]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr.c
Merge remote-tracking branch 'remotes/bkoppelmann/tags/pull-tricore-20141021' into...
[mirror_qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
27 #include "sysemu/sysemu.h"
28 #include "hw/hw.h"
29 #include "hw/fw-path-provider.h"
30 #include "elf.h"
31 #include "net/net.h"
32 #include "sysemu/block-backend.h"
33 #include "sysemu/cpus.h"
34 #include "sysemu/kvm.h"
35 #include "kvm_ppc.h"
36 #include "mmu-hash64.h"
37 #include "qom/cpu.h"
38
39 #include "hw/boards.h"
40 #include "hw/ppc/ppc.h"
41 #include "hw/loader.h"
42
43 #include "hw/ppc/spapr.h"
44 #include "hw/ppc/spapr_vio.h"
45 #include "hw/pci-host/spapr.h"
46 #include "hw/ppc/xics.h"
47 #include "hw/pci/msi.h"
48
49 #include "hw/pci/pci.h"
50 #include "hw/scsi/scsi.h"
51 #include "hw/virtio/virtio-scsi.h"
52
53 #include "exec/address-spaces.h"
54 #include "hw/usb.h"
55 #include "qemu/config-file.h"
56 #include "qemu/error-report.h"
57 #include "trace.h"
58 #include "hw/nmi.h"
59
60 #include <libfdt.h>
61
62 /* SLOF memory layout:
63 *
64 * SLOF raw image loaded at 0, copies its romfs right below the flat
65 * device-tree, then position SLOF itself 31M below that
66 *
67 * So we set FW_OVERHEAD to 40MB which should account for all of that
68 * and more
69 *
70 * We load our kernel at 4M, leaving space for SLOF initial image
71 */
72 #define FDT_MAX_SIZE 0x40000
73 #define RTAS_MAX_SIZE 0x10000
74 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
75 #define FW_MAX_SIZE 0x400000
76 #define FW_FILE_NAME "slof.bin"
77 #define FW_OVERHEAD 0x2800000
78 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
79
80 #define MIN_RMA_SLOF 128UL
81
82 #define TIMEBASE_FREQ 512000000ULL
83
84 #define MAX_CPUS 255
85
86 #define PHANDLE_XICP 0x00001111
87
88 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
89
90 typedef struct sPAPRMachineState sPAPRMachineState;
91
92 #define TYPE_SPAPR_MACHINE "spapr-machine"
93 #define SPAPR_MACHINE(obj) \
94 OBJECT_CHECK(sPAPRMachineState, (obj), TYPE_SPAPR_MACHINE)
95
96 /**
97 * sPAPRMachineState:
98 */
99 struct sPAPRMachineState {
100 /*< private >*/
101 MachineState parent_obj;
102
103 /*< public >*/
104 char *kvm_type;
105 };
106
107 sPAPREnvironment *spapr;
108
109 static XICSState *try_create_xics(const char *type, int nr_servers,
110 int nr_irqs)
111 {
112 DeviceState *dev;
113
114 dev = qdev_create(NULL, type);
115 qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
116 qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
117 if (qdev_init(dev) < 0) {
118 return NULL;
119 }
120
121 return XICS_COMMON(dev);
122 }
123
124 static XICSState *xics_system_init(int nr_servers, int nr_irqs)
125 {
126 XICSState *icp = NULL;
127
128 if (kvm_enabled()) {
129 QemuOpts *machine_opts = qemu_get_machine_opts();
130 bool irqchip_allowed = qemu_opt_get_bool(machine_opts,
131 "kernel_irqchip", true);
132 bool irqchip_required = qemu_opt_get_bool(machine_opts,
133 "kernel_irqchip", false);
134 if (irqchip_allowed) {
135 icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs);
136 }
137
138 if (irqchip_required && !icp) {
139 perror("Failed to create in-kernel XICS\n");
140 abort();
141 }
142 }
143
144 if (!icp) {
145 icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs);
146 }
147
148 if (!icp) {
149 perror("Failed to create XICS\n");
150 abort();
151 }
152
153 return icp;
154 }
155
156 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
157 int smt_threads)
158 {
159 int i, ret = 0;
160 uint32_t servers_prop[smt_threads];
161 uint32_t gservers_prop[smt_threads * 2];
162 int index = ppc_get_vcpu_dt_id(cpu);
163
164 if (cpu->cpu_version) {
165 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
166 if (ret < 0) {
167 return ret;
168 }
169 }
170
171 /* Build interrupt servers and gservers properties */
172 for (i = 0; i < smt_threads; i++) {
173 servers_prop[i] = cpu_to_be32(index + i);
174 /* Hack, direct the group queues back to cpu 0 */
175 gservers_prop[i*2] = cpu_to_be32(index + i);
176 gservers_prop[i*2 + 1] = 0;
177 }
178 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
179 servers_prop, sizeof(servers_prop));
180 if (ret < 0) {
181 return ret;
182 }
183 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
184 gservers_prop, sizeof(gservers_prop));
185
186 return ret;
187 }
188
189 static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr)
190 {
191 int ret = 0, offset, cpus_offset;
192 CPUState *cs;
193 char cpu_model[32];
194 int smt = kvmppc_smt_threads();
195 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
196
197 CPU_FOREACH(cs) {
198 PowerPCCPU *cpu = POWERPC_CPU(cs);
199 DeviceClass *dc = DEVICE_GET_CLASS(cs);
200 int index = ppc_get_vcpu_dt_id(cpu);
201 uint32_t associativity[] = {cpu_to_be32(0x5),
202 cpu_to_be32(0x0),
203 cpu_to_be32(0x0),
204 cpu_to_be32(0x0),
205 cpu_to_be32(cs->numa_node),
206 cpu_to_be32(index)};
207
208 if ((index % smt) != 0) {
209 continue;
210 }
211
212 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
213
214 cpus_offset = fdt_path_offset(fdt, "/cpus");
215 if (cpus_offset < 0) {
216 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
217 "cpus");
218 if (cpus_offset < 0) {
219 return cpus_offset;
220 }
221 }
222 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
223 if (offset < 0) {
224 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
225 if (offset < 0) {
226 return offset;
227 }
228 }
229
230 if (nb_numa_nodes > 1) {
231 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
232 sizeof(associativity));
233 if (ret < 0) {
234 return ret;
235 }
236 }
237
238 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
