]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr.c
Merge tag 'pull-ppc-20230918' of https://gitlab.com/danielhb/qemu into staging
[mirror_qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 */
26
27 #include "qemu/osdep.h"
28 #include "qemu/datadir.h"
29 #include "qemu/memalign.h"
30 #include "qemu/guest-random.h"
31 #include "qapi/error.h"
32 #include "qapi/qapi-events-machine.h"
33 #include "qapi/qapi-events-qdev.h"
34 #include "qapi/visitor.h"
35 #include "sysemu/sysemu.h"
36 #include "sysemu/hostmem.h"
37 #include "sysemu/numa.h"
38 #include "sysemu/qtest.h"
39 #include "sysemu/reset.h"
40 #include "sysemu/runstate.h"
41 #include "qemu/log.h"
42 #include "hw/fw-path-provider.h"
43 #include "elf.h"
44 #include "net/net.h"
45 #include "sysemu/device_tree.h"
46 #include "sysemu/cpus.h"
47 #include "sysemu/hw_accel.h"
48 #include "kvm_ppc.h"
49 #include "migration/misc.h"
50 #include "migration/qemu-file-types.h"
51 #include "migration/global_state.h"
52 #include "migration/register.h"
53 #include "migration/blocker.h"
54 #include "mmu-hash64.h"
55 #include "mmu-book3s-v3.h"
56 #include "cpu-models.h"
57 #include "hw/core/cpu.h"
58
59 #include "hw/ppc/ppc.h"
60 #include "hw/loader.h"
61
62 #include "hw/ppc/fdt.h"
63 #include "hw/ppc/spapr.h"
64 #include "hw/ppc/spapr_nested.h"
65 #include "hw/ppc/spapr_vio.h"
66 #include "hw/ppc/vof.h"
67 #include "hw/qdev-properties.h"
68 #include "hw/pci-host/spapr.h"
69 #include "hw/pci/msi.h"
70
71 #include "hw/pci/pci.h"
72 #include "hw/scsi/scsi.h"
73 #include "hw/virtio/virtio-scsi.h"
74 #include "hw/virtio/vhost-scsi-common.h"
75
76 #include "exec/ram_addr.h"
77 #include "hw/usb.h"
78 #include "qemu/config-file.h"
79 #include "qemu/error-report.h"
80 #include "trace.h"
81 #include "hw/nmi.h"
82 #include "hw/intc/intc.h"
83
84 #include "hw/ppc/spapr_cpu_core.h"
85 #include "hw/mem/memory-device.h"
86 #include "hw/ppc/spapr_tpm_proxy.h"
87 #include "hw/ppc/spapr_nvdimm.h"
88 #include "hw/ppc/spapr_numa.h"
89 #include "hw/ppc/pef.h"
90
91 #include "monitor/monitor.h"
92
93 #include <libfdt.h>
94
95 /* SLOF memory layout:
96 *
97 * SLOF raw image loaded at 0, copies its romfs right below the flat
98 * device-tree, then position SLOF itself 31M below that
99 *
100 * So we set FW_OVERHEAD to 40MB which should account for all of that
101 * and more
102 *
103 * We load our kernel at 4M, leaving space for SLOF initial image
104 */
105 #define FDT_MAX_ADDR 0x80000000 /* FDT must stay below that */
106 #define FW_MAX_SIZE 0x400000
107 #define FW_FILE_NAME "slof.bin"
108 #define FW_FILE_NAME_VOF "vof.bin"
109 #define FW_OVERHEAD 0x2800000
110 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
111
112 #define MIN_RMA_SLOF (128 * MiB)
113
114 #define PHANDLE_INTC 0x00001111
115
116 /* These two functions implement the VCPU id numbering: one to compute them
117 * all and one to identify thread 0 of a VCORE. Any change to the first one
118 * is likely to have an impact on the second one, so let's keep them close.
119 */
120 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
121 {
122 MachineState *ms = MACHINE(spapr);
123 unsigned int smp_threads = ms->smp.threads;
124
125 assert(spapr->vsmt);
126 return
127 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
128 }
129 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
130 PowerPCCPU *cpu)
131 {
132 assert(spapr->vsmt);
133 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
134 }
135
136 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
137 {
138 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
139 * and newer QEMUs don't even have them. In both cases, we don't want
140 * to send anything on the wire.
141 */
142 return false;
143 }
144
145 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
146 .name = "icp/server",
147 .version_id = 1,
148 .minimum_version_id = 1,
149 .needed = pre_2_10_vmstate_dummy_icp_needed,
150 .fields = (VMStateField[]) {
151 VMSTATE_UNUSED(4), /* uint32_t xirr */
152 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
153 VMSTATE_UNUSED(1), /* uint8_t mfrr */
154 VMSTATE_END_OF_LIST()
155 },
156 };
157
158 static void pre_2_10_vmstate_register_dummy_icp(int i)
159 {
160 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
161 (void *)(uintptr_t) i);
162 }
163
164 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
165 {
166 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
167 (void *)(uintptr_t) i);
168 }
169
170 int spapr_max_server_number(SpaprMachineState *spapr)
171 {
172 MachineState *ms = MACHINE(spapr);
173
174 assert(spapr->vsmt);
175 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
176 }
177
178 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
179 int smt_threads)
180 {
181 int i, ret = 0;
182 g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads);
183 g_autofree uint32_t *gservers_prop = g_new(uint32_t, smt_threads * 2);
184 int index = spapr_get_vcpu_id(cpu);
185
186 if (cpu->compat_pvr) {
187 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
188 if (ret < 0) {
189 return ret;
190 }
191 }
192
193 /* Build interrupt servers and gservers properties */
194 for (i = 0; i < smt_threads; i++) {
195 servers_prop[i] = cpu_to_be32(index + i);
196 /* Hack, direct the group queues back to cpu 0 */
197 gservers_prop[i*2] = cpu_to_be32(index + i);
198 gservers_prop[i*2 + 1] = 0;
199 }
200 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
201 servers_prop, sizeof(*servers_prop) * smt_threads);
202 if (ret < 0) {
203 return ret;
204 }
205 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
206 gservers_prop, sizeof(*gservers_prop) * smt_threads * 2);
207
208 return ret;
209 }
210
211 static void spapr_dt_pa_features(SpaprMachineState *spapr,
212 PowerPCCPU *cpu,
213 void *fdt, int offset)
214 {
215 uint8_t pa_features_206[] = { 6, 0,
216 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
217 uint8_t pa_features_207[] = { 24, 0,
218 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
219 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
220 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
221 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
222 uint8_t pa_features_300[] = { 66, 0,
223 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
224 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
225 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
226 /* 6: DS207 */
227 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
228 /* 16: Vector */
229 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
230 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
231 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
232 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
233 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
234 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
235 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
236 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
238 /* 42: PM, 44: PC RA, 46: SC vec'd */
239 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
240 /* 48: SIMD, 50: QP BFP, 52: String */
241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
242 /* 54: DecFP, 56: DecI, 58: SHA */
243 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
244 /* 60: NM atomic, 62: RNG */
245 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
246 };
247 uint8_t *pa_features = NULL;
248 size_t pa_size;
249
250 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
251 pa_features = pa_features_206;
252 pa_size = sizeof(pa_features_206);
253 }
254 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
255 pa_features = pa_features_207;
256 pa_size = sizeof(pa_features_207);
257 }
258 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
259 pa_features = pa_features_300;
260 pa_size = sizeof(pa_features_300);
261 }
262 if (!pa_features) {
263 return;
264 }
265
266 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
267 /*
268 * Note: we keep CI large pages off by default because a 64K capable
269 * guest provisioned with large pages might otherwise try to map a qemu
270 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
271 * even if that qemu runs on a 4k host.
272 * We dd this bit back here if we are confident this is not an issue
273 */
274 pa_features[3] |= 0x20;
275 }
276 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
277 pa_features[24] |= 0x80; /* Transactional memory support */
278 }
279 if (spapr->cas_pre_isa3_guest && pa_size > 40) {
280 /* Workaround for broken kernels that attempt (guest) radix
281 * mode when they can't handle it, if they see the radix bit set
282 * in pa-features. So hide it from them. */
283 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
284 }
285
286 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
287 }
288
289 static hwaddr spapr_node0_size(MachineState *machine)
290 {
291 if (machine->numa_state->num_nodes) {
292 int i;
293 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
294 if (machine->numa_state->nodes[i].node_mem) {
295 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
296 machine->ram_size);
297 }
298 }
299 }
300 return machine->ram_size;
301 }
302
303 static void add_str(GString *s, const gchar *s1)
304 {
305 g_string_append_len(s, s1, strlen(s1) + 1);
306 }
307
308 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
309 hwaddr start, hwaddr size)
310 {
311 char mem_name[32];
312 uint64_t mem_reg_property[2];
313 int off;
314
315 mem_reg_property[0] = cpu_to_be64(start);
316 mem_reg_property[1] = cpu_to_be64(size);
317
318 sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
319 off = fdt_add_subnode(fdt, 0, mem_name);
320 _FDT(off);
321 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
322 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
323 sizeof(mem_reg_property))));
324 spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
325 return off;
326 }
327
328 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
329 {
330 MemoryDeviceInfoList *info;
331
332 for (info = list; info; info = info->next) {
333 MemoryDeviceInfo *value = info->value;
334
335 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
336 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
337
338 if (addr >= pcdimm_info->addr &&
339 addr < (pcdimm_info->addr + pcdimm_info->size)) {
340 return pcdimm_info->node;
341 }
342 }
343 }
344
345 return -1;
346 }
347
348 struct sPAPRDrconfCellV2 {
349 uint32_t seq_lmbs;
350 uint64_t base_addr;
351 uint32_t drc_index;
352 uint32_t aa_index;
353 uint32_t flags;
354 } QEMU_PACKED;
355
356 typedef struct DrconfCellQueue {
357 struct sPAPRDrconfCellV2 cell;
358 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
359 } DrconfCellQueue;
360
361 static DrconfCellQueue *
362 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
363 uint32_t drc_index, uint32_t aa_index,
364 uint32_t flags)
365 {
366 DrconfCellQueue *elem;
367
368 elem = g_malloc0(sizeof(*elem));
369 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
370 elem->cell.base_addr = cpu_to_be64(base_addr);
371 elem->cell.drc_index = cpu_to_be32(drc_index);
372 elem->cell.aa_index = cpu_to_be32(aa_index);
373 elem->cell.flags = cpu_to_be32(flags);
374
375 return elem;
376 }
377
378 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
379 int offset, MemoryDeviceInfoList *dimms)
380 {
381 MachineState *machine = MACHINE(spapr);
382 uint8_t *int_buf, *cur_index;
383 int ret;
384 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
385 uint64_t addr, cur_addr, size;
386 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
387 uint64_t mem_end = machine->device_memory->base +
388 memory_region_size(&machine->device_memory->mr);
389 uint32_t node, buf_len, nr_entries = 0;
390 SpaprDrc *drc;
391 DrconfCellQueue *elem, *next;
392 MemoryDeviceInfoList *info;
393 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
394 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
395
396 /* Entry to cover RAM and the gap area */
397 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
398 SPAPR_LMB_FLAGS_RESERVED |
399 SPAPR_LMB_FLAGS_DRC_INVALID);
400 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
401 nr_entries++;
402
403 cur_addr = machine->device_memory->base;
404 for (info = dimms; info; info = info->next) {
405 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
406
407 addr = di->addr;
408 size = di->size;
409 node = di->node;
410
411 /*
412 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
413 * area is marked hotpluggable in the next iteration for the bigger
414 * chunk including the NVDIMM occupied area.
415 */
416 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
417 continue;
418
419 /* Entry for hot-pluggable area */
420 if (cur_addr < addr) {
421 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
422 g_assert(drc);
423 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
424 cur_addr, spapr_drc_index(drc), -1, 0);
425 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
426 nr_entries++;
427 }
428
429 /* Entry for DIMM */
430 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
431 g_assert(drc);
432 elem = spapr_get_drconf_cell(size / lmb_size, addr,
433 spapr_drc_index(drc), node,
434 (SPAPR_LMB_FLAGS_ASSIGNED |
435 SPAPR_LMB_FLAGS_HOTREMOVABLE));
436 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
437 nr_entries++;
438 cur_addr = addr + size;
439 }
440
441 /* Entry for remaining hotpluggable area */
442 if (cur_addr < mem_end) {
443 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
444 g_assert(drc);
445 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
446 cur_addr, spapr_drc_index(drc), -1, 0);
447 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
448 nr_entries++;
449 }
450
451 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
452 int_buf = cur_index = g_malloc0(buf_len);
453 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
454 cur_index += sizeof(nr_entries);
455
456 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
457 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
458 cur_index += sizeof(elem->cell);
459 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
460 g_free(elem);
461 }
462
463 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
464 g_free(int_buf);
465 if (ret < 0) {
466 return -1;
467 }
468 return 0;
469 }
470
471 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
472 int offset, MemoryDeviceInfoList *dimms)
473 {
474 MachineState *machine = MACHINE(spapr);
475 int i, ret;
476 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
477 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
478 uint32_t nr_lmbs = (machine->device_memory->base +
479 memory_region_size(&machine->device_memory->mr)) /
480 lmb_size;
481 uint32_t *int_buf, *cur_index, buf_len;
482
483 /*
484 * Allocate enough buffer size to fit in ibm,dynamic-memory
485 */
486 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
487 cur_index = int_buf = g_malloc0(buf_len);
488 int_buf[0] = cpu_to_be32(nr_lmbs);
489 cur_index++;
490 for (i = 0; i < nr_lmbs; i++) {
491 uint64_t addr = i * lmb_size;
492 uint32_t *dynamic_memory = cur_index;
493
494 if (i >= device_lmb_start) {
495 SpaprDrc *drc;
496
497 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
498 g_assert(drc);
499
500 dynamic_memory[0] = cpu_to_be32(addr >> 32);
501 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
502 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
503 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
504 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
505 if (memory_region_present(get_system_memory(), addr)) {
506 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
507 } else {
508 dynamic_memory[5] = cpu_to_be32(0);
509 }
510 } else {
511 /*
512 * LMB information for RMA, boot time RAM and gap b/n RAM and
513 * device memory region -- all these are marked as reserved
514 * and as having no valid DRC.
515 */
516 dynamic_memory[0] = cpu_to_be32(addr >> 32);
517 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
518 dynamic_memory[2] = cpu_to_be32(0);
519 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
520 dynamic_memory[4] = cpu_to_be32(-1);
521 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
522 SPAPR_LMB_FLAGS_DRC_INVALID);
523 }
524
525 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
526 }
527 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
528 g_free(int_buf);
529 if (ret < 0) {
530 return -1;
531 }
532 return 0;
533 }
534
535 /*
536 * Adds ibm,dynamic-reconfiguration-memory node.
537 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
538 * of this device tree node.
539 */
540 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
541 void *fdt)
542 {
543 MachineState *machine = MACHINE(spapr);
544 int ret, offset;
545 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
546 uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
547 cpu_to_be32(lmb_size & 0xffffffff)};
548 MemoryDeviceInfoList *dimms = NULL;
549
550 /* Don't create the node if there is no device memory. */
551 if (!machine->device_memory) {
552 return 0;
553 }
554
555 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
556
557 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
558 sizeof(prop_lmb_size));
559 if (ret < 0) {
560 return ret;
561 }
562
563 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
564 if (ret < 0) {
565 return ret;
566 }
567
568 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
569 if (ret < 0) {
570 return ret;
571 }
572
573 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
574 dimms = qmp_memory_device_list();
575 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
576 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
577 } else {
578 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
579 }
580 qapi_free_MemoryDeviceInfoList(dimms);
581
582 if (ret < 0) {
583 return ret;
584 }
585
586 ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
587
588 return ret;
589 }
590
591 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
592 {
593 MachineState *machine = MACHINE(spapr);
594 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
595 hwaddr mem_start, node_size;
596 int i, nb_nodes = machine->numa_state->num_nodes;
597 NodeInfo *nodes = machine->numa_state->nodes;
598
599 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
600 if (!nodes[i].node_mem) {
601 continue;
602 }
603 if (mem_start >= machine->ram_size) {
604 node_size = 0;
605 } else {
606 node_size = nodes[i].node_mem;
607 if (node_size > machine->ram_size - mem_start) {
608 node_size = machine->ram_size - mem_start;
609 }
610 }
611 if (!mem_start) {
612 /* spapr_machine_init() checks for rma_size <= node0_size
613 * already */
614 spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
615 mem_start += spapr->rma_size;
616 node_size -= spapr->rma_size;
617 }
618 for ( ; node_size; ) {
619 hwaddr sizetmp = pow2floor(node_size);
620
621 /* mem_start != 0 here */
622 if (ctzl(mem_start) < ctzl(sizetmp)) {
623 sizetmp = 1ULL << ctzl(mem_start);
624 }
625
626 spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
627 node_size -= sizetmp;
628 mem_start += sizetmp;
629 }
630 }
631
632 /* Generate ibm,dynamic-reconfiguration-memory node if required */
633 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
634 int ret;
635
636 g_assert(smc->dr_lmb_enabled);
637 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
638 if (ret) {
639 return ret;
640 }
641 }
642
643 return 0;
644 }
645
646 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
647 SpaprMachineState *spapr)
648 {
649 MachineState *ms = MACHINE(spapr);
650 PowerPCCPU *cpu = POWERPC_CPU(cs);
651 CPUPPCState *env = &cpu->env;
652 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
653 int index = spapr_get_vcpu_id(cpu);
654 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
655 0xffffffff, 0xffffffff};
656 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
657 : SPAPR_TIMEBASE_FREQ;
658 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
659 uint32_t page_sizes_prop[64];
660 size_t page_sizes_prop_size;
661 unsigned int smp_threads = ms->smp.threads;
662 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
663 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
664 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
665 SpaprDrc *drc;
666 int drc_index;
667 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
668 int i;
669
670 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
671 if (drc) {
672 drc_index = spapr_drc_index(drc);
673 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
674 }
675
676 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
677 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
678
679 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
680 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
681 env->dcache_line_size)));
682 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
683 env->dcache_line_size)));
684 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
685 env->icache_line_size)));
686 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
687 env->icache_line_size)));
688
689 if (pcc->l1_dcache_size) {
690 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
691 pcc->l1_dcache_size)));
692 } else {
693 warn_report("Unknown L1 dcache size for cpu");
694 }
695 if (pcc->l1_icache_size) {
696 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
697 pcc->l1_icache_size)));
698 } else {
699 warn_report("Unknown L1 icache size for cpu");
700 }
701
702 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
703 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
704 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
705 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
706 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
707 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
708
709 if (ppc_has_spr(cpu, SPR_PURR)) {
710 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
711 }
712 if (ppc_has_spr(cpu, SPR_PURR)) {
713 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
714 }
715
716 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
717 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
718 segs, sizeof(segs))));
719 }
720
721 /* Advertise VSX (vector extensions) if available
722 * 1 == VMX / Altivec available
723 * 2 == VSX available
724 *
725 * Only CPUs for which we create core types in spapr_cpu_core.c
726 * are possible, and all of those have VMX */
727 if (env->insns_flags & PPC_ALTIVEC) {
728 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
729 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
730 } else {
731 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
732 }
733 }
734
735 /* Advertise DFP (Decimal Floating Point) if available
736 * 0 / no property == no DFP
737 * 1 == DFP available */
738 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
739 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
740 }
741
742 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
743 sizeof(page_sizes_prop));
744 if (page_sizes_prop_size) {
745 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
746 page_sizes_prop, page_sizes_prop_size)));
747 }
748
749 spapr_dt_pa_features(spapr, cpu, fdt, offset);
750
751 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
752 cs->cpu_index / vcpus_per_socket)));
753
754 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
755 pft_size_prop, sizeof(pft_size_prop))));
756
757 if (ms->numa_state->num_nodes > 1) {
758 _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
759 }
760
761 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
762
763 if (pcc->radix_page_info) {
764 for (i = 0; i < pcc->radix_page_info->count; i++) {
765 radix_AP_encodings[i] =
766 cpu_to_be32(pcc->radix_page_info->entries[i]);
767 }
768 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
769 radix_AP_encodings,
770 pcc->radix_page_info->count *
771 sizeof(radix_AP_encodings[0]))));
772 }
773
774 /*
775 * We set this property to let the guest know that it can use the large
776 * decrementer and its width in bits.
