hash_pte64_t *hptes,
1436 hwaddr ptex, int n)
1437 {
1438 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1439
1440 if (!spapr->htab) {
1441 g_free((void *)hptes);
1442 }
1443
1444 /* Nothing to do for qemu managed HPT */
1445 }
1446
1447 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1448 uint64_t pte0, uint64_t pte1)
1449 {
1450 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1451 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1452
1453 if (!spapr->htab) {
1454 kvmppc_write_hpte(ptex, pte0, pte1);
1455 } else {
1456 if (pte0 & HPTE64_V_VALID) {
1457 stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1458 /*
1459 * When setting valid, we write PTE1 first. This ensures
1460 * proper synchronization with the reading code in
1461 * ppc_hash64_pteg_search()
1462 */
1463 smp_wmb();
1464 stq_p(spapr->htab + offset, pte0);
1465 } else {
1466 stq_p(spapr->htab + offset, pte0);
1467 /*
1468 * When clearing it we set PTE0 first. This ensures proper
1469 * synchronization with the reading code in
1470 * ppc_hash64_pteg_search()
1471 */
1472 smp_wmb();
1473 stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1474 }
1475 }
1476 }
1477
1478 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1479 uint64_t pte1)
1480 {
1481 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C;
1482 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1483
1484 if (!spapr->htab) {
1485 /* There should always be a hash table when this is called */
1486 error_report("spapr_hpte_set_c called with no hash table !");
1487 return;
1488 }
1489
1490 /* The HW performs a non-atomic byte update */
1491 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1492 }
1493
1494 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1495 uint64_t pte1)
1496 {
1497 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R;
1498 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1499
1500 if (!spapr->htab) {
1501 /* There should always be a hash table when this is called */
1502 error_report("spapr_hpte_set_r called with no hash table !");
1503 return;
1504 }
1505
1506 /* The HW performs a non-atomic byte update */
1507 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1508 }
1509
1510 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1511 {
1512 int shift;
1513
1514 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1515 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1516 * that's much more than is needed for Linux guests */
1517 shift = ctz64(pow2ceil(ramsize)) - 7;
1518 shift = MAX(shift, 18); /* Minimum architected size */
1519 shift = MIN(shift, 46); /* Maximum architected size */
1520 return shift;
1521 }
1522
1523 void spapr_free_hpt(SpaprMachineState *spapr)
1524 {
1525 qemu_vfree(spapr->htab);
1526 spapr->htab = NULL;
1527 spapr->htab_shift = 0;
1528 close_htab_fd(spapr);
1529 }
1530
1531 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp)
1532 {
1533 ERRP_GUARD();
1534 long rc;
1535
1536 /* Clean up any HPT info from a previous boot */
1537 spapr_free_hpt(spapr);
1538
1539 rc = kvmppc_reset_htab(shift);
1540
1541 if (rc == -EOPNOTSUPP) {
1542 error_setg(errp, "HPT not supported in nested guests");
1543 return -EOPNOTSUPP;
1544 }
1545
1546 if (rc < 0) {
1547 /* kernel-side HPT needed, but couldn't allocate one */
1548 error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
1549 shift);
1550 error_append_hint(errp, "Try smaller maxmem?\n");
1551 return -errno;
1552 } else if (rc > 0) {
1553 /* kernel-side HPT allocated */
1554 if (rc != shift) {
1555 error_setg(errp,
1556 "Requested order %d HPT, but kernel allocated order %ld",
1557 shift, rc);
1558 error_append_hint(errp, "Try smaller maxmem?\n");
1559 return -ENOSPC;
1560 }
1561
1562 spapr->htab_shift = shift;
1563 spapr->htab = NULL;
1564 } else {
1565 /* kernel-side HPT not needed, allocate in userspace instead */
1566 size_t size = 1ULL << shift;
1567 int i;
1568
1569 spapr->htab = qemu_memalign(size, size);
1570 memset(spapr->htab, 0, size);
1571 spapr->htab_shift = shift;
1572
1573 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1574 DIRTY_HPTE(HPTE(spapr->htab, i));
1575 }
1576 }
1577 /* We're setting up a hash table, so that means we're not radix */
1578 spapr->patb_entry = 0;
1579 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1580 return 0;
1581 }
1582
1583 void spapr_setup_hpt(SpaprMachineState *spapr)
1584 {
1585 int hpt_shift;
1586
1587 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1588 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1589 } else {
1590 uint64_t current_ram_size;
1591
1592 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1593 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1594 }
1595 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1596
1597 if (kvm_enabled()) {
1598 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1599
1600 /* Check our RMA fits in the possible VRMA */
1601 if (vrma_limit < spapr->rma_size) {
1602 error_report("Unable to create %" HWADDR_PRIu
1603 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1604 spapr->rma_size / MiB, vrma_limit / MiB);
1605 exit(EXIT_FAILURE);
1606 }
1607 }
1608 }
1609
1610 void spapr_check_mmu_mode(bool guest_radix)
1611 {
1612 if (guest_radix) {
1613 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1614 error_report("Guest requested unavailable MMU mode (radix).");
1615 exit(EXIT_FAILURE);
1616 }
1617 } else {
1618 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1619 && !kvmppc_has_cap_mmu_hash_v3()) {
1620 error_report("Guest requested unavailable MMU mode (hash).");
1621 exit(EXIT_FAILURE);
1622 }
1623 }
1624 }
1625
1626 static void spapr_machine_reset(MachineState *machine, ShutdownCause reason)
1627 {
1628 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1629 PowerPCCPU *first_ppc_cpu;
1630 hwaddr fdt_addr;
1631 void *fdt;
1632 int rc;
1633
1634 pef_kvm_reset(machine->cgs, &error_fatal);
1635 spapr_caps_apply(spapr);
1636
1637 first_ppc_cpu = POWERPC_CPU(first_cpu);
1638 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1639 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1640 spapr->max_compat_pvr)) {
1641 /*
1642 * If using KVM with radix mode available, VCPUs can be started
1643 * without a HPT because KVM will start them in radix mode.
1644 * Set the GR bit in PATE so that we know there is no HPT.
1645 */
1646 spapr->patb_entry = PATE1_GR;
1647 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1648 } else {
1649 spapr_setup_hpt(spapr);
1650 }
1651
1652 qemu_devices_reset(reason);
1653
1654 spapr_ovec_cleanup(spapr->ov5_cas);
1655 spapr->ov5_cas = spapr_ovec_new();
1656
1657 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1658
1659 /*
1660 * This is fixing some of the default configuration of the XIVE
1661 * devices. To be called after the reset of the machine devices.
1662 */
1663 spapr_irq_reset(spapr, &error_fatal);
1664
1665 /*
1666 * There is no CAS under qtest. Simulate one to please the code that
1667 * depends on spapr->ov5_cas. This is especially needed to test device
1668 * unplug, so we do that before resetting the DRCs.
1669 */
1670 if (qtest_enabled()) {
1671 spapr_ovec_cleanup(spapr->ov5_cas);
1672 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1673 }
1674
1675 spapr_nvdimm_finish_flushes();
1676
1677 /* DRC reset may cause a device to be unplugged. This will cause troubles
1678 * if this device is used by another device (eg, a running vhost backend
1679 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1680 * situations, we reset DRCs after all devices have been reset.
1681 */
1682 spapr_drc_reset_all(spapr);
1683
1684 spapr_clear_pending_events(spapr);
1685
1686 /*
1687 * We place the device tree just below either the top of the RMA,
1688 * or just below 2GB, whichever is lower, so that it can be
1689 * processed with 32-bit real mode code if necessary
1690 */
1691 fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE;
1692
1693 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1694 if (spapr->vof) {
1695 spapr_vof_reset(spapr, fdt, &error_fatal);
1696 /*
1697 * Do not pack the FDT as the client may change properties.
1698 * VOF client does not expect the FDT so we do not load it to the VM.
1699 */
1700 } else {
1701 rc = fdt_pack(fdt);
1702 /* Should only fail if we've built a corrupted tree */
1703 assert(rc == 0);
1704
1705 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT,
1706 0, fdt_addr, 0);
1707 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1708 }
1709 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1710
1711 g_free(spapr->fdt_blob);
1712 spapr->fdt_size = fdt_totalsize(fdt);
1713 spapr->fdt_initial_size = spapr->fdt_size;
1714 spapr->fdt_blob = fdt;
1715
1716 /* Set machine->fdt for 'dumpdtb' QMP/HMP command */
1717 machine->fdt = fdt;
1718
1719 /* Set up the entry state */
1720 first_ppc_cpu->env.gpr[5] = 0;
1721
1722 spapr->fwnmi_system_reset_addr = -1;
1723 spapr->fwnmi_machine_check_addr = -1;
1724 spapr->fwnmi_machine_check_interlock = -1;
1725
1726 /* Signal all vCPUs waiting on this condition */
1727 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1728
1729 migrate_del_blocker(spapr->fwnmi_migration_blocker);
1730 }
1731
1732 static void spapr_create_nvram(SpaprMachineState *spapr)
1733 {
1734 DeviceState *dev = qdev_new("spapr-nvram");
1735 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1736
1737 if (dinfo) {
1738 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1739 &error_fatal);
1740 }
1741
1742 qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1743
1744 spapr->nvram = (struct SpaprNvram *)dev;
1745 }
1746
1747 static void spapr_rtc_create(SpaprMachineState *spapr)
1748 {
1749 object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1750 sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1751 &error_fatal, NULL);
1752 qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1753 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1754 "date");
1755 }
1756
1757 /* Returns whether we want to use VGA or not */
1758 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1759 {
1760 vga_interface_created = true;
1761 switch (vga_interface_type) {
1762 case VGA_NONE:
1763 return false;
1764 case VGA_DEVICE:
1765 return true;
1766 case VGA_STD:
1767 case VGA_VIRTIO:
1768 case VGA_CIRRUS:
1769 return pci_vga_init(pci_bus) != NULL;
1770 default:
1771 error_setg(errp,
1772 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1773 return false;
1774 }
1775 }
1776
1777 static int spapr_pre_load(void *opaque)
1778 {
1779 int rc;
1780
1781 rc = spapr_caps_pre_load(opaque);
1782 if (rc) {
1783 return rc;
1784 }
1785
1786 return 0;
1787 }
1788
1789 static int spapr_post_load(void *opaque, int version_id)
1790 {
1791 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1792 int err = 0;
1793
1794 err = spapr_caps_post_migration(spapr);
1795 if (err) {
1796 return err;
1797 }
1798
1799 /*
1800 * In earlier versions, there was no separate qdev for the PAPR
1801 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1802 * So when migrating from those versions, poke the incoming offset
1803 * value into the RTC device
1804 */
1805 if (version_id < 3) {
1806 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1807 if (err) {
1808 return err;
1809 }
1810 }
1811
1812 if (kvm_enabled() && spapr->patb_entry) {
1813 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1814 bool radix = !!(spapr->patb_entry & PATE1_GR);
1815 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1816
1817 /*
1818 * Update LPCR:HR and UPRT as they may not be set properly in
1819 * the stream
1820 */
1821 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1822 LPCR_HR | LPCR_UPRT);
1823
1824 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1825 if (err) {
1826 error_report("Process table config unsupported by the host");
1827 return -EINVAL;
1828 }
1829 }
1830
1831 err = spapr_irq_post_load(spapr, version_id);
1832 if (err) {
1833 return err;
1834 }
1835
1836 return err;
1837 }
1838
1839 static int spapr_pre_save(void *opaque)
1840 {
1841 int rc;
1842
1843 rc = spapr_caps_pre_save(opaque);
1844 if (rc) {
1845 return rc;
1846 }
1847
1848 return 0;
1849 }
1850
1851 static bool version_before_3(void *opaque, int version_id)
1852 {
1853 return version_id < 3;
1854 }
1855
1856 static bool spapr_pending_events_needed(void *opaque)
1857 {
1858 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1859 return !QTAILQ_EMPTY(&spapr->pending_events);
1860 }
1861
1862 static const VMStateDescription vmstate_spapr_event_entry = {
1863 .name = "spapr_event_log_entry",
1864 .version_id = 1,
1865 .minimum_version_id = 1,
1866 .fields = (VMStateField[]) {
1867 VMSTATE_UINT32(summary, SpaprEventLogEntry),
1868 VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1869 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1870 NULL, extended_length),
1871 VMSTATE_END_OF_LIST()
1872 },
1873 };
1874
1875 static const VMStateDescription vmstate_spapr_pending_events = {
1876 .name = "spapr_pending_events",
1877 .version_id = 1,
1878 .minimum_version_id = 1,
1879 .needed = spapr_pending_events_needed,
1880 .fields = (VMStateField[]) {
1881 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1882 vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1883 VMSTATE_END_OF_LIST()
1884 },
1885 };
1886
1887 static bool spapr_ov5_cas_needed(void *opaque)
1888 {
1889 SpaprMachineState *spapr = opaque;
1890 SpaprOptionVector *ov5_mask = spapr_ovec_new();
1891 bool cas_needed;
1892
1893 /* Prior to the introduction of SpaprOptionVector, we had two option
1894 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1895 * Both of these options encode machine topology into the device-tree
1896 * in such a way that the now-booted OS should still be able to interact
1897 * appropriately with QEMU regardless of what options were actually
1898 * negotiatied on the source side.
1899 *
1900 * As such, we can avoid migrating the CAS-negotiated options if these
1901 * are the only options available on the current machine/platform.
