]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr.c
Merge remote-tracking branch 'remotes/jasowang/tags/net-pull-request' into staging
[mirror_qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 */
26
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qemu/datadir.h"
30 #include "qapi/error.h"
31 #include "qapi/qapi-events-machine.h"
32 #include "qapi/visitor.h"
33 #include "sysemu/sysemu.h"
34 #include "sysemu/hostmem.h"
35 #include "sysemu/numa.h"
36 #include "sysemu/qtest.h"
37 #include "sysemu/reset.h"
38 #include "sysemu/runstate.h"
39 #include "qemu/log.h"
40 #include "hw/fw-path-provider.h"
41 #include "elf.h"
42 #include "net/net.h"
43 #include "sysemu/device_tree.h"
44 #include "sysemu/cpus.h"
45 #include "sysemu/hw_accel.h"
46 #include "kvm_ppc.h"
47 #include "migration/misc.h"
48 #include "migration/qemu-file-types.h"
49 #include "migration/global_state.h"
50 #include "migration/register.h"
51 #include "migration/blocker.h"
52 #include "mmu-hash64.h"
53 #include "mmu-book3s-v3.h"
54 #include "cpu-models.h"
55 #include "hw/core/cpu.h"
56
57 #include "hw/ppc/ppc.h"
58 #include "hw/loader.h"
59
60 #include "hw/ppc/fdt.h"
61 #include "hw/ppc/spapr.h"
62 #include "hw/ppc/spapr_vio.h"
63 #include "hw/qdev-properties.h"
64 #include "hw/pci-host/spapr.h"
65 #include "hw/pci/msi.h"
66
67 #include "hw/pci/pci.h"
68 #include "hw/scsi/scsi.h"
69 #include "hw/virtio/virtio-scsi.h"
70 #include "hw/virtio/vhost-scsi-common.h"
71
72 #include "exec/ram_addr.h"
73 #include "hw/usb.h"
74 #include "qemu/config-file.h"
75 #include "qemu/error-report.h"
76 #include "trace.h"
77 #include "hw/nmi.h"
78 #include "hw/intc/intc.h"
79
80 #include "hw/ppc/spapr_cpu_core.h"
81 #include "hw/mem/memory-device.h"
82 #include "hw/ppc/spapr_tpm_proxy.h"
83 #include "hw/ppc/spapr_nvdimm.h"
84 #include "hw/ppc/spapr_numa.h"
85 #include "hw/ppc/pef.h"
86
87 #include "monitor/monitor.h"
88
89 #include <libfdt.h>
90
91 /* SLOF memory layout:
92 *
93 * SLOF raw image loaded at 0, copies its romfs right below the flat
94 * device-tree, then position SLOF itself 31M below that
95 *
96 * So we set FW_OVERHEAD to 40MB which should account for all of that
97 * and more
98 *
99 * We load our kernel at 4M, leaving space for SLOF initial image
100 */
101 #define FDT_MAX_ADDR 0x80000000 /* FDT must stay below that */
102 #define FW_MAX_SIZE 0x400000
103 #define FW_FILE_NAME "slof.bin"
104 #define FW_OVERHEAD 0x2800000
105 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
106
107 #define MIN_RMA_SLOF (128 * MiB)
108
109 #define PHANDLE_INTC 0x00001111
110
111 /* These two functions implement the VCPU id numbering: one to compute them
112 * all and one to identify thread 0 of a VCORE. Any change to the first one
113 * is likely to have an impact on the second one, so let's keep them close.
114 */
115 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
116 {
117 MachineState *ms = MACHINE(spapr);
118 unsigned int smp_threads = ms->smp.threads;
119
120 assert(spapr->vsmt);
121 return
122 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
123 }
124 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
125 PowerPCCPU *cpu)
126 {
127 assert(spapr->vsmt);
128 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
129 }
130
131 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
132 {
133 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
134 * and newer QEMUs don't even have them. In both cases, we don't want
135 * to send anything on the wire.
