]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr.c
ppc/xics: move InterruptStatsProvider to the sPAPR machine
[mirror_qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/numa.h"
31 #include "hw/hw.h"
32 #include "qemu/log.h"
33 #include "hw/fw-path-provider.h"
34 #include "elf.h"
35 #include "net/net.h"
36 #include "sysemu/device_tree.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/hw_accel.h"
40 #include "kvm_ppc.h"
41 #include "migration/migration.h"
42 #include "mmu-hash64.h"
43 #include "qom/cpu.h"
44
45 #include "hw/boards.h"
46 #include "hw/ppc/ppc.h"
47 #include "hw/loader.h"
48
49 #include "hw/ppc/fdt.h"
50 #include "hw/ppc/spapr.h"
51 #include "hw/ppc/spapr_vio.h"
52 #include "hw/pci-host/spapr.h"
53 #include "hw/ppc/xics.h"
54 #include "hw/pci/msi.h"
55
56 #include "hw/pci/pci.h"
57 #include "hw/scsi/scsi.h"
58 #include "hw/virtio/virtio-scsi.h"
59
60 #include "exec/address-spaces.h"
61 #include "hw/usb.h"
62 #include "qemu/config-file.h"
63 #include "qemu/error-report.h"
64 #include "trace.h"
65 #include "hw/nmi.h"
66 #include "hw/intc/intc.h"
67
68 #include "hw/compat.h"
69 #include "qemu/cutils.h"
70 #include "hw/ppc/spapr_cpu_core.h"
71 #include "qmp-commands.h"
72
73 #include <libfdt.h>
74
75 /* SLOF memory layout:
76 *
77 * SLOF raw image loaded at 0, copies its romfs right below the flat
78 * device-tree, then position SLOF itself 31M below that
79 *
80 * So we set FW_OVERHEAD to 40MB which should account for all of that
81 * and more
82 *
83 * We load our kernel at 4M, leaving space for SLOF initial image
84 */
85 #define FDT_MAX_SIZE 0x100000
86 #define RTAS_MAX_SIZE 0x10000
87 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
88 #define FW_MAX_SIZE 0x400000
89 #define FW_FILE_NAME "slof.bin"
90 #define FW_OVERHEAD 0x2800000
91 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
92
93 #define MIN_RMA_SLOF 128UL
94
95 #define PHANDLE_XICP 0x00001111
96
97 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
98
99 static int try_create_xics(sPAPRMachineState *spapr, const char *type_ics,
100 const char *type_icp, int nr_servers,
101 int nr_irqs, Error **errp)
102 {
103 XICSFabric *xi = XICS_FABRIC(spapr);
104 Error *err = NULL, *local_err = NULL;
105 ICSState *ics = NULL;
106 int i;
107
108 ics = ICS_SIMPLE(object_new(type_ics));
109 qdev_set_parent_bus(DEVICE(ics), sysbus_get_default());
110 object_property_add_child(OBJECT(spapr), "ics", OBJECT(ics), NULL);
111 object_property_set_int(OBJECT(ics), nr_irqs, "nr-irqs", &err);
112 object_property_add_const_link(OBJECT(ics), "xics", OBJECT(xi), NULL);
113 object_property_set_bool(OBJECT(ics), true, "realized", &local_err);
114 error_propagate(&err, local_err);
115 if (err) {
116 goto error;
117 }
118
119 spapr->icps = g_malloc0(nr_servers * sizeof(ICPState));
120 spapr->nr_servers = nr_servers;
121
122 for (i = 0; i < nr_servers; i++) {
123 ICPState *icp = &spapr->icps[i];
124
125 object_initialize(icp, sizeof(*icp), type_icp);
126 qdev_set_parent_bus(DEVICE(icp), sysbus_get_default());
127 object_property_add_child(OBJECT(spapr), "icp[*]", OBJECT(icp), NULL);
128 object_property_add_const_link(OBJECT(icp), "xics", OBJECT(xi), NULL);
129 object_property_set_bool(OBJECT(icp), true, "realized", &err);
130 if (err) {
131 goto error;
132 }
133 object_unref(OBJECT(icp));
134 }
135
136 spapr->ics = ics;
137 return 0;
138
139 error:
140 error_propagate(errp, err);
141 if (ics) {
142 object_unparent(OBJECT(ics));
143 }
144 return -1;
145 }
146
147 static int xics_system_init(MachineState *machine,
148 int nr_servers, int nr_irqs, Error **errp)
149 {
150 int rc = -1;
151
152 if (kvm_enabled()) {
153 Error *err = NULL;
154
155 if (machine_kernel_irqchip_allowed(machine) &&
156 !xics_kvm_init(SPAPR_MACHINE(machine), errp)) {
157 rc = try_create_xics(SPAPR_MACHINE(machine), TYPE_ICS_KVM,
158 TYPE_KVM_ICP, nr_servers, nr_irqs, &err);
159 }
160 if (machine_kernel_irqchip_required(machine) && rc < 0) {
161 error_reportf_err(err,
162 "kernel_irqchip requested but unavailable: ");
163 } else {
164 error_free(err);
165 }
166 }
167
168 if (rc < 0) {
169 xics_spapr_init(SPAPR_MACHINE(machine), errp);
170 rc = try_create_xics(SPAPR_MACHINE(machine), TYPE_ICS_SIMPLE,
171 TYPE_ICP, nr_servers, nr_irqs, errp);
172 }
173
174 return rc;
175 }
176
177 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
178 int smt_threads)
179 {
180 int i, ret = 0;
181 uint32_t servers_prop[smt_threads];
182 uint32_t gservers_prop[smt_threads * 2];
183 int index = ppc_get_vcpu_dt_id(cpu);
184
185 if (cpu->compat_pvr) {
186 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
187 if (ret < 0) {
188 return ret;
189 }
190 }
191
192 /* Build interrupt servers and gservers properties */
193 for (i = 0; i < smt_threads; i++) {
194 servers_prop[i] = cpu_to_be32(index + i);
195 /* Hack, direct the group queues back to cpu 0 */
196 gservers_prop[i*2] = cpu_to_be32(index + i);
197 gservers_prop[i*2 + 1] = 0;
198 }
199 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
200 servers_prop, sizeof(servers_prop));
201 if (ret < 0) {
202 return ret;
203 }
204 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
205 gservers_prop, sizeof(gservers_prop));
206
207 return ret;
208 }
209
210 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
211 {
212 int ret = 0;
213 PowerPCCPU *cpu = POWERPC_CPU(cs);
214 int index = ppc_get_vcpu_dt_id(cpu);
215 uint32_t associativity[] = {cpu_to_be32(0x5),
216 cpu_to_be32(0x0),
217 cpu_to_be32(0x0),
218 cpu_to_be32(0x0),
219 cpu_to_be32(cs->numa_node),
220 cpu_to_be32(index)};
221
222 /* Advertise NUMA via ibm,associativity */
223 if (nb_numa_nodes > 1) {
224 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
225 sizeof(associativity));
226 }
227
228 return ret;
229 }
230
231 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
232 {
233 int ret = 0, offset, cpus_offset;
234 CPUState *cs;
235 char cpu_model[32];
236 int smt = kvmppc_smt_threads();
237 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
238
239 CPU_FOREACH(cs) {
240 PowerPCCPU *cpu = POWERPC_CPU(cs);
241 DeviceClass *dc = DEVICE_GET_CLASS(cs);
242 int index = ppc_get_vcpu_dt_id(cpu);
243 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
244
245 if ((index % smt) != 0) {
246 continue;
247 }
248
249 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
250
251 cpus_offset = fdt_path_offset(fdt, "/cpus");
252 if (cpus_offset < 0) {
253 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
254 "cpus");
255 if (cpus_offset < 0) {
256 return cpus_offset;
257 }
258 }
259 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
260 if (offset < 0) {
261 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
262 if (offset < 0) {
263 return offset;
264 }
265 }
266
267 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
268 pft_size_prop, sizeof(pft_size_prop));
269 if (ret < 0) {
270 return ret;
271 }
272
273 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
274 if (ret < 0) {
275 return ret;
276 }
277
278 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
279 if (ret < 0) {
280 return ret;
281 }
282 }
283 return ret;
284 }
285
286 static hwaddr spapr_node0_size(void)
287 {
288 MachineState *machine = MACHINE(qdev_get_machine());
289
290 if (nb_numa_nodes) {
291 int i;
292 for (i = 0; i < nb_numa_nodes; ++i) {
293 if (numa_info[i].node_mem) {
294 return MIN(pow2floor(numa_info[i].node_mem),
295 machine->ram_size);
296 }
297 }
298 }
299 return machine->ram_size;
300 }
301
302 static void add_str(GString *s, const gchar *s1)
303 {
304 g_string_append_len(s, s1, strlen(s1) + 1);
305 }
306
307 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
308 hwaddr size)
309 {
310 uint32_t associativity[] = {
311 cpu_to_be32(0x4), /* length */
312 cpu_to_be32(0x0), cpu_to_be32(0x0),
313 cpu_to_be32(0x0), cpu_to_be32(nodeid)
314 };
315 char mem_name[32];
316 uint64_t mem_reg_property[2];
317 int off;
318
319 mem_reg_property[0] = cpu_to_be64(start);
320 mem_reg_property[1] = cpu_to_be64(size);
321
322 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
323 off = fdt_add_subnode(fdt, 0, mem_name);
324 _FDT(off);
325 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
326 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
327 sizeof(mem_reg_property))));
328 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
329 sizeof(associativity))));
330 return off;
331 }
332
333 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
334 {
335 MachineState *machine = MACHINE(spapr);
336 hwaddr mem_start, node_size;
337 int i, nb_nodes = nb_numa_nodes;
338 NodeInfo *nodes = numa_info;
339 NodeInfo ramnode;
340
341 /* No NUMA nodes, assume there is just one node with whole RAM */
342 if (!nb_numa_nodes) {
343 nb_nodes = 1;
344 ramnode.node_mem = machine->ram_size;
345 nodes = &ramnode;
346 }
347
348 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
349 if (!nodes[i].node_mem) {
350 continue;
351 }
352 if (mem_start >= machine->ram_size) {
353 node_size = 0;
354 } else {
355 node_size = nodes[i].node_mem;
356 if (node_size > machine->ram_size - mem_start) {
357 node_size = machine->ram_size - mem_start;
358 }
359 }
360 if (!mem_start) {
361 /* ppc_spapr_init() checks for rma_size <= node0_size already */
362 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
363 mem_start += spapr->rma_size;
364 node_size -= spapr->rma_size;
365 }
366 for ( ; node_size; ) {
367 hwaddr sizetmp = pow2floor(node_size);
368
369 /* mem_start != 0 here */
370 if (ctzl(mem_start) < ctzl(sizetmp)) {
371 sizetmp = 1ULL << ctzl(mem_start);
372 }
373
374 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
375 node_size -= sizetmp;
376 mem_start += sizetmp;
377 }
378 }
379
380 return 0;
381 }
382
383 /* Populate the "ibm,pa-features" property */
384 static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset)
385 {
386 uint8_t pa_features_206[] = { 6, 0,
387 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
388 uint8_t pa_features_207[] = { 24, 0,
389 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
390 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
391 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
392 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
393 uint8_t *pa_features;
394 size_t pa_size;
395
396 switch (env->mmu_model) {
397 case POWERPC_MMU_2_06:
398 case POWERPC_MMU_2_06a:
399 pa_features = pa_features_206;
400 pa_size = sizeof(pa_features_206);
401 break;
402 case POWERPC_MMU_2_07:
403 case POWERPC_MMU_2_07a:
404 pa_features = pa_features_207;
405 pa_size = sizeof(pa_features_207);
406 break;
407 default:
408 return;
409 }
410
411 if (env->ci_large_pages) {
412 /*
413 * Note: we keep CI large pages off by default because a 64K capable
414 * guest provisioned with large pages might otherwise try to map a qemu
415 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
416 * even if that qemu runs on a 4k host.
