]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr.c
spapr: create DR connectors for PHBs
[mirror_qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/numa.h"
32 #include "hw/hw.h"
33 #include "qemu/log.h"
34 #include "hw/fw-path-provider.h"
35 #include "elf.h"
36 #include "net/net.h"
37 #include "sysemu/device_tree.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/hw_accel.h"
40 #include "kvm_ppc.h"
41 #include "migration/misc.h"
42 #include "migration/global_state.h"
43 #include "migration/register.h"
44 #include "mmu-hash64.h"
45 #include "mmu-book3s-v3.h"
46 #include "cpu-models.h"
47 #include "qom/cpu.h"
48
49 #include "hw/boards.h"
50 #include "hw/ppc/ppc.h"
51 #include "hw/loader.h"
52
53 #include "hw/ppc/fdt.h"
54 #include "hw/ppc/spapr.h"
55 #include "hw/ppc/spapr_vio.h"
56 #include "hw/pci-host/spapr.h"
57 #include "hw/pci/msi.h"
58
59 #include "hw/pci/pci.h"
60 #include "hw/scsi/scsi.h"
61 #include "hw/virtio/virtio-scsi.h"
62 #include "hw/virtio/vhost-scsi-common.h"
63
64 #include "exec/address-spaces.h"
65 #include "exec/ram_addr.h"
66 #include "hw/usb.h"
67 #include "qemu/config-file.h"
68 #include "qemu/error-report.h"
69 #include "trace.h"
70 #include "hw/nmi.h"
71 #include "hw/intc/intc.h"
72
73 #include "qemu/cutils.h"
74 #include "hw/ppc/spapr_cpu_core.h"
75 #include "hw/mem/memory-device.h"
76
77 #include <libfdt.h>
78
79 /* SLOF memory layout:
80 *
81 * SLOF raw image loaded at 0, copies its romfs right below the flat
82 * device-tree, then position SLOF itself 31M below that
83 *
84 * So we set FW_OVERHEAD to 40MB which should account for all of that
85 * and more
86 *
87 * We load our kernel at 4M, leaving space for SLOF initial image
88 */
89 #define FDT_MAX_SIZE 0x100000
90 #define RTAS_MAX_SIZE 0x10000
91 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
92 #define FW_MAX_SIZE 0x400000
93 #define FW_FILE_NAME "slof.bin"
94 #define FW_OVERHEAD 0x2800000
95 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
96
97 #define MIN_RMA_SLOF 128UL
98
99 #define PHANDLE_INTC 0x00001111
100
101 /* These two functions implement the VCPU id numbering: one to compute them
102 * all and one to identify thread 0 of a VCORE. Any change to the first one
103 * is likely to have an impact on the second one, so let's keep them close.
104 */
105 static int spapr_vcpu_id(sPAPRMachineState *spapr, int cpu_index)
106 {
107 assert(spapr->vsmt);
108 return
109 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
110 }
111 static bool spapr_is_thread0_in_vcore(sPAPRMachineState *spapr,
112 PowerPCCPU *cpu)
113 {
114 assert(spapr->vsmt);
115 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
116 }
117
118 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
119 {
120 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
121 * and newer QEMUs don't even have them. In both cases, we don't want
122 * to send anything on the wire.
123 */
124 return false;
125 }
126
127 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
128 .name = "icp/server",
129 .version_id = 1,
130 .minimum_version_id = 1,
131 .needed = pre_2_10_vmstate_dummy_icp_needed,
132 .fields = (VMStateField[]) {
133 VMSTATE_UNUSED(4), /* uint32_t xirr */
134 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
135 VMSTATE_UNUSED(1), /* uint8_t mfrr */
136 VMSTATE_END_OF_LIST()
137 },
138 };
139
140 static void pre_2_10_vmstate_register_dummy_icp(int i)
141 {
142 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
143 (void *)(uintptr_t) i);
144 }
145
146 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
147 {
148 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
149 (void *)(uintptr_t) i);
150 }
151
152 int spapr_max_server_number(sPAPRMachineState *spapr)
153 {
154 assert(spapr->vsmt);
155 return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads);
156 }
157
158 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
159 int smt_threads)
160 {
161 int i, ret = 0;
162 uint32_t servers_prop[smt_threads];
163 uint32_t gservers_prop[smt_threads * 2];
164 int index = spapr_get_vcpu_id(cpu);
165
166 if (cpu->compat_pvr) {
167 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
168 if (ret < 0) {
169 return ret;
170 }
171 }
172
173 /* Build interrupt servers and gservers properties */
174 for (i = 0; i < smt_threads; i++) {
175 servers_prop[i] = cpu_to_be32(index + i);
176 /* Hack, direct the group queues back to cpu 0 */
177 gservers_prop[i*2] = cpu_to_be32(index + i);
178 gservers_prop[i*2 + 1] = 0;
179 }
180 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
181 servers_prop, sizeof(servers_prop));
182 if (ret < 0) {
183 return ret;
184 }
185 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
186 gservers_prop, sizeof(gservers_prop));
187
188 return ret;
189 }
190
191 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
192 {
193 int index = spapr_get_vcpu_id(cpu);
194 uint32_t associativity[] = {cpu_to_be32(0x5),
195 cpu_to_be32(0x0),
196 cpu_to_be32(0x0),
197 cpu_to_be32(0x0),
198 cpu_to_be32(cpu->node_id),
199 cpu_to_be32(index)};
200
201 /* Advertise NUMA via ibm,associativity */
202 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
203 sizeof(associativity));
204 }
205
206 /* Populate the "ibm,pa-features" property */
207 static void spapr_populate_pa_features(sPAPRMachineState *spapr,
208 PowerPCCPU *cpu,
209 void *fdt, int offset,
210 bool legacy_guest)
211 {
212 uint8_t pa_features_206[] = { 6, 0,
213 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
214 uint8_t pa_features_207[] = { 24, 0,
215 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
216 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
217 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
218 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
219 uint8_t pa_features_300[] = { 66, 0,
220 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
221 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
222 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
223 /* 6: DS207 */
224 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
225 /* 16: Vector */
226 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
227 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
228 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
229 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
230 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
231 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
232 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
233 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
234 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
235 /* 42: PM, 44: PC RA, 46: SC vec'd */
236 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
237 /* 48: SIMD, 50: QP BFP, 52: String */
238 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
239 /* 54: DecFP, 56: DecI, 58: SHA */
240 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
241 /* 60: NM atomic, 62: RNG */
242 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
243 };
244 uint8_t *pa_features = NULL;
245 size_t pa_size;
246
247 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
248 pa_features = pa_features_206;
249 pa_size = sizeof(pa_features_206);
250 }
251 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
252 pa_features = pa_features_207;
253 pa_size = sizeof(pa_features_207);
254 }
255 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
256 pa_features = pa_features_300;
257 pa_size = sizeof(pa_features_300);
258 }
259 if (!pa_features) {
260 return;
261 }
262
263 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
264 /*
265 * Note: we keep CI large pages off by default because a 64K capable
266 * guest provisioned with large pages might otherwise try to map a qemu
267 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
268 * even if that qemu runs on a 4k host.
269 * We dd this bit back here if we are confident this is not an issue
270 */
271 pa_features[3] |= 0x20;
272 }
273 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
274 pa_features[24] |= 0x80; /* Transactional memory support */
275 }
276 if (legacy_guest && pa_size > 40) {
277 /* Workaround for broken kernels that attempt (guest) radix
278 * mode when they can't handle it, if they see the radix bit set
279 * in pa-features. So hide it from them. */
280 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
281 }
282
283 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
284 }
285
286 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
287 {
288 int ret = 0, offset, cpus_offset;
289 CPUState *cs;
290 char cpu_model[32];
291 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
292
293 CPU_FOREACH(cs) {
294 PowerPCCPU *cpu = POWERPC_CPU(cs);
295 DeviceClass *dc = DEVICE_GET_CLASS(cs);
296 int index = spapr_get_vcpu_id(cpu);
297 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
298
299 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
300 continue;
301 }
302
303 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
304
305 cpus_offset = fdt_path_offset(fdt, "/cpus");
306 if (cpus_offset < 0) {
307 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
308 if (cpus_offset < 0) {
309 return cpus_offset;
310 }
311 }
312 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
313 if (offset < 0) {
314 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
315 if (offset < 0) {
316 return offset;
317 }
318 }
319
320 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
321 pft_size_prop, sizeof(pft_size_prop));
322 if (ret < 0) {
323 return ret;
324 }
325
326 if (nb_numa_nodes > 1) {
327 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
328 if (ret < 0) {
329 return ret;
330 }
331 }
332
333 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
334 if (ret < 0) {
335 return ret;
336 }
337
338 spapr_populate_pa_features(spapr, cpu, fdt, offset,
339 spapr->cas_legacy_guest_workaround);
340 }
341 return ret;
342 }
343
344 static hwaddr spapr_node0_size(MachineState *machine)
345 {
346 if (nb_numa_nodes) {
347 int i;
348 for (i = 0; i < nb_numa_nodes; ++i) {
349 if (numa_info[i].node_mem) {
350 return MIN(pow2floor(numa_info[i].node_mem),
351 machine->ram_size);
352 }
353 }
354 }
355 return machine->ram_size;
356 }
357
358 static void add_str(GString *s, const gchar *s1)
359 {
360 g_string_append_len(s, s1, strlen(s1) + 1);
361 }
362
363 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
364 hwaddr size)
365 {
366 uint32_t associativity[] = {
367 cpu_to_be32(0x4), /* length */
368 cpu_to_be32(0x0), cpu_to_be32(0x0),
369 cpu_to_be32(0x0), cpu_to_be32(nodeid)
370 };
371 char mem_name[32];
372 uint64_t mem_reg_property[2];
373 int off;
374
375 mem_reg_property[0] = cpu_to_be64(start);
376 mem_reg_property[1] = cpu_to_be64(size);
377
378 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
379 off = fdt_add_subnode(fdt, 0, mem_name);
380 _FDT(off);
381 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
382 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
383 sizeof(mem_reg_property))));
384 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
385 sizeof(associativity))));
386 return off;
387 }
388
389 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
390 {
391 MachineState *machine = MACHINE(spapr);
392 hwaddr mem_start, node_size;
393 int i, nb_nodes = nb_numa_nodes;
394 NodeInfo *nodes = numa_info;
395 NodeInfo ramnode;
396
397 /* No NUMA nodes, assume there is just one node with whole RAM */
398 if (!nb_numa_nodes) {
399 nb_nodes = 1;
400 ramnode.node_mem = machine->ram_size;
401 nodes = &ramnode;
402 }
403
404 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
405 if (!nodes[i].node_mem) {
406 continue;
407 }
408 if (mem_start >= machine->ram_size) {
409 node_size = 0;
410 } else {
411 node_size = nodes[i].node_mem;
412 if (node_size > machine->ram_size - mem_start) {
413 node_size = machine->ram_size - mem_start;
414 }
415 }
416 if (!mem_start) {
417 /* spapr_machine_init() checks for rma_size <= node0_size
418 * already */
419 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
420 mem_start += spapr->rma_size;
421 node_size -= spapr->rma_size;
422 }
423 for ( ; node_size; ) {
424 hwaddr sizetmp = pow2floor(node_size);
425
426 /* mem_start != 0 here */
427 if (ctzl(mem_start) < ctzl(sizetmp)) {
428 sizetmp = 1ULL << ctzl(mem_start);
429 }
430
431 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
432 node_size -= sizetmp;
433 mem_start += sizetmp;
434 }
435 }
436
437 return 0;
438 }
439
440 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
441 sPAPRMachineState *spapr)
442 {
443 PowerPCCPU *cpu = POWERPC_CPU(cs);
444 CPUPPCState *env = &cpu->env;
445 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
446 int index = spapr_get_vcpu_id(cpu);
447 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
448 0xffffffff, 0xffffffff};
449 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
450 : SPAPR_TIMEBASE_FREQ;
451 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
452 uint32_t page_sizes_prop[64];
453 size_t page_sizes_prop_size;
454 uint32_t vcpus_per_socket = smp_threads * smp_cores;
455 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
456 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
457 sPAPRDRConnector *drc;
458 int drc_index;
459 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
460 int i;
461
462 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
463 if (drc) {
464 drc_index = spapr_drc_index(drc);
465 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
466 }
467
468 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
469 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
470
471 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
472 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
473 env->dcache_line_size)));
474 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
475 env->dcache_line_size)));
476 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
477 env->icache_line_size)));
478 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
479 env->icache_line_size)));
480
481 if (pcc->l1_dcache_size) {
482 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
483 pcc->l1_dcache_size)));
484 } else {
485 warn_report("Unknown L1 dcache size for cpu");
486 }
487 if (pcc->l1_icache_size) {
488 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
489 pcc->l1_icache_size)));
490 } else {
491 warn_report("Unknown L1 icache size for cpu");
492 }
493
494 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
495 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
496 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
497 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
498 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
499 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
500
501 if (env->spr_cb[SPR_PURR].oea_read) {
502 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
503 }
504
505 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
506 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
507 segs, sizeof(segs))));
508 }
509
510 /* Advertise VSX (vector extensions) if available
511 * 1 == VMX / Altivec available
512 * 2 == VSX available
513 *
514 * Only CPUs for which we create core types in spapr_cpu_core.c
515 * are possible, and all of those have VMX */
516 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
517 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
518 } else {
519 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
520 }
521
522 /* Advertise DFP (Decimal Floating Point) if available
523 * 0 / no property == no DFP
524 * 1 == DFP available */
525 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
526 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
527 }
528
529 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
530 sizeof(page_sizes_prop));
531 if (page_sizes_prop_size) {
532 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
533 page_sizes_prop, page_sizes_prop_size)));
534 }
535
536 spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
537
538 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
539 cs->cpu_index / vcpus_per_socket)));
540
541 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
542 pft_size_prop, sizeof(pft_size_prop))));
543
544 if (nb_numa_nodes > 1) {
545 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
546 }
547
548 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
549
550 if (pcc->radix_page_info) {
551 for (i = 0; i < pcc->radix_page_info->count; i++) {
552 radix_AP_encodings[i] =
553 cpu_to_be32(pcc->radix_page_info->entries[i]);
554 }
555 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
556 radix_AP_encodings,
557 pcc->radix_page_info->count *
558 sizeof(radix_AP_encodings[0]))));
559 }
560 }
561
562 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
563 {
564 CPUState **rev;
565 CPUState *cs;
566 int n_cpus;
567 int cpus_offset;
568 char *nodename;
569 int i;
570
571 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
572 _FDT(cpus_offset);
573 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
574 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
575
576 /*
577 * We walk the CPUs in reverse order to ensure that CPU DT nodes
578 * created by fdt_add_subnode() end up in the right order in FDT
579 * for the guest kernel the enumerate the CPUs correctly.
580 *
581 * The CPU list cannot be traversed in reverse order, so we need
582 * to do extra work.
