]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr.c
target-ppc: Implement "compat" CPU option
[mirror_qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
27 #include "sysemu/sysemu.h"
28 #include "hw/hw.h"
29 #include "hw/fw-path-provider.h"
30 #include "elf.h"
31 #include "net/net.h"
32 #include "sysemu/blockdev.h"
33 #include "sysemu/cpus.h"
34 #include "sysemu/kvm.h"
35 #include "kvm_ppc.h"
36 #include "mmu-hash64.h"
37
38 #include "hw/boards.h"
39 #include "hw/ppc/ppc.h"
40 #include "hw/loader.h"
41
42 #include "hw/ppc/spapr.h"
43 #include "hw/ppc/spapr_vio.h"
44 #include "hw/pci-host/spapr.h"
45 #include "hw/ppc/xics.h"
46 #include "hw/pci/msi.h"
47
48 #include "hw/pci/pci.h"
49 #include "hw/scsi/scsi.h"
50 #include "hw/virtio/virtio-scsi.h"
51
52 #include "exec/address-spaces.h"
53 #include "hw/usb.h"
54 #include "qemu/config-file.h"
55 #include "qemu/error-report.h"
56
57 #include <libfdt.h>
58
59 /* SLOF memory layout:
60 *
61 * SLOF raw image loaded at 0, copies its romfs right below the flat
62 * device-tree, then position SLOF itself 31M below that
63 *
64 * So we set FW_OVERHEAD to 40MB which should account for all of that
65 * and more
66 *
67 * We load our kernel at 4M, leaving space for SLOF initial image
68 */
69 #define FDT_MAX_SIZE 0x40000
70 #define RTAS_MAX_SIZE 0x10000
71 #define FW_MAX_SIZE 0x400000
72 #define FW_FILE_NAME "slof.bin"
73 #define FW_OVERHEAD 0x2800000
74 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
75
76 #define MIN_RMA_SLOF 128UL
77
78 #define TIMEBASE_FREQ 512000000ULL
79
80 #define MAX_CPUS 256
81 #define XICS_IRQS 1024
82
83 #define PHANDLE_XICP 0x00001111
84
85 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
86
87 #define TYPE_SPAPR_MACHINE "spapr-machine"
88
89 sPAPREnvironment *spapr;
90
91 int spapr_allocate_irq(int hint, bool lsi)
92 {
93 int irq;
94
95 if (hint) {
96 irq = hint;
97 if (hint >= spapr->next_irq) {
98 spapr->next_irq = hint + 1;
99 }
100 /* FIXME: we should probably check for collisions somehow */
101 } else {
102 irq = spapr->next_irq++;
103 }
104
105 /* Configure irq type */
106 if (!xics_get_qirq(spapr->icp, irq)) {
107 return 0;
108 }
109
110 xics_set_irq_type(spapr->icp, irq, lsi);
111
112 return irq;
113 }
114
115 /*
116 * Allocate block of consequtive IRQs, returns a number of the first.
117 * If msi==true, aligns the first IRQ number to num.
118 */
119 int spapr_allocate_irq_block(int num, bool lsi, bool msi)
120 {
121 int first = -1;
122 int i, hint = 0;
123
124 /*
125 * MSIMesage::data is used for storing VIRQ so
126 * it has to be aligned to num to support multiple
127 * MSI vectors. MSI-X is not affected by this.
128 * The hint is used for the first IRQ, the rest should
129 * be allocated continuously.
130 */
131 if (msi) {
132 assert((num == 1) || (num == 2) || (num == 4) ||
133 (num == 8) || (num == 16) || (num == 32));
134 hint = (spapr->next_irq + num - 1) & ~(num - 1);
135 }
136
137 for (i = 0; i < num; ++i) {
138 int irq;
139
140 irq = spapr_allocate_irq(hint, lsi);
141 if (!irq) {
142 return -1;
143 }
144
145 if (0 == i) {
146 first = irq;
147 hint = 0;
148 }
149
150 /* If the above doesn't create a consecutive block then that's
151 * an internal bug */
152 assert(irq == (first + i));
153 }
154
155 return first;
156 }
157
158 static XICSState *try_create_xics(const char *type, int nr_servers,
159 int nr_irqs)
160 {
161 DeviceState *dev;
162
163 dev = qdev_create(NULL, type);
164 qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
165 qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
166 if (qdev_init(dev) < 0) {
167 return NULL;
168 }
169
170 return XICS_COMMON(dev);
171 }
172
173 static XICSState *xics_system_init(int nr_servers, int nr_irqs)
174 {
175 XICSState *icp = NULL;
176
177 if (kvm_enabled()) {
178 QemuOpts *machine_opts = qemu_get_machine_opts();
179 bool irqchip_allowed = qemu_opt_get_bool(machine_opts,
180 "kernel_irqchip", true);
181 bool irqchip_required = qemu_opt_get_bool(machine_opts,
182 "kernel_irqchip", false);
183 if (irqchip_allowed) {
184 icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs);
185 }
186
187 if (irqchip_required && !icp) {
188 perror("Failed to create in-kernel XICS\n");
189 abort();
190 }
191 }
192
193 if (!icp) {
194 icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs);
195 }
196
197 if (!icp) {
198 perror("Failed to create XICS\n");
199 abort();
200 }
201
202 return icp;
203 }
204
205 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
206 int smt_threads)
207 {
208 int i, ret = 0;
209 uint32_t servers_prop[smt_threads];
210 uint32_t gservers_prop[smt_threads * 2];
211 int index = ppc_get_vcpu_dt_id(cpu);
212
213 if (cpu->cpu_version) {
214 ret = fdt_setprop(fdt, offset, "cpu-version",
215 &cpu->cpu_version, sizeof(cpu->cpu_version));
216 if (ret < 0) {
217 return ret;
218 }
219 }
220
221 /* Build interrupt servers and gservers properties */
222 for (i = 0; i < smt_threads; i++) {
223 servers_prop[i] = cpu_to_be32(index + i);
224 /* Hack, direct the group queues back to cpu 0 */
225 gservers_prop[i*2] = cpu_to_be32(index + i);
226 gservers_prop[i*2 + 1] = 0;
227 }
228 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
229 servers_prop, sizeof(servers_prop));
230 if (ret < 0) {
231 return ret;
232 }
233 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
234 gservers_prop, sizeof(gservers_prop));
235
236 return ret;
237 }
238
239 static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr)
240 {
241 int ret = 0, offset;
242 CPUState *cpu;
243 char cpu_model[32];
