]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr.c
ppc/spapr: Fix MAX_CPUS to 255
[mirror_qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
27 #include "sysemu/sysemu.h"
28 #include "hw/hw.h"
29 #include "hw/fw-path-provider.h"
30 #include "elf.h"
31 #include "net/net.h"
32 #include "sysemu/blockdev.h"
33 #include "sysemu/cpus.h"
34 #include "sysemu/kvm.h"
35 #include "kvm_ppc.h"
36 #include "mmu-hash64.h"
37 #include "qom/cpu.h"
38
39 #include "hw/boards.h"
40 #include "hw/ppc/ppc.h"
41 #include "hw/loader.h"
42
43 #include "hw/ppc/spapr.h"
44 #include "hw/ppc/spapr_vio.h"
45 #include "hw/pci-host/spapr.h"
46 #include "hw/ppc/xics.h"
47 #include "hw/pci/msi.h"
48
49 #include "hw/pci/pci.h"
50 #include "hw/scsi/scsi.h"
51 #include "hw/virtio/virtio-scsi.h"
52
53 #include "exec/address-spaces.h"
54 #include "hw/usb.h"
55 #include "qemu/config-file.h"
56 #include "qemu/error-report.h"
57 #include "trace.h"
58 #include "hw/nmi.h"
59
60 #include <libfdt.h>
61
62 /* SLOF memory layout:
63 *
64 * SLOF raw image loaded at 0, copies its romfs right below the flat
65 * device-tree, then position SLOF itself 31M below that
66 *
67 * So we set FW_OVERHEAD to 40MB which should account for all of that
68 * and more
69 *
70 * We load our kernel at 4M, leaving space for SLOF initial image
71 */
72 #define FDT_MAX_SIZE 0x40000
73 #define RTAS_MAX_SIZE 0x10000
74 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
75 #define FW_MAX_SIZE 0x400000
76 #define FW_FILE_NAME "slof.bin"
77 #define FW_OVERHEAD 0x2800000
78 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
79
80 #define MIN_RMA_SLOF 128UL
81
82 #define TIMEBASE_FREQ 512000000ULL
83
84 #define MAX_CPUS 255
85
86 #define PHANDLE_XICP 0x00001111
87
88 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
89
90 typedef struct sPAPRMachineState sPAPRMachineState;
91
92 #define TYPE_SPAPR_MACHINE "spapr-machine"
93 #define SPAPR_MACHINE(obj) \
94 OBJECT_CHECK(sPAPRMachineState, (obj), TYPE_SPAPR_MACHINE)
95
96 /**
97 * sPAPRMachineState:
98 */
99 struct sPAPRMachineState {
100 /*< private >*/
101 MachineState parent_obj;
102
103 /*< public >*/
104 char *kvm_type;
105 };
106
107 sPAPREnvironment *spapr;
108
109 static XICSState *try_create_xics(const char *type, int nr_servers,
110 int nr_irqs)
111 {
112 DeviceState *dev;
113
114 dev = qdev_create(NULL, type);
115 qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
116 qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
117 if (qdev_init(dev) < 0) {
118 return NULL;
119 }
120
121 return XICS_COMMON(dev);
122 }
123
124 static XICSState *xics_system_init(int nr_servers, int nr_irqs)
125 {
126 XICSState *icp = NULL;
127
128 if (kvm_enabled()) {
129 QemuOpts *machine_opts = qemu_get_machine_opts();
130 bool irqchip_allowed = qemu_opt_get_bool(machine_opts,
131 "kernel_irqchip", true);
132 bool irqchip_required = qemu_opt_get_bool(machine_opts,
133 "kernel_irqchip", false);
134 if (irqchip_allowed) {
135 icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs);
136 }
137
138 if (irqchip_required && !icp) {
139 perror("Failed to create in-kernel XICS\n");
140 abort();
141 }
142 }
143
144 if (!icp) {
145 icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs);
146 }
147
148 if (!icp) {
149 perror("Failed to create XICS\n");
150 abort();
151 }
152
153 return icp;
154 }
155
156 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
157 int smt_threads)
158 {
159 int i, ret = 0;
160 uint32_t servers_prop[smt_threads];
161 uint32_t gservers_prop[smt_threads * 2];
162 int index = ppc_get_vcpu_dt_id(cpu);
163
164 if (cpu->cpu_version) {
165 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
166 if (ret < 0) {
167 return ret;
168 }
169 }
170
171 /* Build interrupt servers and gservers properties */
172 for (i = 0; i < smt_threads; i++) {
173 servers_prop[i] = cpu_to_be32(index + i);
174 /* Hack, direct the group queues back to cpu 0 */
175 gservers_prop[i*2] = cpu_to_be32(index + i);
176 gservers_prop[i*2 + 1] = 0;
177 }
178 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
179 servers_prop, sizeof(servers_prop));
180 if (ret < 0) {
181 return ret;
182 }
183 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
184 gservers_prop, sizeof(gservers_prop));
185
186 return ret;
187 }
188
189 static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr)
190 {
191 int ret = 0, offset, cpus_offset;
192 CPUState *cs;
193 char cpu_model[32];
194 int smt = kvmppc_smt_threads();
195 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
196
197 CPU_FOREACH(cs) {
198 PowerPCCPU *cpu = POWERPC_CPU(cs);
199 DeviceClass *dc = DEVICE_GET_CLASS(cs);
200 int index = ppc_get_vcpu_dt_id(cpu);
201 uint32_t associativity[] = {cpu_to_be32(0x5),
202 cpu_to_be32(0x0),
203 cpu_to_be32(0x0),
204 cpu_to_be32(0x0),
205 cpu_to_be32(cs->numa_node),
206 cpu_to_be32(index)};
207
208 if ((index % smt) != 0) {
209 continue;
210 }
211
212 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
213
214 cpus_offset = fdt_path_offset(fdt, "/cpus");
215 if (cpus_offset < 0) {
216 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
217 "cpus");
218 if (cpus_offset < 0) {
219 return cpus_offset;
220 }
221 }
222 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
223 if (offset < 0) {
224 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
225 if (offset < 0) {
226 return offset;
227 }
228 }
229
230 if (nb_numa_nodes > 1) {
231 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
232 sizeof(associativity));
233 if (ret < 0) {
234 return ret;
235 }
236 }
237
238 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
239 pft_size_prop, sizeof(pft_size_prop));
240 if (ret < 0) {
241 return ret;