583 */
584 n_cpus = 0;
585 rev = NULL;
586 CPU_FOREACH(cs) {
587 rev = g_renew(CPUState *, rev, n_cpus + 1);
588 rev[n_cpus++] = cs;
589 }
590
591 for (i = n_cpus - 1; i >= 0; i--) {
592 CPUState *cs = rev[i];
593 PowerPCCPU *cpu = POWERPC_CPU(cs);
594 int index = spapr_get_vcpu_id(cpu);
595 DeviceClass *dc = DEVICE_GET_CLASS(cs);
596 int offset;
597
598 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
599 continue;
600 }
601
602 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
603 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
604 g_free(nodename);
605 _FDT(offset);
606 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
607 }
608
609 g_free(rev);
610 }
611
612 static int spapr_rng_populate_dt(void *fdt)
613 {
614 int node;
615 int ret;
616
617 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
618 if (node <= 0) {
619 return -1;
620 }
621 ret = fdt_setprop_string(fdt, node, "device_type",
622 "ibm,platform-facilities");
623 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
624 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
625
626 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
627 if (node <= 0) {
628 return -1;
629 }
630 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
631
632 return ret ? -1 : 0;
633 }
634
635 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
636 {
637 MemoryDeviceInfoList *info;
638
639 for (info = list; info; info = info->next) {
640 MemoryDeviceInfo *value = info->value;
641
642 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
643 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
644
645 if (addr >= pcdimm_info->addr &&
646 addr < (pcdimm_info->addr + pcdimm_info->size)) {
647 return pcdimm_info->node;
648 }
649 }
650 }
651
652 return -1;
653 }
654
655 struct sPAPRDrconfCellV2 {
656 uint32_t seq_lmbs;
657 uint64_t base_addr;
658 uint32_t drc_index;
659 uint32_t aa_index;
660 uint32_t flags;
661 } QEMU_PACKED;
662
663 typedef struct DrconfCellQueue {
664 struct sPAPRDrconfCellV2 cell;
665 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
666 } DrconfCellQueue;
667
668 static DrconfCellQueue *
669 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
670 uint32_t drc_index, uint32_t aa_index,
671 uint32_t flags)
672 {
673 DrconfCellQueue *elem;
674
675 elem = g_malloc0(sizeof(*elem));
676 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
677 elem->cell.base_addr = cpu_to_be64(base_addr);
678 elem->cell.drc_index = cpu_to_be32(drc_index);
679 elem->cell.aa_index = cpu_to_be32(aa_index);
680 elem->cell.flags = cpu_to_be32(flags);
681
682 return elem;
683 }
684
685 /* ibm,dynamic-memory-v2 */
686 static int spapr_populate_drmem_v2(sPAPRMachineState *spapr, void *fdt,
687 int offset, MemoryDeviceInfoList *dimms)
688 {
689 MachineState *machine = MACHINE(spapr);
690 uint8_t *int_buf, *cur_index;
691 int ret;
692 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
693 uint64_t addr, cur_addr, size;
694 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
695 uint64_t mem_end = machine->device_memory->base +
696 memory_region_size(&machine->device_memory->mr);
697 uint32_t node, buf_len, nr_entries = 0;
698 sPAPRDRConnector *drc;
699 DrconfCellQueue *elem, *next;
700 MemoryDeviceInfoList *info;
701 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
702 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
703
704 /* Entry to cover RAM and the gap area */
705 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
706 SPAPR_LMB_FLAGS_RESERVED |
707 SPAPR_LMB_FLAGS_DRC_INVALID);
708 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
709 nr_entries++;
710
711 cur_addr = machine->device_memory->base;
712 for (info = dimms; info; info = info->next) {
713 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
714
715 addr = di->addr;
716 size = di->size;
717 node = di->node;
718
719 /* Entry for hot-pluggable area */
720 if (cur_addr < addr) {
721 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
722 g_assert(drc);
723 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
724 cur_addr, spapr_drc_index(drc), -1, 0);
725 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
726 nr_entries++;
727 }
728
729 /* Entry for DIMM */
730 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
731 g_assert(drc);
732 elem = spapr_get_drconf_cell(size / lmb_size, addr,
733 spapr_drc_index(drc), node,
734 SPAPR_LMB_FLAGS_ASSIGNED);
735 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
736 nr_entries++;
737 cur_addr = addr + size;
738 }
739
740 /* Entry for remaining hotpluggable area */
741 if (cur_addr < mem_end) {
742 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
743 g_assert(drc);
744 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
745 cur_addr, spapr_drc_index(drc), -1, 0);
746 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
747 nr_entries++;
748 }
749
750 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
751 int_buf = cur_index = g_malloc0(buf_len);
752 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
753 cur_index += sizeof(nr_entries);
754
755 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
756 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
757 cur_index += sizeof(elem->cell);
758 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
759 g_free(elem);
760 }
761
762 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
763 g_free(int_buf);
764 if (ret < 0) {
765 return -1;
766 }
767 return 0;
768 }
769
770 /* ibm,dynamic-memory */
771 static int spapr_populate_drmem_v1(sPAPRMachineState *spapr, void *fdt,
772 int offset, MemoryDeviceInfoList *dimms)
773 {
774 MachineState *machine = MACHINE(spapr);
775 int i, ret;
776 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
777 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
778 uint32_t nr_lmbs = (machine->device_memory->base +
779 memory_region_size(&machine->device_memory->mr)) /
780 lmb_size;
781 uint32_t *int_buf, *cur_index, buf_len;
782
783 /*
784 * Allocate enough buffer size to fit in ibm,dynamic-memory
785 */
786 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
787 cur_index = int_buf = g_malloc0(buf_len);
788 int_buf[0] = cpu_to_be32(nr_lmbs);
789 cur_index++;
790 for (i = 0; i < nr_lmbs; i++) {
791 uint64_t addr = i * lmb_size;
792 uint32_t *dynamic_memory = cur_index;
793
794 if (i >= device_lmb_start) {
795 sPAPRDRConnector *drc;
796
797 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
798 g_assert(drc);
799
800 dynamic_memory[0] = cpu_to_be32(addr >> 32);
801 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
802 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
803 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
804 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
805 if (memory_region_present(get_system_memory(), addr)) {
806 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
807 } else {
808 dynamic_memory[5] = cpu_to_be32(0);
809 }
810 } else {
811 /*
812 * LMB information for RMA, boot time RAM and gap b/n RAM and
813 * device memory region -- all these are marked as reserved
814 * and as having no valid DRC.
815 */
816 dynamic_memory[0] = cpu_to_be32(addr >> 32);
817 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
818 dynamic_memory[2] = cpu_to_be32(0);
819 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
820 dynamic_memory[4] = cpu_to_be32(-1);
821 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
822 SPAPR_LMB_FLAGS_DRC_INVALID);
823 }
824
825 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
826 }
827 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
828 g_free(int_buf);
829 if (ret < 0) {
830 return -1;
831 }
832 return 0;
833 }
834
835 /*
836 * Adds ibm,dynamic-reconfiguration-memory node.
837 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
838 * of this device tree node.
839 */
840 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
841 {
842 MachineState *machine = MACHINE(spapr);
843 int ret, i, offset;
844 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
845 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
846 uint32_t *int_buf, *cur_index, buf_len;
847 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
848 MemoryDeviceInfoList *dimms = NULL;
849
850 /*
851 * Don't create the node if there is no device memory
852 */
853 if (machine->ram_size == machine->maxram_size) {
854 return 0;
855 }
856
857 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
858
859 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
860 sizeof(prop_lmb_size));
861 if (ret < 0) {
862 return ret;
863 }
864
865 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
866 if (ret < 0) {
867 return ret;
868 }
869
870 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
871 if (ret < 0) {
872 return ret;
873 }
874
875 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
876 dimms = qmp_memory_device_list();
877 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
878 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
879 } else {
880 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
881 }
882 qapi_free_MemoryDeviceInfoList(dimms);
883
884 if (ret < 0) {
885 return ret;
886 }
887
888 /* ibm,associativity-lookup-arrays */
889 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
890 cur_index = int_buf = g_malloc0(buf_len);
891 int_buf[0] = cpu_to_be32(nr_nodes);
892 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
893 cur_index += 2;
894 for (i = 0; i < nr_nodes; i++) {
895 uint32_t associativity[] = {
896 cpu_to_be32(0x0),
897 cpu_to_be32(0x0),
898 cpu_to_be32(0x0),
899 cpu_to_be32(i)
900 };
901 memcpy(cur_index, associativity, sizeof(associativity));
902 cur_index += 4;
903 }
904 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
905 (cur_index - int_buf) * sizeof(uint32_t));
906 g_free(int_buf);
907
908 return ret;
909 }
910
911 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
912 sPAPROptionVector *ov5_updates)
913 {
914 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
915 int ret = 0, offset;
916
917 /* Generate ibm,dynamic-reconfiguration-memory node if required */
918 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
919 g_assert(smc->dr_lmb_enabled);
920 ret = spapr_populate_drconf_memory(spapr, fdt);
921 if (ret) {
922 goto out;
923 }
924 }
925
926 offset = fdt_path_offset(fdt, "/chosen");
927 if (offset < 0) {
928 offset = fdt_add_subnode(fdt, 0, "chosen");
929 if (offset < 0) {
930 return offset;
931 }
932 }
933 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
934 "ibm,architecture-vec-5");
935
936 out:
937 return ret;
938 }
939
940 static bool spapr_hotplugged_dev_before_cas(void)
941 {
942 Object *drc_container, *obj;
943 ObjectProperty *prop;
944 ObjectPropertyIterator iter;
945
946 drc_container = container_get(object_get_root(), "/dr-connector");
947 object_property_iter_init(&iter, drc_container);
948 while ((prop = object_property_iter_next(&iter))) {
949 if (!strstart(prop->type, "link<", NULL)) {
950 continue;
951 }
952 obj = object_property_get_link(drc_container, prop->name, NULL);
953 if (spapr_drc_needed(obj)) {
954 return true;
955 }
956 }
957 return false;
958 }
959
960 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
961 target_ulong addr, target_ulong size,
962 sPAPROptionVector *ov5_updates)
963 {
964 void *fdt, *fdt_skel;
965 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
966
967 if (spapr_hotplugged_dev_before_cas()) {
968 return 1;
969 }
970
971 if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
972 error_report("SLOF provided an unexpected CAS buffer size "
973 TARGET_FMT_lu " (min: %zu, max: %u)",
974 size, sizeof(hdr), FW_MAX_SIZE);
975 exit(EXIT_FAILURE);
976 }
977
978 size -= sizeof(hdr);
979
980 /* Create skeleton */
981 fdt_skel = g_malloc0(size);
982 _FDT((fdt_create(fdt_skel, size)));
983 _FDT((fdt_finish_reservemap(fdt_skel)));
984 _FDT((fdt_begin_node(fdt_skel, "")));
985 _FDT((fdt_end_node(fdt_skel)));
986 _FDT((fdt_finish(fdt_skel)));
987 fdt = g_malloc0(size);
988 _FDT((fdt_open_into(fdt_skel, fdt, size)));
989 g_free(fdt_skel);
990
991 /* Fixup cpu nodes */
992 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
993
994 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
995 return -1;
996 }
997
998 /* Pack resulting tree */
999 _FDT((fdt_pack(fdt)));
1000
1001 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1002 trace_spapr_cas_failed(size);
1003 return -1;
1004 }
1005
1006 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1007 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1008 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1009 g_free(fdt);
1010
1011 return 0;
1012 }
1013
1014 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
1015 {
1016 int rtas;
1017 GString *hypertas = g_string_sized_new(256);
1018 GString *qemu_hypertas = g_string_sized_new(256);
1019 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1020 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1021 memory_region_size(&MACHINE(spapr)->device_memory->mr);
1022 uint32_t lrdr_capacity[] = {
1023 cpu_to_be32(max_device_addr >> 32),
1024 cpu_to_be32(max_device_addr & 0xffffffff),
1025 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1026 cpu_to_be32(max_cpus / smp_threads),
1027 };
1028 uint32_t maxdomains[] = {
1029 cpu_to_be32(4),
1030 cpu_to_be32(0),
1031 cpu_to_be32(0),
1032 cpu_to_be32(0),
1033 cpu_to_be32(nb_numa_nodes ? nb_numa_nodes : 1),
1034 };
1035
1036 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1037
1038 /* hypertas */
1039 add_str(hypertas, "hcall-pft");
1040 add_str(hypertas, "hcall-term");
1041 add_str(hypertas, "hcall-dabr");
1042 add_str(hypertas, "hcall-interrupt");
1043 add_str(hypertas, "hcall-tce");
1044 add_str(hypertas, "hcall-vio");
1045 add_str(hypertas, "hcall-splpar");
1046 add_str(hypertas, "hcall-bulk");
1047 add_str(hypertas, "hcall-set-mode");
1048 add_str(hypertas, "hcall-sprg0");
1049 add_str(hypertas, "hcall-copy");
1050 add_str(hypertas, "hcall-debug");
1051 add_str(hypertas, "hcall-vphn");
1052 add_str(qemu_hypertas, "hcall-memop1");
1053
1054 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1055 add_str(hypertas, "hcall-multi-tce");
1056 }
1057
1058 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1059 add_str(hypertas, "hcall-hpt-resize");
1060 }
1061
1062 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1063 hypertas->str, hypertas->len));
1064 g_string_free(hypertas, TRUE);
1065 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1066 qemu_hypertas->str, qemu_hypertas->len));
1067 g_string_free(qemu_hypertas, TRUE);
1068
1069 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1070 refpoints, sizeof(refpoints)));
1071
1072 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1073 maxdomains, sizeof(maxdomains)));
1074
1075 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1076 RTAS_ERROR_LOG_MAX));
1077 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1078 RTAS_EVENT_SCAN_RATE));
1079
1080 g_assert(msi_nonbroken);
1081 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1082
1083 /*
1084 * According to PAPR, rtas ibm,os-term does not guarantee a return
1085 * back to the guest cpu.
1086 *
1087 * While an additional ibm,extended-os-term property indicates
1088 * that rtas call return will always occur. Set this property.
1089 */
1090 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1091
1092 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1093 lrdr_capacity, sizeof(lrdr_capacity)));
1094
1095 spapr_dt_rtas_tokens(fdt, rtas);
1096 }
1097
1098 /*
1099 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1100 * and the XIVE features that the guest may request and thus the valid
1101 * values for bytes 23..26 of option vector 5:
1102 */
1103 static void spapr_dt_ov5_platform_support(sPAPRMachineState *spapr, void *fdt,
1104 int chosen)
1105 {
1106 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1107
1108 char val[2 * 4] = {
1109 23, spapr->irq->ov5, /* Xive mode. */
1110 24, 0x00, /* Hash/Radix, filled in below. */
1111 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1112 26, 0x40, /* Radix options: GTSE == yes. */
1113 };
1114
1115 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1116 first_ppc_cpu->compat_pvr)) {
1117 /*
1118 * If we're in a pre POWER9 compat mode then the guest should
1119 * do hash and use the legacy interrupt mode
1120 */
1121 val[1] = 0x00; /* XICS */
1122 val[3] = 0x00; /* Hash */
1123 } else if (kvm_enabled()) {
1124 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1125 val[3] = 0x80; /* OV5_MMU_BOTH */
1126 } else if (kvmppc_has_cap_mmu_radix()) {
1127 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1128 } else {
1129 val[3] = 0x00; /* Hash */
1130 }
1131 } else {
1132 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1133 val[3] = 0xC0;
1134 }
1135 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1136 val, sizeof(val)));
1137 }
1138
1139 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
1140 {
1141 MachineState *machine = MACHINE(spapr);
1142 int chosen;
1143 const char *boot_device = machine->boot_order;
1144 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1145 size_t cb = 0;
1146 char *bootlist = get_boot_devices_list(&cb);
1147
1148 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1149
1150 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1151 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1152 spapr->initrd_base));
1153 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1154 spapr->initrd_base + spapr->initrd_size));
1155
1156 if (spapr->kernel_size) {
1157 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1158 cpu_to_be64(spapr->kernel_size) };
1159
1160 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1161 &kprop, sizeof(kprop)));
1162 if (spapr->kernel_le) {
1163 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1164 }
1165 }
1166 if (boot_menu) {
1167 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1168 }
1169 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1170 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1171 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1172
1173 if (cb && bootlist) {
1174 int i;
1175
1176 for (i = 0; i < cb; i++) {
1177 if (bootlist[i] == '\n') {
1178 bootlist[i] = ' ';
1179 }
1180 }
1181 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1182 }
1183
1184 if (boot_device && strlen(boot_device)) {
1185 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1186 }
1187
1188 if (!spapr->has_graphics && stdout_path) {
1189 /*
1190 * "linux,stdout-path" and "stdout" properties are deprecated by linux
1191 * kernel. New platforms should only use the "stdout-path" property. Set
1192 * the new property and continue using older property to remain
1193 * compatible with the existing firmware.