244 int smt = kvmppc_smt_threads();
245 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
246
247 CPU_FOREACH(cpu) {
248 DeviceClass *dc = DEVICE_GET_CLASS(cpu);
249 int index = ppc_get_vcpu_dt_id(POWERPC_CPU(cpu));
250 uint32_t associativity[] = {cpu_to_be32(0x5),
251 cpu_to_be32(0x0),
252 cpu_to_be32(0x0),
253 cpu_to_be32(0x0),
254 cpu_to_be32(cpu->numa_node),
255 cpu_to_be32(index)};
256
257 if ((index % smt) != 0) {
258 continue;
259 }
260
261 snprintf(cpu_model, 32, "/cpus/%s@%x", dc->fw_name,
262 index);
263
264 offset = fdt_path_offset(fdt, cpu_model);
265 if (offset < 0) {
266 return offset;
267 }
268
269 if (nb_numa_nodes > 1) {
270 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
271 sizeof(associativity));
272 if (ret < 0) {
273 return ret;
274 }
275 }
276
277 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
278 pft_size_prop, sizeof(pft_size_prop));
279 if (ret < 0) {
280 return ret;
281 }
282
283 ret = spapr_fixup_cpu_smt_dt(fdt, offset, POWERPC_CPU(cpu),
284 smp_threads);
285 if (ret < 0) {
286 return ret;
287 }
288 }
289 return ret;
290 }
291
292
293 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
294 size_t maxsize)
295 {
296 size_t maxcells = maxsize / sizeof(uint32_t);
297 int i, j, count;
298 uint32_t *p = prop;
299
300 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
301 struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
302
303 if (!sps->page_shift) {
304 break;
305 }
306 for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
307 if (sps->enc[count].page_shift == 0) {
308 break;
309 }
310 }
311 if ((p - prop) >= (maxcells - 3 - count * 2)) {
312 break;
313 }
314 *(p++) = cpu_to_be32(sps->page_shift);
315 *(p++) = cpu_to_be32(sps->slb_enc);
316 *(p++) = cpu_to_be32(count);
317 for (j = 0; j < count; j++) {
318 *(p++) = cpu_to_be32(sps->enc[j].page_shift);
319 *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
320 }
321 }
322
323 return (p - prop) * sizeof(uint32_t);
324 }
325
326 #define _FDT(exp) \
327 do { \
328 int ret = (exp); \
329 if (ret < 0) { \
330 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
331 #exp, fdt_strerror(ret)); \
332 exit(1); \
333 } \
334 } while (0)
335
336
337 static void *spapr_create_fdt_skel(hwaddr initrd_base,
338 hwaddr initrd_size,
339 hwaddr kernel_size,
340 bool little_endian,
341 const char *boot_device,
342 const char *kernel_cmdline,
343 uint32_t epow_irq)
344 {
345 void *fdt;
346 CPUState *cs;
347 uint32_t start_prop = cpu_to_be32(initrd_base);
348 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
349 char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
350 "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk\0hcall-set-mode";
351 char qemu_hypertas_prop[] = "hcall-memop1";
352 uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
353 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
354 int smt = kvmppc_smt_threads();
355 unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
356 QemuOpts *opts = qemu_opts_find(qemu_find_opts("smp-opts"), NULL);
357 unsigned sockets = opts ? qemu_opt_get_number(opts, "sockets", 0) : 0;
358 uint32_t cpus_per_socket = sockets ? (smp_cpus / sockets) : 1;
359
360 fdt = g_malloc0(FDT_MAX_SIZE);
361 _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
362
363 if (kernel_size) {
364 _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
365 }
366 if (initrd_size) {
367 _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
368 }
369 _FDT((fdt_finish_reservemap(fdt)));
370
371 /* Root node */
372 _FDT((fdt_begin_node(fdt, "")));
373 _FDT((fdt_property_string(fdt, "device_type", "chrp")));
374 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
375 _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
376
377 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
378 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
379
380 /* /chosen */
381 _FDT((fdt_begin_node(fdt, "chosen")));
382
383 /* Set Form1_affinity */
384 _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
385
386 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
387 _FDT((fdt_property(fdt, "linux,initrd-start",
388 &start_prop, sizeof(start_prop))));
389 _FDT((fdt_property(fdt, "linux,initrd-end",
390 &end_prop, sizeof(end_prop))));
391 if (kernel_size) {
392 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
393 cpu_to_be64(kernel_size) };
394
395 _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
396 if (little_endian) {
397 _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
398 }
399 }
400 if (boot_device) {
401 _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
402 }
403 _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
404 _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
405 _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
406
407 _FDT((fdt_end_node(fdt)));
408
409 /* cpus */
410 _FDT((fdt_begin_node(fdt, "cpus")));
411
412 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
413 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
414
415 CPU_FOREACH(cs) {
416 PowerPCCPU *cpu = POWERPC_CPU(cs);
417 CPUPPCState *env = &cpu->env;
418 DeviceClass *dc = DEVICE_GET_CLASS(cs);
419 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
420 int index = ppc_get_vcpu_dt_id(cpu);
421 char *nodename;
422 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
423 0xffffffff, 0xffffffff};
424 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
425 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
426 uint32_t page_sizes_prop[64];
427 size_t page_sizes_prop_size;
428
429 if ((index % smt) != 0) {
430 continue;
431 }