777 */
778 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
779 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
780 pcc->lrg_decr_bits)));
781 }
782
783 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
784 {
785 CPUState **rev;
786 CPUState *cs;
787 int n_cpus;
788 int cpus_offset;
789 int i;
790
791 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
792 _FDT(cpus_offset);
793 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
794 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
795
796 /*
797 * We walk the CPUs in reverse order to ensure that CPU DT nodes
798 * created by fdt_add_subnode() end up in the right order in FDT
799 * for the guest kernel the enumerate the CPUs correctly.
800 *
801 * The CPU list cannot be traversed in reverse order, so we need
802 * to do extra work.
803 */
804 n_cpus = 0;
805 rev = NULL;
806 CPU_FOREACH(cs) {
807 rev = g_renew(CPUState *, rev, n_cpus + 1);
808 rev[n_cpus++] = cs;
809 }
810
811 for (i = n_cpus - 1; i >= 0; i--) {
812 CPUState *cs = rev[i];
813 PowerPCCPU *cpu = POWERPC_CPU(cs);
814 int index = spapr_get_vcpu_id(cpu);
815 DeviceClass *dc = DEVICE_GET_CLASS(cs);
816 g_autofree char *nodename = NULL;
817 int offset;
818
819 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
820 continue;
821 }
822
823 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
824 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
825 _FDT(offset);
826 spapr_dt_cpu(cs, fdt, offset, spapr);
827 }
828
829 g_free(rev);
830 }
831
832 static int spapr_dt_rng(void *fdt)
833 {
834 int node;
835 int ret;
836
837 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
838 if (node <= 0) {
839 return -1;
840 }
841 ret = fdt_setprop_string(fdt, node, "device_type",
842 "ibm,platform-facilities");
843 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
844 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
845
846 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
847 if (node <= 0) {
848 return -1;
849 }
850 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
851
852 return ret ? -1 : 0;
853 }
854
855 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
856 {
857 MachineState *ms = MACHINE(spapr);
858 int rtas;
859 GString *hypertas = g_string_sized_new(256);
860 GString *qemu_hypertas = g_string_sized_new(256);
861 uint32_t lrdr_capacity[] = {
862 0,
863 0,
864 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
865 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
866 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
867 };
868
869 /* Do we have device memory? */
870 if (MACHINE(spapr)->device_memory) {
871 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
872 memory_region_size(&MACHINE(spapr)->device_memory->mr);
873
874 lrdr_capacity[0] = cpu_to_be32(max_device_addr >> 32);
875 lrdr_capacity[1] = cpu_to_be32(max_device_addr & 0xffffffff);
876 }
877
878 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
879
880 /* hypertas */
881 add_str(hypertas, "hcall-pft");
882 add_str(hypertas, "hcall-term");
883 add_str(hypertas, "hcall-dabr");
884 add_str(hypertas, "hcall-interrupt");
885 add_str(hypertas, "hcall-tce");
886 add_str(hypertas, "hcall-vio");
887 add_str(hypertas, "hcall-splpar");
888 add_str(hypertas, "hcall-join");
889 add_str(hypertas, "hcall-bulk");
890 add_str(hypertas, "hcall-set-mode");
891 add_str(hypertas, "hcall-sprg0");
892 add_str(hypertas, "hcall-copy");
893 add_str(hypertas, "hcall-debug");
894 add_str(hypertas, "hcall-vphn");
895 if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) {
896 add_str(hypertas, "hcall-rpt-invalidate");
897 }
898
899 add_str(qemu_hypertas, "hcall-memop1");
900
901 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
902 add_str(hypertas, "hcall-multi-tce");
903 }
904
905 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
906 add_str(hypertas, "hcall-hpt-resize");
907 }
908
909 add_str(hypertas, "hcall-watchdog");
910
911 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
912 hypertas->str, hypertas->len));
913 g_string_free(hypertas, TRUE);
914 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
915 qemu_hypertas->str, qemu_hypertas->len));
916 g_string_free(qemu_hypertas, TRUE);
917
918 spapr_numa_write_rtas_dt(spapr, fdt, rtas);
919
920 /*
921 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
922 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
923 *
924 * The system reset requirements are driven by existing Linux and PowerVM
925 * implementation which (contrary to PAPR) saves r3 in the error log
926 * structure like machine check, so Linux expects to find the saved r3
927 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
928 * does not look at the error value).
929 *
930 * System reset interrupts are not subject to interlock like machine
931 * check, so this memory area could be corrupted if the sreset is
932 * interrupted by a machine check (or vice versa) if it was shared. To
933 * prevent this, system reset uses per-CPU areas for the sreset save
934 * area. A system reset that interrupts a system reset handler could
935 * still overwrite this area, but Linux doesn't try to recover in that
936 * case anyway.
937 *
938 * The extra 8 bytes is required because Linux's FWNMI error log check
939 * is off-by-one.
940 *
941 * RTAS_MIN_SIZE is required for the RTAS blob itself.
942 */
943 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE +
944 RTAS_ERROR_LOG_MAX +
945 ms->smp.max_cpus * sizeof(uint64_t) * 2 +
946 sizeof(uint64_t)));
947 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
948 RTAS_ERROR_LOG_MAX));
949 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
950 RTAS_EVENT_SCAN_RATE));
951
952 g_assert(msi_nonbroken);
953 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
954
955 /*
956 * According to PAPR, rtas ibm,os-term does not guarantee a return
957 * back to the guest cpu.
958 *
959 * While an additional ibm,extended-os-term property indicates
960 * that rtas call return will always occur. Set this property.
961 */
962 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
963
964 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
965 lrdr_capacity, sizeof(lrdr_capacity)));
966
967 spapr_dt_rtas_tokens(fdt, rtas);
968 }
969
970 /*
971 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
972 * and the XIVE features that the guest may request and thus the valid
973 * values for bytes 23..26 of option vector 5:
974 */
975 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
976 int chosen)
977 {
978 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
979
980 char val[2 * 4] = {
981 23, 0x00, /* XICS / XIVE mode */
982 24, 0x00, /* Hash/Radix, filled in below. */
983 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
984 26, 0x40, /* Radix options: GTSE == yes. */
985 };
986
987 if (spapr->irq->xics && spapr->irq->xive) {
988 val[1] = SPAPR_OV5_XIVE_BOTH;
989 } else if (spapr->irq->xive) {
990 val[1] = SPAPR_OV5_XIVE_EXPLOIT;
991 } else {
992 assert(spapr->irq->xics);
993 val[1] = SPAPR_OV5_XIVE_LEGACY;
994 }
995
996 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
997 first_ppc_cpu->compat_pvr)) {
998 /*
999 * If we're in a pre POWER9 compat mode then the guest should
1000 * do hash and use the legacy interrupt mode
1001 */
1002 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
1003 val[3] = 0x00; /* Hash */
1004 spapr_check_mmu_mode(false);
1005 } else if (kvm_enabled()) {
1006 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1007 val[3] = 0x80; /* OV5_MMU_BOTH */
1008 } else if (kvmppc_has_cap_mmu_radix()) {
1009 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1010 } else {
1011 val[3] = 0x00; /* Hash */
1012 }
1013 } else {
1014 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1015 val[3] = 0xC0;
1016 }
1017 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1018 val, sizeof(val)));
1019 }
1020
1021 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1022 {
1023 MachineState *machine = MACHINE(spapr);
1024 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1025 int chosen;
1026
1027 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1028
1029 if (reset) {
1030 const char *boot_device = spapr->boot_device;
1031 g_autofree char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1032 size_t cb = 0;
1033 g_autofree char *bootlist = get_boot_devices_list(&cb);
1034
1035 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1036 _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1037 machine->kernel_cmdline));
1038 }
1039
1040 if (spapr->initrd_size) {
1041 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1042 spapr->initrd_base));
1043 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1044 spapr->initrd_base + spapr->initrd_size));
1045 }
1046
1047 if (spapr->kernel_size) {
1048 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1049 cpu_to_be64(spapr->kernel_size) };
1050
1051 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1052 &kprop, sizeof(kprop)));
1053 if (spapr->kernel_le) {
1054 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1055 }
1056 }
1057 if (machine->boot_config.has_menu && machine->boot_config.menu) {
1058 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", true)));
1059 }
1060 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1061 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1062 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1063
1064 if (cb && bootlist) {
1065 int i;
1066
1067 for (i = 0; i < cb; i++) {
1068 if (bootlist[i] == '\n') {
1069 bootlist[i] = ' ';
1070 }
1071 }
1072 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1073 }
1074
1075 if (boot_device && strlen(boot_device)) {
1076 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1077 }
1078
1079 if (spapr->want_stdout_path && stdout_path) {
1080 /*
1081 * "linux,stdout-path" and "stdout" properties are
1082 * deprecated by linux kernel. New platforms should only
1083 * use the "stdout-path" property. Set the new property
1084 * and continue using older property to remain compatible
1085 * with the existing firmware.
1086 */
1087 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1088 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1089 }
1090
1091 /*
1092 * We can deal with BAR reallocation just fine, advertise it
1093 * to the guest
1094 */
1095 if (smc->linux_pci_probe) {
1096 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1097 }
1098
1099 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1100 }
1101
1102 _FDT(fdt_setprop(fdt, chosen, "rng-seed", spapr->fdt_rng_seed, 32));
1103
1104 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1105 }
1106
1107 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1108 {
1109 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1110 * KVM to work under pHyp with some guest co-operation */
1111 int hypervisor;
1112 uint8_t hypercall[16];
1113
1114 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1115 /* indicate KVM hypercall interface */
1116 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1117 if (kvmppc_has_cap_fixup_hcalls()) {
1118 /*
1119 * Older KVM versions with older guest kernels were broken
1120 * with the magic page, don't allow the guest to map it.
1121 */
1122 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1123 sizeof(hypercall))) {
1124 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1125 hypercall, sizeof(hypercall)));
1126 }
1127 }
1128 }
1129
1130 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1131 {
1132 MachineState *machine = MACHINE(spapr);
1133 MachineClass *mc = MACHINE_GET_CLASS(machine);
1134 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1135 uint32_t root_drc_type_mask = 0;
1136 int ret;
1137 void *fdt;
1138 SpaprPhbState *phb;
1139 char *buf;
1140
1141 fdt = g_malloc0(space);
1142 _FDT((fdt_create_empty_tree(fdt, space)));
1143
1144 /* Root node */
1145 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1146 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1147 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1148
1149 /* Guest UUID & Name*/
1150 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1151 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1152 if (qemu_uuid_set) {
1153 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1154 }
1155 g_free(buf);
1156
1157 if (qemu_get_vm_name()) {
1158 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1159 qemu_get_vm_name()));
1160 }
1161
1162 /* Host Model & Serial Number */
1163 if (spapr->host_model) {
1164 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1165 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1166 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1167 g_free(buf);
1168 }
1169
1170 if (spapr->host_serial) {
1171 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1172 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1173 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1174 g_free(buf);
1175 }
1176
1177 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1178 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1179
1180 /* /interrupt controller */
1181 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1182
1183 ret = spapr_dt_memory(spapr, fdt);
1184 if (ret < 0) {
1185 error_report("couldn't setup memory nodes in fdt");
1186 exit(1);
1187 }
1188
1189 /* /vdevice */
1190 spapr_dt_vdevice(spapr->vio_bus, fdt);
1191
1192 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1193 ret = spapr_dt_rng(fdt);
1194 if (ret < 0) {
1195 error_report("could not set up rng device in the fdt");
1196 exit(1);
1197 }
1198 }
1199
1200 QLIST_FOREACH(phb, &spapr->phbs, list) {
1201 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1202 if (ret < 0) {
1203 error_report("couldn't setup PCI devices in fdt");
1204 exit(1);
1205 }
1206 }
1207
1208 spapr_dt_cpus(fdt, spapr);
1209
1210 /* ibm,drc-indexes and friends */
1211 if (smc->dr_lmb_enabled) {
1212 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB;
1213 }
1214 if (smc->dr_phb_enabled) {
1215 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB;
1216 }
1217 if (mc->nvdimm_supported) {
1218 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM;
1219 }
1220 if (root_drc_type_mask) {
1221 _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask));
1222 }
1223
1224 if (mc->has_hotpluggable_cpus) {
1225 int offset = fdt_path_offset(fdt, "/cpus");
1226 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1227 if (ret < 0) {
1228 error_report("Couldn't set up CPU DR device tree properties");
1229 exit(1);
1230 }
1231 }
1232
1233 /* /event-sources */
1234 spapr_dt_events(spapr, fdt);
1235
1236 /* /rtas */
1237 spapr_dt_rtas(spapr, fdt);
1238
1239 /* /chosen */
1240 spapr_dt_chosen(spapr, fdt, reset);
1241
1242 /* /hypervisor */
1243 if (kvm_enabled()) {
1244 spapr_dt_hypervisor(spapr, fdt);
1245 }
1246
1247 /* Build memory reserve map */
1248 if (reset) {
1249 if (spapr->kernel_size) {
1250 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1251 spapr->kernel_size)));
1252 }
1253 if (spapr->initrd_size) {
1254 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1255 spapr->initrd_size)));
1256 }
1257 }
1258
1259 /* NVDIMM devices */
1260 if (mc->nvdimm_supported) {
1261 spapr_dt_persistent_memory(spapr, fdt);
1262 }
1263
1264 return fdt;
1265 }
1266
1267 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1268 {
1269 SpaprMachineState *spapr = opaque;
1270
1271 return (addr & 0x0fffffff) + spapr->kernel_addr;
1272 }
1273
1274 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1275 PowerPCCPU *cpu)
1276 {
1277 CPUPPCState *env = &cpu->env;
1278
1279 /* The TCG path should also be holding the BQL at this point */
1280 g_assert(qemu_mutex_iothread_locked());
1281
1282 g_assert(!vhyp_cpu_in_nested(cpu));
1283
1284 if (FIELD_EX64(env->msr, MSR, PR)) {
1285 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1286 env->gpr[3] = H_PRIVILEGE;
1287 } else {
1288 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1289 }
1290 }
1291
1292 struct LPCRSyncState {
1293 target_ulong value;
1294 target_ulong mask;
1295 };
1296
1297 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1298 {
1299 struct LPCRSyncState *s = arg.host_ptr;
1300 PowerPCCPU *cpu = POWERPC_CPU(cs);
1301 CPUPPCState *env = &cpu->env;
1302 target_ulong lpcr;
1303
1304 cpu_synchronize_state(cs);
1305 lpcr = env->spr[SPR_LPCR];
1306 lpcr &= ~s->mask;
1307 lpcr |= s->value;
1308 ppc_store_lpcr(cpu, lpcr);
1309 }
1310
1311 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1312 {
1313 CPUState *cs;
1314 struct LPCRSyncState s = {
1315 .value = value,
1316 .mask = mask
1317 };
1318 CPU_FOREACH(cs) {
1319 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1320 }
1321 }
1322
1323 /* May be used when the machine is not running */
1324 void spapr_init_all_lpcrs(target_ulong value, target_ulong mask)
1325 {
1326 CPUState *cs;
1327 CPU_FOREACH(cs) {
1328 PowerPCCPU *cpu = POWERPC_CPU(cs);
1329 CPUPPCState *env = &cpu->env;
1330 target_ulong lpcr;
1331
1332 lpcr = env->spr[SPR_LPCR];
1333 lpcr &= ~(LPCR_HR | LPCR_UPRT);
1334 ppc_store_lpcr(cpu, lpcr);
1335 }
1336 }
1337
1338
1339 static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu,
1340 target_ulong lpid, ppc_v3_pate_t *entry)
1341 {
1342 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1343 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1344
1345 if (!spapr_cpu->in_nested) {
1346 assert(lpid == 0);
1347
1348 /* Copy PATE1:GR into PATE0:HR */
1349 entry->dw0 = spapr->patb_entry & PATE0_HR;
1350 entry->dw1 = spapr->patb_entry;
1351
1352 } else {
1353 uint64_t patb, pats;
1354
1355 assert(lpid != 0);
1356
1357 patb = spapr->nested_ptcr & PTCR_PATB;
1358 pats = spapr->nested_ptcr & PTCR_PATS;
1359
1360 /* Check if partition table is properly aligned */
1361 if (patb & MAKE_64BIT_MASK(0, pats + 12)) {
1362 return false;
1363 }
1364
1365 /* Calculate number of entries */
1366 pats = 1ull << (pats + 12 - 4);
1367 if (pats <= lpid) {
1368 return false;
1369 }
1370
1371 /* Grab entry */
1372 patb += 16 * lpid;
1373 entry->dw0 = ldq_phys(CPU(cpu)->as, patb);
1374 entry->dw1 = ldq_phys(CPU(cpu)->as, patb + 8);
1375 }
1376
1377 return true;
1378 }
1379
1380 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1381 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1382 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1383 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1384 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1385
1386 /*
1387 * Get the fd to access the kernel htab, re-opening it if necessary
1388 */
1389 static int get_htab_fd(SpaprMachineState *spapr)
1390 {
1391 Error *local_err = NULL;
1392
1393 if (spapr->htab_fd >= 0) {
1394 return spapr->htab_fd;
1395 }
1396
1397 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1398 if (spapr->htab_fd < 0) {
1399 error_report_err(local_err);
1400 }
1401
1402 return spapr->htab_fd;
1403 }
1404
1405 void close_htab_fd(SpaprMachineState *spapr)
1406 {
1407 if (spapr->htab_fd >= 0) {
1408 close(spapr->htab_fd);
1409 }
1410 spapr->htab_fd = -1;
1411 }
1412
1413 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1414 {
1415 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1416
1417 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1418 }
1419
1420 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1421 {
1422 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1423
1424 assert(kvm_enabled());
1425
1426 if (!spapr->htab) {
1427 return 0;
1428 }
1429
1430 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1431 }
1432
1433 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1434 hwaddr ptex, int n)
1435 {
1436 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1437 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1438
1439 if (!spapr->htab) {
1440 /*
1441 * HTAB is controlled by KVM. Fetch into temporary buffer
1442 */
1443 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1444 kvmppc_read_hptes(hptes, ptex, n);
1445 return hptes;
1446 }
1447
1448 /*
1449 * HTAB is controlled by QEMU. Just point to the internally
1450 * accessible PTEG.