1194 */
1195 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1196 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1197 }
1198
1199 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1200
1201 g_free(stdout_path);
1202 g_free(bootlist);
1203 }
1204
1205 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1206 {
1207 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1208 * KVM to work under pHyp with some guest co-operation */
1209 int hypervisor;
1210 uint8_t hypercall[16];
1211
1212 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1213 /* indicate KVM hypercall interface */
1214 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1215 if (kvmppc_has_cap_fixup_hcalls()) {
1216 /*
1217 * Older KVM versions with older guest kernels were broken
1218 * with the magic page, don't allow the guest to map it.
1219 */
1220 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1221 sizeof(hypercall))) {
1222 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1223 hypercall, sizeof(hypercall)));
1224 }
1225 }
1226 }
1227
1228 static void *spapr_build_fdt(sPAPRMachineState *spapr)
1229 {
1230 MachineState *machine = MACHINE(spapr);
1231 MachineClass *mc = MACHINE_GET_CLASS(machine);
1232 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1233 int ret;
1234 void *fdt;
1235 sPAPRPHBState *phb;
1236 char *buf;
1237
1238 fdt = g_malloc0(FDT_MAX_SIZE);
1239 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1240
1241 /* Root node */
1242 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1243 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1244 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1245
1246 /*
1247 * Add info to guest to indentify which host is it being run on
1248 * and what is the uuid of the guest
1249 */
1250 if (spapr->host_model && !g_str_equal(spapr->host_model, "none")) {
1251 if (g_str_equal(spapr->host_model, "passthrough")) {
1252 /* -M host-model=passthrough */
1253 if (kvmppc_get_host_model(&buf)) {
1254 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1255 g_free(buf);
1256 }
1257 } else {
1258 /* -M host-model=<user-string> */
1259 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1260 }
1261 }
1262
1263 if (spapr->host_serial && !g_str_equal(spapr->host_serial, "none")) {
1264 if (g_str_equal(spapr->host_serial, "passthrough")) {
1265 /* -M host-serial=passthrough */
1266 if (kvmppc_get_host_serial(&buf)) {
1267 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1268 g_free(buf);
1269 }
1270 } else {
1271 /* -M host-serial=<user-string> */
1272 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1273 }
1274 }
1275
1276 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1277
1278 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1279 if (qemu_uuid_set) {
1280 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1281 }
1282 g_free(buf);
1283
1284 if (qemu_get_vm_name()) {
1285 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1286 qemu_get_vm_name()));
1287 }
1288
1289 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1290 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1291
1292 /* /interrupt controller */
1293 spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt,
1294 PHANDLE_INTC);
1295
1296 ret = spapr_populate_memory(spapr, fdt);
1297 if (ret < 0) {
1298 error_report("couldn't setup memory nodes in fdt");
1299 exit(1);
1300 }
1301
1302 /* /vdevice */
1303 spapr_dt_vdevice(spapr->vio_bus, fdt);
1304
1305 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1306 ret = spapr_rng_populate_dt(fdt);
1307 if (ret < 0) {
1308 error_report("could not set up rng device in the fdt");
1309 exit(1);
1310 }
1311 }
1312
1313 QLIST_FOREACH(phb, &spapr->phbs, list) {
1314 ret = spapr_populate_pci_dt(phb, PHANDLE_INTC, fdt,
1315 spapr->irq->nr_msis);
1316 if (ret < 0) {
1317 error_report("couldn't setup PCI devices in fdt");
1318 exit(1);
1319 }
1320 }
1321
1322 /* cpus */
1323 spapr_populate_cpus_dt_node(fdt, spapr);
1324
1325 if (smc->dr_lmb_enabled) {
1326 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1327 }
1328
1329 if (mc->has_hotpluggable_cpus) {
1330 int offset = fdt_path_offset(fdt, "/cpus");
1331 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1332 SPAPR_DR_CONNECTOR_TYPE_CPU);
1333 if (ret < 0) {
1334 error_report("Couldn't set up CPU DR device tree properties");
1335 exit(1);
1336 }
1337 }
1338
1339 /* /event-sources */
1340 spapr_dt_events(spapr, fdt);
1341
1342 /* /rtas */
1343 spapr_dt_rtas(spapr, fdt);
1344
1345 /* /chosen */
1346 spapr_dt_chosen(spapr, fdt);
1347
1348 /* /hypervisor */
1349 if (kvm_enabled()) {
1350 spapr_dt_hypervisor(spapr, fdt);
1351 }
1352
1353 /* Build memory reserve map */
1354 if (spapr->kernel_size) {
1355 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1356 }
1357 if (spapr->initrd_size) {
1358 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1359 }
1360
1361 /* ibm,client-architecture-support updates */
1362 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1363 if (ret < 0) {
1364 error_report("couldn't setup CAS properties fdt");
1365 exit(1);
1366 }
1367
1368 return fdt;
1369 }
1370
1371 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1372 {
1373 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1374 }
1375
1376 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1377 PowerPCCPU *cpu)
1378 {
1379 CPUPPCState *env = &cpu->env;
1380
1381 /* The TCG path should also be holding the BQL at this point */
1382 g_assert(qemu_mutex_iothread_locked());
1383
1384 if (msr_pr) {
1385 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1386 env->gpr[3] = H_PRIVILEGE;
1387 } else {
1388 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1389 }
1390 }
1391
1392 struct LPCRSyncState {
1393 target_ulong value;
1394 target_ulong mask;
1395 };
1396
1397 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1398 {
1399 struct LPCRSyncState *s = arg.host_ptr;
1400 PowerPCCPU *cpu = POWERPC_CPU(cs);
1401 CPUPPCState *env = &cpu->env;
1402 target_ulong lpcr;
1403
1404 cpu_synchronize_state(cs);
1405 lpcr = env->spr[SPR_LPCR];
1406 lpcr &= ~s->mask;
1407 lpcr |= s->value;
1408 ppc_store_lpcr(cpu, lpcr);
1409 }
1410
1411 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1412 {
1413 CPUState *cs;
1414 struct LPCRSyncState s = {
1415 .value = value,
1416 .mask = mask
1417 };
1418 CPU_FOREACH(cs) {
1419 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1420 }
1421 }
1422
1423 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1424 {
1425 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1426
1427 /* Copy PATE1:GR into PATE0:HR */
1428 entry->dw0 = spapr->patb_entry & PATE0_HR;
1429 entry->dw1 = spapr->patb_entry;
1430 }
1431
1432 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1433 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1434 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1435 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1436 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1437
1438 /*
1439 * Get the fd to access the kernel htab, re-opening it if necessary
1440 */
1441 static int get_htab_fd(sPAPRMachineState *spapr)
1442 {
1443 Error *local_err = NULL;
1444
1445 if (spapr->htab_fd >= 0) {
1446 return spapr->htab_fd;
1447 }
1448
1449 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1450 if (spapr->htab_fd < 0) {
1451 error_report_err(local_err);
1452 }
1453
1454 return spapr->htab_fd;
1455 }
1456
1457 void close_htab_fd(sPAPRMachineState *spapr)
1458 {
1459 if (spapr->htab_fd >= 0) {
1460 close(spapr->htab_fd);
1461 }
1462 spapr->htab_fd = -1;
1463 }
1464
1465 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1466 {
1467 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1468
1469 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1470 }
1471
1472 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1473 {
1474 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1475
1476 assert(kvm_enabled());
1477
1478 if (!spapr->htab) {
1479 return 0;
1480 }
1481
1482 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1483 }
1484
1485 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1486 hwaddr ptex, int n)
1487 {
1488 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1489 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1490
1491 if (!spapr->htab) {
1492 /*
1493 * HTAB is controlled by KVM. Fetch into temporary buffer
1494 */
1495 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1496 kvmppc_read_hptes(hptes, ptex, n);
1497 return hptes;
1498 }
1499
1500 /*
1501 * HTAB is controlled by QEMU. Just point to the internally
1502 * accessible PTEG.
1503 */
1504 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1505 }
1506
1507 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1508 const ppc_hash_pte64_t *hptes,
1509 hwaddr ptex, int n)
1510 {
1511 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1512
1513 if (!spapr->htab) {
1514 g_free((void *)hptes);
1515 }
1516
1517 /* Nothing to do for qemu managed HPT */
1518 }
1519
1520 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1521 uint64_t pte0, uint64_t pte1)
1522 {
1523 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1524 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1525
1526 if (!spapr->htab) {
1527 kvmppc_write_hpte(ptex, pte0, pte1);
1528 } else {
1529 if (pte0 & HPTE64_V_VALID) {
1530 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1531 /*
1532 * When setting valid, we write PTE1 first. This ensures
1533 * proper synchronization with the reading code in
1534 * ppc_hash64_pteg_search()
1535 */
1536 smp_wmb();
1537 stq_p(spapr->htab + offset, pte0);
1538 } else {
1539 stq_p(spapr->htab + offset, pte0);
1540 /*
1541 * When clearing it we set PTE0 first. This ensures proper
1542 * synchronization with the reading code in
1543 * ppc_hash64_pteg_search()
1544 */
1545 smp_wmb();
1546 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1547 }
1548 }
1549 }
1550
1551 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1552 {
1553 int shift;
1554
1555 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1556 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1557 * that's much more than is needed for Linux guests */
1558 shift = ctz64(pow2ceil(ramsize)) - 7;
1559 shift = MAX(shift, 18); /* Minimum architected size */
1560 shift = MIN(shift, 46); /* Maximum architected size */
1561 return shift;
1562 }
1563
1564 void spapr_free_hpt(sPAPRMachineState *spapr)
1565 {
1566 g_free(spapr->htab);
1567 spapr->htab = NULL;
1568 spapr->htab_shift = 0;
1569 close_htab_fd(spapr);
1570 }
1571
1572 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1573 Error **errp)
1574 {
1575 long rc;
1576
1577 /* Clean up any HPT info from a previous boot */
1578 spapr_free_hpt(spapr);
1579
1580 rc = kvmppc_reset_htab(shift);
1581 if (rc < 0) {
1582 /* kernel-side HPT needed, but couldn't allocate one */
1583 error_setg_errno(errp, errno,
1584 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1585 shift);
1586 /* This is almost certainly fatal, but if the caller really
1587 * wants to carry on with shift == 0, it's welcome to try */
1588 } else if (rc > 0) {
1589 /* kernel-side HPT allocated */
1590 if (rc != shift) {
1591 error_setg(errp,
1592 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1593 shift, rc);
1594 }
1595
1596 spapr->htab_shift = shift;
1597 spapr->htab = NULL;
1598 } else {
1599 /* kernel-side HPT not needed, allocate in userspace instead */
1600 size_t size = 1ULL << shift;
1601 int i;
1602
1603 spapr->htab = qemu_memalign(size, size);
1604 if (!spapr->htab) {
1605 error_setg_errno(errp, errno,
1606 "Could not allocate HPT of order %d", shift);
1607 return;
1608 }
1609
1610 memset(spapr->htab, 0, size);
1611 spapr->htab_shift = shift;
1612
1613 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1614 DIRTY_HPTE(HPTE(spapr->htab, i));
1615 }
1616 }
1617 /* We're setting up a hash table, so that means we're not radix */
1618 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1619 }
1620
1621 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1622 {
1623 int hpt_shift;
1624
1625 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1626 || (spapr->cas_reboot
1627 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1628 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1629 } else {
1630 uint64_t current_ram_size;
1631
1632 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1633 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1634 }
1635 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1636
1637 if (spapr->vrma_adjust) {
1638 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1639 spapr->htab_shift);
1640 }
1641 }
1642
1643 static int spapr_reset_drcs(Object *child, void *opaque)
1644 {
1645 sPAPRDRConnector *drc =
1646 (sPAPRDRConnector *) object_dynamic_cast(child,
1647 TYPE_SPAPR_DR_CONNECTOR);
1648
1649 if (drc) {
1650 spapr_drc_reset(drc);
1651 }
1652
1653 return 0;
1654 }
1655
1656 static void spapr_machine_reset(void)
1657 {
1658 MachineState *machine = MACHINE(qdev_get_machine());
1659 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1660 PowerPCCPU *first_ppc_cpu;
1661 uint32_t rtas_limit;
1662 hwaddr rtas_addr, fdt_addr;
1663 void *fdt;
1664 int rc;
1665
1666 spapr_caps_apply(spapr);
1667
1668 first_ppc_cpu = POWERPC_CPU(first_cpu);
1669 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1670 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1671 spapr->max_compat_pvr)) {
1672 /*
1673 * If using KVM with radix mode available, VCPUs can be started
1674 * without a HPT because KVM will start them in radix mode.
1675 * Set the GR bit in PATE so that we know there is no HPT.
1676 */
1677 spapr->patb_entry = PATE1_GR;
1678 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1679 } else {
1680 spapr_setup_hpt_and_vrma(spapr);
1681 }
1682
1683 /*
1684 * If this reset wasn't generated by CAS, we should reset our
1685 * negotiated options and start from scratch
1686 */
1687 if (!spapr->cas_reboot) {
1688 spapr_ovec_cleanup(spapr->ov5_cas);
1689 spapr->ov5_cas = spapr_ovec_new();
1690
1691 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1692 }
1693
1694 if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
1695 spapr_irq_msi_reset(spapr);
1696 }
1697
1698 qemu_devices_reset();
1699
1700 /*
1701 * This is fixing some of the default configuration of the XIVE
1702 * devices. To be called after the reset of the machine devices.
1703 */
1704 spapr_irq_reset(spapr, &error_fatal);
1705
1706 /* DRC reset may cause a device to be unplugged. This will cause troubles
1707 * if this device is used by another device (eg, a running vhost backend
1708 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1709 * situations, we reset DRCs after all devices have been reset.
