]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr.c
Merge remote-tracking branch 'remotes/mcayland/tags/qemu-openbios-signed' into staging
[mirror_qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
27 #include "sysemu/sysemu.h"
28 #include "hw/hw.h"
29 #include "hw/fw-path-provider.h"
30 #include "elf.h"
31 #include "net/net.h"
32 #include "sysemu/block-backend.h"
33 #include "sysemu/cpus.h"
34 #include "sysemu/kvm.h"
35 #include "kvm_ppc.h"
36 #include "mmu-hash64.h"
37 #include "qom/cpu.h"
38
39 #include "hw/boards.h"
40 #include "hw/ppc/ppc.h"
41 #include "hw/loader.h"
42
43 #include "hw/ppc/spapr.h"
44 #include "hw/ppc/spapr_vio.h"
45 #include "hw/pci-host/spapr.h"
46 #include "hw/ppc/xics.h"
47 #include "hw/pci/msi.h"
48
49 #include "hw/pci/pci.h"
50 #include "hw/scsi/scsi.h"
51 #include "hw/virtio/virtio-scsi.h"
52
53 #include "exec/address-spaces.h"
54 #include "hw/usb.h"
55 #include "qemu/config-file.h"
56 #include "qemu/error-report.h"
57 #include "trace.h"
58 #include "hw/nmi.h"
59
60 #include "hw/compat.h"
61
62 #include <libfdt.h>
63
64 /* SLOF memory layout:
65 *
66 * SLOF raw image loaded at 0, copies its romfs right below the flat
67 * device-tree, then position SLOF itself 31M below that
68 *
69 * So we set FW_OVERHEAD to 40MB which should account for all of that
70 * and more
71 *
72 * We load our kernel at 4M, leaving space for SLOF initial image
73 */
74 #define FDT_MAX_SIZE 0x40000
75 #define RTAS_MAX_SIZE 0x10000
76 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
77 #define FW_MAX_SIZE 0x400000
78 #define FW_FILE_NAME "slof.bin"
79 #define FW_OVERHEAD 0x2800000
80 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
81
82 #define MIN_RMA_SLOF 128UL
83
84 #define TIMEBASE_FREQ 512000000ULL
85
86 #define MAX_CPUS 255
87
88 #define PHANDLE_XICP 0x00001111
89
90 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
91
92 typedef struct sPAPRMachineState sPAPRMachineState;
93
94 #define TYPE_SPAPR_MACHINE "spapr-machine"
95 #define SPAPR_MACHINE(obj) \
96 OBJECT_CHECK(sPAPRMachineState, (obj), TYPE_SPAPR_MACHINE)
97
98 /**
99 * sPAPRMachineState:
100 */
101 struct sPAPRMachineState {
102 /*< private >*/
103 MachineState parent_obj;
104
105 /*< public >*/
106 char *kvm_type;
107 };
108
109 sPAPREnvironment *spapr;
110
111 static XICSState *try_create_xics(const char *type, int nr_servers,
112 int nr_irqs)
113 {
114 DeviceState *dev;
115
116 dev = qdev_create(NULL, type);
117 qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
118 qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
119 if (qdev_init(dev) < 0) {
120 return NULL;
121 }
122
123 return XICS_COMMON(dev);
124 }
125
126 static XICSState *xics_system_init(int nr_servers, int nr_irqs)
127 {
128 XICSState *icp = NULL;
129
130 if (kvm_enabled()) {
131 QemuOpts *machine_opts = qemu_get_machine_opts();
132 bool irqchip_allowed = qemu_opt_get_bool(machine_opts,
133 "kernel_irqchip", true);
134 bool irqchip_required = qemu_opt_get_bool(machine_opts,
135 "kernel_irqchip", false);
136 if (irqchip_allowed) {
137 icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs);
138 }
139
140 if (irqchip_required && !icp) {
141 perror("Failed to create in-kernel XICS\n");
142 abort();
143 }
144 }
145
146 if (!icp) {
147 icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs);
148 }
149
150 if (!icp) {
151 perror("Failed to create XICS\n");
152 abort();
153 }
154
155 return icp;
156 }
157
158 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
159 int smt_threads)
160 {
161 int i, ret = 0;
162 uint32_t servers_prop[smt_threads];
163 uint32_t gservers_prop[smt_threads * 2];
164 int index = ppc_get_vcpu_dt_id(cpu);
165
166 if (cpu->cpu_version) {
167 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
168 if (ret < 0) {
169 return ret;
170 }
171 }
172
173 /* Build interrupt servers and gservers properties */
174 for (i = 0; i < smt_threads; i++) {
175 servers_prop[i] = cpu_to_be32(index + i);
176 /* Hack, direct the group queues back to cpu 0 */
177 gservers_prop[i*2] = cpu_to_be32(index + i);
178 gservers_prop[i*2 + 1] = 0;
179 }
180 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
181 servers_prop, sizeof(servers_prop));
182 if (ret < 0) {
183 return ret;
184 }
185 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
186 gservers_prop, sizeof(gservers_prop));
187
188 return ret;
189 }
190
191 static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr)
192 {
193 int ret = 0, offset, cpus_offset;
194 CPUState *cs;
195 char cpu_model[32];
196 int smt = kvmppc_smt_threads();
197 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
198
199 CPU_FOREACH(cs) {
200 PowerPCCPU *cpu = POWERPC_CPU(cs);
201 DeviceClass *dc = DEVICE_GET_CLASS(cs);
202 int index = ppc_get_vcpu_dt_id(cpu);
203 uint32_t associativity[] = {cpu_to_be32(0x5),
204 cpu_to_be32(0x0),
205 cpu_to_be32(0x0),
206 cpu_to_be32(0x0),
207 cpu_to_be32(cs->numa_node),
208 cpu_to_be32(index)};
209
210 if ((index % smt) != 0) {
211 continue;
212 }
213
214 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
215
216 cpus_offset = fdt_path_offset(fdt, "/cpus");
217 if (cpus_offset < 0) {
218 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
219 "cpus");
220 if (cpus_offset < 0) {
221 return cpus_offset;
222 }
223 }
224 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
225 if (offset < 0) {
226 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
227 if (offset < 0) {
228 return offset;
229 }
230 }
231
232 if (nb_numa_nodes > 1) {
233 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
234 sizeof(associativity));
235 if (ret < 0) {
236 return ret;
237 }
238 }
239
240 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