1451 */
1452 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1453 }
1454
1455 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1456 const ppc_hash_pte64_t *hptes,
1457 hwaddr ptex, int n)
1458 {
1459 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1460
1461 if (!spapr->htab) {
1462 g_free((void *)hptes);
1463 }
1464
1465 /* Nothing to do for qemu managed HPT */
1466 }
1467
1468 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1469 uint64_t pte0, uint64_t pte1)
1470 {
1471 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1472 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1473
1474 if (!spapr->htab) {
1475 kvmppc_write_hpte(ptex, pte0, pte1);
1476 } else {
1477 if (pte0 & HPTE64_V_VALID) {
1478 stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1479 /*
1480 * When setting valid, we write PTE1 first. This ensures
1481 * proper synchronization with the reading code in
1482 * ppc_hash64_pteg_search()
1483 */
1484 smp_wmb();
1485 stq_p(spapr->htab + offset, pte0);
1486 } else {
1487 stq_p(spapr->htab + offset, pte0);
1488 /*
1489 * When clearing it we set PTE0 first. This ensures proper
1490 * synchronization with the reading code in
1491 * ppc_hash64_pteg_search()
1492 */
1493 smp_wmb();
1494 stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1495 }
1496 }
1497 }
1498
1499 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1500 uint64_t pte1)
1501 {
1502 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C;
1503 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1504
1505 if (!spapr->htab) {
1506 /* There should always be a hash table when this is called */
1507 error_report("spapr_hpte_set_c called with no hash table !");
1508 return;
1509 }
1510
1511 /* The HW performs a non-atomic byte update */
1512 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1513 }
1514
1515 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1516 uint64_t pte1)
1517 {
1518 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R;
1519 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1520
1521 if (!spapr->htab) {
1522 /* There should always be a hash table when this is called */
1523 error_report("spapr_hpte_set_r called with no hash table !");
1524 return;
1525 }
1526
1527 /* The HW performs a non-atomic byte update */
1528 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1529 }
1530
1531 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1532 {
1533 int shift;
1534
1535 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1536 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1537 * that's much more than is needed for Linux guests */
1538 shift = ctz64(pow2ceil(ramsize)) - 7;
1539 shift = MAX(shift, 18); /* Minimum architected size */
1540 shift = MIN(shift, 46); /* Maximum architected size */
1541 return shift;
1542 }
1543
1544 void spapr_free_hpt(SpaprMachineState *spapr)
1545 {
1546 qemu_vfree(spapr->htab);
1547 spapr->htab = NULL;
1548 spapr->htab_shift = 0;
1549 close_htab_fd(spapr);
1550 }
1551
1552 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp)
1553 {
1554 ERRP_GUARD();
1555 long rc;
1556
1557 /* Clean up any HPT info from a previous boot */
1558 spapr_free_hpt(spapr);
1559
1560 rc = kvmppc_reset_htab(shift);
1561
1562 if (rc == -EOPNOTSUPP) {
1563 error_setg(errp, "HPT not supported in nested guests");
1564 return -EOPNOTSUPP;
1565 }
1566
1567 if (rc < 0) {
1568 /* kernel-side HPT needed, but couldn't allocate one */
1569 error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
1570 shift);
1571 error_append_hint(errp, "Try smaller maxmem?\n");
1572 return -errno;
1573 } else if (rc > 0) {
1574 /* kernel-side HPT allocated */
1575 if (rc != shift) {
1576 error_setg(errp,
1577 "Requested order %d HPT, but kernel allocated order %ld",
1578 shift, rc);
1579 error_append_hint(errp, "Try smaller maxmem?\n");
1580 return -ENOSPC;
1581 }
1582
1583 spapr->htab_shift = shift;
1584 spapr->htab = NULL;
1585 } else {
1586 /* kernel-side HPT not needed, allocate in userspace instead */
1587 size_t size = 1ULL << shift;
1588 int i;
1589
1590 spapr->htab = qemu_memalign(size, size);
1591 memset(spapr->htab, 0, size);
1592 spapr->htab_shift = shift;
1593
1594 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1595 DIRTY_HPTE(HPTE(spapr->htab, i));
1596 }
1597 }
1598 /* We're setting up a hash table, so that means we're not radix */
1599 spapr->patb_entry = 0;
1600 spapr_init_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1601 return 0;
1602 }
1603
1604 void spapr_setup_hpt(SpaprMachineState *spapr)
1605 {
1606 int hpt_shift;
1607
1608 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1609 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1610 } else {
1611 uint64_t current_ram_size;
1612
1613 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1614 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1615 }
1616 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1617
1618 if (kvm_enabled()) {
1619 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1620
1621 /* Check our RMA fits in the possible VRMA */
1622 if (vrma_limit < spapr->rma_size) {
1623 error_report("Unable to create %" HWADDR_PRIu
1624 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1625 spapr->rma_size / MiB, vrma_limit / MiB);
1626 exit(EXIT_FAILURE);
1627 }
1628 }
1629 }
1630
1631 void spapr_check_mmu_mode(bool guest_radix)
1632 {
1633 if (guest_radix) {
1634 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1635 error_report("Guest requested unavailable MMU mode (radix).");
1636 exit(EXIT_FAILURE);
1637 }
1638 } else {
1639 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1640 && !kvmppc_has_cap_mmu_hash_v3()) {
1641 error_report("Guest requested unavailable MMU mode (hash).");
1642 exit(EXIT_FAILURE);
1643 }
1644 }
1645 }
1646
1647 static void spapr_machine_reset(MachineState *machine, ShutdownCause reason)
1648 {
1649 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1650 PowerPCCPU *first_ppc_cpu;
1651 hwaddr fdt_addr;
1652 void *fdt;
1653 int rc;
1654
1655 if (reason != SHUTDOWN_CAUSE_SNAPSHOT_LOAD) {
1656 /*
1657 * Record-replay snapshot load must not consume random, this was
1658 * already replayed from initial machine reset.
1659 */
1660 qemu_guest_getrandom_nofail(spapr->fdt_rng_seed, 32);
1661 }
1662
1663 pef_kvm_reset(machine->cgs, &error_fatal);
1664 spapr_caps_apply(spapr);
1665
1666 first_ppc_cpu = POWERPC_CPU(first_cpu);
1667 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1668 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1669 spapr->max_compat_pvr)) {
1670 /*
1671 * If using KVM with radix mode available, VCPUs can be started
1672 * without a HPT because KVM will start them in radix mode.
1673 * Set the GR bit in PATE so that we know there is no HPT.
1674 */
1675 spapr->patb_entry = PATE1_GR;
1676 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1677 } else {
1678 spapr_setup_hpt(spapr);
1679 }
1680
1681 qemu_devices_reset(reason);
1682
1683 spapr_ovec_cleanup(spapr->ov5_cas);
1684 spapr->ov5_cas = spapr_ovec_new();
1685
1686 ppc_init_compat_all(spapr->max_compat_pvr, &error_fatal);
1687
1688 /*
1689 * This is fixing some of the default configuration of the XIVE
1690 * devices. To be called after the reset of the machine devices.
1691 */
1692 spapr_irq_reset(spapr, &error_fatal);
1693
1694 /*
1695 * There is no CAS under qtest. Simulate one to please the code that
1696 * depends on spapr->ov5_cas. This is especially needed to test device
1697 * unplug, so we do that before resetting the DRCs.
1698 */
1699 if (qtest_enabled()) {
1700 spapr_ovec_cleanup(spapr->ov5_cas);
1701 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1702 }
1703
1704 spapr_nvdimm_finish_flushes();
1705
1706 /* DRC reset may cause a device to be unplugged. This will cause troubles
1707 * if this device is used by another device (eg, a running vhost backend
1708 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1709 * situations, we reset DRCs after all devices have been reset.
1710 */
1711 spapr_drc_reset_all(spapr);
1712
1713 spapr_clear_pending_events(spapr);
1714
1715 /*
1716 * We place the device tree just below either the top of the RMA,
1717 * or just below 2GB, whichever is lower, so that it can be
1718 * processed with 32-bit real mode code if necessary
1719 */
1720 fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE;
1721
1722 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1723 if (spapr->vof) {
1724 spapr_vof_reset(spapr, fdt, &error_fatal);
1725 /*
1726 * Do not pack the FDT as the client may change properties.
1727 * VOF client does not expect the FDT so we do not load it to the VM.
1728 */
1729 } else {
1730 rc = fdt_pack(fdt);
1731 /* Should only fail if we've built a corrupted tree */
1732 assert(rc == 0);
1733
1734 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT,
1735 0, fdt_addr, 0);
1736 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1737 }
1738 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1739
1740 g_free(spapr->fdt_blob);
1741 spapr->fdt_size = fdt_totalsize(fdt);
1742 spapr->fdt_initial_size = spapr->fdt_size;
1743 spapr->fdt_blob = fdt;
1744
1745 /* Set machine->fdt for 'dumpdtb' QMP/HMP command */
1746 machine->fdt = fdt;
1747
1748 /* Set up the entry state */
1749 first_ppc_cpu->env.gpr[5] = 0;
1750
1751 spapr->fwnmi_system_reset_addr = -1;
1752 spapr->fwnmi_machine_check_addr = -1;
1753 spapr->fwnmi_machine_check_interlock = -1;
1754
1755 /* Signal all vCPUs waiting on this condition */
1756 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1757
1758 migrate_del_blocker(spapr->fwnmi_migration_blocker);
1759 }
1760
1761 static void spapr_create_nvram(SpaprMachineState *spapr)
1762 {
1763 DeviceState *dev = qdev_new("spapr-nvram");
1764 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1765
1766 if (dinfo) {
1767 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1768 &error_fatal);
1769 }
1770
1771 qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1772
1773 spapr->nvram = (struct SpaprNvram *)dev;
1774 }
1775
1776 static void spapr_rtc_create(SpaprMachineState *spapr)
1777 {
1778 object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1779 sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1780 &error_fatal, NULL);
1781 qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1782 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1783 "date");
1784 }
1785
1786 /* Returns whether we want to use VGA or not */
1787 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1788 {
1789 vga_interface_created = true;
1790 switch (vga_interface_type) {
1791 case VGA_NONE:
1792 return false;
1793 case VGA_DEVICE:
1794 return true;
1795 case VGA_STD:
1796 case VGA_VIRTIO:
1797 case VGA_CIRRUS:
1798 return pci_vga_init(pci_bus) != NULL;
1799 default:
1800 error_setg(errp,
1801 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1802 return false;
1803 }
1804 }
1805
1806 static int spapr_pre_load(void *opaque)
1807 {
1808 int rc;
1809
1810 rc = spapr_caps_pre_load(opaque);
1811 if (rc) {
1812 return rc;
1813 }
1814
1815 return 0;
1816 }
1817
1818 static int spapr_post_load(void *opaque, int version_id)
1819 {
1820 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1821 int err = 0;
1822
1823 err = spapr_caps_post_migration(spapr);
1824 if (err) {
1825 return err;
1826 }
1827
1828 /*
1829 * In earlier versions, there was no separate qdev for the PAPR
1830 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1831 * So when migrating from those versions, poke the incoming offset
1832 * value into the RTC device
1833 */
1834 if (version_id < 3) {
1835 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1836 if (err) {
1837 return err;
1838 }
1839 }
1840
1841 if (kvm_enabled() && spapr->patb_entry) {
1842 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1843 bool radix = !!(spapr->patb_entry & PATE1_GR);
1844 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1845
1846 /*
1847 * Update LPCR:HR and UPRT as they may not be set properly in
1848 * the stream
1849 */
1850 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1851 LPCR_HR | LPCR_UPRT);
1852
1853 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1854 if (err) {
1855 error_report("Process table config unsupported by the host");
1856 return -EINVAL;
1857 }
1858 }
1859
1860 err = spapr_irq_post_load(spapr, version_id);
1861 if (err) {
1862 return err;
1863 }
1864
1865 return err;
1866 }
1867
1868 static int spapr_pre_save(void *opaque)
1869 {
1870 int rc;
1871
1872 rc = spapr_caps_pre_save(opaque);
1873 if (rc) {
1874 return rc;
1875 }
1876
1877 return 0;
1878 }
1879
1880 static bool version_before_3(void *opaque, int version_id)
1881 {
1882 return version_id < 3;
1883 }
1884
1885 static bool spapr_pending_events_needed(void *opaque)
1886 {
1887 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1888 return !QTAILQ_EMPTY(&spapr->pending_events);
1889 }
1890
1891 static const VMStateDescription vmstate_spapr_event_entry = {
1892 .name = "spapr_event_log_entry",
1893 .version_id = 1,
1894 .minimum_version_id = 1,
1895 .fields = (VMStateField[]) {
1896 VMSTATE_UINT32(summary, SpaprEventLogEntry),
1897 VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1898 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1899 NULL, extended_length),
1900 VMSTATE_END_OF_LIST()
1901 },
1902 };
1903
1904 static const VMStateDescription vmstate_spapr_pending_events = {
1905 .name = "spapr_pending_events",
1906 .version_id = 1,
1907 .minimum_version_id = 1,
1908 .needed = spapr_pending_events_needed,
1909 .fields = (VMStateField[]) {
1910 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1911 vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1912 VMSTATE_END_OF_LIST()
1913 },
1914 };
1915
1916 static bool spapr_ov5_cas_needed(void *opaque)
1917 {
1918 SpaprMachineState *spapr = opaque;
1919 SpaprOptionVector *ov5_mask = spapr_ovec_new();
1920 bool cas_needed;
1921
1922 /* Prior to the introduction of SpaprOptionVector, we had two option
1923 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1924 * Both of these options encode machine topology into the device-tree
1925 * in such a way that the now-booted OS should still be able to interact
1926 * appropriately with QEMU regardless of what options were actually
1927 * negotiatied on the source side.
1928 *
1929 * As such, we can avoid migrating the CAS-negotiated options if these
1930 * are the only options available on the current machine/platform.
1931 * Since these are the only options available for pseries-2.7 and
1932 * earlier, this allows us to maintain old->new/new->old migration
1933 * compatibility.
1934 *
1935 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1936 * via default pseries-2.8 machines and explicit command-line parameters.
1937 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1938 * of the actual CAS-negotiated values to continue working properly. For
1939 * example, availability of memory unplug depends on knowing whether
1940 * OV5_HP_EVT was negotiated via CAS.
1941 *
1942 * Thus, for any cases where the set of available CAS-negotiatable
1943 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1944 * include the CAS-negotiated options in the migration stream, unless
1945 * if they affect boot time behaviour only.
1946 */
1947 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1948 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1949 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1950
1951 /* We need extra information if we have any bits outside the mask
1952 * defined above */
1953 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1954
1955 spapr_ovec_cleanup(ov5_mask);
1956
1957 return cas_needed;
1958 }
1959
1960 static const VMStateDescription vmstate_spapr_ov5_cas = {
1961 .name = "spapr_option_vector_ov5_cas",
1962 .version_id = 1,
1963 .minimum_version_id = 1,
1964 .needed = spapr_ov5_cas_needed,
1965 .fields = (VMStateField[]) {
1966 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1967 vmstate_spapr_ovec, SpaprOptionVector),
1968 VMSTATE_END_OF_LIST()
1969 },
1970 };
1971
1972 static bool spapr_patb_entry_needed(void *opaque)
1973 {
1974 SpaprMachineState *spapr = opaque;
1975
1976 return !!spapr->patb_entry;
1977 }
1978
1979 static const VMStateDescription vmstate_spapr_patb_entry = {
1980 .name = "spapr_patb_entry",
1981 .version_id = 1,
1982 .minimum_version_id = 1,
1983 .needed = spapr_patb_entry_needed,
1984 .fields = (VMStateField[]) {
1985 VMSTATE_UINT64(patb_entry, SpaprMachineState),
1986 VMSTATE_END_OF_LIST()
1987 },
1988 };
1989
1990 static bool spapr_irq_map_needed(void *opaque)
1991 {
1992 SpaprMachineState *spapr = opaque;
1993
1994 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1995 }
1996
1997 static const VMStateDescription vmstate_spapr_irq_map = {
1998 .name = "spapr_irq_map",
1999 .version_id = 1,
2000 .minimum_version_id = 1,
2001 .needed = spapr_irq_map_needed,
2002 .fields = (VMStateField[]) {
2003 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
2004 VMSTATE_END_OF_LIST()
2005 },
2006 };
2007
2008 static bool spapr_dtb_needed(void *opaque)
2009 {
2010 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2011
2012 return smc->update_dt_enabled;
2013 }
2014
2015 static int spapr_dtb_pre_load(void *opaque)
2016 {
2017 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2018
2019 g_free(spapr->fdt_blob);
2020 spapr->fdt_blob = NULL;
2021 spapr->fdt_size = 0;
2022
2023 return 0;
2024 }
2025
2026 static const VMStateDescription vmstate_spapr_dtb = {
2027 .name = "spapr_dtb",
2028 .version_id = 1,
2029 .minimum_version_id = 1,
2030 .needed = spapr_dtb_needed,
2031 .pre_load = spapr_dtb_pre_load,
2032 .fields = (VMStateField[]) {
2033 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2034 VMSTATE_UINT32(fdt_size, SpaprMachineState),
2035 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2036 fdt_size),
2037 VMSTATE_END_OF_LIST()
2038 },
2039 };
2040
2041 static bool spapr_fwnmi_needed(void *opaque)
2042 {
2043 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2044
2045 return spapr->fwnmi_machine_check_addr != -1;
2046 }
2047
2048 static int spapr_fwnmi_pre_save(void *opaque)
2049 {
2050 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2051
2052 /*
2053 * Check if machine check handling is in progress and print a
2054 * warning message.