432
433 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
434
435 _FDT((fdt_begin_node(fdt, nodename)));
436
437 g_free(nodename);
438
439 _FDT((fdt_property_cell(fdt, "reg", index)));
440 _FDT((fdt_property_string(fdt, "device_type", "cpu")));
441
442 _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
443 _FDT((fdt_property_cell(fdt, "d-cache-block-size",
444 env->dcache_line_size)));
445 _FDT((fdt_property_cell(fdt, "d-cache-line-size",
446 env->dcache_line_size)));
447 _FDT((fdt_property_cell(fdt, "i-cache-block-size",
448 env->icache_line_size)));
449 _FDT((fdt_property_cell(fdt, "i-cache-line-size",
450 env->icache_line_size)));
451
452 if (pcc->l1_dcache_size) {
453 _FDT((fdt_property_cell(fdt, "d-cache-size", pcc->l1_dcache_size)));
454 } else {
455 fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
456 }
457 if (pcc->l1_icache_size) {
458 _FDT((fdt_property_cell(fdt, "i-cache-size", pcc->l1_icache_size)));
459 } else {
460 fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
461 }
462
463 _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
464 _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
465 _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
466 _FDT((fdt_property_string(fdt, "status", "okay")));
467 _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
468
469 if (env->spr_cb[SPR_PURR].oea_read) {
470 _FDT((fdt_property(fdt, "ibm,purr", NULL, 0)));
471 }
472
473 if (env->mmu_model & POWERPC_MMU_1TSEG) {
474 _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
475 segs, sizeof(segs))));
476 }
477
478 /* Advertise VMX/VSX (vector extensions) if available
479 * 0 / no property == no vector extensions
480 * 1 == VMX / Altivec available
481 * 2 == VSX available */
482 if (env->insns_flags & PPC_ALTIVEC) {
483 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
484
485 _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
486 }
487
488 /* Advertise DFP (Decimal Floating Point) if available
489 * 0 / no property == no DFP
490 * 1 == DFP available */
491 if (env->insns_flags2 & PPC2_DFP) {
492 _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
493 }
494
495 page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
496 sizeof(page_sizes_prop));
497 if (page_sizes_prop_size) {
498 _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
499 page_sizes_prop, page_sizes_prop_size)));
500 }
501
502 _FDT((fdt_property_cell(fdt, "ibm,chip-id",
503 cs->cpu_index / cpus_per_socket)));
504
505 _FDT((fdt_end_node(fdt)));
506 }
507
508 _FDT((fdt_end_node(fdt)));
509
510 /* RTAS */
511 _FDT((fdt_begin_node(fdt, "rtas")));
512
513 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
514 sizeof(hypertas_prop))));
515 _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas_prop,
516 sizeof(qemu_hypertas_prop))));
517
518 _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
519 refpoints, sizeof(refpoints))));
520
521 _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
522
523 _FDT((fdt_end_node(fdt)));
524
525 /* interrupt controller */
526 _FDT((fdt_begin_node(fdt, "interrupt-controller")));
527
528 _FDT((fdt_property_string(fdt, "device_type",
529 "PowerPC-External-Interrupt-Presentation")));
530 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
531 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
532 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
533 interrupt_server_ranges_prop,
534 sizeof(interrupt_server_ranges_prop))));
535 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
536 _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
537 _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
538
539 _FDT((fdt_end_node(fdt)));
540
541 /* vdevice */
542 _FDT((fdt_begin_node(fdt, "vdevice")));
543
544 _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
545 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
546 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
547 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
548 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
549 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
550
551 _FDT((fdt_end_node(fdt)));
552
553 /* event-sources */
554 spapr_events_fdt_skel(fdt, epow_irq);
555
556 _FDT((fdt_end_node(fdt))); /* close root node */
557 _FDT((fdt_finish(fdt)));
558
559 return fdt;
560 }
561
562 static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt)
563 {
564 uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
565 cpu_to_be32(0x0), cpu_to_be32(0x0),
566 cpu_to_be32(0x0)};
567 char mem_name[32];
568 hwaddr node0_size, mem_start, node_size;
569 uint64_t mem_reg_property[2];
570 int i, off;
571
572 /* memory node(s) */
573 if (nb_numa_nodes > 1 && node_mem[0] < ram_size) {
574 node0_size = node_mem[0];
575 } else {
576 node0_size = ram_size;
577 }
578
579 /* RMA */
580 mem_reg_property[0] = 0;
581 mem_reg_property[1] = cpu_to_be64(spapr->rma_size);
582 off = fdt_add_subnode(fdt, 0, "memory@0");
583 _FDT(off);
584 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
585 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
586 sizeof(mem_reg_property))));
587 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
588 sizeof(associativity))));
589
590 /* RAM: Node 0 */
591 if (node0_size > spapr->rma_size) {
592 mem_reg_property[0] = cpu_to_be64(spapr->rma_size);
593 mem_reg_property[1] = cpu_to_be64(node0_size - spapr->rma_size);
594
595 sprintf(mem_name, "memory@" TARGET_FMT_lx, spapr->rma_size);
596 off = fdt_add_subnode(fdt, 0, mem_name);
597 _FDT(off);
598 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