136 */
137 return false;
138 }
139
140 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
141 .name = "icp/server",
142 .version_id = 1,
143 .minimum_version_id = 1,
144 .needed = pre_2_10_vmstate_dummy_icp_needed,
145 .fields = (VMStateField[]) {
146 VMSTATE_UNUSED(4), /* uint32_t xirr */
147 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
148 VMSTATE_UNUSED(1), /* uint8_t mfrr */
149 VMSTATE_END_OF_LIST()
150 },
151 };
152
153 static void pre_2_10_vmstate_register_dummy_icp(int i)
154 {
155 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
156 (void *)(uintptr_t) i);
157 }
158
159 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
160 {
161 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
162 (void *)(uintptr_t) i);
163 }
164
165 int spapr_max_server_number(SpaprMachineState *spapr)
166 {
167 MachineState *ms = MACHINE(spapr);
168
169 assert(spapr->vsmt);
170 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
171 }
172
173 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
174 int smt_threads)
175 {
176 int i, ret = 0;
177 uint32_t servers_prop[smt_threads];
178 uint32_t gservers_prop[smt_threads * 2];
179 int index = spapr_get_vcpu_id(cpu);
180
181 if (cpu->compat_pvr) {
182 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
183 if (ret < 0) {
184 return ret;
185 }
186 }
187
188 /* Build interrupt servers and gservers properties */
189 for (i = 0; i < smt_threads; i++) {
190 servers_prop[i] = cpu_to_be32(index + i);
191 /* Hack, direct the group queues back to cpu 0 */
192 gservers_prop[i*2] = cpu_to_be32(index + i);
193 gservers_prop[i*2 + 1] = 0;
194 }
195 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
196 servers_prop, sizeof(servers_prop));
197 if (ret < 0) {
198 return ret;
199 }
200 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
201 gservers_prop, sizeof(gservers_prop));
202
203 return ret;
204 }
205
206 static void spapr_dt_pa_features(SpaprMachineState *spapr,
207 PowerPCCPU *cpu,
208 void *fdt, int offset)
209 {
210 uint8_t pa_features_206[] = { 6, 0,
211 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
212 uint8_t pa_features_207[] = { 24, 0,
213 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
214 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
215 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
216 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
217 uint8_t pa_features_300[] = { 66, 0,
218 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
219 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
220 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
221 /* 6: DS207 */
222 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
223 /* 16: Vector */
224 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
225 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
226 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
227 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
228 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
229 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
230 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
231 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
232 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
233 /* 42: PM, 44: PC RA, 46: SC vec'd */
234 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
235 /* 48: SIMD, 50: QP BFP, 52: String */
236 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
237 /* 54: DecFP, 56: DecI, 58: SHA */
238 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
239 /* 60: NM atomic, 62: RNG */
240 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
241 };
242 uint8_t *pa_features = NULL;
243 size_t pa_size;
244
245 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
246 pa_features = pa_features_206;
247 pa_size = sizeof(pa_features_206);
248 }
249 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
250 pa_features = pa_features_207;
251 pa_size = sizeof(pa_features_207);
252 }
253 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
254 pa_features = pa_features_300;
255 pa_size = sizeof(pa_features_300);
256 }
257 if (!pa_features) {
258 return;
259 }
260
261 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
262 /*
263 * Note: we keep CI large pages off by default because a 64K capable
264 * guest provisioned with large pages might otherwise try to map a qemu
265 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
266 * even if that qemu runs on a 4k host.