1902 * Since these are the only options available for pseries-2.7 and
1903 * earlier, this allows us to maintain old->new/new->old migration
1904 * compatibility.
1905 *
1906 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1907 * via default pseries-2.8 machines and explicit command-line parameters.
1908 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1909 * of the actual CAS-negotiated values to continue working properly. For
1910 * example, availability of memory unplug depends on knowing whether
1911 * OV5_HP_EVT was negotiated via CAS.
1912 *
1913 * Thus, for any cases where the set of available CAS-negotiatable
1914 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1915 * include the CAS-negotiated options in the migration stream, unless
1916 * if they affect boot time behaviour only.
1917 */
1918 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1919 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1920 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1921
1922 /* We need extra information if we have any bits outside the mask
1923 * defined above */
1924 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1925
1926 spapr_ovec_cleanup(ov5_mask);
1927
1928 return cas_needed;
1929 }
1930
1931 static const VMStateDescription vmstate_spapr_ov5_cas = {
1932 .name = "spapr_option_vector_ov5_cas",
1933 .version_id = 1,
1934 .minimum_version_id = 1,
1935 .needed = spapr_ov5_cas_needed,
1936 .fields = (VMStateField[]) {
1937 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1938 vmstate_spapr_ovec, SpaprOptionVector),
1939 VMSTATE_END_OF_LIST()
1940 },
1941 };
1942
1943 static bool spapr_patb_entry_needed(void *opaque)
1944 {
1945 SpaprMachineState *spapr = opaque;
1946
1947 return !!spapr->patb_entry;
1948 }
1949
1950 static const VMStateDescription vmstate_spapr_patb_entry = {
1951 .name = "spapr_patb_entry",
1952 .version_id = 1,
1953 .minimum_version_id = 1,
1954 .needed = spapr_patb_entry_needed,
1955 .fields = (VMStateField[]) {
1956 VMSTATE_UINT64(patb_entry, SpaprMachineState),
1957 VMSTATE_END_OF_LIST()
1958 },
1959 };
1960
1961 static bool spapr_irq_map_needed(void *opaque)
1962 {
1963 SpaprMachineState *spapr = opaque;
1964
1965 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1966 }
1967
1968 static const VMStateDescription vmstate_spapr_irq_map = {
1969 .name = "spapr_irq_map",
1970 .version_id = 1,
1971 .minimum_version_id = 1,
1972 .needed = spapr_irq_map_needed,
1973 .fields = (VMStateField[]) {
1974 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1975 VMSTATE_END_OF_LIST()
1976 },
1977 };
1978
1979 static bool spapr_dtb_needed(void *opaque)
1980 {
1981 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1982
1983 return smc->update_dt_enabled;
1984 }
1985
1986 static int spapr_dtb_pre_load(void *opaque)
1987 {
1988 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1989
1990 g_free(spapr->fdt_blob);
1991 spapr->fdt_blob = NULL;
1992 spapr->fdt_size = 0;
1993
1994 return 0;
1995 }
1996
1997 static const VMStateDescription vmstate_spapr_dtb = {
1998 .name = "spapr_dtb",
1999 .version_id = 1,
2000 .minimum_version_id = 1,
2001 .needed = spapr_dtb_needed,
2002 .pre_load = spapr_dtb_pre_load,
2003 .fields = (VMStateField[]) {
2004 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2005 VMSTATE_UINT32(fdt_size, SpaprMachineState),
2006 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2007 fdt_size),
2008 VMSTATE_END_OF_LIST()
2009 },
2010 };
2011
2012 static bool spapr_fwnmi_needed(void *opaque)
2013 {
2014 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2015
2016 return spapr->fwnmi_machine_check_addr != -1;
2017 }
2018
2019 static int spapr_fwnmi_pre_save(void *opaque)
2020 {
2021 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2022
2023 /*
2024 * Check if machine check handling is in progress and print a
2025 * warning message.
2026 */
2027 if (spapr->fwnmi_machine_check_interlock != -1) {
2028 warn_report("A machine check is being handled during migration. The"
2029 "handler may run and log hardware error on the destination");
2030 }
2031
2032 return 0;
2033 }
2034
2035 static const VMStateDescription vmstate_spapr_fwnmi = {
2036 .name = "spapr_fwnmi",
2037 .version_id = 1,
2038 .minimum_version_id = 1,
2039 .needed = spapr_fwnmi_needed,
2040 .pre_save = spapr_fwnmi_pre_save,
2041 .fields = (VMStateField[]) {
2042 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
2043 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
2044 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
2045 VMSTATE_END_OF_LIST()
2046 },
2047 };
2048
2049 static const VMStateDescription vmstate_spapr = {
2050 .name = "spapr",
2051 .version_id = 3,
2052 .minimum_version_id = 1,
2053 .pre_load = spapr_pre_load,
2054 .post_load = spapr_post_load,
2055 .pre_save = spapr_pre_save,
2056 .fields = (VMStateField[]) {
2057 /* used to be @next_irq */
2058 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2059
2060 /* RTC offset */
2061 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2062
2063 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2064 VMSTATE_END_OF_LIST()
2065 },
2066 .subsections = (const VMStateDescription*[]) {
2067 &vmstate_spapr_ov5_cas,
2068 &vmstate_spapr_patb_entry,
2069 &vmstate_spapr_pending_events,
2070 &vmstate_spapr_cap_htm,
2071 &vmstate_spapr_cap_vsx,
2072 &vmstate_spapr_cap_dfp,
2073 &vmstate_spapr_cap_cfpc,
2074 &vmstate_spapr_cap_sbbc,
2075 &vmstate_spapr_cap_ibs,
2076 &vmstate_spapr_cap_hpt_maxpagesize,
2077 &vmstate_spapr_irq_map,
2078 &vmstate_spapr_cap_nested_kvm_hv,
2079 &vmstate_spapr_dtb,
2080 &vmstate_spapr_cap_large_decr,
2081 &vmstate_spapr_cap_ccf_assist,
2082 &vmstate_spapr_cap_fwnmi,
2083 &vmstate_spapr_fwnmi,
2084 &vmstate_spapr_cap_rpt_invalidate,
2085 NULL
2086 }
2087 };
2088
2089 static int htab_save_setup(QEMUFile *f, void *opaque)
2090 {
2091 SpaprMachineState *spapr = opaque;
2092
2093 /* "Iteration" header */
2094 if (!spapr->htab_shift) {
2095 qemu_put_be32(f, -1);
2096 } else {
2097 qemu_put_be32(f, spapr->htab_shift);
2098 }
2099
2100 if (spapr->htab) {
2101 spapr->htab_save_index = 0;
2102 spapr->htab_first_pass = true;
2103 } else {
2104 if (spapr->htab_shift) {
2105 assert(kvm_enabled());
2106 }
2107 }
2108
2109
2110 return 0;
2111 }
2112
2113 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2114 int chunkstart, int n_valid, int n_invalid)
2115 {
2116 qemu_put_be32(f, chunkstart);
2117 qemu_put_be16(f, n_valid);
2118 qemu_put_be16(f, n_invalid);
2119 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2120 HASH_PTE_SIZE_64 * n_valid);
2121 }
2122
2123 static void htab_save_end_marker(QEMUFile *f)
2124 {
2125 qemu_put_be32(f, 0);
2126 qemu_put_be16(f, 0);
2127 qemu_put_be16(f, 0);
2128 }
2129
2130 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2131 int64_t max_ns)
2132 {
2133 bool has_timeout = max_ns != -1;
2134 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2135 int index = spapr->htab_save_index;
2136 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2137
2138 assert(spapr->htab_first_pass);
2139
2140 do {
2141 int chunkstart;
2142
2143 /* Consume invalid HPTEs */
2144 while ((index < htabslots)
2145 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2146 CLEAN_HPTE(HPTE(spapr->htab, index));
2147 index++;
2148 }
2149
2150 /* Consume valid HPTEs */
2151 chunkstart = index;
2152 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2153 && HPTE_VALID(HPTE(spapr->htab, index))) {
2154 CLEAN_HPTE(HPTE(spapr->htab, index));
2155 index++;
2156 }
2157
2158 if (index > chunkstart) {
2159 int n_valid = index - chunkstart;
2160
2161 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2162
2163 if (has_timeout &&
2164 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2165 break;
2166 }
2167 }
2168 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2169
2170 if (index >= htabslots) {
2171 assert(index == htabslots);
2172 index = 0;
2173 spapr->htab_first_pass = false;
2174 }
2175 spapr->htab_save_index = index;
2176 }
2177
2178 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2179 int64_t max_ns)
2180 {
2181 bool final = max_ns < 0;
2182 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2183 int examined = 0, sent = 0;
2184 int index = spapr->htab_save_index;
2185 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2186
2187 assert(!spapr->htab_first_pass);
2188
2189 do {
2190 int chunkstart, invalidstart;
2191
2192 /* Consume non-dirty HPTEs */
2193 while ((index < htabslots)
2194 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2195 index++;
2196 examined++;
2197 }
2198
2199 chunkstart = index;
2200 /* Consume valid dirty HPTEs */
2201 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2202 && HPTE_DIRTY(HPTE(spapr->htab, index))
2203 && HPTE_VALID(HPTE(spapr->htab, index))) {
2204 CLEAN_HPTE(HPTE(spapr->htab, index));
2205 index++;
2206 examined++;
2207 }
2208
2209 invalidstart = index;
2210 /* Consume invalid dirty HPTEs */
2211 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2212 && HPTE_DIRTY(HPTE(spapr->htab, index))
2213 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2214 CLEAN_HPTE(HPTE(spapr->htab, index));
2215 index++;
2216 examined++;
2217 }
2218
2219 if (index > chunkstart) {
2220 int n_valid = invalidstart - chunkstart;
2221 int n_invalid = index - invalidstart;
2222
2223 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2224 sent += index - chunkstart;
2225
2226 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2227 break;
2228 }
2229 }
2230
2231 if (examined >= htabslots) {
2232 break;
2233 }
2234
2235 if (index >= htabslots) {
2236 assert(index == htabslots);
2237 index = 0;
2238 }
2239 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2240
2241 if (index >= htabslots) {
2242 assert(index == htabslots);
2243 index = 0;
2244 }
2245
2246 spapr->htab_save_index = index;
2247
2248 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2249 }
2250
2251 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2252 #define MAX_KVM_BUF_SIZE 2048
2253
2254 static int htab_save_iterate(QEMUFile *f, void *opaque)
2255 {
2256 SpaprMachineState *spapr = opaque;
2257 int fd;
2258 int rc = 0;
2259
2260 /* Iteration header */
2261 if (!spapr->htab_shift) {
2262 qemu_put_be32(f, -1);
2263 return 1;
2264 } else {
2265 qemu_put_be32(f, 0);
2266 }
2267
2268 if (!spapr->htab) {
2269 assert(kvm_enabled());
2270
2271 fd = get_htab_fd(spapr);
2272 if (fd < 0) {
2273 return fd;
2274 }
2275
2276 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2277 if (rc < 0) {
2278 return rc;
2279 }
2280 } else if (spapr->htab_first_pass) {
2281 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2282 } else {
2283 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2284 }
2285
2286 htab_save_end_marker(f);
2287
2288 return rc;
2289 }
2290
2291 static int htab_save_complete(QEMUFile *f, void *opaque)
2292 {
2293 SpaprMachineState *spapr = opaque;
2294 int fd;
2295
2296 /* Iteration header */
2297 if (!spapr->htab_shift) {
2298 qemu_put_be32(f, -1);
2299 return 0;
2300 } else {
2301 qemu_put_be32(f, 0);
2302 }
2303
2304 if (!spapr->htab) {
2305 int rc;
2306
2307 assert(kvm_enabled());
2308
2309 fd = get_htab_fd(spapr);
2310 if (fd < 0) {
2311 return fd;
2312 }
2313
2314 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2315 if (rc < 0) {
2316 return rc;
2317 }
2318 } else {
2319 if (spapr->htab_first_pass) {
2320 htab_save_first_pass(f, spapr, -1);
2321 }
2322 htab_save_later_pass(f, spapr, -1);
2323 }
2324
2325 /* End marker */
2326 htab_save_end_marker(f);
2327
2328 return 0;
2329 }
2330
2331 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2332 {
2333 SpaprMachineState *spapr = opaque;
2334 uint32_t section_hdr;
2335 int fd = -1;
2336 Error *local_err = NULL;
2337
2338 if (version_id < 1 || version_id > 1) {
2339 error_report("htab_load() bad version");
2340 return -EINVAL;
2341 }
2342
2343 section_hdr = qemu_get_be32(f);
2344
2345 if (section_hdr == -1) {
2346 spapr_free_hpt(spapr);
2347 return 0;
2348 }
2349
2350 if (section_hdr) {
2351 int ret;
2352
2353 /* First section gives the htab size */
2354 ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2355 if (ret < 0) {
2356 error_report_err(local_err);
2357 return ret;
2358 }
2359 return 0;
2360 }
2361
2362 if (!spapr->htab) {
2363 assert(kvm_enabled());
2364
2365 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2366 if (fd < 0) {
2367 error_report_err(local_err);
2368 return fd;
2369 }
2370 }
2371
2372 while (true) {
2373 uint32_t index;
2374 uint16_t n_valid, n_invalid;
2375
2376 index = qemu_get_be32(f);
2377 n_valid = qemu_get_be16(f);
2378 n_invalid = qemu_get_be16(f);
2379