239 pft_size_prop, sizeof(pft_size_prop));
240 if (ret < 0) {
241 return ret;
242 }
243
244 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
245 ppc_get_compat_smt_threads(cpu));
246 if (ret < 0) {
247 return ret;
248 }
249 }
250 return ret;
251 }
252
253
254 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
255 size_t maxsize)
256 {
257 size_t maxcells = maxsize / sizeof(uint32_t);
258 int i, j, count;
259 uint32_t *p = prop;
260
261 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
262 struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
263
264 if (!sps->page_shift) {
265 break;
266 }
267 for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
268 if (sps->enc[count].page_shift == 0) {
269 break;
270 }
271 }
272 if ((p - prop) >= (maxcells - 3 - count * 2)) {
273 break;
274 }
275 *(p++) = cpu_to_be32(sps->page_shift);
276 *(p++) = cpu_to_be32(sps->slb_enc);
277 *(p++) = cpu_to_be32(count);
278 for (j = 0; j < count; j++) {
279 *(p++) = cpu_to_be32(sps->enc[j].page_shift);
280 *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
281 }
282 }
283
284 return (p - prop) * sizeof(uint32_t);
285 }
286
287 static hwaddr spapr_node0_size(void)
288 {
289 if (nb_numa_nodes) {
290 int i;
291 for (i = 0; i < nb_numa_nodes; ++i) {
292 if (numa_info[i].node_mem) {
293 return MIN(pow2floor(numa_info[i].node_mem), ram_size);
294 }
295 }
296 }
297 return ram_size;
298 }
299
300 #define _FDT(exp) \
301 do { \
302 int ret = (exp); \
303 if (ret < 0) { \
304 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
305 #exp, fdt_strerror(ret)); \
306 exit(1); \
307 } \
308 } while (0)
309
310 static void add_str(GString *s, const gchar *s1)
311 {
312 g_string_append_len(s, s1, strlen(s1) + 1);
313 }
314
315 static void *spapr_create_fdt_skel(hwaddr initrd_base,
316 hwaddr initrd_size,
317 hwaddr kernel_size,
318 bool little_endian,
319 const char *boot_device,
320 const char *kernel_cmdline,
321 uint32_t epow_irq)
322 {
323 void *fdt;
324 CPUState *cs;
325 uint32_t start_prop = cpu_to_be32(initrd_base);
326 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
327 GString *hypertas = g_string_sized_new(256);
328 GString *qemu_hypertas = g_string_sized_new(256);
329 uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
330 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
331 int smt = kvmppc_smt_threads();
332 unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
333 QemuOpts *opts = qemu_opts_find(qemu_find_opts("smp-opts"), NULL);
334 unsigned sockets = opts ? qemu_opt_get_number(opts, "sockets", 0) : 0;
335 uint32_t cpus_per_socket = sockets ? (smp_cpus / sockets) : 1;
336 char *buf;
337
338 add_str(hypertas, "hcall-pft");
339 add_str(hypertas, "hcall-term");
340 add_str(hypertas, "hcall-dabr");
341 add_str(hypertas, "hcall-interrupt");
342 add_str(hypertas, "hcall-tce");
343 add_str(hypertas, "hcall-vio");
344 add_str(hypertas, "hcall-splpar");
345 add_str(hypertas, "hcall-bulk");
346 add_str(hypertas, "hcall-set-mode");
347 add_str(qemu_hypertas, "hcall-memop1");
348
349 fdt = g_malloc0(FDT_MAX_SIZE);
350 _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
351
352 if (kernel_size) {
353 _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
354 }
355 if (initrd_size) {
356 _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
357 }
358 _FDT((fdt_finish_reservemap(fdt)));
359
360 /* Root node */
361 _FDT((fdt_begin_node(fdt, "")));
362 _FDT((fdt_property_string(fdt, "device_type", "chrp")));
363 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
364 _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
365
366 /*
367 * Add info to guest to indentify which host is it being run on
368 * and what is the uuid of the guest
369 */
370 if (kvmppc_get_host_model(&buf)) {
371 _FDT((fdt_property_string(fdt, "host-model", buf)));
372 g_free(buf);
373 }
374 if (kvmppc_get_host_serial(&buf)) {
375 _FDT((fdt_property_string(fdt, "host-serial", buf)));
376 g_free(buf);
377 }
378
379 buf = g_strdup_printf(UUID_FMT, qemu_uuid[0], qemu_uuid[1],
380 qemu_uuid[2], qemu_uuid[3], qemu_uuid[4],
381 qemu_uuid[5], qemu_uuid[6], qemu_uuid[7],
382 qemu_uuid[8], qemu_uuid[9], qemu_uuid[10],
383 qemu_uuid[11], qemu_uuid[12], qemu_uuid[13],
384 qemu_uuid[14], qemu_uuid[15]);
385
386 _FDT((fdt_property_string(fdt, "vm,uuid", buf)));
387 g_free(buf);
388
389 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
390 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
391
392 /* /chosen */
393 _FDT((fdt_begin_node(fdt, "chosen")));
394
395 /* Set Form1_affinity */
396 _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
397
398 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
399 _FDT((fdt_property(fdt, "linux,initrd-start",
400 &start_prop, sizeof(start_prop))));
401 _FDT((fdt_property(fdt, "linux,initrd-end",
402 &end_prop, sizeof(end_prop))));
403 if (kernel_size) {
404 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
405 cpu_to_be64(kernel_size) };
406
407 _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
408 if (little_endian) {
409 _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
410 }
411 }
412 if (boot_device) {
413 _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
414 }
415 if (boot_menu) {
416 _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu)));
417 }
418 _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
419 _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
420 _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
421
422 _FDT((fdt_end_node(fdt)));
423
424 /* cpus */
425 _FDT((fdt_begin_node(fdt, "cpus")));
426
427 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
428 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