417 * We dd this bit back here if we are confident this is not an issue
418 */
419 pa_features[3] |= 0x20;
420 }
421 if (kvmppc_has_cap_htm() && pa_size > 24) {
422 pa_features[24] |= 0x80; /* Transactional memory support */
423 }
424
425 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
426 }
427
428 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
429 sPAPRMachineState *spapr)
430 {
431 PowerPCCPU *cpu = POWERPC_CPU(cs);
432 CPUPPCState *env = &cpu->env;
433 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
434 int index = ppc_get_vcpu_dt_id(cpu);
435 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
436 0xffffffff, 0xffffffff};
437 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
438 : SPAPR_TIMEBASE_FREQ;
439 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
440 uint32_t page_sizes_prop[64];
441 size_t page_sizes_prop_size;
442 uint32_t vcpus_per_socket = smp_threads * smp_cores;
443 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
444 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
445 sPAPRDRConnector *drc;
446 sPAPRDRConnectorClass *drck;
447 int drc_index;
448
449 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index);
450 if (drc) {
451 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
452 drc_index = drck->get_index(drc);
453 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
454 }
455
456 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
457 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
458
459 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
460 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
461 env->dcache_line_size)));
462 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
463 env->dcache_line_size)));
464 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
465 env->icache_line_size)));
466 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
467 env->icache_line_size)));
468
469 if (pcc->l1_dcache_size) {
470 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
471 pcc->l1_dcache_size)));
472 } else {
473 error_report("Warning: Unknown L1 dcache size for cpu");
474 }
475 if (pcc->l1_icache_size) {
476 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
477 pcc->l1_icache_size)));
478 } else {
479 error_report("Warning: Unknown L1 icache size for cpu");
480 }
481
482 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
483 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
484 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
485 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
486 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
487 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
488
489 if (env->spr_cb[SPR_PURR].oea_read) {
490 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
491 }
492
493 if (env->mmu_model & POWERPC_MMU_1TSEG) {
494 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
495 segs, sizeof(segs))));
496 }
497
498 /* Advertise VMX/VSX (vector extensions) if available
499 * 0 / no property == no vector extensions
500 * 1 == VMX / Altivec available
501 * 2 == VSX available */
502 if (env->insns_flags & PPC_ALTIVEC) {
503 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
504
505 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
506 }
507
508 /* Advertise DFP (Decimal Floating Point) if available
509 * 0 / no property == no DFP
510 * 1 == DFP available */
511 if (env->insns_flags2 & PPC2_DFP) {
512 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
513 }
514
515 page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
516 sizeof(page_sizes_prop));
517 if (page_sizes_prop_size) {
518 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
519 page_sizes_prop, page_sizes_prop_size)));
520 }
521
522 spapr_populate_pa_features(env, fdt, offset);
523
524 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
525 cs->cpu_index / vcpus_per_socket)));
526
527 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
528 pft_size_prop, sizeof(pft_size_prop))));
529
530 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));
531
532 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
533 }
534
535 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
536 {
537 CPUState *cs;
538 int cpus_offset;
539 char *nodename;
540 int smt = kvmppc_smt_threads();
541
542 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
543 _FDT(cpus_offset);
544 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
545 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
546
547 /*
548 * We walk the CPUs in reverse order to ensure that CPU DT nodes
549 * created by fdt_add_subnode() end up in the right order in FDT
550 * for the guest kernel the enumerate the CPUs correctly.
551 */
552 CPU_FOREACH_REVERSE(cs) {
553 PowerPCCPU *cpu = POWERPC_CPU(cs);
554 int index = ppc_get_vcpu_dt_id(cpu);
555 DeviceClass *dc = DEVICE_GET_CLASS(cs);
556 int offset;
557
558 if ((index % smt) != 0) {
559 continue;
560 }
561
562 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
563 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
564 g_free(nodename);
565 _FDT(offset);
566 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
567 }
568
569 }
570
571 /*
572 * Adds ibm,dynamic-reconfiguration-memory node.
573 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
574 * of this device tree node.
575 */
576 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
577 {
578 MachineState *machine = MACHINE(spapr);
579 int ret, i, offset;
580 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
581 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
582 uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
583 uint32_t nr_lmbs = (spapr->hotplug_memory.base +
584 memory_region_size(&spapr->hotplug_memory.mr)) /
585 lmb_size;
586 uint32_t *int_buf, *cur_index, buf_len;
587 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
588
589 /*
590 * Don't create the node if there is no hotpluggable memory
591 */
592 if (machine->ram_size == machine->maxram_size) {
593 return 0;
594 }
595
596 /*
597 * Allocate enough buffer size to fit in ibm,dynamic-memory
598 * or ibm,associativity-lookup-arrays
599 */
600 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
601 * sizeof(uint32_t);
602 cur_index = int_buf = g_malloc0(buf_len);
603
604 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
605
606 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
607 sizeof(prop_lmb_size));
608 if (ret < 0) {
609 goto out;
610 }
611
612 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
613 if (ret < 0) {
614 goto out;
615 }
616
617 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
618 if (ret < 0) {
619 goto out;
620 }
621
622 /* ibm,dynamic-memory */
623 int_buf[0] = cpu_to_be32(nr_lmbs);
624 cur_index++;
625 for (i = 0; i < nr_lmbs; i++) {
626 uint64_t addr = i * lmb_size;
627 uint32_t *dynamic_memory = cur_index;
628
629 if (i >= hotplug_lmb_start) {
630 sPAPRDRConnector *drc;
631 sPAPRDRConnectorClass *drck;
632
633 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, i);
634 g_assert(drc);
635 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
636
637 dynamic_memory[0] = cpu_to_be32(addr >> 32);
638 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
639 dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
640 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
641 dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
642 if (memory_region_present(get_system_memory(), addr)) {
643 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
644 } else {
645 dynamic_memory[5] = cpu_to_be32(0);
646 }
647 } else {
648 /*
649 * LMB information for RMA, boot time RAM and gap b/n RAM and
650 * hotplug memory region -- all these are marked as reserved
651 * and as having no valid DRC.
652 */
653 dynamic_memory[0] = cpu_to_be32(addr >> 32);
654 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
655 dynamic_memory[2] = cpu_to_be32(0);
656 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
657 dynamic_memory[4] = cpu_to_be32(-1);
658 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
659 SPAPR_LMB_FLAGS_DRC_INVALID);
660 }
661
662 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
663 }
664 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
665 if (ret < 0) {
666 goto out;
667 }
668
669 /* ibm,associativity-lookup-arrays */
670 cur_index = int_buf;
671 int_buf[0] = cpu_to_be32(nr_nodes);
672 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
673 cur_index += 2;
674 for (i = 0; i < nr_nodes; i++) {
675 uint32_t associativity[] = {
676 cpu_to_be32(0x0),
677 cpu_to_be32(0x0),
678 cpu_to_be32(0x0),
679 cpu_to_be32(i)
680 };
681 memcpy(cur_index, associativity, sizeof(associativity));
682 cur_index += 4;
683 }
684 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
685 (cur_index - int_buf) * sizeof(uint32_t));
686 out:
687 g_free(int_buf);
688 return ret;
689 }
690
691 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
692 sPAPROptionVector *ov5_updates)
693 {
694 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
695 int ret = 0, offset;
696
697 /* Generate ibm,dynamic-reconfiguration-memory node if required */
698 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
699 g_assert(smc->dr_lmb_enabled);
700 ret = spapr_populate_drconf_memory(spapr, fdt);
701 if (ret) {
702 goto out;
703 }
704 }
705
706 offset = fdt_path_offset(fdt, "/chosen");
707 if (offset < 0) {
708 offset = fdt_add_subnode(fdt, 0, "chosen");
709 if (offset < 0) {
710 return offset;
711 }
712 }
713 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
714 "ibm,architecture-vec-5");
715
716 out:
717 return ret;
718 }
719
720 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
721 target_ulong addr, target_ulong size,
722 sPAPROptionVector *ov5_updates)
723 {
724 void *fdt, *fdt_skel;
725 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
726
727 size -= sizeof(hdr);
728
729 /* Create sceleton */
730 fdt_skel = g_malloc0(size);
731 _FDT((fdt_create(fdt_skel, size)));
732 _FDT((fdt_begin_node(fdt_skel, "")));
733 _FDT((fdt_end_node(fdt_skel)));
734 _FDT((fdt_finish(fdt_skel)));
735 fdt = g_malloc0(size);
736 _FDT((fdt_open_into(fdt_skel, fdt, size)));
737 g_free(fdt_skel);
738
739 /* Fixup cpu nodes */
740 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
741
742 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
743 return -1;
744 }
745
746 /* Pack resulting tree */
747 _FDT((fdt_pack(fdt)));
748
749 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
750 trace_spapr_cas_failed(size);
751 return -1;
752 }
753
754 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
755 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
756 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
757 g_free(fdt);
758
759 return 0;
760 }
761
762 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
763 {
764 int rtas;
765 GString *hypertas = g_string_sized_new(256);
766 GString *qemu_hypertas = g_string_sized_new(256);
767 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
768 uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
769 memory_region_size(&spapr->hotplug_memory.mr);
770 uint32_t lrdr_capacity[] = {
771 cpu_to_be32(max_hotplug_addr >> 32),
772 cpu_to_be32(max_hotplug_addr & 0xffffffff),
773 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
774 cpu_to_be32(max_cpus / smp_threads),
775 };
776
777 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
778
779 /* hypertas */
780 add_str(hypertas, "hcall-pft");
781 add_str(hypertas, "hcall-term");
782 add_str(hypertas, "hcall-dabr");
783 add_str(hypertas, "hcall-interrupt");
784 add_str(hypertas, "hcall-tce");
785 add_str(hypertas, "hcall-vio");
786 add_str(hypertas, "hcall-splpar");
787 add_str(hypertas, "hcall-bulk");
788 add_str(hypertas, "hcall-set-mode");
789 add_str(hypertas, "hcall-sprg0");
790 add_str(hypertas, "hcall-copy");
791 add_str(hypertas, "hcall-debug");
792 add_str(qemu_hypertas, "hcall-memop1");
793
794 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
795 add_str(hypertas, "hcall-multi-tce");
796 }
797 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
798 hypertas->str, hypertas->len));
799 g_string_free(hypertas, TRUE);
800 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
801 qemu_hypertas->str, qemu_hypertas->len));
802 g_string_free(qemu_hypertas, TRUE);
803
804 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
805 refpoints, sizeof(refpoints)));
806
807 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
808 RTAS_ERROR_LOG_MAX));
809 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
810 RTAS_EVENT_SCAN_RATE));
811
812 if (msi_nonbroken) {
813 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
814 }
815
816 /*
817 * According to PAPR, rtas ibm,os-term does not guarantee a return
818 * back to the guest cpu.
819 *
820 * While an additional ibm,extended-os-term property indicates
821 * that rtas call return will always occur. Set this property.
822 */
823 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
824
825 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
826 lrdr_capacity, sizeof(lrdr_capacity)));
827
828 spapr_dt_rtas_tokens(fdt, rtas);
829 }
830
831 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
832 {
833 MachineState *machine = MACHINE(spapr);
834 int chosen;
835 const char *boot_device = machine->boot_order;
836 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
837 size_t cb = 0;
838 char *bootlist = get_boot_devices_list(&cb, true);
839
840 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
841
842 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
843 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
844 spapr->initrd_base));
845 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
846 spapr->initrd_base + spapr->initrd_size));
847
848 if (spapr->kernel_size) {
849 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
850 cpu_to_be64(spapr->kernel_size) };
851
852 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
853 &kprop, sizeof(kprop)));
854 if (spapr->kernel_le) {
855 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
856 }
857 }
858 if (boot_menu) {
859 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
860 }
861 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
862 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
863 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
864
865 if (cb && bootlist) {
866 int i;
867
868 for (i = 0; i < cb; i++) {
869 if (bootlist[i] == '\n') {
870 bootlist[i] = ' ';
871 }
872 }
873 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
874 }
875
876 if (boot_device && strlen(boot_device)) {
877 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
878 }
879
880 if (!spapr->has_graphics && stdout_path) {
881 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
882 }
883
884 g_free(stdout_path);
885 g_free(bootlist);
886 }
887
888 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
889 {
890 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
891 * KVM to work under pHyp with some guest co-operation */
892 int hypervisor;
893 uint8_t hypercall[16];
894
895 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
896 /* indicate KVM hypercall interface */
897 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
898 if (kvmppc_has_cap_fixup_hcalls()) {
899 /*
900 * Older KVM versions with older guest kernels were broken
901 * with the magic page, don't allow the guest to map it.