2380 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2381 /* End of Stream */
2382 break;
2383 }
2384
2385 if ((index + n_valid + n_invalid) >
2386 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2387 /* Bad index in stream */
2388 error_report(
2389 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2390 index, n_valid, n_invalid, spapr->htab_shift);
2391 return -EINVAL;
2392 }
2393
2394 if (spapr->htab) {
2395 if (n_valid) {
2396 qemu_get_buffer(f, HPTE(spapr->htab, index),
2397 HASH_PTE_SIZE_64 * n_valid);
2398 }
2399 if (n_invalid) {
2400 memset(HPTE(spapr->htab, index + n_valid), 0,
2401 HASH_PTE_SIZE_64 * n_invalid);
2402 }
2403 } else {
2404 int rc;
2405
2406 assert(fd >= 0);
2407
2408 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid,
2409 &local_err);
2410 if (rc < 0) {
2411 error_report_err(local_err);
2412 return rc;
2413 }
2414 }
2415 }
2416
2417 if (!spapr->htab) {
2418 assert(fd >= 0);
2419 close(fd);
2420 }
2421
2422 return 0;
2423 }
2424
2425 static void htab_save_cleanup(void *opaque)
2426 {
2427 SpaprMachineState *spapr = opaque;
2428
2429 close_htab_fd(spapr);
2430 }
2431
2432 static SaveVMHandlers savevm_htab_handlers = {
2433 .save_setup = htab_save_setup,
2434 .save_live_iterate = htab_save_iterate,
2435 .save_live_complete_precopy = htab_save_complete,
2436 .save_cleanup = htab_save_cleanup,
2437 .load_state = htab_load,
2438 };
2439
2440 static void spapr_boot_set(void *opaque, const char *boot_device,
2441 Error **errp)
2442 {
2443 SpaprMachineState *spapr = SPAPR_MACHINE(opaque);
2444
2445 g_free(spapr->boot_device);
2446 spapr->boot_device = g_strdup(boot_device);
2447 }
2448
2449 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2450 {
2451 MachineState *machine = MACHINE(spapr);
2452 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2453 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2454 int i;
2455
2456 for (i = 0; i < nr_lmbs; i++) {
2457 uint64_t addr;
2458
2459 addr = i * lmb_size + machine->device_memory->base;
2460 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2461 addr / lmb_size);
2462 }
2463 }
2464
2465 /*
2466 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2467 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2468 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2469 */
2470 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2471 {
2472 int i;
2473
2474 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2475 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2476 " is not aligned to %" PRIu64 " MiB",
2477 machine->ram_size,
2478 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2479 return;
2480 }
2481
2482 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2483 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2484 " is not aligned to %" PRIu64 " MiB",
2485 machine->ram_size,
2486 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2487 return;
2488 }
2489
2490 for (i = 0; i < machine->numa_state->num_nodes; i++) {
2491 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2492 error_setg(errp,
2493 "Node %d memory size 0x%" PRIx64
2494 " is not aligned to %" PRIu64 " MiB",
2495 i, machine->numa_state->nodes[i].node_mem,
2496 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2497 return;
2498 }
2499 }
2500 }
2501
2502 /* find cpu slot in machine->possible_cpus by core_id */
2503 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2504 {
2505 int index = id / ms->smp.threads;
2506
2507 if (index >= ms->possible_cpus->len) {
2508 return NULL;
2509 }
2510 if (idx) {
2511 *idx = index;
2512 }
2513 return &ms->possible_cpus->cpus[index];
2514 }
2515
2516 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2517 {
2518 MachineState *ms = MACHINE(spapr);
2519 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2520 Error *local_err = NULL;
2521 bool vsmt_user = !!spapr->vsmt;
2522 int kvm_smt = kvmppc_smt_threads();
2523 int ret;
2524 unsigned int smp_threads = ms->smp.threads;
2525
2526 if (!kvm_enabled() && (smp_threads > 1)) {
2527 error_setg(errp, "TCG cannot support more than 1 thread/core "
2528 "on a pseries machine");
2529 return;
2530 }
2531 if (!is_power_of_2(smp_threads)) {
2532 error_setg(errp, "Cannot support %d threads/core on a pseries "
2533 "machine because it must be a power of 2", smp_threads);
2534 return;
2535 }
2536
2537 /* Detemine the VSMT mode to use: */
2538 if (vsmt_user) {
2539 if (spapr->vsmt < smp_threads) {
2540 error_setg(errp, "Cannot support VSMT mode %d"
2541 " because it must be >= threads/core (%d)",
2542 spapr->vsmt, smp_threads);
2543 return;
2544 }
2545 /* In this case, spapr->vsmt has been set by the command line */
2546 } else if (!smc->smp_threads_vsmt) {
2547 /*
2548 * Default VSMT value is tricky, because we need it to be as
2549 * consistent as possible (for migration), but this requires
2550 * changing it for at least some existing cases. We pick 8 as
2551 * the value that we'd get with KVM on POWER8, the
2552 * overwhelmingly common case in production systems.
2553 */
2554 spapr->vsmt = MAX(8, smp_threads);
2555 } else {
2556 spapr->vsmt = smp_threads;
2557 }
2558
2559 /* KVM: If necessary, set the SMT mode: */
2560 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2561 ret = kvmppc_set_smt_threads(spapr->vsmt);
2562 if (ret) {
2563 /* Looks like KVM isn't able to change VSMT mode */
2564 error_setg(&local_err,
2565 "Failed to set KVM's VSMT mode to %d (errno %d)",
2566 spapr->vsmt, ret);
2567 /* We can live with that if the default one is big enough
2568 * for the number of threads, and a submultiple of the one
2569 * we want. In this case we'll waste some vcpu ids, but
2570 * behaviour will be correct */
2571 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2572 warn_report_err(local_err);
2573 } else {
2574 if (!vsmt_user) {
2575 error_append_hint(&local_err,
2576 "On PPC, a VM with %d threads/core"
2577 " on a host with %d threads/core"
2578 " requires the use of VSMT mode %d.\n",
2579 smp_threads, kvm_smt, spapr->vsmt);
2580 }
2581 kvmppc_error_append_smt_possible_hint(&local_err);
2582 error_propagate(errp, local_err);
2583 }
2584 }
2585 }
2586 /* else TCG: nothing to do currently */
2587 }
2588
2589 static void spapr_init_cpus(SpaprMachineState *spapr)
2590 {
2591 MachineState *machine = MACHINE(spapr);
2592 MachineClass *mc = MACHINE_GET_CLASS(machine);
2593 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2594 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2595 const CPUArchIdList *possible_cpus;
2596 unsigned int smp_cpus = machine->smp.cpus;
2597 unsigned int smp_threads = machine->smp.threads;
2598 unsigned int max_cpus = machine->smp.max_cpus;
2599 int boot_cores_nr = smp_cpus / smp_threads;
2600 int i;
2601
2602 possible_cpus = mc->possible_cpu_arch_ids(machine);
2603 if (mc->has_hotpluggable_cpus) {
2604 if (smp_cpus % smp_threads) {
2605 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2606 smp_cpus, smp_threads);
2607 exit(1);
2608 }
2609 if (max_cpus % smp_threads) {
2610 error_report("max_cpus (%u) must be multiple of threads (%u)",
2611 max_cpus, smp_threads);
2612 exit(1);
2613 }
2614 } else {
2615 if (max_cpus != smp_cpus) {
2616 error_report("This machine version does not support CPU hotplug");
2617 exit(1);
2618 }
2619 boot_cores_nr = possible_cpus->len;
2620 }
2621
2622 if (smc->pre_2_10_has_unused_icps) {
2623 int i;
2624
2625 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2626 /* Dummy entries get deregistered when real ICPState objects
2627 * are registered during CPU core hotplug.
2628 */
2629 pre_2_10_vmstate_register_dummy_icp(i);
2630 }
2631 }
2632
2633 for (i = 0; i < possible_cpus->len; i++) {
2634 int core_id = i * smp_threads;
2635
2636 if (mc->has_hotpluggable_cpus) {
2637 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2638 spapr_vcpu_id(spapr, core_id));
2639 }
2640
2641 if (i < boot_cores_nr) {
2642 Object *core = object_new(type);
2643 int nr_threads = smp_threads;
2644
2645 /* Handle the partially filled core for older machine types */
2646 if ((i + 1) * smp_threads >= smp_cpus) {
2647 nr_threads = smp_cpus - i * smp_threads;
2648 }
2649
2650 object_property_set_int(core, "nr-threads", nr_threads,
2651 &error_fatal);
2652 object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2653 &error_fatal);
2654 qdev_realize(DEVICE(core), NULL, &error_fatal);
2655
2656 object_unref(core);
2657 }
2658 }
2659 }
2660
2661 static PCIHostState *spapr_create_default_phb(void)
2662 {
2663 DeviceState *dev;
2664
2665 dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2666 qdev_prop_set_uint32(dev, "index", 0);
2667 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2668
2669 return PCI_HOST_BRIDGE(dev);
2670 }
2671
2672 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2673 {
2674 MachineState *machine = MACHINE(spapr);
2675 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2676 hwaddr rma_size = machine->ram_size;
2677 hwaddr node0_size = spapr_node0_size(machine);
2678
2679 /* RMA has to fit in the first NUMA node */
2680 rma_size = MIN(rma_size, node0_size);
2681
2682 /*
2683 * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2684 * never exceed that
2685 */
2686 rma_size = MIN(rma_size, 1 * TiB);
2687
2688 /*
2689 * Clamp the RMA size based on machine type. This is for
2690 * migration compatibility with older qemu versions, which limited
2691 * the RMA size for complicated and mostly bad reasons.
2692 */
2693 if (smc->rma_limit) {
2694 rma_size = MIN(rma_size, smc->rma_limit);
2695 }
2696
2697 if (rma_size < MIN_RMA_SLOF) {
2698 error_setg(errp,
2699 "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2700 "ldMiB guest RMA (Real Mode Area memory)",
2701 MIN_RMA_SLOF / MiB);
2702 return 0;
2703 }
2704
2705 return rma_size;
2706 }
2707
2708 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
2709 {
2710 MachineState *machine = MACHINE(spapr);
2711 int i;
2712
2713 for (i = 0; i < machine->ram_slots; i++) {
2714 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
2715 }
2716 }
2717
2718 /* pSeries LPAR / sPAPR hardware init */
2719 static void spapr_machine_init(MachineState *machine)
2720 {
2721 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2722 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2723 MachineClass *mc = MACHINE_GET_CLASS(machine);
2724 const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME;
2725 const char *bios_name = machine->firmware ?: bios_default;
2726 g_autofree char *filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2727 const char *kernel_filename = machine->kernel_filename;
2728 const char *initrd_filename = machine->initrd_filename;
2729 PCIHostState *phb;
2730 bool has_vga;
2731 int i;
2732 MemoryRegion *sysmem = get_system_memory();
2733 long load_limit, fw_size;
2734 Error *resize_hpt_err = NULL;
2735
2736 if (!filename) {
2737 error_report("Could not find LPAR firmware '%s'", bios_name);
2738 exit(1);
2739 }
2740 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2741 if (fw_size <= 0) {
2742 error_report("Could not load LPAR firmware '%s'", filename);
2743 exit(1);
2744 }
2745
2746 /*
2747 * if Secure VM (PEF) support is configured, then initialize it
2748 */
2749 pef_kvm_init(machine->cgs, &error_fatal);
2750
2751 msi_nonbroken = true;
2752
2753 QLIST_INIT(&spapr->phbs);
2754 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2755
2756 /* Determine capabilities to run with */
2757 spapr_caps_init(spapr);
2758
2759 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2760 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2761 /*
2762 * If the user explicitly requested a mode we should either
2763 * supply it, or fail completely (which we do below). But if
2764 * it's not set explicitly, we reset our mode to something
2765 * that works
2766 */
2767 if (resize_hpt_err) {
2768 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2769 error_free(resize_hpt_err);
2770 resize_hpt_err = NULL;
2771 } else {
2772 spapr->resize_hpt = smc->resize_hpt_default;
2773 }
2774 }
2775
2776 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2777
2778 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2779 /*
2780 * User requested HPT resize, but this host can't supply it. Bail out
2781 */
2782 error_report_err(resize_hpt_err);
2783 exit(1);
2784 }
2785 error_free(resize_hpt_err);
2786
2787 spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2788
2789 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2790 load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD;
2791
2792 /*
2793 * VSMT must be set in order to be able to compute VCPU ids, ie to
2794 * call spapr_max_server_number() or spapr_vcpu_id().