241 pft_size_prop, sizeof(pft_size_prop));
242 if (ret < 0) {
243 return ret;
244 }
245
246 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
247 ppc_get_compat_smt_threads(cpu));
248 if (ret < 0) {
249 return ret;
250 }
251 }
252 return ret;
253 }
254
255
256 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
257 size_t maxsize)
258 {
259 size_t maxcells = maxsize / sizeof(uint32_t);
260 int i, j, count;
261 uint32_t *p = prop;
262
263 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
264 struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
265
266 if (!sps->page_shift) {
267 break;
268 }
269 for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
270 if (sps->enc[count].page_shift == 0) {
271 break;
272 }
273 }
274 if ((p - prop) >= (maxcells - 3 - count * 2)) {
275 break;
276 }
277 *(p++) = cpu_to_be32(sps->page_shift);
278 *(p++) = cpu_to_be32(sps->slb_enc);
279 *(p++) = cpu_to_be32(count);
280 for (j = 0; j < count; j++) {
281 *(p++) = cpu_to_be32(sps->enc[j].page_shift);
282 *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
283 }
284 }
285
286 return (p - prop) * sizeof(uint32_t);
287 }
288
289 static hwaddr spapr_node0_size(void)
290 {
291 if (nb_numa_nodes) {
292 int i;
293 for (i = 0; i < nb_numa_nodes; ++i) {
294 if (numa_info[i].node_mem) {
295 return MIN(pow2floor(numa_info[i].node_mem), ram_size);
296 }
297 }
298 }
299 return ram_size;
300 }
301
302 #define _FDT(exp) \
303 do { \
304 int ret = (exp); \
305 if (ret < 0) { \
306 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
307 #exp, fdt_strerror(ret)); \
308 exit(1); \
309 } \
310 } while (0)
311
312 static void add_str(GString *s, const gchar *s1)
313 {
314 g_string_append_len(s, s1, strlen(s1) + 1);
315 }
316
317 static void *spapr_create_fdt_skel(hwaddr initrd_base,
318 hwaddr initrd_size,
319 hwaddr kernel_size,
320 bool little_endian,
321 const char *boot_device,
322 const char *kernel_cmdline,
323 uint32_t epow_irq)
324 {
325 void *fdt;
326 CPUState *cs;
327 uint32_t start_prop = cpu_to_be32(initrd_base);
328 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
329 GString *hypertas = g_string_sized_new(256);
330 GString *qemu_hypertas = g_string_sized_new(256);
331 uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
332 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
333 int smt = kvmppc_smt_threads();
334 unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
335 QemuOpts *opts = qemu_opts_find(qemu_find_opts("smp-opts"), NULL);
336 unsigned sockets = opts ? qemu_opt_get_number(opts, "sockets", 0) : 0;
337 uint32_t cpus_per_socket = sockets ? (smp_cpus / sockets) : 1;
338 char *buf;
339
340 add_str(hypertas, "hcall-pft");
341 add_str(hypertas, "hcall-term");
342 add_str(hypertas, "hcall-dabr");
343 add_str(hypertas, "hcall-interrupt");
344 add_str(hypertas, "hcall-tce");
345 add_str(hypertas, "hcall-vio");
346 add_str(hypertas, "hcall-splpar");
347 add_str(hypertas, "hcall-bulk");
348 add_str(hypertas, "hcall-set-mode");
349 add_str(qemu_hypertas, "hcall-memop1");
350
351 fdt = g_malloc0(FDT_MAX_SIZE);
352 _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
353
354 if (kernel_size) {
355 _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
356 }
357 if (initrd_size) {
358 _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
359 }
360 _FDT((fdt_finish_reservemap(fdt)));
361
362 /* Root node */
363 _FDT((fdt_begin_node(fdt, "")));
364 _FDT((fdt_property_string(fdt, "device_type", "chrp")));
365 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
366 _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
367
368 /*
369 * Add info to guest to indentify which host is it being run on
370 * and what is the uuid of the guest
371 */
372 if (kvmppc_get_host_model(&buf)) {
373 _FDT((fdt_property_string(fdt, "host-model", buf)));
374 g_free(buf);
375 }
376 if (kvmppc_get_host_serial(&buf)) {
377 _FDT((fdt_property_string(fdt, "host-serial", buf)));
378 g_free(buf);
379 }
380
381 buf = g_strdup_printf(UUID_FMT, qemu_uuid[0], qemu_uuid[1],
382 qemu_uuid[2], qemu_uuid[3], qemu_uuid[4],
383 qemu_uuid[5], qemu_uuid[6], qemu_uuid[7],
384 qemu_uuid[8], qemu_uuid[9], qemu_uuid[10],
385 qemu_uuid[11], qemu_uuid[12], qemu_uuid[13],
386 qemu_uuid[14], qemu_uuid[15]);
387
388 _FDT((fdt_property_string(fdt, "vm,uuid", buf)));
389 g_free(buf);
390
391 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
392 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
393
394 /* /chosen */
395 _FDT((fdt_begin_node(fdt, "chosen")));
396
397 /* Set Form1_affinity */
398 _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
399
400 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
401 _FDT((fdt_property(fdt, "linux,initrd-start",
402 &start_prop, sizeof(start_prop))));
403 _FDT((fdt_property(fdt, "linux,initrd-end",
404 &end_prop, sizeof(end_prop))));
405 if (kernel_size) {
406 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
407 cpu_to_be64(kernel_size) };
408
409 _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
410 if (little_endian) {
411 _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
412 }
413 }
414 if (boot_device) {
415 _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
416 }
417 if (boot_menu) {
418 _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu)));
419 }
420 _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
421 _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
422 _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
423
424 _FDT((fdt_end_node(fdt)));
425
426 /* cpus */
427 _FDT((fdt_begin_node(fdt, "cpus")));
428
429 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
430 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