2055 */
2056 if (spapr->fwnmi_machine_check_interlock != -1) {
2057 warn_report("A machine check is being handled during migration. The"
2058 "handler may run and log hardware error on the destination");
2059 }
2060
2061 return 0;
2062 }
2063
2064 static const VMStateDescription vmstate_spapr_fwnmi = {
2065 .name = "spapr_fwnmi",
2066 .version_id = 1,
2067 .minimum_version_id = 1,
2068 .needed = spapr_fwnmi_needed,
2069 .pre_save = spapr_fwnmi_pre_save,
2070 .fields = (VMStateField[]) {
2071 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
2072 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
2073 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
2074 VMSTATE_END_OF_LIST()
2075 },
2076 };
2077
2078 static const VMStateDescription vmstate_spapr = {
2079 .name = "spapr",
2080 .version_id = 3,
2081 .minimum_version_id = 1,
2082 .pre_load = spapr_pre_load,
2083 .post_load = spapr_post_load,
2084 .pre_save = spapr_pre_save,
2085 .fields = (VMStateField[]) {
2086 /* used to be @next_irq */
2087 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2088
2089 /* RTC offset */
2090 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2091
2092 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2093 VMSTATE_END_OF_LIST()
2094 },
2095 .subsections = (const VMStateDescription*[]) {
2096 &vmstate_spapr_ov5_cas,
2097 &vmstate_spapr_patb_entry,
2098 &vmstate_spapr_pending_events,
2099 &vmstate_spapr_cap_htm,
2100 &vmstate_spapr_cap_vsx,
2101 &vmstate_spapr_cap_dfp,
2102 &vmstate_spapr_cap_cfpc,
2103 &vmstate_spapr_cap_sbbc,
2104 &vmstate_spapr_cap_ibs,
2105 &vmstate_spapr_cap_hpt_maxpagesize,
2106 &vmstate_spapr_irq_map,
2107 &vmstate_spapr_cap_nested_kvm_hv,
2108 &vmstate_spapr_dtb,
2109 &vmstate_spapr_cap_large_decr,
2110 &vmstate_spapr_cap_ccf_assist,
2111 &vmstate_spapr_cap_fwnmi,
2112 &vmstate_spapr_fwnmi,
2113 &vmstate_spapr_cap_rpt_invalidate,
2114 NULL
2115 }
2116 };
2117
2118 static int htab_save_setup(QEMUFile *f, void *opaque)
2119 {
2120 SpaprMachineState *spapr = opaque;
2121
2122 /* "Iteration" header */
2123 if (!spapr->htab_shift) {
2124 qemu_put_be32(f, -1);
2125 } else {
2126 qemu_put_be32(f, spapr->htab_shift);
2127 }
2128
2129 if (spapr->htab) {
2130 spapr->htab_save_index = 0;
2131 spapr->htab_first_pass = true;
2132 } else {
2133 if (spapr->htab_shift) {
2134 assert(kvm_enabled());
2135 }
2136 }
2137
2138
2139 return 0;
2140 }
2141
2142 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2143 int chunkstart, int n_valid, int n_invalid)
2144 {
2145 qemu_put_be32(f, chunkstart);
2146 qemu_put_be16(f, n_valid);
2147 qemu_put_be16(f, n_invalid);
2148 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2149 HASH_PTE_SIZE_64 * n_valid);
2150 }
2151
2152 static void htab_save_end_marker(QEMUFile *f)
2153 {
2154 qemu_put_be32(f, 0);
2155 qemu_put_be16(f, 0);
2156 qemu_put_be16(f, 0);
2157 }
2158
2159 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2160 int64_t max_ns)
2161 {
2162 bool has_timeout = max_ns != -1;
2163 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2164 int index = spapr->htab_save_index;
2165 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2166
2167 assert(spapr->htab_first_pass);
2168
2169 do {
2170 int chunkstart;
2171
2172 /* Consume invalid HPTEs */
2173 while ((index < htabslots)
2174 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2175 CLEAN_HPTE(HPTE(spapr->htab, index));
2176 index++;
2177 }
2178
2179 /* Consume valid HPTEs */
2180 chunkstart = index;
2181 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2182 && HPTE_VALID(HPTE(spapr->htab, index))) {
2183 CLEAN_HPTE(HPTE(spapr->htab, index));
2184 index++;
2185 }
2186
2187 if (index > chunkstart) {
2188 int n_valid = index - chunkstart;
2189
2190 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2191
2192 if (has_timeout &&
2193 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2194 break;
2195 }
2196 }
2197 } while ((index < htabslots) && !migration_rate_exceeded(f));
2198
2199 if (index >= htabslots) {
2200 assert(index == htabslots);
2201 index = 0;
2202 spapr->htab_first_pass = false;
2203 }
2204 spapr->htab_save_index = index;
2205 }
2206
2207 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2208 int64_t max_ns)
2209 {
2210 bool final = max_ns < 0;
2211 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2212 int examined = 0, sent = 0;
2213 int index = spapr->htab_save_index;
2214 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2215
2216 assert(!spapr->htab_first_pass);
2217
2218 do {
2219 int chunkstart, invalidstart;
2220
2221 /* Consume non-dirty HPTEs */
2222 while ((index < htabslots)
2223 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2224 index++;
2225 examined++;
2226 }
2227
2228 chunkstart = index;
2229 /* Consume valid dirty HPTEs */
2230 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2231 && HPTE_DIRTY(HPTE(spapr->htab, index))
2232 && HPTE_VALID(HPTE(spapr->htab, index))) {
2233 CLEAN_HPTE(HPTE(spapr->htab, index));
2234 index++;
2235 examined++;
2236 }
2237
2238 invalidstart = index;
2239 /* Consume invalid dirty HPTEs */
2240 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2241 && HPTE_DIRTY(HPTE(spapr->htab, index))
2242 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2243 CLEAN_HPTE(HPTE(spapr->htab, index));
2244 index++;
2245 examined++;
2246 }
2247
2248 if (index > chunkstart) {
2249 int n_valid = invalidstart - chunkstart;
2250 int n_invalid = index - invalidstart;
2251
2252 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2253 sent += index - chunkstart;
2254
2255 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2256 break;
2257 }
2258 }
2259
2260 if (examined >= htabslots) {
2261 break;
2262 }
2263
2264 if (index >= htabslots) {
2265 assert(index == htabslots);
2266 index = 0;
2267 }
2268 } while ((examined < htabslots) && (!migration_rate_exceeded(f) || final));
2269
2270 if (index >= htabslots) {
2271 assert(index == htabslots);
2272 index = 0;
2273 }
2274
2275 spapr->htab_save_index = index;
2276
2277 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2278 }
2279
2280 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2281 #define MAX_KVM_BUF_SIZE 2048
2282
2283 static int htab_save_iterate(QEMUFile *f, void *opaque)
2284 {
2285 SpaprMachineState *spapr = opaque;
2286 int fd;
2287 int rc = 0;
2288
2289 /* Iteration header */
2290 if (!spapr->htab_shift) {
2291 qemu_put_be32(f, -1);
2292 return 1;
2293 } else {
2294 qemu_put_be32(f, 0);
2295 }
2296
2297 if (!spapr->htab) {
2298 assert(kvm_enabled());
2299
2300 fd = get_htab_fd(spapr);
2301 if (fd < 0) {
2302 return fd;
2303 }
2304
2305 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2306 if (rc < 0) {
2307 return rc;
2308 }
2309 } else if (spapr->htab_first_pass) {
2310 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2311 } else {
2312 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2313 }
2314
2315 htab_save_end_marker(f);
2316
2317 return rc;
2318 }
2319
2320 static int htab_save_complete(QEMUFile *f, void *opaque)
2321 {
2322 SpaprMachineState *spapr = opaque;
2323 int fd;
2324
2325 /* Iteration header */
2326 if (!spapr->htab_shift) {
2327 qemu_put_be32(f, -1);
2328 return 0;
2329 } else {
2330 qemu_put_be32(f, 0);
2331 }
2332
2333 if (!spapr->htab) {
2334 int rc;
2335
2336 assert(kvm_enabled());
2337
2338 fd = get_htab_fd(spapr);
2339 if (fd < 0) {
2340 return fd;
2341 }
2342
2343 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2344 if (rc < 0) {
2345 return rc;
2346 }
2347 } else {
2348 if (spapr->htab_first_pass) {
2349 htab_save_first_pass(f, spapr, -1);
2350 }
2351 htab_save_later_pass(f, spapr, -1);
2352 }
2353
2354 /* End marker */
2355 htab_save_end_marker(f);
2356
2357 return 0;
2358 }
2359
2360 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2361 {
2362 SpaprMachineState *spapr = opaque;
2363 uint32_t section_hdr;
2364 int fd = -1;
2365 Error *local_err = NULL;
2366
2367 if (version_id < 1 || version_id > 1) {
2368 error_report("htab_load() bad version");
2369 return -EINVAL;
2370 }
2371
2372 section_hdr = qemu_get_be32(f);
2373
2374 if (section_hdr == -1) {
2375 spapr_free_hpt(spapr);
2376 return 0;
2377 }
2378
2379 if (section_hdr) {
2380 int ret;
2381
2382 /* First section gives the htab size */
2383 ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2384 if (ret < 0) {
2385 error_report_err(local_err);
2386 return ret;
2387 }
2388 return 0;
2389 }
2390
2391 if (!spapr->htab) {
2392 assert(kvm_enabled());
2393
2394 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2395 if (fd < 0) {
2396 error_report_err(local_err);
2397 return fd;
2398 }
2399 }
2400
2401 while (true) {
2402 uint32_t index;
2403 uint16_t n_valid, n_invalid;
2404
2405 index = qemu_get_be32(f);
2406 n_valid = qemu_get_be16(f);
2407 n_invalid = qemu_get_be16(f);
2408
2409 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2410 /* End of Stream */
2411 break;
2412 }
2413
2414 if ((index + n_valid + n_invalid) >
2415 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2416 /* Bad index in stream */
2417 error_report(
2418 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2419 index, n_valid, n_invalid, spapr->htab_shift);
2420 return -EINVAL;
2421 }
2422
2423 if (spapr->htab) {
2424 if (n_valid) {
2425 qemu_get_buffer(f, HPTE(spapr->htab, index),
2426 HASH_PTE_SIZE_64 * n_valid);
2427 }
2428 if (n_invalid) {
2429 memset(HPTE(spapr->htab, index + n_valid), 0,
2430 HASH_PTE_SIZE_64 * n_invalid);
2431 }
2432 } else {
2433 int rc;
2434
2435 assert(fd >= 0);
2436
2437 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid,
2438 &local_err);
2439 if (rc < 0) {
2440 error_report_err(local_err);
2441 return rc;
2442 }
2443 }
2444 }
2445
2446 if (!spapr->htab) {
2447 assert(fd >= 0);
2448 close(fd);
2449 }
2450
2451 return 0;
2452 }
2453
2454 static void htab_save_cleanup(void *opaque)
2455 {
2456 SpaprMachineState *spapr = opaque;
2457
2458 close_htab_fd(spapr);
2459 }
2460
2461 static SaveVMHandlers savevm_htab_handlers = {
2462 .save_setup = htab_save_setup,
2463 .save_live_iterate = htab_save_iterate,
2464 .save_live_complete_precopy = htab_save_complete,
2465 .save_cleanup = htab_save_cleanup,
2466 .load_state = htab_load,
2467 };
2468
2469 static void spapr_boot_set(void *opaque, const char *boot_device,
2470 Error **errp)
2471 {
2472 SpaprMachineState *spapr = SPAPR_MACHINE(opaque);
2473
2474 g_free(spapr->boot_device);
2475 spapr->boot_device = g_strdup(boot_device);
2476 }
2477
2478 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2479 {
2480 MachineState *machine = MACHINE(spapr);
2481 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2482 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2483 int i;
2484
2485 g_assert(!nr_lmbs || machine->device_memory);
2486 for (i = 0; i < nr_lmbs; i++) {
2487 uint64_t addr;
2488
2489 addr = i * lmb_size + machine->device_memory->base;
2490 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2491 addr / lmb_size);
2492 }
2493 }
2494
2495 /*
2496 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2497 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2498 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2499 */
2500 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2501 {
2502 int i;
2503
2504 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2505 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2506 " is not aligned to %" PRIu64 " MiB",
2507 machine->ram_size,
2508 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2509 return;
2510 }
2511
2512 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2513 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2514 " is not aligned to %" PRIu64 " MiB",
2515 machine->ram_size,
2516 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2517 return;
2518 }
2519
2520 for (i = 0; i < machine->numa_state->num_nodes; i++) {
2521 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2522 error_setg(errp,
2523 "Node %d memory size 0x%" PRIx64
2524 " is not aligned to %" PRIu64 " MiB",
2525 i, machine->numa_state->nodes[i].node_mem,
2526 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2527 return;
2528 }
2529 }
2530 }
2531
2532 /* find cpu slot in machine->possible_cpus by core_id */
2533 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2534 {
2535 int index = id / ms->smp.threads;
2536
2537 if (index >= ms->possible_cpus->len) {
2538 return NULL;
2539 }
2540 if (idx) {
2541 *idx = index;
2542 }
2543 return &ms->possible_cpus->cpus[index];
2544 }
2545
2546 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2547 {
2548 MachineState *ms = MACHINE(spapr);
2549 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2550 Error *local_err = NULL;
2551 bool vsmt_user = !!spapr->vsmt;
2552 int kvm_smt = kvmppc_smt_threads();
2553 int ret;
2554 unsigned int smp_threads = ms->smp.threads;
2555
2556 if (tcg_enabled()) {
2557 if (smp_threads > 1 &&
2558 !ppc_type_check_compat(ms->cpu_type, CPU_POWERPC_LOGICAL_2_07, 0,
2559 spapr->max_compat_pvr)) {
2560 error_setg(errp, "TCG only supports SMT on POWER8 or newer CPUs");
2561 return;
2562 }
2563
2564 if (smp_threads > 8) {
2565 error_setg(errp, "TCG cannot support more than 8 threads/core "
2566 "on a pseries machine");
2567 return;
2568 }
2569 }
2570 if (!is_power_of_2(smp_threads)) {
2571 error_setg(errp, "Cannot support %d threads/core on a pseries "
2572 "machine because it must be a power of 2", smp_threads);
2573 return;
2574 }
2575
2576 /* Detemine the VSMT mode to use: */
2577 if (vsmt_user) {
2578 if (spapr->vsmt < smp_threads) {
2579 error_setg(errp, "Cannot support VSMT mode %d"
2580 " because it must be >= threads/core (%d)",
2581 spapr->vsmt, smp_threads);
2582 return;
2583 }
2584 /* In this case, spapr->vsmt has been set by the command line */
2585 } else if (!smc->smp_threads_vsmt) {
2586 /*
2587 * Default VSMT value is tricky, because we need it to be as
2588 * consistent as possible (for migration), but this requires
2589 * changing it for at least some existing cases. We pick 8 as
2590 * the value that we'd get with KVM on POWER8, the
2591 * overwhelmingly common case in production systems.
2592 */
2593 spapr->vsmt = MAX(8, smp_threads);
2594 } else {
2595 spapr->vsmt = smp_threads;
2596 }
2597
2598 /* KVM: If necessary, set the SMT mode: */
2599 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2600 ret = kvmppc_set_smt_threads(spapr->vsmt);
2601 if (ret) {
2602 /* Looks like KVM isn't able to change VSMT mode */
2603 error_setg(&local_err,
2604 "Failed to set KVM's VSMT mode to %d (errno %d)",
2605 spapr->vsmt, ret);
2606 /* We can live with that if the default one is big enough
2607 * for the number of threads, and a submultiple of the one
2608 * we want. In this case we'll waste some vcpu ids, but
2609 * behaviour will be correct */
2610 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2611 warn_report_err(local_err);
2612 } else {
2613 if (!vsmt_user) {
2614 error_append_hint(&local_err,
2615 "On PPC, a VM with %d threads/core"
2616 " on a host with %d threads/core"
2617 " requires the use of VSMT mode %d.\n",
2618 smp_threads, kvm_smt, spapr->vsmt);
2619 }
2620 kvmppc_error_append_smt_possible_hint(&local_err);
2621 error_propagate(errp, local_err);
2622 }
2623 }
2624 }
2625 /* else TCG: nothing to do currently */
2626 }
2627
2628 static void spapr_init_cpus(SpaprMachineState *spapr)
2629 {
2630 MachineState *machine = MACHINE(spapr);
2631 MachineClass *mc = MACHINE_GET_CLASS(machine);
2632 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2633 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2634 const CPUArchIdList *possible_cpus;
2635 unsigned int smp_cpus = machine->smp.cpus;
2636 unsigned int smp_threads = machine->smp.threads;
2637 unsigned int max_cpus = machine->smp.max_cpus;
2638 int boot_cores_nr = smp_cpus / smp_threads;
2639 int i;
2640
2641 possible_cpus = mc->possible_cpu_arch_ids(machine);
2642 if (mc->has_hotpluggable_cpus) {
2643 if (smp_cpus % smp_threads) {
2644 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2645 smp_cpus, smp_threads);
2646 exit(1);
2647 }
2648 if (max_cpus % smp_threads) {
2649 error_report("max_cpus (%u) must be multiple of threads (%u)",
2650 max_cpus, smp_threads);
2651 exit(1);
2652 }
2653 } else {
2654 if (max_cpus != smp_cpus) {
2655 error_report("This machine version does not support CPU hotplug");
2656 exit(1);
2657 }
2658 boot_cores_nr = possible_cpus->len;
2659 }
2660
2661 if (smc->pre_2_10_has_unused_icps) {
2662 int i;
2663
2664 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2665 /* Dummy entries get deregistered when real ICPState objects
2666 * are registered during CPU core hotplug.