2795 */
2796 spapr_set_vsmt_mode(spapr, &error_fatal);
2797
2798 /* Set up Interrupt Controller before we create the VCPUs */
2799 spapr_irq_init(spapr, &error_fatal);
2800
2801 /* Set up containers for ibm,client-architecture-support negotiated options
2802 */
2803 spapr->ov5 = spapr_ovec_new();
2804 spapr->ov5_cas = spapr_ovec_new();
2805
2806 if (smc->dr_lmb_enabled) {
2807 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2808 spapr_validate_node_memory(machine, &error_fatal);
2809 }
2810
2811 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2812
2813 /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */
2814 if (!smc->pre_6_2_numa_affinity) {
2815 spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY);
2816 }
2817
2818 /* advertise support for dedicated HP event source to guests */
2819 if (spapr->use_hotplug_event_source) {
2820 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2821 }
2822
2823 /* advertise support for HPT resizing */
2824 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2825 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2826 }
2827
2828 /* advertise support for ibm,dyamic-memory-v2 */
2829 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2830
2831 /* advertise XIVE on POWER9 machines */
2832 if (spapr->irq->xive) {
2833 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2834 }
2835
2836 /* init CPUs */
2837 spapr_init_cpus(spapr);
2838
2839 spapr->gpu_numa_id = spapr_numa_initial_nvgpu_numa_id(machine);
2840
2841 /* Init numa_assoc_array */
2842 spapr_numa_associativity_init(spapr, machine);
2843
2844 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2845 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2846 spapr->max_compat_pvr)) {
2847 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2848 /* KVM and TCG always allow GTSE with radix... */
2849 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2850 }
2851 /* ... but not with hash (currently). */
2852
2853 if (kvm_enabled()) {
2854 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2855 kvmppc_enable_logical_ci_hcalls();
2856 kvmppc_enable_set_mode_hcall();
2857
2858 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2859 kvmppc_enable_clear_ref_mod_hcalls();
2860
2861 /* Enable H_PAGE_INIT */
2862 kvmppc_enable_h_page_init();
2863 }
2864
2865 /* map RAM */
2866 memory_region_add_subregion(sysmem, 0, machine->ram);
2867
2868 /* always allocate the device memory information */
2869 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2870
2871 /* initialize hotplug memory address space */
2872 if (machine->ram_size < machine->maxram_size) {
2873 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2874 /*
2875 * Limit the number of hotpluggable memory slots to half the number
2876 * slots that KVM supports, leaving the other half for PCI and other
2877 * devices. However ensure that number of slots doesn't drop below 32.
2878 */
2879 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2880 SPAPR_MAX_RAM_SLOTS;
2881
2882 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2883 max_memslots = SPAPR_MAX_RAM_SLOTS;
2884 }
2885 if (machine->ram_slots > max_memslots) {
2886 error_report("Specified number of memory slots %"
2887 PRIu64" exceeds max supported %d",
2888 machine->ram_slots, max_memslots);
2889 exit(1);
2890 }
2891
2892 machine->device_memory->base = ROUND_UP(machine->ram_size,
2893 SPAPR_DEVICE_MEM_ALIGN);
2894 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2895 "device-memory", device_mem_size);
2896 memory_region_add_subregion(sysmem, machine->device_memory->base,
2897 &machine->device_memory->mr);
2898 }
2899
2900 if (smc->dr_lmb_enabled) {
2901 spapr_create_lmb_dr_connectors(spapr);
2902 }
2903
2904 if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2905 /* Create the error string for live migration blocker */
2906 error_setg(&spapr->fwnmi_migration_blocker,
2907 "A machine check is being handled during migration. The handler"
2908 "may run and log hardware error on the destination");
2909 }
2910
2911 if (mc->nvdimm_supported) {
2912 spapr_create_nvdimm_dr_connectors(spapr);
2913 }
2914
2915 /* Set up RTAS event infrastructure */
2916 spapr_events_init(spapr);
2917
2918 /* Set up the RTC RTAS interfaces */
2919 spapr_rtc_create(spapr);
2920
2921 /* Set up VIO bus */
2922 spapr->vio_bus = spapr_vio_bus_init();
2923
2924 for (i = 0; serial_hd(i); i++) {
2925 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2926 }
2927
2928 /* We always have at least the nvram device on VIO */
2929 spapr_create_nvram(spapr);
2930
2931 /*
2932 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2933 * connectors (described in root DT node's "ibm,drc-types" property)
2934 * are pre-initialized here. additional child connectors (such as
2935 * connectors for a PHBs PCI slots) are added as needed during their
2936 * parent's realization.
2937 */
2938 if (smc->dr_phb_enabled) {
2939 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2940 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2941 }
2942 }
2943
2944 /* Set up PCI */
2945 spapr_pci_rtas_init();
2946
2947 phb = spapr_create_default_phb();
2948
2949 for (i = 0; i < nb_nics; i++) {
2950 NICInfo *nd = &nd_table[i];
2951
2952 if (!nd->model) {
2953 nd->model = g_strdup("spapr-vlan");
2954 }
2955
2956 if (g_str_equal(nd->model, "spapr-vlan") ||
2957 g_str_equal(nd->model, "ibmveth")) {
2958 spapr_vlan_create(spapr->vio_bus, nd);
2959 } else {
2960 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2961 }
2962 }
2963
2964 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2965 spapr_vscsi_create(spapr->vio_bus);
2966 }
2967
2968 /* Graphics */
2969 has_vga = spapr_vga_init(phb->bus, &error_fatal);
2970 if (has_vga) {
2971 spapr->want_stdout_path = !machine->enable_graphics;
2972 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2973 } else {
2974 spapr->want_stdout_path = true;
2975 }
2976
2977 if (machine->usb) {
2978 if (smc->use_ohci_by_default) {
2979 pci_create_simple(phb->bus, -1, "pci-ohci");
2980 } else {
2981 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2982 }
2983
2984 if (has_vga) {
2985 USBBus *usb_bus = usb_bus_find(-1);
2986
2987 usb_create_simple(usb_bus, "usb-kbd");
2988 usb_create_simple(usb_bus, "usb-mouse");
2989 }
2990 }
2991
2992 if (kernel_filename) {
2993 uint64_t loaded_addr = 0;
2994
2995 spapr->kernel_size = load_elf(kernel_filename, NULL,
2996 translate_kernel_address, spapr,
2997 NULL, &loaded_addr, NULL, NULL, 1,
2998 PPC_ELF_MACHINE, 0, 0);
2999 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
3000 spapr->kernel_size = load_elf(kernel_filename, NULL,
3001 translate_kernel_address, spapr,
3002 NULL, &loaded_addr, NULL, NULL, 0,
3003 PPC_ELF_MACHINE, 0, 0);
3004 spapr->kernel_le = spapr->kernel_size > 0;
3005 }
3006 if (spapr->kernel_size < 0) {
3007 error_report("error loading %s: %s", kernel_filename,
3008 load_elf_strerror(spapr->kernel_size));
3009 exit(1);
3010 }
3011
3012 if (spapr->kernel_addr != loaded_addr) {
3013 warn_report("spapr: kernel_addr changed from 0x%"PRIx64
3014 " to 0x%"PRIx64,
3015 spapr->kernel_addr, loaded_addr);
3016 spapr->kernel_addr = loaded_addr;
3017 }
3018
3019 /* load initrd */
3020 if (initrd_filename) {
3021 /* Try to locate the initrd in the gap between the kernel
3022 * and the firmware. Add a bit of space just in case
3023 */
3024 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
3025 + 0x1ffff) & ~0xffff;
3026 spapr->initrd_size = load_image_targphys(initrd_filename,
3027 spapr->initrd_base,
3028 load_limit
3029 - spapr->initrd_base);
3030 if (spapr->initrd_size < 0) {
3031 error_report("could not load initial ram disk '%s'",
3032 initrd_filename);
3033 exit(1);
3034 }
3035 }
3036 }
3037
3038 /* FIXME: Should register things through the MachineState's qdev
3039 * interface, this is a legacy from the sPAPREnvironment structure
3040 * which predated MachineState but had a similar function */
3041 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3042 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
3043 &savevm_htab_handlers, spapr);
3044
3045 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
3046
3047 qemu_register_boot_set(spapr_boot_set, spapr);
3048
3049 /*
3050 * Nothing needs to be done to resume a suspended guest because
3051 * suspending does not change the machine state, so no need for
3052 * a ->wakeup method.
3053 */
3054 qemu_register_wakeup_support();
3055
3056 if (kvm_enabled()) {
3057 /* to stop and start vmclock */
3058 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3059 &spapr->tb);
3060
3061 kvmppc_spapr_enable_inkernel_multitce();
3062 }
3063
3064 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3065 if (spapr->vof) {
3066 spapr->vof->fw_size = fw_size; /* for claim() on itself */
3067 spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client);
3068 }
3069
3070 spapr_watchdog_init(spapr);
3071 }
3072
3073 #define DEFAULT_KVM_TYPE "auto"
3074 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3075 {
3076 /*
3077 * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3078 * accomodate the 'HV' and 'PV' formats that exists in the
3079 * wild. The 'auto' mode is being introduced already as
3080 * lower-case, thus we don't need to bother checking for
3081 * "AUTO".
3082 */
3083 if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) {
3084 return 0;
3085 }
3086
3087 if (!g_ascii_strcasecmp(vm_type, "hv")) {
3088 return 1;
3089 }
3090
3091 if (!g_ascii_strcasecmp(vm_type, "pr")) {
3092 return 2;
3093 }
3094
3095 error_report("Unknown kvm-type specified '%s'", vm_type);
3096 exit(1);
3097 }
3098
3099 /*
3100 * Implementation of an interface to adjust firmware path
3101 * for the bootindex property handling.
3102 */
3103 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3104 DeviceState *dev)
3105 {
3106 #define CAST(type, obj, name) \
3107 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3108 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3109 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3110 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3111 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3112
3113 if (d && bus) {
3114 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3115 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3116 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3117
3118 if (spapr) {
3119 /*
3120 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3121 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3122 * 0x8000 | (target << 8) | (bus << 5) | lun
3123 * (see the "Logical unit addressing format" table in SAM5)
3124 */
3125 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3126 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3127 (uint64_t)id << 48);
3128 } else if (virtio) {
3129 /*
3130 * We use SRP luns of the form 01000000 | (target << 8) | lun
3131 * in the top 32 bits of the 64-bit LUN
3132 * Note: the quote above is from SLOF and it is wrong,
3133 * the actual binding is:
3134 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3135 */
3136 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3137 if (d->lun >= 256) {
3138 /* Use the LUN "flat space addressing method" */
3139 id |= 0x4000;
3140 }
3141 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3142 (uint64_t)id << 32);
3143 } else if (usb) {
3144 /*
3145 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3146 * in the top 32 bits of the 64-bit LUN
3147 */
3148 unsigned usb_port = atoi(usb->port->path);
3149 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3150 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3151 (uint64_t)id << 32);
3152 }
3153 }
3154
3155 /*
3156 * SLOF probes the USB devices, and if it recognizes that the device is a
3157 * storage device, it changes its name to "storage" instead of "usb-host",
3158 * and additionally adds a child node for the SCSI LUN, so the correct
3159 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3160 */
3161 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3162 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3163 if (usb_device_is_scsi_storage(usbdev)) {
3164 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3165 }
3166 }
3167
3168 if (phb) {
3169 /* Replace "pci" with "pci@800000020000000" */
3170 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3171 }
3172
3173 if (vsc) {
3174 /* Same logic as virtio above */
3175 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3176 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3177 }
3178
3179 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3180 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3181 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3182 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3183 }
3184
3185 if (pcidev) {
3186 return spapr_pci_fw_dev_name(pcidev);
3187 }
3188
3189 return NULL;
3190 }
3191
3192 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3193 {
3194 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3195
3196 return g_strdup(spapr->kvm_type);
3197 }
3198
3199 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3200 {
3201 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3202
3203 g_free(spapr->kvm_type);
3204 spapr->kvm_type = g_strdup(value);
3205 }
3206
3207 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3208 {
3209 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3210
3211 return spapr->use_hotplug_event_source;
3212 }
3213
3214 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3215 Error **errp)
3216 {
3217 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3218
3219 spapr->use_hotplug_event_source = value;
3220 }
3221
3222 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3223 {
3224 return true;
3225 }
3226
3227 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3228 {
3229 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3230
3231 switch (spapr->resize_hpt) {
3232 case SPAPR_RESIZE_HPT_DEFAULT:
3233 return g_strdup("default");
3234 case SPAPR_RESIZE_HPT_DISABLED:
3235 return g_strdup("disabled");
3236 case SPAPR_RESIZE_HPT_ENABLED:
3237 return g_strdup("enabled");
3238 case SPAPR_RESIZE_HPT_REQUIRED:
3239 return g_strdup("required");
3240 }
3241 g_assert_not_reached();
3242 }
3243
3244 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3245 {
3246 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3247
3248 if (strcmp(value, "default") == 0) {
3249 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3250 } else if (strcmp(value, "disabled") == 0) {
3251 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3252 } else if (strcmp(value, "enabled") == 0) {
3253 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3254 } else if (strcmp(value, "required") == 0) {
3255 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3256 } else {
3257 error_setg(errp, "Bad value for \"resize-hpt\" property");
3258 }
3259 }
3260
3261 static bool spapr_get_vof(Object *obj, Error **errp)
3262 {
3263 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3264
3265 return spapr->vof != NULL;
3266 }
3267
3268 static void spapr_set_vof(Object *obj, bool value, Error **errp)
3269 {
3270 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3271
3272 if (spapr->vof) {
3273 vof_cleanup(spapr->vof);
3274 g_free(spapr->vof);
3275 spapr->vof = NULL;
3276 }
3277 if (!value) {
3278 return;
3279 }
3280 spapr->vof = g_malloc0(sizeof(*spapr->vof));
3281 }
3282
3283 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3284 {
3285 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3286
3287 if (spapr->irq == &spapr_irq_xics_legacy) {
3288 return g_strdup("legacy");
3289 } else if (spapr->irq == &spapr_irq_xics) {
3290 return g_strdup("xics");
3291 } else if (spapr->irq == &spapr_irq_xive) {
3292 return g_strdup("xive");
3293 } else if (spapr->irq == &spapr_irq_dual) {
3294 return g_strdup("dual");
3295 }
3296 g_assert_not_reached();
3297 }
3298
3299 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3300 {
3301 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3302
3303 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3304 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3305 return;
3306 }
3307
3308 /* The legacy IRQ backend can not be set */
3309 if (strcmp(value, "xics") == 0) {
3310 spapr->irq = &spapr_irq_xics;
3311 } else if (strcmp(value, "xive") == 0) {
3312 spapr->irq = &spapr_irq_xive;
3313 } else if (strcmp(value, "dual") == 0) {
3314 spapr->irq = &spapr_irq_dual;
3315 } else {
3316 error_setg(errp, "Bad value for \"ic-mode\" property");
3317 }
3318 }
3319
3320 static char *spapr_get_host_model(Object *obj, Error **errp)
3321 {
3322 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3323
3324 return g_strdup(spapr->host_model);
3325 }
3326
3327 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3328 {
3329 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3330
3331 g_free(spapr->host_model);
3332 spapr->host_model = g_strdup(value);
3333 }
3334
3335 static char *spapr_get_host_serial(Object *obj, Error **errp)
3336 {
3337 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3338
3339 return g_strdup(spapr->host_serial);
3340 }
3341
3342 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3343 {
3344 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3345
3346 g_free(spapr->host_serial);
3347 spapr->host_serial = g_strdup(value);
3348 }
3349
3350 static void spapr_instance_init(Object *obj)
3351 {
3352 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3353 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3354 MachineState *ms = MACHINE(spapr);
3355 MachineClass *mc = MACHINE_GET_CLASS(ms);
3356
3357 /*
3358 * NVDIMM support went live in 5.1 without considering that, in
3359 * other archs, the user needs to enable NVDIMM support with the
3360 * 'nvdimm' machine option and the default behavior is NVDIMM
3361 * support disabled. It is too late to roll back to the standard
3362 * behavior without breaking 5.1 guests.