267 * We dd this bit back here if we are confident this is not an issue
268 */
269 pa_features[3] |= 0x20;
270 }
271 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
272 pa_features[24] |= 0x80; /* Transactional memory support */
273 }
274 if (spapr->cas_pre_isa3_guest && pa_size > 40) {
275 /* Workaround for broken kernels that attempt (guest) radix
276 * mode when they can't handle it, if they see the radix bit set
277 * in pa-features. So hide it from them. */
278 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
279 }
280
281 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
282 }
283
284 static hwaddr spapr_node0_size(MachineState *machine)
285 {
286 if (machine->numa_state->num_nodes) {
287 int i;
288 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
289 if (machine->numa_state->nodes[i].node_mem) {
290 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
291 machine->ram_size);
292 }
293 }
294 }
295 return machine->ram_size;
296 }
297
298 static void add_str(GString *s, const gchar *s1)
299 {
300 g_string_append_len(s, s1, strlen(s1) + 1);
301 }
302
303 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
304 hwaddr start, hwaddr size)
305 {
306 char mem_name[32];
307 uint64_t mem_reg_property[2];
308 int off;
309
310 mem_reg_property[0] = cpu_to_be64(start);
311 mem_reg_property[1] = cpu_to_be64(size);
312
313 sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
314 off = fdt_add_subnode(fdt, 0, mem_name);
315 _FDT(off);
316 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
317 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
318 sizeof(mem_reg_property))));
319 spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
320 return off;
321 }
322
323 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
324 {
325 MemoryDeviceInfoList *info;
326
327 for (info = list; info; info = info->next) {
328 MemoryDeviceInfo *value = info->value;
329
330 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
331 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
332
333 if (addr >= pcdimm_info->addr &&
334 addr < (pcdimm_info->addr + pcdimm_info->size)) {
335 return pcdimm_info->node;
336 }
337 }
338 }
339
340 return -1;
341 }
342
343 struct sPAPRDrconfCellV2 {
344 uint32_t seq_lmbs;
345 uint64_t base_addr;
346 uint32_t drc_index;
347 uint32_t aa_index;
348 uint32_t flags;
349 } QEMU_PACKED;
350
351 typedef struct DrconfCellQueue {
352 struct sPAPRDrconfCellV2 cell;
353 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
354 } DrconfCellQueue;
355
356 static DrconfCellQueue *
357 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
358 uint32_t drc_index, uint32_t aa_index,
359 uint32_t flags)
360 {
361 DrconfCellQueue *elem;
362
363 elem = g_malloc0(sizeof(*elem));
364 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
365 elem->cell.base_addr = cpu_to_be64(base_addr);
366 elem->cell.drc_index = cpu_to_be32(drc_index);
367 elem->cell.aa_index = cpu_to_be32(aa_index);
368 elem->cell.flags = cpu_to_be32(flags);
369
370 return elem;
371 }
372
373 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
374 int offset, MemoryDeviceInfoList *dimms)
375 {
376 MachineState *machine = MACHINE(spapr);
377 uint8_t *int_buf, *cur_index;
378 int ret;
379 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
380 uint64_t addr, cur_addr, size;
381 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
382 uint64_t mem_end = machine->device_memory->base +
383 memory_region_size(&machine->device_memory->mr);
384 uint32_t node, buf_len, nr_entries = 0;
385 SpaprDrc *drc;
386 DrconfCellQueue *elem, *next;
387 MemoryDeviceInfoList *info;
388 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
389 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
390
391 /* Entry to cover RAM and the gap area */
392 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
393 SPAPR_LMB_FLAGS_RESERVED |
394 SPAPR_LMB_FLAGS_DRC_INVALID);
395 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
396 nr_entries++;
397
398 cur_addr = machine->device_memory->base;
399 for (info = dimms; info; info = info->next) {
400 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
401
402 addr = di->addr;
403 size = di->size;
404 node = di->node;
405
406 /*
407 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
408 * area is marked hotpluggable in the next iteration for the bigger
409 * chunk including the NVDIMM occupied area.