429
430 CPU_FOREACH(cs) {
431 PowerPCCPU *cpu = POWERPC_CPU(cs);
432 CPUPPCState *env = &cpu->env;
433 DeviceClass *dc = DEVICE_GET_CLASS(cs);
434 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
435 int index = ppc_get_vcpu_dt_id(cpu);
436 char *nodename;
437 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
438 0xffffffff, 0xffffffff};
439 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
440 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
441 uint32_t page_sizes_prop[64];
442 size_t page_sizes_prop_size;
443
444 if ((index % smt) != 0) {
445 continue;
446 }
447
448 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
449
450 _FDT((fdt_begin_node(fdt, nodename)));
451
452 g_free(nodename);
453
454 _FDT((fdt_property_cell(fdt, "reg", index)));
455 _FDT((fdt_property_string(fdt, "device_type", "cpu")));
456
457 _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
458 _FDT((fdt_property_cell(fdt, "d-cache-block-size",
459 env->dcache_line_size)));
460 _FDT((fdt_property_cell(fdt, "d-cache-line-size",
461 env->dcache_line_size)));
462 _FDT((fdt_property_cell(fdt, "i-cache-block-size",
463 env->icache_line_size)));
464 _FDT((fdt_property_cell(fdt, "i-cache-line-size",
465 env->icache_line_size)));
466
467 if (pcc->l1_dcache_size) {
468 _FDT((fdt_property_cell(fdt, "d-cache-size", pcc->l1_dcache_size)));
469 } else {
470 fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
471 }
472 if (pcc->l1_icache_size) {
473 _FDT((fdt_property_cell(fdt, "i-cache-size", pcc->l1_icache_size)));
474 } else {
475 fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
476 }
477
478 _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
479 _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
480 _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
481 _FDT((fdt_property_string(fdt, "status", "okay")));
482 _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
483
484 if (env->spr_cb[SPR_PURR].oea_read) {
485 _FDT((fdt_property(fdt, "ibm,purr", NULL, 0)));
486 }
487
488 if (env->mmu_model & POWERPC_MMU_1TSEG) {
489 _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
490 segs, sizeof(segs))));
491 }
492
493 /* Advertise VMX/VSX (vector extensions) if available
494 * 0 / no property == no vector extensions
495 * 1 == VMX / Altivec available
496 * 2 == VSX available */
497 if (env->insns_flags & PPC_ALTIVEC) {
498 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
499
500 _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
501 }
502
503 /* Advertise DFP (Decimal Floating Point) if available
504 * 0 / no property == no DFP
505 * 1 == DFP available */
506 if (env->insns_flags2 & PPC2_DFP) {
507 _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
508 }
509
510 page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
511 sizeof(page_sizes_prop));
512 if (page_sizes_prop_size) {
513 _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
514 page_sizes_prop, page_sizes_prop_size)));
515 }
516
517 _FDT((fdt_property_cell(fdt, "ibm,chip-id",
518 cs->cpu_index / cpus_per_socket)));
519
520 _FDT((fdt_end_node(fdt)));
521 }
522
523 _FDT((fdt_end_node(fdt)));
524
525 /* RTAS */
526 _FDT((fdt_begin_node(fdt, "rtas")));
527
528 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
529 add_str(hypertas, "hcall-multi-tce");
530 }
531 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
532 hypertas->len)));
533 g_string_free(hypertas, TRUE);
534 _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
535 qemu_hypertas->len)));
536 g_string_free(qemu_hypertas, TRUE);
537
538 _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
539 refpoints, sizeof(refpoints))));
540
541 _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
542
543 /*
544 * According to PAPR, rtas ibm,os-term does not guarantee a return
545 * back to the guest cpu.
546 *
547 * While an additional ibm,extended-os-term property indicates that
548 * rtas call return will always occur. Set this property.
549 */
550 _FDT((fdt_property(fdt, "ibm,extended-os-term", NULL, 0)));
551
552 _FDT((fdt_end_node(fdt)));
553
554 /* interrupt controller */
555 _FDT((fdt_begin_node(fdt, "interrupt-controller")));
556
557 _FDT((fdt_property_string(fdt, "device_type",
558 "PowerPC-External-Interrupt-Presentation")));
559 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
560 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
561 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
562 interrupt_server_ranges_prop,
563 sizeof(interrupt_server_ranges_prop))));
564 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
565 _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
566 _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
567
568 _FDT((fdt_end_node(fdt)));
569
570 /* vdevice */
571 _FDT((fdt_begin_node(fdt, "vdevice")));
572
573 _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
574 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
575 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
576 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
577 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
578 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
579
580 _FDT((fdt_end_node(fdt)));
581
582 /* event-sources */
583 spapr_events_fdt_skel(fdt, epow_irq);
584
585 /* /hypervisor node */
586 if (kvm_enabled()) {
587 uint8_t hypercall[16];
588
589 /* indicate KVM hypercall interface */
590 _FDT((fdt_begin_node(fdt, "hypervisor")));
591 _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
592 if (kvmppc_has_cap_fixup_hcalls()) {
593 /*
594 * Older KVM versions with older guest kernels were broken with the
595 * magic page, don't allow the guest to map it.