431
432 CPU_FOREACH(cs) {
433 PowerPCCPU *cpu = POWERPC_CPU(cs);
434 CPUPPCState *env = &cpu->env;
435 DeviceClass *dc = DEVICE_GET_CLASS(cs);
436 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
437 int index = ppc_get_vcpu_dt_id(cpu);
438 char *nodename;
439 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
440 0xffffffff, 0xffffffff};
441 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
442 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
443 uint32_t page_sizes_prop[64];
444 size_t page_sizes_prop_size;
445
446 if ((index % smt) != 0) {
447 continue;
448 }
449
450 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
451
452 _FDT((fdt_begin_node(fdt, nodename)));
453
454 g_free(nodename);
455
456 _FDT((fdt_property_cell(fdt, "reg", index)));
457 _FDT((fdt_property_string(fdt, "device_type", "cpu")));
458
459 _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
460 _FDT((fdt_property_cell(fdt, "d-cache-block-size",
461 env->dcache_line_size)));
462 _FDT((fdt_property_cell(fdt, "d-cache-line-size",
463 env->dcache_line_size)));
464 _FDT((fdt_property_cell(fdt, "i-cache-block-size",
465 env->icache_line_size)));
466 _FDT((fdt_property_cell(fdt, "i-cache-line-size",
467 env->icache_line_size)));
468
469 if (pcc->l1_dcache_size) {
470 _FDT((fdt_property_cell(fdt, "d-cache-size", pcc->l1_dcache_size)));
471 } else {
472 fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
473 }
474 if (pcc->l1_icache_size) {
475 _FDT((fdt_property_cell(fdt, "i-cache-size", pcc->l1_icache_size)));
476 } else {
477 fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
478 }
479
480 _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
481 _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
482 _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
483 _FDT((fdt_property_string(fdt, "status", "okay")));
484 _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
485
486 if (env->spr_cb[SPR_PURR].oea_read) {
487 _FDT((fdt_property(fdt, "ibm,purr", NULL, 0)));
488 }
489
490 if (env->mmu_model & POWERPC_MMU_1TSEG) {
491 _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
492 segs, sizeof(segs))));
493 }
494
495 /* Advertise VMX/VSX (vector extensions) if available
496 * 0 / no property == no vector extensions
497 * 1 == VMX / Altivec available
498 * 2 == VSX available */
499 if (env->insns_flags & PPC_ALTIVEC) {
500 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
501
502 _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
503 }
504
505 /* Advertise DFP (Decimal Floating Point) if available
506 * 0 / no property == no DFP
507 * 1 == DFP available */
508 if (env->insns_flags2 & PPC2_DFP) {
509 _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
510 }
511
512 page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
513 sizeof(page_sizes_prop));
514 if (page_sizes_prop_size) {
515 _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
516 page_sizes_prop, page_sizes_prop_size)));
517 }
518
519 _FDT((fdt_property_cell(fdt, "ibm,chip-id",
520 cs->cpu_index / cpus_per_socket)));
521
522 _FDT((fdt_end_node(fdt)));
523 }
524
525 _FDT((fdt_end_node(fdt)));
526
527 /* RTAS */
528 _FDT((fdt_begin_node(fdt, "rtas")));
529
530 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
531 add_str(hypertas, "hcall-multi-tce");
532 }
533 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
534 hypertas->len)));
535 g_string_free(hypertas, TRUE);
536 _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
537 qemu_hypertas->len)));
538 g_string_free(qemu_hypertas, TRUE);
539
540 _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
541 refpoints, sizeof(refpoints))));
542
543 _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
544
545 /*
546 * According to PAPR, rtas ibm,os-term does not guarantee a return
547 * back to the guest cpu.
548 *
549 * While an additional ibm,extended-os-term property indicates that
550 * rtas call return will always occur. Set this property.
551 */
552 _FDT((fdt_property(fdt, "ibm,extended-os-term", NULL, 0)));
553
554 _FDT((fdt_end_node(fdt)));
555
556 /* interrupt controller */
557 _FDT((fdt_begin_node(fdt, "interrupt-controller")));
558
559 _FDT((fdt_property_string(fdt, "device_type",
560 "PowerPC-External-Interrupt-Presentation")));
561 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
562 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
563 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
564 interrupt_server_ranges_prop,
565 sizeof(interrupt_server_ranges_prop))));
566 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
567 _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
568 _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
569
570 _FDT((fdt_end_node(fdt)));
571
572 /* vdevice */
573 _FDT((fdt_begin_node(fdt, "vdevice")));
574
575 _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
576 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
577 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
578 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
579 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
580 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
581
582 _FDT((fdt_end_node(fdt)));
583
584 /* event-sources */
585 spapr_events_fdt_skel(fdt, epow_irq);
586
587 /* /hypervisor node */
588 if (kvm_enabled()) {
589 uint8_t hypercall[16];
590
591 /* indicate KVM hypercall interface */
592 _FDT((fdt_begin_node(fdt, "hypervisor")));
593 _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
594 if (kvmppc_has_cap_fixup_hcalls()) {
595 /*
596 * Older KVM versions with older guest kernels were broken with the
597 * magic page, don't allow the guest to map it.