3363 */
3364 if (mc->nvdimm_supported) {
3365 ms->nvdimms_state->is_enabled = true;
3366 }
3367
3368 spapr->htab_fd = -1;
3369 spapr->use_hotplug_event_source = true;
3370 spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE);
3371 object_property_add_str(obj, "kvm-type",
3372 spapr_get_kvm_type, spapr_set_kvm_type);
3373 object_property_set_description(obj, "kvm-type",
3374 "Specifies the KVM virtualization mode (auto,"
3375 " hv, pr). Defaults to 'auto'. This mode will use"
3376 " any available KVM module loaded in the host,"
3377 " where kvm_hv takes precedence if both kvm_hv and"
3378 " kvm_pr are loaded.");
3379 object_property_add_bool(obj, "modern-hotplug-events",
3380 spapr_get_modern_hotplug_events,
3381 spapr_set_modern_hotplug_events);
3382 object_property_set_description(obj, "modern-hotplug-events",
3383 "Use dedicated hotplug event mechanism in"
3384 " place of standard EPOW events when possible"
3385 " (required for memory hot-unplug support)");
3386 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3387 "Maximum permitted CPU compatibility mode");
3388
3389 object_property_add_str(obj, "resize-hpt",
3390 spapr_get_resize_hpt, spapr_set_resize_hpt);
3391 object_property_set_description(obj, "resize-hpt",
3392 "Resizing of the Hash Page Table (enabled, disabled, required)");
3393 object_property_add_uint32_ptr(obj, "vsmt",
3394 &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3395 object_property_set_description(obj, "vsmt",
3396 "Virtual SMT: KVM behaves as if this were"
3397 " the host's SMT mode");
3398
3399 object_property_add_bool(obj, "vfio-no-msix-emulation",
3400 spapr_get_msix_emulation, NULL);
3401
3402 object_property_add_uint64_ptr(obj, "kernel-addr",
3403 &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3404 object_property_set_description(obj, "kernel-addr",
3405 stringify(KERNEL_LOAD_ADDR)
3406 " for -kernel is the default");
3407 spapr->kernel_addr = KERNEL_LOAD_ADDR;
3408
3409 object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof);
3410 object_property_set_description(obj, "x-vof",
3411 "Enable Virtual Open Firmware (experimental)");
3412
3413 /* The machine class defines the default interrupt controller mode */
3414 spapr->irq = smc->irq;
3415 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3416 spapr_set_ic_mode);
3417 object_property_set_description(obj, "ic-mode",
3418 "Specifies the interrupt controller mode (xics, xive, dual)");
3419
3420 object_property_add_str(obj, "host-model",
3421 spapr_get_host_model, spapr_set_host_model);
3422 object_property_set_description(obj, "host-model",
3423 "Host model to advertise in guest device tree");
3424 object_property_add_str(obj, "host-serial",
3425 spapr_get_host_serial, spapr_set_host_serial);
3426 object_property_set_description(obj, "host-serial",
3427 "Host serial number to advertise in guest device tree");
3428 }
3429
3430 static void spapr_machine_finalizefn(Object *obj)
3431 {
3432 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3433
3434 g_free(spapr->kvm_type);
3435 }
3436
3437 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3438 {
3439 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3440 PowerPCCPU *cpu = POWERPC_CPU(cs);
3441 CPUPPCState *env = &cpu->env;
3442
3443 cpu_synchronize_state(cs);
3444 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3445 if (spapr->fwnmi_system_reset_addr != -1) {
3446 uint64_t rtas_addr, addr;
3447
3448 /* get rtas addr from fdt */
3449 rtas_addr = spapr_get_rtas_addr();
3450 if (!rtas_addr) {
3451 qemu_system_guest_panicked(NULL);
3452 return;
3453 }
3454
3455 addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3456 stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3457 stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3458 env->gpr[3] = addr;
3459 }
3460 ppc_cpu_do_system_reset(cs);
3461 if (spapr->fwnmi_system_reset_addr != -1) {
3462 env->nip = spapr->fwnmi_system_reset_addr;
3463 }
3464 }
3465
3466 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3467 {
3468 CPUState *cs;
3469
3470 CPU_FOREACH(cs) {
3471 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3472 }
3473 }
3474
3475 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3476 void *fdt, int *fdt_start_offset, Error **errp)
3477 {
3478 uint64_t addr;
3479 uint32_t node;
3480
3481 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3482 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3483 &error_abort);
3484 *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3485 SPAPR_MEMORY_BLOCK_SIZE);
3486 return 0;
3487 }
3488
3489 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3490 bool dedicated_hp_event_source)
3491 {
3492 SpaprDrc *drc;
3493 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3494 int i;
3495 uint64_t addr = addr_start;
3496 bool hotplugged = spapr_drc_hotplugged(dev);
3497
3498 for (i = 0; i < nr_lmbs; i++) {
3499 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3500 addr / SPAPR_MEMORY_BLOCK_SIZE);
3501 g_assert(drc);
3502
3503 /*
3504 * memory_device_get_free_addr() provided a range of free addresses
3505 * that doesn't overlap with any existing mapping at pre-plug. The
3506 * corresponding LMB DRCs are thus assumed to be all attachable.
3507 */
3508 spapr_drc_attach(drc, dev);
3509 if (!hotplugged) {
3510 spapr_drc_reset(drc);
3511 }
3512 addr += SPAPR_MEMORY_BLOCK_SIZE;
3513 }
3514 /* send hotplug notification to the
3515 * guest only in case of hotplugged memory
3516 */
3517 if (hotplugged) {
3518 if (dedicated_hp_event_source) {
3519 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3520 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3521 g_assert(drc);
3522 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3523 nr_lmbs,
3524 spapr_drc_index(drc));
3525 } else {
3526 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3527 nr_lmbs);
3528 }
3529 }
3530 }
3531
3532 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3533 {
3534 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3535 PCDIMMDevice *dimm = PC_DIMM(dev);
3536 uint64_t size, addr;
3537 int64_t slot;
3538 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3539
3540 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3541
3542 pc_dimm_plug(dimm, MACHINE(ms));
3543
3544 if (!is_nvdimm) {
3545 addr = object_property_get_uint(OBJECT(dimm),
3546 PC_DIMM_ADDR_PROP, &error_abort);
3547 spapr_add_lmbs(dev, addr, size,
3548 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT));
3549 } else {
3550 slot = object_property_get_int(OBJECT(dimm),
3551 PC_DIMM_SLOT_PROP, &error_abort);
3552 /* We should have valid slot number at this point */
3553 g_assert(slot >= 0);
3554 spapr_add_nvdimm(dev, slot);
3555 }
3556 }
3557
3558 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3559 Error **errp)
3560 {
3561 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3562 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3563 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3564 PCDIMMDevice *dimm = PC_DIMM(dev);
3565 Error *local_err = NULL;
3566 uint64_t size;
3567 Object *memdev;
3568 hwaddr pagesize;
3569
3570 if (!smc->dr_lmb_enabled) {
3571 error_setg(errp, "Memory hotplug not supported for this machine");
3572 return;
3573 }
3574
3575 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3576 if (local_err) {
3577 error_propagate(errp, local_err);
3578 return;
3579 }
3580
3581 if (is_nvdimm) {
3582 if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
3583 return;
3584 }
3585 } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3586 error_setg(errp, "Hotplugged memory size must be a multiple of "
3587 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3588 return;
3589 }
3590
3591 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3592 &error_abort);
3593 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3594 if (!spapr_check_pagesize(spapr, pagesize, errp)) {
3595 return;
3596 }
3597
3598 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3599 }
3600
3601 struct SpaprDimmState {
3602 PCDIMMDevice *dimm;
3603 uint32_t nr_lmbs;
3604 QTAILQ_ENTRY(SpaprDimmState) next;
3605 };
3606
3607 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3608 PCDIMMDevice *dimm)
3609 {
3610 SpaprDimmState *dimm_state = NULL;
3611
3612 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3613 if (dimm_state->dimm == dimm) {
3614 break;
3615 }
3616 }
3617 return dimm_state;
3618 }
3619
3620 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3621 uint32_t nr_lmbs,
3622 PCDIMMDevice *dimm)
3623 {
3624 SpaprDimmState *ds = NULL;
3625
3626 /*
3627 * If this request is for a DIMM whose removal had failed earlier
3628 * (due to guest's refusal to remove the LMBs), we would have this
3629 * dimm already in the pending_dimm_unplugs list. In that
3630 * case don't add again.
3631 */
3632 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3633 if (!ds) {
3634 ds = g_new0(SpaprDimmState, 1);
3635 ds->nr_lmbs = nr_lmbs;
3636 ds->dimm = dimm;
3637 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3638 }
3639 return ds;
3640 }
3641
3642 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3643 SpaprDimmState *dimm_state)
3644 {
3645 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3646 g_free(dimm_state);
3647 }
3648
3649 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3650 PCDIMMDevice *dimm)
3651 {
3652 SpaprDrc *drc;
3653 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3654 &error_abort);
3655 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3656 uint32_t avail_lmbs = 0;
3657 uint64_t addr_start, addr;
3658 int i;
3659
3660 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3661 &error_abort);
3662
3663 addr = addr_start;
3664 for (i = 0; i < nr_lmbs; i++) {
3665 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3666 addr / SPAPR_MEMORY_BLOCK_SIZE);
3667 g_assert(drc);
3668 if (drc->dev) {
3669 avail_lmbs++;
3670 }
3671 addr += SPAPR_MEMORY_BLOCK_SIZE;
3672 }
3673
3674 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3675 }
3676
3677 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev)
3678 {
3679 SpaprDimmState *ds;
3680 PCDIMMDevice *dimm;
3681 SpaprDrc *drc;
3682 uint32_t nr_lmbs;
3683 uint64_t size, addr_start, addr;
3684 g_autofree char *qapi_error = NULL;
3685 int i;
3686
3687 if (!dev) {
3688 return;
3689 }
3690
3691 dimm = PC_DIMM(dev);
3692 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3693
3694 /*
3695 * 'ds == NULL' would mean that the DIMM doesn't have a pending
3696 * unplug state, but one of its DRC is marked as unplug_requested.
3697 * This is bad and weird enough to g_assert() out.
3698 */
3699 g_assert(ds);
3700
3701 spapr_pending_dimm_unplugs_remove(spapr, ds);
3702
3703 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3704 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3705
3706 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3707 &error_abort);
3708
3709 addr = addr_start;
3710 for (i = 0; i < nr_lmbs; i++) {
3711 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3712 addr / SPAPR_MEMORY_BLOCK_SIZE);
3713 g_assert(drc);
3714
3715 drc->unplug_requested = false;
3716 addr += SPAPR_MEMORY_BLOCK_SIZE;
3717 }
3718
3719 /*
3720 * Tell QAPI that something happened and the memory
3721 * hotunplug wasn't successful. Keep sending
3722 * MEM_UNPLUG_ERROR even while sending
3723 * DEVICE_UNPLUG_GUEST_ERROR until the deprecation of
3724 * MEM_UNPLUG_ERROR is due.