1710 */
1711 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1712
1713 spapr_clear_pending_events(spapr);
1714
1715 /*
1716 * We place the device tree and RTAS just below either the top of the RMA,
1717 * or just below 2GB, whichever is lower, so that it can be
1718 * processed with 32-bit real mode code if necessary
1719 */
1720 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1721 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1722 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1723
1724 fdt = spapr_build_fdt(spapr);
1725
1726 spapr_load_rtas(spapr, fdt, rtas_addr);
1727
1728 rc = fdt_pack(fdt);
1729
1730 /* Should only fail if we've built a corrupted tree */
1731 assert(rc == 0);
1732
1733 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1734 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1735 fdt_totalsize(fdt), FDT_MAX_SIZE);
1736 exit(1);
1737 }
1738
1739 /* Load the fdt */
1740 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1741 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1742 g_free(spapr->fdt_blob);
1743 spapr->fdt_size = fdt_totalsize(fdt);
1744 spapr->fdt_initial_size = spapr->fdt_size;
1745 spapr->fdt_blob = fdt;
1746
1747 /* Set up the entry state */
1748 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1749 first_ppc_cpu->env.gpr[5] = 0;
1750
1751 spapr->cas_reboot = false;
1752 }
1753
1754 static void spapr_create_nvram(sPAPRMachineState *spapr)
1755 {
1756 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1757 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1758
1759 if (dinfo) {
1760 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1761 &error_fatal);
1762 }
1763
1764 qdev_init_nofail(dev);
1765
1766 spapr->nvram = (struct sPAPRNVRAM *)dev;
1767 }
1768
1769 static void spapr_rtc_create(sPAPRMachineState *spapr)
1770 {
1771 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1772 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1773 &error_fatal);
1774 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1775 &error_fatal);
1776 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1777 "date", &error_fatal);
1778 }
1779
1780 /* Returns whether we want to use VGA or not */
1781 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1782 {
1783 switch (vga_interface_type) {
1784 case VGA_NONE:
1785 return false;
1786 case VGA_DEVICE:
1787 return true;
1788 case VGA_STD:
1789 case VGA_VIRTIO:
1790 case VGA_CIRRUS:
1791 return pci_vga_init(pci_bus) != NULL;
1792 default:
1793 error_setg(errp,
1794 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1795 return false;
1796 }
1797 }
1798
1799 static int spapr_pre_load(void *opaque)
1800 {
1801 int rc;
1802
1803 rc = spapr_caps_pre_load(opaque);
1804 if (rc) {
1805 return rc;
1806 }
1807
1808 return 0;
1809 }
1810
1811 static int spapr_post_load(void *opaque, int version_id)
1812 {
1813 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1814 int err = 0;
1815
1816 err = spapr_caps_post_migration(spapr);
1817 if (err) {
1818 return err;
1819 }
1820
1821 /*
1822 * In earlier versions, there was no separate qdev for the PAPR
1823 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1824 * So when migrating from those versions, poke the incoming offset
1825 * value into the RTC device
1826 */
1827 if (version_id < 3) {
1828 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1829 if (err) {
1830 return err;
1831 }
1832 }
1833
1834 if (kvm_enabled() && spapr->patb_entry) {
1835 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1836 bool radix = !!(spapr->patb_entry & PATE1_GR);
1837 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1838
1839 /*
1840 * Update LPCR:HR and UPRT as they may not be set properly in
1841 * the stream
1842 */
1843 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1844 LPCR_HR | LPCR_UPRT);
1845
1846 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1847 if (err) {
1848 error_report("Process table config unsupported by the host");
1849 return -EINVAL;
1850 }
1851 }
1852
1853 err = spapr_irq_post_load(spapr, version_id);
1854 if (err) {
1855 return err;
1856 }
1857
1858 return err;
1859 }
1860
1861 static int spapr_pre_save(void *opaque)
1862 {
1863 int rc;
1864
1865 rc = spapr_caps_pre_save(opaque);
1866 if (rc) {
1867 return rc;
1868 }
1869
1870 return 0;
1871 }
1872
1873 static bool version_before_3(void *opaque, int version_id)
1874 {
1875 return version_id < 3;
1876 }
1877
1878 static bool spapr_pending_events_needed(void *opaque)
1879 {
1880 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1881 return !QTAILQ_EMPTY(&spapr->pending_events);
1882 }
1883
1884 static const VMStateDescription vmstate_spapr_event_entry = {
1885 .name = "spapr_event_log_entry",
1886 .version_id = 1,
1887 .minimum_version_id = 1,
1888 .fields = (VMStateField[]) {
1889 VMSTATE_UINT32(summary, sPAPREventLogEntry),
1890 VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
1891 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
1892 NULL, extended_length),
1893 VMSTATE_END_OF_LIST()
1894 },
1895 };
1896
1897 static const VMStateDescription vmstate_spapr_pending_events = {
1898 .name = "spapr_pending_events",
1899 .version_id = 1,
1900 .minimum_version_id = 1,
1901 .needed = spapr_pending_events_needed,
1902 .fields = (VMStateField[]) {
1903 VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
1904 vmstate_spapr_event_entry, sPAPREventLogEntry, next),
1905 VMSTATE_END_OF_LIST()
1906 },
1907 };
1908
1909 static bool spapr_ov5_cas_needed(void *opaque)
1910 {
1911 sPAPRMachineState *spapr = opaque;
1912 sPAPROptionVector *ov5_mask = spapr_ovec_new();
1913 sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1914 sPAPROptionVector *ov5_removed = spapr_ovec_new();
1915 bool cas_needed;
1916
1917 /* Prior to the introduction of sPAPROptionVector, we had two option
1918 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1919 * Both of these options encode machine topology into the device-tree
1920 * in such a way that the now-booted OS should still be able to interact
1921 * appropriately with QEMU regardless of what options were actually
1922 * negotiatied on the source side.
1923 *
1924 * As such, we can avoid migrating the CAS-negotiated options if these
1925 * are the only options available on the current machine/platform.
1926 * Since these are the only options available for pseries-2.7 and
1927 * earlier, this allows us to maintain old->new/new->old migration
1928 * compatibility.
1929 *
1930 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1931 * via default pseries-2.8 machines and explicit command-line parameters.
1932 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1933 * of the actual CAS-negotiated values to continue working properly. For
1934 * example, availability of memory unplug depends on knowing whether
1935 * OV5_HP_EVT was negotiated via CAS.
1936 *
1937 * Thus, for any cases where the set of available CAS-negotiatable
1938 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1939 * include the CAS-negotiated options in the migration stream, unless
1940 * if they affect boot time behaviour only.
1941 */
1942 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1943 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1944 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1945
1946 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1947 * the mask itself since in the future it's possible "legacy" bits may be
1948 * removed via machine options, which could generate a false positive
1949 * that breaks migration.
1950 */
1951 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1952 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1953
1954 spapr_ovec_cleanup(ov5_mask);
1955 spapr_ovec_cleanup(ov5_legacy);
1956 spapr_ovec_cleanup(ov5_removed);
1957
1958 return cas_needed;
1959 }
1960
1961 static const VMStateDescription vmstate_spapr_ov5_cas = {
1962 .name = "spapr_option_vector_ov5_cas",
1963 .version_id = 1,
1964 .minimum_version_id = 1,
1965 .needed = spapr_ov5_cas_needed,
1966 .fields = (VMStateField[]) {
1967 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1968 vmstate_spapr_ovec, sPAPROptionVector),
1969 VMSTATE_END_OF_LIST()
1970 },
1971 };
1972
1973 static bool spapr_patb_entry_needed(void *opaque)
1974 {
1975 sPAPRMachineState *spapr = opaque;
1976
1977 return !!spapr->patb_entry;
1978 }
1979
1980 static const VMStateDescription vmstate_spapr_patb_entry = {
1981 .name = "spapr_patb_entry",
1982 .version_id = 1,
1983 .minimum_version_id = 1,
1984 .needed = spapr_patb_entry_needed,
1985 .fields = (VMStateField[]) {
1986 VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1987 VMSTATE_END_OF_LIST()
1988 },
1989 };
1990
1991 static bool spapr_irq_map_needed(void *opaque)
1992 {
1993 sPAPRMachineState *spapr = opaque;
1994
1995 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1996 }
1997
1998 static const VMStateDescription vmstate_spapr_irq_map = {
1999 .name = "spapr_irq_map",
2000 .version_id = 1,
2001 .minimum_version_id = 1,
2002 .needed = spapr_irq_map_needed,
2003 .fields = (VMStateField[]) {
2004 VMSTATE_BITMAP(irq_map, sPAPRMachineState, 0, irq_map_nr),
2005 VMSTATE_END_OF_LIST()
2006 },
2007 };
2008
2009 static bool spapr_dtb_needed(void *opaque)
2010 {
2011 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2012
2013 return smc->update_dt_enabled;
2014 }
2015
2016 static int spapr_dtb_pre_load(void *opaque)
2017 {
2018 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
2019
2020 g_free(spapr->fdt_blob);
2021 spapr->fdt_blob = NULL;
2022 spapr->fdt_size = 0;
2023
2024 return 0;
2025 }
2026
2027 static const VMStateDescription vmstate_spapr_dtb = {
2028 .name = "spapr_dtb",
2029 .version_id = 1,
2030 .minimum_version_id = 1,
2031 .needed = spapr_dtb_needed,
2032 .pre_load = spapr_dtb_pre_load,
2033 .fields = (VMStateField[]) {
2034 VMSTATE_UINT32(fdt_initial_size, sPAPRMachineState),
2035 VMSTATE_UINT32(fdt_size, sPAPRMachineState),
2036 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, sPAPRMachineState, 0, NULL,
2037 fdt_size),
2038 VMSTATE_END_OF_LIST()
2039 },
2040 };
2041
2042 static const VMStateDescription vmstate_spapr = {
2043 .name = "spapr",
2044 .version_id = 3,
2045 .minimum_version_id = 1,
2046 .pre_load = spapr_pre_load,
2047 .post_load = spapr_post_load,
2048 .pre_save = spapr_pre_save,
2049 .fields = (VMStateField[]) {
2050 /* used to be @next_irq */
2051 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2052
2053 /* RTC offset */
2054 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
2055
2056 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
2057 VMSTATE_END_OF_LIST()
2058 },
2059 .subsections = (const VMStateDescription*[]) {
2060 &vmstate_spapr_ov5_cas,
2061 &vmstate_spapr_patb_entry,
2062 &vmstate_spapr_pending_events,
2063 &vmstate_spapr_cap_htm,
2064 &vmstate_spapr_cap_vsx,
2065 &vmstate_spapr_cap_dfp,
2066 &vmstate_spapr_cap_cfpc,
2067 &vmstate_spapr_cap_sbbc,
2068 &vmstate_spapr_cap_ibs,
2069 &vmstate_spapr_irq_map,
2070 &vmstate_spapr_cap_nested_kvm_hv,
2071 &vmstate_spapr_dtb,
2072 NULL
2073 }
2074 };
2075
2076 static int htab_save_setup(QEMUFile *f, void *opaque)
2077 {
2078 sPAPRMachineState *spapr = opaque;
2079
2080 /* "Iteration" header */
2081 if (!spapr->htab_shift) {
2082 qemu_put_be32(f, -1);
2083 } else {
2084 qemu_put_be32(f, spapr->htab_shift);
2085 }
2086
2087 if (spapr->htab) {
2088 spapr->htab_save_index = 0;
2089 spapr->htab_first_pass = true;
2090 } else {
2091 if (spapr->htab_shift) {
2092 assert(kvm_enabled());
2093 }
2094 }
2095
2096
2097 return 0;
2098 }
2099
2100 static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr,
2101 int chunkstart, int n_valid, int n_invalid)
2102 {
2103 qemu_put_be32(f, chunkstart);
2104 qemu_put_be16(f, n_valid);
2105 qemu_put_be16(f, n_invalid);
2106 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2107 HASH_PTE_SIZE_64 * n_valid);
2108 }
2109
2110 static void htab_save_end_marker(QEMUFile *f)
2111 {
2112 qemu_put_be32(f, 0);
2113 qemu_put_be16(f, 0);
2114 qemu_put_be16(f, 0);
2115 }
2116
2117 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
2118 int64_t max_ns)
2119 {
2120 bool has_timeout = max_ns != -1;
2121 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2122 int index = spapr->htab_save_index;
2123 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2124
2125 assert(spapr->htab_first_pass);
2126
2127 do {
2128 int chunkstart;
2129
2130 /* Consume invalid HPTEs */
2131 while ((index < htabslots)
2132 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2133 CLEAN_HPTE(HPTE(spapr->htab, index));
2134 index++;
2135 }
2136
2137 /* Consume valid HPTEs */
2138 chunkstart = index;
2139 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2140 && HPTE_VALID(HPTE(spapr->htab, index))) {
2141 CLEAN_HPTE(HPTE(spapr->htab, index));
2142 index++;
2143 }
2144
2145 if (index > chunkstart) {
2146 int n_valid = index - chunkstart;
2147
2148 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2149
2150 if (has_timeout &&
2151 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2152 break;
2153 }
2154 }
2155 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2156
2157 if (index >= htabslots) {
2158 assert(index == htabslots);
2159 index = 0;
2160 spapr->htab_first_pass = false;
2161 }
2162 spapr->htab_save_index = index;
2163 }
2164
2165 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
2166 int64_t max_ns)
2167 {
2168 bool final = max_ns < 0;
2169 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2170 int examined = 0, sent = 0;
2171 int index = spapr->htab_save_index;
2172 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2173
2174 assert(!spapr->htab_first_pass);
2175
2176 do {
2177 int chunkstart, invalidstart;
2178
2179 /* Consume non-dirty HPTEs */
2180 while ((index < htabslots)
2181 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2182 index++;
2183 examined++;
2184 }
2185
2186 chunkstart = index;
2187 /* Consume valid dirty HPTEs */
2188 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2189 && HPTE_DIRTY(HPTE(spapr->htab, index))
2190 && HPTE_VALID(HPTE(spapr->htab, index))) {
2191 CLEAN_HPTE(HPTE(spapr->htab, index));
2192 index++;
2193 examined++;
2194 }
2195
2196 invalidstart = index;
2197 /* Consume invalid dirty HPTEs */
2198 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2199 && HPTE_DIRTY(HPTE(spapr->htab, index))
2200 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2201 CLEAN_HPTE(HPTE(spapr->htab, index));
2202 index++;
2203 examined++;
2204 }
2205
2206 if (index > chunkstart) {
2207 int n_valid = invalidstart - chunkstart;
2208 int n_invalid = index - invalidstart;
2209
2210 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2211 sent += index - chunkstart;
2212
2213 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2214 break;
2215 }
2216 }
2217
2218 if (examined >= htabslots) {
2219 break;
2220 }
2221
2222 if (index >= htabslots) {
2223 assert(index == htabslots);
2224 index = 0;
2225 }
2226 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2227
2228 if (index >= htabslots) {
2229 assert(index == htabslots);
2230 index = 0;
2231 }
2232
2233 spapr->htab_save_index = index;
2234
2235 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2236 }
2237
2238 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2239 #define MAX_KVM_BUF_SIZE 2048
2240
2241 static int htab_save_iterate(QEMUFile *f, void *opaque)
2242 {
2243 sPAPRMachineState *spapr = opaque;
2244 int fd;
2245 int rc = 0;
2246
2247 /* Iteration header */
2248 if (!spapr->htab_shift) {
2249 qemu_put_be32(f, -1);
2250 return 1;
2251 } else {
2252 qemu_put_be32(f, 0);
2253 }
2254
2255 if (!spapr->htab) {
2256 assert(kvm_enabled());
2257
2258 fd = get_htab_fd(spapr);
2259 if (fd < 0) {
2260 return fd;
2261 }
2262
2263 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2264 if (rc < 0) {
2265 return rc;
2266 }
2267 } else if (spapr->htab_first_pass) {
2268 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2269 } else {