410 */
411 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
412 continue;
413
414 /* Entry for hot-pluggable area */
415 if (cur_addr < addr) {
416 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
417 g_assert(drc);
418 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
419 cur_addr, spapr_drc_index(drc), -1, 0);
420 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
421 nr_entries++;
422 }
423
424 /* Entry for DIMM */
425 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
426 g_assert(drc);
427 elem = spapr_get_drconf_cell(size / lmb_size, addr,
428 spapr_drc_index(drc), node,
429 (SPAPR_LMB_FLAGS_ASSIGNED |
430 SPAPR_LMB_FLAGS_HOTREMOVABLE));
431 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
432 nr_entries++;
433 cur_addr = addr + size;
434 }
435
436 /* Entry for remaining hotpluggable area */
437 if (cur_addr < mem_end) {
438 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
439 g_assert(drc);
440 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
441 cur_addr, spapr_drc_index(drc), -1, 0);
442 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
443 nr_entries++;
444 }
445
446 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
447 int_buf = cur_index = g_malloc0(buf_len);
448 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
449 cur_index += sizeof(nr_entries);
450
451 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
452 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
453 cur_index += sizeof(elem->cell);
454 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
455 g_free(elem);
456 }
457
458 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
459 g_free(int_buf);
460 if (ret < 0) {
461 return -1;
462 }
463 return 0;
464 }
465
466 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
467 int offset, MemoryDeviceInfoList *dimms)
468 {
469 MachineState *machine = MACHINE(spapr);
470 int i, ret;
471 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
472 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
473 uint32_t nr_lmbs = (machine->device_memory->base +
474 memory_region_size(&machine->device_memory->mr)) /
475 lmb_size;
476 uint32_t *int_buf, *cur_index, buf_len;
477
478 /*
479 * Allocate enough buffer size to fit in ibm,dynamic-memory
480 */
481 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
482 cur_index = int_buf = g_malloc0(buf_len);
483 int_buf[0] = cpu_to_be32(nr_lmbs);
484 cur_index++;
485 for (i = 0; i < nr_lmbs; i++) {
486 uint64_t addr = i * lmb_size;
487 uint32_t *dynamic_memory = cur_index;
488
489 if (i >= device_lmb_start) {
490 SpaprDrc *drc;
491
492 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
493 g_assert(drc);
494
495 dynamic_memory[0] = cpu_to_be32(addr >> 32);
496 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
497 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
498 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
499 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
500 if (memory_region_present(get_system_memory(), addr)) {
501 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
502 } else {
503 dynamic_memory[5] = cpu_to_be32(0);
504 }
505 } else {
506 /*
507 * LMB information for RMA, boot time RAM and gap b/n RAM and
508 * device memory region -- all these are marked as reserved
509 * and as having no valid DRC.
510 */
511 dynamic_memory[0] = cpu_to_be32(addr >> 32);
512 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
513 dynamic_memory[2] = cpu_to_be32(0);
514 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
515 dynamic_memory[4] = cpu_to_be32(-1);
516 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
517 SPAPR_LMB_FLAGS_DRC_INVALID);
518 }
519
520 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
521 }
522 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
523 g_free(int_buf);
524 if (ret < 0) {
525 return -1;
526 }
527 return 0;
528 }
529
530 /*
531 * Adds ibm,dynamic-reconfiguration-memory node.
532 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
533 * of this device tree node.
534 */
535 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
536 void *fdt)
537 {
538 MachineState *machine = MACHINE(spapr);
539 int ret, offset;
540 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
541 uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
542 cpu_to_be32(lmb_size & 0xffffffff)};
543 MemoryDeviceInfoList *dimms = NULL;
544
545 /*
546 * Don't create the node if there is no device memory
547 */
548 if (machine->ram_size == machine->maxram_size) {
549 return 0;
550 }
551
552 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
553
554 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
555 sizeof(prop_lmb_size));
556 if (ret < 0) {
557 return ret;
558 }
559
560 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
561 if (ret < 0) {
562 return ret;
563 }
564
565 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
566 if (ret < 0) {
567 return ret;
568 }
569
570 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
571 dimms = qmp_memory_device_list();
572 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
573 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
574 } else {
575 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
576 }
577 qapi_free_MemoryDeviceInfoList(dimms);
578
579 if (ret < 0) {
580 return ret;
581 }
582
583 ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
584
585 return ret;
586 }
587
588 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
589 {
590 MachineState *machine = MACHINE(spapr);
591 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
592 hwaddr mem_start, node_size;
593 int i, nb_nodes = machine->numa_state->num_nodes;
594 NodeInfo *nodes = machine->numa_state->nodes;
595