3725 */
3726 qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest "
3727 "for device %s", dev->id);
3728
3729 qapi_event_send_mem_unplug_error(dev->id ? : "", qapi_error);
3730
3731 qapi_event_send_device_unplug_guest_error(dev->id,
3732 dev->canonical_path);
3733 }
3734
3735 /* Callback to be called during DRC release. */
3736 void spapr_lmb_release(DeviceState *dev)
3737 {
3738 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3739 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3740 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3741
3742 /* This information will get lost if a migration occurs
3743 * during the unplug process. In this case recover it. */
3744 if (ds == NULL) {
3745 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3746 g_assert(ds);
3747 /* The DRC being examined by the caller at least must be counted */
3748 g_assert(ds->nr_lmbs);
3749 }
3750
3751 if (--ds->nr_lmbs) {
3752 return;
3753 }
3754
3755 /*
3756 * Now that all the LMBs have been removed by the guest, call the
3757 * unplug handler chain. This can never fail.
3758 */
3759 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3760 object_unparent(OBJECT(dev));
3761 }
3762
3763 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3764 {
3765 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3766 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3767
3768 /* We really shouldn't get this far without anything to unplug */
3769 g_assert(ds);
3770
3771 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3772 qdev_unrealize(dev);
3773 spapr_pending_dimm_unplugs_remove(spapr, ds);
3774 }
3775
3776 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3777 DeviceState *dev, Error **errp)
3778 {
3779 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3780 PCDIMMDevice *dimm = PC_DIMM(dev);
3781 uint32_t nr_lmbs;
3782 uint64_t size, addr_start, addr;
3783 int i;
3784 SpaprDrc *drc;
3785
3786 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3787 error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3788 return;
3789 }
3790
3791 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3792 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3793
3794 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3795 &error_abort);
3796
3797 /*
3798 * An existing pending dimm state for this DIMM means that there is an
3799 * unplug operation in progress, waiting for the spapr_lmb_release
3800 * callback to complete the job (BQL can't cover that far). In this case,
3801 * bail out to avoid detaching DRCs that were already released.
3802 */
3803 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3804 error_setg(errp, "Memory unplug already in progress for device %s",
3805 dev->id);
3806 return;
3807 }
3808
3809 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3810
3811 addr = addr_start;
3812 for (i = 0; i < nr_lmbs; i++) {
3813 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3814 addr / SPAPR_MEMORY_BLOCK_SIZE);
3815 g_assert(drc);
3816
3817 spapr_drc_unplug_request(drc);
3818 addr += SPAPR_MEMORY_BLOCK_SIZE;
3819 }
3820
3821 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3822 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3823 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3824 nr_lmbs, spapr_drc_index(drc));
3825 }
3826
3827 /* Callback to be called during DRC release. */
3828 void spapr_core_release(DeviceState *dev)
3829 {
3830 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3831
3832 /* Call the unplug handler chain. This can never fail. */
3833 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3834 object_unparent(OBJECT(dev));
3835 }
3836
3837 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3838 {
3839 MachineState *ms = MACHINE(hotplug_dev);
3840 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3841 CPUCore *cc = CPU_CORE(dev);
3842 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3843
3844 if (smc->pre_2_10_has_unused_icps) {
3845 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3846 int i;
3847
3848 for (i = 0; i < cc->nr_threads; i++) {
3849 CPUState *cs = CPU(sc->threads[i]);
3850
3851 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3852 }
3853 }
3854
3855 assert(core_slot);
3856 core_slot->cpu = NULL;
3857 qdev_unrealize(dev);
3858 }
3859
3860 static
3861 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3862 Error **errp)
3863 {
3864 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3865 int index;
3866 SpaprDrc *drc;
3867 CPUCore *cc = CPU_CORE(dev);
3868
3869 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3870 error_setg(errp, "Unable to find CPU core with core-id: %d",
3871 cc->core_id);
3872 return;
3873 }
3874 if (index == 0) {
3875 error_setg(errp, "Boot CPU core may not be unplugged");
3876 return;
3877 }
3878
3879 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3880 spapr_vcpu_id(spapr, cc->core_id));
3881 g_assert(drc);
3882
3883 if (!spapr_drc_unplug_requested(drc)) {
3884 spapr_drc_unplug_request(drc);
3885 }
3886
3887 /*
3888 * spapr_hotplug_req_remove_by_index is left unguarded, out of the
3889 * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ
3890 * pulses removing the same CPU. Otherwise, in an failed hotunplug
3891 * attempt (e.g. the kernel will refuse to remove the last online
3892 * CPU), we will never attempt it again because unplug_requested
3893 * will still be 'true' in that case.
3894 */
3895 spapr_hotplug_req_remove_by_index(drc);
3896 }
3897
3898 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3899 void *fdt, int *fdt_start_offset, Error **errp)
3900 {
3901 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3902 CPUState *cs = CPU(core->threads[0]);
3903 PowerPCCPU *cpu = POWERPC_CPU(cs);
3904 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3905 int id = spapr_get_vcpu_id(cpu);
3906 g_autofree char *nodename = NULL;
3907 int offset;
3908
3909 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3910 offset = fdt_add_subnode(fdt, 0, nodename);
3911
3912 spapr_dt_cpu(cs, fdt, offset, spapr);
3913
3914 /*
3915 * spapr_dt_cpu() does not fill the 'name' property in the
3916 * CPU node. The function is called during boot process, before
3917 * and after CAS, and overwriting the 'name' property written
3918 * by SLOF is not allowed.
3919 *
3920 * Write it manually after spapr_dt_cpu(). This makes the hotplug
3921 * CPUs more compatible with the coldplugged ones, which have
3922 * the 'name' property. Linux Kernel also relies on this
3923 * property to identify CPU nodes.
3924 */
3925 _FDT((fdt_setprop_string(fdt, offset, "name", nodename)));
3926
3927 *fdt_start_offset = offset;
3928 return 0;
3929 }
3930
3931 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3932 {
3933 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3934 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3935 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3936 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3937 CPUCore *cc = CPU_CORE(dev);
3938 CPUState *cs;
3939 SpaprDrc *drc;
3940 CPUArchId *core_slot;
3941 int index;
3942 bool hotplugged = spapr_drc_hotplugged(dev);
3943 int i;
3944
3945 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3946 g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */
3947
3948 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3949 spapr_vcpu_id(spapr, cc->core_id));
3950
3951 g_assert(drc || !mc->has_hotpluggable_cpus);
3952
3953 if (drc) {
3954 /*
3955 * spapr_core_pre_plug() already buys us this is a brand new
3956 * core being plugged into a free slot. Nothing should already
3957 * be attached to the corresponding DRC.
3958 */
3959 spapr_drc_attach(drc, dev);
3960
3961 if (hotplugged) {
3962 /*
3963 * Send hotplug notification interrupt to the guest only
3964 * in case of hotplugged CPUs.
3965 */
3966 spapr_hotplug_req_add_by_index(drc);
3967 } else {
3968 spapr_drc_reset(drc);
3969 }
3970 }
3971
3972 core_slot->cpu = OBJECT(dev);
3973
3974 /*
3975 * Set compatibility mode to match the boot CPU, which was either set
3976 * by the machine reset code or by CAS. This really shouldn't fail at
3977 * this point.
3978 */
3979 if (hotplugged) {
3980 for (i = 0; i < cc->nr_threads; i++) {
3981 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3982 &error_abort);
3983 }
3984 }
3985
3986 if (smc->pre_2_10_has_unused_icps) {
3987 for (i = 0; i < cc->nr_threads; i++) {
3988 cs = CPU(core->threads[i]);
3989 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3990 }
3991 }
3992 }
3993
3994 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3995 Error **errp)
3996 {
3997 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3998 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3999 CPUCore *cc = CPU_CORE(dev);
4000 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
4001 const char *type = object_get_typename(OBJECT(dev));
4002 CPUArchId *core_slot;
4003 int index;
4004 unsigned int smp_threads = machine->smp.threads;
4005
4006 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
4007 error_setg(errp, "CPU hotplug not supported for this machine");
4008 return;
4009 }
4010
4011 if (strcmp(base_core_type, type)) {
4012 error_setg(errp, "CPU core type should be %s", base_core_type);
4013 return;
4014 }
4015
4016 if (cc->core_id % smp_threads) {
4017 error_setg(errp, "invalid core id %d", cc->core_id);
4018 return;
4019 }
4020
4021 /*
4022 * In general we should have homogeneous threads-per-core, but old
4023 * (pre hotplug support) machine types allow the last core to have
4024 * reduced threads as a compatibility hack for when we allowed
4025 * total vcpus not a multiple of threads-per-core.
4026 */
4027 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
4028 error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
4029 smp_threads);
4030 return;
4031 }
4032
4033 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
4034 if (!core_slot) {
4035 error_setg(errp, "core id %d out of range", cc->core_id);
4036 return;
4037 }
4038
4039 if (core_slot->cpu) {
4040 error_setg(errp, "core %d already populated", cc->core_id);
4041 return;
4042 }
4043
4044 numa_cpu_pre_plug(core_slot, dev, errp);
4045 }
4046
4047 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
4048 void *fdt, int *fdt_start_offset, Error **errp)
4049 {
4050 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
4051 int intc_phandle;
4052
4053 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
4054 if (intc_phandle <= 0) {
4055 return -1;
4056 }
4057
4058 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
4059 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
4060 return -1;
4061 }
4062
4063 /* generally SLOF creates these, for hotplug it's up to QEMU */
4064 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
4065
4066 return 0;
4067 }
4068
4069 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4070 Error **errp)
4071 {
4072 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4073 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4074 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4075 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
4076 SpaprDrc *drc;
4077
4078 if (dev->hotplugged && !smc->dr_phb_enabled) {
4079 error_setg(errp, "PHB hotplug not supported for this machine");
4080 return false;
4081 }
4082
4083 if (sphb->index == (uint32_t)-1) {
4084 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
4085 return false;
4086 }
4087
4088 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4089 if (drc && drc->dev) {
4090 error_setg(errp, "PHB %d already attached", sphb->index);
4091 return false;
4092 }
4093
4094 /*
4095 * This will check that sphb->index doesn't exceed the maximum number of
4096 * PHBs for the current machine type.
4097 */
4098 return
4099 smc->phb_placement(spapr, sphb->index,
4100 &sphb->buid, &sphb->io_win_addr,
4101 &sphb->mem_win_addr, &sphb->mem64_win_addr,
4102 windows_supported, sphb->dma_liobn,
4103 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
4104 errp);
4105 }
4106
4107 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4108 {
4109 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4110 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4111 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4112 SpaprDrc *drc;
4113 bool hotplugged = spapr_drc_hotplugged(dev);
4114
4115 if (!smc->dr_phb_enabled) {
4116 return;
4117 }
4118
4119 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4120 /* hotplug hooks should check it's enabled before getting this far */
4121 assert(drc);
4122
4123 /* spapr_phb_pre_plug() already checked the DRC is attachable */
4124 spapr_drc_attach(drc, dev);
4125
4126 if (hotplugged) {
4127 spapr_hotplug_req_add_by_index(drc);
4128 } else {
4129 spapr_drc_reset(drc);
4130 }
4131 }
4132
4133 void spapr_phb_release(DeviceState *dev)
4134 {
4135 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4136
4137 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4138 object_unparent(OBJECT(dev));
4139 }
4140
4141 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4142 {
4143 qdev_unrealize(dev);
4144 }
4145
4146 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4147 DeviceState *dev, Error **errp)
4148 {
4149 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4150 SpaprDrc *drc;
4151
4152 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4153 assert(drc);
4154
4155 if (!spapr_drc_unplug_requested(drc)) {
4156 spapr_drc_unplug_request(drc);
4157 spapr_hotplug_req_remove_by_index(drc);
4158 } else {
4159 error_setg(errp,
4160 "PCI Host Bridge unplug already in progress for device %s",
4161 dev->id);
4162 }
4163 }
4164
4165 static
4166 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4167 Error **errp)
4168 {
4169 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4170
4171 if (spapr->tpm_proxy != NULL) {
4172 error_setg(errp, "Only one TPM proxy can be specified for this machine");
4173 return false;
4174 }
4175
4176 return true;
4177 }
4178
4179 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4180 {
4181 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4182 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4183
4184 /* Already checked in spapr_tpm_proxy_pre_plug() */
4185 g_assert(spapr->tpm_proxy == NULL);
4186
4187 spapr->tpm_proxy = tpm_proxy;
4188 }
4189
4190 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4191 {
4192 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4193
4194 qdev_unrealize(dev);
4195 object_unparent(OBJECT(dev));
4196 spapr->tpm_proxy = NULL;
4197 }
4198
4199 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4200 DeviceState *dev, Error **errp)
4201 {
4202 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4203 spapr_memory_plug(hotplug_dev, dev);
4204 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4205 spapr_core_plug(hotplug_dev, dev);
4206 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4207 spapr_phb_plug(hotplug_dev, dev);
4208 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4209 spapr_tpm_proxy_plug(hotplug_dev, dev);
4210 }
4211 }
4212
4213 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4214 DeviceState *dev, Error **errp)
4215 {
4216 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4217 spapr_memory_unplug(hotplug_dev, dev);
4218 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4219 spapr_core_unplug(hotplug_dev, dev);
4220 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4221 spapr_phb_unplug(hotplug_dev, dev);
4222 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4223 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4224 }
4225 }
4226
4227 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr)
4228 {
4229 return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) ||
4230 /*
4231 * CAS will process all pending unplug requests.
4232 *
4233 * HACK: a guest could theoretically have cleared all bits in OV5,
4234 * but none of the guests we care for do.