598 */
599 kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
600 sizeof(hypercall));
601 _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
602 sizeof(hypercall))));
603 }
604 _FDT((fdt_end_node(fdt)));
605 }
606
607 _FDT((fdt_end_node(fdt))); /* close root node */
608 _FDT((fdt_finish(fdt)));
609
610 return fdt;
611 }
612
613 int spapr_h_cas_compose_response(target_ulong addr, target_ulong size)
614 {
615 void *fdt, *fdt_skel;
616 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
617
618 size -= sizeof(hdr);
619
620 /* Create sceleton */
621 fdt_skel = g_malloc0(size);
622 _FDT((fdt_create(fdt_skel, size)));
623 _FDT((fdt_begin_node(fdt_skel, "")));
624 _FDT((fdt_end_node(fdt_skel)));
625 _FDT((fdt_finish(fdt_skel)));
626 fdt = g_malloc0(size);
627 _FDT((fdt_open_into(fdt_skel, fdt, size)));
628 g_free(fdt_skel);
629
630 /* Fix skeleton up */
631 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
632
633 /* Pack resulting tree */
634 _FDT((fdt_pack(fdt)));
635
636 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
637 trace_spapr_cas_failed(size);
638 return -1;
639 }
640
641 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
642 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
643 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
644 g_free(fdt);
645
646 return 0;
647 }
648
649 static void spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
650 hwaddr size)
651 {
652 uint32_t associativity[] = {
653 cpu_to_be32(0x4), /* length */
654 cpu_to_be32(0x0), cpu_to_be32(0x0),
655 cpu_to_be32(0x0), cpu_to_be32(nodeid)
656 };
657 char mem_name[32];
658 uint64_t mem_reg_property[2];
659 int off;
660
661 mem_reg_property[0] = cpu_to_be64(start);
662 mem_reg_property[1] = cpu_to_be64(size);
663
664 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
665 off = fdt_add_subnode(fdt, 0, mem_name);
666 _FDT(off);
667 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
668 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
669 sizeof(mem_reg_property))));
670 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
671 sizeof(associativity))));
672 }
673
674 static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt)
675 {
676 hwaddr mem_start, node_size;
677 int i, nb_nodes = nb_numa_nodes;
678 NodeInfo *nodes = numa_info;
679 NodeInfo ramnode;
680
681 /* No NUMA nodes, assume there is just one node with whole RAM */
682 if (!nb_numa_nodes) {
683 nb_nodes = 1;
684 ramnode.node_mem = ram_size;
685 nodes = &ramnode;
686 }
687
688 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
689 if (!nodes[i].node_mem) {
690 continue;
691 }
692 if (mem_start >= ram_size) {
693 node_size = 0;
694 } else {
695 node_size = nodes[i].node_mem;
696 if (node_size > ram_size - mem_start) {
697 node_size = ram_size - mem_start;
698 }
699 }
700 if (!mem_start) {
701 /* ppc_spapr_init() checks for rma_size <= node0_size already */
702 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
703 mem_start += spapr->rma_size;
704 node_size -= spapr->rma_size;
705 }
706 for ( ; node_size; ) {
707 hwaddr sizetmp = pow2floor(node_size);
708
709 /* mem_start != 0 here */
710 if (ctzl(mem_start) < ctzl(sizetmp)) {
711 sizetmp = 1ULL << ctzl(mem_start);
712 }
713
714 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
715 node_size -= sizetmp;
716 mem_start += sizetmp;
717 }
718 }
719
720 return 0;
721 }
722
723 static void spapr_finalize_fdt(sPAPREnvironment *spapr,
724 hwaddr fdt_addr,
725 hwaddr rtas_addr,
726 hwaddr rtas_size)
727 {
728 int ret, i;
729 size_t cb = 0;
730 char *bootlist;
731 void *fdt;
732 sPAPRPHBState *phb;
733
734 fdt = g_malloc(FDT_MAX_SIZE);
735
736 /* open out the base tree into a temp buffer for the final tweaks */
737 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
738
739 ret = spapr_populate_memory(spapr, fdt);
740 if (ret < 0) {
741 fprintf(stderr, "couldn't setup memory nodes in fdt\n");
742 exit(1);
743 }
744
745 ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
746 if (ret < 0) {
747 fprintf(stderr, "couldn't setup vio devices in fdt\n");
748 exit(1);
749 }
750
751 QLIST_FOREACH(phb, &spapr->phbs, list) {
752 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
753 }
754
755 if (ret < 0) {
756 fprintf(stderr, "couldn't setup PCI devices in fdt\n");
757 exit(1);
758 }
759
760 /* RTAS */
761 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
762 if (ret < 0) {
763 fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
764 }
765
766 /* Advertise NUMA via ibm,associativity */
767 ret = spapr_fixup_cpu_dt(fdt, spapr);
768 if (ret < 0) {
769 fprintf(stderr, "Couldn't finalize CPU device tree properties\n");
770 }
771
772 bootlist = get_boot_devices_list(&cb, true);
773 if (cb && bootlist) {
774 int offset = fdt_path_offset(fdt, "/chosen");
775 if (offset < 0) {
776 exit(1);
777 }
778 for (i = 0; i < cb; i++) {
779 if (bootlist[i] == '\n') {
780 bootlist[i] = ' ';
781 }
782
783 }
784 ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
785 }
786
787 if (!spapr->has_graphics) {
788 spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
789 }
790
791 _FDT((fdt_pack(fdt)));
792
793 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
794 hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
795 fdt_totalsize(fdt), FDT_MAX_SIZE);
796 exit(1);
797 }
798
799 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
800
801 g_free(bootlist);
802 g_free(fdt);
803 }
804
805 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
806 {
807 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
808 }
809
810 static void emulate_spapr_hypercall(PowerPCCPU *cpu)
811 {
812 CPUPPCState *env = &cpu->env;
813
814 if (msr_pr) {
815 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
816 env->gpr[3] = H_PRIVILEGE;
817 } else {
818 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
819 }
820 }
821
822 static void spapr_reset_htab(sPAPREnvironment *spapr)
823 {
824 long shift;
825
826 /* allocate hash page table. For now we always make this 16mb,
827 * later we should probably make it scale to the size of guest
828 * RAM */
829
830 shift = kvmppc_reset_htab(spapr->htab_shift);
831
832 if (shift > 0) {
833 /* Kernel handles htab, we don't need to allocate one */
834 spapr->htab_shift = shift;
835 kvmppc_kern_htab = true;
836 } else {
837 if (!spapr->htab) {
838 /* Allocate an htab if we don't yet have one */
839 spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
840 }
841
842 /* And clear it */
843 memset(spapr->htab, 0, HTAB_SIZE(spapr));
844 }
845
846 /* Update the RMA size if necessary */
847 if (spapr->vrma_adjust) {
848 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
849 spapr->htab_shift);
850 }
851 }
852
853 static void ppc_spapr_reset(void)
854 {
855 PowerPCCPU *first_ppc_cpu;
856 uint32_t rtas_limit;
857
858 /* Reset the hash table & recalc the RMA */
859 spapr_reset_htab(spapr);
860
861 qemu_devices_reset();
862
863 /*
864 * We place the device tree and RTAS just below either the top of the RMA,
865 * or just below 2GB, whichever is lowere, so that it can be
866 * processed with 32-bit real mode code if necessary
867 */
868 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
869 spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
870 spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
871
872 /* Load the fdt */
873 spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
874 spapr->rtas_size);
875
876 /* Copy RTAS over */
877 cpu_physical_memory_write(spapr->rtas_addr, spapr->rtas_blob,
878 spapr->rtas_size);
879
880 /* Set up the entry state */
881 first_ppc_cpu = POWERPC_CPU(first_cpu);
882 first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
883 first_ppc_cpu->env.gpr[5] = 0;
884 first_cpu->halted = 0;
885 first_ppc_cpu->env.nip = spapr->entry_point;
886
887 }
888
889 static void spapr_cpu_reset(void *opaque)
890 {
891 PowerPCCPU *cpu = opaque;
892 CPUState *cs = CPU(cpu);
893 CPUPPCState *env = &cpu->env;
894
895 cpu_reset(cs);
896
897 /* All CPUs start halted. CPU0 is unhalted from the machine level
898 * reset code and the rest are explicitly started up by the guest
899 * using an RTAS call */
900 cs->halted = 1;
901
902 env->spr[SPR_HIOR] = 0;
903
904 env->external_htab = (uint8_t *)spapr->htab;
905 if (kvm_enabled() && !env->external_htab) {
906 /*
907 * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte*
908 * functions do the right thing.