2667 */
2668 pre_2_10_vmstate_register_dummy_icp(i);
2669 }
2670 }
2671
2672 for (i = 0; i < possible_cpus->len; i++) {
2673 int core_id = i * smp_threads;
2674
2675 if (mc->has_hotpluggable_cpus) {
2676 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2677 spapr_vcpu_id(spapr, core_id));
2678 }
2679
2680 if (i < boot_cores_nr) {
2681 Object *core = object_new(type);
2682 int nr_threads = smp_threads;
2683
2684 /* Handle the partially filled core for older machine types */
2685 if ((i + 1) * smp_threads >= smp_cpus) {
2686 nr_threads = smp_cpus - i * smp_threads;
2687 }
2688
2689 object_property_set_int(core, "nr-threads", nr_threads,
2690 &error_fatal);
2691 object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2692 &error_fatal);
2693 qdev_realize(DEVICE(core), NULL, &error_fatal);
2694
2695 object_unref(core);
2696 }
2697 }
2698 }
2699
2700 static PCIHostState *spapr_create_default_phb(void)
2701 {
2702 DeviceState *dev;
2703
2704 dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2705 qdev_prop_set_uint32(dev, "index", 0);
2706 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2707
2708 return PCI_HOST_BRIDGE(dev);
2709 }
2710
2711 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2712 {
2713 MachineState *machine = MACHINE(spapr);
2714 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2715 hwaddr rma_size = machine->ram_size;
2716 hwaddr node0_size = spapr_node0_size(machine);
2717
2718 /* RMA has to fit in the first NUMA node */
2719 rma_size = MIN(rma_size, node0_size);
2720
2721 /*
2722 * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2723 * never exceed that
2724 */
2725 rma_size = MIN(rma_size, 1 * TiB);
2726
2727 /*
2728 * Clamp the RMA size based on machine type. This is for
2729 * migration compatibility with older qemu versions, which limited
2730 * the RMA size for complicated and mostly bad reasons.
2731 */
2732 if (smc->rma_limit) {
2733 rma_size = MIN(rma_size, smc->rma_limit);
2734 }
2735
2736 if (rma_size < MIN_RMA_SLOF) {
2737 error_setg(errp,
2738 "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2739 "ldMiB guest RMA (Real Mode Area memory)",
2740 MIN_RMA_SLOF / MiB);
2741 return 0;
2742 }
2743
2744 return rma_size;
2745 }
2746
2747 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
2748 {
2749 MachineState *machine = MACHINE(spapr);
2750 int i;
2751
2752 for (i = 0; i < machine->ram_slots; i++) {
2753 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
2754 }
2755 }
2756
2757 /* pSeries LPAR / sPAPR hardware init */
2758 static void spapr_machine_init(MachineState *machine)
2759 {
2760 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2761 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2762 MachineClass *mc = MACHINE_GET_CLASS(machine);
2763 const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME;
2764 const char *bios_name = machine->firmware ?: bios_default;
2765 g_autofree char *filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2766 const char *kernel_filename = machine->kernel_filename;
2767 const char *initrd_filename = machine->initrd_filename;
2768 PCIHostState *phb;
2769 bool has_vga;
2770 int i;
2771 MemoryRegion *sysmem = get_system_memory();
2772 long load_limit, fw_size;
2773 Error *resize_hpt_err = NULL;
2774
2775 if (!filename) {
2776 error_report("Could not find LPAR firmware '%s'", bios_name);
2777 exit(1);
2778 }
2779 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2780 if (fw_size <= 0) {
2781 error_report("Could not load LPAR firmware '%s'", filename);
2782 exit(1);
2783 }
2784
2785 /*
2786 * if Secure VM (PEF) support is configured, then initialize it
2787 */
2788 pef_kvm_init(machine->cgs, &error_fatal);
2789
2790 msi_nonbroken = true;
2791
2792 QLIST_INIT(&spapr->phbs);
2793 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2794
2795 /* Determine capabilities to run with */
2796 spapr_caps_init(spapr);
2797
2798 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2799 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2800 /*
2801 * If the user explicitly requested a mode we should either
2802 * supply it, or fail completely (which we do below). But if
2803 * it's not set explicitly, we reset our mode to something
2804 * that works
2805 */
2806 if (resize_hpt_err) {
2807 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2808 error_free(resize_hpt_err);
2809 resize_hpt_err = NULL;
2810 } else {
2811 spapr->resize_hpt = smc->resize_hpt_default;
2812 }
2813 }
2814
2815 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2816
2817 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2818 /*
2819 * User requested HPT resize, but this host can't supply it. Bail out
2820 */
2821 error_report_err(resize_hpt_err);
2822 exit(1);
2823 }
2824 error_free(resize_hpt_err);
2825
2826 spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2827
2828 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2829 load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD;
2830
2831 /*
2832 * VSMT must be set in order to be able to compute VCPU ids, ie to
2833 * call spapr_max_server_number() or spapr_vcpu_id().
2834 */
2835 spapr_set_vsmt_mode(spapr, &error_fatal);
2836
2837 /* Set up Interrupt Controller before we create the VCPUs */
2838 spapr_irq_init(spapr, &error_fatal);
2839
2840 /* Set up containers for ibm,client-architecture-support negotiated options
2841 */
2842 spapr->ov5 = spapr_ovec_new();
2843 spapr->ov5_cas = spapr_ovec_new();
2844
2845 if (smc->dr_lmb_enabled) {
2846 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2847 spapr_validate_node_memory(machine, &error_fatal);
2848 }
2849
2850 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2851
2852 /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */
2853 if (!smc->pre_6_2_numa_affinity) {
2854 spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY);
2855 }
2856
2857 /* advertise support for dedicated HP event source to guests */
2858 if (spapr->use_hotplug_event_source) {
2859 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2860 }
2861
2862 /* advertise support for HPT resizing */
2863 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2864 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2865 }
2866
2867 /* advertise support for ibm,dyamic-memory-v2 */
2868 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2869
2870 /* advertise XIVE on POWER9 machines */
2871 if (spapr->irq->xive) {
2872 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2873 }
2874
2875 /* init CPUs */
2876 spapr_init_cpus(spapr);
2877
2878 /* Init numa_assoc_array */
2879 spapr_numa_associativity_init(spapr, machine);
2880
2881 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2882 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2883 spapr->max_compat_pvr)) {
2884 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2885 /* KVM and TCG always allow GTSE with radix... */
2886 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2887 }
2888 /* ... but not with hash (currently). */
2889
2890 if (kvm_enabled()) {
2891 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2892 kvmppc_enable_logical_ci_hcalls();
2893 kvmppc_enable_set_mode_hcall();
2894
2895 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2896 kvmppc_enable_clear_ref_mod_hcalls();
2897
2898 /* Enable H_PAGE_INIT */
2899 kvmppc_enable_h_page_init();
2900 }
2901
2902 /* map RAM */
2903 memory_region_add_subregion(sysmem, 0, machine->ram);
2904
2905 /* initialize hotplug memory address space */
2906 if (machine->ram_size < machine->maxram_size) {
2907 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2908 hwaddr device_mem_base;
2909
2910 /*
2911 * Limit the number of hotpluggable memory slots to half the number
2912 * slots that KVM supports, leaving the other half for PCI and other
2913 * devices. However ensure that number of slots doesn't drop below 32.
2914 */
2915 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2916 SPAPR_MAX_RAM_SLOTS;
2917
2918 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2919 max_memslots = SPAPR_MAX_RAM_SLOTS;
2920 }
2921 if (machine->ram_slots > max_memslots) {
2922 error_report("Specified number of memory slots %"
2923 PRIu64" exceeds max supported %d",
2924 machine->ram_slots, max_memslots);
2925 exit(1);
2926 }
2927
2928 device_mem_base = ROUND_UP(machine->ram_size, SPAPR_DEVICE_MEM_ALIGN);
2929 machine_memory_devices_init(machine, device_mem_base, device_mem_size);
2930 }
2931
2932 if (smc->dr_lmb_enabled) {
2933 spapr_create_lmb_dr_connectors(spapr);
2934 }
2935
2936 if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2937 /* Create the error string for live migration blocker */
2938 error_setg(&spapr->fwnmi_migration_blocker,
2939 "A machine check is being handled during migration. The handler"
2940 "may run and log hardware error on the destination");
2941 }
2942
2943 if (mc->nvdimm_supported) {
2944 spapr_create_nvdimm_dr_connectors(spapr);
2945 }
2946
2947 /* Set up RTAS event infrastructure */
2948 spapr_events_init(spapr);
2949
2950 /* Set up the RTC RTAS interfaces */
2951 spapr_rtc_create(spapr);
2952
2953 /* Set up VIO bus */
2954 spapr->vio_bus = spapr_vio_bus_init();
2955
2956 for (i = 0; serial_hd(i); i++) {
2957 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2958 }
2959
2960 /* We always have at least the nvram device on VIO */
2961 spapr_create_nvram(spapr);
2962
2963 /*
2964 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2965 * connectors (described in root DT node's "ibm,drc-types" property)
2966 * are pre-initialized here. additional child connectors (such as
2967 * connectors for a PHBs PCI slots) are added as needed during their
2968 * parent's realization.
2969 */
2970 if (smc->dr_phb_enabled) {
2971 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2972 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2973 }
2974 }
2975
2976 /* Set up PCI */
2977 spapr_pci_rtas_init();
2978
2979 phb = spapr_create_default_phb();
2980
2981 for (i = 0; i < nb_nics; i++) {
2982 NICInfo *nd = &nd_table[i];
2983
2984 if (!nd->model) {
2985 nd->model = g_strdup("spapr-vlan");
2986 }
2987
2988 if (g_str_equal(nd->model, "spapr-vlan") ||
2989 g_str_equal(nd->model, "ibmveth")) {
2990 spapr_vlan_create(spapr->vio_bus, nd);
2991 } else {
2992 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2993 }
2994 }
2995
2996 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2997 spapr_vscsi_create(spapr->vio_bus);
2998 }
2999
3000 /* Graphics */
3001 has_vga = spapr_vga_init(phb->bus, &error_fatal);
3002 if (has_vga) {
3003 spapr->want_stdout_path = !machine->enable_graphics;
3004 machine->usb |= defaults_enabled() && !machine->usb_disabled;
3005 } else {
3006 spapr->want_stdout_path = true;
3007 }
3008
3009 if (machine->usb) {
3010 if (smc->use_ohci_by_default) {
3011 pci_create_simple(phb->bus, -1, "pci-ohci");
3012 } else {
3013 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
3014 }
3015
3016 if (has_vga) {
3017 USBBus *usb_bus = usb_bus_find(-1);
3018
3019 usb_create_simple(usb_bus, "usb-kbd");
3020 usb_create_simple(usb_bus, "usb-mouse");
3021 }
3022 }
3023
3024 if (kernel_filename) {
3025 uint64_t loaded_addr = 0;
3026
3027 spapr->kernel_size = load_elf(kernel_filename, NULL,
3028 translate_kernel_address, spapr,
3029 NULL, &loaded_addr, NULL, NULL, 1,
3030 PPC_ELF_MACHINE, 0, 0);
3031 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
3032 spapr->kernel_size = load_elf(kernel_filename, NULL,
3033 translate_kernel_address, spapr,
3034 NULL, &loaded_addr, NULL, NULL, 0,
3035 PPC_ELF_MACHINE, 0, 0);
3036 spapr->kernel_le = spapr->kernel_size > 0;
3037 }
3038 if (spapr->kernel_size < 0) {
3039 error_report("error loading %s: %s", kernel_filename,
3040 load_elf_strerror(spapr->kernel_size));
3041 exit(1);
3042 }
3043
3044 if (spapr->kernel_addr != loaded_addr) {
3045 warn_report("spapr: kernel_addr changed from 0x%"PRIx64
3046 " to 0x%"PRIx64,
3047 spapr->kernel_addr, loaded_addr);
3048 spapr->kernel_addr = loaded_addr;
3049 }
3050
3051 /* load initrd */
3052 if (initrd_filename) {
3053 /* Try to locate the initrd in the gap between the kernel
3054 * and the firmware. Add a bit of space just in case
3055 */
3056 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
3057 + 0x1ffff) & ~0xffff;
3058 spapr->initrd_size = load_image_targphys(initrd_filename,
3059 spapr->initrd_base,
3060 load_limit
3061 - spapr->initrd_base);
3062 if (spapr->initrd_size < 0) {
3063 error_report("could not load initial ram disk '%s'",
3064 initrd_filename);
3065 exit(1);
3066 }
3067 }
3068 }
3069
3070 /* FIXME: Should register things through the MachineState's qdev
3071 * interface, this is a legacy from the sPAPREnvironment structure
3072 * which predated MachineState but had a similar function */
3073 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3074 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
3075 &savevm_htab_handlers, spapr);
3076
3077 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
3078
3079 qemu_register_boot_set(spapr_boot_set, spapr);
3080
3081 /*
3082 * Nothing needs to be done to resume a suspended guest because
3083 * suspending does not change the machine state, so no need for
3084 * a ->wakeup method.
3085 */
3086 qemu_register_wakeup_support();
3087
3088 if (kvm_enabled()) {
3089 /* to stop and start vmclock */
3090 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3091 &spapr->tb);
3092
3093 kvmppc_spapr_enable_inkernel_multitce();
3094 }
3095
3096 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3097 if (spapr->vof) {
3098 spapr->vof->fw_size = fw_size; /* for claim() on itself */
3099 spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client);
3100 }
3101
3102 spapr_watchdog_init(spapr);
3103 }
3104
3105 #define DEFAULT_KVM_TYPE "auto"
3106 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3107 {
3108 /*
3109 * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3110 * accomodate the 'HV' and 'PV' formats that exists in the
3111 * wild. The 'auto' mode is being introduced already as
3112 * lower-case, thus we don't need to bother checking for
3113 * "AUTO".
3114 */
3115 if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) {
3116 return 0;
3117 }
3118
3119 if (!g_ascii_strcasecmp(vm_type, "hv")) {
3120 return 1;
3121 }
3122
3123 if (!g_ascii_strcasecmp(vm_type, "pr")) {
3124 return 2;
3125 }
3126
3127 error_report("Unknown kvm-type specified '%s'", vm_type);
3128 return -1;
3129 }
3130
3131 /*
3132 * Implementation of an interface to adjust firmware path
3133 * for the bootindex property handling.
3134 */
3135 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3136 DeviceState *dev)
3137 {
3138 #define CAST(type, obj, name) \
3139 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3140 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3141 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3142 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3143 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3144
3145 if (d && bus) {
3146 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3147 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3148 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3149
3150 if (spapr) {
3151 /*
3152 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3153 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3154 * 0x8000 | (target << 8) | (bus << 5) | lun
3155 * (see the "Logical unit addressing format" table in SAM5)
3156 */
3157 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3158 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3159 (uint64_t)id << 48);
3160 } else if (virtio) {
3161 /*
3162 * We use SRP luns of the form 01000000 | (target << 8) | lun
3163 * in the top 32 bits of the 64-bit LUN
3164 * Note: the quote above is from SLOF and it is wrong,
3165 * the actual binding is:
3166 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3167 */
3168 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3169 if (d->lun >= 256) {
3170 /* Use the LUN "flat space addressing method" */
3171 id |= 0x4000;
3172 }
3173 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3174 (uint64_t)id << 32);
3175 } else if (usb) {
3176 /*
3177 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3178 * in the top 32 bits of the 64-bit LUN
3179 */
3180 unsigned usb_port = atoi(usb->port->path);
3181 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3182 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3183 (uint64_t)id << 32);
3184 }
3185 }
3186
3187 /*
3188 * SLOF probes the USB devices, and if it recognizes that the device is a
3189 * storage device, it changes its name to "storage" instead of "usb-host",
3190 * and additionally adds a child node for the SCSI LUN, so the correct
3191 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3192 */
3193 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3194 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3195 if (usb_device_is_scsi_storage(usbdev)) {
3196 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3197 }
3198 }
3199
3200 if (phb) {
3201 /* Replace "pci" with "pci@800000020000000" */
3202 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3203 }
3204
3205 if (vsc) {
3206 /* Same logic as virtio above */
3207 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3208 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3209 }
3210
3211 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3212 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3213 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3214 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3215 }
3216
3217 if (pcidev) {
3218 return spapr_pci_fw_dev_name(pcidev);
3219 }
3220
3221 return NULL;
3222 }
3223
3224 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3225 {
3226 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3227
3228 return g_strdup(spapr->kvm_type);
3229 }
3230
3231 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3232 {
3233 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3234
3235 g_free(spapr->kvm_type);
3236 spapr->kvm_type = g_strdup(value);
3237 }
3238
3239 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3240 {
3241 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3242
3243 return spapr->use_hotplug_event_source;
3244 }
3245
3246 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3247 Error **errp)
3248 {
3249 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3250
3251 spapr->use_hotplug_event_source = value;
3252 }
3253
3254 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3255 {
3256 return true;
3257 }
3258
3259 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3260 {
3261 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3262
3263 switch (spapr->resize_hpt) {
3264 case SPAPR_RESIZE_HPT_DEFAULT:
3265 return g_strdup("default");
3266 case SPAPR_RESIZE_HPT_DISABLED:
3267 return g_strdup("disabled");
3268 case SPAPR_RESIZE_HPT_ENABLED:
3269 return g_strdup("enabled");
3270 case SPAPR_RESIZE_HPT_REQUIRED:
3271 return g_strdup("required");
3272 }
3273 g_assert_not_reached();
3274 }
3275
3276 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3277 {
3278 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3279
3280 if (strcmp(value, "default") == 0) {
3281 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3282 } else if (strcmp(value, "disabled") == 0) {
3283 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3284 } else if (strcmp(value, "enabled") == 0) {
3285 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3286 } else if (strcmp(value, "required") == 0) {
3287 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3288 } else {
3289 error_setg(errp, "Bad value for \"resize-hpt\" property");
3290 }
3291 }
3292
3293 static bool spapr_get_vof(Object *obj, Error **errp)
3294 {
3295 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3296
3297 return spapr->vof != NULL;
3298 }
3299
3300 static void spapr_set_vof(Object *obj, bool value, Error **errp)
3301 {
3302 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3303
3304 if (spapr->vof) {
3305 vof_cleanup(spapr->vof);
3306 g_free(spapr->vof);
3307 spapr->vof = NULL;
3308 }
3309 if (!value) {
3310 return;
3311 }
3312 spapr->vof = g_malloc0(sizeof(*spapr->vof));
3313 }
3314
3315 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3316 {
3317 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3318
3319 if (spapr->irq == &spapr_irq_xics_legacy) {
3320 return g_strdup("legacy");
3321 } else if (spapr->irq == &spapr_irq_xics) {
3322 return g_strdup("xics");
3323 } else if (spapr->irq == &spapr_irq_xive) {
3324 return g_strdup("xive");
3325 } else if (spapr->irq == &spapr_irq_dual) {
3326 return g_strdup("dual");
3327 }
3328 g_assert_not_reached();
3329 }
3330
3331 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3332 {
3333 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3334
3335 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3336 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3337 return;
3338 }
3339
3340 /* The legacy IRQ backend can not be set */
3341 if (strcmp(value, "xics") == 0) {
3342 spapr->irq = &spapr_irq_xics;
3343 } else if (strcmp(value, "xive") == 0) {
3344 spapr->irq = &spapr_irq_xive;
3345 } else if (strcmp(value, "dual") == 0) {
3346 spapr->irq = &spapr_irq_dual;
3347 } else {
3348 error_setg(errp, "Bad value for \"ic-mode\" property");
3349 }
3350 }
3351
3352 static char *spapr_get_host_model(Object *obj, Error **errp)
3353 {
3354 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3355
3356 return g_strdup(spapr->host_model);
3357 }
3358
3359 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3360 {
3361 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3362
3363 g_free(spapr->host_model);
3364 spapr->host_model = g_strdup(value);
3365 }
3366
3367 static char *spapr_get_host_serial(Object *obj, Error **errp)
3368 {
3369 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3370
3371 return g_strdup(spapr->host_serial);
3372 }
3373
3374 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3375 {
3376 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3377
3378 g_free(spapr->host_serial);
3379 spapr->host_serial = g_strdup(value);
3380 }
3381
3382 static void spapr_instance_init(Object *obj)
3383 {
3384 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3385 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3386 MachineState *ms = MACHINE(spapr);
3387 MachineClass *mc = MACHINE_GET_CLASS(ms);
3388
3389 /*
3390 * NVDIMM support went live in 5.1 without considering that, in
3391 * other archs, the user needs to enable NVDIMM support with the
3392 * 'nvdimm' machine option and the default behavior is NVDIMM
3393 * support disabled. It is too late to roll back to the standard
3394 * behavior without breaking 5.1 guests.