242 }
243
244 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
245 ppc_get_compat_smt_threads(cpu));
246 if (ret < 0) {
247 return ret;
248 }
249 }
250 return ret;
251 }
252
253
254 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
255 size_t maxsize)
256 {
257 size_t maxcells = maxsize / sizeof(uint32_t);
258 int i, j, count;
259 uint32_t *p = prop;
260
261 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
262 struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
263
264 if (!sps->page_shift) {
265 break;
266 }
267 for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
268 if (sps->enc[count].page_shift == 0) {
269 break;
270 }
271 }
272 if ((p - prop) >= (maxcells - 3 - count * 2)) {
273 break;
274 }
275 *(p++) = cpu_to_be32(sps->page_shift);
276 *(p++) = cpu_to_be32(sps->slb_enc);
277 *(p++) = cpu_to_be32(count);
278 for (j = 0; j < count; j++) {
279 *(p++) = cpu_to_be32(sps->enc[j].page_shift);
280 *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
281 }
282 }
283
284 return (p - prop) * sizeof(uint32_t);
285 }
286
287 static hwaddr spapr_node0_size(void)
288 {
289 if (nb_numa_nodes) {
290 int i;
291 for (i = 0; i < nb_numa_nodes; ++i) {
292 if (numa_info[i].node_mem) {
293 return MIN(pow2floor(numa_info[i].node_mem), ram_size);
294 }
295 }
296 }
297 return ram_size;
298 }
299
300 #define _FDT(exp) \
301 do { \
302 int ret = (exp); \
303 if (ret < 0) { \
304 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
305 #exp, fdt_strerror(ret)); \
306 exit(1); \
307 } \
308 } while (0)
309
310 static void add_str(GString *s, const gchar *s1)
311 {
312 g_string_append_len(s, s1, strlen(s1) + 1);
313 }
314
315 static void *spapr_create_fdt_skel(hwaddr initrd_base,
316 hwaddr initrd_size,
317 hwaddr kernel_size,
318 bool little_endian,
319 const char *boot_device,
320 const char *kernel_cmdline,
321 uint32_t epow_irq)
322 {
323 void *fdt;
324 CPUState *cs;
325 uint32_t start_prop = cpu_to_be32(initrd_base);
326 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
327 GString *hypertas = g_string_sized_new(256);
328 GString *qemu_hypertas = g_string_sized_new(256);
329 uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
330 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
331 int smt = kvmppc_smt_threads();
332 unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
333 QemuOpts *opts = qemu_opts_find(qemu_find_opts("smp-opts"), NULL);
334 unsigned sockets = opts ? qemu_opt_get_number(opts, "sockets", 0) : 0;
335 uint32_t cpus_per_socket = sockets ? (smp_cpus / sockets) : 1;
336 char *buf;
337
338 add_str(hypertas, "hcall-pft");
339 add_str(hypertas, "hcall-term");
340 add_str(hypertas, "hcall-dabr");
341 add_str(hypertas, "hcall-interrupt");
342 add_str(hypertas, "hcall-tce");
343 add_str(hypertas, "hcall-vio");
344 add_str(hypertas, "hcall-splpar");
345 add_str(hypertas, "hcall-bulk");
346 add_str(hypertas, "hcall-set-mode");
347 add_str(qemu_hypertas, "hcall-memop1");
348
349 fdt = g_malloc0(FDT_MAX_SIZE);
350 _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
351
352 if (kernel_size) {
353 _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
354 }
355 if (initrd_size) {
356 _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
357 }
358 _FDT((fdt_finish_reservemap(fdt)));
359
360 /* Root node */
361 _FDT((fdt_begin_node(fdt, "")));
362 _FDT((fdt_property_string(fdt, "device_type", "chrp")));
363 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
364 _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
365
366 if (kvm_enabled()) {
367 _FDT((fdt_property_string(fdt, "hypervisor", "kvm")));
368 }
369
370 /*
371 * Add info to guest to indentify which host is it being run on
372 * and what is the uuid of the guest
373 */
374 if (kvmppc_get_host_model(&buf)) {
375 _FDT((fdt_property_string(fdt, "host-model", buf)));
376 g_free(buf);
377 }
378 if (kvmppc_get_host_serial(&buf)) {
379 _FDT((fdt_property_string(fdt, "host-serial", buf)));
380 g_free(buf);
381 }
382
383 buf = g_strdup_printf(UUID_FMT, qemu_uuid[0], qemu_uuid[1],
384 qemu_uuid[2], qemu_uuid[3], qemu_uuid[4],
385 qemu_uuid[5], qemu_uuid[6], qemu_uuid[7],
386 qemu_uuid[8], qemu_uuid[9], qemu_uuid[10],
387 qemu_uuid[11], qemu_uuid[12], qemu_uuid[13],
388 qemu_uuid[14], qemu_uuid[15]);
389
390 _FDT((fdt_property_string(fdt, "vm,uuid", buf)));
391 g_free(buf);
392
393 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
394 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
395
396 /* /chosen */
397 _FDT((fdt_begin_node(fdt, "chosen")));
398
399 /* Set Form1_affinity */
400 _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
401
402 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
403 _FDT((fdt_property(fdt, "linux,initrd-start",
404 &start_prop, sizeof(start_prop))));
405 _FDT((fdt_property(fdt, "linux,initrd-end",
406 &end_prop, sizeof(end_prop))));
407 if (kernel_size) {
408 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
409 cpu_to_be64(kernel_size) };
410
411 _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
412 if (little_endian) {
413 _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
414 }
415 }
416 if (boot_device) {
417 _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
418 }
419 if (boot_menu) {
420 _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu)));
421 }
422 _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
423 _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
424 _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
425
426 _FDT((fdt_end_node(fdt)));
427
428 /* cpus */
429 _FDT((fdt_begin_node(fdt, "cpus")));
430
431 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
432 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