2270 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2271 }
2272
2273 htab_save_end_marker(f);
2274
2275 return rc;
2276 }
2277
2278 static int htab_save_complete(QEMUFile *f, void *opaque)
2279 {
2280 sPAPRMachineState *spapr = opaque;
2281 int fd;
2282
2283 /* Iteration header */
2284 if (!spapr->htab_shift) {
2285 qemu_put_be32(f, -1);
2286 return 0;
2287 } else {
2288 qemu_put_be32(f, 0);
2289 }
2290
2291 if (!spapr->htab) {
2292 int rc;
2293
2294 assert(kvm_enabled());
2295
2296 fd = get_htab_fd(spapr);
2297 if (fd < 0) {
2298 return fd;
2299 }
2300
2301 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2302 if (rc < 0) {
2303 return rc;
2304 }
2305 } else {
2306 if (spapr->htab_first_pass) {
2307 htab_save_first_pass(f, spapr, -1);
2308 }
2309 htab_save_later_pass(f, spapr, -1);
2310 }
2311
2312 /* End marker */
2313 htab_save_end_marker(f);
2314
2315 return 0;
2316 }
2317
2318 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2319 {
2320 sPAPRMachineState *spapr = opaque;
2321 uint32_t section_hdr;
2322 int fd = -1;
2323 Error *local_err = NULL;
2324
2325 if (version_id < 1 || version_id > 1) {
2326 error_report("htab_load() bad version");
2327 return -EINVAL;
2328 }
2329
2330 section_hdr = qemu_get_be32(f);
2331
2332 if (section_hdr == -1) {
2333 spapr_free_hpt(spapr);
2334 return 0;
2335 }
2336
2337 if (section_hdr) {
2338 /* First section gives the htab size */
2339 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2340 if (local_err) {
2341 error_report_err(local_err);
2342 return -EINVAL;
2343 }
2344 return 0;
2345 }
2346
2347 if (!spapr->htab) {
2348 assert(kvm_enabled());
2349
2350 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2351 if (fd < 0) {
2352 error_report_err(local_err);
2353 return fd;
2354 }
2355 }
2356
2357 while (true) {
2358 uint32_t index;
2359 uint16_t n_valid, n_invalid;
2360
2361 index = qemu_get_be32(f);
2362 n_valid = qemu_get_be16(f);
2363 n_invalid = qemu_get_be16(f);
2364
2365 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2366 /* End of Stream */
2367 break;
2368 }
2369
2370 if ((index + n_valid + n_invalid) >
2371 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2372 /* Bad index in stream */
2373 error_report(
2374 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2375 index, n_valid, n_invalid, spapr->htab_shift);
2376 return -EINVAL;
2377 }
2378
2379 if (spapr->htab) {
2380 if (n_valid) {
2381 qemu_get_buffer(f, HPTE(spapr->htab, index),
2382 HASH_PTE_SIZE_64 * n_valid);
2383 }
2384 if (n_invalid) {
2385 memset(HPTE(spapr->htab, index + n_valid), 0,
2386 HASH_PTE_SIZE_64 * n_invalid);
2387 }
2388 } else {
2389 int rc;
2390
2391 assert(fd >= 0);
2392
2393 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2394 if (rc < 0) {
2395 return rc;
2396 }
2397 }
2398 }
2399
2400 if (!spapr->htab) {
2401 assert(fd >= 0);
2402 close(fd);
2403 }
2404
2405 return 0;
2406 }
2407
2408 static void htab_save_cleanup(void *opaque)
2409 {
2410 sPAPRMachineState *spapr = opaque;
2411
2412 close_htab_fd(spapr);
2413 }
2414
2415 static SaveVMHandlers savevm_htab_handlers = {
2416 .save_setup = htab_save_setup,
2417 .save_live_iterate = htab_save_iterate,
2418 .save_live_complete_precopy = htab_save_complete,
2419 .save_cleanup = htab_save_cleanup,
2420 .load_state = htab_load,
2421 };
2422
2423 static void spapr_boot_set(void *opaque, const char *boot_device,
2424 Error **errp)
2425 {
2426 MachineState *machine = MACHINE(opaque);
2427 machine->boot_order = g_strdup(boot_device);
2428 }
2429
2430 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
2431 {
2432 MachineState *machine = MACHINE(spapr);
2433 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2434 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2435 int i;
2436
2437 for (i = 0; i < nr_lmbs; i++) {
2438 uint64_t addr;
2439
2440 addr = i * lmb_size + machine->device_memory->base;
2441 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2442 addr / lmb_size);
2443 }
2444 }
2445
2446 /*
2447 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2448 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2449 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2450 */
2451 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2452 {
2453 int i;
2454
2455 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2456 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2457 " is not aligned to %" PRIu64 " MiB",
2458 machine->ram_size,
2459 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2460 return;
2461 }
2462
2463 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2464 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2465 " is not aligned to %" PRIu64 " MiB",
2466 machine->ram_size,
2467 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2468 return;
2469 }
2470
2471 for (i = 0; i < nb_numa_nodes; i++) {
2472 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2473 error_setg(errp,
2474 "Node %d memory size 0x%" PRIx64
2475 " is not aligned to %" PRIu64 " MiB",
2476 i, numa_info[i].node_mem,
2477 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2478 return;
2479 }
2480 }
2481 }
2482
2483 /* find cpu slot in machine->possible_cpus by core_id */
2484 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2485 {
2486 int index = id / smp_threads;
2487
2488 if (index >= ms->possible_cpus->len) {
2489 return NULL;
2490 }
2491 if (idx) {
2492 *idx = index;
2493 }
2494 return &ms->possible_cpus->cpus[index];
2495 }
2496
2497 static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp)
2498 {
2499 Error *local_err = NULL;
2500 bool vsmt_user = !!spapr->vsmt;
2501 int kvm_smt = kvmppc_smt_threads();
2502 int ret;
2503
2504 if (!kvm_enabled() && (smp_threads > 1)) {
2505 error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2506 "on a pseries machine");
2507 goto out;
2508 }
2509 if (!is_power_of_2(smp_threads)) {
2510 error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2511 "machine because it must be a power of 2", smp_threads);
2512 goto out;
2513 }
2514
2515 /* Detemine the VSMT mode to use: */
2516 if (vsmt_user) {
2517 if (spapr->vsmt < smp_threads) {
2518 error_setg(&local_err, "Cannot support VSMT mode %d"
2519 " because it must be >= threads/core (%d)",
2520 spapr->vsmt, smp_threads);
2521 goto out;
2522 }
2523 /* In this case, spapr->vsmt has been set by the command line */
2524 } else {
2525 /*
2526 * Default VSMT value is tricky, because we need it to be as
2527 * consistent as possible (for migration), but this requires
2528 * changing it for at least some existing cases. We pick 8 as
2529 * the value that we'd get with KVM on POWER8, the
2530 * overwhelmingly common case in production systems.
2531 */
2532 spapr->vsmt = MAX(8, smp_threads);
2533 }
2534
2535 /* KVM: If necessary, set the SMT mode: */
2536 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2537 ret = kvmppc_set_smt_threads(spapr->vsmt);
2538 if (ret) {
2539 /* Looks like KVM isn't able to change VSMT mode */
2540 error_setg(&local_err,
2541 "Failed to set KVM's VSMT mode to %d (errno %d)",
2542 spapr->vsmt, ret);
2543 /* We can live with that if the default one is big enough
2544 * for the number of threads, and a submultiple of the one
2545 * we want. In this case we'll waste some vcpu ids, but
2546 * behaviour will be correct */
2547 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2548 warn_report_err(local_err);
2549 local_err = NULL;
2550 goto out;
2551 } else {
2552 if (!vsmt_user) {
2553 error_append_hint(&local_err,
2554 "On PPC, a VM with %d threads/core"
2555 " on a host with %d threads/core"
2556 " requires the use of VSMT mode %d.\n",
2557 smp_threads, kvm_smt, spapr->vsmt);
2558 }
2559 kvmppc_hint_smt_possible(&local_err);
2560 goto out;
2561 }
2562 }
2563 }
2564 /* else TCG: nothing to do currently */
2565 out:
2566 error_propagate(errp, local_err);
2567 }
2568
2569 static void spapr_init_cpus(sPAPRMachineState *spapr)
2570 {
2571 MachineState *machine = MACHINE(spapr);
2572 MachineClass *mc = MACHINE_GET_CLASS(machine);
2573 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2574 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2575 const CPUArchIdList *possible_cpus;
2576 int boot_cores_nr = smp_cpus / smp_threads;
2577 int i;
2578
2579 possible_cpus = mc->possible_cpu_arch_ids(machine);
2580 if (mc->has_hotpluggable_cpus) {
2581 if (smp_cpus % smp_threads) {
2582 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2583 smp_cpus, smp_threads);
2584 exit(1);
2585 }
2586 if (max_cpus % smp_threads) {
2587 error_report("max_cpus (%u) must be multiple of threads (%u)",
2588 max_cpus, smp_threads);
2589 exit(1);
2590 }
2591 } else {
2592 if (max_cpus != smp_cpus) {
2593 error_report("This machine version does not support CPU hotplug");
2594 exit(1);
2595 }
2596 boot_cores_nr = possible_cpus->len;
2597 }
2598
2599 if (smc->pre_2_10_has_unused_icps) {
2600 int i;
2601
2602 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2603 /* Dummy entries get deregistered when real ICPState objects
2604 * are registered during CPU core hotplug.
2605 */
2606 pre_2_10_vmstate_register_dummy_icp(i);
2607 }
2608 }
2609
2610 for (i = 0; i < possible_cpus->len; i++) {
2611 int core_id = i * smp_threads;
2612
2613 if (mc->has_hotpluggable_cpus) {
2614 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2615 spapr_vcpu_id(spapr, core_id));
2616 }
2617
2618 if (i < boot_cores_nr) {
2619 Object *core = object_new(type);
2620 int nr_threads = smp_threads;
2621
2622 /* Handle the partially filled core for older machine types */
2623 if ((i + 1) * smp_threads >= smp_cpus) {
2624 nr_threads = smp_cpus - i * smp_threads;
2625 }
2626
2627 object_property_set_int(core, nr_threads, "nr-threads",
2628 &error_fatal);
2629 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2630 &error_fatal);
2631 object_property_set_bool(core, true, "realized", &error_fatal);
2632
2633 object_unref(core);
2634 }
2635 }
2636 }
2637
2638 static PCIHostState *spapr_create_default_phb(void)
2639 {
2640 DeviceState *dev;
2641
2642 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2643 qdev_prop_set_uint32(dev, "index", 0);
2644 qdev_init_nofail(dev);
2645
2646 return PCI_HOST_BRIDGE(dev);
2647 }
2648
2649 /* pSeries LPAR / sPAPR hardware init */
2650 static void spapr_machine_init(MachineState *machine)
2651 {
2652 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2653 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2654 const char *kernel_filename = machine->kernel_filename;
2655 const char *initrd_filename = machine->initrd_filename;
2656 PCIHostState *phb;
2657 int i;
2658 MemoryRegion *sysmem = get_system_memory();
2659 MemoryRegion *ram = g_new(MemoryRegion, 1);
2660 hwaddr node0_size = spapr_node0_size(machine);
2661 long load_limit, fw_size;
2662 char *filename;
2663 Error *resize_hpt_err = NULL;
2664
2665 msi_nonbroken = true;
2666
2667 QLIST_INIT(&spapr->phbs);
2668 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2669
2670 /* Determine capabilities to run with */
2671 spapr_caps_init(spapr);
2672
2673 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2674 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2675 /*
2676 * If the user explicitly requested a mode we should either
2677 * supply it, or fail completely (which we do below). But if
2678 * it's not set explicitly, we reset our mode to something
2679 * that works
2680 */
2681 if (resize_hpt_err) {
2682 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2683 error_free(resize_hpt_err);
2684 resize_hpt_err = NULL;
2685 } else {
2686 spapr->resize_hpt = smc->resize_hpt_default;
2687 }
2688 }
2689
2690 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2691
2692 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2693 /*
2694 * User requested HPT resize, but this host can't supply it. Bail out
2695 */
2696 error_report_err(resize_hpt_err);
2697 exit(1);
2698 }
2699
2700 spapr->rma_size = node0_size;
2701
2702 /* With KVM, we don't actually know whether KVM supports an
2703 * unbounded RMA (PR KVM) or is limited by the hash table size
2704 * (HV KVM using VRMA), so we always assume the latter
2705 *
2706 * In that case, we also limit the initial allocations for RTAS
2707 * etc... to 256M since we have no way to know what the VRMA size
2708 * is going to be as it depends on the size of the hash table
2709 * which isn't determined yet.
2710 */
2711 if (kvm_enabled()) {
2712 spapr->vrma_adjust = 1;
2713 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2714 }
2715
2716 /* Actually we don't support unbounded RMA anymore since we added
2717 * proper emulation of HV mode. The max we can get is 16G which
2718 * also happens to be what we configure for PAPR mode so make sure
2719 * we don't do anything bigger than that
2720 */
2721 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2722
2723 if (spapr->rma_size > node0_size) {
2724 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2725 spapr->rma_size);
2726 exit(1);
2727 }
2728
2729 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2730 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2731
2732 /*
2733 * VSMT must be set in order to be able to compute VCPU ids, ie to
2734 * call spapr_max_server_number() or spapr_vcpu_id().
2735 */
2736 spapr_set_vsmt_mode(spapr, &error_fatal);
2737
2738 /* Set up Interrupt Controller before we create the VCPUs */
2739 spapr_irq_init(spapr, &error_fatal);
2740
2741 /* Set up containers for ibm,client-architecture-support negotiated options
2742 */
2743 spapr->ov5 = spapr_ovec_new();
2744 spapr->ov5_cas = spapr_ovec_new();
2745
2746 if (smc->dr_lmb_enabled) {
2747 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2748 spapr_validate_node_memory(machine, &error_fatal);
2749 }
2750
2751 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2752
2753 /* advertise support for dedicated HP event source to guests */
2754 if (spapr->use_hotplug_event_source) {
2755 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2756 }
2757
2758 /* advertise support for HPT resizing */
2759 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2760 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2761 }
2762
2763 /* advertise support for ibm,dyamic-memory-v2 */
2764 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2765
2766 /* advertise XIVE on POWER9 machines */
2767 if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) {
2768 if (ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00,
2769 0, spapr->max_compat_pvr)) {
2770 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2771 } else if (spapr->irq->ov5 & SPAPR_OV5_XIVE_EXPLOIT) {
2772 error_report("XIVE-only machines require a POWER9 CPU");
2773 exit(1);
2774 }
2775 }
2776
2777 /* init CPUs */
2778 spapr_init_cpus(spapr);
2779
2780 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2781 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2782 spapr->max_compat_pvr)) {
2783 /* KVM and TCG always allow GTSE with radix... */
2784 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2785 }
2786 /* ... but not with hash (currently). */
2787
2788 if (kvm_enabled()) {
2789 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2790 kvmppc_enable_logical_ci_hcalls();
2791 kvmppc_enable_set_mode_hcall();
2792
2793 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2794 kvmppc_enable_clear_ref_mod_hcalls();
2795 }
2796
2797 /* allocate RAM */
2798 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2799 machine->ram_size);
2800 memory_region_add_subregion(sysmem, 0, ram);
2801
2802 /* always allocate the device memory information */
2803 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2804
2805 /* initialize hotplug memory address space */
2806 if (machine->ram_size < machine->maxram_size) {
2807 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2808 /*
2809 * Limit the number of hotpluggable memory slots to half the number
2810 * slots that KVM supports, leaving the other half for PCI and other
2811 * devices. However ensure that number of slots doesn't drop below 32.