596 */
597 kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
598 sizeof(hypercall));
599 _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
600 sizeof(hypercall))));
601 }
602 _FDT((fdt_end_node(fdt)));
603 }
604
605 _FDT((fdt_end_node(fdt))); /* close root node */
606 _FDT((fdt_finish(fdt)));
607
608 return fdt;
609 }
610
611 int spapr_h_cas_compose_response(target_ulong addr, target_ulong size)
612 {
613 void *fdt, *fdt_skel;
614 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
615
616 size -= sizeof(hdr);
617
618 /* Create sceleton */
619 fdt_skel = g_malloc0(size);
620 _FDT((fdt_create(fdt_skel, size)));
621 _FDT((fdt_begin_node(fdt_skel, "")));
622 _FDT((fdt_end_node(fdt_skel)));
623 _FDT((fdt_finish(fdt_skel)));
624 fdt = g_malloc0(size);
625 _FDT((fdt_open_into(fdt_skel, fdt, size)));
626 g_free(fdt_skel);
627
628 /* Fix skeleton up */
629 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
630
631 /* Pack resulting tree */
632 _FDT((fdt_pack(fdt)));
633
634 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
635 trace_spapr_cas_failed(size);
636 return -1;
637 }
638
639 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
640 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
641 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
642 g_free(fdt);
643
644 return 0;
645 }
646
647 static void spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
648 hwaddr size)
649 {
650 uint32_t associativity[] = {
651 cpu_to_be32(0x4), /* length */
652 cpu_to_be32(0x0), cpu_to_be32(0x0),
653 cpu_to_be32(0x0), cpu_to_be32(nodeid)
654 };
655 char mem_name[32];
656 uint64_t mem_reg_property[2];
657 int off;
658
659 mem_reg_property[0] = cpu_to_be64(start);
660 mem_reg_property[1] = cpu_to_be64(size);
661
662 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
663 off = fdt_add_subnode(fdt, 0, mem_name);
664 _FDT(off);
665 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
666 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
667 sizeof(mem_reg_property))));
668 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
669 sizeof(associativity))));
670 }
671
672 static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt)
673 {
674 hwaddr mem_start, node_size;
675 int i, nb_nodes = nb_numa_nodes;
676 NodeInfo *nodes = numa_info;
677 NodeInfo ramnode;
678
679 /* No NUMA nodes, assume there is just one node with whole RAM */
680 if (!nb_numa_nodes) {
681 nb_nodes = 1;
682 ramnode.node_mem = ram_size;
683 nodes = &ramnode;
684 }
685
686 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
687 if (!nodes[i].node_mem) {
688 continue;
689 }
690 if (mem_start >= ram_size) {
691 node_size = 0;
692 } else {
693 node_size = nodes[i].node_mem;
694 if (node_size > ram_size - mem_start) {
695 node_size = ram_size - mem_start;
696 }
697 }
698 if (!mem_start) {
699 /* ppc_spapr_init() checks for rma_size <= node0_size already */
700 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
701 mem_start += spapr->rma_size;
702 node_size -= spapr->rma_size;
703 }
704 for ( ; node_size; ) {
705 hwaddr sizetmp = pow2floor(node_size);
706
707 /* mem_start != 0 here */
708 if (ctzl(mem_start) < ctzl(sizetmp)) {
709 sizetmp = 1ULL << ctzl(mem_start);
710 }
711
712 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
713 node_size -= sizetmp;
714 mem_start += sizetmp;
715 }
716 }
717
718 return 0;
719 }
720
721 static void spapr_finalize_fdt(sPAPREnvironment *spapr,
722 hwaddr fdt_addr,
723 hwaddr rtas_addr,
724 hwaddr rtas_size)
725 {
726 int ret, i;
727 size_t cb = 0;
728 char *bootlist;
729 void *fdt;
730 sPAPRPHBState *phb;
731
732 fdt = g_malloc(FDT_MAX_SIZE);
733
734 /* open out the base tree into a temp buffer for the final tweaks */
735 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
736
737 ret = spapr_populate_memory(spapr, fdt);
738 if (ret < 0) {
739 fprintf(stderr, "couldn't setup memory nodes in fdt\n");
740 exit(1);
741 }
742
743 ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
744 if (ret < 0) {
745 fprintf(stderr, "couldn't setup vio devices in fdt\n");
746 exit(1);
747 }
748
749 QLIST_FOREACH(phb, &spapr->phbs, list) {
750 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
751 }
752
753 if (ret < 0) {
754 fprintf(stderr, "couldn't setup PCI devices in fdt\n");
755 exit(1);
756 }
757
758 /* RTAS */
759 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
760 if (ret < 0) {
761 fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
762 }
763
764 /* Advertise NUMA via ibm,associativity */
765 ret = spapr_fixup_cpu_dt(fdt, spapr);
766 if (ret < 0) {
767 fprintf(stderr, "Couldn't finalize CPU device tree properties\n");
768 }
769
770 bootlist = get_boot_devices_list(&cb, true);
771 if (cb && bootlist) {
772 int offset = fdt_path_offset(fdt, "/chosen");
773 if (offset < 0) {
774 exit(1);
775 }
776 for (i = 0; i < cb; i++) {
777 if (bootlist[i] == '\n') {
778 bootlist[i] = ' ';
779 }
780
781 }
782 ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
783 }
784
785 if (!spapr->has_graphics) {
786 spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
787 }
788
789 _FDT((fdt_pack(fdt)));
790
791 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
792 hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
793 fdt_totalsize(fdt), FDT_MAX_SIZE);
794 exit(1);
795 }
796
797 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
798
799 g_free(bootlist);
800 g_free(fdt);
801 }
802
803 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
804 {
805 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
806 }
807
808 static void emulate_spapr_hypercall(PowerPCCPU *cpu)
809 {
810 CPUPPCState *env = &cpu->env;
811
812 if (msr_pr) {
813 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
814 env->gpr[3] = H_PRIVILEGE;
815 } else {
816 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
817 }
818 }
819
820 static void spapr_reset_htab(sPAPREnvironment *spapr)
821 {
822 long shift;
823
824 /* allocate hash page table. For now we always make this 16mb,
825 * later we should probably make it scale to the size of guest
826 * RAM */
827
828 shift = kvmppc_reset_htab(spapr->htab_shift);
829
830 if (shift > 0) {
831 /* Kernel handles htab, we don't need to allocate one */
832 spapr->htab_shift = shift;
833 kvmppc_kern_htab = true;
834 } else {
835 if (!spapr->htab) {
836 /* Allocate an htab if we don't yet have one */
837 spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
838 }
839
840 /* And clear it */
841 memset(spapr->htab, 0, HTAB_SIZE(spapr));
842 }
843
844 /* Update the RMA size if necessary */
845 if (spapr->vrma_adjust) {
846 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
847 spapr->htab_shift);
848 }
849 }
850
851 static void ppc_spapr_reset(void)
852 {
853 PowerPCCPU *first_ppc_cpu;
854 uint32_t rtas_limit;
855
856 /* Reset the hash table & recalc the RMA */
857 spapr_reset_htab(spapr);
858
859 qemu_devices_reset();
860
861 /*
862 * We place the device tree and RTAS just below either the top of the RMA,
863 * or just below 2GB, whichever is lowere, so that it can be
864 * processed with 32-bit real mode code if necessary
865 */
866 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
867 spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
868 spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
869
870 /* Load the fdt */
871 spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
872 spapr->rtas_size);
873
874 /* Copy RTAS over */
875 cpu_physical_memory_write(spapr->rtas_addr, spapr->rtas_blob,
876 spapr->rtas_size);
877
878 /* Set up the entry state */
879 first_ppc_cpu = POWERPC_CPU(first_cpu);
880 first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
881 first_ppc_cpu->env.gpr[5] = 0;
882 first_cpu->halted = 0;
883 first_ppc_cpu->env.nip = spapr->entry_point;
884
885 }
886
887 static void spapr_cpu_reset(void *opaque)
888 {
889 PowerPCCPU *cpu = opaque;
890 CPUState *cs = CPU(cpu);
891 CPUPPCState *env = &cpu->env;
892
893 cpu_reset(cs);
894
895 /* All CPUs start halted. CPU0 is unhalted from the machine level
896 * reset code and the rest are explicitly started up by the guest
897 * using an RTAS call */
898 cs->halted = 1;
899
900 env->spr[SPR_HIOR] = 0;
901
902 env->external_htab = (uint8_t *)spapr->htab;
903 if (kvm_enabled() && !env->external_htab) {
904 /*
905 * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte*
906 * functions do the right thing.