909 */
910 env->external_htab = (void *)1;
911 }
912 env->htab_base = -1;
913 /*
914 * htab_mask is the mask used to normalize hash value to PTEG index.
915 * htab_shift is log2 of hash table size.
916 * We have 8 hpte per group, and each hpte is 16 bytes.
917 * ie have 128 bytes per hpte entry.
918 */
919 env->htab_mask = (1ULL << ((spapr)->htab_shift - 7)) - 1;
920 env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
921 (spapr->htab_shift - 18);
922 }
923
924 static void spapr_create_nvram(sPAPREnvironment *spapr)
925 {
926 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
927 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
928
929 if (dinfo) {
930 qdev_prop_set_drive_nofail(dev, "drive", blk_by_legacy_dinfo(dinfo));
931 }
932
933 qdev_init_nofail(dev);
934
935 spapr->nvram = (struct sPAPRNVRAM *)dev;
936 }
937
938 /* Returns whether we want to use VGA or not */
939 static int spapr_vga_init(PCIBus *pci_bus)
940 {
941 switch (vga_interface_type) {
942 case VGA_NONE:
943 return false;
944 case VGA_DEVICE:
945 return true;
946 case VGA_STD:
947 return pci_vga_init(pci_bus) != NULL;
948 default:
949 fprintf(stderr, "This vga model is not supported,"
950 "currently it only supports -vga std\n");
951 exit(0);
952 }
953 }
954
955 static const VMStateDescription vmstate_spapr = {
956 .name = "spapr",
957 .version_id = 2,
958 .minimum_version_id = 1,
959 .fields = (VMStateField[]) {
960 VMSTATE_UNUSED(4), /* used to be @next_irq */
961
962 /* RTC offset */
963 VMSTATE_UINT64(rtc_offset, sPAPREnvironment),
964 VMSTATE_PPC_TIMEBASE_V(tb, sPAPREnvironment, 2),
965 VMSTATE_END_OF_LIST()
966 },
967 };
968
969 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
970 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
971 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
972 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
973
974 static int htab_save_setup(QEMUFile *f, void *opaque)
975 {
976 sPAPREnvironment *spapr = opaque;
977
978 /* "Iteration" header */
979 qemu_put_be32(f, spapr->htab_shift);
980
981 if (spapr->htab) {
982 spapr->htab_save_index = 0;
983 spapr->htab_first_pass = true;
984 } else {
985 assert(kvm_enabled());
986
987 spapr->htab_fd = kvmppc_get_htab_fd(false);
988 if (spapr->htab_fd < 0) {
989 fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
990 strerror(errno));
991 return -1;
992 }
993 }
994
995
996 return 0;
997 }
998
999 static void htab_save_first_pass(QEMUFile *f, sPAPREnvironment *spapr,
1000 int64_t max_ns)
1001 {
1002 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1003 int index = spapr->htab_save_index;
1004 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1005
1006 assert(spapr->htab_first_pass);
1007
1008 do {
1009 int chunkstart;
1010
1011 /* Consume invalid HPTEs */
1012 while ((index < htabslots)
1013 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1014 index++;
1015 CLEAN_HPTE(HPTE(spapr->htab, index));
1016 }
1017
1018 /* Consume valid HPTEs */
1019 chunkstart = index;
1020 while ((index < htabslots)
1021 && HPTE_VALID(HPTE(spapr->htab, index))) {
1022 index++;
1023 CLEAN_HPTE(HPTE(spapr->htab, index));
1024 }
1025
1026 if (index > chunkstart) {
1027 int n_valid = index - chunkstart;
1028
1029 qemu_put_be32(f, chunkstart);
1030 qemu_put_be16(f, n_valid);
1031 qemu_put_be16(f, 0);
1032 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1033 HASH_PTE_SIZE_64 * n_valid);
1034
1035 if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1036 break;
1037 }
1038 }
1039 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1040
1041 if (index >= htabslots) {
1042 assert(index == htabslots);
1043 index = 0;
1044 spapr->htab_first_pass = false;
1045 }
1046 spapr->htab_save_index = index;
1047 }
1048
1049 static int htab_save_later_pass(QEMUFile *f, sPAPREnvironment *spapr,
1050 int64_t max_ns)
1051 {
1052 bool final = max_ns < 0;
1053 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1054 int examined = 0, sent = 0;
1055 int index = spapr->htab_save_index;
1056 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1057
1058 assert(!spapr->htab_first_pass);
1059
1060 do {
1061 int chunkstart, invalidstart;
1062
1063 /* Consume non-dirty HPTEs */
1064 while ((index < htabslots)
1065 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1066 index++;
1067 examined++;
1068 }
1069
1070 chunkstart = index;
1071 /* Consume valid dirty HPTEs */
1072 while ((index < htabslots)
1073 && HPTE_DIRTY(HPTE(spapr->htab, index))
1074 && HPTE_VALID(HPTE(spapr->htab, index))) {
1075 CLEAN_HPTE(HPTE(spapr->htab, index));
1076 index++;
1077 examined++;
1078 }
1079
1080 invalidstart = index;
1081 /* Consume invalid dirty HPTEs */
1082 while ((index < htabslots)
1083 && HPTE_DIRTY(HPTE(spapr->htab, index))
1084 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1085 CLEAN_HPTE(HPTE(spapr->htab, index));
1086 index++;
1087 examined++;
1088 }
1089
1090 if (index > chunkstart) {
1091 int n_valid = invalidstart - chunkstart;
1092 int n_invalid = index - invalidstart;
1093
1094 qemu_put_be32(f, chunkstart);
1095 qemu_put_be16(f, n_valid);
1096 qemu_put_be16(f, n_invalid);
1097 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1098 HASH_PTE_SIZE_64 * n_valid);
1099 sent += index - chunkstart;
1100
1101 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1102 break;
1103 }
1104 }
1105
1106 if (examined >= htabslots) {
1107 break;
1108 }
1109
1110 if (index >= htabslots) {
1111 assert(index == htabslots);
1112 index = 0;
1113 }
1114 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1115