902 */
903 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
904 sizeof(hypercall))) {
905 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
906 hypercall, sizeof(hypercall)));
907 }
908 }
909 }
910
911 static void *spapr_build_fdt(sPAPRMachineState *spapr,
912 hwaddr rtas_addr,
913 hwaddr rtas_size)
914 {
915 MachineState *machine = MACHINE(qdev_get_machine());
916 MachineClass *mc = MACHINE_GET_CLASS(machine);
917 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
918 int ret;
919 void *fdt;
920 sPAPRPHBState *phb;
921 char *buf;
922
923 fdt = g_malloc0(FDT_MAX_SIZE);
924 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
925
926 /* Root node */
927 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
928 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
929 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
930
931 /*
932 * Add info to guest to indentify which host is it being run on
933 * and what is the uuid of the guest
934 */
935 if (kvmppc_get_host_model(&buf)) {
936 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
937 g_free(buf);
938 }
939 if (kvmppc_get_host_serial(&buf)) {
940 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
941 g_free(buf);
942 }
943
944 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
945
946 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
947 if (qemu_uuid_set) {
948 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
949 }
950 g_free(buf);
951
952 if (qemu_get_vm_name()) {
953 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
954 qemu_get_vm_name()));
955 }
956
957 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
958 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
959
960 /* /interrupt controller */
961 spapr_dt_xics(spapr->nr_servers, fdt, PHANDLE_XICP);
962
963 ret = spapr_populate_memory(spapr, fdt);
964 if (ret < 0) {
965 error_report("couldn't setup memory nodes in fdt");
966 exit(1);
967 }
968
969 /* /vdevice */
970 spapr_dt_vdevice(spapr->vio_bus, fdt);
971
972 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
973 ret = spapr_rng_populate_dt(fdt);
974 if (ret < 0) {
975 error_report("could not set up rng device in the fdt");
976 exit(1);
977 }
978 }
979
980 QLIST_FOREACH(phb, &spapr->phbs, list) {
981 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
982 if (ret < 0) {
983 error_report("couldn't setup PCI devices in fdt");
984 exit(1);
985 }
986 }
987
988 /* cpus */
989 spapr_populate_cpus_dt_node(fdt, spapr);
990
991 if (smc->dr_lmb_enabled) {
992 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
993 }
994
995 if (mc->has_hotpluggable_cpus) {
996 int offset = fdt_path_offset(fdt, "/cpus");
997 ret = spapr_drc_populate_dt(fdt, offset, NULL,
998 SPAPR_DR_CONNECTOR_TYPE_CPU);
999 if (ret < 0) {
1000 error_report("Couldn't set up CPU DR device tree properties");
1001 exit(1);
1002 }
1003 }
1004
1005 /* /event-sources */
1006 spapr_dt_events(spapr, fdt);
1007
1008 /* /rtas */
1009 spapr_dt_rtas(spapr, fdt);
1010
1011 /* /chosen */
1012 spapr_dt_chosen(spapr, fdt);
1013
1014 /* /hypervisor */
1015 if (kvm_enabled()) {
1016 spapr_dt_hypervisor(spapr, fdt);
1017 }
1018
1019 /* Build memory reserve map */
1020 if (spapr->kernel_size) {
1021 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1022 }
1023 if (spapr->initrd_size) {
1024 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1025 }
1026
1027 /* ibm,client-architecture-support updates */
1028 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1029 if (ret < 0) {
1030 error_report("couldn't setup CAS properties fdt");
1031 exit(1);
1032 }
1033
1034 return fdt;
1035 }
1036
1037 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1038 {
1039 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1040 }
1041
1042 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1043 PowerPCCPU *cpu)
1044 {
1045 CPUPPCState *env = &cpu->env;
1046
1047 /* The TCG path should also be holding the BQL at this point */
1048 g_assert(qemu_mutex_iothread_locked());
1049
1050 if (msr_pr) {
1051 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1052 env->gpr[3] = H_PRIVILEGE;
1053 } else {
1054 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1055 }
1056 }
1057
1058 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1059 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1060 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1061 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1062 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1063
1064 /*
1065 * Get the fd to access the kernel htab, re-opening it if necessary
1066 */
1067 static int get_htab_fd(sPAPRMachineState *spapr)
1068 {
1069 if (spapr->htab_fd >= 0) {
1070 return spapr->htab_fd;
1071 }
1072
1073 spapr->htab_fd = kvmppc_get_htab_fd(false);
1074 if (spapr->htab_fd < 0) {
1075 error_report("Unable to open fd for reading hash table from KVM: %s",
1076 strerror(errno));
1077 }
1078
1079 return spapr->htab_fd;
1080 }
1081
1082 static void close_htab_fd(sPAPRMachineState *spapr)
1083 {
1084 if (spapr->htab_fd >= 0) {
1085 close(spapr->htab_fd);
1086 }
1087 spapr->htab_fd = -1;
1088 }
1089
1090 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1091 {
1092 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1093
1094 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1095 }
1096
1097 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1098 hwaddr ptex, int n)
1099 {
1100 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1101 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1102
1103 if (!spapr->htab) {
1104 /*
1105 * HTAB is controlled by KVM. Fetch into temporary buffer
1106 */
1107 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1108 kvmppc_read_hptes(hptes, ptex, n);
1109 return hptes;
1110 }
1111
1112 /*
1113 * HTAB is controlled by QEMU. Just point to the internally
1114 * accessible PTEG.
1115 */
1116 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1117 }
1118
1119 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1120 const ppc_hash_pte64_t *hptes,
1121 hwaddr ptex, int n)
1122 {
1123 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1124
1125 if (!spapr->htab) {
1126 g_free((void *)hptes);
1127 }
1128
1129 /* Nothing to do for qemu managed HPT */
1130 }
1131
1132 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1133 uint64_t pte0, uint64_t pte1)
1134 {
1135 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1136 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1137
1138 if (!spapr->htab) {
1139 kvmppc_write_hpte(ptex, pte0, pte1);
1140 } else {
1141 stq_p(spapr->htab + offset, pte0);
1142 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1143 }
1144 }
1145
1146 static int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1147 {
1148 int shift;
1149
1150 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1151 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1152 * that's much more than is needed for Linux guests */
1153 shift = ctz64(pow2ceil(ramsize)) - 7;
1154 shift = MAX(shift, 18); /* Minimum architected size */
1155 shift = MIN(shift, 46); /* Maximum architected size */
1156 return shift;
1157 }
1158
1159 static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1160 Error **errp)
1161 {
1162 long rc;
1163
1164 /* Clean up any HPT info from a previous boot */
1165 g_free(spapr->htab);
1166 spapr->htab = NULL;
1167 spapr->htab_shift = 0;
1168 close_htab_fd(spapr);
1169
1170 rc = kvmppc_reset_htab(shift);
1171 if (rc < 0) {
1172 /* kernel-side HPT needed, but couldn't allocate one */
1173 error_setg_errno(errp, errno,
1174 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1175 shift);
1176 /* This is almost certainly fatal, but if the caller really
1177 * wants to carry on with shift == 0, it's welcome to try */
1178 } else if (rc > 0) {
1179 /* kernel-side HPT allocated */
1180 if (rc != shift) {
1181 error_setg(errp,
1182 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1183 shift, rc);
1184 }
1185
1186 spapr->htab_shift = shift;
1187 spapr->htab = NULL;
1188 } else {
1189 /* kernel-side HPT not needed, allocate in userspace instead */
1190 size_t size = 1ULL << shift;
1191 int i;
1192
1193 spapr->htab = qemu_memalign(size, size);
1194 if (!spapr->htab) {
1195 error_setg_errno(errp, errno,
1196 "Could not allocate HPT of order %d", shift);
1197 return;
1198 }
1199
1200 memset(spapr->htab, 0, size);
1201 spapr->htab_shift = shift;
1202
1203 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1204 DIRTY_HPTE(HPTE(spapr->htab, i));
1205 }
1206 }
1207 }
1208
1209 static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1210 {
1211 bool matched = false;
1212
1213 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1214 matched = true;
1215 }
1216
1217 if (!matched) {
1218 error_report("Device %s is not supported by this machine yet.",
1219 qdev_fw_name(DEVICE(sbdev)));
1220 exit(1);
1221 }
1222 }
1223
1224 static void ppc_spapr_reset(void)
1225 {
1226 MachineState *machine = MACHINE(qdev_get_machine());
1227 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1228 PowerPCCPU *first_ppc_cpu;
1229 uint32_t rtas_limit;
1230 hwaddr rtas_addr, fdt_addr;
1231 void *fdt;
1232 int rc;
1233
1234 /* Check for unknown sysbus devices */
1235 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1236
1237 /* Allocate and/or reset the hash page table */
1238 spapr_reallocate_hpt(spapr,
1239 spapr_hpt_shift_for_ramsize(machine->maxram_size),
1240 &error_fatal);
1241
1242 /* Update the RMA size if necessary */
1243 if (spapr->vrma_adjust) {
1244 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1245 spapr->htab_shift);
1246 }
1247
1248 qemu_devices_reset();
1249
1250 /*
1251 * We place the device tree and RTAS just below either the top of the RMA,
1252 * or just below 2GB, whichever is lowere, so that it can be
1253 * processed with 32-bit real mode code if necessary
1254 */
1255 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1256 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1257 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1258
1259 /* if this reset wasn't generated by CAS, we should reset our
1260 * negotiated options and start from scratch */
1261 if (!spapr->cas_reboot) {
1262 spapr_ovec_cleanup(spapr->ov5_cas);
1263 spapr->ov5_cas = spapr_ovec_new();
1264 }
1265
1266 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1267
1268 spapr_load_rtas(spapr, fdt, rtas_addr);
1269
1270 rc = fdt_pack(fdt);
1271
1272 /* Should only fail if we've built a corrupted tree */
1273 assert(rc == 0);
1274
1275 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1276 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1277 fdt_totalsize(fdt), FDT_MAX_SIZE);
1278 exit(1);
1279 }
1280
1281 /* Load the fdt */
1282 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1283 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1284 g_free(fdt);
1285
1286 /* Set up the entry state */
1287 first_ppc_cpu = POWERPC_CPU(first_cpu);
1288 first_ppc_cpu->env.gpr[3] = fdt_addr;
1289 first_ppc_cpu->env.gpr[5] = 0;
1290 first_cpu->halted = 0;
1291 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1292
1293 spapr->cas_reboot = false;
1294 }
1295
1296 static void spapr_create_nvram(sPAPRMachineState *spapr)
1297 {
1298 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1299 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1300
1301 if (dinfo) {
1302 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1303 &error_fatal);
1304 }
1305
1306 qdev_init_nofail(dev);
1307
1308 spapr->nvram = (struct sPAPRNVRAM *)dev;
1309 }
1310
1311 static void spapr_rtc_create(sPAPRMachineState *spapr)
1312 {
1313 DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);
1314
1315 qdev_init_nofail(dev);
1316 spapr->rtc = dev;
1317
1318 object_property_add_alias(qdev_get_machine(), "rtc-time",
1319 OBJECT(spapr->rtc), "date", NULL);
1320 }
1321
1322 /* Returns whether we want to use VGA or not */
1323 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1324 {
1325 switch (vga_interface_type) {
1326 case VGA_NONE:
1327 return false;
1328 case VGA_DEVICE:
1329 return true;
1330 case VGA_STD:
1331 case VGA_VIRTIO:
1332 return pci_vga_init(pci_bus) != NULL;
1333 default:
1334 error_setg(errp,
1335 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1336 return false;
1337 }
1338 }
1339
1340 static int spapr_post_load(void *opaque, int version_id)
1341 {
1342 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1343 int err = 0;
1344
1345 if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1346 int i;
1347 for (i = 0; i < spapr->nr_servers; i++) {
1348 icp_resend(&spapr->icps[i]);
1349 }
1350 }
1351
1352 /* In earlier versions, there was no separate qdev for the PAPR
1353 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1354 * So when migrating from those versions, poke the incoming offset
1355 * value into the RTC device */
1356 if (version_id < 3) {
1357 err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
1358 }
1359
1360 return err;
1361 }
1362
1363 static bool version_before_3(void *opaque, int version_id)
1364 {
1365 return version_id < 3;
1366 }
1367
1368 static bool spapr_ov5_cas_needed(void *opaque)
1369 {
1370 sPAPRMachineState *spapr = opaque;
1371 sPAPROptionVector *ov5_mask = spapr_ovec_new();
1372 sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1373 sPAPROptionVector *ov5_removed = spapr_ovec_new();
1374 bool cas_needed;
1375
1376 /* Prior to the introduction of sPAPROptionVector, we had two option
1377 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1378 * Both of these options encode machine topology into the device-tree
1379 * in such a way that the now-booted OS should still be able to interact
1380 * appropriately with QEMU regardless of what options were actually
1381 * negotiatied on the source side.