599 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
600 sizeof(mem_reg_property))));
601 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
602 sizeof(associativity))));
603 }
604
605 /* RAM: Node 1 and beyond */
606 mem_start = node0_size;
607 for (i = 1; i < nb_numa_nodes; i++) {
608 mem_reg_property[0] = cpu_to_be64(mem_start);
609 if (mem_start >= ram_size) {
610 node_size = 0;
611 } else {
612 node_size = node_mem[i];
613 if (node_size > ram_size - mem_start) {
614 node_size = ram_size - mem_start;
615 }
616 }
617 mem_reg_property[1] = cpu_to_be64(node_size);
618 associativity[3] = associativity[4] = cpu_to_be32(i);
619 sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start);
620 off = fdt_add_subnode(fdt, 0, mem_name);
621 _FDT(off);
622 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
623 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
624 sizeof(mem_reg_property))));
625 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
626 sizeof(associativity))));
627 mem_start += node_size;
628 }
629
630 return 0;
631 }
632
633 static void spapr_finalize_fdt(sPAPREnvironment *spapr,
634 hwaddr fdt_addr,
635 hwaddr rtas_addr,
636 hwaddr rtas_size)
637 {
638 int ret, i;
639 size_t cb = 0;
640 char *bootlist;
641 void *fdt;
642 sPAPRPHBState *phb;
643
644 fdt = g_malloc(FDT_MAX_SIZE);
645
646 /* open out the base tree into a temp buffer for the final tweaks */
647 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
648
649 ret = spapr_populate_memory(spapr, fdt);
650 if (ret < 0) {
651 fprintf(stderr, "couldn't setup memory nodes in fdt\n");
652 exit(1);
653 }
654
655 ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
656 if (ret < 0) {
657 fprintf(stderr, "couldn't setup vio devices in fdt\n");
658 exit(1);
659 }
660
661 QLIST_FOREACH(phb, &spapr->phbs, list) {
662 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
663 }
664
665 if (ret < 0) {
666 fprintf(stderr, "couldn't setup PCI devices in fdt\n");
667 exit(1);
668 }
669
670 /* RTAS */
671 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
672 if (ret < 0) {
673 fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
674 }
675
676 /* Advertise NUMA via ibm,associativity */
677 ret = spapr_fixup_cpu_dt(fdt, spapr);
678 if (ret < 0) {
679 fprintf(stderr, "Couldn't finalize CPU device tree properties\n");
680 }
681
682 bootlist = get_boot_devices_list(&cb, true);
683 if (cb && bootlist) {
684 int offset = fdt_path_offset(fdt, "/chosen");
685 if (offset < 0) {
686 exit(1);
687 }
688 for (i = 0; i < cb; i++) {
689 if (bootlist[i] == '\n') {
690 bootlist[i] = ' ';
691 }
692
693 }
694 ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
695 }
696
697 if (!spapr->has_graphics) {
698 spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
699 }
700
701 _FDT((fdt_pack(fdt)));
702
703 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
704 hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
705 fdt_totalsize(fdt), FDT_MAX_SIZE);
706 exit(1);
707 }
708
709 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
710
711 g_free(fdt);
712 }
713
714 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
715 {
716 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
717 }
718
719 static void emulate_spapr_hypercall(PowerPCCPU *cpu)
720 {
721 CPUPPCState *env = &cpu->env;
722
723 if (msr_pr) {
724 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
725 env->gpr[3] = H_PRIVILEGE;
726 } else {
727 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
728 }
729 }
730
731 static void spapr_reset_htab(sPAPREnvironment *spapr)
732 {
733 long shift;
734
735 /* allocate hash page table. For now we always make this 16mb,
736 * later we should probably make it scale to the size of guest
737 * RAM */
738
739 shift = kvmppc_reset_htab(spapr->htab_shift);
740
741 if (shift > 0) {
742 /* Kernel handles htab, we don't need to allocate one */
743 spapr->htab_shift = shift;
744 kvmppc_kern_htab = true;
745 } else {
746 if (!spapr->htab) {
747 /* Allocate an htab if we don't yet have one */
748 spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
749 }
750
751 /* And clear it */
752 memset(spapr->htab, 0, HTAB_SIZE(spapr));
753 }
754
755 /* Update the RMA size if necessary */
756 if (spapr->vrma_adjust) {
757 hwaddr node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
758 spapr->rma_size = kvmppc_rma_size(node0_size, spapr->htab_shift);
759 }
760 }
761
762 static void ppc_spapr_reset(void)
763 {
764 PowerPCCPU *first_ppc_cpu;
765
766 /* Reset the hash table & recalc the RMA */
767 spapr_reset_htab(spapr);
768
769 qemu_devices_reset();
770
771 /* Load the fdt */
772 spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
773 spapr->rtas_size);
774
775 /* Set up the entry state */
776 first_ppc_cpu = POWERPC_CPU(first_cpu);
777 first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
778 first_ppc_cpu->env.gpr[5] = 0;
779 first_cpu->halted = 0;
780 first_ppc_cpu->env.nip = spapr->entry_point;
781
782 }
783
784 static void spapr_cpu_reset(void *opaque)
785 {
786 PowerPCCPU *cpu = opaque;
787 CPUState *cs = CPU(cpu);
788 CPUPPCState *env = &cpu->env;
789
790 cpu_reset(cs);
791
792 /* All CPUs start halted. CPU0 is unhalted from the machine level
793 * reset code and the rest are explicitly started up by the guest
794 * using an RTAS call */
795 cs->halted = 1;
796
797 env->spr[SPR_HIOR] = 0;
798
799 env->external_htab = (uint8_t *)spapr->htab;
800 if (kvm_enabled() && !env->external_htab) {
801 /*
802 * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte*
803 * functions do the right thing.