907 */
908 env->external_htab = (void *)1;
909 }
910 env->htab_base = -1;
911 /*
912 * htab_mask is the mask used to normalize hash value to PTEG index.
913 * htab_shift is log2 of hash table size.
914 * We have 8 hpte per group, and each hpte is 16 bytes.
915 * ie have 128 bytes per hpte entry.
916 */
917 env->htab_mask = (1ULL << ((spapr)->htab_shift - 7)) - 1;
918 env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
919 (spapr->htab_shift - 18);
920 }
921
922 static void spapr_create_nvram(sPAPREnvironment *spapr)
923 {
924 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
925 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
926
927 if (dinfo) {
928 qdev_prop_set_drive_nofail(dev, "drive", blk_by_legacy_dinfo(dinfo));
929 }
930
931 qdev_init_nofail(dev);
932
933 spapr->nvram = (struct sPAPRNVRAM *)dev;
934 }
935
936 /* Returns whether we want to use VGA or not */
937 static int spapr_vga_init(PCIBus *pci_bus)
938 {
939 switch (vga_interface_type) {
940 case VGA_NONE:
941 return false;
942 case VGA_DEVICE:
943 return true;
944 case VGA_STD:
945 return pci_vga_init(pci_bus) != NULL;
946 default:
947 fprintf(stderr, "This vga model is not supported,"
948 "currently it only supports -vga std\n");
949 exit(0);
950 }
951 }
952
953 static const VMStateDescription vmstate_spapr = {
954 .name = "spapr",
955 .version_id = 2,
956 .minimum_version_id = 1,
957 .fields = (VMStateField[]) {
958 VMSTATE_UNUSED(4), /* used to be @next_irq */
959
960 /* RTC offset */
961 VMSTATE_UINT64(rtc_offset, sPAPREnvironment),
962 VMSTATE_PPC_TIMEBASE_V(tb, sPAPREnvironment, 2),
963 VMSTATE_END_OF_LIST()
964 },
965 };
966
967 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
968 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
969 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
970 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
971
972 static int htab_save_setup(QEMUFile *f, void *opaque)
973 {
974 sPAPREnvironment *spapr = opaque;
975
976 /* "Iteration" header */
977 qemu_put_be32(f, spapr->htab_shift);
978
979 if (spapr->htab) {
980 spapr->htab_save_index = 0;
981 spapr->htab_first_pass = true;
982 } else {
983 assert(kvm_enabled());
984
985 spapr->htab_fd = kvmppc_get_htab_fd(false);
986 if (spapr->htab_fd < 0) {
987 fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
988 strerror(errno));
989 return -1;
990 }
991 }
992
993
994 return 0;
995 }
996
997 static void htab_save_first_pass(QEMUFile *f, sPAPREnvironment *spapr,
998 int64_t max_ns)
999 {
1000 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1001 int index = spapr->htab_save_index;
1002 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1003
1004 assert(spapr->htab_first_pass);
1005
1006 do {
1007 int chunkstart;
1008
1009 /* Consume invalid HPTEs */
1010 while ((index < htabslots)
1011 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1012 index++;
1013 CLEAN_HPTE(HPTE(spapr->htab, index));
1014 }
1015
1016 /* Consume valid HPTEs */
1017 chunkstart = index;
1018 while ((index < htabslots)
1019 && HPTE_VALID(HPTE(spapr->htab, index))) {
1020 index++;
1021 CLEAN_HPTE(HPTE(spapr->htab, index));
1022 }
1023
1024 if (index > chunkstart) {
1025 int n_valid = index - chunkstart;
1026
1027 qemu_put_be32(f, chunkstart);
1028 qemu_put_be16(f, n_valid);
1029 qemu_put_be16(f, 0);
1030 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1031 HASH_PTE_SIZE_64 * n_valid);
1032
1033 if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1034 break;
1035 }
1036 }
1037 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1038
1039 if (index >= htabslots) {
1040 assert(index == htabslots);
1041 index = 0;
1042 spapr->htab_first_pass = false;
1043 }
1044 spapr->htab_save_index = index;
1045 }
1046
1047 static int htab_save_later_pass(QEMUFile *f, sPAPREnvironment *spapr,
1048 int64_t max_ns)
1049 {
1050 bool final = max_ns < 0;
1051 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1052 int examined = 0, sent = 0;
1053 int index = spapr->htab_save_index;
1054 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1055
1056 assert(!spapr->htab_first_pass);
1057
1058 do {
1059 int chunkstart, invalidstart;
1060
1061 /* Consume non-dirty HPTEs */
1062 while ((index < htabslots)
1063 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1064 index++;
1065 examined++;
1066 }
1067
1068 chunkstart = index;
1069 /* Consume valid dirty HPTEs */
1070 while ((index < htabslots)
1071 && HPTE_DIRTY(HPTE(spapr->htab, index))
1072 && HPTE_VALID(HPTE(spapr->htab, index))) {
1073 CLEAN_HPTE(HPTE(spapr->htab, index));
1074 index++;
1075 examined++;
1076 }
1077
1078 invalidstart = index;
1079 /* Consume invalid dirty HPTEs */
1080 while ((index < htabslots)
1081 && HPTE_DIRTY(HPTE(spapr->htab, index))
1082 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1083 CLEAN_HPTE(HPTE(spapr->htab, index));
1084 index++;
1085 examined++;
1086 }
1087
1088 if (index > chunkstart) {
1089 int n_valid = invalidstart - chunkstart;
1090 int n_invalid = index - invalidstart;
1091
1092 qemu_put_be32(f, chunkstart);
1093 qemu_put_be16(f, n_valid);
1094 qemu_put_be16(f, n_invalid);
1095 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1096 HASH_PTE_SIZE_64 * n_valid);
1097 sent += index - chunkstart;
1098
1099 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1100 break;
1101 }
1102 }
1103
1104 if (examined >= htabslots) {
1105 break;
1106 }
1107
1108 if (index >= htabslots) {
1109 assert(index == htabslots);
1110 index = 0;
1111 }
1112 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1113