1116 if (index >= htabslots) {
1117 assert(index == htabslots);
1118 index = 0;
1119 }
1120
1121 spapr->htab_save_index = index;
1122
1123 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1124 }
1125
1126 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1127 #define MAX_KVM_BUF_SIZE 2048
1128
1129 static int htab_save_iterate(QEMUFile *f, void *opaque)
1130 {
1131 sPAPREnvironment *spapr = opaque;
1132 int rc = 0;
1133
1134 /* Iteration header */
1135 qemu_put_be32(f, 0);
1136
1137 if (!spapr->htab) {
1138 assert(kvm_enabled());
1139
1140 rc = kvmppc_save_htab(f, spapr->htab_fd,
1141 MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1142 if (rc < 0) {
1143 return rc;
1144 }
1145 } else if (spapr->htab_first_pass) {
1146 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1147 } else {
1148 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1149 }
1150
1151 /* End marker */
1152 qemu_put_be32(f, 0);
1153 qemu_put_be16(f, 0);
1154 qemu_put_be16(f, 0);
1155
1156 return rc;
1157 }
1158
1159 static int htab_save_complete(QEMUFile *f, void *opaque)
1160 {
1161 sPAPREnvironment *spapr = opaque;
1162
1163 /* Iteration header */
1164 qemu_put_be32(f, 0);
1165
1166 if (!spapr->htab) {
1167 int rc;
1168
1169 assert(kvm_enabled());
1170
1171 rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1);
1172 if (rc < 0) {
1173 return rc;
1174 }
1175 close(spapr->htab_fd);
1176 spapr->htab_fd = -1;
1177 } else {
1178 htab_save_later_pass(f, spapr, -1);
1179 }
1180
1181 /* End marker */
1182 qemu_put_be32(f, 0);
1183 qemu_put_be16(f, 0);
1184 qemu_put_be16(f, 0);
1185
1186 return 0;
1187 }
1188
1189 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1190 {
1191 sPAPREnvironment *spapr = opaque;
1192 uint32_t section_hdr;
1193 int fd = -1;
1194
1195 if (version_id < 1 || version_id > 1) {
1196 fprintf(stderr, "htab_load() bad version\n");
1197 return -EINVAL;
1198 }
1199
1200 section_hdr = qemu_get_be32(f);
1201
1202 if (section_hdr) {
1203 /* First section, just the hash shift */
1204 if (spapr->htab_shift != section_hdr) {
1205 return -EINVAL;
1206 }
1207 return 0;
1208 }
1209
1210 if (!spapr->htab) {
1211 assert(kvm_enabled());
1212
1213 fd = kvmppc_get_htab_fd(true);
1214 if (fd < 0) {
1215 fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n",
1216 strerror(errno));
1217 }
1218 }
1219
1220 while (true) {
1221 uint32_t index;
1222 uint16_t n_valid, n_invalid;
1223
1224 index = qemu_get_be32(f);
1225 n_valid = qemu_get_be16(f);
1226 n_invalid = qemu_get_be16(f);
1227
1228 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1229 /* End of Stream */
1230 break;
1231 }
1232
1233 if ((index + n_valid + n_invalid) >
1234 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1235 /* Bad index in stream */
1236 fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) "
1237 "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid,
1238 spapr->htab_shift);
1239 return -EINVAL;
1240 }
1241
1242 if (spapr->htab) {
1243 if (n_valid) {
1244 qemu_get_buffer(f, HPTE(spapr->htab, index),
1245 HASH_PTE_SIZE_64 * n_valid);
1246 }
1247 if (n_invalid) {
1248 memset(HPTE(spapr->htab, index + n_valid), 0,
1249 HASH_PTE_SIZE_64 * n_invalid);
1250 }
1251 } else {
1252 int rc;
1253
1254 assert(fd >= 0);
1255
1256 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1257 if (rc < 0) {
1258 return rc;
1259 }
1260 }
1261 }
1262
1263 if (!spapr->htab) {
1264 assert(fd >= 0);
1265 close(fd);
1266 }
1267
1268 return 0;
1269 }
1270
1271 static SaveVMHandlers savevm_htab_handlers = {
1272 .save_live_setup = htab_save_setup,
1273 .save_live_iterate = htab_save_iterate,
1274 .save_live_complete = htab_save_complete,
1275 .load_state = htab_load,
1276 };
1277
1278 /* pSeries LPAR / sPAPR hardware init */
1279 static void ppc_spapr_init(MachineState *machine)
1280 {
1281 ram_addr_t ram_size = machine->ram_size;
1282 const char *cpu_model = machine->cpu_model;
1283 const char *kernel_filename = machine->kernel_filename;
1284 const char *kernel_cmdline = machine->kernel_cmdline;
1285 const char *initrd_filename = machine->initrd_filename;
1286 const char *boot_device = machine->boot_order;
1287 PowerPCCPU *cpu;
1288 CPUPPCState *env;
1289 PCIHostState *phb;
1290 int i;
1291 MemoryRegion *sysmem = get_system_memory();
1292 MemoryRegion *ram = g_new(MemoryRegion, 1);
1293 MemoryRegion *rma_region;
1294 void *rma = NULL;
1295 hwaddr rma_alloc_size;
1296 hwaddr node0_size = spapr_node0_size();
1297 uint32_t initrd_base = 0;
1298 long kernel_size = 0, initrd_size = 0;
1299 long load_limit, fw_size;
1300 bool kernel_le = false;
1301 char *filename;
1302
1303 msi_supported = true;
1304
1305 spapr = g_malloc0(sizeof(*spapr));
1306 QLIST_INIT(&spapr->phbs);
1307
1308 cpu_ppc_hypercall = emulate_spapr_hypercall;
1309
1310 /* Allocate RMA if necessary */
1311 rma_alloc_size = kvmppc_alloc_rma(&rma);
1312
1313 if (rma_alloc_size == -1) {
1314 hw_error("qemu: Unable to create RMA\n");
1315 exit(1);
1316 }
1317
1318 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1319 spapr->rma_size = rma_alloc_size;
1320 } else {
1321 spapr->rma_size = node0_size;
1322
1323 /* With KVM, we don't actually know whether KVM supports an
1324 * unbounded RMA (PR KVM) or is limited by the hash table size
1325 * (HV KVM using VRMA), so we always assume the latter
1326 *
1327 * In that case, we also limit the initial allocations for RTAS
1328 * etc... to 256M since we have no way to know what the VRMA size
1329 * is going to be as it depends on the size of the hash table
1330 * isn't determined yet.