804 */
805 env->external_htab = (void *)1;
806 }
807 env->htab_base = -1;
808 /*
809 * htab_mask is the mask used to normalize hash value to PTEG index.
810 * htab_shift is log2 of hash table size.
811 * We have 8 hpte per group, and each hpte is 16 bytes.
812 * ie have 128 bytes per hpte entry.
813 */
814 env->htab_mask = (1ULL << ((spapr)->htab_shift - 7)) - 1;
815 env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
816 (spapr->htab_shift - 18);
817 }
818
819 static void spapr_create_nvram(sPAPREnvironment *spapr)
820 {
821 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
822 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
823
824 if (dinfo) {
825 qdev_prop_set_drive_nofail(dev, "drive", dinfo->bdrv);
826 }
827
828 qdev_init_nofail(dev);
829
830 spapr->nvram = (struct sPAPRNVRAM *)dev;
831 }
832
833 /* Returns whether we want to use VGA or not */
834 static int spapr_vga_init(PCIBus *pci_bus)
835 {
836 switch (vga_interface_type) {
837 case VGA_NONE:
838 return false;
839 case VGA_DEVICE:
840 return true;
841 case VGA_STD:
842 return pci_vga_init(pci_bus) != NULL;
843 default:
844 fprintf(stderr, "This vga model is not supported,"
845 "currently it only supports -vga std\n");
846 exit(0);
847 }
848 }
849
850 static const VMStateDescription vmstate_spapr = {
851 .name = "spapr",
852 .version_id = 2,
853 .minimum_version_id = 1,
854 .fields = (VMStateField[]) {
855 VMSTATE_UINT32(next_irq, sPAPREnvironment),
856
857 /* RTC offset */
858 VMSTATE_UINT64(rtc_offset, sPAPREnvironment),
859 VMSTATE_PPC_TIMEBASE_V(tb, sPAPREnvironment, 2),
860 VMSTATE_END_OF_LIST()
861 },
862 };
863
864 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
865 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
866 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
867 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
868
869 static int htab_save_setup(QEMUFile *f, void *opaque)
870 {
871 sPAPREnvironment *spapr = opaque;
872
873 /* "Iteration" header */
874 qemu_put_be32(f, spapr->htab_shift);
875
876 if (spapr->htab) {
877 spapr->htab_save_index = 0;
878 spapr->htab_first_pass = true;
879 } else {
880 assert(kvm_enabled());
881
882 spapr->htab_fd = kvmppc_get_htab_fd(false);
883 if (spapr->htab_fd < 0) {
884 fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
885 strerror(errno));
886 return -1;
887 }
888 }
889
890
891 return 0;
892 }
893
894 static void htab_save_first_pass(QEMUFile *f, sPAPREnvironment *spapr,
895 int64_t max_ns)
896 {
897 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
898 int index = spapr->htab_save_index;
899 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
900
901 assert(spapr->htab_first_pass);
902
903 do {
904 int chunkstart;
905
906 /* Consume invalid HPTEs */
907 while ((index < htabslots)
908 && !HPTE_VALID(HPTE(spapr->htab, index))) {
909 index++;
910 CLEAN_HPTE(HPTE(spapr->htab, index));
911 }
912
913 /* Consume valid HPTEs */
914 chunkstart = index;
915 while ((index < htabslots)
916 && HPTE_VALID(HPTE(spapr->htab, index))) {
917 index++;
918 CLEAN_HPTE(HPTE(spapr->htab, index));
919 }
920
921 if (index > chunkstart) {
922 int n_valid = index - chunkstart;
923
924 qemu_put_be32(f, chunkstart);
925 qemu_put_be16(f, n_valid);
926 qemu_put_be16(f, 0);
927 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
928 HASH_PTE_SIZE_64 * n_valid);
929
930 if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
931 break;
932 }
933 }
934 } while ((index < htabslots) && !qemu_file_rate_limit(f));
935
936 if (index >= htabslots) {
937 assert(index == htabslots);
938 index = 0;
939 spapr->htab_first_pass = false;
940 }
941 spapr->htab_save_index = index;
942 }
943
944 static int htab_save_later_pass(QEMUFile *f, sPAPREnvironment *spapr,
945 int64_t max_ns)
946 {
947 bool final = max_ns < 0;
948 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
949 int examined = 0, sent = 0;
950 int index = spapr->htab_save_index;
951 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
952
953 assert(!spapr->htab_first_pass);
954
955 do {
956 int chunkstart, invalidstart;
957
958 /* Consume non-dirty HPTEs */
959 while ((index < htabslots)
960 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
961 index++;
962 examined++;
963 }
964
965 chunkstart = index;
966 /* Consume valid dirty HPTEs */
967 while ((index < htabslots)
968 && HPTE_DIRTY(HPTE(spapr->htab, index))
969 && HPTE_VALID(HPTE(spapr->htab, index))) {
970 CLEAN_HPTE(HPTE(spapr->htab, index));
971 index++;
972 examined++;
973 }
974
975 invalidstart = index;
976 /* Consume invalid dirty HPTEs */
977 while ((index < htabslots)
978 && HPTE_DIRTY(HPTE(spapr->htab, index))
979 && !HPTE_VALID(HPTE(spapr->htab, index))) {
980 CLEAN_HPTE(HPTE(spapr->htab, index));
981 index++;
982 examined++;
983 }
984
985 if (index > chunkstart) {
986 int n_valid = invalidstart - chunkstart;
987 int n_invalid = index - invalidstart;
988
989 qemu_put_be32(f, chunkstart);
990 qemu_put_be16(f, n_valid);
991 qemu_put_be16(f, n_invalid);
992 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
993 HASH_PTE_SIZE_64 * n_valid);
994 sent += index - chunkstart;
995
996 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
997 break;
998 }
999 }
1000
1001 if (examined >= htabslots) {
1002 break;
1003 }
1004
1005 if (index >= htabslots) {
1006 assert(index == htabslots);
1007 index = 0;
1008 }
1009 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1010
1011 if (index >= htabslots) {
1012 assert(index == htabslots);