2812 */
2813 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2814 SPAPR_MAX_RAM_SLOTS;
2815
2816 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2817 max_memslots = SPAPR_MAX_RAM_SLOTS;
2818 }
2819 if (machine->ram_slots > max_memslots) {
2820 error_report("Specified number of memory slots %"
2821 PRIu64" exceeds max supported %d",
2822 machine->ram_slots, max_memslots);
2823 exit(1);
2824 }
2825
2826 machine->device_memory->base = ROUND_UP(machine->ram_size,
2827 SPAPR_DEVICE_MEM_ALIGN);
2828 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2829 "device-memory", device_mem_size);
2830 memory_region_add_subregion(sysmem, machine->device_memory->base,
2831 &machine->device_memory->mr);
2832 }
2833
2834 if (smc->dr_lmb_enabled) {
2835 spapr_create_lmb_dr_connectors(spapr);
2836 }
2837
2838 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2839 if (!filename) {
2840 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2841 exit(1);
2842 }
2843 spapr->rtas_size = get_image_size(filename);
2844 if (spapr->rtas_size < 0) {
2845 error_report("Could not get size of LPAR rtas '%s'", filename);
2846 exit(1);
2847 }
2848 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2849 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2850 error_report("Could not load LPAR rtas '%s'", filename);
2851 exit(1);
2852 }
2853 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2854 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2855 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2856 exit(1);
2857 }
2858 g_free(filename);
2859
2860 /* Set up RTAS event infrastructure */
2861 spapr_events_init(spapr);
2862
2863 /* Set up the RTC RTAS interfaces */
2864 spapr_rtc_create(spapr);
2865
2866 /* Set up VIO bus */
2867 spapr->vio_bus = spapr_vio_bus_init();
2868
2869 for (i = 0; i < serial_max_hds(); i++) {
2870 if (serial_hd(i)) {
2871 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2872 }
2873 }
2874
2875 /* We always have at least the nvram device on VIO */
2876 spapr_create_nvram(spapr);
2877
2878 /*
2879 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2880 * connectors (described in root DT node's "ibm,drc-types" property)
2881 * are pre-initialized here. additional child connectors (such as
2882 * connectors for a PHBs PCI slots) are added as needed during their
2883 * parent's realization.
2884 */
2885 if (smc->dr_phb_enabled) {
2886 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2887 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2888 }
2889 }
2890
2891 /* Set up PCI */
2892 spapr_pci_rtas_init();
2893
2894 phb = spapr_create_default_phb();
2895
2896 for (i = 0; i < nb_nics; i++) {
2897 NICInfo *nd = &nd_table[i];
2898
2899 if (!nd->model) {
2900 nd->model = g_strdup("spapr-vlan");
2901 }
2902
2903 if (g_str_equal(nd->model, "spapr-vlan") ||
2904 g_str_equal(nd->model, "ibmveth")) {
2905 spapr_vlan_create(spapr->vio_bus, nd);
2906 } else {
2907 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2908 }
2909 }
2910
2911 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2912 spapr_vscsi_create(spapr->vio_bus);
2913 }
2914
2915 /* Graphics */
2916 if (spapr_vga_init(phb->bus, &error_fatal)) {
2917 spapr->has_graphics = true;
2918 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2919 }
2920
2921 if (machine->usb) {
2922 if (smc->use_ohci_by_default) {
2923 pci_create_simple(phb->bus, -1, "pci-ohci");
2924 } else {
2925 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2926 }
2927
2928 if (spapr->has_graphics) {
2929 USBBus *usb_bus = usb_bus_find(-1);
2930
2931 usb_create_simple(usb_bus, "usb-kbd");
2932 usb_create_simple(usb_bus, "usb-mouse");
2933 }
2934 }
2935
2936 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
2937 error_report(
2938 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2939 MIN_RMA_SLOF);
2940 exit(1);
2941 }
2942
2943 if (kernel_filename) {
2944 uint64_t lowaddr = 0;
2945
2946 spapr->kernel_size = load_elf(kernel_filename, NULL,
2947 translate_kernel_address, NULL,
2948 NULL, &lowaddr, NULL, 1,
2949 PPC_ELF_MACHINE, 0, 0);
2950 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2951 spapr->kernel_size = load_elf(kernel_filename, NULL,
2952 translate_kernel_address, NULL, NULL,
2953 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2954 0, 0);
2955 spapr->kernel_le = spapr->kernel_size > 0;
2956 }
2957 if (spapr->kernel_size < 0) {
2958 error_report("error loading %s: %s", kernel_filename,
2959 load_elf_strerror(spapr->kernel_size));
2960 exit(1);
2961 }
2962
2963 /* load initrd */
2964 if (initrd_filename) {
2965 /* Try to locate the initrd in the gap between the kernel
2966 * and the firmware. Add a bit of space just in case
2967 */
2968 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2969 + 0x1ffff) & ~0xffff;
2970 spapr->initrd_size = load_image_targphys(initrd_filename,
2971 spapr->initrd_base,
2972 load_limit
2973 - spapr->initrd_base);
2974 if (spapr->initrd_size < 0) {
2975 error_report("could not load initial ram disk '%s'",
2976 initrd_filename);
2977 exit(1);
2978 }
2979 }
2980 }
2981
2982 if (bios_name == NULL) {
2983 bios_name = FW_FILE_NAME;
2984 }
2985 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2986 if (!filename) {
2987 error_report("Could not find LPAR firmware '%s'", bios_name);
2988 exit(1);
2989 }
2990 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2991 if (fw_size <= 0) {
2992 error_report("Could not load LPAR firmware '%s'", filename);
2993 exit(1);
2994 }
2995 g_free(filename);
2996
2997 /* FIXME: Should register things through the MachineState's qdev
2998 * interface, this is a legacy from the sPAPREnvironment structure
2999 * which predated MachineState but had a similar function */
3000 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3001 register_savevm_live(NULL, "spapr/htab", -1, 1,
3002 &savevm_htab_handlers, spapr);
3003
3004 qemu_register_boot_set(spapr_boot_set, spapr);
3005
3006 if (kvm_enabled()) {
3007 /* to stop and start vmclock */
3008 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3009 &spapr->tb);
3010
3011 kvmppc_spapr_enable_inkernel_multitce();
3012 }
3013 }
3014
3015 static int spapr_kvm_type(const char *vm_type)
3016 {
3017 if (!vm_type) {
3018 return 0;
3019 }
3020
3021 if (!strcmp(vm_type, "HV")) {
3022 return 1;
3023 }
3024
3025 if (!strcmp(vm_type, "PR")) {
3026 return 2;
3027 }
3028
3029 error_report("Unknown kvm-type specified '%s'", vm_type);
3030 exit(1);
3031 }
3032
3033 /*
3034 * Implementation of an interface to adjust firmware path
3035 * for the bootindex property handling.
3036 */
3037 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3038 DeviceState *dev)
3039 {
3040 #define CAST(type, obj, name) \
3041 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3042 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3043 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3044 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3045
3046 if (d) {
3047 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3048 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3049 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3050
3051 if (spapr) {
3052 /*
3053 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3054 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3055 * 0x8000 | (target << 8) | (bus << 5) | lun
3056 * (see the "Logical unit addressing format" table in SAM5)
3057 */
3058 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3059 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3060 (uint64_t)id << 48);
3061 } else if (virtio) {
3062 /*
3063 * We use SRP luns of the form 01000000 | (target << 8) | lun
3064 * in the top 32 bits of the 64-bit LUN
3065 * Note: the quote above is from SLOF and it is wrong,
3066 * the actual binding is:
3067 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3068 */
3069 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3070 if (d->lun >= 256) {
3071 /* Use the LUN "flat space addressing method" */
3072 id |= 0x4000;
3073 }
3074 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3075 (uint64_t)id << 32);
3076 } else if (usb) {
3077 /*
3078 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3079 * in the top 32 bits of the 64-bit LUN
3080 */
3081 unsigned usb_port = atoi(usb->port->path);
3082 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3083 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3084 (uint64_t)id << 32);
3085 }
3086 }
3087
3088 /*
3089 * SLOF probes the USB devices, and if it recognizes that the device is a
3090 * storage device, it changes its name to "storage" instead of "usb-host",
3091 * and additionally adds a child node for the SCSI LUN, so the correct
3092 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3093 */
3094 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3095 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3096 if (usb_host_dev_is_scsi_storage(usbdev)) {
3097 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3098 }
3099 }
3100
3101 if (phb) {
3102 /* Replace "pci" with "pci@800000020000000" */
3103 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3104 }
3105
3106 if (vsc) {
3107 /* Same logic as virtio above */
3108 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3109 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3110 }
3111
3112 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3113 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3114 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3115 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3116 }
3117
3118 return NULL;
3119 }
3120
3121 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3122 {
3123 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3124
3125 return g_strdup(spapr->kvm_type);
3126 }
3127
3128 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3129 {
3130 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3131
3132 g_free(spapr->kvm_type);
3133 spapr->kvm_type = g_strdup(value);
3134 }
3135
3136 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3137 {
3138 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3139
3140 return spapr->use_hotplug_event_source;
3141 }
3142
3143 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3144 Error **errp)
3145 {
3146 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3147
3148 spapr->use_hotplug_event_source = value;
3149 }
3150
3151 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3152 {
3153 return true;
3154 }
3155
3156 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3157 {
3158 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3159
3160 switch (spapr->resize_hpt) {
3161 case SPAPR_RESIZE_HPT_DEFAULT:
3162 return g_strdup("default");
3163 case SPAPR_RESIZE_HPT_DISABLED:
3164 return g_strdup("disabled");
3165 case SPAPR_RESIZE_HPT_ENABLED:
3166 return g_strdup("enabled");
3167 case SPAPR_RESIZE_HPT_REQUIRED:
3168 return g_strdup("required");
3169 }
3170 g_assert_not_reached();
3171 }
3172
3173 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3174 {
3175 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3176
3177 if (strcmp(value, "default") == 0) {
3178 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3179 } else if (strcmp(value, "disabled") == 0) {
3180 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3181 } else if (strcmp(value, "enabled") == 0) {
3182 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3183 } else if (strcmp(value, "required") == 0) {
3184 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3185 } else {
3186 error_setg(errp, "Bad value for \"resize-hpt\" property");
3187 }
3188 }
3189
3190 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3191 void *opaque, Error **errp)
3192 {
3193 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3194 }
3195
3196 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3197 void *opaque, Error **errp)
3198 {
3199 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3200 }
3201
3202 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3203 {
3204 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3205
3206 if (spapr->irq == &spapr_irq_xics_legacy) {
3207 return g_strdup("legacy");
3208 } else if (spapr->irq == &spapr_irq_xics) {
3209 return g_strdup("xics");
3210 } else if (spapr->irq == &spapr_irq_xive) {
3211 return g_strdup("xive");
3212 } else if (spapr->irq == &spapr_irq_dual) {
3213 return g_strdup("dual");
3214 }
3215 g_assert_not_reached();
3216 }
3217
3218 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3219 {
3220 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3221
3222 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3223 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3224 return;
3225 }
3226
3227 /* The legacy IRQ backend can not be set */
3228 if (strcmp(value, "xics") == 0) {
3229 spapr->irq = &spapr_irq_xics;
3230 } else if (strcmp(value, "xive") == 0) {
3231 spapr->irq = &spapr_irq_xive;
3232 } else if (strcmp(value, "dual") == 0) {
3233 spapr->irq = &spapr_irq_dual;
3234 } else {
3235 error_setg(errp, "Bad value for \"ic-mode\" property");
3236 }
3237 }
3238
3239 static char *spapr_get_host_model(Object *obj, Error **errp)
3240 {
3241 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3242
3243 return g_strdup(spapr->host_model);
3244 }
3245
3246 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3247 {
3248 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3249
3250 g_free(spapr->host_model);
3251 spapr->host_model = g_strdup(value);
3252 }
3253
3254 static char *spapr_get_host_serial(Object *obj, Error **errp)
3255 {
3256 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3257
3258 return g_strdup(spapr->host_serial);
3259 }
3260
3261 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3262 {
3263 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3264
3265 g_free(spapr->host_serial);
3266 spapr->host_serial = g_strdup(value);
3267 }
3268
3269 static void spapr_instance_init(Object *obj)
3270 {
3271 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3272 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3273
3274 spapr->htab_fd = -1;
3275 spapr->use_hotplug_event_source = true;
3276 object_property_add_str(obj, "kvm-type",
3277 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3278 object_property_set_description(obj, "kvm-type",
3279 "Specifies the KVM virtualization mode (HV, PR)",
3280 NULL);
3281 object_property_add_bool(obj, "modern-hotplug-events",
3282 spapr_get_modern_hotplug_events,
3283 spapr_set_modern_hotplug_events,
3284 NULL);
3285 object_property_set_description(obj, "modern-hotplug-events",
3286 "Use dedicated hotplug event mechanism in"
3287 " place of standard EPOW events when possible"
3288 " (required for memory hot-unplug support)",
3289 NULL);
3290 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3291 "Maximum permitted CPU compatibility mode",
3292 &error_fatal);
3293
3294 object_property_add_str(obj, "resize-hpt",
3295 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3296 object_property_set_description(obj, "resize-hpt",
3297 "Resizing of the Hash Page Table (enabled, disabled, required)",
3298 NULL);
3299 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3300 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3301 object_property_set_description(obj, "vsmt",
3302 "Virtual SMT: KVM behaves as if this were"
3303 " the host's SMT mode", &error_abort);
3304 object_property_add_bool(obj, "vfio-no-msix-emulation",
3305 spapr_get_msix_emulation, NULL, NULL);
3306
3307 /* The machine class defines the default interrupt controller mode */
3308 spapr->irq = smc->irq;
3309 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3310 spapr_set_ic_mode, NULL);
3311 object_property_set_description(obj, "ic-mode",
3312 "Specifies the interrupt controller mode (xics, xive, dual)",
3313 NULL);
3314
3315 object_property_add_str(obj, "host-model",
3316 spapr_get_host_model, spapr_set_host_model,
3317 &error_abort);
3318 object_property_set_description(obj, "host-model",
3319 "Set host's model-id to use - none|passthrough|string", &error_abort);
3320 object_property_add_str(obj, "host-serial",
3321 spapr_get_host_serial, spapr_set_host_serial,
3322 &error_abort);
3323 object_property_set_description(obj, "host-serial",
3324 "Set host's system-id to use - none|passthrough|string", &error_abort);
3325 }
3326
3327 static void spapr_machine_finalizefn(Object *obj)
3328 {
3329 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3330
3331 g_free(spapr->kvm_type);
3332 }
3333
3334 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3335 {
3336 cpu_synchronize_state(cs);
3337 ppc_cpu_do_system_reset(cs);
3338 }
3339
3340 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3341 {
3342 CPUState *cs;
3343
3344 CPU_FOREACH(cs) {
3345 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3346 }
3347 }
3348
3349 int spapr_lmb_dt_populate(sPAPRDRConnector *drc, sPAPRMachineState *spapr,
3350 void *fdt, int *fdt_start_offset, Error **errp)
3351 {
3352 uint64_t addr;
3353 uint32_t node;
3354
3355 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3356 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3357 &error_abort);
3358 *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr,
3359 SPAPR_MEMORY_BLOCK_SIZE);
3360 return 0;
3361 }
3362
3363 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3364 bool dedicated_hp_event_source, Error **errp)
3365 {
3366 sPAPRDRConnector *drc;
3367 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3368 int i;
3369 uint64_t addr = addr_start;
3370 bool hotplugged = spapr_drc_hotplugged(dev);
3371 Error *local_err = NULL;
3372
3373 for (i = 0; i < nr_lmbs; i++) {
3374 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3375 addr / SPAPR_MEMORY_BLOCK_SIZE);
3376 g_assert(drc);
3377
3378 spapr_drc_attach(drc, dev, &local_err);
3379 if (local_err) {
3380 while (addr > addr_start) {
3381 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3382 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3383 addr / SPAPR_MEMORY_BLOCK_SIZE);
3384 spapr_drc_detach(drc);
3385 }
3386 error_propagate(errp, local_err);
3387 return;
3388 }
3389 if (!hotplugged) {
3390 spapr_drc_reset(drc);
3391 }
3392 addr += SPAPR_MEMORY_BLOCK_SIZE;
3393 }
3394 /* send hotplug notification to the
3395 * guest only in case of hotplugged memory
3396 */
3397 if (hotplugged) {
3398 if (dedicated_hp_event_source) {
3399 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3400 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3401 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3402 nr_lmbs,
3403 spapr_drc_index(drc));
3404 } else {
3405 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3406 nr_lmbs);
3407 }
3408 }
3409 }
3410
3411 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3412 Error **errp)
3413 {
3414 Error *local_err = NULL;
3415 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3416 PCDIMMDevice *dimm = PC_DIMM(dev);
3417 uint64_t size, addr;
3418
3419 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3420
3421 pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3422 if (local_err) {
3423 goto out;
3424 }
3425
3426 addr = object_property_get_uint(OBJECT(dimm),
3427 PC_DIMM_ADDR_PROP, &local_err);
3428 if (local_err) {
3429 goto out_unplug;
3430 }
3431
3432 spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3433 &local_err);
3434 if (local_err) {
3435 goto out_unplug;
3436 }
3437
3438 return;
3439
3440 out_unplug:
3441 pc_dimm_unplug(dimm, MACHINE(ms));
3442 out:
3443 error_propagate(errp, local_err);
3444 }
3445
3446 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3447 Error **errp)
3448 {
3449 const sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3450 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3451 PCDIMMDevice *dimm = PC_DIMM(dev);
3452 Error *local_err = NULL;
3453 uint64_t size;
3454 Object *memdev;
3455 hwaddr pagesize;
3456
3457 if (!smc->dr_lmb_enabled) {
3458 error_setg(errp, "Memory hotplug not supported for this machine");
3459 return;
3460 }
3461
3462 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3463 if (local_err) {
3464 error_propagate(errp, local_err);
3465 return;
3466 }
3467
3468 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3469 error_setg(errp, "Hotplugged memory size must be a multiple of "
3470 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3471 return;
3472 }
3473
3474 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3475 &error_abort);
3476 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3477 spapr_check_pagesize(spapr, pagesize, &local_err);
3478 if (local_err) {
3479 error_propagate(errp, local_err);
3480 return;
3481 }
3482
3483 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3484 }
3485
3486 struct sPAPRDIMMState {
3487 PCDIMMDevice *dimm;
3488 uint32_t nr_lmbs;
3489 QTAILQ_ENTRY(sPAPRDIMMState) next;
3490 };
3491
3492 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
3493 PCDIMMDevice *dimm)
3494 {
3495 sPAPRDIMMState *dimm_state = NULL;
3496
3497 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3498 if (dimm_state->dimm == dimm) {
3499 break;
3500 }
3501 }
3502 return dimm_state;
3503 }
3504
3505 static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
3506 uint32_t nr_lmbs,
3507 PCDIMMDevice *dimm)
3508 {
3509 sPAPRDIMMState *ds = NULL;
3510
3511 /*
3512 * If this request is for a DIMM whose removal had failed earlier
3513 * (due to guest's refusal to remove the LMBs), we would have this
3514 * dimm already in the pending_dimm_unplugs list. In that
3515 * case don't add again.