3395 */
3396 if (mc->nvdimm_supported) {
3397 ms->nvdimms_state->is_enabled = true;
3398 }
3399
3400 spapr->htab_fd = -1;
3401 spapr->use_hotplug_event_source = true;
3402 spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE);
3403 object_property_add_str(obj, "kvm-type",
3404 spapr_get_kvm_type, spapr_set_kvm_type);
3405 object_property_set_description(obj, "kvm-type",
3406 "Specifies the KVM virtualization mode (auto,"
3407 " hv, pr). Defaults to 'auto'. This mode will use"
3408 " any available KVM module loaded in the host,"
3409 " where kvm_hv takes precedence if both kvm_hv and"
3410 " kvm_pr are loaded.");
3411 object_property_add_bool(obj, "modern-hotplug-events",
3412 spapr_get_modern_hotplug_events,
3413 spapr_set_modern_hotplug_events);
3414 object_property_set_description(obj, "modern-hotplug-events",
3415 "Use dedicated hotplug event mechanism in"
3416 " place of standard EPOW events when possible"
3417 " (required for memory hot-unplug support)");
3418 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3419 "Maximum permitted CPU compatibility mode");
3420
3421 object_property_add_str(obj, "resize-hpt",
3422 spapr_get_resize_hpt, spapr_set_resize_hpt);
3423 object_property_set_description(obj, "resize-hpt",
3424 "Resizing of the Hash Page Table (enabled, disabled, required)");
3425 object_property_add_uint32_ptr(obj, "vsmt",
3426 &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3427 object_property_set_description(obj, "vsmt",
3428 "Virtual SMT: KVM behaves as if this were"
3429 " the host's SMT mode");
3430
3431 object_property_add_bool(obj, "vfio-no-msix-emulation",
3432 spapr_get_msix_emulation, NULL);
3433
3434 object_property_add_uint64_ptr(obj, "kernel-addr",
3435 &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3436 object_property_set_description(obj, "kernel-addr",
3437 stringify(KERNEL_LOAD_ADDR)
3438 " for -kernel is the default");
3439 spapr->kernel_addr = KERNEL_LOAD_ADDR;
3440
3441 object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof);
3442 object_property_set_description(obj, "x-vof",
3443 "Enable Virtual Open Firmware (experimental)");
3444
3445 /* The machine class defines the default interrupt controller mode */
3446 spapr->irq = smc->irq;
3447 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3448 spapr_set_ic_mode);
3449 object_property_set_description(obj, "ic-mode",
3450 "Specifies the interrupt controller mode (xics, xive, dual)");
3451
3452 object_property_add_str(obj, "host-model",
3453 spapr_get_host_model, spapr_set_host_model);
3454 object_property_set_description(obj, "host-model",
3455 "Host model to advertise in guest device tree");
3456 object_property_add_str(obj, "host-serial",
3457 spapr_get_host_serial, spapr_set_host_serial);
3458 object_property_set_description(obj, "host-serial",
3459 "Host serial number to advertise in guest device tree");
3460 }
3461
3462 static void spapr_machine_finalizefn(Object *obj)
3463 {
3464 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3465
3466 g_free(spapr->kvm_type);
3467 }
3468
3469 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3470 {
3471 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3472 PowerPCCPU *cpu = POWERPC_CPU(cs);
3473 CPUPPCState *env = &cpu->env;
3474
3475 cpu_synchronize_state(cs);
3476 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3477 if (spapr->fwnmi_system_reset_addr != -1) {
3478 uint64_t rtas_addr, addr;
3479
3480 /* get rtas addr from fdt */
3481 rtas_addr = spapr_get_rtas_addr();
3482 if (!rtas_addr) {
3483 qemu_system_guest_panicked(NULL);
3484 return;
3485 }
3486
3487 addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3488 stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3489 stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3490 env->gpr[3] = addr;
3491 }
3492 ppc_cpu_do_system_reset(cs);
3493 if (spapr->fwnmi_system_reset_addr != -1) {
3494 env->nip = spapr->fwnmi_system_reset_addr;
3495 }
3496 }
3497
3498 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3499 {
3500 CPUState *cs;
3501
3502 CPU_FOREACH(cs) {
3503 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3504 }
3505 }
3506
3507 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3508 void *fdt, int *fdt_start_offset, Error **errp)
3509 {
3510 uint64_t addr;
3511 uint32_t node;
3512
3513 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3514 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3515 &error_abort);
3516 *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3517 SPAPR_MEMORY_BLOCK_SIZE);
3518 return 0;
3519 }
3520
3521 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3522 bool dedicated_hp_event_source)
3523 {
3524 SpaprDrc *drc;
3525 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3526 int i;
3527 uint64_t addr = addr_start;
3528 bool hotplugged = spapr_drc_hotplugged(dev);
3529
3530 for (i = 0; i < nr_lmbs; i++) {
3531 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3532 addr / SPAPR_MEMORY_BLOCK_SIZE);
3533 g_assert(drc);
3534
3535 /*
3536 * memory_device_get_free_addr() provided a range of free addresses
3537 * that doesn't overlap with any existing mapping at pre-plug. The
3538 * corresponding LMB DRCs are thus assumed to be all attachable.
3539 */
3540 spapr_drc_attach(drc, dev);
3541 if (!hotplugged) {
3542 spapr_drc_reset(drc);
3543 }
3544 addr += SPAPR_MEMORY_BLOCK_SIZE;
3545 }
3546 /* send hotplug notification to the
3547 * guest only in case of hotplugged memory
3548 */
3549 if (hotplugged) {
3550 if (dedicated_hp_event_source) {
3551 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3552 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3553 g_assert(drc);
3554 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3555 nr_lmbs,
3556 spapr_drc_index(drc));
3557 } else {
3558 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3559 nr_lmbs);
3560 }
3561 }
3562 }
3563
3564 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3565 {
3566 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3567 PCDIMMDevice *dimm = PC_DIMM(dev);
3568 uint64_t size, addr;
3569 int64_t slot;
3570 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3571
3572 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3573
3574 pc_dimm_plug(dimm, MACHINE(ms));
3575
3576 if (!is_nvdimm) {
3577 addr = object_property_get_uint(OBJECT(dimm),
3578 PC_DIMM_ADDR_PROP, &error_abort);
3579 spapr_add_lmbs(dev, addr, size,
3580 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT));
3581 } else {
3582 slot = object_property_get_int(OBJECT(dimm),
3583 PC_DIMM_SLOT_PROP, &error_abort);
3584 /* We should have valid slot number at this point */
3585 g_assert(slot >= 0);
3586 spapr_add_nvdimm(dev, slot);
3587 }
3588 }
3589
3590 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3591 Error **errp)
3592 {
3593 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3594 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3595 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3596 PCDIMMDevice *dimm = PC_DIMM(dev);
3597 Error *local_err = NULL;
3598 uint64_t size;
3599 Object *memdev;
3600 hwaddr pagesize;
3601
3602 if (!smc->dr_lmb_enabled) {
3603 error_setg(errp, "Memory hotplug not supported for this machine");
3604 return;
3605 }
3606
3607 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3608 if (local_err) {
3609 error_propagate(errp, local_err);
3610 return;
3611 }
3612
3613 if (is_nvdimm) {
3614 if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
3615 return;
3616 }
3617 } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3618 error_setg(errp, "Hotplugged memory size must be a multiple of "
3619 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3620 return;
3621 }
3622
3623 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3624 &error_abort);
3625 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3626 if (!spapr_check_pagesize(spapr, pagesize, errp)) {
3627 return;
3628 }
3629
3630 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3631 }
3632
3633 struct SpaprDimmState {
3634 PCDIMMDevice *dimm;
3635 uint32_t nr_lmbs;
3636 QTAILQ_ENTRY(SpaprDimmState) next;
3637 };
3638
3639 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3640 PCDIMMDevice *dimm)
3641 {
3642 SpaprDimmState *dimm_state = NULL;
3643
3644 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3645 if (dimm_state->dimm == dimm) {
3646 break;
3647 }
3648 }
3649 return dimm_state;
3650 }
3651
3652 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3653 uint32_t nr_lmbs,
3654 PCDIMMDevice *dimm)
3655 {
3656 SpaprDimmState *ds = NULL;
3657
3658 /*
3659 * If this request is for a DIMM whose removal had failed earlier
3660 * (due to guest's refusal to remove the LMBs), we would have this
3661 * dimm already in the pending_dimm_unplugs list. In that
3662 * case don't add again.
3663 */
3664 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3665 if (!ds) {
3666 ds = g_new0(SpaprDimmState, 1);
3667 ds->nr_lmbs = nr_lmbs;
3668 ds->dimm = dimm;
3669 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3670 }
3671 return ds;
3672 }
3673
3674 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3675 SpaprDimmState *dimm_state)
3676 {
3677 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3678 g_free(dimm_state);
3679 }
3680
3681 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3682 PCDIMMDevice *dimm)
3683 {
3684 SpaprDrc *drc;
3685 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3686 &error_abort);
3687 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3688 uint32_t avail_lmbs = 0;
3689 uint64_t addr_start, addr;
3690 int i;
3691
3692 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3693 &error_abort);
3694
3695 addr = addr_start;
3696 for (i = 0; i < nr_lmbs; i++) {
3697 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3698 addr / SPAPR_MEMORY_BLOCK_SIZE);
3699 g_assert(drc);
3700 if (drc->dev) {
3701 avail_lmbs++;
3702 }
3703 addr += SPAPR_MEMORY_BLOCK_SIZE;
3704 }
3705
3706 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3707 }
3708
3709 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev)
3710 {
3711 SpaprDimmState *ds;
3712 PCDIMMDevice *dimm;
3713 SpaprDrc *drc;
3714 uint32_t nr_lmbs;
3715 uint64_t size, addr_start, addr;
3716 g_autofree char *qapi_error = NULL;
3717 int i;
3718
3719 if (!dev) {
3720 return;
3721 }
3722
3723 dimm = PC_DIMM(dev);
3724 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3725
3726 /*
3727 * 'ds == NULL' would mean that the DIMM doesn't have a pending
3728 * unplug state, but one of its DRC is marked as unplug_requested.
3729 * This is bad and weird enough to g_assert() out.
3730 */
3731 g_assert(ds);
3732
3733 spapr_pending_dimm_unplugs_remove(spapr, ds);
3734
3735 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3736 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3737
3738 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3739 &error_abort);
3740
3741 addr = addr_start;
3742 for (i = 0; i < nr_lmbs; i++) {
3743 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3744 addr / SPAPR_MEMORY_BLOCK_SIZE);
3745 g_assert(drc);
3746
3747 drc->unplug_requested = false;
3748 addr += SPAPR_MEMORY_BLOCK_SIZE;
3749 }
3750
3751 /*
3752 * Tell QAPI that something happened and the memory
3753 * hotunplug wasn't successful. Keep sending
3754 * MEM_UNPLUG_ERROR even while sending
3755 * DEVICE_UNPLUG_GUEST_ERROR until the deprecation of
3756 * MEM_UNPLUG_ERROR is due.
3757 */
3758 qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest "
3759 "for device %s", dev->id);
3760
3761 qapi_event_send_mem_unplug_error(dev->id ? : "", qapi_error);
3762
3763 qapi_event_send_device_unplug_guest_error(dev->id,
3764 dev->canonical_path);
3765 }
3766
3767 /* Callback to be called during DRC release. */
3768 void spapr_lmb_release(DeviceState *dev)
3769 {
3770 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3771 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3772 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3773
3774 /* This information will get lost if a migration occurs
3775 * during the unplug process. In this case recover it. */
3776 if (ds == NULL) {
3777 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3778 g_assert(ds);
3779 /* The DRC being examined by the caller at least must be counted */
3780 g_assert(ds->nr_lmbs);
3781 }
3782
3783 if (--ds->nr_lmbs) {
3784 return;
3785 }
3786
3787 /*
3788 * Now that all the LMBs have been removed by the guest, call the
3789 * unplug handler chain. This can never fail.
3790 */
3791 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3792 object_unparent(OBJECT(dev));
3793 }
3794
3795 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3796 {
3797 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3798 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3799
3800 /* We really shouldn't get this far without anything to unplug */
3801 g_assert(ds);
3802
3803 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3804 qdev_unrealize(dev);
3805 spapr_pending_dimm_unplugs_remove(spapr, ds);
3806 }
3807
3808 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3809 DeviceState *dev, Error **errp)
3810 {
3811 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3812 PCDIMMDevice *dimm = PC_DIMM(dev);
3813 uint32_t nr_lmbs;
3814 uint64_t size, addr_start, addr;
3815 int i;
3816 SpaprDrc *drc;
3817
3818 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3819 error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3820 return;
3821 }
3822
3823 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3824 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3825
3826 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3827 &error_abort);
3828
3829 /*
3830 * An existing pending dimm state for this DIMM means that there is an
3831 * unplug operation in progress, waiting for the spapr_lmb_release
3832 * callback to complete the job (BQL can't cover that far). In this case,
3833 * bail out to avoid detaching DRCs that were already released.
3834 */
3835 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3836 error_setg(errp, "Memory unplug already in progress for device %s",
3837 dev->id);
3838 return;
3839 }
3840
3841 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3842
3843 addr = addr_start;
3844 for (i = 0; i < nr_lmbs; i++) {
3845 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3846 addr / SPAPR_MEMORY_BLOCK_SIZE);
3847 g_assert(drc);
3848
3849 spapr_drc_unplug_request(drc);
3850 addr += SPAPR_MEMORY_BLOCK_SIZE;
3851 }
3852
3853 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3854 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3855 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3856 nr_lmbs, spapr_drc_index(drc));
3857 }
3858
3859 /* Callback to be called during DRC release. */
3860 void spapr_core_release(DeviceState *dev)
3861 {
3862 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3863
3864 /* Call the unplug handler chain. This can never fail. */
3865 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3866 object_unparent(OBJECT(dev));
3867 }
3868
3869 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3870 {
3871 MachineState *ms = MACHINE(hotplug_dev);
3872 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3873 CPUCore *cc = CPU_CORE(dev);
3874 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3875
3876 if (smc->pre_2_10_has_unused_icps) {
3877 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3878 int i;
3879
3880 for (i = 0; i < cc->nr_threads; i++) {
3881 CPUState *cs = CPU(sc->threads[i]);
3882
3883 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3884 }
3885 }
3886
3887 assert(core_slot);
3888 core_slot->cpu = NULL;
3889 qdev_unrealize(dev);
3890 }
3891
3892 static
3893 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3894 Error **errp)
3895 {
3896 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3897 int index;
3898 SpaprDrc *drc;
3899 CPUCore *cc = CPU_CORE(dev);
3900
3901 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3902 error_setg(errp, "Unable to find CPU core with core-id: %d",
3903 cc->core_id);
3904 return;
3905 }
3906 if (index == 0) {
3907 error_setg(errp, "Boot CPU core may not be unplugged");
3908 return;
3909 }
3910
3911 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3912 spapr_vcpu_id(spapr, cc->core_id));
3913 g_assert(drc);
3914
3915 if (!spapr_drc_unplug_requested(drc)) {
3916 spapr_drc_unplug_request(drc);
3917 }
3918
3919 /*
3920 * spapr_hotplug_req_remove_by_index is left unguarded, out of the
3921 * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ
3922 * pulses removing the same CPU. Otherwise, in an failed hotunplug
3923 * attempt (e.g. the kernel will refuse to remove the last online
3924 * CPU), we will never attempt it again because unplug_requested
3925 * will still be 'true' in that case.