4235 */
4236 spapr_ovec_empty(spapr->ov5_cas);
4237 }
4238
4239 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4240 DeviceState *dev, Error **errp)
4241 {
4242 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4243 MachineClass *mc = MACHINE_GET_CLASS(sms);
4244 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4245
4246 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4247 if (spapr_memory_hot_unplug_supported(sms)) {
4248 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4249 } else {
4250 error_setg(errp, "Memory hot unplug not supported for this guest");
4251 }
4252 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4253 if (!mc->has_hotpluggable_cpus) {
4254 error_setg(errp, "CPU hot unplug not supported on this machine");
4255 return;
4256 }
4257 spapr_core_unplug_request(hotplug_dev, dev, errp);
4258 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4259 if (!smc->dr_phb_enabled) {
4260 error_setg(errp, "PHB hot unplug not supported on this machine");
4261 return;
4262 }
4263 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4264 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4265 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4266 }
4267 }
4268
4269 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4270 DeviceState *dev, Error **errp)
4271 {
4272 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4273 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4274 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4275 spapr_core_pre_plug(hotplug_dev, dev, errp);
4276 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4277 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4278 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4279 spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp);
4280 }
4281 }
4282
4283 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4284 DeviceState *dev)
4285 {
4286 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4287 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4288 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4289 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4290 return HOTPLUG_HANDLER(machine);
4291 }
4292 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4293 PCIDevice *pcidev = PCI_DEVICE(dev);
4294 PCIBus *root = pci_device_root_bus(pcidev);
4295 SpaprPhbState *phb =
4296 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4297 TYPE_SPAPR_PCI_HOST_BRIDGE);
4298
4299 if (phb) {
4300 return HOTPLUG_HANDLER(phb);
4301 }
4302 }
4303 return NULL;
4304 }
4305
4306 static CpuInstanceProperties
4307 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4308 {
4309 CPUArchId *core_slot;
4310 MachineClass *mc = MACHINE_GET_CLASS(machine);
4311
4312 /* make sure possible_cpu are intialized */
4313 mc->possible_cpu_arch_ids(machine);
4314 /* get CPU core slot containing thread that matches cpu_index */
4315 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4316 assert(core_slot);
4317 return core_slot->props;
4318 }
4319
4320 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4321 {
4322 return idx / ms->smp.cores % ms->numa_state->num_nodes;
4323 }
4324
4325 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4326 {
4327 int i;
4328 unsigned int smp_threads = machine->smp.threads;
4329 unsigned int smp_cpus = machine->smp.cpus;
4330 const char *core_type;
4331 int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4332 MachineClass *mc = MACHINE_GET_CLASS(machine);
4333
4334 if (!mc->has_hotpluggable_cpus) {
4335 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4336 }
4337 if (machine->possible_cpus) {
4338 assert(machine->possible_cpus->len == spapr_max_cores);
4339 return machine->possible_cpus;
4340 }
4341
4342 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4343 if (!core_type) {
4344 error_report("Unable to find sPAPR CPU Core definition");
4345 exit(1);
4346 }
4347
4348 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4349 sizeof(CPUArchId) * spapr_max_cores);
4350 machine->possible_cpus->len = spapr_max_cores;
4351 for (i = 0; i < machine->possible_cpus->len; i++) {
4352 int core_id = i * smp_threads;
4353
4354 machine->possible_cpus->cpus[i].type = core_type;
4355 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4356 machine->possible_cpus->cpus[i].arch_id = core_id;
4357 machine->possible_cpus->cpus[i].props.has_core_id = true;
4358 machine->possible_cpus->cpus[i].props.core_id = core_id;
4359 }
4360 return machine->possible_cpus;
4361 }
4362
4363 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4364 uint64_t *buid, hwaddr *pio,
4365 hwaddr *mmio32, hwaddr *mmio64,
4366 unsigned n_dma, uint32_t *liobns,
4367 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4368 {
4369 /*
4370 * New-style PHB window placement.
4371 *
4372 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4373 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4374 * windows.
4375 *
4376 * Some guest kernels can't work with MMIO windows above 1<<46
4377 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4378 *
4379 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4380 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4381 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4382 * 1TiB 64-bit MMIO windows for each PHB.
4383 */
4384 const uint64_t base_buid = 0x800000020000000ULL;
4385 int i;
4386
4387 /* Sanity check natural alignments */
4388 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4389 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4390 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4391 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4392 /* Sanity check bounds */
4393 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4394 SPAPR_PCI_MEM32_WIN_SIZE);
4395 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4396 SPAPR_PCI_MEM64_WIN_SIZE);
4397
4398 if (index >= SPAPR_MAX_PHBS) {
4399 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4400 SPAPR_MAX_PHBS - 1);
4401 return false;
4402 }
4403
4404 *buid = base_buid + index;
4405 for (i = 0; i < n_dma; ++i) {
4406 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4407 }
4408
4409 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4410 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4411 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4412
4413 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4414 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4415 return true;
4416 }
4417
4418 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4419 {
4420 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4421
4422 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4423 }
4424
4425 static void spapr_ics_resend(XICSFabric *dev)
4426 {
4427 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4428
4429 ics_resend(spapr->ics);
4430 }
4431
4432 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4433 {
4434 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4435
4436 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4437 }
4438
4439 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4440 Monitor *mon)
4441 {
4442 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4443
4444 spapr_irq_print_info(spapr, mon);
4445 monitor_printf(mon, "irqchip: %s\n",
4446 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4447 }
4448
4449 /*
4450 * This is a XIVE only operation
4451 */
4452 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4453 uint8_t nvt_blk, uint32_t nvt_idx,
4454 bool cam_ignore, uint8_t priority,
4455 uint32_t logic_serv, XiveTCTXMatch *match)
4456 {
4457 SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4458 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4459 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4460 int count;
4461
4462 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4463 priority, logic_serv, match);
4464 if (count < 0) {
4465 return count;
4466 }
4467
4468 /*
4469 * When we implement the save and restore of the thread interrupt
4470 * contexts in the enter/exit CPU handlers of the machine and the
4471 * escalations in QEMU, we should be able to handle non dispatched
4472 * vCPUs.
4473 *
4474 * Until this is done, the sPAPR machine should find at least one
4475 * matching context always.
4476 */
4477 if (count == 0) {
4478 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4479 nvt_blk, nvt_idx);
4480 }
4481
4482 return count;
4483 }
4484
4485 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4486 {
4487 return cpu->vcpu_id;
4488 }
4489
4490 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4491 {
4492 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4493 MachineState *ms = MACHINE(spapr);
4494 int vcpu_id;
4495
4496 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4497
4498 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4499 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4500 error_append_hint(errp, "Adjust the number of cpus to %d "
4501 "or try to raise the number of threads per core\n",
4502 vcpu_id * ms->smp.threads / spapr->vsmt);
4503 return false;
4504 }
4505
4506 cpu->vcpu_id = vcpu_id;
4507 return true;
4508 }
4509
4510 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4511 {
4512 CPUState *cs;
4513
4514 CPU_FOREACH(cs) {
4515 PowerPCCPU *cpu = POWERPC_CPU(cs);
4516
4517 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4518 return cpu;
4519 }
4520 }
4521
4522 return NULL;
4523 }
4524
4525 static bool spapr_cpu_in_nested(PowerPCCPU *cpu)
4526 {
4527 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4528
4529 return spapr_cpu->in_nested;
4530 }
4531
4532 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4533 {
4534 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4535
4536 /* These are only called by TCG, KVM maintains dispatch state */
4537
4538 spapr_cpu->prod = false;
4539 if (spapr_cpu->vpa_addr) {
4540 CPUState *cs = CPU(cpu);
4541 uint32_t dispatch;
4542
4543 dispatch = ldl_be_phys(cs->as,
4544 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4545 dispatch++;
4546 if ((dispatch & 1) != 0) {
4547 qemu_log_mask(LOG_GUEST_ERROR,
4548 "VPA: incorrect dispatch counter value for "
4549 "dispatched partition %u, correcting.\n", dispatch);
4550 dispatch++;
4551 }
4552 stl_be_phys(cs->as,
4553 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4554 }
4555 }
4556
4557 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4558 {
4559 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4560
4561 if (spapr_cpu->vpa_addr) {
4562 CPUState *cs = CPU(cpu);
4563 uint32_t dispatch;
4564
4565 dispatch = ldl_be_phys(cs->as,
4566 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4567 dispatch++;
4568 if ((dispatch & 1) != 1) {
4569 qemu_log_mask(LOG_GUEST_ERROR,
4570 "VPA: incorrect dispatch counter value for "
4571 "preempted partition %u, correcting.\n", dispatch);
4572 dispatch++;
4573 }
4574 stl_be_phys(cs->as,
4575 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4576 }
4577 }
4578
4579 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4580 {
4581 MachineClass *mc = MACHINE_CLASS(oc);
4582 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4583 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4584 NMIClass *nc = NMI_CLASS(oc);
4585 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4586 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4587 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4588 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4589 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4590 VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc);
4591
4592 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4593 mc->ignore_boot_device_suffixes = true;
4594
4595 /*
4596 * We set up the default / latest behaviour here. The class_init
4597 * functions for the specific versioned machine types can override
4598 * these details for backwards compatibility
4599 */
4600 mc->init = spapr_machine_init;
4601 mc->reset = spapr_machine_reset;
4602 mc->block_default_type = IF_SCSI;
4603
4604 /*
4605 * Setting max_cpus to INT32_MAX. Both KVM and TCG max_cpus values
4606 * should be limited by the host capability instead of hardcoded.
4607 * max_cpus for KVM guests will be checked in kvm_init(), and TCG
4608 * guests are welcome to have as many CPUs as the host are capable
4609 * of emulate.