1331 */
1332 if (kvm_enabled()) {
1333 spapr->vrma_adjust = 1;
1334 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1335 }
1336 }
1337
1338 if (spapr->rma_size > node0_size) {
1339 fprintf(stderr, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")\n",
1340 spapr->rma_size);
1341 exit(1);
1342 }
1343
1344 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
1345 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
1346
1347 /* We aim for a hash table of size 1/128 the size of RAM. The
1348 * normal rule of thumb is 1/64 the size of RAM, but that's much
1349 * more than needed for the Linux guests we support. */
1350 spapr->htab_shift = 18; /* Minimum architected size */
1351 while (spapr->htab_shift <= 46) {
1352 if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) {
1353 break;
1354 }
1355 spapr->htab_shift++;
1356 }
1357
1358 /* Set up Interrupt Controller before we create the VCPUs */
1359 spapr->icp = xics_system_init(smp_cpus * kvmppc_smt_threads() / smp_threads,
1360 XICS_IRQS);
1361
1362 /* init CPUs */
1363 if (cpu_model == NULL) {
1364 cpu_model = kvm_enabled() ? "host" : "POWER7";
1365 }
1366 for (i = 0; i < smp_cpus; i++) {
1367 cpu = cpu_ppc_init(cpu_model);
1368 if (cpu == NULL) {
1369 fprintf(stderr, "Unable to find PowerPC CPU definition\n");
1370 exit(1);
1371 }
1372 env = &cpu->env;
1373
1374 /* Set time-base frequency to 512 MHz */
1375 cpu_ppc_tb_init(env, TIMEBASE_FREQ);
1376
1377 /* PAPR always has exception vectors in RAM not ROM. To ensure this,
1378 * MSR[IP] should never be set.
1379 */
1380 env->msr_mask &= ~(1 << 6);
1381
1382 /* Tell KVM that we're in PAPR mode */
1383 if (kvm_enabled()) {
1384 kvmppc_set_papr(cpu);
1385 }
1386
1387 if (cpu->max_compat) {
1388 if (ppc_set_compat(cpu, cpu->max_compat) < 0) {
1389 exit(1);
1390 }
1391 }
1392
1393 xics_cpu_setup(spapr->icp, cpu);
1394
1395 qemu_register_reset(spapr_cpu_reset, cpu);
1396 }
1397
1398 /* allocate RAM */
1399 spapr->ram_limit = ram_size;
1400 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
1401 spapr->ram_limit);
1402 memory_region_add_subregion(sysmem, 0, ram);
1403
1404 if (rma_alloc_size && rma) {
1405 rma_region = g_new(MemoryRegion, 1);
1406 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
1407 rma_alloc_size, rma);
1408 vmstate_register_ram_global(rma_region);
1409 memory_region_add_subregion(sysmem, 0, rma_region);
1410 }
1411
1412 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1413 spapr->rtas_size = get_image_size(filename);
1414 spapr->rtas_blob = g_malloc(spapr->rtas_size);
1415 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
1416 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
1417 exit(1);
1418 }
1419 if (spapr->rtas_size > RTAS_MAX_SIZE) {
1420 hw_error("RTAS too big ! 0x%zx bytes (max is 0x%x)\n",
1421 spapr->rtas_size, RTAS_MAX_SIZE);
1422 exit(1);
1423 }
1424 g_free(filename);
1425
1426 /* Set up EPOW events infrastructure */
1427 spapr_events_init(spapr);
1428
1429 /* Set up VIO bus */
1430 spapr->vio_bus = spapr_vio_bus_init();
1431
1432 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1433 if (serial_hds[i]) {
1434 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1435 }
1436 }
1437
1438 /* We always have at least the nvram device on VIO */
1439 spapr_create_nvram(spapr);
1440
1441 /* Set up PCI */
1442 spapr_pci_rtas_init();
1443
1444 phb = spapr_create_phb(spapr, 0);
1445
1446 for (i = 0; i < nb_nics; i++) {
1447 NICInfo *nd = &nd_table[i];
1448
1449 if (!nd->model) {
1450 nd->model = g_strdup("ibmveth");
1451 }
1452
1453 if (strcmp(nd->model, "ibmveth") == 0) {
1454 spapr_vlan_create(spapr->vio_bus, nd);
1455 } else {
1456 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1457 }
1458 }
1459
1460 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1461 spapr_vscsi_create(spapr->vio_bus);
1462 }
1463
1464 /* Graphics */
1465 if (spapr_vga_init(phb->bus)) {
1466 spapr->has_graphics = true;
1467 }
1468
1469 if (usb_enabled(spapr->has_graphics)) {
1470 pci_create_simple(phb->bus, -1, "pci-ohci");
1471 if (spapr->has_graphics) {
1472 usbdevice_create("keyboard");
1473 usbdevice_create("mouse");
1474 }
1475 }
1476
1477 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1478 fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
1479 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
1480 exit(1);
1481 }
1482
1483 if (kernel_filename) {
1484 uint64_t lowaddr = 0;
1485
1486 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
1487 NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
1488 if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1489 kernel_size = load_elf(kernel_filename,
1490 translate_kernel_address, NULL,
1491 NULL, &lowaddr, NULL, 0, ELF_MACHINE, 0);
1492 kernel_le = kernel_size > 0;
1493 }
1494 if (kernel_size < 0) {
1495 fprintf(stderr, "qemu: error loading %s: %s\n",
1496 kernel_filename, load_elf_strerror(kernel_size));
1497 exit(1);
1498 }
1499
1500 /* load initrd */
1501 if (initrd_filename) {
1502 /* Try to locate the initrd in the gap between the kernel
1503 * and the firmware. Add a bit of space just in case
1504 */
1505 initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1506 initrd_size = load_image_targphys(initrd_filename, initrd_base,
1507 load_limit - initrd_base);
1508 if (initrd_size < 0) {
1509 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
1510 initrd_filename);
1511 exit(1);
1512 }
1513 } else {
1514 initrd_base = 0;
1515 initrd_size = 0;
1516 }
1517 }
1518
1519 if (bios_name == NULL) {
1520 bios_name = FW_FILE_NAME;
1521 }
1522 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1523 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
1524 if (fw_size < 0) {
1525 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
1526 exit(1);
1527 }
1528 g_free(filename);
1529
1530 spapr->entry_point = 0x100;
1531
1532 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
1533 register_savevm_live(NULL, "spapr/htab", -1, 1,
1534 &savevm_htab_handlers, spapr);
1535
1536 /* Prepare the device tree */
1537 spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
1538 kernel_size, kernel_le,
1539 boot_device, kernel_cmdline,
1540 spapr->epow_irq);
1541 assert(spapr->fdt_skel != NULL);
1542 }
1543
1544 static int spapr_kvm_type(const char *vm_type)
1545 {
1546 if (!vm_type) {
1547 return 0;
1548 }
1549
1550 if (!strcmp(vm_type, "HV")) {
1551 return 1;
1552 }
1553
1554 if (!strcmp(vm_type, "PR")) {
1555 return 2;
1556 }
1557
1558 error_report("Unknown kvm-type specified '%s'", vm_type);
1559 exit(1);
1560 }
1561
1562 /*
1563 * Implementation of an interface to adjust firmware patch
1564 * for the bootindex property handling.