3926 */
3927 spapr_hotplug_req_remove_by_index(drc);
3928 }
3929
3930 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3931 void *fdt, int *fdt_start_offset, Error **errp)
3932 {
3933 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3934 CPUState *cs = CPU(core->threads[0]);
3935 PowerPCCPU *cpu = POWERPC_CPU(cs);
3936 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3937 int id = spapr_get_vcpu_id(cpu);
3938 g_autofree char *nodename = NULL;
3939 int offset;
3940
3941 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3942 offset = fdt_add_subnode(fdt, 0, nodename);
3943
3944 spapr_dt_cpu(cs, fdt, offset, spapr);
3945
3946 /*
3947 * spapr_dt_cpu() does not fill the 'name' property in the
3948 * CPU node. The function is called during boot process, before
3949 * and after CAS, and overwriting the 'name' property written
3950 * by SLOF is not allowed.
3951 *
3952 * Write it manually after spapr_dt_cpu(). This makes the hotplug
3953 * CPUs more compatible with the coldplugged ones, which have
3954 * the 'name' property. Linux Kernel also relies on this
3955 * property to identify CPU nodes.
3956 */
3957 _FDT((fdt_setprop_string(fdt, offset, "name", nodename)));
3958
3959 *fdt_start_offset = offset;
3960 return 0;
3961 }
3962
3963 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3964 {
3965 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3966 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3967 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3968 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3969 CPUCore *cc = CPU_CORE(dev);
3970 CPUState *cs;
3971 SpaprDrc *drc;
3972 CPUArchId *core_slot;
3973 int index;
3974 bool hotplugged = spapr_drc_hotplugged(dev);
3975 int i;
3976
3977 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3978 g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */
3979
3980 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3981 spapr_vcpu_id(spapr, cc->core_id));
3982
3983 g_assert(drc || !mc->has_hotpluggable_cpus);
3984
3985 if (drc) {
3986 /*
3987 * spapr_core_pre_plug() already buys us this is a brand new
3988 * core being plugged into a free slot. Nothing should already
3989 * be attached to the corresponding DRC.
3990 */
3991 spapr_drc_attach(drc, dev);
3992
3993 if (hotplugged) {
3994 /*
3995 * Send hotplug notification interrupt to the guest only
3996 * in case of hotplugged CPUs.
3997 */
3998 spapr_hotplug_req_add_by_index(drc);
3999 } else {
4000 spapr_drc_reset(drc);
4001 }
4002 }
4003
4004 core_slot->cpu = OBJECT(dev);
4005
4006 /*
4007 * Set compatibility mode to match the boot CPU, which was either set
4008 * by the machine reset code or by CAS. This really shouldn't fail at
4009 * this point.
4010 */
4011 if (hotplugged) {
4012 for (i = 0; i < cc->nr_threads; i++) {
4013 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
4014 &error_abort);
4015 }
4016 }
4017
4018 if (smc->pre_2_10_has_unused_icps) {
4019 for (i = 0; i < cc->nr_threads; i++) {
4020 cs = CPU(core->threads[i]);
4021 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
4022 }
4023 }
4024 }
4025
4026 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4027 Error **errp)
4028 {
4029 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
4030 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
4031 CPUCore *cc = CPU_CORE(dev);
4032 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
4033 const char *type = object_get_typename(OBJECT(dev));
4034 CPUArchId *core_slot;
4035 int index;
4036 unsigned int smp_threads = machine->smp.threads;
4037
4038 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
4039 error_setg(errp, "CPU hotplug not supported for this machine");
4040 return;
4041 }
4042
4043 if (strcmp(base_core_type, type)) {
4044 error_setg(errp, "CPU core type should be %s", base_core_type);
4045 return;
4046 }
4047
4048 if (cc->core_id % smp_threads) {
4049 error_setg(errp, "invalid core id %d", cc->core_id);
4050 return;
4051 }
4052
4053 /*
4054 * In general we should have homogeneous threads-per-core, but old
4055 * (pre hotplug support) machine types allow the last core to have
4056 * reduced threads as a compatibility hack for when we allowed
4057 * total vcpus not a multiple of threads-per-core.
4058 */
4059 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
4060 error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
4061 smp_threads);
4062 return;
4063 }
4064
4065 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
4066 if (!core_slot) {
4067 error_setg(errp, "core id %d out of range", cc->core_id);
4068 return;
4069 }
4070
4071 if (core_slot->cpu) {
4072 error_setg(errp, "core %d already populated", cc->core_id);
4073 return;
4074 }
4075
4076 numa_cpu_pre_plug(core_slot, dev, errp);
4077 }
4078
4079 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
4080 void *fdt, int *fdt_start_offset, Error **errp)
4081 {
4082 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
4083 int intc_phandle;
4084
4085 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
4086 if (intc_phandle <= 0) {
4087 return -1;
4088 }
4089
4090 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
4091 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
4092 return -1;
4093 }
4094
4095 /* generally SLOF creates these, for hotplug it's up to QEMU */
4096 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
4097
4098 return 0;
4099 }
4100
4101 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4102 Error **errp)
4103 {
4104 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4105 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4106 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4107 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
4108 SpaprDrc *drc;
4109
4110 if (dev->hotplugged && !smc->dr_phb_enabled) {
4111 error_setg(errp, "PHB hotplug not supported for this machine");
4112 return false;
4113 }
4114
4115 if (sphb->index == (uint32_t)-1) {
4116 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
4117 return false;
4118 }
4119
4120 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4121 if (drc && drc->dev) {
4122 error_setg(errp, "PHB %d already attached", sphb->index);
4123 return false;
4124 }
4125
4126 /*
4127 * This will check that sphb->index doesn't exceed the maximum number of
4128 * PHBs for the current machine type.
4129 */
4130 return
4131 smc->phb_placement(spapr, sphb->index,
4132 &sphb->buid, &sphb->io_win_addr,
4133 &sphb->mem_win_addr, &sphb->mem64_win_addr,
4134 windows_supported, sphb->dma_liobn,
4135 errp);
4136 }
4137
4138 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4139 {
4140 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4141 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4142 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4143 SpaprDrc *drc;
4144 bool hotplugged = spapr_drc_hotplugged(dev);
4145
4146 if (!smc->dr_phb_enabled) {
4147 return;
4148 }
4149
4150 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4151 /* hotplug hooks should check it's enabled before getting this far */
4152 assert(drc);
4153
4154 /* spapr_phb_pre_plug() already checked the DRC is attachable */
4155 spapr_drc_attach(drc, dev);
4156
4157 if (hotplugged) {
4158 spapr_hotplug_req_add_by_index(drc);
4159 } else {
4160 spapr_drc_reset(drc);
4161 }
4162 }
4163
4164 void spapr_phb_release(DeviceState *dev)
4165 {
4166 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4167
4168 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4169 object_unparent(OBJECT(dev));
4170 }
4171
4172 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4173 {
4174 qdev_unrealize(dev);
4175 }
4176
4177 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4178 DeviceState *dev, Error **errp)
4179 {
4180 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4181 SpaprDrc *drc;
4182
4183 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4184 assert(drc);
4185
4186 if (!spapr_drc_unplug_requested(drc)) {
4187 spapr_drc_unplug_request(drc);
4188 spapr_hotplug_req_remove_by_index(drc);
4189 } else {
4190 error_setg(errp,
4191 "PCI Host Bridge unplug already in progress for device %s",
4192 dev->id);
4193 }
4194 }
4195
4196 static
4197 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4198 Error **errp)
4199 {
4200 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4201
4202 if (spapr->tpm_proxy != NULL) {
4203 error_setg(errp, "Only one TPM proxy can be specified for this machine");
4204 return false;
4205 }
4206
4207 return true;
4208 }
4209
4210 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4211 {
4212 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4213 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4214
4215 /* Already checked in spapr_tpm_proxy_pre_plug() */
4216 g_assert(spapr->tpm_proxy == NULL);
4217
4218 spapr->tpm_proxy = tpm_proxy;
4219 }
4220
4221 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4222 {
4223 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4224
4225 qdev_unrealize(dev);
4226 object_unparent(OBJECT(dev));
4227 spapr->tpm_proxy = NULL;
4228 }
4229
4230 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4231 DeviceState *dev, Error **errp)
4232 {
4233 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4234 spapr_memory_plug(hotplug_dev, dev);
4235 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4236 spapr_core_plug(hotplug_dev, dev);
4237 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4238 spapr_phb_plug(hotplug_dev, dev);
4239 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4240 spapr_tpm_proxy_plug(hotplug_dev, dev);
4241 }
4242 }
4243
4244 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4245 DeviceState *dev, Error **errp)
4246 {
4247 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4248 spapr_memory_unplug(hotplug_dev, dev);
4249 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4250 spapr_core_unplug(hotplug_dev, dev);
4251 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4252 spapr_phb_unplug(hotplug_dev, dev);
4253 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4254 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4255 }
4256 }
4257
4258 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr)
4259 {
4260 return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) ||
4261 /*
4262 * CAS will process all pending unplug requests.
4263 *
4264 * HACK: a guest could theoretically have cleared all bits in OV5,
4265 * but none of the guests we care for do.
4266 */
4267 spapr_ovec_empty(spapr->ov5_cas);
4268 }
4269
4270 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4271 DeviceState *dev, Error **errp)
4272 {
4273 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4274 MachineClass *mc = MACHINE_GET_CLASS(sms);
4275 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4276
4277 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4278 if (spapr_memory_hot_unplug_supported(sms)) {
4279 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4280 } else {
4281 error_setg(errp, "Memory hot unplug not supported for this guest");
4282 }
4283 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4284 if (!mc->has_hotpluggable_cpus) {
4285 error_setg(errp, "CPU hot unplug not supported on this machine");
4286 return;
4287 }
4288 spapr_core_unplug_request(hotplug_dev, dev, errp);
4289 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4290 if (!smc->dr_phb_enabled) {
4291 error_setg(errp, "PHB hot unplug not supported on this machine");
4292 return;
4293 }
4294 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4295 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4296 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4297 }
4298 }
4299
4300 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4301 DeviceState *dev, Error **errp)
4302 {
4303 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4304 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4305 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4306 spapr_core_pre_plug(hotplug_dev, dev, errp);
4307 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4308 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4309 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4310 spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp);
4311 }
4312 }
4313
4314 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4315 DeviceState *dev)
4316 {
4317 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4318 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4319 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4320 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4321 return HOTPLUG_HANDLER(machine);
4322 }
4323 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4324 PCIDevice *pcidev = PCI_DEVICE(dev);
4325 PCIBus *root = pci_device_root_bus(pcidev);
4326 SpaprPhbState *phb =
4327 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4328 TYPE_SPAPR_PCI_HOST_BRIDGE);
4329
4330 if (phb) {
4331 return HOTPLUG_HANDLER(phb);
4332 }
4333 }
4334 return NULL;
4335 }
4336
4337 static CpuInstanceProperties
4338 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4339 {
4340 CPUArchId *core_slot;
4341 MachineClass *mc = MACHINE_GET_CLASS(machine);
4342
4343 /* make sure possible_cpu are intialized */
4344 mc->possible_cpu_arch_ids(machine);
4345 /* get CPU core slot containing thread that matches cpu_index */
4346 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4347 assert(core_slot);
4348 return core_slot->props;
4349 }
4350
4351 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4352 {
4353 return idx / ms->smp.cores % ms->numa_state->num_nodes;
4354 }
4355
4356 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4357 {
4358 int i;
4359 unsigned int smp_threads = machine->smp.threads;
4360 unsigned int smp_cpus = machine->smp.cpus;
4361 const char *core_type;
4362 int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4363 MachineClass *mc = MACHINE_GET_CLASS(machine);
4364
4365 if (!mc->has_hotpluggable_cpus) {
4366 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4367 }
4368 if (machine->possible_cpus) {
4369 assert(machine->possible_cpus->len == spapr_max_cores);
4370 return machine->possible_cpus;
4371 }
4372
4373 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4374 if (!core_type) {
4375 error_report("Unable to find sPAPR CPU Core definition");
4376 exit(1);
4377 }
4378
4379 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4380 sizeof(CPUArchId) * spapr_max_cores);
4381 machine->possible_cpus->len = spapr_max_cores;
4382 for (i = 0; i < machine->possible_cpus->len; i++) {
4383 int core_id = i * smp_threads;
4384
4385 machine->possible_cpus->cpus[i].type = core_type;
4386 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4387 machine->possible_cpus->cpus[i].arch_id = core_id;
4388 machine->possible_cpus->cpus[i].props.has_core_id = true;
4389 machine->possible_cpus->cpus[i].props.core_id = core_id;
4390 }
4391 return machine->possible_cpus;
4392 }
4393
4394 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4395 uint64_t *buid, hwaddr *pio,
4396 hwaddr *mmio32, hwaddr *mmio64,
4397 unsigned n_dma, uint32_t *liobns, Error **errp)
4398 {
4399 /*
4400 * New-style PHB window placement.
4401 *
4402 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4403 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4404 * windows.
4405 *
4406 * Some guest kernels can't work with MMIO windows above 1<<46
4407 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4408 *
4409 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4410 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4411 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4412 * 1TiB 64-bit MMIO windows for each PHB.
4413 */
4414 const uint64_t base_buid = 0x800000020000000ULL;
4415 int i;
4416
4417 /* Sanity check natural alignments */
4418 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4419 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4420 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4421 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4422 /* Sanity check bounds */
4423 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4424 SPAPR_PCI_MEM32_WIN_SIZE);
4425 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4426 SPAPR_PCI_MEM64_WIN_SIZE);
4427
4428 if (index >= SPAPR_MAX_PHBS) {
4429 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4430 SPAPR_MAX_PHBS - 1);
4431 return false;
4432 }
4433
4434 *buid = base_buid + index;
4435 for (i = 0; i < n_dma; ++i) {
4436 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4437 }
4438
4439 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4440 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4441 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4442 return true;
4443 }
4444
4445 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4446 {
4447 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4448
4449 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4450 }
4451
4452 static void spapr_ics_resend(XICSFabric *dev)
4453 {
4454 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4455
4456 ics_resend(spapr->ics);
4457 }
4458
4459 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4460 {
4461 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4462
4463 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4464 }
4465
4466 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4467 Monitor *mon)
4468 {
4469 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4470
4471 spapr_irq_print_info(spapr, mon);
4472 monitor_printf(mon, "irqchip: %s\n",
4473 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4474 }
4475
4476 /*
4477 * This is a XIVE only operation
4478 */
4479 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4480 uint8_t nvt_blk, uint32_t nvt_idx,
4481 bool cam_ignore, uint8_t priority,
4482 uint32_t logic_serv, XiveTCTXMatch *match)
4483 {
4484 SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4485 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4486 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4487 int count;
4488
4489 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4490 priority, logic_serv, match);
4491 if (count < 0) {
4492 return count;
4493 }
4494
4495 /*
4496 * When we implement the save and restore of the thread interrupt
4497 * contexts in the enter/exit CPU handlers of the machine and the
4498 * escalations in QEMU, we should be able to handle non dispatched
4499 * vCPUs.
4500 *
4501 * Until this is done, the sPAPR machine should find at least one
4502 * matching context always.
4503 */
4504 if (count == 0) {
4505 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4506 nvt_blk, nvt_idx);
4507 }
4508
4509 return count;
4510 }
4511
4512 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4513 {
4514 return cpu->vcpu_id;
4515 }
4516
4517 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4518 {
4519 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4520 MachineState *ms = MACHINE(spapr);
4521 int vcpu_id;
4522
4523 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4524
4525 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4526 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4527 error_append_hint(errp, "Adjust the number of cpus to %d "
4528 "or try to raise the number of threads per core\n",
4529 vcpu_id * ms->smp.threads / spapr->vsmt);
4530 return false;
4531 }
4532
4533 cpu->vcpu_id = vcpu_id;
4534 return true;
4535 }
4536
4537 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4538 {
4539 CPUState *cs;
4540
4541 CPU_FOREACH(cs) {
4542 PowerPCCPU *cpu = POWERPC_CPU(cs);
4543
4544 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4545 return cpu;
4546 }
4547 }
4548
4549 return NULL;
4550 }
4551
4552 static bool spapr_cpu_in_nested(PowerPCCPU *cpu)
4553 {
4554 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4555
4556 return spapr_cpu->in_nested;
4557 }
4558
4559 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4560 {
4561 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4562
4563 /* These are only called by TCG, KVM maintains dispatch state */
4564
4565 spapr_cpu->prod = false;
4566 if (spapr_cpu->vpa_addr) {
4567 CPUState *cs = CPU(cpu);
4568 uint32_t dispatch;
4569
4570 dispatch = ldl_be_phys(cs->as,
4571 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4572 dispatch++;
4573 if ((dispatch & 1) != 0) {
4574 qemu_log_mask(LOG_GUEST_ERROR,
4575 "VPA: incorrect dispatch counter value for "
4576 "dispatched partition %u, correcting.\n", dispatch);
4577 dispatch++;
4578 }
4579 stl_be_phys(cs->as,
4580 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4581 }
4582 }
4583
4584 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4585 {
4586 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4587
4588 if (spapr_cpu->vpa_addr) {
4589 CPUState *cs = CPU(cpu);
4590 uint32_t dispatch;
4591
4592 dispatch = ldl_be_phys(cs->as,
4593 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4594 dispatch++;
4595 if ((dispatch & 1) != 1) {
4596 qemu_log_mask(LOG_GUEST_ERROR,
4597 "VPA: incorrect dispatch counter value for "
4598 "preempted partition %u, correcting.\n", dispatch);
4599 dispatch++;
4600 }
4601 stl_be_phys(cs->as,
4602 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4603 }
4604 }
4605
4606 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4607 {
4608 MachineClass *mc = MACHINE_CLASS(oc);
4609 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4610 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4611 NMIClass *nc = NMI_CLASS(oc);
4612 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4613 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4614 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4615 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4616 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4617 VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc);
4618
4619 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4620 mc->ignore_boot_device_suffixes = true;
4621
4622 /*
4623 * We set up the default / latest behaviour here. The class_init
4624 * functions for the specific versioned machine types can override
4625 * these details for backwards compatibility
4626 */
4627 mc->init = spapr_machine_init;
4628 mc->reset = spapr_machine_reset;
4629 mc->block_default_type = IF_SCSI;
4630
4631 /*
4632 * Setting max_cpus to INT32_MAX. Both KVM and TCG max_cpus values
4633 * should be limited by the host capability instead of hardcoded.