433
434 CPU_FOREACH(cs) {
435 PowerPCCPU *cpu = POWERPC_CPU(cs);
436 CPUPPCState *env = &cpu->env;
437 DeviceClass *dc = DEVICE_GET_CLASS(cs);
438 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
439 int index = ppc_get_vcpu_dt_id(cpu);
440 char *nodename;
441 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
442 0xffffffff, 0xffffffff};
443 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
444 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
445 uint32_t page_sizes_prop[64];
446 size_t page_sizes_prop_size;
447
448 if ((index % smt) != 0) {
449 continue;
450 }
451
452 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
453
454 _FDT((fdt_begin_node(fdt, nodename)));
455
456 g_free(nodename);
457
458 _FDT((fdt_property_cell(fdt, "reg", index)));
459 _FDT((fdt_property_string(fdt, "device_type", "cpu")));
460
461 _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
462 _FDT((fdt_property_cell(fdt, "d-cache-block-size",
463 env->dcache_line_size)));
464 _FDT((fdt_property_cell(fdt, "d-cache-line-size",
465 env->dcache_line_size)));
466 _FDT((fdt_property_cell(fdt, "i-cache-block-size",
467 env->icache_line_size)));
468 _FDT((fdt_property_cell(fdt, "i-cache-line-size",
469 env->icache_line_size)));
470
471 if (pcc->l1_dcache_size) {
472 _FDT((fdt_property_cell(fdt, "d-cache-size", pcc->l1_dcache_size)));
473 } else {
474 fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
475 }
476 if (pcc->l1_icache_size) {
477 _FDT((fdt_property_cell(fdt, "i-cache-size", pcc->l1_icache_size)));
478 } else {
479 fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
480 }
481
482 _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
483 _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
484 _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
485 _FDT((fdt_property_string(fdt, "status", "okay")));
486 _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
487
488 if (env->spr_cb[SPR_PURR].oea_read) {
489 _FDT((fdt_property(fdt, "ibm,purr", NULL, 0)));
490 }
491
492 if (env->mmu_model & POWERPC_MMU_1TSEG) {
493 _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
494 segs, sizeof(segs))));
495 }
496
497 /* Advertise VMX/VSX (vector extensions) if available
498 * 0 / no property == no vector extensions
499 * 1 == VMX / Altivec available
500 * 2 == VSX available */
501 if (env->insns_flags & PPC_ALTIVEC) {
502 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
503
504 _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
505 }
506
507 /* Advertise DFP (Decimal Floating Point) if available
508 * 0 / no property == no DFP
509 * 1 == DFP available */
510 if (env->insns_flags2 & PPC2_DFP) {
511 _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
512 }
513
514 page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
515 sizeof(page_sizes_prop));
516 if (page_sizes_prop_size) {
517 _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
518 page_sizes_prop, page_sizes_prop_size)));
519 }
520
521 _FDT((fdt_property_cell(fdt, "ibm,chip-id",
522 cs->cpu_index / cpus_per_socket)));
523
524 _FDT((fdt_end_node(fdt)));
525 }
526
527 _FDT((fdt_end_node(fdt)));
528
529 /* RTAS */
530 _FDT((fdt_begin_node(fdt, "rtas")));
531
532 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
533 add_str(hypertas, "hcall-multi-tce");
534 }
535 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
536 hypertas->len)));
537 g_string_free(hypertas, TRUE);
538 _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
539 qemu_hypertas->len)));
540 g_string_free(qemu_hypertas, TRUE);
541
542 _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
543 refpoints, sizeof(refpoints))));
544
545 _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
546
547 /*
548 * According to PAPR, rtas ibm,os-term, does not gaurantee a return
549 * back to the guest cpu.
550 *
551 * While an additional ibm,extended-os-term property indicates that
552 * rtas call return will always occur. Set this property.
553 */
554 _FDT((fdt_property(fdt, "ibm,extended-os-term", NULL, 0)));
555
556 _FDT((fdt_end_node(fdt)));
557
558 /* interrupt controller */
559 _FDT((fdt_begin_node(fdt, "interrupt-controller")));
560
561 _FDT((fdt_property_string(fdt, "device_type",
562 "PowerPC-External-Interrupt-Presentation")));
563 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
564 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
565 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
566 interrupt_server_ranges_prop,
567 sizeof(interrupt_server_ranges_prop))));
568 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
569 _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
570 _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
571
572 _FDT((fdt_end_node(fdt)));
573
574 /* vdevice */
575 _FDT((fdt_begin_node(fdt, "vdevice")));
576
577 _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
578 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
579 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
580 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
581 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
582 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
583
584 _FDT((fdt_end_node(fdt)));
585
586 /* event-sources */
587 spapr_events_fdt_skel(fdt, epow_irq);
588
589 /* /hypervisor node */
590 if (kvm_enabled()) {
591 uint8_t hypercall[16];
592
593 /* indicate KVM hypercall interface */
594 _FDT((fdt_begin_node(fdt, "hypervisor")));
595 _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
596 if (kvmppc_has_cap_fixup_hcalls()) {
597 /*
598 * Older KVM versions with older guest kernels were broken with the
599 * magic page, don't allow the guest to map it.