1382 *
1383 * As such, we can avoid migrating the CAS-negotiated options if these
1384 * are the only options available on the current machine/platform.
1385 * Since these are the only options available for pseries-2.7 and
1386 * earlier, this allows us to maintain old->new/new->old migration
1387 * compatibility.
1388 *
1389 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1390 * via default pseries-2.8 machines and explicit command-line parameters.
1391 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1392 * of the actual CAS-negotiated values to continue working properly. For
1393 * example, availability of memory unplug depends on knowing whether
1394 * OV5_HP_EVT was negotiated via CAS.
1395 *
1396 * Thus, for any cases where the set of available CAS-negotiatable
1397 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1398 * include the CAS-negotiated options in the migration stream.
1399 */
1400 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1401 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1402
1403 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1404 * the mask itself since in the future it's possible "legacy" bits may be
1405 * removed via machine options, which could generate a false positive
1406 * that breaks migration.
1407 */
1408 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1409 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1410
1411 spapr_ovec_cleanup(ov5_mask);
1412 spapr_ovec_cleanup(ov5_legacy);
1413 spapr_ovec_cleanup(ov5_removed);
1414
1415 return cas_needed;
1416 }
1417
1418 static const VMStateDescription vmstate_spapr_ov5_cas = {
1419 .name = "spapr_option_vector_ov5_cas",
1420 .version_id = 1,
1421 .minimum_version_id = 1,
1422 .needed = spapr_ov5_cas_needed,
1423 .fields = (VMStateField[]) {
1424 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1425 vmstate_spapr_ovec, sPAPROptionVector),
1426 VMSTATE_END_OF_LIST()
1427 },
1428 };
1429
1430 static const VMStateDescription vmstate_spapr = {
1431 .name = "spapr",
1432 .version_id = 3,
1433 .minimum_version_id = 1,
1434 .post_load = spapr_post_load,
1435 .fields = (VMStateField[]) {
1436 /* used to be @next_irq */
1437 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1438
1439 /* RTC offset */
1440 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1441
1442 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1443 VMSTATE_END_OF_LIST()
1444 },
1445 .subsections = (const VMStateDescription*[]) {
1446 &vmstate_spapr_ov5_cas,
1447 NULL
1448 }
1449 };
1450
1451 static int htab_save_setup(QEMUFile *f, void *opaque)
1452 {
1453 sPAPRMachineState *spapr = opaque;
1454
1455 /* "Iteration" header */
1456 qemu_put_be32(f, spapr->htab_shift);
1457
1458 if (spapr->htab) {
1459 spapr->htab_save_index = 0;
1460 spapr->htab_first_pass = true;
1461 } else {
1462 assert(kvm_enabled());
1463 }
1464
1465
1466 return 0;
1467 }
1468
1469 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1470 int64_t max_ns)
1471 {
1472 bool has_timeout = max_ns != -1;
1473 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1474 int index = spapr->htab_save_index;
1475 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1476
1477 assert(spapr->htab_first_pass);
1478
1479 do {
1480 int chunkstart;
1481
1482 /* Consume invalid HPTEs */
1483 while ((index < htabslots)
1484 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1485 index++;
1486 CLEAN_HPTE(HPTE(spapr->htab, index));
1487 }
1488
1489 /* Consume valid HPTEs */
1490 chunkstart = index;
1491 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1492 && HPTE_VALID(HPTE(spapr->htab, index))) {
1493 index++;
1494 CLEAN_HPTE(HPTE(spapr->htab, index));
1495 }
1496
1497 if (index > chunkstart) {
1498 int n_valid = index - chunkstart;
1499
1500 qemu_put_be32(f, chunkstart);
1501 qemu_put_be16(f, n_valid);
1502 qemu_put_be16(f, 0);
1503 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1504 HASH_PTE_SIZE_64 * n_valid);
1505
1506 if (has_timeout &&
1507 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1508 break;
1509 }
1510 }
1511 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1512
1513 if (index >= htabslots) {
1514 assert(index == htabslots);
1515 index = 0;
1516 spapr->htab_first_pass = false;
1517 }
1518 spapr->htab_save_index = index;
1519 }
1520
1521 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1522 int64_t max_ns)
1523 {
1524 bool final = max_ns < 0;
1525 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1526 int examined = 0, sent = 0;
1527 int index = spapr->htab_save_index;
1528 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1529
1530 assert(!spapr->htab_first_pass);
1531
1532 do {
1533 int chunkstart, invalidstart;
1534
1535 /* Consume non-dirty HPTEs */
1536 while ((index < htabslots)
1537 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1538 index++;
1539 examined++;
1540 }
1541
1542 chunkstart = index;
1543 /* Consume valid dirty HPTEs */
1544 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1545 && HPTE_DIRTY(HPTE(spapr->htab, index))
1546 && HPTE_VALID(HPTE(spapr->htab, index))) {
1547 CLEAN_HPTE(HPTE(spapr->htab, index));
1548 index++;
1549 examined++;
1550 }
1551
1552 invalidstart = index;
1553 /* Consume invalid dirty HPTEs */
1554 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1555 && HPTE_DIRTY(HPTE(spapr->htab, index))
1556 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1557 CLEAN_HPTE(HPTE(spapr->htab, index));
1558 index++;
1559 examined++;
1560 }
1561
1562 if (index > chunkstart) {
1563 int n_valid = invalidstart - chunkstart;
1564 int n_invalid = index - invalidstart;
1565
1566 qemu_put_be32(f, chunkstart);
1567 qemu_put_be16(f, n_valid);
1568 qemu_put_be16(f, n_invalid);
1569 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1570 HASH_PTE_SIZE_64 * n_valid);
1571 sent += index - chunkstart;
1572
1573 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1574 break;
1575 }
1576 }
1577
1578 if (examined >= htabslots) {
1579 break;
1580 }
1581
1582 if (index >= htabslots) {
1583 assert(index == htabslots);
1584 index = 0;
1585 }
1586 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1587
1588 if (index >= htabslots) {
1589 assert(index == htabslots);
1590 index = 0;
1591 }
1592
1593 spapr->htab_save_index = index;
1594
1595 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1596 }
1597
1598 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1599 #define MAX_KVM_BUF_SIZE 2048
1600
1601 static int htab_save_iterate(QEMUFile *f, void *opaque)
1602 {
1603 sPAPRMachineState *spapr = opaque;
1604 int fd;
1605 int rc = 0;
1606
1607 /* Iteration header */
1608 qemu_put_be32(f, 0);
1609
1610 if (!spapr->htab) {
1611 assert(kvm_enabled());
1612
1613 fd = get_htab_fd(spapr);
1614 if (fd < 0) {
1615 return fd;
1616 }
1617
1618 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1619 if (rc < 0) {
1620 return rc;
1621 }
1622 } else if (spapr->htab_first_pass) {
1623 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1624 } else {
1625 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1626 }
1627
1628 /* End marker */
1629 qemu_put_be32(f, 0);
1630 qemu_put_be16(f, 0);
1631 qemu_put_be16(f, 0);
1632
1633 return rc;
1634 }
1635
1636 static int htab_save_complete(QEMUFile *f, void *opaque)
1637 {
1638 sPAPRMachineState *spapr = opaque;
1639 int fd;
1640
1641 /* Iteration header */
1642 qemu_put_be32(f, 0);
1643
1644 if (!spapr->htab) {
1645 int rc;
1646
1647 assert(kvm_enabled());
1648
1649 fd = get_htab_fd(spapr);
1650 if (fd < 0) {
1651 return fd;
1652 }
1653
1654 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1655 if (rc < 0) {
1656 return rc;
1657 }
1658 } else {
1659 if (spapr->htab_first_pass) {
1660 htab_save_first_pass(f, spapr, -1);
1661 }
1662 htab_save_later_pass(f, spapr, -1);
1663 }
1664
1665 /* End marker */
1666 qemu_put_be32(f, 0);
1667 qemu_put_be16(f, 0);
1668 qemu_put_be16(f, 0);
1669
1670 return 0;
1671 }
1672
1673 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1674 {
1675 sPAPRMachineState *spapr = opaque;
1676 uint32_t section_hdr;
1677 int fd = -1;
1678
1679 if (version_id < 1 || version_id > 1) {
1680 error_report("htab_load() bad version");
1681 return -EINVAL;
1682 }
1683
1684 section_hdr = qemu_get_be32(f);
1685
1686 if (section_hdr) {
1687 Error *local_err = NULL;
1688
1689 /* First section gives the htab size */
1690 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1691 if (local_err) {
1692 error_report_err(local_err);
1693 return -EINVAL;
1694 }
1695 return 0;
1696 }
1697
1698 if (!spapr->htab) {
1699 assert(kvm_enabled());
1700
1701 fd = kvmppc_get_htab_fd(true);
1702 if (fd < 0) {
1703 error_report("Unable to open fd to restore KVM hash table: %s",
1704 strerror(errno));
1705 }
1706 }
1707
1708 while (true) {
1709 uint32_t index;
1710 uint16_t n_valid, n_invalid;
1711
1712 index = qemu_get_be32(f);
1713 n_valid = qemu_get_be16(f);
1714 n_invalid = qemu_get_be16(f);
1715
1716 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1717 /* End of Stream */
1718 break;
1719 }
1720
1721 if ((index + n_valid + n_invalid) >
1722 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1723 /* Bad index in stream */
1724 error_report(
1725 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1726 index, n_valid, n_invalid, spapr->htab_shift);
1727 return -EINVAL;
1728 }
1729
1730 if (spapr->htab) {
1731 if (n_valid) {
1732 qemu_get_buffer(f, HPTE(spapr->htab, index),
1733 HASH_PTE_SIZE_64 * n_valid);
1734 }
1735 if (n_invalid) {
1736 memset(HPTE(spapr->htab, index + n_valid), 0,
1737 HASH_PTE_SIZE_64 * n_invalid);
1738 }
1739 } else {
1740 int rc;
1741
1742 assert(fd >= 0);
1743
1744 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1745 if (rc < 0) {
1746 return rc;
1747 }
1748 }
1749 }
1750
1751 if (!spapr->htab) {
1752 assert(fd >= 0);
1753 close(fd);
1754 }
1755
1756 return 0;
1757 }
1758
1759 static void htab_cleanup(void *opaque)
1760 {
1761 sPAPRMachineState *spapr = opaque;
1762
1763 close_htab_fd(spapr);
1764 }
1765
1766 static SaveVMHandlers savevm_htab_handlers = {
1767 .save_live_setup = htab_save_setup,
1768 .save_live_iterate = htab_save_iterate,
1769 .save_live_complete_precopy = htab_save_complete,
1770 .cleanup = htab_cleanup,
1771 .load_state = htab_load,
1772 };
1773
1774 static void spapr_boot_set(void *opaque, const char *boot_device,
1775 Error **errp)
1776 {
1777 MachineState *machine = MACHINE(qdev_get_machine());
1778 machine->boot_order = g_strdup(boot_device);
1779 }
1780
1781 /*
1782 * Reset routine for LMB DR devices.