4634 * max_cpus for KVM guests will be checked in kvm_init(), and TCG
4635 * guests are welcome to have as many CPUs as the host are capable
4636 * of emulate.
4637 */
4638 mc->max_cpus = INT32_MAX;
4639
4640 mc->no_parallel = 1;
4641 mc->default_boot_order = "";
4642 mc->default_ram_size = 512 * MiB;
4643 mc->default_ram_id = "ppc_spapr.ram";
4644 mc->default_display = "std";
4645 mc->kvm_type = spapr_kvm_type;
4646 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4647 mc->pci_allow_0_address = true;
4648 assert(!mc->get_hotplug_handler);
4649 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4650 hc->pre_plug = spapr_machine_device_pre_plug;
4651 hc->plug = spapr_machine_device_plug;
4652 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4653 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4654 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4655 hc->unplug_request = spapr_machine_device_unplug_request;
4656 hc->unplug = spapr_machine_device_unplug;
4657
4658 smc->dr_lmb_enabled = true;
4659 smc->update_dt_enabled = true;
4660 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2");
4661 mc->has_hotpluggable_cpus = true;
4662 mc->nvdimm_supported = true;
4663 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4664 fwc->get_dev_path = spapr_get_fw_dev_path;
4665 nc->nmi_monitor_handler = spapr_nmi;
4666 smc->phb_placement = spapr_phb_placement;
4667 vhc->cpu_in_nested = spapr_cpu_in_nested;
4668 vhc->deliver_hv_excp = spapr_exit_nested;
4669 vhc->hypercall = emulate_spapr_hypercall;
4670 vhc->hpt_mask = spapr_hpt_mask;
4671 vhc->map_hptes = spapr_map_hptes;
4672 vhc->unmap_hptes = spapr_unmap_hptes;
4673 vhc->hpte_set_c = spapr_hpte_set_c;
4674 vhc->hpte_set_r = spapr_hpte_set_r;
4675 vhc->get_pate = spapr_get_pate;
4676 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4677 vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4678 vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4679 xic->ics_get = spapr_ics_get;
4680 xic->ics_resend = spapr_ics_resend;
4681 xic->icp_get = spapr_icp_get;
4682 ispc->print_info = spapr_pic_print_info;
4683 /* Force NUMA node memory size to be a multiple of
4684 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4685 * in which LMBs are represented and hot-added
4686 */
4687 mc->numa_mem_align_shift = 28;
4688 mc->auto_enable_numa = true;
4689
4690 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4691 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4692 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4693 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4694 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4695 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4696 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4697 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4698 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4699 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4700 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4701 smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF;
4702
4703 /*
4704 * This cap specifies whether the AIL 3 mode for
4705 * H_SET_RESOURCE is supported. The default is modified
4706 * by default_caps_with_cpu().
4707 */
4708 smc->default_caps.caps[SPAPR_CAP_AIL_MODE_3] = SPAPR_CAP_ON;
4709 spapr_caps_add_properties(smc);
4710 smc->irq = &spapr_irq_dual;
4711 smc->dr_phb_enabled = true;
4712 smc->linux_pci_probe = true;
4713 smc->smp_threads_vsmt = true;
4714 smc->nr_xirqs = SPAPR_NR_XIRQS;
4715 xfc->match_nvt = spapr_match_nvt;
4716 vmc->client_architecture_support = spapr_vof_client_architecture_support;
4717 vmc->quiesce = spapr_vof_quiesce;
4718 vmc->setprop = spapr_vof_setprop;
4719 }
4720
4721 static const TypeInfo spapr_machine_info = {
4722 .name = TYPE_SPAPR_MACHINE,
4723 .parent = TYPE_MACHINE,
4724 .abstract = true,
4725 .instance_size = sizeof(SpaprMachineState),
4726 .instance_init = spapr_instance_init,
4727 .instance_finalize = spapr_machine_finalizefn,
4728 .class_size = sizeof(SpaprMachineClass),
4729 .class_init = spapr_machine_class_init,
4730 .interfaces = (InterfaceInfo[]) {
4731 { TYPE_FW_PATH_PROVIDER },
4732 { TYPE_NMI },
4733 { TYPE_HOTPLUG_HANDLER },
4734 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4735 { TYPE_XICS_FABRIC },
4736 { TYPE_INTERRUPT_STATS_PROVIDER },
4737 { TYPE_XIVE_FABRIC },
4738 { TYPE_VOF_MACHINE_IF },
4739 { }
4740 },
4741 };
4742
4743 static void spapr_machine_latest_class_options(MachineClass *mc)
4744 {
4745 mc->alias = "pseries";
4746 mc->is_default = true;
4747 }
4748
4749 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4750 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4751 void *data) \
4752 { \
4753 MachineClass *mc = MACHINE_CLASS(oc); \
4754 spapr_machine_##suffix##_class_options(mc); \
4755 if (latest) { \
4756 spapr_machine_latest_class_options(mc); \
4757 } \
4758 } \
4759 static const TypeInfo spapr_machine_##suffix##_info = { \
4760 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4761 .parent = TYPE_SPAPR_MACHINE, \
4762 .class_init = spapr_machine_##suffix##_class_init, \
4763 }; \
4764 static void spapr_machine_register_##suffix(void) \
4765 { \
4766 type_register(&spapr_machine_##suffix##_info); \
4767 } \
4768 type_init(spapr_machine_register_##suffix)
4769
4770 /*
4771 * pseries-8.2
4772 */
4773 static void spapr_machine_8_2_class_options(MachineClass *mc)
4774 {
4775 /* Defaults for the latest behaviour inherited from the base class */
4776 }
4777
4778 DEFINE_SPAPR_MACHINE(8_2, "8.2", true);
4779
4780 /*
4781 * pseries-8.1
4782 */
4783 static void spapr_machine_8_1_class_options(MachineClass *mc)
4784 {
4785 spapr_machine_8_2_class_options(mc);
4786 compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len);
4787 }
4788
4789 DEFINE_SPAPR_MACHINE(8_1, "8.1", false);
4790
4791 /*
4792 * pseries-8.0
4793 */
4794 static void spapr_machine_8_0_class_options(MachineClass *mc)
4795 {
4796 spapr_machine_8_1_class_options(mc);
4797 compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len);
4798 }
4799
4800 DEFINE_SPAPR_MACHINE(8_0, "8.0", false);
4801
4802 /*
4803 * pseries-7.2
4804 */
4805 static void spapr_machine_7_2_class_options(MachineClass *mc)
4806 {
4807 spapr_machine_8_0_class_options(mc);
4808 compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len);
4809 }
4810
4811 DEFINE_SPAPR_MACHINE(7_2, "7.2", false);
4812
4813 /*
4814 * pseries-7.1
4815 */
4816 static void spapr_machine_7_1_class_options(MachineClass *mc)
4817 {
4818 spapr_machine_7_2_class_options(mc);
4819 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
4820 }
4821
4822 DEFINE_SPAPR_MACHINE(7_1, "7.1", false);
4823
4824 /*
4825 * pseries-7.0
4826 */
4827 static void spapr_machine_7_0_class_options(MachineClass *mc)
4828 {
4829 spapr_machine_7_1_class_options(mc);
4830 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
4831 }
4832
4833 DEFINE_SPAPR_MACHINE(7_0, "7.0", false);
4834
4835 /*
4836 * pseries-6.2
4837 */
4838 static void spapr_machine_6_2_class_options(MachineClass *mc)
4839 {
4840 spapr_machine_7_0_class_options(mc);
4841 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
4842 }
4843
4844 DEFINE_SPAPR_MACHINE(6_2, "6.2", false);
4845
4846 /*
4847 * pseries-6.1
4848 */
4849 static void spapr_machine_6_1_class_options(MachineClass *mc)
4850 {
4851 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4852
4853 spapr_machine_6_2_class_options(mc);
4854 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
4855 smc->pre_6_2_numa_affinity = true;
4856 mc->smp_props.prefer_sockets = true;
4857 }
4858
4859 DEFINE_SPAPR_MACHINE(6_1, "6.1", false);
4860
4861 /*
4862 * pseries-6.0
4863 */
4864 static void spapr_machine_6_0_class_options(MachineClass *mc)
4865 {
4866 spapr_machine_6_1_class_options(mc);
4867 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
4868 }
4869
4870 DEFINE_SPAPR_MACHINE(6_0, "6.0", false);
4871
4872 /*
4873 * pseries-5.2
4874 */
4875 static void spapr_machine_5_2_class_options(MachineClass *mc)
4876 {
4877 spapr_machine_6_0_class_options(mc);
4878 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
4879 }
4880
4881 DEFINE_SPAPR_MACHINE(5_2, "5.2", false);
4882
4883 /*
4884 * pseries-5.1
4885 */
4886 static void spapr_machine_5_1_class_options(MachineClass *mc)
4887 {
4888 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4889
4890 spapr_machine_5_2_class_options(mc);
4891 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4892 smc->pre_5_2_numa_associativity = true;
4893 }
4894
4895 DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4896
4897 /*
4898 * pseries-5.0
4899 */
4900 static void spapr_machine_5_0_class_options(MachineClass *mc)
4901 {
4902 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4903 static GlobalProperty compat[] = {
4904 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4905 };
4906
4907 spapr_machine_5_1_class_options(mc);
4908 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4909 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4910 mc->numa_mem_supported = true;
4911 smc->pre_5_1_assoc_refpoints = true;
4912 }
4913
4914 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4915
4916 /*
4917 * pseries-4.2
4918 */
4919 static void spapr_machine_4_2_class_options(MachineClass *mc)
4920 {
4921 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4922
4923 spapr_machine_5_0_class_options(mc);
4924 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4925 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4926 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4927 smc->rma_limit = 16 * GiB;
4928 mc->nvdimm_supported = false;
4929 }
4930
4931 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4932
4933 /*
4934 * pseries-4.1
4935 */
4936 static void spapr_machine_4_1_class_options(MachineClass *mc)
4937 {
4938 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4939 static GlobalProperty compat[] = {
4940 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4941 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4942 };
4943
4944 spapr_machine_4_2_class_options(mc);
4945 smc->linux_pci_probe = false;
4946 smc->smp_threads_vsmt = false;
4947 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4948 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4949 }
4950
4951 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4952
4953 /*
4954 * pseries-4.0
4955 */
4956 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4957 uint64_t *buid, hwaddr *pio,
4958 hwaddr *mmio32, hwaddr *mmio64,
4959 unsigned n_dma, uint32_t *liobns, Error **errp)
4960 {
4961 if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma,
4962 liobns, errp)) {
4963 return false;
4964 }
4965 return true;
4966 }
4967 static void spapr_machine_4_0_class_options(MachineClass *mc)
4968 {
4969 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4970
4971 spapr_machine_4_1_class_options(mc);
4972 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4973 smc->phb_placement = phb_placement_4_0;
4974 smc->irq = &spapr_irq_xics;
4975 smc->pre_4_1_migration = true;
4976 }
4977
4978 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4979
4980 /*
4981 * pseries-3.1
4982 */
4983 static void spapr_machine_3_1_class_options(MachineClass *mc)
4984 {
4985 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4986
4987 spapr_machine_4_0_class_options(mc);
4988 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4989
4990 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4991 smc->update_dt_enabled = false;
4992 smc->dr_phb_enabled = false;
4993 smc->broken_host_serial_model = true;
4994 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4995 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4996 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4997 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4998 }
4999
5000 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
5001
5002 /*
5003 * pseries-3.0
5004 */
5005
5006 static void spapr_machine_3_0_class_options(MachineClass *mc)
5007 {
5008 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5009
5010 spapr_machine_3_1_class_options(mc);
5011 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
5012
5013 smc->legacy_irq_allocation = true;
5014 smc->nr_xirqs = 0x400;
5015 smc->irq = &spapr_irq_xics_legacy;
5016 }
5017
5018 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
5019
5020 /*
5021 * pseries-2.12
5022 */
5023 static void spapr_machine_2_12_class_options(MachineClass *mc)
5024 {
5025 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5026 static GlobalProperty compat[] = {
5027 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
5028 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
5029 };
5030
5031 spapr_machine_3_0_class_options(mc);
5032 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
5033 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5034
5035 /* We depend on kvm_enabled() to choose a default value for the
5036 * hpt-max-page-size capability. Of course we can't do it here
5037 * because this is too early and the HW accelerator isn't initialzed
5038 * yet. Postpone this to machine init (see default_caps_with_cpu()).
5039 */
5040 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
5041 }
5042
5043 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
5044
5045 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
5046 {
5047 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5048
5049 spapr_machine_2_12_class_options(mc);
5050 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
5051 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
5052 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
5053 }
5054
5055 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
5056
5057 /*
5058 * pseries-2.11
5059 */
5060
5061 static void spapr_machine_2_11_class_options(MachineClass *mc)
5062 {
5063 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5064
5065 spapr_machine_2_12_class_options(mc);
5066 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
5067 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
5068 }
5069
5070 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
5071
5072 /*
5073 * pseries-2.10
5074 */
5075
5076 static void spapr_machine_2_10_class_options(MachineClass *mc)
5077 {
5078 spapr_machine_2_11_class_options(mc);
5079 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
5080 }
5081
5082 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
5083
5084 /*
5085 * pseries-2.9
5086 */
5087
5088 static void spapr_machine_2_9_class_options(MachineClass *mc)
5089 {
5090 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5091 static GlobalProperty compat[] = {
5092 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
5093 };
5094
5095 spapr_machine_2_10_class_options(mc);
5096 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
5097 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5098 smc->pre_2_10_has_unused_icps = true;
5099 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
5100 }
5101
5102 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
5103
5104 /*
5105 * pseries-2.8
5106 */
5107
5108 static void spapr_machine_2_8_class_options(MachineClass *mc)
5109 {
5110 static GlobalProperty compat[] = {
5111 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
5112 };
5113
5114 spapr_machine_2_9_class_options(mc);
5115 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
5116 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5117 mc->numa_mem_align_shift = 23;
5118 }
5119
5120 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
5121
5122 /*
5123 * pseries-2.7
5124 */
5125
5126 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
5127 uint64_t *buid, hwaddr *pio,
5128 hwaddr *mmio32, hwaddr *mmio64,
5129 unsigned n_dma, uint32_t *liobns, Error **errp)
5130 {
5131 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
5132 const uint64_t base_buid = 0x800000020000000ULL;
5133 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
5134 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
5135 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
5136 const uint32_t max_index = 255;
5137 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
5138
5139 uint64_t ram_top = MACHINE(spapr)->ram_size;
5140 hwaddr phb0_base, phb_base;
5141 int i;
5142
5143 /* Do we have device memory? */
5144 if (MACHINE(spapr)->device_memory) {
5145 /* Can't just use maxram_size, because there may be an
5146 * alignment gap between normal and device memory regions
5147 */
5148 ram_top = MACHINE(spapr)->device_memory->base +
5149 memory_region_size(&MACHINE(spapr)->device_memory->mr);
5150 }
5151
5152 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
5153
5154 if (index > max_index) {
5155 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
5156 max_index);
5157 return false;
5158 }
5159
5160 *buid = base_buid + index;
5161 for (i = 0; i < n_dma; ++i) {
5162 liobns[i] = SPAPR_PCI_LIOBN(index, i);
5163 }
5164
5165 phb_base = phb0_base + index * phb_spacing;
5166 *pio = phb_base + pio_offset;
5167 *mmio32 = phb_base + mmio_offset;
5168 /*
5169 * We don't set the 64-bit MMIO window, relying on the PHB's
5170 * fallback behaviour of automatically splitting a large "32-bit"
5171 * window into contiguous 32-bit and 64-bit windows
5172 */
5173
5174 return true;
5175 }
5176
5177 static void spapr_machine_2_7_class_options(MachineClass *mc)
5178 {
5179 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5180 static GlobalProperty compat[] = {
5181 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
5182 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
5183 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
5184 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
5185 };
5186
5187 spapr_machine_2_8_class_options(mc);
5188 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
5189 mc->default_machine_opts = "modern-hotplug-events=off";
5190 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
5191 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5192 smc->phb_placement = phb_placement_2_7;
5193 }
5194
5195 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
5196
5197 /*
5198 * pseries-2.6
5199 */
5200
5201 static void spapr_machine_2_6_class_options(MachineClass *mc)
5202 {
5203 static GlobalProperty compat[] = {
5204 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
5205 };
5206
5207 spapr_machine_2_7_class_options(mc);
5208 mc->has_hotpluggable_cpus = false;
5209 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
5210 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5211 }
5212
5213 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
5214
5215 /*
5216 * pseries-2.5
5217 */
5218
5219 static void spapr_machine_2_5_class_options(MachineClass *mc)
5220 {
5221 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5222 static GlobalProperty compat[] = {
5223 { "spapr-vlan", "use-rx-buffer-pools", "off" },
5224 };
5225
5226 spapr_machine_2_6_class_options(mc);
5227 smc->use_ohci_by_default = true;
5228 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
5229 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5230 }
5231
5232 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
5233
5234 /*
5235 * pseries-2.4
5236 */
5237
5238 static void spapr_machine_2_4_class_options(MachineClass *mc)
5239 {
5240 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5241
5242 spapr_machine_2_5_class_options(mc);
5243 smc->dr_lmb_enabled = false;
5244 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
5245 }
5246
5247 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
5248
5249 /*
5250 * pseries-2.3
5251 */
5252
5253 static void spapr_machine_2_3_class_options(MachineClass *mc)
5254 {
5255 static GlobalProperty compat[] = {
5256 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
5257 };
5258 spapr_machine_2_4_class_options(mc);
5259 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
5260 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5261 }
5262 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
5263
5264 /*
5265 * pseries-2.2
5266 */
5267
5268 static void spapr_machine_2_2_class_options(MachineClass *mc)
5269 {
5270 static GlobalProperty compat[] = {
5271 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
5272 };
5273
5274 spapr_machine_2_3_class_options(mc);
5275 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
5276 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5277 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
5278 }
5279 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
5280
5281 /*
5282 * pseries-2.1
5283 */
5284
5285 static void spapr_machine_2_1_class_options(MachineClass *mc)
5286 {
5287 spapr_machine_2_2_class_options(mc);
5288 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
5289 }
5290 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
5291
5292 static void spapr_machine_register_types(void)
5293 {
5294 type_register_static(&spapr_machine_info);
5295 }
5296
5297 type_init(spapr_machine_register_types)