600 */
601 kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
602 sizeof(hypercall));
603 _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
604 sizeof(hypercall))));
605 }
606 _FDT((fdt_end_node(fdt)));
607 }
608
609 _FDT((fdt_end_node(fdt))); /* close root node */
610 _FDT((fdt_finish(fdt)));
611
612 return fdt;
613 }
614
615 int spapr_h_cas_compose_response(target_ulong addr, target_ulong size)
616 {
617 void *fdt, *fdt_skel;
618 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
619
620 size -= sizeof(hdr);
621
622 /* Create sceleton */
623 fdt_skel = g_malloc0(size);
624 _FDT((fdt_create(fdt_skel, size)));
625 _FDT((fdt_begin_node(fdt_skel, "")));
626 _FDT((fdt_end_node(fdt_skel)));
627 _FDT((fdt_finish(fdt_skel)));
628 fdt = g_malloc0(size);
629 _FDT((fdt_open_into(fdt_skel, fdt, size)));
630 g_free(fdt_skel);
631
632 /* Fix skeleton up */
633 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
634
635 /* Pack resulting tree */
636 _FDT((fdt_pack(fdt)));
637
638 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
639 trace_spapr_cas_failed(size);
640 return -1;
641 }
642
643 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
644 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
645 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
646 g_free(fdt);
647
648 return 0;
649 }
650
651 static void spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
652 hwaddr size)
653 {
654 uint32_t associativity[] = {
655 cpu_to_be32(0x4), /* length */
656 cpu_to_be32(0x0), cpu_to_be32(0x0),
657 cpu_to_be32(0x0), cpu_to_be32(nodeid)
658 };
659 char mem_name[32];
660 uint64_t mem_reg_property[2];
661 int off;
662
663 mem_reg_property[0] = cpu_to_be64(start);
664 mem_reg_property[1] = cpu_to_be64(size);
665
666 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
667 off = fdt_add_subnode(fdt, 0, mem_name);
668 _FDT(off);
669 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
670 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
671 sizeof(mem_reg_property))));
672 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
673 sizeof(associativity))));
674 }
675
676 static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt)
677 {
678 hwaddr mem_start, node_size;
679 int i, nb_nodes = nb_numa_nodes;
680 NodeInfo *nodes = numa_info;
681 NodeInfo ramnode;
682
683 /* No NUMA nodes, assume there is just one node with whole RAM */
684 if (!nb_numa_nodes) {
685 nb_nodes = 1;
686 ramnode.node_mem = ram_size;
687 nodes = &ramnode;
688 }
689
690 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
691 if (!nodes[i].node_mem) {
692 continue;
693 }
694 if (mem_start >= ram_size) {
695 node_size = 0;
696 } else {
697 node_size = nodes[i].node_mem;
698 if (node_size > ram_size - mem_start) {
699 node_size = ram_size - mem_start;
700 }
701 }
702 if (!mem_start) {
703 /* ppc_spapr_init() checks for rma_size <= node0_size already */
704 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
705 mem_start += spapr->rma_size;
706 node_size -= spapr->rma_size;
707 }
708 for ( ; node_size; ) {
709 hwaddr sizetmp = pow2floor(node_size);
710
711 /* mem_start != 0 here */
712 if (ctzl(mem_start) < ctzl(sizetmp)) {
713 sizetmp = 1ULL << ctzl(mem_start);
714 }
715
716 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
717 node_size -= sizetmp;
718 mem_start += sizetmp;
719 }
720 }
721
722 return 0;
723 }
724
725 static void spapr_finalize_fdt(sPAPREnvironment *spapr,
726 hwaddr fdt_addr,
727 hwaddr rtas_addr,
728 hwaddr rtas_size)
729 {
730 int ret, i;
731 size_t cb = 0;
732 char *bootlist;
733 void *fdt;
734 sPAPRPHBState *phb;
735
736 fdt = g_malloc(FDT_MAX_SIZE);
737
738 /* open out the base tree into a temp buffer for the final tweaks */
739 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
740
741 ret = spapr_populate_memory(spapr, fdt);
742 if (ret < 0) {
743 fprintf(stderr, "couldn't setup memory nodes in fdt\n");
744 exit(1);
745 }
746
747 ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
748 if (ret < 0) {
749 fprintf(stderr, "couldn't setup vio devices in fdt\n");
750 exit(1);
751 }
752
753 QLIST_FOREACH(phb, &spapr->phbs, list) {
754 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
755 }
756
757 if (ret < 0) {
758 fprintf(stderr, "couldn't setup PCI devices in fdt\n");
759 exit(1);
760 }
761
762 /* RTAS */
763 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
764 if (ret < 0) {
765 fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
766 }
767
768 /* Advertise NUMA via ibm,associativity */
769 ret = spapr_fixup_cpu_dt(fdt, spapr);
770 if (ret < 0) {
771 fprintf(stderr, "Couldn't finalize CPU device tree properties\n");
772 }
773
774 bootlist = get_boot_devices_list(&cb, true);
775 if (cb && bootlist) {
776 int offset = fdt_path_offset(fdt, "/chosen");
777 if (offset < 0) {
778 exit(1);
779 }
780 for (i = 0; i < cb; i++) {
781 if (bootlist[i] == '\n') {
782 bootlist[i] = ' ';
783 }
784
785 }
786 ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
787 }
788
789 if (!spapr->has_graphics) {
790 spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
791 }
792
793 _FDT((fdt_pack(fdt)));
794
795 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
796 hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
797 fdt_totalsize(fdt), FDT_MAX_SIZE);
798 exit(1);
799 }
800
801 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
802
803 g_free(bootlist);
804 g_free(fdt);
805 }
806
807 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
808 {
809 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
810 }
811
812 static void emulate_spapr_hypercall(PowerPCCPU *cpu)
813 {
814 CPUPPCState *env = &cpu->env;
815
816 if (msr_pr) {
817 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
818 env->gpr[3] = H_PRIVILEGE;
819 } else {
820 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
821 }
822 }
823
824 static void spapr_reset_htab(sPAPREnvironment *spapr)
825 {
826 long shift;
827
828 /* allocate hash page table. For now we always make this 16mb,
829 * later we should probably make it scale to the size of guest
830 * RAM */
831
832 shift = kvmppc_reset_htab(spapr->htab_shift);
833
834 if (shift > 0) {
835 /* Kernel handles htab, we don't need to allocate one */
836 spapr->htab_shift = shift;
837 kvmppc_kern_htab = true;
838 } else {
839 if (!spapr->htab) {
840 /* Allocate an htab if we don't yet have one */
841 spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
842 }
843
844 /* And clear it */
845 memset(spapr->htab, 0, HTAB_SIZE(spapr));
846 }
847
848 /* Update the RMA size if necessary */
849 if (spapr->vrma_adjust) {
850 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
851 spapr->htab_shift);
852 }
853 }
854
855 static void ppc_spapr_reset(void)
856 {
857 PowerPCCPU *first_ppc_cpu;
858 uint32_t rtas_limit;
859
860 /* Reset the hash table & recalc the RMA */
861 spapr_reset_htab(spapr);
862
863 qemu_devices_reset();
864
865 /*
866 * We place the device tree and RTAS just below either the top of the RMA,
867 * or just below 2GB, whichever is lowere, so that it can be
868 * processed with 32-bit real mode code if necessary
869 */
870 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
871 spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
872 spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
873
874 /* Load the fdt */
875 spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
876 spapr->rtas_size);
877
878 /* Copy RTAS over */
879 cpu_physical_memory_write(spapr->rtas_addr, spapr->rtas_blob,
880 spapr->rtas_size);
881
882 /* Set up the entry state */
883 first_ppc_cpu = POWERPC_CPU(first_cpu);
884 first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
885 first_ppc_cpu->env.gpr[5] = 0;
886 first_cpu->halted = 0;
887 first_ppc_cpu->env.nip = spapr->entry_point;
888
889 }
890
891 static void spapr_cpu_reset(void *opaque)
892 {
893 PowerPCCPU *cpu = opaque;
894 CPUState *cs = CPU(cpu);
895 CPUPPCState *env = &cpu->env;
896
897 cpu_reset(cs);
898
899 /* All CPUs start halted. CPU0 is unhalted from the machine level
900 * reset code and the rest are explicitly started up by the guest
901 * using an RTAS call */
902 cs->halted = 1;
903
904 env->spr[SPR_HIOR] = 0;
905
906 env->external_htab = (uint8_t *)spapr->htab;
907 if (kvm_enabled() && !env->external_htab) {
908 /*
909 * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte*
910 * functions do the right thing.