596 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
597 if (!nodes[i].node_mem) {
598 continue;
599 }
600 if (mem_start >= machine->ram_size) {
601 node_size = 0;
602 } else {
603 node_size = nodes[i].node_mem;
604 if (node_size > machine->ram_size - mem_start) {
605 node_size = machine->ram_size - mem_start;
606 }
607 }
608 if (!mem_start) {
609 /* spapr_machine_init() checks for rma_size <= node0_size
610 * already */
611 spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
612 mem_start += spapr->rma_size;
613 node_size -= spapr->rma_size;
614 }
615 for ( ; node_size; ) {
616 hwaddr sizetmp = pow2floor(node_size);
617
618 /* mem_start != 0 here */
619 if (ctzl(mem_start) < ctzl(sizetmp)) {
620 sizetmp = 1ULL << ctzl(mem_start);
621 }
622
623 spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
624 node_size -= sizetmp;
625 mem_start += sizetmp;
626 }
627 }
628
629 /* Generate ibm,dynamic-reconfiguration-memory node if required */
630 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
631 int ret;
632
633 g_assert(smc->dr_lmb_enabled);
634 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
635 if (ret) {
636 return ret;
637 }
638 }
639
640 return 0;
641 }
642
643 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
644 SpaprMachineState *spapr)
645 {
646 MachineState *ms = MACHINE(spapr);
647 PowerPCCPU *cpu = POWERPC_CPU(cs);
648 CPUPPCState *env = &cpu->env;
649 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
650 int index = spapr_get_vcpu_id(cpu);
651 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
652 0xffffffff, 0xffffffff};
653 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
654 : SPAPR_TIMEBASE_FREQ;
655 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
656 uint32_t page_sizes_prop[64];
657 size_t page_sizes_prop_size;
658 unsigned int smp_threads = ms->smp.threads;
659 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
660 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
661 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
662 SpaprDrc *drc;
663 int drc_index;
664 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
665 int i;
666
667 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
668 if (drc) {
669 drc_index = spapr_drc_index(drc);
670 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
671 }
672
673 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
674 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
675
676 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
677 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
678 env->dcache_line_size)));
679 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
680 env->dcache_line_size)));
681 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
682 env->icache_line_size)));
683 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
684 env->icache_line_size)));
685
686 if (pcc->l1_dcache_size) {
687 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
688 pcc->l1_dcache_size)));
689 } else {
690 warn_report("Unknown L1 dcache size for cpu");
691 }
692 if (pcc->l1_icache_size) {
693 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
694 pcc->l1_icache_size)));
695 } else {
696 warn_report("Unknown L1 icache size for cpu");
697 }
698
699 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
700 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
701 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
702 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
703 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
704 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
705
706 if (ppc_has_spr(cpu, SPR_PURR)) {
707 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
708 }
709 if (ppc_has_spr(cpu, SPR_PURR)) {
710 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
711 }
712
713 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
714 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
715 segs, sizeof(segs))));
716 }
717
718 /* Advertise VSX (vector extensions) if available
719 * 1 == VMX / Altivec available
720 * 2 == VSX available
721 *
722 * Only CPUs for which we create core types in spapr_cpu_core.c
723 * are possible, and all of those have VMX */
724 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
725 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
726 } else {
727 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
728 }
729
730 /* Advertise DFP (Decimal Floating Point) if available
731 * 0 / no property == no DFP
732 * 1 == DFP available */
733 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
734 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
735 }
736
737 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
738 sizeof(page_sizes_prop));
739 if (page_sizes_prop_size) {
740 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
741 page_sizes_prop, page_sizes_prop_size)));
742 }
743
744 spapr_dt_pa_features(spapr, cpu, fdt, offset);
745
746 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
747 cs->cpu_index / vcpus_per_socket)));
748
749 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
750 pft_size_prop, sizeof(pft_size_prop))));
751
752 if (ms->numa_state->num_nodes > 1) {
753 _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
754 }
755
756 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
757
758 if (pcc->radix_page_info) {
759 for (i = 0; i < pcc->radix_page_info->count; i++) {
760 radix_AP_encodings[i] =
761 cpu_to_be32(pcc->radix_page_info->entries[i]);
762 }
763 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
764 radix_AP_encodings,
765 pcc->radix_page_info->count *
766 sizeof(radix_AP_encodings[0]))));
767 }
768
769 /*
770 * We set this property to let the guest know that it can use the large
771 * decrementer and its width in bits.