3516 */
3517 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3518 if (!ds) {
3519 ds = g_malloc0(sizeof(sPAPRDIMMState));
3520 ds->nr_lmbs = nr_lmbs;
3521 ds->dimm = dimm;
3522 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3523 }
3524 return ds;
3525 }
3526
3527 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
3528 sPAPRDIMMState *dimm_state)
3529 {
3530 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3531 g_free(dimm_state);
3532 }
3533
3534 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
3535 PCDIMMDevice *dimm)
3536 {
3537 sPAPRDRConnector *drc;
3538 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3539 &error_abort);
3540 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3541 uint32_t avail_lmbs = 0;
3542 uint64_t addr_start, addr;
3543 int i;
3544
3545 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3546 &error_abort);
3547
3548 addr = addr_start;
3549 for (i = 0; i < nr_lmbs; i++) {
3550 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3551 addr / SPAPR_MEMORY_BLOCK_SIZE);
3552 g_assert(drc);
3553 if (drc->dev) {
3554 avail_lmbs++;
3555 }
3556 addr += SPAPR_MEMORY_BLOCK_SIZE;
3557 }
3558
3559 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3560 }
3561
3562 /* Callback to be called during DRC release. */
3563 void spapr_lmb_release(DeviceState *dev)
3564 {
3565 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3566 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3567 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3568
3569 /* This information will get lost if a migration occurs
3570 * during the unplug process. In this case recover it. */
3571 if (ds == NULL) {
3572 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3573 g_assert(ds);
3574 /* The DRC being examined by the caller at least must be counted */
3575 g_assert(ds->nr_lmbs);
3576 }
3577
3578 if (--ds->nr_lmbs) {
3579 return;
3580 }
3581
3582 /*
3583 * Now that all the LMBs have been removed by the guest, call the
3584 * unplug handler chain. This can never fail.
3585 */
3586 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3587 }
3588
3589 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3590 {
3591 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3592 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3593
3594 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3595 object_unparent(OBJECT(dev));
3596 spapr_pending_dimm_unplugs_remove(spapr, ds);
3597 }
3598
3599 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3600 DeviceState *dev, Error **errp)
3601 {
3602 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3603 Error *local_err = NULL;
3604 PCDIMMDevice *dimm = PC_DIMM(dev);
3605 uint32_t nr_lmbs;
3606 uint64_t size, addr_start, addr;
3607 int i;
3608 sPAPRDRConnector *drc;
3609
3610 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3611 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3612
3613 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3614 &local_err);
3615 if (local_err) {
3616 goto out;
3617 }
3618
3619 /*
3620 * An existing pending dimm state for this DIMM means that there is an
3621 * unplug operation in progress, waiting for the spapr_lmb_release
3622 * callback to complete the job (BQL can't cover that far). In this case,
3623 * bail out to avoid detaching DRCs that were already released.
3624 */
3625 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3626 error_setg(&local_err,
3627 "Memory unplug already in progress for device %s",
3628 dev->id);
3629 goto out;
3630 }
3631
3632 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3633
3634 addr = addr_start;
3635 for (i = 0; i < nr_lmbs; i++) {
3636 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3637 addr / SPAPR_MEMORY_BLOCK_SIZE);
3638 g_assert(drc);
3639
3640 spapr_drc_detach(drc);
3641 addr += SPAPR_MEMORY_BLOCK_SIZE;
3642 }
3643
3644 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3645 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3646 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3647 nr_lmbs, spapr_drc_index(drc));
3648 out:
3649 error_propagate(errp, local_err);
3650 }
3651
3652 /* Callback to be called during DRC release. */
3653 void spapr_core_release(DeviceState *dev)
3654 {
3655 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3656
3657 /* Call the unplug handler chain. This can never fail. */
3658 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3659 }
3660
3661 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3662 {
3663 MachineState *ms = MACHINE(hotplug_dev);
3664 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3665 CPUCore *cc = CPU_CORE(dev);
3666 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3667
3668 if (smc->pre_2_10_has_unused_icps) {
3669 sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3670 int i;
3671
3672 for (i = 0; i < cc->nr_threads; i++) {
3673 CPUState *cs = CPU(sc->threads[i]);
3674
3675 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3676 }
3677 }
3678
3679 assert(core_slot);
3680 core_slot->cpu = NULL;
3681 object_unparent(OBJECT(dev));
3682 }
3683
3684 static
3685 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3686 Error **errp)
3687 {
3688 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3689 int index;
3690 sPAPRDRConnector *drc;
3691 CPUCore *cc = CPU_CORE(dev);
3692
3693 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3694 error_setg(errp, "Unable to find CPU core with core-id: %d",
3695 cc->core_id);
3696 return;
3697 }
3698 if (index == 0) {
3699 error_setg(errp, "Boot CPU core may not be unplugged");
3700 return;
3701 }
3702
3703 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3704 spapr_vcpu_id(spapr, cc->core_id));
3705 g_assert(drc);
3706
3707 spapr_drc_detach(drc);
3708
3709 spapr_hotplug_req_remove_by_index(drc);
3710 }
3711
3712 int spapr_core_dt_populate(sPAPRDRConnector *drc, sPAPRMachineState *spapr,
3713 void *fdt, int *fdt_start_offset, Error **errp)
3714 {
3715 sPAPRCPUCore *core = SPAPR_CPU_CORE(drc->dev);
3716 CPUState *cs = CPU(core->threads[0]);
3717 PowerPCCPU *cpu = POWERPC_CPU(cs);
3718 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3719 int id = spapr_get_vcpu_id(cpu);
3720 char *nodename;
3721 int offset;
3722
3723 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3724 offset = fdt_add_subnode(fdt, 0, nodename);
3725 g_free(nodename);
3726
3727 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3728
3729 *fdt_start_offset = offset;
3730 return 0;
3731 }
3732
3733 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3734 Error **errp)
3735 {
3736 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3737 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3738 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3739 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3740 CPUCore *cc = CPU_CORE(dev);
3741 CPUState *cs;
3742 sPAPRDRConnector *drc;
3743 Error *local_err = NULL;
3744 CPUArchId *core_slot;
3745 int index;
3746 bool hotplugged = spapr_drc_hotplugged(dev);
3747
3748 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3749 if (!core_slot) {
3750 error_setg(errp, "Unable to find CPU core with core-id: %d",
3751 cc->core_id);
3752 return;
3753 }
3754 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3755 spapr_vcpu_id(spapr, cc->core_id));
3756
3757 g_assert(drc || !mc->has_hotpluggable_cpus);
3758
3759 if (drc) {
3760 spapr_drc_attach(drc, dev, &local_err);
3761 if (local_err) {
3762 error_propagate(errp, local_err);
3763 return;
3764 }
3765
3766 if (hotplugged) {
3767 /*
3768 * Send hotplug notification interrupt to the guest only
3769 * in case of hotplugged CPUs.
3770 */
3771 spapr_hotplug_req_add_by_index(drc);
3772 } else {
3773 spapr_drc_reset(drc);
3774 }
3775 }
3776
3777 core_slot->cpu = OBJECT(dev);
3778
3779 if (smc->pre_2_10_has_unused_icps) {
3780 int i;
3781
3782 for (i = 0; i < cc->nr_threads; i++) {
3783 cs = CPU(core->threads[i]);
3784 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3785 }
3786 }
3787 }
3788
3789 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3790 Error **errp)
3791 {
3792 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3793 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3794 Error *local_err = NULL;
3795 CPUCore *cc = CPU_CORE(dev);
3796 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3797 const char *type = object_get_typename(OBJECT(dev));
3798 CPUArchId *core_slot;
3799 int index;
3800
3801 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3802 error_setg(&local_err, "CPU hotplug not supported for this machine");
3803 goto out;
3804 }
3805
3806 if (strcmp(base_core_type, type)) {
3807 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3808 goto out;
3809 }
3810
3811 if (cc->core_id % smp_threads) {
3812 error_setg(&local_err, "invalid core id %d", cc->core_id);
3813 goto out;
3814 }
3815
3816 /*
3817 * In general we should have homogeneous threads-per-core, but old
3818 * (pre hotplug support) machine types allow the last core to have
3819 * reduced threads as a compatibility hack for when we allowed
3820 * total vcpus not a multiple of threads-per-core.
3821 */
3822 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3823 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3824 cc->nr_threads, smp_threads);
3825 goto out;
3826 }
3827
3828 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3829 if (!core_slot) {
3830 error_setg(&local_err, "core id %d out of range", cc->core_id);
3831 goto out;
3832 }
3833
3834 if (core_slot->cpu) {
3835 error_setg(&local_err, "core %d already populated", cc->core_id);
3836 goto out;
3837 }
3838
3839 numa_cpu_pre_plug(core_slot, dev, &local_err);
3840
3841 out:
3842 error_propagate(errp, local_err);
3843 }
3844
3845 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3846 DeviceState *dev, Error **errp)
3847 {
3848 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3849 spapr_memory_plug(hotplug_dev, dev, errp);
3850 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3851 spapr_core_plug(hotplug_dev, dev, errp);
3852 }
3853 }
3854
3855 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
3856 DeviceState *dev, Error **errp)
3857 {
3858 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3859 spapr_memory_unplug(hotplug_dev, dev);
3860 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3861 spapr_core_unplug(hotplug_dev, dev);
3862 }
3863 }
3864
3865 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3866 DeviceState *dev, Error **errp)
3867 {
3868 sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
3869 MachineClass *mc = MACHINE_GET_CLASS(sms);
3870
3871 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3872 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3873 spapr_memory_unplug_request(hotplug_dev, dev, errp);
3874 } else {
3875 /* NOTE: this means there is a window after guest reset, prior to
3876 * CAS negotiation, where unplug requests will fail due to the
3877 * capability not being detected yet. This is a bit different than
3878 * the case with PCI unplug, where the events will be queued and
3879 * eventually handled by the guest after boot
3880 */
3881 error_setg(errp, "Memory hot unplug not supported for this guest");
3882 }
3883 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3884 if (!mc->has_hotpluggable_cpus) {
3885 error_setg(errp, "CPU hot unplug not supported on this machine");
3886 return;
3887 }
3888 spapr_core_unplug_request(hotplug_dev, dev, errp);
3889 }
3890 }
3891
3892 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3893 DeviceState *dev, Error **errp)
3894 {
3895 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3896 spapr_memory_pre_plug(hotplug_dev, dev, errp);
3897 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3898 spapr_core_pre_plug(hotplug_dev, dev, errp);
3899 }
3900 }
3901
3902 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3903 DeviceState *dev)
3904 {
3905 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3906 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3907 return HOTPLUG_HANDLER(machine);
3908 }
3909 return NULL;
3910 }
3911
3912 static CpuInstanceProperties
3913 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3914 {
3915 CPUArchId *core_slot;
3916 MachineClass *mc = MACHINE_GET_CLASS(machine);
3917
3918 /* make sure possible_cpu are intialized */
3919 mc->possible_cpu_arch_ids(machine);
3920 /* get CPU core slot containing thread that matches cpu_index */
3921 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3922 assert(core_slot);
3923 return core_slot->props;
3924 }
3925
3926 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
3927 {
3928 return idx / smp_cores % nb_numa_nodes;
3929 }
3930
3931 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3932 {
3933 int i;
3934 const char *core_type;
3935 int spapr_max_cores = max_cpus / smp_threads;
3936 MachineClass *mc = MACHINE_GET_CLASS(machine);
3937
3938 if (!mc->has_hotpluggable_cpus) {
3939 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3940 }
3941 if (machine->possible_cpus) {
3942 assert(machine->possible_cpus->len == spapr_max_cores);
3943 return machine->possible_cpus;
3944 }
3945
3946 core_type = spapr_get_cpu_core_type(machine->cpu_type);
3947 if (!core_type) {
3948 error_report("Unable to find sPAPR CPU Core definition");
3949 exit(1);
3950 }
3951
3952 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3953 sizeof(CPUArchId) * spapr_max_cores);
3954 machine->possible_cpus->len = spapr_max_cores;
3955 for (i = 0; i < machine->possible_cpus->len; i++) {
3956 int core_id = i * smp_threads;
3957
3958 machine->possible_cpus->cpus[i].type = core_type;
3959 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3960 machine->possible_cpus->cpus[i].arch_id = core_id;
3961 machine->possible_cpus->cpus[i].props.has_core_id = true;
3962 machine->possible_cpus->cpus[i].props.core_id = core_id;
3963 }
3964 return machine->possible_cpus;
3965 }
3966
3967 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3968 uint64_t *buid, hwaddr *pio,
3969 hwaddr *mmio32, hwaddr *mmio64,
3970 unsigned n_dma, uint32_t *liobns, Error **errp)
3971 {
3972 /*
3973 * New-style PHB window placement.