1013 index = 0;
1014 }
1015
1016 spapr->htab_save_index = index;
1017
1018 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1019 }
1020
1021 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1022 #define MAX_KVM_BUF_SIZE 2048
1023
1024 static int htab_save_iterate(QEMUFile *f, void *opaque)
1025 {
1026 sPAPREnvironment *spapr = opaque;
1027 int rc = 0;
1028
1029 /* Iteration header */
1030 qemu_put_be32(f, 0);
1031
1032 if (!spapr->htab) {
1033 assert(kvm_enabled());
1034
1035 rc = kvmppc_save_htab(f, spapr->htab_fd,
1036 MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1037 if (rc < 0) {
1038 return rc;
1039 }
1040 } else if (spapr->htab_first_pass) {
1041 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1042 } else {
1043 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1044 }
1045
1046 /* End marker */
1047 qemu_put_be32(f, 0);
1048 qemu_put_be16(f, 0);
1049 qemu_put_be16(f, 0);
1050
1051 return rc;
1052 }
1053
1054 static int htab_save_complete(QEMUFile *f, void *opaque)
1055 {
1056 sPAPREnvironment *spapr = opaque;
1057
1058 /* Iteration header */
1059 qemu_put_be32(f, 0);
1060
1061 if (!spapr->htab) {
1062 int rc;
1063
1064 assert(kvm_enabled());
1065
1066 rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1);
1067 if (rc < 0) {
1068 return rc;
1069 }
1070 close(spapr->htab_fd);
1071 spapr->htab_fd = -1;
1072 } else {
1073 htab_save_later_pass(f, spapr, -1);
1074 }
1075
1076 /* End marker */
1077 qemu_put_be32(f, 0);
1078 qemu_put_be16(f, 0);
1079 qemu_put_be16(f, 0);
1080
1081 return 0;
1082 }
1083
1084 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1085 {
1086 sPAPREnvironment *spapr = opaque;
1087 uint32_t section_hdr;
1088 int fd = -1;
1089
1090 if (version_id < 1 || version_id > 1) {
1091 fprintf(stderr, "htab_load() bad version\n");
1092 return -EINVAL;
1093 }
1094
1095 section_hdr = qemu_get_be32(f);
1096
1097 if (section_hdr) {
1098 /* First section, just the hash shift */
1099 if (spapr->htab_shift != section_hdr) {
1100 return -EINVAL;
1101 }
1102 return 0;
1103 }
1104
1105 if (!spapr->htab) {
1106 assert(kvm_enabled());
1107
1108 fd = kvmppc_get_htab_fd(true);
1109 if (fd < 0) {
1110 fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n",
1111 strerror(errno));
1112 }
1113 }
1114
1115 while (true) {
1116 uint32_t index;
1117 uint16_t n_valid, n_invalid;
1118
1119 index = qemu_get_be32(f);
1120 n_valid = qemu_get_be16(f);
1121 n_invalid = qemu_get_be16(f);
1122
1123 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1124 /* End of Stream */
1125 break;
1126 }
1127
1128 if ((index + n_valid + n_invalid) >
1129 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1130 /* Bad index in stream */
1131 fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) "
1132 "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid,
1133 spapr->htab_shift);
1134 return -EINVAL;
1135 }
1136
1137 if (spapr->htab) {
1138 if (n_valid) {
1139 qemu_get_buffer(f, HPTE(spapr->htab, index),
1140 HASH_PTE_SIZE_64 * n_valid);
1141 }
1142 if (n_invalid) {
1143 memset(HPTE(spapr->htab, index + n_valid), 0,
1144 HASH_PTE_SIZE_64 * n_invalid);
1145 }
1146 } else {
1147 int rc;
1148
1149 assert(fd >= 0);
1150
1151 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1152 if (rc < 0) {
1153 return rc;
1154 }
1155 }
1156 }
1157
1158 if (!spapr->htab) {
1159 assert(fd >= 0);
1160 close(fd);
1161 }
1162
1163 return 0;
1164 }
1165
1166 static SaveVMHandlers savevm_htab_handlers = {
1167 .save_live_setup = htab_save_setup,
1168 .save_live_iterate = htab_save_iterate,
1169 .save_live_complete = htab_save_complete,
1170 .load_state = htab_load,
1171 };
1172
1173 /* pSeries LPAR / sPAPR hardware init */
1174 static void ppc_spapr_init(MachineState *machine)
1175 {
1176 ram_addr_t ram_size = machine->ram_size;
1177 const char *cpu_model = machine->cpu_model;
1178 const char *kernel_filename = machine->kernel_filename;
1179 const char *kernel_cmdline = machine->kernel_cmdline;
1180 const char *initrd_filename = machine->initrd_filename;
1181 const char *boot_device = machine->boot_order;
1182 PowerPCCPU *cpu;
1183 CPUPPCState *env;
1184 PCIHostState *phb;
1185 int i;
1186 MemoryRegion *sysmem = get_system_memory();
1187 MemoryRegion *ram = g_new(MemoryRegion, 1);
1188 hwaddr rma_alloc_size;
1189 hwaddr node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
1190 uint32_t initrd_base = 0;
1191 long kernel_size = 0, initrd_size = 0;
1192 long load_limit, rtas_limit, fw_size;
1193 bool kernel_le = false;
1194 char *filename;
1195
1196 msi_supported = true;
1197
1198 spapr = g_malloc0(sizeof(*spapr));
1199 QLIST_INIT(&spapr->phbs);
1200
1201 cpu_ppc_hypercall = emulate_spapr_hypercall;
1202
1203 /* Allocate RMA if necessary */
1204 rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem);
1205
1206 if (rma_alloc_size == -1) {
1207 hw_error("qemu: Unable to create RMA\n");
1208 exit(1);
1209 }
1210
1211 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1212 spapr->rma_size = rma_alloc_size;
1213 } else {
1214 spapr->rma_size = node0_size;
1215
1216 /* With KVM, we don't actually know whether KVM supports an
1217 * unbounded RMA (PR KVM) or is limited by the hash table size
1218 * (HV KVM using VRMA), so we always assume the latter
1219 *
1220 * In that case, we also limit the initial allocations for RTAS
1221 * etc... to 256M since we have no way to know what the VRMA size
1222 * is going to be as it depends on the size of the hash table
1223 * isn't determined yet.