772 */
773 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
774 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
775 pcc->lrg_decr_bits)));
776 }
777
778 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
779 {
780 CPUState **rev;
781 CPUState *cs;
782 int n_cpus;
783 int cpus_offset;
784 int i;
785
786 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
787 _FDT(cpus_offset);
788 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
789 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
790
791 /*
792 * We walk the CPUs in reverse order to ensure that CPU DT nodes
793 * created by fdt_add_subnode() end up in the right order in FDT
794 * for the guest kernel the enumerate the CPUs correctly.
795 *
796 * The CPU list cannot be traversed in reverse order, so we need
797 * to do extra work.
798 */
799 n_cpus = 0;
800 rev = NULL;
801 CPU_FOREACH(cs) {
802 rev = g_renew(CPUState *, rev, n_cpus + 1);
803 rev[n_cpus++] = cs;
804 }
805
806 for (i = n_cpus - 1; i >= 0; i--) {
807 CPUState *cs = rev[i];
808 PowerPCCPU *cpu = POWERPC_CPU(cs);
809 int index = spapr_get_vcpu_id(cpu);
810 DeviceClass *dc = DEVICE_GET_CLASS(cs);
811 g_autofree char *nodename = NULL;
812 int offset;
813
814 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
815 continue;
816 }
817
818 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
819 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
820 _FDT(offset);
821 spapr_dt_cpu(cs, fdt, offset, spapr);
822 }
823
824 g_free(rev);
825 }
826
827 static int spapr_dt_rng(void *fdt)
828 {
829 int node;
830 int ret;
831
832 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
833 if (node <= 0) {
834 return -1;
835 }
836 ret = fdt_setprop_string(fdt, node, "device_type",
837 "ibm,platform-facilities");
838 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
839 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
840
841 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
842 if (node <= 0) {
843 return -1;
844 }
845 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
846
847 return ret ? -1 : 0;
848 }
849
850 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
851 {
852 MachineState *ms = MACHINE(spapr);
853 int rtas;
854 GString *hypertas = g_string_sized_new(256);
855 GString *qemu_hypertas = g_string_sized_new(256);
856 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
857 memory_region_size(&MACHINE(spapr)->device_memory->mr);
858 uint32_t lrdr_capacity[] = {
859 cpu_to_be32(max_device_addr >> 32),
860 cpu_to_be32(max_device_addr & 0xffffffff),
861 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
862 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
863 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
864 };
865
866 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
867
868 /* hypertas */
869 add_str(hypertas, "hcall-pft");
870 add_str(hypertas, "hcall-term");
871 add_str(hypertas, "hcall-dabr");
872 add_str(hypertas, "hcall-interrupt");
873 add_str(hypertas, "hcall-tce");
874 add_str(hypertas, "hcall-vio");
875 add_str(hypertas, "hcall-splpar");
876 add_str(hypertas, "hcall-join");
877 add_str(hypertas, "hcall-bulk");
878 add_str(hypertas, "hcall-set-mode");
879 add_str(hypertas, "hcall-sprg0");
880 add_str(hypertas, "hcall-copy");
881 add_str(hypertas, "hcall-debug");
882 add_str(hypertas, "hcall-vphn");
883 add_str(qemu_hypertas, "hcall-memop1");
884
885 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
886 add_str(hypertas, "hcall-multi-tce");
887 }
888
889 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
890 add_str(hypertas, "hcall-hpt-resize");
891 }
892
893 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
894 hypertas->str, hypertas->len));
895 g_string_free(hypertas, TRUE);
896 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
897 qemu_hypertas->str, qemu_hypertas->len));
898 g_string_free(qemu_hypertas, TRUE);
899
900 spapr_numa_write_rtas_dt(spapr, fdt, rtas);
901
902 /*
903 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
904 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
905 *
906 * The system reset requirements are driven by existing Linux and PowerVM
907 * implementation which (contrary to PAPR) saves r3 in the error log
908 * structure like machine check, so Linux expects to find the saved r3
909 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
910 * does not look at the error value).