1114 if (index >= htabslots) {
1115 assert(index == htabslots);
1116 index = 0;
1117 }
1118
1119 spapr->htab_save_index = index;
1120
1121 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1122 }
1123
1124 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1125 #define MAX_KVM_BUF_SIZE 2048
1126
1127 static int htab_save_iterate(QEMUFile *f, void *opaque)
1128 {
1129 sPAPREnvironment *spapr = opaque;
1130 int rc = 0;
1131
1132 /* Iteration header */
1133 qemu_put_be32(f, 0);
1134
1135 if (!spapr->htab) {
1136 assert(kvm_enabled());
1137
1138 rc = kvmppc_save_htab(f, spapr->htab_fd,
1139 MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1140 if (rc < 0) {
1141 return rc;
1142 }
1143 } else if (spapr->htab_first_pass) {
1144 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1145 } else {
1146 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1147 }
1148
1149 /* End marker */
1150 qemu_put_be32(f, 0);
1151 qemu_put_be16(f, 0);
1152 qemu_put_be16(f, 0);
1153
1154 return rc;
1155 }
1156
1157 static int htab_save_complete(QEMUFile *f, void *opaque)
1158 {
1159 sPAPREnvironment *spapr = opaque;
1160
1161 /* Iteration header */
1162 qemu_put_be32(f, 0);
1163
1164 if (!spapr->htab) {
1165 int rc;
1166
1167 assert(kvm_enabled());
1168
1169 rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1);
1170 if (rc < 0) {
1171 return rc;
1172 }
1173 close(spapr->htab_fd);
1174 spapr->htab_fd = -1;
1175 } else {
1176 htab_save_later_pass(f, spapr, -1);
1177 }
1178
1179 /* End marker */
1180 qemu_put_be32(f, 0);
1181 qemu_put_be16(f, 0);
1182 qemu_put_be16(f, 0);
1183
1184 return 0;
1185 }
1186
1187 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1188 {
1189 sPAPREnvironment *spapr = opaque;
1190 uint32_t section_hdr;
1191 int fd = -1;
1192
1193 if (version_id < 1 || version_id > 1) {
1194 fprintf(stderr, "htab_load() bad version\n");
1195 return -EINVAL;
1196 }
1197
1198 section_hdr = qemu_get_be32(f);
1199
1200 if (section_hdr) {
1201 /* First section, just the hash shift */
1202 if (spapr->htab_shift != section_hdr) {
1203 return -EINVAL;
1204 }
1205 return 0;
1206 }
1207
1208 if (!spapr->htab) {
1209 assert(kvm_enabled());
1210
1211 fd = kvmppc_get_htab_fd(true);
1212 if (fd < 0) {
1213 fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n",
1214 strerror(errno));
1215 }
1216 }
1217
1218 while (true) {
1219 uint32_t index;
1220 uint16_t n_valid, n_invalid;
1221
1222 index = qemu_get_be32(f);
1223 n_valid = qemu_get_be16(f);
1224 n_invalid = qemu_get_be16(f);
1225
1226 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1227 /* End of Stream */
1228 break;
1229 }
1230
1231 if ((index + n_valid + n_invalid) >
1232 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1233 /* Bad index in stream */
1234 fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) "
1235 "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid,
1236 spapr->htab_shift);
1237 return -EINVAL;
1238 }
1239
1240 if (spapr->htab) {
1241 if (n_valid) {
1242 qemu_get_buffer(f, HPTE(spapr->htab, index),
1243 HASH_PTE_SIZE_64 * n_valid);
1244 }
1245 if (n_invalid) {
1246 memset(HPTE(spapr->htab, index + n_valid), 0,
1247 HASH_PTE_SIZE_64 * n_invalid);
1248 }
1249 } else {
1250 int rc;
1251
1252 assert(fd >= 0);
1253
1254 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1255 if (rc < 0) {
1256 return rc;
1257 }
1258 }
1259 }
1260
1261 if (!spapr->htab) {
1262 assert(fd >= 0);
1263 close(fd);
1264 }
1265
1266 return 0;
1267 }
1268
1269 static SaveVMHandlers savevm_htab_handlers = {
1270 .save_live_setup = htab_save_setup,
1271 .save_live_iterate = htab_save_iterate,
1272 .save_live_complete = htab_save_complete,
1273 .load_state = htab_load,
1274 };
1275
1276 /* pSeries LPAR / sPAPR hardware init */
1277 static void ppc_spapr_init(MachineState *machine)
1278 {
1279 ram_addr_t ram_size = machine->ram_size;
1280 const char *cpu_model = machine->cpu_model;
1281 const char *kernel_filename = machine->kernel_filename;
1282 const char *kernel_cmdline = machine->kernel_cmdline;
1283 const char *initrd_filename = machine->initrd_filename;
1284 const char *boot_device = machine->boot_order;
1285 PowerPCCPU *cpu;
1286 CPUPPCState *env;
1287 PCIHostState *phb;
1288 int i;
1289 MemoryRegion *sysmem = get_system_memory();
1290 MemoryRegion *ram = g_new(MemoryRegion, 1);
1291 MemoryRegion *rma_region;
1292 void *rma = NULL;
1293 hwaddr rma_alloc_size;
1294 hwaddr node0_size = spapr_node0_size();
1295 uint32_t initrd_base = 0;
1296 long kernel_size = 0, initrd_size = 0;
1297 long load_limit, fw_size;
1298 bool kernel_le = false;
1299 char *filename;
1300
1301 msi_supported = true;
1302
1303 spapr = g_malloc0(sizeof(*spapr));
1304 QLIST_INIT(&spapr->phbs);
1305
1306 cpu_ppc_hypercall = emulate_spapr_hypercall;
1307
1308 /* Allocate RMA if necessary */
1309 rma_alloc_size = kvmppc_alloc_rma(&rma);
1310
1311 if (rma_alloc_size == -1) {
1312 hw_error("qemu: Unable to create RMA\n");
1313 exit(1);
1314 }
1315
1316 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1317 spapr->rma_size = rma_alloc_size;
1318 } else {
1319 spapr->rma_size = node0_size;
1320
1321 /* With KVM, we don't actually know whether KVM supports an
1322 * unbounded RMA (PR KVM) or is limited by the hash table size
1323 * (HV KVM using VRMA), so we always assume the latter
1324 *
1325 * In that case, we also limit the initial allocations for RTAS
1326 * etc... to 256M since we have no way to know what the VRMA size
1327 * is going to be as it depends on the size of the hash table
1328 * isn't determined yet.