911 */
912 env->external_htab = (void *)1;
913 }
914 env->htab_base = -1;
915 /*
916 * htab_mask is the mask used to normalize hash value to PTEG index.
917 * htab_shift is log2 of hash table size.
918 * We have 8 hpte per group, and each hpte is 16 bytes.
919 * ie have 128 bytes per hpte entry.
920 */
921 env->htab_mask = (1ULL << ((spapr)->htab_shift - 7)) - 1;
922 env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
923 (spapr->htab_shift - 18);
924 }
925
926 static void spapr_create_nvram(sPAPREnvironment *spapr)
927 {
928 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
929 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
930
931 if (dinfo) {
932 qdev_prop_set_drive_nofail(dev, "drive", dinfo->bdrv);
933 }
934
935 qdev_init_nofail(dev);
936
937 spapr->nvram = (struct sPAPRNVRAM *)dev;
938 }
939
940 /* Returns whether we want to use VGA or not */
941 static int spapr_vga_init(PCIBus *pci_bus)
942 {
943 switch (vga_interface_type) {
944 case VGA_NONE:
945 return false;
946 case VGA_DEVICE:
947 return true;
948 case VGA_STD:
949 return pci_vga_init(pci_bus) != NULL;
950 default:
951 fprintf(stderr, "This vga model is not supported,"
952 "currently it only supports -vga std\n");
953 exit(0);
954 }
955 }
956
957 static const VMStateDescription vmstate_spapr = {
958 .name = "spapr",
959 .version_id = 2,
960 .minimum_version_id = 1,
961 .fields = (VMStateField[]) {
962 VMSTATE_UNUSED(4), /* used to be @next_irq */
963
964 /* RTC offset */
965 VMSTATE_UINT64(rtc_offset, sPAPREnvironment),
966 VMSTATE_PPC_TIMEBASE_V(tb, sPAPREnvironment, 2),
967 VMSTATE_END_OF_LIST()
968 },
969 };
970
971 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
972 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
973 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
974 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
975
976 static int htab_save_setup(QEMUFile *f, void *opaque)
977 {
978 sPAPREnvironment *spapr = opaque;
979
980 /* "Iteration" header */
981 qemu_put_be32(f, spapr->htab_shift);
982
983 if (spapr->htab) {
984 spapr->htab_save_index = 0;
985 spapr->htab_first_pass = true;
986 } else {
987 assert(kvm_enabled());
988
989 spapr->htab_fd = kvmppc_get_htab_fd(false);
990 if (spapr->htab_fd < 0) {
991 fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
992 strerror(errno));
993 return -1;
994 }
995 }
996
997
998 return 0;
999 }
1000
1001 static void htab_save_first_pass(QEMUFile *f, sPAPREnvironment *spapr,
1002 int64_t max_ns)
1003 {
1004 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1005 int index = spapr->htab_save_index;
1006 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1007
1008 assert(spapr->htab_first_pass);
1009
1010 do {
1011 int chunkstart;
1012
1013 /* Consume invalid HPTEs */
1014 while ((index < htabslots)
1015 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1016 index++;
1017 CLEAN_HPTE(HPTE(spapr->htab, index));
1018 }
1019
1020 /* Consume valid HPTEs */
1021 chunkstart = index;
1022 while ((index < htabslots)
1023 && HPTE_VALID(HPTE(spapr->htab, index))) {
1024 index++;
1025 CLEAN_HPTE(HPTE(spapr->htab, index));
1026 }
1027
1028 if (index > chunkstart) {
1029 int n_valid = index - chunkstart;
1030
1031 qemu_put_be32(f, chunkstart);
1032 qemu_put_be16(f, n_valid);
1033 qemu_put_be16(f, 0);
1034 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1035 HASH_PTE_SIZE_64 * n_valid);
1036
1037 if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1038 break;
1039 }
1040 }
1041 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1042
1043 if (index >= htabslots) {
1044 assert(index == htabslots);
1045 index = 0;
1046 spapr->htab_first_pass = false;
1047 }
1048 spapr->htab_save_index = index;
1049 }
1050
1051 static int htab_save_later_pass(QEMUFile *f, sPAPREnvironment *spapr,
1052 int64_t max_ns)
1053 {
1054 bool final = max_ns < 0;
1055 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1056 int examined = 0, sent = 0;
1057 int index = spapr->htab_save_index;
1058 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1059
1060 assert(!spapr->htab_first_pass);
1061
1062 do {
1063 int chunkstart, invalidstart;
1064
1065 /* Consume non-dirty HPTEs */
1066 while ((index < htabslots)
1067 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1068 index++;
1069 examined++;
1070 }
1071
1072 chunkstart = index;
1073 /* Consume valid dirty HPTEs */
1074 while ((index < htabslots)
1075 && HPTE_DIRTY(HPTE(spapr->htab, index))
1076 && HPTE_VALID(HPTE(spapr->htab, index))) {
1077 CLEAN_HPTE(HPTE(spapr->htab, index));
1078 index++;
1079 examined++;
1080 }
1081
1082 invalidstart = index;
1083 /* Consume invalid dirty HPTEs */
1084 while ((index < htabslots)
1085 && HPTE_DIRTY(HPTE(spapr->htab, index))
1086 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1087 CLEAN_HPTE(HPTE(spapr->htab, index));
1088 index++;
1089 examined++;
1090 }
1091
1092 if (index > chunkstart) {
1093 int n_valid = invalidstart - chunkstart;
1094 int n_invalid = index - invalidstart;
1095
1096 qemu_put_be32(f, chunkstart);
1097 qemu_put_be16(f, n_valid);
1098 qemu_put_be16(f, n_invalid);
1099 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1100 HASH_PTE_SIZE_64 * n_valid);
1101 sent += index - chunkstart;
1102
1103 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1104 break;
1105 }
1106 }
1107
1108 if (examined >= htabslots) {
1109 break;
1110 }
1111
1112 if (index >= htabslots) {
1113 assert(index == htabslots);
1114 index = 0;
1115 }
1116 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1117