1224 */
1225 if (kvm_enabled()) {
1226 spapr->vrma_adjust = 1;
1227 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1228 }
1229 }
1230
1231 if (spapr->rma_size > node0_size) {
1232 fprintf(stderr, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")\n",
1233 spapr->rma_size);
1234 exit(1);
1235 }
1236
1237 /* We place the device tree and RTAS just below either the top of the RMA,
1238 * or just below 2GB, whichever is lowere, so that it can be
1239 * processed with 32-bit real mode code if necessary */
1240 rtas_limit = MIN(spapr->rma_size, 0x80000000);
1241 spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1242 spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
1243 load_limit = spapr->fdt_addr - FW_OVERHEAD;
1244
1245 /* We aim for a hash table of size 1/128 the size of RAM. The
1246 * normal rule of thumb is 1/64 the size of RAM, but that's much
1247 * more than needed for the Linux guests we support. */
1248 spapr->htab_shift = 18; /* Minimum architected size */
1249 while (spapr->htab_shift <= 46) {
1250 if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) {
1251 break;
1252 }
1253 spapr->htab_shift++;
1254 }
1255
1256 /* Set up Interrupt Controller before we create the VCPUs */
1257 spapr->icp = xics_system_init(smp_cpus * kvmppc_smt_threads() / smp_threads,
1258 XICS_IRQS);
1259 spapr->next_irq = XICS_IRQ_BASE;
1260
1261 /* init CPUs */
1262 if (cpu_model == NULL) {
1263 cpu_model = kvm_enabled() ? "host" : "POWER7";
1264 }
1265 for (i = 0; i < smp_cpus; i++) {
1266 cpu = cpu_ppc_init(cpu_model);
1267 if (cpu == NULL) {
1268 fprintf(stderr, "Unable to find PowerPC CPU definition\n");
1269 exit(1);
1270 }
1271 env = &cpu->env;
1272
1273 /* Set time-base frequency to 512 MHz */
1274 cpu_ppc_tb_init(env, TIMEBASE_FREQ);
1275
1276 /* PAPR always has exception vectors in RAM not ROM. To ensure this,
1277 * MSR[IP] should never be set.
1278 */
1279 env->msr_mask &= ~(1 << 6);
1280
1281 /* Tell KVM that we're in PAPR mode */
1282 if (kvm_enabled()) {
1283 kvmppc_set_papr(cpu);
1284 }
1285
1286 if (cpu->max_compat) {
1287 if (ppc_set_compat(cpu, cpu->max_compat) < 0) {
1288 exit(1);
1289 }
1290 }
1291
1292 xics_cpu_setup(spapr->icp, cpu);
1293
1294 qemu_register_reset(spapr_cpu_reset, cpu);
1295 }
1296
1297 /* allocate RAM */
1298 spapr->ram_limit = ram_size;
1299 if (spapr->ram_limit > rma_alloc_size) {
1300 ram_addr_t nonrma_base = rma_alloc_size;
1301 ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size;
1302
1303 memory_region_init_ram(ram, NULL, "ppc_spapr.ram", nonrma_size);
1304 vmstate_register_ram_global(ram);
1305 memory_region_add_subregion(sysmem, nonrma_base, ram);
1306 }
1307
1308 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1309 spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
1310 rtas_limit - spapr->rtas_addr);
1311 if (spapr->rtas_size < 0) {
1312 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
1313 exit(1);
1314 }
1315 if (spapr->rtas_size > RTAS_MAX_SIZE) {
1316 hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
1317 spapr->rtas_size, RTAS_MAX_SIZE);
1318 exit(1);
1319 }
1320 g_free(filename);
1321
1322 /* Set up EPOW events infrastructure */
1323 spapr_events_init(spapr);
1324
1325 /* Set up VIO bus */
1326 spapr->vio_bus = spapr_vio_bus_init();
1327
1328 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1329 if (serial_hds[i]) {
1330 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1331 }
1332 }
1333
1334 /* We always have at least the nvram device on VIO */
1335 spapr_create_nvram(spapr);
1336
1337 /* Set up PCI */
1338 spapr_pci_msi_init(spapr, SPAPR_PCI_MSI_WINDOW);
1339 spapr_pci_rtas_init();
1340
1341 phb = spapr_create_phb(spapr, 0);
1342
1343 for (i = 0; i < nb_nics; i++) {
1344 NICInfo *nd = &nd_table[i];
1345
1346 if (!nd->model) {
1347 nd->model = g_strdup("ibmveth");
1348 }
1349
1350 if (strcmp(nd->model, "ibmveth") == 0) {
1351 spapr_vlan_create(spapr->vio_bus, nd);
1352 } else {
1353 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1354 }
1355 }
1356
1357 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1358 spapr_vscsi_create(spapr->vio_bus);
1359 }
1360
1361 /* Graphics */
1362 if (spapr_vga_init(phb->bus)) {
1363 spapr->has_graphics = true;
1364 }
1365
1366 if (usb_enabled(spapr->has_graphics)) {
1367 pci_create_simple(phb->bus, -1, "pci-ohci");
1368 if (spapr->has_graphics) {
1369 usbdevice_create("keyboard");
1370 usbdevice_create("mouse");
1371 }
1372 }
1373
1374 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1375 fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
1376 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
1377 exit(1);
1378 }
1379
1380 if (kernel_filename) {
1381 uint64_t lowaddr = 0;
1382
1383 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
1384 NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
1385 if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1386 kernel_size = load_elf(kernel_filename,