911 *
912 * System reset interrupts are not subject to interlock like machine
913 * check, so this memory area could be corrupted if the sreset is
914 * interrupted by a machine check (or vice versa) if it was shared. To
915 * prevent this, system reset uses per-CPU areas for the sreset save
916 * area. A system reset that interrupts a system reset handler could
917 * still overwrite this area, but Linux doesn't try to recover in that
918 * case anyway.
919 *
920 * The extra 8 bytes is required because Linux's FWNMI error log check
921 * is off-by-one.
922 */
923 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_ERROR_LOG_MAX +
924 ms->smp.max_cpus * sizeof(uint64_t)*2 + sizeof(uint64_t)));
925 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
926 RTAS_ERROR_LOG_MAX));
927 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
928 RTAS_EVENT_SCAN_RATE));
929
930 g_assert(msi_nonbroken);
931 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
932
933 /*
934 * According to PAPR, rtas ibm,os-term does not guarantee a return
935 * back to the guest cpu.
936 *
937 * While an additional ibm,extended-os-term property indicates
938 * that rtas call return will always occur. Set this property.
939 */
940 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
941
942 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
943 lrdr_capacity, sizeof(lrdr_capacity)));
944
945 spapr_dt_rtas_tokens(fdt, rtas);
946 }
947
948 /*
949 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
950 * and the XIVE features that the guest may request and thus the valid
951 * values for bytes 23..26 of option vector 5:
952 */
953 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
954 int chosen)
955 {
956 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
957
958 char val[2 * 4] = {
959 23, 0x00, /* XICS / XIVE mode */
960 24, 0x00, /* Hash/Radix, filled in below. */
961 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
962 26, 0x40, /* Radix options: GTSE == yes. */
963 };
964
965 if (spapr->irq->xics && spapr->irq->xive) {
966 val[1] = SPAPR_OV5_XIVE_BOTH;
967 } else if (spapr->irq->xive) {
968 val[1] = SPAPR_OV5_XIVE_EXPLOIT;
969 } else {
970 assert(spapr->irq->xics);
971 val[1] = SPAPR_OV5_XIVE_LEGACY;
972 }
973
974 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
975 first_ppc_cpu->compat_pvr)) {
976 /*
977 * If we're in a pre POWER9 compat mode then the guest should
978 * do hash and use the legacy interrupt mode
979 */
980 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
981 val[3] = 0x00; /* Hash */
982 spapr_check_mmu_mode(false);
983 } else if (kvm_enabled()) {
984 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
985 val[3] = 0x80; /* OV5_MMU_BOTH */
986 } else if (kvmppc_has_cap_mmu_radix()) {
987 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
988 } else {
989 val[3] = 0x00; /* Hash */
990 }
991 } else {
992 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
993 val[3] = 0xC0;
994 }
995 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
996 val, sizeof(val)));
997 }
998
999 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1000 {
1001 MachineState *machine = MACHINE(spapr);
1002 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1003 int chosen;
1004
1005 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1006
1007 if (reset) {
1008 const char *boot_device = machine->boot_order;
1009 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1010 size_t cb = 0;
1011 char *bootlist = get_boot_devices_list(&cb);
1012
1013 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1014 _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1015 machine->kernel_cmdline));
1016 }
1017
1018 if (spapr->initrd_size) {
1019 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1020 spapr->initrd_base));
1021 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1022 spapr->initrd_base + spapr->initrd_size));
1023 }
1024
1025 if (spapr->kernel_size) {
1026 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1027 cpu_to_be64(spapr->kernel_size) };
1028
1029 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1030 &kprop, sizeof(kprop)));
1031 if (spapr->kernel_le) {
1032 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1033 }
1034 }
1035 if (boot_menu) {
1036 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1037 }
1038 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1039 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1040 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1041
1042 if (cb && bootlist) {
1043 int i;
1044
1045 for (i = 0; i < cb; i++) {
1046 if (bootlist[i] == '\n') {
1047 bootlist[i] = ' ';
1048 }
1049 }
1050 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1051 }
1052
1053 if (boot_device && strlen(boot_device)) {
1054 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1055 }
1056
1057 if (!spapr->has_graphics && stdout_path) {
1058 /*
1059 * "linux,stdout-path" and "stdout" properties are
1060 * deprecated by linux kernel. New platforms should only
1061 * use the "stdout-path" property. Set the new property
1062 * and continue using older property to remain compatible
1063 * with the existing firmware.