1118 if (index >= htabslots) {
1119 assert(index == htabslots);
1120 index = 0;
1121 }
1122
1123 spapr->htab_save_index = index;
1124
1125 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1126 }
1127
1128 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1129 #define MAX_KVM_BUF_SIZE 2048
1130
1131 static int htab_save_iterate(QEMUFile *f, void *opaque)
1132 {
1133 sPAPREnvironment *spapr = opaque;
1134 int rc = 0;
1135
1136 /* Iteration header */
1137 qemu_put_be32(f, 0);
1138
1139 if (!spapr->htab) {
1140 assert(kvm_enabled());
1141
1142 rc = kvmppc_save_htab(f, spapr->htab_fd,
1143 MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1144 if (rc < 0) {
1145 return rc;
1146 }
1147 } else if (spapr->htab_first_pass) {
1148 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1149 } else {
1150 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1151 }
1152
1153 /* End marker */
1154 qemu_put_be32(f, 0);
1155 qemu_put_be16(f, 0);
1156 qemu_put_be16(f, 0);
1157
1158 return rc;
1159 }
1160
1161 static int htab_save_complete(QEMUFile *f, void *opaque)
1162 {
1163 sPAPREnvironment *spapr = opaque;
1164
1165 /* Iteration header */
1166 qemu_put_be32(f, 0);
1167
1168 if (!spapr->htab) {
1169 int rc;
1170
1171 assert(kvm_enabled());
1172
1173 rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1);
1174 if (rc < 0) {
1175 return rc;
1176 }
1177 close(spapr->htab_fd);
1178 spapr->htab_fd = -1;
1179 } else {
1180 htab_save_later_pass(f, spapr, -1);
1181 }
1182
1183 /* End marker */
1184 qemu_put_be32(f, 0);
1185 qemu_put_be16(f, 0);
1186 qemu_put_be16(f, 0);
1187
1188 return 0;
1189 }
1190
1191 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1192 {
1193 sPAPREnvironment *spapr = opaque;
1194 uint32_t section_hdr;
1195 int fd = -1;
1196
1197 if (version_id < 1 || version_id > 1) {
1198 fprintf(stderr, "htab_load() bad version\n");
1199 return -EINVAL;
1200 }
1201
1202 section_hdr = qemu_get_be32(f);
1203
1204 if (section_hdr) {
1205 /* First section, just the hash shift */
1206 if (spapr->htab_shift != section_hdr) {
1207 return -EINVAL;
1208 }
1209 return 0;
1210 }
1211
1212 if (!spapr->htab) {
1213 assert(kvm_enabled());
1214
1215 fd = kvmppc_get_htab_fd(true);
1216 if (fd < 0) {
1217 fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n",
1218 strerror(errno));
1219 }
1220 }
1221
1222 while (true) {
1223 uint32_t index;
1224 uint16_t n_valid, n_invalid;
1225
1226 index = qemu_get_be32(f);
1227 n_valid = qemu_get_be16(f);
1228 n_invalid = qemu_get_be16(f);
1229
1230 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1231 /* End of Stream */
1232 break;
1233 }
1234
1235 if ((index + n_valid + n_invalid) >
1236 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1237 /* Bad index in stream */
1238 fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) "
1239 "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid,
1240 spapr->htab_shift);
1241 return -EINVAL;
1242 }
1243
1244 if (spapr->htab) {
1245 if (n_valid) {
1246 qemu_get_buffer(f, HPTE(spapr->htab, index),
1247 HASH_PTE_SIZE_64 * n_valid);
1248 }
1249 if (n_invalid) {
1250 memset(HPTE(spapr->htab, index + n_valid), 0,
1251 HASH_PTE_SIZE_64 * n_invalid);
1252 }
1253 } else {
1254 int rc;
1255
1256 assert(fd >= 0);
1257
1258 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1259 if (rc < 0) {
1260 return rc;
1261 }
1262 }
1263 }
1264
1265 if (!spapr->htab) {
1266 assert(fd >= 0);
1267 close(fd);
1268 }
1269
1270 return 0;
1271 }
1272
1273 static SaveVMHandlers savevm_htab_handlers = {
1274 .save_live_setup = htab_save_setup,
1275 .save_live_iterate = htab_save_iterate,
1276 .save_live_complete = htab_save_complete,
1277 .load_state = htab_load,
1278 };
1279
1280 /* pSeries LPAR / sPAPR hardware init */
1281 static void ppc_spapr_init(MachineState *machine)
1282 {
1283 ram_addr_t ram_size = machine->ram_size;
1284 const char *cpu_model = machine->cpu_model;
1285 const char *kernel_filename = machine->kernel_filename;
1286 const char *kernel_cmdline = machine->kernel_cmdline;
1287 const char *initrd_filename = machine->initrd_filename;
1288 const char *boot_device = machine->boot_order;
1289 PowerPCCPU *cpu;
1290 CPUPPCState *env;
1291 PCIHostState *phb;
1292 int i;
1293 MemoryRegion *sysmem = get_system_memory();
1294 MemoryRegion *ram = g_new(MemoryRegion, 1);
1295 MemoryRegion *rma_region;
1296 void *rma = NULL;
1297 hwaddr rma_alloc_size;
1298 hwaddr node0_size = spapr_node0_size();
1299 uint32_t initrd_base = 0;
1300 long kernel_size = 0, initrd_size = 0;
1301 long load_limit, fw_size;
1302 bool kernel_le = false;
1303 char *filename;
1304
1305 msi_supported = true;
1306
1307 spapr = g_malloc0(sizeof(*spapr));
1308 QLIST_INIT(&spapr->phbs);
1309
1310 cpu_ppc_hypercall = emulate_spapr_hypercall;
1311
1312 /* Allocate RMA if necessary */
1313 rma_alloc_size = kvmppc_alloc_rma(&rma);
1314
1315 if (rma_alloc_size == -1) {
1316 hw_error("qemu: Unable to create RMA\n");
1317 exit(1);
1318 }
1319
1320 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1321 spapr->rma_size = rma_alloc_size;
1322 } else {
1323 spapr->rma_size = node0_size;
1324
1325 /* With KVM, we don't actually know whether KVM supports an
1326 * unbounded RMA (PR KVM) or is limited by the hash table size
1327 * (HV KVM using VRMA), so we always assume the latter
1328 *
1329 * In that case, we also limit the initial allocations for RTAS
1330 * etc... to 256M since we have no way to know what the VRMA size
1331 * is going to be as it depends on the size of the hash table
1332 * isn't determined yet.