4610 */
4611 mc->max_cpus = INT32_MAX;
4612
4613 mc->no_parallel = 1;
4614 mc->default_boot_order = "";
4615 mc->default_ram_size = 512 * MiB;
4616 mc->default_ram_id = "ppc_spapr.ram";
4617 mc->default_display = "std";
4618 mc->kvm_type = spapr_kvm_type;
4619 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4620 mc->pci_allow_0_address = true;
4621 assert(!mc->get_hotplug_handler);
4622 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4623 hc->pre_plug = spapr_machine_device_pre_plug;
4624 hc->plug = spapr_machine_device_plug;
4625 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4626 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4627 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4628 hc->unplug_request = spapr_machine_device_unplug_request;
4629 hc->unplug = spapr_machine_device_unplug;
4630
4631 smc->dr_lmb_enabled = true;
4632 smc->update_dt_enabled = true;
4633 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4634 mc->has_hotpluggable_cpus = true;
4635 mc->nvdimm_supported = true;
4636 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4637 fwc->get_dev_path = spapr_get_fw_dev_path;
4638 nc->nmi_monitor_handler = spapr_nmi;
4639 smc->phb_placement = spapr_phb_placement;
4640 vhc->cpu_in_nested = spapr_cpu_in_nested;
4641 vhc->deliver_hv_excp = spapr_exit_nested;
4642 vhc->hypercall = emulate_spapr_hypercall;
4643 vhc->hpt_mask = spapr_hpt_mask;
4644 vhc->map_hptes = spapr_map_hptes;
4645 vhc->unmap_hptes = spapr_unmap_hptes;
4646 vhc->hpte_set_c = spapr_hpte_set_c;
4647 vhc->hpte_set_r = spapr_hpte_set_r;
4648 vhc->get_pate = spapr_get_pate;
4649 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4650 vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4651 vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4652 xic->ics_get = spapr_ics_get;
4653 xic->ics_resend = spapr_ics_resend;
4654 xic->icp_get = spapr_icp_get;
4655 ispc->print_info = spapr_pic_print_info;
4656 /* Force NUMA node memory size to be a multiple of
4657 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4658 * in which LMBs are represented and hot-added
4659 */
4660 mc->numa_mem_align_shift = 28;
4661 mc->auto_enable_numa = true;
4662
4663 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4664 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4665 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4666 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4667 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4668 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4669 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4670 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4671 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4672 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4673 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4674 smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF;
4675 spapr_caps_add_properties(smc);
4676 smc->irq = &spapr_irq_dual;
4677 smc->dr_phb_enabled = true;
4678 smc->linux_pci_probe = true;
4679 smc->smp_threads_vsmt = true;
4680 smc->nr_xirqs = SPAPR_NR_XIRQS;
4681 xfc->match_nvt = spapr_match_nvt;
4682 vmc->client_architecture_support = spapr_vof_client_architecture_support;
4683 vmc->quiesce = spapr_vof_quiesce;
4684 vmc->setprop = spapr_vof_setprop;
4685 }
4686
4687 static const TypeInfo spapr_machine_info = {
4688 .name = TYPE_SPAPR_MACHINE,
4689 .parent = TYPE_MACHINE,
4690 .abstract = true,
4691 .instance_size = sizeof(SpaprMachineState),
4692 .instance_init = spapr_instance_init,
4693 .instance_finalize = spapr_machine_finalizefn,
4694 .class_size = sizeof(SpaprMachineClass),
4695 .class_init = spapr_machine_class_init,
4696 .interfaces = (InterfaceInfo[]) {
4697 { TYPE_FW_PATH_PROVIDER },
4698 { TYPE_NMI },
4699 { TYPE_HOTPLUG_HANDLER },
4700 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4701 { TYPE_XICS_FABRIC },
4702 { TYPE_INTERRUPT_STATS_PROVIDER },
4703 { TYPE_XIVE_FABRIC },
4704 { TYPE_VOF_MACHINE_IF },
4705 { }
4706 },
4707 };
4708
4709 static void spapr_machine_latest_class_options(MachineClass *mc)
4710 {
4711 mc->alias = "pseries";
4712 mc->is_default = true;
4713 }
4714
4715 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4716 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4717 void *data) \
4718 { \
4719 MachineClass *mc = MACHINE_CLASS(oc); \
4720 spapr_machine_##suffix##_class_options(mc); \
4721 if (latest) { \
4722 spapr_machine_latest_class_options(mc); \
4723 } \
4724 } \
4725 static const TypeInfo spapr_machine_##suffix##_info = { \
4726 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4727 .parent = TYPE_SPAPR_MACHINE, \
4728 .class_init = spapr_machine_##suffix##_class_init, \
4729 }; \
4730 static void spapr_machine_register_##suffix(void) \
4731 { \
4732 type_register(&spapr_machine_##suffix##_info); \
4733 } \
4734 type_init(spapr_machine_register_##suffix)
4735
4736 /*
4737 * pseries-7.2
4738 */
4739 static void spapr_machine_7_2_class_options(MachineClass *mc)
4740 {
4741 /* Defaults for the latest behaviour inherited from the base class */
4742 }
4743
4744 DEFINE_SPAPR_MACHINE(7_2, "7.2", true);
4745
4746 /*
4747 * pseries-7.1
4748 */
4749 static void spapr_machine_7_1_class_options(MachineClass *mc)
4750 {
4751 spapr_machine_7_2_class_options(mc);
4752 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
4753 }
4754
4755 DEFINE_SPAPR_MACHINE(7_1, "7.1", false);
4756
4757 /*
4758 * pseries-7.0
4759 */
4760 static void spapr_machine_7_0_class_options(MachineClass *mc)
4761 {
4762 spapr_machine_7_1_class_options(mc);
4763 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
4764 }
4765
4766 DEFINE_SPAPR_MACHINE(7_0, "7.0", false);
4767
4768 /*
4769 * pseries-6.2
4770 */
4771 static void spapr_machine_6_2_class_options(MachineClass *mc)
4772 {
4773 spapr_machine_7_0_class_options(mc);
4774 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
4775 }
4776
4777 DEFINE_SPAPR_MACHINE(6_2, "6.2", false);
4778
4779 /*
4780 * pseries-6.1
4781 */
4782 static void spapr_machine_6_1_class_options(MachineClass *mc)
4783 {
4784 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4785
4786 spapr_machine_6_2_class_options(mc);
4787 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
4788 smc->pre_6_2_numa_affinity = true;
4789 mc->smp_props.prefer_sockets = true;
4790 }
4791
4792 DEFINE_SPAPR_MACHINE(6_1, "6.1", false);
4793
4794 /*
4795 * pseries-6.0
4796 */
4797 static void spapr_machine_6_0_class_options(MachineClass *mc)
4798 {
4799 spapr_machine_6_1_class_options(mc);
4800 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
4801 }
4802
4803 DEFINE_SPAPR_MACHINE(6_0, "6.0", false);
4804
4805 /*
4806 * pseries-5.2
4807 */
4808 static void spapr_machine_5_2_class_options(MachineClass *mc)
4809 {
4810 spapr_machine_6_0_class_options(mc);
4811 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
4812 }
4813
4814 DEFINE_SPAPR_MACHINE(5_2, "5.2", false);
4815
4816 /*
4817 * pseries-5.1
4818 */
4819 static void spapr_machine_5_1_class_options(MachineClass *mc)
4820 {
4821 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4822
4823 spapr_machine_5_2_class_options(mc);
4824 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4825 smc->pre_5_2_numa_associativity = true;
4826 }
4827
4828 DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4829
4830 /*
4831 * pseries-5.0
4832 */
4833 static void spapr_machine_5_0_class_options(MachineClass *mc)
4834 {
4835 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4836 static GlobalProperty compat[] = {
4837 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4838 };
4839
4840 spapr_machine_5_1_class_options(mc);
4841 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4842 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4843 mc->numa_mem_supported = true;
4844 smc->pre_5_1_assoc_refpoints = true;
4845 }
4846
4847 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4848
4849 /*
4850 * pseries-4.2
4851 */
4852 static void spapr_machine_4_2_class_options(MachineClass *mc)
4853 {
4854 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4855
4856 spapr_machine_5_0_class_options(mc);
4857 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4858 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4859 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4860 smc->rma_limit = 16 * GiB;
4861 mc->nvdimm_supported = false;
4862 }
4863
4864 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4865
4866 /*
4867 * pseries-4.1
4868 */
4869 static void spapr_machine_4_1_class_options(MachineClass *mc)
4870 {
4871 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4872 static GlobalProperty compat[] = {
4873 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4874 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4875 };
4876
4877 spapr_machine_4_2_class_options(mc);
4878 smc->linux_pci_probe = false;
4879 smc->smp_threads_vsmt = false;
4880 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4881 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4882 }
4883
4884 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4885
4886 /*
4887 * pseries-4.0
4888 */
4889 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4890 uint64_t *buid, hwaddr *pio,
4891 hwaddr *mmio32, hwaddr *mmio64,
4892 unsigned n_dma, uint32_t *liobns,
4893 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4894 {
4895 if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma,
4896 liobns, nv2gpa, nv2atsd, errp)) {
4897 return false;
4898 }
4899
4900 *nv2gpa = 0;
4901 *nv2atsd = 0;
4902 return true;
4903 }
4904 static void spapr_machine_4_0_class_options(MachineClass *mc)
4905 {
4906 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4907
4908 spapr_machine_4_1_class_options(mc);
4909 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4910 smc->phb_placement = phb_placement_4_0;
4911 smc->irq = &spapr_irq_xics;
4912 smc->pre_4_1_migration = true;
4913 }
4914
4915 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4916
4917 /*
4918 * pseries-3.1
4919 */
4920 static void spapr_machine_3_1_class_options(MachineClass *mc)
4921 {
4922 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4923
4924 spapr_machine_4_0_class_options(mc);
4925 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4926
4927 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4928 smc->update_dt_enabled = false;
4929 smc->dr_phb_enabled = false;
4930 smc->broken_host_serial_model = true;
4931 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4932 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4933 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4934 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4935 }
4936
4937 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4938
4939 /*
4940 * pseries-3.0
4941 */
4942
4943 static void spapr_machine_3_0_class_options(MachineClass *mc)
4944 {
4945 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4946
4947 spapr_machine_3_1_class_options(mc);
4948 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4949
4950 smc->legacy_irq_allocation = true;
4951 smc->nr_xirqs = 0x400;
4952 smc->irq = &spapr_irq_xics_legacy;
4953 }
4954
4955 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4956
4957 /*
4958 * pseries-2.12
4959 */
4960 static void spapr_machine_2_12_class_options(MachineClass *mc)
4961 {
4962 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4963 static GlobalProperty compat[] = {
4964 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4965 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4966 };
4967
4968 spapr_machine_3_0_class_options(mc);
4969 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4970 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4971
4972 /* We depend on kvm_enabled() to choose a default value for the
4973 * hpt-max-page-size capability. Of course we can't do it here
4974 * because this is too early and the HW accelerator isn't initialzed
4975 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4976 */
4977 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4978 }
4979
4980 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4981
4982 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4983 {
4984 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4985
4986 spapr_machine_2_12_class_options(mc);
4987 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4988 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4989 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4990 }
4991
4992 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4993
4994 /*
4995 * pseries-2.11
4996 */
4997
4998 static void spapr_machine_2_11_class_options(MachineClass *mc)
4999 {
5000 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5001
5002 spapr_machine_2_12_class_options(mc);
5003 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
5004 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
5005 }
5006
5007 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
5008
5009 /*
5010 * pseries-2.10
5011 */
5012
5013 static void spapr_machine_2_10_class_options(MachineClass *mc)
5014 {
5015 spapr_machine_2_11_class_options(mc);
5016 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
5017 }
5018
5019 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
5020
5021 /*
5022 * pseries-2.9
5023 */
5024
5025 static void spapr_machine_2_9_class_options(MachineClass *mc)
5026 {
5027 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5028 static GlobalProperty compat[] = {
5029 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
5030 };
5031
5032 spapr_machine_2_10_class_options(mc);
5033 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
5034 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5035 smc->pre_2_10_has_unused_icps = true;
5036 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
5037 }
5038
5039 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
5040
5041 /*
5042 * pseries-2.8
5043 */
5044
5045 static void spapr_machine_2_8_class_options(MachineClass *mc)
5046 {
5047 static GlobalProperty compat[] = {
5048 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
5049 };
5050
5051 spapr_machine_2_9_class_options(mc);
5052 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
5053 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5054 mc->numa_mem_align_shift = 23;
5055 }
5056
5057 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
5058
5059 /*
5060 * pseries-2.7
5061 */
5062
5063 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
5064 uint64_t *buid, hwaddr *pio,
5065 hwaddr *mmio32, hwaddr *mmio64,
5066 unsigned n_dma, uint32_t *liobns,
5067 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
5068 {
5069 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
5070 const uint64_t base_buid = 0x800000020000000ULL;
5071 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
5072 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
5073 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
5074 const uint32_t max_index = 255;
5075 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
5076
5077 uint64_t ram_top = MACHINE(spapr)->ram_size;
5078 hwaddr phb0_base, phb_base;
5079 int i;
5080
5081 /* Do we have device memory? */
5082 if (MACHINE(spapr)->maxram_size > ram_top) {
5083 /* Can't just use maxram_size, because there may be an
5084 * alignment gap between normal and device memory regions
5085 */
5086 ram_top = MACHINE(spapr)->device_memory->base +
5087 memory_region_size(&MACHINE(spapr)->device_memory->mr);
5088 }
5089
5090 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
5091
5092 if (index > max_index) {
5093 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
5094 max_index);
5095 return false;
5096 }
5097
5098 *buid = base_buid + index;
5099 for (i = 0; i < n_dma; ++i) {
5100 liobns[i] = SPAPR_PCI_LIOBN(index, i);
5101 }
5102
5103 phb_base = phb0_base + index * phb_spacing;
5104 *pio = phb_base + pio_offset;
5105 *mmio32 = phb_base + mmio_offset;
5106 /*
5107 * We don't set the 64-bit MMIO window, relying on the PHB's
5108 * fallback behaviour of automatically splitting a large "32-bit"
5109 * window into contiguous 32-bit and 64-bit windows
5110 */
5111
5112 *nv2gpa = 0;
5113 *nv2atsd = 0;
5114 return true;
5115 }
5116
5117 static void spapr_machine_2_7_class_options(MachineClass *mc)
5118 {
5119 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5120 static GlobalProperty compat[] = {
5121 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
5122 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
5123 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
5124 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
5125 };
5126
5127 spapr_machine_2_8_class_options(mc);
5128 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
5129 mc->default_machine_opts = "modern-hotplug-events=off";
5130 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
5131 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5132 smc->phb_placement = phb_placement_2_7;
5133 }
5134
5135 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
5136
5137 /*
5138 * pseries-2.6
5139 */
5140
5141 static void spapr_machine_2_6_class_options(MachineClass *mc)
5142 {
5143 static GlobalProperty compat[] = {
5144 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
5145 };
5146
5147 spapr_machine_2_7_class_options(mc);
5148 mc->has_hotpluggable_cpus = false;
5149 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
5150 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5151 }
5152
5153 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
5154
5155 /*
5156 * pseries-2.5
5157 */
5158
5159 static void spapr_machine_2_5_class_options(MachineClass *mc)
5160 {
5161 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5162 static GlobalProperty compat[] = {
5163 { "spapr-vlan", "use-rx-buffer-pools", "off" },
5164 };
5165
5166 spapr_machine_2_6_class_options(mc);
5167 smc->use_ohci_by_default = true;
5168 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
5169 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5170 }
5171
5172 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
5173
5174 /*
5175 * pseries-2.4
5176 */
5177
5178 static void spapr_machine_2_4_class_options(MachineClass *mc)
5179 {
5180 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5181
5182 spapr_machine_2_5_class_options(mc);
5183 smc->dr_lmb_enabled = false;
5184 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
5185 }
5186
5187 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
5188
5189 /*
5190 * pseries-2.3
5191 */
5192
5193 static void spapr_machine_2_3_class_options(MachineClass *mc)
5194 {
5195 static GlobalProperty compat[] = {
5196 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
5197 };
5198 spapr_machine_2_4_class_options(mc);
5199 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
5200 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5201 }
5202 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
5203
5204 /*
5205 * pseries-2.2
5206 */
5207
5208 static void spapr_machine_2_2_class_options(MachineClass *mc)
5209 {
5210 static GlobalProperty compat[] = {
5211 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
5212 };
5213
5214 spapr_machine_2_3_class_options(mc);
5215 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
5216 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5217 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
5218 }
5219 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
5220
5221 /*
5222 * pseries-2.1
5223 */
5224
5225 static void spapr_machine_2_1_class_options(MachineClass *mc)
5226 {
5227 spapr_machine_2_2_class_options(mc);
5228 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
5229 }
5230 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
5231
5232 static void spapr_machine_register_types(void)
5233 {
5234 type_register_static(&spapr_machine_info);
5235 }
5236
5237 type_init(spapr_machine_register_types)