1783 *
1784 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1785 * routine. Reset for PCI DR devices will be handled by PHB reset routine
1786 * when it walks all its children devices. LMB devices reset occurs
1787 * as part of spapr_ppc_reset().
1788 */
1789 static void spapr_drc_reset(void *opaque)
1790 {
1791 sPAPRDRConnector *drc = opaque;
1792 DeviceState *d = DEVICE(drc);
1793
1794 if (d) {
1795 device_reset(d);
1796 }
1797 }
1798
1799 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1800 {
1801 MachineState *machine = MACHINE(spapr);
1802 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
1803 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
1804 int i;
1805
1806 for (i = 0; i < nr_lmbs; i++) {
1807 sPAPRDRConnector *drc;
1808 uint64_t addr;
1809
1810 addr = i * lmb_size + spapr->hotplug_memory.base;
1811 drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
1812 addr/lmb_size);
1813 qemu_register_reset(spapr_drc_reset, drc);
1814 }
1815 }
1816
1817 /*
1818 * If RAM size, maxmem size and individual node mem sizes aren't aligned
1819 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1820 * since we can't support such unaligned sizes with DRCONF_MEMORY.
1821 */
1822 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
1823 {
1824 int i;
1825
1826 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1827 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
1828 " is not aligned to %llu MiB",
1829 machine->ram_size,
1830 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1831 return;
1832 }
1833
1834 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1835 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
1836 " is not aligned to %llu MiB",
1837 machine->ram_size,
1838 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1839 return;
1840 }
1841
1842 for (i = 0; i < nb_numa_nodes; i++) {
1843 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
1844 error_setg(errp,
1845 "Node %d memory size 0x%" PRIx64
1846 " is not aligned to %llu MiB",
1847 i, numa_info[i].node_mem,
1848 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1849 return;
1850 }
1851 }
1852 }
1853
1854 /* find cpu slot in machine->possible_cpus by core_id */
1855 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
1856 {
1857 int index = id / smp_threads;
1858
1859 if (index >= ms->possible_cpus->len) {
1860 return NULL;
1861 }
1862 if (idx) {
1863 *idx = index;
1864 }
1865 return &ms->possible_cpus->cpus[index];
1866 }
1867
1868 static void spapr_init_cpus(sPAPRMachineState *spapr)
1869 {
1870 MachineState *machine = MACHINE(spapr);
1871 MachineClass *mc = MACHINE_GET_CLASS(machine);
1872 char *type = spapr_get_cpu_core_type(machine->cpu_model);
1873 int smt = kvmppc_smt_threads();
1874 const CPUArchIdList *possible_cpus;
1875 int boot_cores_nr = smp_cpus / smp_threads;
1876 int i;
1877
1878 if (!type) {
1879 error_report("Unable to find sPAPR CPU Core definition");
1880 exit(1);
1881 }
1882
1883 possible_cpus = mc->possible_cpu_arch_ids(machine);
1884 if (mc->has_hotpluggable_cpus) {
1885 if (smp_cpus % smp_threads) {
1886 error_report("smp_cpus (%u) must be multiple of threads (%u)",
1887 smp_cpus, smp_threads);
1888 exit(1);
1889 }
1890 if (max_cpus % smp_threads) {
1891 error_report("max_cpus (%u) must be multiple of threads (%u)",
1892 max_cpus, smp_threads);
1893 exit(1);
1894 }
1895 } else {
1896 if (max_cpus != smp_cpus) {
1897 error_report("This machine version does not support CPU hotplug");
1898 exit(1);
1899 }
1900 boot_cores_nr = possible_cpus->len;
1901 }
1902
1903 for (i = 0; i < possible_cpus->len; i++) {
1904 int core_id = i * smp_threads;
1905
1906 if (mc->has_hotpluggable_cpus) {
1907 sPAPRDRConnector *drc =
1908 spapr_dr_connector_new(OBJECT(spapr),
1909 SPAPR_DR_CONNECTOR_TYPE_CPU,
1910 (core_id / smp_threads) * smt);
1911
1912 qemu_register_reset(spapr_drc_reset, drc);
1913 }
1914
1915 if (i < boot_cores_nr) {
1916 Object *core = object_new(type);
1917 int nr_threads = smp_threads;
1918
1919 /* Handle the partially filled core for older machine types */
1920 if ((i + 1) * smp_threads >= smp_cpus) {
1921 nr_threads = smp_cpus - i * smp_threads;
1922 }
1923
1924 object_property_set_int(core, nr_threads, "nr-threads",
1925 &error_fatal);
1926 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
1927 &error_fatal);
1928 object_property_set_bool(core, true, "realized", &error_fatal);
1929 }
1930 }
1931 g_free(type);
1932 }
1933
1934 /* pSeries LPAR / sPAPR hardware init */
1935 static void ppc_spapr_init(MachineState *machine)
1936 {
1937 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1938 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1939 const char *kernel_filename = machine->kernel_filename;
1940 const char *initrd_filename = machine->initrd_filename;
1941 PCIHostState *phb;
1942 int i;
1943 MemoryRegion *sysmem = get_system_memory();
1944 MemoryRegion *ram = g_new(MemoryRegion, 1);
1945 MemoryRegion *rma_region;
1946 void *rma = NULL;
1947 hwaddr rma_alloc_size;
1948 hwaddr node0_size = spapr_node0_size();
1949 long load_limit, fw_size;
1950 char *filename;
1951 int smt = kvmppc_smt_threads();
1952
1953 msi_nonbroken = true;
1954
1955 QLIST_INIT(&spapr->phbs);
1956
1957 /* Allocate RMA if necessary */
1958 rma_alloc_size = kvmppc_alloc_rma(&rma);
1959
1960 if (rma_alloc_size == -1) {
1961 error_report("Unable to create RMA");
1962 exit(1);
1963 }
1964
1965 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1966 spapr->rma_size = rma_alloc_size;
1967 } else {
1968 spapr->rma_size = node0_size;
1969
1970 /* With KVM, we don't actually know whether KVM supports an
1971 * unbounded RMA (PR KVM) or is limited by the hash table size
1972 * (HV KVM using VRMA), so we always assume the latter
1973 *
1974 * In that case, we also limit the initial allocations for RTAS
1975 * etc... to 256M since we have no way to know what the VRMA size
1976 * is going to be as it depends on the size of the hash table
1977 * isn't determined yet.
1978 */
1979 if (kvm_enabled()) {
1980 spapr->vrma_adjust = 1;
1981 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1982 }
1983
1984 /* Actually we don't support unbounded RMA anymore since we
1985 * added proper emulation of HV mode. The max we can get is
1986 * 16G which also happens to be what we configure for PAPR
1987 * mode so make sure we don't do anything bigger than that
1988 */
1989 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
1990 }
1991
1992 if (spapr->rma_size > node0_size) {
1993 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
1994 spapr->rma_size);
1995 exit(1);
1996 }
1997
1998 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
1999 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2000
2001 /* Set up Interrupt Controller before we create the VCPUs */
2002 xics_system_init(machine, DIV_ROUND_UP(max_cpus * smt, smp_threads),
2003 XICS_IRQS_SPAPR, &error_fatal);
2004
2005 /* Set up containers for ibm,client-set-architecture negotiated options */
2006 spapr->ov5 = spapr_ovec_new();
2007 spapr->ov5_cas = spapr_ovec_new();
2008
2009 if (smc->dr_lmb_enabled) {
2010 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2011 spapr_validate_node_memory(machine, &error_fatal);
2012 }
2013
2014 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2015
2016 /* advertise support for dedicated HP event source to guests */
2017 if (spapr->use_hotplug_event_source) {
2018 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2019 }
2020
2021 /* init CPUs */
2022 if (machine->cpu_model == NULL) {
2023 machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu;
2024 }
2025
2026 ppc_cpu_parse_features(machine->cpu_model);
2027
2028 spapr_init_cpus(spapr);
2029
2030 if (kvm_enabled()) {
2031 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2032 kvmppc_enable_logical_ci_hcalls();
2033 kvmppc_enable_set_mode_hcall();
2034
2035 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2036 kvmppc_enable_clear_ref_mod_hcalls();
2037 }
2038
2039 /* allocate RAM */
2040 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2041 machine->ram_size);
2042 memory_region_add_subregion(sysmem, 0, ram);
2043
2044 if (rma_alloc_size && rma) {
2045 rma_region = g_new(MemoryRegion, 1);
2046 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
2047 rma_alloc_size, rma);
2048 vmstate_register_ram_global(rma_region);
2049 memory_region_add_subregion(sysmem, 0, rma_region);
2050 }
2051
2052 /* initialize hotplug memory address space */
2053 if (machine->ram_size < machine->maxram_size) {
2054 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
2055 /*
2056 * Limit the number of hotpluggable memory slots to half the number
2057 * slots that KVM supports, leaving the other half for PCI and other
2058 * devices. However ensure that number of slots doesn't drop below 32.