1333 */
1334 if (kvm_enabled()) {
1335 spapr->vrma_adjust = 1;
1336 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1337 }
1338 }
1339
1340 if (spapr->rma_size > node0_size) {
1341 fprintf(stderr, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")\n",
1342 spapr->rma_size);
1343 exit(1);
1344 }
1345
1346 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
1347 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
1348
1349 /* We aim for a hash table of size 1/128 the size of RAM. The
1350 * normal rule of thumb is 1/64 the size of RAM, but that's much
1351 * more than needed for the Linux guests we support. */
1352 spapr->htab_shift = 18; /* Minimum architected size */
1353 while (spapr->htab_shift <= 46) {
1354 if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) {
1355 break;
1356 }
1357 spapr->htab_shift++;
1358 }
1359
1360 /* Set up Interrupt Controller before we create the VCPUs */
1361 spapr->icp = xics_system_init(smp_cpus * kvmppc_smt_threads() / smp_threads,
1362 XICS_IRQS);
1363
1364 /* init CPUs */
1365 if (cpu_model == NULL) {
1366 cpu_model = kvm_enabled() ? "host" : "POWER7";
1367 }
1368 for (i = 0; i < smp_cpus; i++) {
1369 cpu = cpu_ppc_init(cpu_model);
1370 if (cpu == NULL) {
1371 fprintf(stderr, "Unable to find PowerPC CPU definition\n");
1372 exit(1);
1373 }
1374 env = &cpu->env;
1375
1376 /* Set time-base frequency to 512 MHz */
1377 cpu_ppc_tb_init(env, TIMEBASE_FREQ);
1378
1379 /* PAPR always has exception vectors in RAM not ROM. To ensure this,
1380 * MSR[IP] should never be set.
1381 */
1382 env->msr_mask &= ~(1 << 6);
1383
1384 /* Tell KVM that we're in PAPR mode */
1385 if (kvm_enabled()) {
1386 kvmppc_set_papr(cpu);
1387 }
1388
1389 if (cpu->max_compat) {
1390 if (ppc_set_compat(cpu, cpu->max_compat) < 0) {
1391 exit(1);
1392 }
1393 }
1394
1395 xics_cpu_setup(spapr->icp, cpu);
1396
1397 qemu_register_reset(spapr_cpu_reset, cpu);
1398 }
1399
1400 /* allocate RAM */
1401 spapr->ram_limit = ram_size;
1402 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
1403 spapr->ram_limit);
1404 memory_region_add_subregion(sysmem, 0, ram);
1405
1406 if (rma_alloc_size && rma) {
1407 rma_region = g_new(MemoryRegion, 1);
1408 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
1409 rma_alloc_size, rma);
1410 vmstate_register_ram_global(rma_region);
1411 memory_region_add_subregion(sysmem, 0, rma_region);
1412 }
1413
1414 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1415 spapr->rtas_size = get_image_size(filename);
1416 spapr->rtas_blob = g_malloc(spapr->rtas_size);
1417 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
1418 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
1419 exit(1);
1420 }
1421 if (spapr->rtas_size > RTAS_MAX_SIZE) {
1422 hw_error("RTAS too big ! 0x%zx bytes (max is 0x%x)\n",
1423 spapr->rtas_size, RTAS_MAX_SIZE);
1424 exit(1);
1425 }
1426 g_free(filename);
1427
1428 /* Set up EPOW events infrastructure */
1429 spapr_events_init(spapr);
1430
1431 /* Set up VIO bus */
1432 spapr->vio_bus = spapr_vio_bus_init();
1433
1434 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1435 if (serial_hds[i]) {
1436 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1437 }
1438 }
1439
1440 /* We always have at least the nvram device on VIO */
1441 spapr_create_nvram(spapr);
1442
1443 /* Set up PCI */
1444 spapr_pci_msi_init(spapr, SPAPR_PCI_MSI_WINDOW);
1445 spapr_pci_rtas_init();
1446
1447 phb = spapr_create_phb(spapr, 0);
1448
1449 for (i = 0; i < nb_nics; i++) {
1450 NICInfo *nd = &nd_table[i];
1451
1452 if (!nd->model) {
1453 nd->model = g_strdup("ibmveth");
1454 }
1455
1456 if (strcmp(nd->model, "ibmveth") == 0) {
1457 spapr_vlan_create(spapr->vio_bus, nd);
1458 } else {
1459 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1460 }
1461 }
1462
1463 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1464 spapr_vscsi_create(spapr->vio_bus);
1465 }
1466
1467 /* Graphics */
1468 if (spapr_vga_init(phb->bus)) {
1469 spapr->has_graphics = true;
1470 }
1471
1472 if (usb_enabled(spapr->has_graphics)) {
1473 pci_create_simple(phb->bus, -1, "pci-ohci");
1474 if (spapr->has_graphics) {
1475 usbdevice_create("keyboard");
1476 usbdevice_create("mouse");
1477 }
1478 }
1479
1480 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1481 fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
1482 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
1483 exit(1);
1484 }
1485
1486 if (kernel_filename) {
1487 uint64_t lowaddr = 0;
1488
1489 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
1490 NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
1491 if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1492 kernel_size = load_elf(kernel_filename,
1493 translate_kernel_address, NULL,
1494 NULL, &lowaddr, NULL, 0, ELF_MACHINE, 0);
1495 kernel_le = kernel_size > 0;
1496 }
1497 if (kernel_size < 0) {
1498 fprintf(stderr, "qemu: error loading %s: %s\n",
1499 kernel_filename, load_elf_strerror(kernel_size));
1500 exit(1);
1501 }
1502
1503 /* load initrd */
1504 if (initrd_filename) {
1505 /* Try to locate the initrd in the gap between the kernel
1506 * and the firmware. Add a bit of space just in case
1507 */
1508 initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1509 initrd_size = load_image_targphys(initrd_filename, initrd_base,
1510 load_limit - initrd_base);
1511 if (initrd_size < 0) {
1512 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
1513 initrd_filename);
1514 exit(1);
1515 }
1516 } else {
1517 initrd_base = 0;
1518 initrd_size = 0;
1519 }
1520 }
1521
1522 if (bios_name == NULL) {
1523 bios_name = FW_FILE_NAME;
1524 }
1525 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1526 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
1527 if (fw_size < 0) {
1528 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
1529 exit(1);
1530 }
1531 g_free(filename);
1532
1533 spapr->entry_point = 0x100;
1534
1535 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
1536 register_savevm_live(NULL, "spapr/htab", -1, 1,
1537 &savevm_htab_handlers, spapr);
1538
1539 /* Prepare the device tree */
1540 spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
1541 kernel_size, kernel_le,
1542 boot_device, kernel_cmdline,
1543 spapr->epow_irq);
1544 assert(spapr->fdt_skel != NULL);
1545 }
1546
1547 static int spapr_kvm_type(const char *vm_type)
1548 {
1549 if (!vm_type) {
1550 return 0;
1551 }
1552
1553 if (!strcmp(vm_type, "HV")) {
1554 return 1;
1555 }
1556
1557 if (!strcmp(vm_type, "PR")) {
1558 return 2;
1559 }
1560
1561 error_report("Unknown kvm-type specified '%s'", vm_type);
1562 exit(1);
1563 }
1564
1565 /*
1566 * Implementation of an interface to adjust firmware patch
1567 * for the bootindex property handling.