1565 */
1566 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
1567 DeviceState *dev)
1568 {
1569 #define CAST(type, obj, name) \
1570 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
1571 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
1572 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
1573
1574 if (d) {
1575 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
1576 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
1577 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
1578
1579 if (spapr) {
1580 /*
1581 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
1582 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
1583 * in the top 16 bits of the 64-bit LUN
1584 */
1585 unsigned id = 0x8000 | (d->id << 8) | d->lun;
1586 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1587 (uint64_t)id << 48);
1588 } else if (virtio) {
1589 /*
1590 * We use SRP luns of the form 01000000 | (target << 8) | lun
1591 * in the top 32 bits of the 64-bit LUN
1592 * Note: the quote above is from SLOF and it is wrong,
1593 * the actual binding is:
1594 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
1595 */
1596 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
1597 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1598 (uint64_t)id << 32);
1599 } else if (usb) {
1600 /*
1601 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
1602 * in the top 32 bits of the 64-bit LUN
1603 */
1604 unsigned usb_port = atoi(usb->port->path);
1605 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
1606 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1607 (uint64_t)id << 32);
1608 }
1609 }
1610
1611 if (phb) {
1612 /* Replace "pci" with "pci@800000020000000" */
1613 return g_strdup_printf("pci@%"PRIX64, phb->buid);
1614 }
1615
1616 return NULL;
1617 }
1618
1619 static char *spapr_get_kvm_type(Object *obj, Error **errp)
1620 {
1621 sPAPRMachineState *sm = SPAPR_MACHINE(obj);
1622
1623 return g_strdup(sm->kvm_type);
1624 }
1625
1626 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
1627 {
1628 sPAPRMachineState *sm = SPAPR_MACHINE(obj);
1629
1630 g_free(sm->kvm_type);
1631 sm->kvm_type = g_strdup(value);
1632 }
1633
1634 static void spapr_machine_initfn(Object *obj)
1635 {
1636 object_property_add_str(obj, "kvm-type",
1637 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
1638 }
1639
1640 static void ppc_cpu_do_nmi_on_cpu(void *arg)
1641 {
1642 CPUState *cs = arg;
1643
1644 cpu_synchronize_state(cs);
1645 ppc_cpu_do_system_reset(cs);
1646 }
1647
1648 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
1649 {
1650 CPUState *cs;
1651
1652 CPU_FOREACH(cs) {
1653 async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, cs);
1654 }
1655 }
1656
1657 static void spapr_machine_class_init(ObjectClass *oc, void *data)
1658 {
1659 MachineClass *mc = MACHINE_CLASS(oc);
1660 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
1661 NMIClass *nc = NMI_CLASS(oc);
1662
1663 mc->name = "pseries";
1664 mc->desc = "pSeries Logical Partition (PAPR compliant)";
1665 mc->is_default = 1;
1666 mc->init = ppc_spapr_init;
1667 mc->reset = ppc_spapr_reset;
1668 mc->block_default_type = IF_SCSI;
1669 mc->max_cpus = MAX_CPUS;
1670 mc->no_parallel = 1;
1671 mc->default_boot_order = NULL;
1672 mc->kvm_type = spapr_kvm_type;
1673
1674 fwc->get_dev_path = spapr_get_fw_dev_path;
1675 nc->nmi_monitor_handler = spapr_nmi;
1676 }
1677
1678 static const TypeInfo spapr_machine_info = {
1679 .name = TYPE_SPAPR_MACHINE,
1680 .parent = TYPE_MACHINE,
1681 .instance_size = sizeof(sPAPRMachineState),
1682 .instance_init = spapr_machine_initfn,
1683 .class_init = spapr_machine_class_init,
1684 .interfaces = (InterfaceInfo[]) {
1685 { TYPE_FW_PATH_PROVIDER },
1686 { TYPE_NMI },
1687 { }
1688 },
1689 };
1690
1691 static void spapr_machine_2_1_class_init(ObjectClass *oc, void *data)
1692 {
1693 MachineClass *mc = MACHINE_CLASS(oc);
1694 static GlobalProperty compat_props[] = {
1695 HW_COMPAT_2_1,
1696 { /* end of list */ }
1697 };
1698
1699 mc->name = "pseries-2.1";
1700 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.1";
1701 mc->is_default = 0;
1702 mc->compat_props = compat_props;
1703 }
1704
1705 static const TypeInfo spapr_machine_2_1_info = {
1706 .name = TYPE_SPAPR_MACHINE "2.1",
1707 .parent = TYPE_SPAPR_MACHINE,
1708 .class_init = spapr_machine_2_1_class_init,
1709 };
1710
1711 static void spapr_machine_register_types(void)
1712 {
1713 type_register_static(&spapr_machine_info);
1714 type_register_static(&spapr_machine_2_1_info);
1715 }
1716
1717 type_init(spapr_machine_register_types)