1387 translate_kernel_address, NULL,
1388 NULL, &lowaddr, NULL, 0, ELF_MACHINE, 0);
1389 kernel_le = kernel_size > 0;
1390 }
1391 if (kernel_size < 0) {
1392 fprintf(stderr, "qemu: error loading %s: %s\n",
1393 kernel_filename, load_elf_strerror(kernel_size));
1394 exit(1);
1395 }
1396
1397 /* load initrd */
1398 if (initrd_filename) {
1399 /* Try to locate the initrd in the gap between the kernel
1400 * and the firmware. Add a bit of space just in case
1401 */
1402 initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1403 initrd_size = load_image_targphys(initrd_filename, initrd_base,
1404 load_limit - initrd_base);
1405 if (initrd_size < 0) {
1406 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
1407 initrd_filename);
1408 exit(1);
1409 }
1410 } else {
1411 initrd_base = 0;
1412 initrd_size = 0;
1413 }
1414 }
1415
1416 if (bios_name == NULL) {
1417 bios_name = FW_FILE_NAME;
1418 }
1419 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1420 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
1421 if (fw_size < 0) {
1422 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
1423 exit(1);
1424 }
1425 g_free(filename);
1426
1427 spapr->entry_point = 0x100;
1428
1429 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
1430 register_savevm_live(NULL, "spapr/htab", -1, 1,
1431 &savevm_htab_handlers, spapr);
1432
1433 /* Prepare the device tree */
1434 spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
1435 kernel_size, kernel_le,
1436 boot_device, kernel_cmdline,
1437 spapr->epow_irq);
1438 assert(spapr->fdt_skel != NULL);
1439 }
1440
1441 static int spapr_kvm_type(const char *vm_type)
1442 {
1443 if (!vm_type) {
1444 return 0;
1445 }
1446
1447 if (!strcmp(vm_type, "HV")) {
1448 return 1;
1449 }
1450
1451 if (!strcmp(vm_type, "PR")) {
1452 return 2;
1453 }
1454
1455 error_report("Unknown kvm-type specified '%s'", vm_type);
1456 exit(1);
1457 }
1458
1459 /*
1460 * Implementation of an interface to adjust firmware patch
1461 * for the bootindex property handling.
1462 */
1463 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
1464 DeviceState *dev)
1465 {
1466 #define CAST(type, obj, name) \
1467 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
1468 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
1469 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
1470
1471 if (d) {
1472 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
1473 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
1474 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
1475
1476 if (spapr) {
1477 /*
1478 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
1479 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
1480 * in the top 16 bits of the 64-bit LUN
1481 */
1482 unsigned id = 0x8000 | (d->id << 8) | d->lun;
1483 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1484 (uint64_t)id << 48);
1485 } else if (virtio) {
1486 /*
1487 * We use SRP luns of the form 01000000 | (target << 8) | lun
1488 * in the top 32 bits of the 64-bit LUN
1489 * Note: the quote above is from SLOF and it is wrong,
1490 * the actual binding is:
1491 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
1492 */
1493 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
1494 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1495 (uint64_t)id << 32);
1496 } else if (usb) {
1497 /*
1498 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
1499 * in the top 32 bits of the 64-bit LUN
1500 */
1501 unsigned usb_port = atoi(usb->port->path);
1502 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
1503 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1504 (uint64_t)id << 32);
1505 }
1506 }
1507
1508 if (phb) {
1509 /* Replace "pci" with "pci@800000020000000" */
1510 return g_strdup_printf("pci@%"PRIX64, phb->buid);
1511 }
1512
1513 return NULL;
1514 }
1515
1516 static void spapr_machine_class_init(ObjectClass *oc, void *data)
1517 {
1518 MachineClass *mc = MACHINE_CLASS(oc);
1519 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
1520
1521 mc->name = "pseries";
1522 mc->desc = "pSeries Logical Partition (PAPR compliant)";
1523 mc->is_default = 1;
1524 mc->init = ppc_spapr_init;
1525 mc->reset = ppc_spapr_reset;
1526 mc->block_default_type = IF_SCSI;
1527 mc->max_cpus = MAX_CPUS;
1528 mc->no_parallel = 1;
1529 mc->default_boot_order = NULL;
1530 mc->kvm_type = spapr_kvm_type;
1531
1532 fwc->get_dev_path = spapr_get_fw_dev_path;
1533 }
1534
1535 static const TypeInfo spapr_machine_info = {
1536 .name = TYPE_SPAPR_MACHINE,
1537 .parent = TYPE_MACHINE,
1538 .class_init = spapr_machine_class_init,
1539 .interfaces = (InterfaceInfo[]) {
1540 { TYPE_FW_PATH_PROVIDER },
1541 { }
1542 },
1543 };
1544
1545 static void spapr_machine_register_types(void)
1546 {
1547 type_register_static(&spapr_machine_info);
1548 }
1549
1550 type_init(spapr_machine_register_types)