1568 */
1569 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
1570 DeviceState *dev)
1571 {
1572 #define CAST(type, obj, name) \
1573 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
1574 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
1575 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
1576
1577 if (d) {
1578 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
1579 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
1580 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
1581
1582 if (spapr) {
1583 /*
1584 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
1585 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
1586 * in the top 16 bits of the 64-bit LUN
1587 */
1588 unsigned id = 0x8000 | (d->id << 8) | d->lun;
1589 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1590 (uint64_t)id << 48);
1591 } else if (virtio) {
1592 /*
1593 * We use SRP luns of the form 01000000 | (target << 8) | lun
1594 * in the top 32 bits of the 64-bit LUN
1595 * Note: the quote above is from SLOF and it is wrong,
1596 * the actual binding is:
1597 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
1598 */
1599 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
1600 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1601 (uint64_t)id << 32);
1602 } else if (usb) {
1603 /*
1604 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
1605 * in the top 32 bits of the 64-bit LUN
1606 */
1607 unsigned usb_port = atoi(usb->port->path);
1608 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
1609 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1610 (uint64_t)id << 32);
1611 }
1612 }
1613
1614 if (phb) {
1615 /* Replace "pci" with "pci@800000020000000" */
1616 return g_strdup_printf("pci@%"PRIX64, phb->buid);
1617 }
1618
1619 return NULL;
1620 }
1621
1622 static char *spapr_get_kvm_type(Object *obj, Error **errp)
1623 {
1624 sPAPRMachineState *sm = SPAPR_MACHINE(obj);
1625
1626 return g_strdup(sm->kvm_type);
1627 }
1628
1629 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
1630 {
1631 sPAPRMachineState *sm = SPAPR_MACHINE(obj);
1632
1633 g_free(sm->kvm_type);
1634 sm->kvm_type = g_strdup(value);
1635 }
1636
1637 static void spapr_machine_initfn(Object *obj)
1638 {
1639 object_property_add_str(obj, "kvm-type",
1640 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
1641 }
1642
1643 static void ppc_cpu_do_nmi_on_cpu(void *arg)
1644 {
1645 CPUState *cs = arg;
1646
1647 cpu_synchronize_state(cs);
1648 ppc_cpu_do_system_reset(cs);
1649 }
1650
1651 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
1652 {
1653 CPUState *cs;
1654
1655 CPU_FOREACH(cs) {
1656 async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, cs);
1657 }
1658 }
1659
1660 static void spapr_machine_class_init(ObjectClass *oc, void *data)
1661 {
1662 MachineClass *mc = MACHINE_CLASS(oc);
1663 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
1664 NMIClass *nc = NMI_CLASS(oc);
1665
1666 mc->name = "pseries";
1667 mc->desc = "pSeries Logical Partition (PAPR compliant)";
1668 mc->is_default = 1;
1669 mc->init = ppc_spapr_init;
1670 mc->reset = ppc_spapr_reset;
1671 mc->block_default_type = IF_SCSI;
1672 mc->max_cpus = MAX_CPUS;
1673 mc->no_parallel = 1;
1674 mc->default_boot_order = NULL;
1675 mc->kvm_type = spapr_kvm_type;
1676
1677 fwc->get_dev_path = spapr_get_fw_dev_path;
1678 nc->nmi_monitor_handler = spapr_nmi;
1679 }
1680
1681 static const TypeInfo spapr_machine_info = {
1682 .name = TYPE_SPAPR_MACHINE,
1683 .parent = TYPE_MACHINE,
1684 .instance_size = sizeof(sPAPRMachineState),
1685 .instance_init = spapr_machine_initfn,
1686 .class_init = spapr_machine_class_init,
1687 .interfaces = (InterfaceInfo[]) {
1688 { TYPE_FW_PATH_PROVIDER },
1689 { TYPE_NMI },
1690 { }
1691 },
1692 };
1693
1694 static void spapr_machine_2_1_class_init(ObjectClass *oc, void *data)
1695 {
1696 MachineClass *mc = MACHINE_CLASS(oc);
1697
1698 mc->name = "pseries-2.1";
1699 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.1";
1700 mc->is_default = 0;
1701 }
1702
1703 static const TypeInfo spapr_machine_2_1_info = {
1704 .name = TYPE_SPAPR_MACHINE "2.1",
1705 .parent = TYPE_SPAPR_MACHINE,
1706 .class_init = spapr_machine_2_1_class_init,
1707 };
1708
1709 static void spapr_machine_register_types(void)
1710 {
1711 type_register_static(&spapr_machine_info);
1712 type_register_static(&spapr_machine_2_1_info);
1713 }
1714
1715 type_init(spapr_machine_register_types)