2059 */
2060 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2061 SPAPR_MAX_RAM_SLOTS;
2062
2063 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2064 max_memslots = SPAPR_MAX_RAM_SLOTS;
2065 }
2066 if (machine->ram_slots > max_memslots) {
2067 error_report("Specified number of memory slots %"
2068 PRIu64" exceeds max supported %d",
2069 machine->ram_slots, max_memslots);
2070 exit(1);
2071 }
2072
2073 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
2074 SPAPR_HOTPLUG_MEM_ALIGN);
2075 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
2076 "hotplug-memory", hotplug_mem_size);
2077 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
2078 &spapr->hotplug_memory.mr);
2079 }
2080
2081 if (smc->dr_lmb_enabled) {
2082 spapr_create_lmb_dr_connectors(spapr);
2083 }
2084
2085 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2086 if (!filename) {
2087 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2088 exit(1);
2089 }
2090 spapr->rtas_size = get_image_size(filename);
2091 if (spapr->rtas_size < 0) {
2092 error_report("Could not get size of LPAR rtas '%s'", filename);
2093 exit(1);
2094 }
2095 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2096 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2097 error_report("Could not load LPAR rtas '%s'", filename);
2098 exit(1);
2099 }
2100 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2101 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2102 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2103 exit(1);
2104 }
2105 g_free(filename);
2106
2107 /* Set up RTAS event infrastructure */
2108 spapr_events_init(spapr);
2109
2110 /* Set up the RTC RTAS interfaces */
2111 spapr_rtc_create(spapr);
2112
2113 /* Set up VIO bus */
2114 spapr->vio_bus = spapr_vio_bus_init();
2115
2116 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
2117 if (serial_hds[i]) {
2118 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
2119 }
2120 }
2121
2122 /* We always have at least the nvram device on VIO */
2123 spapr_create_nvram(spapr);
2124
2125 /* Set up PCI */
2126 spapr_pci_rtas_init();
2127
2128 phb = spapr_create_phb(spapr, 0);
2129
2130 for (i = 0; i < nb_nics; i++) {
2131 NICInfo *nd = &nd_table[i];
2132
2133 if (!nd->model) {
2134 nd->model = g_strdup("ibmveth");
2135 }
2136
2137 if (strcmp(nd->model, "ibmveth") == 0) {
2138 spapr_vlan_create(spapr->vio_bus, nd);
2139 } else {
2140 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2141 }
2142 }
2143
2144 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2145 spapr_vscsi_create(spapr->vio_bus);
2146 }
2147
2148 /* Graphics */
2149 if (spapr_vga_init(phb->bus, &error_fatal)) {
2150 spapr->has_graphics = true;
2151 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2152 }
2153
2154 if (machine->usb) {
2155 if (smc->use_ohci_by_default) {
2156 pci_create_simple(phb->bus, -1, "pci-ohci");
2157 } else {
2158 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2159 }
2160
2161 if (spapr->has_graphics) {
2162 USBBus *usb_bus = usb_bus_find(-1);
2163
2164 usb_create_simple(usb_bus, "usb-kbd");
2165 usb_create_simple(usb_bus, "usb-mouse");
2166 }
2167 }
2168
2169 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
2170 error_report(
2171 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2172 MIN_RMA_SLOF);
2173 exit(1);
2174 }
2175
2176 if (kernel_filename) {
2177 uint64_t lowaddr = 0;
2178
2179 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2180 NULL, NULL, &lowaddr, NULL, 1,
2181 PPC_ELF_MACHINE, 0, 0);
2182 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2183 spapr->kernel_size = load_elf(kernel_filename,
2184 translate_kernel_address, NULL, NULL,
2185 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2186 0, 0);
2187 spapr->kernel_le = spapr->kernel_size > 0;
2188 }
2189 if (spapr->kernel_size < 0) {
2190 error_report("error loading %s: %s", kernel_filename,
2191 load_elf_strerror(spapr->kernel_size));
2192 exit(1);
2193 }
2194
2195 /* load initrd */
2196 if (initrd_filename) {
2197 /* Try to locate the initrd in the gap between the kernel
2198 * and the firmware. Add a bit of space just in case
2199 */
2200 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2201 + 0x1ffff) & ~0xffff;
2202 spapr->initrd_size = load_image_targphys(initrd_filename,
2203 spapr->initrd_base,
2204 load_limit
2205 - spapr->initrd_base);
2206 if (spapr->initrd_size < 0) {
2207 error_report("could not load initial ram disk '%s'",
2208 initrd_filename);
2209 exit(1);
2210 }
2211 }
2212 }
2213
2214 if (bios_name == NULL) {
2215 bios_name = FW_FILE_NAME;
2216 }
2217 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2218 if (!filename) {
2219 error_report("Could not find LPAR firmware '%s'", bios_name);
2220 exit(1);
2221 }
2222 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2223 if (fw_size <= 0) {
2224 error_report("Could not load LPAR firmware '%s'", filename);
2225 exit(1);
2226 }
2227 g_free(filename);
2228
2229 /* FIXME: Should register things through the MachineState's qdev
2230 * interface, this is a legacy from the sPAPREnvironment structure
2231 * which predated MachineState but had a similar function */
2232 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2233 register_savevm_live(NULL, "spapr/htab", -1, 1,
2234 &savevm_htab_handlers, spapr);
2235
2236 /* used by RTAS */
2237 QTAILQ_INIT(&spapr->ccs_list);
2238 qemu_register_reset(spapr_ccs_reset_hook, spapr);
2239
2240 qemu_register_boot_set(spapr_boot_set, spapr);
2241
2242 /* to stop and start vmclock */
2243 if (kvm_enabled()) {
2244 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2245 &spapr->tb);
2246 }
2247 }
2248
2249 static int spapr_kvm_type(const char *vm_type)
2250 {
2251 if (!vm_type) {
2252 return 0;
2253 }
2254
2255 if (!strcmp(vm_type, "HV")) {
2256 return 1;
2257 }
2258
2259 if (!strcmp(vm_type, "PR")) {
2260 return 2;
2261 }
2262
2263 error_report("Unknown kvm-type specified '%s'", vm_type);
2264 exit(1);
2265 }
2266
2267 /*
2268 * Implementation of an interface to adjust firmware path
2269 * for the bootindex property handling.
2270 */
2271 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2272 DeviceState *dev)
2273 {
2274 #define CAST(type, obj, name) \
2275 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2276 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2277 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2278
2279 if (d) {
2280 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2281 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2282 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2283
2284 if (spapr) {
2285 /*
2286 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2287 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2288 * in the top 16 bits of the 64-bit LUN
2289 */
2290 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2291 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2292 (uint64_t)id << 48);
2293 } else if (virtio) {
2294 /*
2295 * We use SRP luns of the form 01000000 | (target << 8) | lun
2296 * in the top 32 bits of the 64-bit LUN
2297 * Note: the quote above is from SLOF and it is wrong,
2298 * the actual binding is:
2299 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2300 */
2301 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2302 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2303 (uint64_t)id << 32);
2304 } else if (usb) {
2305 /*
2306 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2307 * in the top 32 bits of the 64-bit LUN
2308 */
2309 unsigned usb_port = atoi(usb->port->path);
2310 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2311 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2312 (uint64_t)id << 32);
2313 }
2314 }
2315
2316 /*
2317 * SLOF probes the USB devices, and if it recognizes that the device is a
2318 * storage device, it changes its name to "storage" instead of "usb-host",
2319 * and additionally adds a child node for the SCSI LUN, so the correct
2320 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2321 */
2322 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2323 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2324 if (usb_host_dev_is_scsi_storage(usbdev)) {
2325 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2326 }
2327 }
2328
2329 if (phb) {
2330 /* Replace "pci" with "pci@800000020000000" */
2331 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2332 }
2333
2334 return NULL;
2335 }
2336
2337 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2338 {
2339 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2340
2341 return g_strdup(spapr->kvm_type);
2342 }
2343
2344 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2345 {
2346 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2347
2348 g_free(spapr->kvm_type);
2349 spapr->kvm_type = g_strdup(value);
2350 }
2351
2352 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2353 {
2354 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2355
2356 return spapr->use_hotplug_event_source;
2357 }
2358
2359 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2360 Error **errp)
2361 {
2362 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2363
2364 spapr->use_hotplug_event_source = value;
2365 }
2366
2367 static void spapr_machine_initfn(Object *obj)
2368 {
2369 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2370
2371 spapr->htab_fd = -1;
2372 spapr->use_hotplug_event_source = true;
2373 object_property_add_str(obj, "kvm-type",
2374 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2375 object_property_set_description(obj, "kvm-type",
2376 "Specifies the KVM virtualization mode (HV, PR)",
2377 NULL);
2378 object_property_add_bool(obj, "modern-hotplug-events",
2379 spapr_get_modern_hotplug_events,
2380 spapr_set_modern_hotplug_events,
2381 NULL);
2382 object_property_set_description(obj, "modern-hotplug-events",
2383 "Use dedicated hotplug event mechanism in"
2384 " place of standard EPOW events when possible"
2385 " (required for memory hot-unplug support)",
2386 NULL);
2387 }
2388
2389 static void spapr_machine_finalizefn(Object *obj)
2390 {
2391 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2392
2393 g_free(spapr->kvm_type);
2394 }
2395
2396 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
2397 {
2398 cpu_synchronize_state(cs);
2399 ppc_cpu_do_system_reset(cs);
2400 }
2401
2402 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2403 {
2404 CPUState *cs;
2405
2406 CPU_FOREACH(cs) {
2407 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
2408 }
2409 }
2410
2411 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2412 uint32_t node, bool dedicated_hp_event_source,
2413 Error **errp)
2414 {
2415 sPAPRDRConnector *drc;
2416 sPAPRDRConnectorClass *drck;
2417 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2418 int i, fdt_offset, fdt_size;
2419 void *fdt;
2420 uint64_t addr = addr_start;
2421
2422 for (i = 0; i < nr_lmbs; i++) {
2423 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2424 addr/SPAPR_MEMORY_BLOCK_SIZE);
2425 g_assert(drc);
2426
2427 fdt = create_device_tree(&fdt_size);
2428 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2429 SPAPR_MEMORY_BLOCK_SIZE);
2430
2431 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2432 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
2433 addr += SPAPR_MEMORY_BLOCK_SIZE;
2434 if (!dev->hotplugged) {
2435 /* guests expect coldplugged LMBs to be pre-allocated */
2436 drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE);
2437 drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED);
2438 }
2439 }
2440 /* send hotplug notification to the
2441 * guest only in case of hotplugged memory
2442 */
2443 if (dev->hotplugged) {
2444 if (dedicated_hp_event_source) {
2445 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2446 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2447 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2448 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2449 nr_lmbs,
2450 drck->get_index(drc));
2451 } else {
2452 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
2453 nr_lmbs);
2454 }
2455 }
2456 }
2457
2458 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2459 uint32_t node, Error **errp)
2460 {
2461 Error *local_err = NULL;
2462 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2463 PCDIMMDevice *dimm = PC_DIMM(dev);
2464 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2465 MemoryRegion *mr = ddc->get_memory_region(dimm);
2466 uint64_t align = memory_region_get_alignment(mr);
2467 uint64_t size = memory_region_size(mr);
2468 uint64_t addr;
2469 char *mem_dev;
2470
2471 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2472 error_setg(&local_err, "Hotplugged memory size must be a multiple of "
2473 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
2474 goto out;
2475 }
2476
2477 mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
2478 if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
2479 error_setg(&local_err, "Memory backend has bad page size. "
2480 "Use 'memory-backend-file' with correct mem-path.");
2481 goto out;
2482 }
2483
2484 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2485 if (local_err) {
2486 goto out;
2487 }
2488
2489 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2490 if (local_err) {
2491 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2492 goto out;
2493 }
2494
2495 spapr_add_lmbs(dev, addr, size, node,
2496 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
2497 &error_abort);
2498
2499 out:
2500 error_propagate(errp, local_err);
2501 }
2502
2503 typedef struct sPAPRDIMMState {
2504 uint32_t nr_lmbs;
2505 } sPAPRDIMMState;
2506
2507 static void spapr_lmb_release(DeviceState *dev, void *opaque)
2508 {
2509 sPAPRDIMMState *ds = (sPAPRDIMMState *)opaque;
2510 HotplugHandler *hotplug_ctrl;
2511
2512 if (--ds->nr_lmbs) {
2513 return;
2514 }
2515
2516 g_free(ds);
2517
2518 /*
2519 * Now that all the LMBs have been removed by the guest, call the
2520 * pc-dimm unplug handler to cleanup up the pc-dimm device.