1329 */
1330 if (kvm_enabled()) {
1331 spapr->vrma_adjust = 1;
1332 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1333 }
1334 }
1335
1336 if (spapr->rma_size > node0_size) {
1337 fprintf(stderr, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")\n",
1338 spapr->rma_size);
1339 exit(1);
1340 }
1341
1342 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
1343 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
1344
1345 /* We aim for a hash table of size 1/128 the size of RAM. The
1346 * normal rule of thumb is 1/64 the size of RAM, but that's much
1347 * more than needed for the Linux guests we support. */
1348 spapr->htab_shift = 18; /* Minimum architected size */
1349 while (spapr->htab_shift <= 46) {
1350 if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) {
1351 break;
1352 }
1353 spapr->htab_shift++;
1354 }
1355
1356 /* Set up Interrupt Controller before we create the VCPUs */
1357 spapr->icp = xics_system_init(smp_cpus * kvmppc_smt_threads() / smp_threads,
1358 XICS_IRQS);
1359
1360 /* init CPUs */
1361 if (cpu_model == NULL) {
1362 cpu_model = kvm_enabled() ? "host" : "POWER7";
1363 }
1364 for (i = 0; i < smp_cpus; i++) {
1365 cpu = cpu_ppc_init(cpu_model);
1366 if (cpu == NULL) {
1367 fprintf(stderr, "Unable to find PowerPC CPU definition\n");
1368 exit(1);
1369 }
1370 env = &cpu->env;
1371
1372 /* Set time-base frequency to 512 MHz */
1373 cpu_ppc_tb_init(env, TIMEBASE_FREQ);
1374
1375 /* PAPR always has exception vectors in RAM not ROM. To ensure this,
1376 * MSR[IP] should never be set.
1377 */
1378 env->msr_mask &= ~(1 << 6);
1379
1380 /* Tell KVM that we're in PAPR mode */
1381 if (kvm_enabled()) {
1382 kvmppc_set_papr(cpu);
1383 }
1384
1385 if (cpu->max_compat) {
1386 if (ppc_set_compat(cpu, cpu->max_compat) < 0) {
1387 exit(1);
1388 }
1389 }
1390
1391 xics_cpu_setup(spapr->icp, cpu);
1392
1393 qemu_register_reset(spapr_cpu_reset, cpu);
1394 }
1395
1396 /* allocate RAM */
1397 spapr->ram_limit = ram_size;
1398 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
1399 spapr->ram_limit);
1400 memory_region_add_subregion(sysmem, 0, ram);
1401
1402 if (rma_alloc_size && rma) {
1403 rma_region = g_new(MemoryRegion, 1);
1404 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
1405 rma_alloc_size, rma);
1406 vmstate_register_ram_global(rma_region);
1407 memory_region_add_subregion(sysmem, 0, rma_region);
1408 }
1409
1410 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1411 spapr->rtas_size = get_image_size(filename);
1412 spapr->rtas_blob = g_malloc(spapr->rtas_size);
1413 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
1414 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
1415 exit(1);
1416 }
1417 if (spapr->rtas_size > RTAS_MAX_SIZE) {
1418 hw_error("RTAS too big ! 0x%zx bytes (max is 0x%x)\n",
1419 spapr->rtas_size, RTAS_MAX_SIZE);
1420 exit(1);
1421 }
1422 g_free(filename);
1423
1424 /* Set up EPOW events infrastructure */
1425 spapr_events_init(spapr);
1426
1427 /* Set up VIO bus */
1428 spapr->vio_bus = spapr_vio_bus_init();
1429
1430 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1431 if (serial_hds[i]) {
1432 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1433 }
1434 }
1435
1436 /* We always have at least the nvram device on VIO */
1437 spapr_create_nvram(spapr);
1438
1439 /* Set up PCI */
1440 spapr_pci_rtas_init();
1441
1442 phb = spapr_create_phb(spapr, 0);
1443
1444 for (i = 0; i < nb_nics; i++) {
1445 NICInfo *nd = &nd_table[i];
1446
1447 if (!nd->model) {
1448 nd->model = g_strdup("ibmveth");
1449 }
1450
1451 if (strcmp(nd->model, "ibmveth") == 0) {
1452 spapr_vlan_create(spapr->vio_bus, nd);
1453 } else {
1454 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1455 }
1456 }
1457
1458 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1459 spapr_vscsi_create(spapr->vio_bus);
1460 }
1461
1462 /* Graphics */
1463 if (spapr_vga_init(phb->bus)) {
1464 spapr->has_graphics = true;
1465 }
1466
1467 if (usb_enabled(spapr->has_graphics)) {
1468 pci_create_simple(phb->bus, -1, "pci-ohci");
1469 if (spapr->has_graphics) {
1470 usbdevice_create("keyboard");
1471 usbdevice_create("mouse");
1472 }
1473 }
1474
1475 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1476 fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
1477 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
1478 exit(1);
1479 }
1480
1481 if (kernel_filename) {
1482 uint64_t lowaddr = 0;
1483
1484 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
1485 NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
1486 if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1487 kernel_size = load_elf(kernel_filename,
1488 translate_kernel_address, NULL,
1489 NULL, &lowaddr, NULL, 0, ELF_MACHINE, 0);
1490 kernel_le = kernel_size > 0;
1491 }
1492 if (kernel_size < 0) {
1493 fprintf(stderr, "qemu: error loading %s: %s\n",
1494 kernel_filename, load_elf_strerror(kernel_size));
1495 exit(1);
1496 }
1497
1498 /* load initrd */
1499 if (initrd_filename) {
1500 /* Try to locate the initrd in the gap between the kernel
1501 * and the firmware. Add a bit of space just in case
1502 */
1503 initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1504 initrd_size = load_image_targphys(initrd_filename, initrd_base,
1505 load_limit - initrd_base);
1506 if (initrd_size < 0) {
1507 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
1508 initrd_filename);
1509 exit(1);
1510 }
1511 } else {
1512 initrd_base = 0;
1513 initrd_size = 0;
1514 }
1515 }
1516
1517 if (bios_name == NULL) {
1518 bios_name = FW_FILE_NAME;
1519 }
1520 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1521 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
1522 if (fw_size < 0) {
1523 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
1524 exit(1);
1525 }
1526 g_free(filename);
1527
1528 spapr->entry_point = 0x100;
1529
1530 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
1531 register_savevm_live(NULL, "spapr/htab", -1, 1,
1532 &savevm_htab_handlers, spapr);
1533
1534 /* Prepare the device tree */
1535 spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
1536 kernel_size, kernel_le,
1537 boot_device, kernel_cmdline,
1538 spapr->epow_irq);
1539 assert(spapr->fdt_skel != NULL);
1540 }
1541
1542 static int spapr_kvm_type(const char *vm_type)
1543 {
1544 if (!vm_type) {
1545 return 0;
1546 }
1547
1548 if (!strcmp(vm_type, "HV")) {
1549 return 1;
1550 }
1551
1552 if (!strcmp(vm_type, "PR")) {
1553 return 2;
1554 }
1555
1556 error_report("Unknown kvm-type specified '%s'", vm_type);
1557 exit(1);
1558 }
1559
1560 /*
1561 * Implementation of an interface to adjust firmware patch
1562 * for the bootindex property handling.