3974 *
3975 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3976 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3977 * windows.
3978 *
3979 * Some guest kernels can't work with MMIO windows above 1<<46
3980 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3981 *
3982 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3983 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
3984 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
3985 * 1TiB 64-bit MMIO windows for each PHB.
3986 */
3987 const uint64_t base_buid = 0x800000020000000ULL;
3988 int i;
3989
3990 /* Sanity check natural alignments */
3991 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3992 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3993 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3994 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3995 /* Sanity check bounds */
3996 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3997 SPAPR_PCI_MEM32_WIN_SIZE);
3998 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3999 SPAPR_PCI_MEM64_WIN_SIZE);
4000
4001 if (index >= SPAPR_MAX_PHBS) {
4002 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4003 SPAPR_MAX_PHBS - 1);
4004 return;
4005 }
4006
4007 *buid = base_buid + index;
4008 for (i = 0; i < n_dma; ++i) {
4009 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4010 }
4011
4012 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4013 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4014 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4015 }
4016
4017 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4018 {
4019 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
4020
4021 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4022 }
4023
4024 static void spapr_ics_resend(XICSFabric *dev)
4025 {
4026 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
4027
4028 ics_resend(spapr->ics);
4029 }
4030
4031 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4032 {
4033 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4034
4035 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4036 }
4037
4038 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4039 Monitor *mon)
4040 {
4041 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
4042
4043 spapr->irq->print_info(spapr, mon);
4044 }
4045
4046 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4047 {
4048 return cpu->vcpu_id;
4049 }
4050
4051 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4052 {
4053 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4054 int vcpu_id;
4055
4056 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4057
4058 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4059 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4060 error_append_hint(errp, "Adjust the number of cpus to %d "
4061 "or try to raise the number of threads per core\n",
4062 vcpu_id * smp_threads / spapr->vsmt);
4063 return;
4064 }
4065
4066 cpu->vcpu_id = vcpu_id;
4067 }
4068
4069 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4070 {
4071 CPUState *cs;
4072
4073 CPU_FOREACH(cs) {
4074 PowerPCCPU *cpu = POWERPC_CPU(cs);
4075
4076 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4077 return cpu;
4078 }
4079 }
4080
4081 return NULL;
4082 }
4083
4084 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4085 {
4086 MachineClass *mc = MACHINE_CLASS(oc);
4087 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4088 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4089 NMIClass *nc = NMI_CLASS(oc);
4090 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4091 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4092 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4093 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4094
4095 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4096 mc->ignore_boot_device_suffixes = true;
4097
4098 /*
4099 * We set up the default / latest behaviour here. The class_init
4100 * functions for the specific versioned machine types can override
4101 * these details for backwards compatibility
4102 */
4103 mc->init = spapr_machine_init;
4104 mc->reset = spapr_machine_reset;
4105 mc->block_default_type = IF_SCSI;
4106 mc->max_cpus = 1024;
4107 mc->no_parallel = 1;
4108 mc->default_boot_order = "";
4109 mc->default_ram_size = 512 * MiB;
4110 mc->default_display = "std";
4111 mc->kvm_type = spapr_kvm_type;
4112 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4113 mc->pci_allow_0_address = true;
4114 assert(!mc->get_hotplug_handler);
4115 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4116 hc->pre_plug = spapr_machine_device_pre_plug;
4117 hc->plug = spapr_machine_device_plug;
4118 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4119 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4120 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4121 hc->unplug_request = spapr_machine_device_unplug_request;
4122 hc->unplug = spapr_machine_device_unplug;
4123
4124 smc->dr_lmb_enabled = true;
4125 smc->update_dt_enabled = true;
4126 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4127 mc->has_hotpluggable_cpus = true;
4128 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4129 fwc->get_dev_path = spapr_get_fw_dev_path;
4130 nc->nmi_monitor_handler = spapr_nmi;
4131 smc->phb_placement = spapr_phb_placement;
4132 vhc->hypercall = emulate_spapr_hypercall;
4133 vhc->hpt_mask = spapr_hpt_mask;
4134 vhc->map_hptes = spapr_map_hptes;
4135 vhc->unmap_hptes = spapr_unmap_hptes;
4136 vhc->store_hpte = spapr_store_hpte;
4137 vhc->get_pate = spapr_get_pate;
4138 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4139 xic->ics_get = spapr_ics_get;
4140 xic->ics_resend = spapr_ics_resend;
4141 xic->icp_get = spapr_icp_get;
4142 ispc->print_info = spapr_pic_print_info;
4143 /* Force NUMA node memory size to be a multiple of
4144 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4145 * in which LMBs are represented and hot-added
4146 */
4147 mc->numa_mem_align_shift = 28;
4148
4149 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4150 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4151 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4152 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4153 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4154 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4155 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4156 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4157 spapr_caps_add_properties(smc, &error_abort);
4158 smc->irq = &spapr_irq_xics;
4159 }
4160
4161 static const TypeInfo spapr_machine_info = {
4162 .name = TYPE_SPAPR_MACHINE,
4163 .parent = TYPE_MACHINE,
4164 .abstract = true,
4165 .instance_size = sizeof(sPAPRMachineState),
4166 .instance_init = spapr_instance_init,
4167 .instance_finalize = spapr_machine_finalizefn,
4168 .class_size = sizeof(sPAPRMachineClass),
4169 .class_init = spapr_machine_class_init,
4170 .interfaces = (InterfaceInfo[]) {
4171 { TYPE_FW_PATH_PROVIDER },
4172 { TYPE_NMI },
4173 { TYPE_HOTPLUG_HANDLER },
4174 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4175 { TYPE_XICS_FABRIC },
4176 { TYPE_INTERRUPT_STATS_PROVIDER },
4177 { }
4178 },
4179 };
4180
4181 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4182 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4183 void *data) \
4184 { \
4185 MachineClass *mc = MACHINE_CLASS(oc); \
4186 spapr_machine_##suffix##_class_options(mc); \
4187 if (latest) { \
4188 mc->alias = "pseries"; \
4189 mc->is_default = 1; \
4190 } \
4191 } \
4192 static const TypeInfo spapr_machine_##suffix##_info = { \
4193 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4194 .parent = TYPE_SPAPR_MACHINE, \
4195 .class_init = spapr_machine_##suffix##_class_init, \
4196 }; \
4197 static void spapr_machine_register_##suffix(void) \
4198 { \
4199 type_register(&spapr_machine_##suffix##_info); \
4200 } \
4201 type_init(spapr_machine_register_##suffix)
4202
4203 /*
4204 * pseries-4.0
4205 */
4206 static void spapr_machine_4_0_class_options(MachineClass *mc)
4207 {
4208 /* Defaults for the latest behaviour inherited from the base class */
4209 }
4210
4211 DEFINE_SPAPR_MACHINE(4_0, "4.0", true);
4212
4213 /*
4214 * pseries-3.1
4215 */
4216 static void spapr_machine_3_1_class_options(MachineClass *mc)
4217 {
4218 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4219 static GlobalProperty compat[] = {
4220 { TYPE_SPAPR_MACHINE, "host-model", "passthrough" },
4221 { TYPE_SPAPR_MACHINE, "host-serial", "passthrough" },
4222 };
4223
4224 spapr_machine_4_0_class_options(mc);
4225 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4226 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4227
4228 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4229 smc->update_dt_enabled = false;
4230 }
4231
4232 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4233
4234 /*
4235 * pseries-3.0
4236 */
4237
4238 static void spapr_machine_3_0_class_options(MachineClass *mc)
4239 {
4240 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4241
4242 spapr_machine_3_1_class_options(mc);
4243 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4244
4245 smc->legacy_irq_allocation = true;
4246 smc->irq = &spapr_irq_xics_legacy;
4247 }
4248
4249 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4250
4251 /*
4252 * pseries-2.12
4253 */
4254 static void spapr_machine_2_12_class_options(MachineClass *mc)
4255 {
4256 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4257 static GlobalProperty compat[] = {
4258 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4259 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4260 };
4261
4262 spapr_machine_3_0_class_options(mc);
4263 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4264 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4265
4266 /* We depend on kvm_enabled() to choose a default value for the
4267 * hpt-max-page-size capability. Of course we can't do it here
4268 * because this is too early and the HW accelerator isn't initialzed
4269 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4270 */
4271 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4272 }
4273
4274 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4275
4276 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4277 {
4278 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4279
4280 spapr_machine_2_12_class_options(mc);
4281 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4282 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4283 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4284 }
4285
4286 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4287
4288 /*
4289 * pseries-2.11
4290 */
4291
4292 static void spapr_machine_2_11_class_options(MachineClass *mc)
4293 {
4294 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4295
4296 spapr_machine_2_12_class_options(mc);
4297 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4298 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4299 }
4300
4301 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4302
4303 /*
4304 * pseries-2.10
4305 */
4306
4307 static void spapr_machine_2_10_class_options(MachineClass *mc)
4308 {
4309 spapr_machine_2_11_class_options(mc);
4310 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4311 }
4312
4313 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4314
4315 /*
4316 * pseries-2.9
4317 */
4318
4319 static void spapr_machine_2_9_class_options(MachineClass *mc)
4320 {
4321 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4322 static GlobalProperty compat[] = {
4323 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4324 };
4325
4326 spapr_machine_2_10_class_options(mc);
4327 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4328 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4329 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4330 smc->pre_2_10_has_unused_icps = true;
4331 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4332 }
4333
4334 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4335
4336 /*
4337 * pseries-2.8
4338 */
4339
4340 static void spapr_machine_2_8_class_options(MachineClass *mc)
4341 {
4342 static GlobalProperty compat[] = {
4343 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4344 };
4345
4346 spapr_machine_2_9_class_options(mc);
4347 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4348 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4349 mc->numa_mem_align_shift = 23;
4350 }
4351
4352 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4353
4354 /*
4355 * pseries-2.7
4356 */
4357
4358 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
4359 uint64_t *buid, hwaddr *pio,
4360 hwaddr *mmio32, hwaddr *mmio64,
4361 unsigned n_dma, uint32_t *liobns, Error **errp)
4362 {
4363 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4364 const uint64_t base_buid = 0x800000020000000ULL;
4365 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4366 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4367 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4368 const uint32_t max_index = 255;
4369 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4370
4371 uint64_t ram_top = MACHINE(spapr)->ram_size;
4372 hwaddr phb0_base, phb_base;
4373 int i;
4374
4375 /* Do we have device memory? */
4376 if (MACHINE(spapr)->maxram_size > ram_top) {
4377 /* Can't just use maxram_size, because there may be an
4378 * alignment gap between normal and device memory regions
4379 */
4380 ram_top = MACHINE(spapr)->device_memory->base +
4381 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4382 }
4383
4384 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4385
4386 if (index > max_index) {
4387 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4388 max_index);
4389 return;
4390 }
4391
4392 *buid = base_buid + index;
4393 for (i = 0; i < n_dma; ++i) {
4394 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4395 }
4396
4397 phb_base = phb0_base + index * phb_spacing;
4398 *pio = phb_base + pio_offset;
4399 *mmio32 = phb_base + mmio_offset;
4400 /*
4401 * We don't set the 64-bit MMIO window, relying on the PHB's
4402 * fallback behaviour of automatically splitting a large "32-bit"
4403 * window into contiguous 32-bit and 64-bit windows
4404 */
4405 }
4406
4407 static void spapr_machine_2_7_class_options(MachineClass *mc)
4408 {
4409 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4410 static GlobalProperty compat[] = {
4411 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4412 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4413 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4414 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4415 };
4416
4417 spapr_machine_2_8_class_options(mc);
4418 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4419 mc->default_machine_opts = "modern-hotplug-events=off";
4420 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4421 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4422 smc->phb_placement = phb_placement_2_7;
4423 }
4424
4425 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4426
4427 /*
4428 * pseries-2.6
4429 */
4430
4431 static void spapr_machine_2_6_class_options(MachineClass *mc)
4432 {
4433 static GlobalProperty compat[] = {
4434 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4435 };
4436
4437 spapr_machine_2_7_class_options(mc);
4438 mc->has_hotpluggable_cpus = false;
4439 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4440 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4441 }
4442
4443 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4444
4445 /*
4446 * pseries-2.5
4447 */
4448
4449 static void spapr_machine_2_5_class_options(MachineClass *mc)
4450 {
4451 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4452 static GlobalProperty compat[] = {
4453 { "spapr-vlan", "use-rx-buffer-pools", "off" },
4454 };
4455
4456 spapr_machine_2_6_class_options(mc);
4457 smc->use_ohci_by_default = true;
4458 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4459 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4460 }
4461
4462 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4463
4464 /*
4465 * pseries-2.4
4466 */
4467
4468 static void spapr_machine_2_4_class_options(MachineClass *mc)
4469 {
4470 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4471
4472 spapr_machine_2_5_class_options(mc);
4473 smc->dr_lmb_enabled = false;
4474 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4475 }
4476
4477 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4478
4479 /*
4480 * pseries-2.3
4481 */
4482
4483 static void spapr_machine_2_3_class_options(MachineClass *mc)
4484 {
4485 static GlobalProperty compat[] = {
4486 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4487 };
4488 spapr_machine_2_4_class_options(mc);
4489 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4490 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4491 }
4492 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4493
4494 /*
4495 * pseries-2.2
4496 */
4497
4498 static void spapr_machine_2_2_class_options(MachineClass *mc)
4499 {
4500 static GlobalProperty compat[] = {
4501 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4502 };
4503
4504 spapr_machine_2_3_class_options(mc);
4505 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4506 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4507 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4508 }
4509 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4510
4511 /*
4512 * pseries-2.1
4513 */
4514
4515 static void spapr_machine_2_1_class_options(MachineClass *mc)
4516 {
4517 spapr_machine_2_2_class_options(mc);
4518 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4519 }
4520 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4521
4522 static void spapr_machine_register_types(void)
4523 {
4524 type_register_static(&spapr_machine_info);
4525 }
4526
4527 type_init(spapr_machine_register_types)