2521 */
2522 hotplug_ctrl = qdev_get_hotplug_handler(dev);
2523 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
2524 }
2525
2526 static void spapr_del_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2527 Error **errp)
2528 {
2529 sPAPRDRConnector *drc;
2530 sPAPRDRConnectorClass *drck;
2531 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
2532 int i;
2533 sPAPRDIMMState *ds = g_malloc0(sizeof(sPAPRDIMMState));
2534 uint64_t addr = addr_start;
2535
2536 ds->nr_lmbs = nr_lmbs;
2537 for (i = 0; i < nr_lmbs; i++) {
2538 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2539 addr / SPAPR_MEMORY_BLOCK_SIZE);
2540 g_assert(drc);
2541
2542 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2543 drck->detach(drc, dev, spapr_lmb_release, ds, errp);
2544 addr += SPAPR_MEMORY_BLOCK_SIZE;
2545 }
2546
2547 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2548 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2549 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2550 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2551 nr_lmbs,
2552 drck->get_index(drc));
2553 }
2554
2555 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
2556 Error **errp)
2557 {
2558 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2559 PCDIMMDevice *dimm = PC_DIMM(dev);
2560 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2561 MemoryRegion *mr = ddc->get_memory_region(dimm);
2562
2563 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2564 object_unparent(OBJECT(dev));
2565 }
2566
2567 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
2568 DeviceState *dev, Error **errp)
2569 {
2570 Error *local_err = NULL;
2571 PCDIMMDevice *dimm = PC_DIMM(dev);
2572 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2573 MemoryRegion *mr = ddc->get_memory_region(dimm);
2574 uint64_t size = memory_region_size(mr);
2575 uint64_t addr;
2576
2577 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2578 if (local_err) {
2579 goto out;
2580 }
2581
2582 spapr_del_lmbs(dev, addr, size, &error_abort);
2583 out:
2584 error_propagate(errp, local_err);
2585 }
2586
2587 void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
2588 sPAPRMachineState *spapr)
2589 {
2590 PowerPCCPU *cpu = POWERPC_CPU(cs);
2591 DeviceClass *dc = DEVICE_GET_CLASS(cs);
2592 int id = ppc_get_vcpu_dt_id(cpu);
2593 void *fdt;
2594 int offset, fdt_size;
2595 char *nodename;
2596
2597 fdt = create_device_tree(&fdt_size);
2598 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
2599 offset = fdt_add_subnode(fdt, 0, nodename);
2600
2601 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
2602 g_free(nodename);
2603
2604 *fdt_offset = offset;
2605 return fdt;
2606 }
2607
2608 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
2609 Error **errp)
2610 {
2611 MachineState *ms = MACHINE(qdev_get_machine());
2612 CPUCore *cc = CPU_CORE(dev);
2613 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
2614
2615 core_slot->cpu = NULL;
2616 object_unparent(OBJECT(dev));
2617 }
2618
2619 static void spapr_core_release(DeviceState *dev, void *opaque)
2620 {
2621 HotplugHandler *hotplug_ctrl;
2622
2623 hotplug_ctrl = qdev_get_hotplug_handler(dev);
2624 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
2625 }
2626
2627 static
2628 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
2629 Error **errp)
2630 {
2631 int index;
2632 sPAPRDRConnector *drc;
2633 sPAPRDRConnectorClass *drck;
2634 Error *local_err = NULL;
2635 CPUCore *cc = CPU_CORE(dev);
2636 int smt = kvmppc_smt_threads();
2637
2638 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
2639 error_setg(errp, "Unable to find CPU core with core-id: %d",
2640 cc->core_id);
2641 return;
2642 }
2643 if (index == 0) {
2644 error_setg(errp, "Boot CPU core may not be unplugged");
2645 return;
2646 }
2647
2648 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index * smt);
2649 g_assert(drc);
2650
2651 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2652 drck->detach(drc, dev, spapr_core_release, NULL, &local_err);
2653 if (local_err) {
2654 error_propagate(errp, local_err);
2655 return;
2656 }
2657
2658 spapr_hotplug_req_remove_by_index(drc);
2659 }
2660
2661 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2662 Error **errp)
2663 {
2664 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
2665 MachineClass *mc = MACHINE_GET_CLASS(spapr);
2666 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
2667 CPUCore *cc = CPU_CORE(dev);
2668 CPUState *cs = CPU(core->threads);
2669 sPAPRDRConnector *drc;
2670 Error *local_err = NULL;
2671 void *fdt = NULL;
2672 int fdt_offset = 0;
2673 int smt = kvmppc_smt_threads();
2674 CPUArchId *core_slot;
2675 int index;
2676
2677 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
2678 if (!core_slot) {
2679 error_setg(errp, "Unable to find CPU core with core-id: %d",
2680 cc->core_id);
2681 return;
2682 }
2683 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index * smt);
2684
2685 g_assert(drc || !mc->has_hotpluggable_cpus);
2686
2687 /*
2688 * Setup CPU DT entries only for hotplugged CPUs. For boot time or
2689 * coldplugged CPUs DT entries are setup in spapr_build_fdt().
2690 */
2691 if (dev->hotplugged) {
2692 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
2693 }
2694
2695 if (drc) {
2696 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2697 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, &local_err);
2698 if (local_err) {
2699 g_free(fdt);
2700 error_propagate(errp, local_err);
2701 return;
2702 }
2703 }
2704
2705 if (dev->hotplugged) {
2706 /*
2707 * Send hotplug notification interrupt to the guest only in case
2708 * of hotplugged CPUs.
2709 */
2710 spapr_hotplug_req_add_by_index(drc);
2711 } else {
2712 /*
2713 * Set the right DRC states for cold plugged CPU.
2714 */
2715 if (drc) {
2716 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2717 drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE);
2718 drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED);
2719 }
2720 }
2721 core_slot->cpu = OBJECT(dev);
2722 }
2723
2724 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2725 Error **errp)
2726 {
2727 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
2728 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
2729 Error *local_err = NULL;
2730 CPUCore *cc = CPU_CORE(dev);
2731 char *base_core_type = spapr_get_cpu_core_type(machine->cpu_model);
2732 const char *type = object_get_typename(OBJECT(dev));
2733 CPUArchId *core_slot;
2734 int index;
2735
2736 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
2737 error_setg(&local_err, "CPU hotplug not supported for this machine");
2738 goto out;
2739 }
2740
2741 if (strcmp(base_core_type, type)) {
2742 error_setg(&local_err, "CPU core type should be %s", base_core_type);
2743 goto out;
2744 }
2745
2746 if (cc->core_id % smp_threads) {
2747 error_setg(&local_err, "invalid core id %d", cc->core_id);
2748 goto out;
2749 }
2750
2751 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
2752 if (!core_slot) {
2753 error_setg(&local_err, "core id %d out of range", cc->core_id);
2754 goto out;
2755 }
2756
2757 if (core_slot->cpu) {
2758 error_setg(&local_err, "core %d already populated", cc->core_id);
2759 goto out;
2760 }
2761
2762 out:
2763 g_free(base_core_type);
2764 error_propagate(errp, local_err);
2765 }
2766
2767 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
2768 DeviceState *dev, Error **errp)
2769 {
2770 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2771
2772 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2773 int node;
2774
2775 if (!smc->dr_lmb_enabled) {
2776 error_setg(errp, "Memory hotplug not supported for this machine");
2777 return;
2778 }
2779 node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
2780 if (*errp) {
2781 return;
2782 }
2783 if (node < 0 || node >= MAX_NODES) {
2784 error_setg(errp, "Invaild node %d", node);
2785 return;
2786 }
2787
2788 /*
2789 * Currently PowerPC kernel doesn't allow hot-adding memory to
2790 * memory-less node, but instead will silently add the memory
2791 * to the first node that has some memory. This causes two
2792 * unexpected behaviours for the user.
2793 *
2794 * - Memory gets hotplugged to a different node than what the user
2795 * specified.
2796 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2797 * to memory-less node, a reboot will set things accordingly
2798 * and the previously hotplugged memory now ends in the right node.
2799 * This appears as if some memory moved from one node to another.
2800 *
2801 * So until kernel starts supporting memory hotplug to memory-less
2802 * nodes, just prevent such attempts upfront in QEMU.
2803 */
2804 if (nb_numa_nodes && !numa_info[node].node_mem) {
2805 error_setg(errp, "Can't hotplug memory to memory-less node %d",
2806 node);
2807 return;
2808 }
2809
2810 spapr_memory_plug(hotplug_dev, dev, node, errp);
2811 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2812 spapr_core_plug(hotplug_dev, dev, errp);
2813 }
2814 }
2815
2816 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
2817 DeviceState *dev, Error **errp)
2818 {
2819 sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
2820 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
2821
2822 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2823 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
2824 spapr_memory_unplug(hotplug_dev, dev, errp);
2825 } else {
2826 error_setg(errp, "Memory hot unplug not supported for this guest");
2827 }
2828 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2829 if (!mc->has_hotpluggable_cpus) {
2830 error_setg(errp, "CPU hot unplug not supported on this machine");
2831 return;
2832 }
2833 spapr_core_unplug(hotplug_dev, dev, errp);
2834 }
2835 }
2836
2837 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
2838 DeviceState *dev, Error **errp)
2839 {
2840 sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
2841 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
2842
2843 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2844 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
2845 spapr_memory_unplug_request(hotplug_dev, dev, errp);
2846 } else {
2847 /* NOTE: this means there is a window after guest reset, prior to
2848 * CAS negotiation, where unplug requests will fail due to the
2849 * capability not being detected yet. This is a bit different than
2850 * the case with PCI unplug, where the events will be queued and
2851 * eventually handled by the guest after boot
2852 */
2853 error_setg(errp, "Memory hot unplug not supported for this guest");
2854 }
2855 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2856 if (!mc->has_hotpluggable_cpus) {
2857 error_setg(errp, "CPU hot unplug not supported on this machine");
2858 return;
2859 }
2860 spapr_core_unplug_request(hotplug_dev, dev, errp);
2861 }
2862 }
2863
2864 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
2865 DeviceState *dev, Error **errp)
2866 {
2867 if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2868 spapr_core_pre_plug(hotplug_dev, dev, errp);
2869 }
2870 }
2871
2872 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
2873 DeviceState *dev)
2874 {
2875 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2876 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2877 return HOTPLUG_HANDLER(machine);
2878 }
2879 return NULL;
2880 }
2881
2882 static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index)
2883 {
2884 /* Allocate to NUMA nodes on a "socket" basis (not that concept of
2885 * socket means much for the paravirtualized PAPR platform) */
2886 return cpu_index / smp_threads / smp_cores;
2887 }
2888
2889 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
2890 {
2891 int i;
2892 int spapr_max_cores = max_cpus / smp_threads;
2893 MachineClass *mc = MACHINE_GET_CLASS(machine);
2894
2895 if (!mc->has_hotpluggable_cpus) {
2896 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
2897 }
2898 if (machine->possible_cpus) {
2899 assert(machine->possible_cpus->len == spapr_max_cores);
2900 return machine->possible_cpus;
2901 }
2902
2903 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2904 sizeof(CPUArchId) * spapr_max_cores);
2905 machine->possible_cpus->len = spapr_max_cores;
2906 for (i = 0; i < machine->possible_cpus->len; i++) {
2907 int core_id = i * smp_threads;
2908
2909 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
2910 machine->possible_cpus->cpus[i].arch_id = core_id;
2911 machine->possible_cpus->cpus[i].props.has_core_id = true;
2912 machine->possible_cpus->cpus[i].props.core_id = core_id;
2913 /* TODO: add 'has_node/node' here to describe
2914 to which node core belongs */
2915 }
2916 return machine->possible_cpus;
2917 }
2918
2919 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
2920 uint64_t *buid, hwaddr *pio,
2921 hwaddr *mmio32, hwaddr *mmio64,
2922 unsigned n_dma, uint32_t *liobns, Error **errp)
2923 {
2924 /*
2925 * New-style PHB window placement.
2926 *
2927 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
2928 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
2929 * windows.
2930 *
2931 * Some guest kernels can't work with MMIO windows above 1<<46
2932 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
2933 *
2934 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
2935 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
2936 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
2937 * 1TiB 64-bit MMIO windows for each PHB.