1563 */
1564 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
1565 DeviceState *dev)
1566 {
1567 #define CAST(type, obj, name) \
1568 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
1569 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
1570 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
1571
1572 if (d) {
1573 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
1574 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
1575 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
1576
1577 if (spapr) {
1578 /*
1579 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
1580 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
1581 * in the top 16 bits of the 64-bit LUN
1582 */
1583 unsigned id = 0x8000 | (d->id << 8) | d->lun;
1584 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1585 (uint64_t)id << 48);
1586 } else if (virtio) {
1587 /*
1588 * We use SRP luns of the form 01000000 | (target << 8) | lun
1589 * in the top 32 bits of the 64-bit LUN
1590 * Note: the quote above is from SLOF and it is wrong,
1591 * the actual binding is:
1592 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
1593 */
1594 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
1595 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1596 (uint64_t)id << 32);
1597 } else if (usb) {
1598 /*
1599 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
1600 * in the top 32 bits of the 64-bit LUN
1601 */
1602 unsigned usb_port = atoi(usb->port->path);
1603 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
1604 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1605 (uint64_t)id << 32);
1606 }
1607 }
1608
1609 if (phb) {
1610 /* Replace "pci" with "pci@800000020000000" */
1611 return g_strdup_printf("pci@%"PRIX64, phb->buid);
1612 }
1613
1614 return NULL;
1615 }
1616
1617 static char *spapr_get_kvm_type(Object *obj, Error **errp)
1618 {
1619 sPAPRMachineState *sm = SPAPR_MACHINE(obj);
1620
1621 return g_strdup(sm->kvm_type);
1622 }
1623
1624 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
1625 {
1626 sPAPRMachineState *sm = SPAPR_MACHINE(obj);
1627
1628 g_free(sm->kvm_type);
1629 sm->kvm_type = g_strdup(value);
1630 }
1631
1632 static void spapr_machine_initfn(Object *obj)
1633 {
1634 object_property_add_str(obj, "kvm-type",
1635 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
1636 }
1637
1638 static void ppc_cpu_do_nmi_on_cpu(void *arg)
1639 {
1640 CPUState *cs = arg;
1641
1642 cpu_synchronize_state(cs);
1643 ppc_cpu_do_system_reset(cs);
1644 }
1645
1646 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
1647 {
1648 CPUState *cs;
1649
1650 CPU_FOREACH(cs) {
1651 async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, cs);
1652 }
1653 }
1654
1655 static void spapr_machine_class_init(ObjectClass *oc, void *data)
1656 {
1657 MachineClass *mc = MACHINE_CLASS(oc);
1658 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
1659 NMIClass *nc = NMI_CLASS(oc);
1660
1661 mc->name = "pseries";
1662 mc->desc = "pSeries Logical Partition (PAPR compliant)";
1663 mc->is_default = 1;
1664 mc->init = ppc_spapr_init;
1665 mc->reset = ppc_spapr_reset;
1666 mc->block_default_type = IF_SCSI;
1667 mc->max_cpus = MAX_CPUS;
1668 mc->no_parallel = 1;
1669 mc->default_boot_order = NULL;
1670 mc->kvm_type = spapr_kvm_type;
1671
1672 fwc->get_dev_path = spapr_get_fw_dev_path;
1673 nc->nmi_monitor_handler = spapr_nmi;
1674 }
1675
1676 static const TypeInfo spapr_machine_info = {
1677 .name = TYPE_SPAPR_MACHINE,
1678 .parent = TYPE_MACHINE,
1679 .instance_size = sizeof(sPAPRMachineState),
1680 .instance_init = spapr_machine_initfn,
1681 .class_init = spapr_machine_class_init,
1682 .interfaces = (InterfaceInfo[]) {
1683 { TYPE_FW_PATH_PROVIDER },
1684 { TYPE_NMI },
1685 { }
1686 },
1687 };
1688
1689 static void spapr_machine_2_1_class_init(ObjectClass *oc, void *data)
1690 {
1691 MachineClass *mc = MACHINE_CLASS(oc);
1692
1693 mc->name = "pseries-2.1";
1694 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.1";
1695 mc->is_default = 0;
1696 }
1697
1698 static const TypeInfo spapr_machine_2_1_info = {
1699 .name = TYPE_SPAPR_MACHINE "2.1",
1700 .parent = TYPE_SPAPR_MACHINE,
1701 .class_init = spapr_machine_2_1_class_init,
1702 };
1703
1704 static void spapr_machine_register_types(void)
1705 {
1706 type_register_static(&spapr_machine_info);
1707 type_register_static(&spapr_machine_2_1_info);
1708 }
1709
1710 type_init(spapr_machine_register_types)