2938 */
2939 const uint64_t base_buid = 0x800000020000000ULL;
2940 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
2941 SPAPR_PCI_MEM64_WIN_SIZE - 1)
2942 int i;
2943
2944 /* Sanity check natural alignments */
2945 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
2946 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
2947 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
2948 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
2949 /* Sanity check bounds */
2950 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
2951 SPAPR_PCI_MEM32_WIN_SIZE);
2952 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
2953 SPAPR_PCI_MEM64_WIN_SIZE);
2954
2955 if (index >= SPAPR_MAX_PHBS) {
2956 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
2957 SPAPR_MAX_PHBS - 1);
2958 return;
2959 }
2960
2961 *buid = base_buid + index;
2962 for (i = 0; i < n_dma; ++i) {
2963 liobns[i] = SPAPR_PCI_LIOBN(index, i);
2964 }
2965
2966 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
2967 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
2968 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
2969 }
2970
2971 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
2972 {
2973 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
2974
2975 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
2976 }
2977
2978 static void spapr_ics_resend(XICSFabric *dev)
2979 {
2980 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
2981
2982 ics_resend(spapr->ics);
2983 }
2984
2985 static ICPState *spapr_icp_get(XICSFabric *xi, int server)
2986 {
2987 sPAPRMachineState *spapr = SPAPR_MACHINE(xi);
2988
2989 return (server < spapr->nr_servers) ? &spapr->icps[server] : NULL;
2990 }
2991
2992 static void spapr_pic_print_info(InterruptStatsProvider *obj,
2993 Monitor *mon)
2994 {
2995 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2996 int i;
2997
2998 for (i = 0; i < spapr->nr_servers; i++) {
2999 icp_pic_print_info(&spapr->icps[i], mon);
3000 }
3001
3002 ics_pic_print_info(spapr->ics, mon);
3003 }
3004
3005 static void spapr_machine_class_init(ObjectClass *oc, void *data)
3006 {
3007 MachineClass *mc = MACHINE_CLASS(oc);
3008 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3009 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3010 NMIClass *nc = NMI_CLASS(oc);
3011 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3012 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3013 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3014 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3015
3016 mc->desc = "pSeries Logical Partition (PAPR compliant)";
3017
3018 /*
3019 * We set up the default / latest behaviour here. The class_init
3020 * functions for the specific versioned machine types can override
3021 * these details for backwards compatibility
3022 */
3023 mc->init = ppc_spapr_init;
3024 mc->reset = ppc_spapr_reset;
3025 mc->block_default_type = IF_SCSI;
3026 mc->max_cpus = 1024;
3027 mc->no_parallel = 1;
3028 mc->default_boot_order = "";
3029 mc->default_ram_size = 512 * M_BYTE;
3030 mc->kvm_type = spapr_kvm_type;
3031 mc->has_dynamic_sysbus = true;
3032 mc->pci_allow_0_address = true;
3033 mc->get_hotplug_handler = spapr_get_hotplug_handler;
3034 hc->pre_plug = spapr_machine_device_pre_plug;
3035 hc->plug = spapr_machine_device_plug;
3036 hc->unplug = spapr_machine_device_unplug;
3037 mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id;
3038 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3039 hc->unplug_request = spapr_machine_device_unplug_request;
3040
3041 smc->dr_lmb_enabled = true;
3042 smc->tcg_default_cpu = "POWER8";
3043 mc->has_hotpluggable_cpus = true;
3044 fwc->get_dev_path = spapr_get_fw_dev_path;
3045 nc->nmi_monitor_handler = spapr_nmi;
3046 smc->phb_placement = spapr_phb_placement;
3047 vhc->hypercall = emulate_spapr_hypercall;
3048 vhc->hpt_mask = spapr_hpt_mask;
3049 vhc->map_hptes = spapr_map_hptes;
3050 vhc->unmap_hptes = spapr_unmap_hptes;
3051 vhc->store_hpte = spapr_store_hpte;
3052 xic->ics_get = spapr_ics_get;
3053 xic->ics_resend = spapr_ics_resend;
3054 xic->icp_get = spapr_icp_get;
3055 ispc->print_info = spapr_pic_print_info;
3056 }
3057
3058 static const TypeInfo spapr_machine_info = {
3059 .name = TYPE_SPAPR_MACHINE,
3060 .parent = TYPE_MACHINE,
3061 .abstract = true,
3062 .instance_size = sizeof(sPAPRMachineState),
3063 .instance_init = spapr_machine_initfn,
3064 .instance_finalize = spapr_machine_finalizefn,
3065 .class_size = sizeof(sPAPRMachineClass),
3066 .class_init = spapr_machine_class_init,
3067 .interfaces = (InterfaceInfo[]) {
3068 { TYPE_FW_PATH_PROVIDER },
3069 { TYPE_NMI },
3070 { TYPE_HOTPLUG_HANDLER },
3071 { TYPE_PPC_VIRTUAL_HYPERVISOR },
3072 { TYPE_XICS_FABRIC },
3073 { TYPE_INTERRUPT_STATS_PROVIDER },
3074 { }
3075 },
3076 };
3077
3078 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
3079 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3080 void *data) \
3081 { \
3082 MachineClass *mc = MACHINE_CLASS(oc); \
3083 spapr_machine_##suffix##_class_options(mc); \
3084 if (latest) { \
3085 mc->alias = "pseries"; \
3086 mc->is_default = 1; \
3087 } \
3088 } \
3089 static void spapr_machine_##suffix##_instance_init(Object *obj) \
3090 { \
3091 MachineState *machine = MACHINE(obj); \
3092 spapr_machine_##suffix##_instance_options(machine); \
3093 } \
3094 static const TypeInfo spapr_machine_##suffix##_info = { \
3095 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
3096 .parent = TYPE_SPAPR_MACHINE, \
3097 .class_init = spapr_machine_##suffix##_class_init, \
3098 .instance_init = spapr_machine_##suffix##_instance_init, \
3099 }; \
3100 static void spapr_machine_register_##suffix(void) \
3101 { \
3102 type_register(&spapr_machine_##suffix##_info); \
3103 } \
3104 type_init(spapr_machine_register_##suffix)
3105
3106 /*
3107 * pseries-2.9
3108 */
3109 static void spapr_machine_2_9_instance_options(MachineState *machine)
3110 {
3111 }
3112
3113 static void spapr_machine_2_9_class_options(MachineClass *mc)
3114 {
3115 /* Defaults for the latest behaviour inherited from the base class */
3116 }
3117
3118 DEFINE_SPAPR_MACHINE(2_9, "2.9", true);
3119
3120 /*
3121 * pseries-2.8
3122 */
3123 #define SPAPR_COMPAT_2_8 \
3124 HW_COMPAT_2_8
3125
3126 static void spapr_machine_2_8_instance_options(MachineState *machine)
3127 {
3128 spapr_machine_2_9_instance_options(machine);
3129 }
3130
3131 static void spapr_machine_2_8_class_options(MachineClass *mc)
3132 {
3133 spapr_machine_2_9_class_options(mc);
3134 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
3135 }
3136
3137 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
3138
3139 /*
3140 * pseries-2.7
3141 */
3142 #define SPAPR_COMPAT_2_7 \
3143 HW_COMPAT_2_7 \
3144 { \
3145 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3146 .property = "mem_win_size", \
3147 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
3148 }, \
3149 { \
3150 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3151 .property = "mem64_win_size", \
3152 .value = "0", \
3153 }, \
3154 { \
3155 .driver = TYPE_POWERPC_CPU, \
3156 .property = "pre-2.8-migration", \
3157 .value = "on", \
3158 }, \
3159 { \
3160 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3161 .property = "pre-2.8-migration", \
3162 .value = "on", \
3163 },
3164
3165 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
3166 uint64_t *buid, hwaddr *pio,
3167 hwaddr *mmio32, hwaddr *mmio64,
3168 unsigned n_dma, uint32_t *liobns, Error **errp)
3169 {
3170 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
3171 const uint64_t base_buid = 0x800000020000000ULL;
3172 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
3173 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
3174 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
3175 const uint32_t max_index = 255;
3176 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
3177
3178 uint64_t ram_top = MACHINE(spapr)->ram_size;
3179 hwaddr phb0_base, phb_base;
3180 int i;
3181
3182 /* Do we have hotpluggable memory? */
3183 if (MACHINE(spapr)->maxram_size > ram_top) {
3184 /* Can't just use maxram_size, because there may be an
3185 * alignment gap between normal and hotpluggable memory
3186 * regions */
3187 ram_top = spapr->hotplug_memory.base +
3188 memory_region_size(&spapr->hotplug_memory.mr);
3189 }
3190
3191 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
3192
3193 if (index > max_index) {
3194 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
3195 max_index);
3196 return;
3197 }
3198
3199 *buid = base_buid + index;
3200 for (i = 0; i < n_dma; ++i) {
3201 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3202 }
3203
3204 phb_base = phb0_base + index * phb_spacing;
3205 *pio = phb_base + pio_offset;
3206 *mmio32 = phb_base + mmio_offset;
3207 /*
3208 * We don't set the 64-bit MMIO window, relying on the PHB's
3209 * fallback behaviour of automatically splitting a large "32-bit"
3210 * window into contiguous 32-bit and 64-bit windows
3211 */
3212 }
3213
3214 static void spapr_machine_2_7_instance_options(MachineState *machine)
3215 {
3216 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
3217
3218 spapr_machine_2_8_instance_options(machine);
3219 spapr->use_hotplug_event_source = false;
3220 }
3221
3222 static void spapr_machine_2_7_class_options(MachineClass *mc)
3223 {
3224 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3225
3226 spapr_machine_2_8_class_options(mc);
3227 smc->tcg_default_cpu = "POWER7";
3228 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
3229 smc->phb_placement = phb_placement_2_7;
3230 }
3231
3232 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
3233
3234 /*
3235 * pseries-2.6
3236 */
3237 #define SPAPR_COMPAT_2_6 \
3238 HW_COMPAT_2_6 \
3239 { \
3240 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3241 .property = "ddw",\
3242 .value = stringify(off),\
3243 },
3244
3245 static void spapr_machine_2_6_instance_options(MachineState *machine)
3246 {
3247 spapr_machine_2_7_instance_options(machine);
3248 }
3249
3250 static void spapr_machine_2_6_class_options(MachineClass *mc)
3251 {
3252 spapr_machine_2_7_class_options(mc);
3253 mc->has_hotpluggable_cpus = false;
3254 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
3255 }
3256
3257 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
3258
3259 /*
3260 * pseries-2.5
3261 */
3262 #define SPAPR_COMPAT_2_5 \
3263 HW_COMPAT_2_5 \
3264 { \
3265 .driver = "spapr-vlan", \
3266 .property = "use-rx-buffer-pools", \
3267 .value = "off", \
3268 },
3269
3270 static void spapr_machine_2_5_instance_options(MachineState *machine)
3271 {
3272 spapr_machine_2_6_instance_options(machine);
3273 }
3274
3275 static void spapr_machine_2_5_class_options(MachineClass *mc)
3276 {
3277 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3278
3279 spapr_machine_2_6_class_options(mc);
3280 smc->use_ohci_by_default = true;
3281 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
3282 }
3283
3284 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
3285
3286 /*
3287 * pseries-2.4
3288 */
3289 #define SPAPR_COMPAT_2_4 \
3290 HW_COMPAT_2_4
3291
3292 static void spapr_machine_2_4_instance_options(MachineState *machine)
3293 {
3294 spapr_machine_2_5_instance_options(machine);
3295 }
3296
3297 static void spapr_machine_2_4_class_options(MachineClass *mc)
3298 {
3299 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3300
3301 spapr_machine_2_5_class_options(mc);
3302 smc->dr_lmb_enabled = false;
3303 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
3304 }
3305
3306 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
3307
3308 /*
3309 * pseries-2.3
3310 */
3311 #define SPAPR_COMPAT_2_3 \
3312 HW_COMPAT_2_3 \
3313 {\
3314 .driver = "spapr-pci-host-bridge",\
3315 .property = "dynamic-reconfiguration",\
3316 .value = "off",\
3317 },
3318
3319 static void spapr_machine_2_3_instance_options(MachineState *machine)
3320 {
3321 spapr_machine_2_4_instance_options(machine);
3322 savevm_skip_section_footers();
3323 global_state_set_optional();
3324 savevm_skip_configuration();
3325 }
3326
3327 static void spapr_machine_2_3_class_options(MachineClass *mc)
3328 {
3329 spapr_machine_2_4_class_options(mc);
3330 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
3331 }
3332 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
3333
3334 /*
3335 * pseries-2.2
3336 */
3337
3338 #define SPAPR_COMPAT_2_2 \
3339 HW_COMPAT_2_2 \
3340 {\
3341 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3342 .property = "mem_win_size",\
3343 .value = "0x20000000",\
3344 },
3345
3346 static void spapr_machine_2_2_instance_options(MachineState *machine)
3347 {
3348 spapr_machine_2_3_instance_options(machine);
3349 machine->suppress_vmdesc = true;
3350 }
3351
3352 static void spapr_machine_2_2_class_options(MachineClass *mc)
3353 {
3354 spapr_machine_2_3_class_options(mc);
3355 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
3356 }
3357 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
3358
3359 /*
3360 * pseries-2.1
3361 */
3362 #define SPAPR_COMPAT_2_1 \
3363 HW_COMPAT_2_1
3364
3365 static void spapr_machine_2_1_instance_options(MachineState *machine)
3366 {
3367 spapr_machine_2_2_instance_options(machine);
3368 }
3369
3370 static void spapr_machine_2_1_class_options(MachineClass *mc)
3371 {
3372 spapr_machine_2_2_class_options(mc);
3373 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
3374 }
3375 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
3376
3377 static void spapr_machine_register_types(void)
3378 {
3379 type_register_static(&spapr_machine_info);
3380 }
3381
3382 type_init(spapr_machine_register_types)