1064 */
1065 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1066 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1067 }
1068
1069 /*
1070 * We can deal with BAR reallocation just fine, advertise it
1071 * to the guest
1072 */
1073 if (smc->linux_pci_probe) {
1074 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1075 }
1076
1077 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1078
1079 g_free(stdout_path);
1080 g_free(bootlist);
1081 }
1082
1083 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1084 }
1085
1086 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1087 {
1088 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1089 * KVM to work under pHyp with some guest co-operation */
1090 int hypervisor;
1091 uint8_t hypercall[16];
1092
1093 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1094 /* indicate KVM hypercall interface */
1095 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1096 if (kvmppc_has_cap_fixup_hcalls()) {
1097 /*
1098 * Older KVM versions with older guest kernels were broken
1099 * with the magic page, don't allow the guest to map it.
1100 */
1101 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1102 sizeof(hypercall))) {
1103 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1104 hypercall, sizeof(hypercall)));
1105 }
1106 }
1107 }
1108
1109 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1110 {
1111 MachineState *machine = MACHINE(spapr);
1112 MachineClass *mc = MACHINE_GET_CLASS(machine);
1113 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1114 uint32_t root_drc_type_mask = 0;
1115 int ret;
1116 void *fdt;
1117 SpaprPhbState *phb;
1118 char *buf;
1119
1120 fdt = g_malloc0(space);
1121 _FDT((fdt_create_empty_tree(fdt, space)));
1122
1123 /* Root node */
1124 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1125 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1126 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1127
1128 /* Guest UUID & Name*/
1129 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1130 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1131 if (qemu_uuid_set) {
1132 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1133 }
1134 g_free(buf);
1135
1136 if (qemu_get_vm_name()) {
1137 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1138 qemu_get_vm_name()));
1139 }
1140
1141 /* Host Model & Serial Number */
1142 if (spapr->host_model) {
1143 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1144 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1145 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1146 g_free(buf);
1147 }
1148
1149 if (spapr->host_serial) {
1150 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1151 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1152 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1153 g_free(buf);
1154 }
1155
1156 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1157 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1158
1159 /* /interrupt controller */
1160 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1161
1162 ret = spapr_dt_memory(spapr, fdt);
1163 if (ret < 0) {
1164 error_report("couldn't setup memory nodes in fdt");
1165 exit(1);
1166 }
1167
1168 /* /vdevice */
1169 spapr_dt_vdevice(spapr->vio_bus, fdt);
1170
1171 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1172 ret = spapr_dt_rng(fdt);
1173 if (ret < 0) {
1174 error_report("could not set up rng device in the fdt");
1175 exit(1);
1176 }
1177 }
1178
1179 QLIST_FOREACH(phb, &spapr->phbs, list) {
1180 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1181 if (ret < 0) {
1182 error_report("couldn't setup PCI devices in fdt");
1183 exit(1);
1184 }
1185 }
1186
1187 spapr_dt_cpus(fdt, spapr);
1188
1189 /* ibm,drc-indexes and friends */
1190 if (smc->dr_lmb_enabled) {
1191 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB;
1192 }
1193 if (smc->dr_phb_enabled) {
1194 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB;
1195 }
1196 if (mc->nvdimm_supported) {
1197 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM;
1198 }
1199 if (root_drc_type_mask) {
1200 _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask));
1201 }
1202
1203 if (mc->has_hotpluggable_cpus) {
1204 int offset = fdt_path_offset(fdt, "/cpus");
1205 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1206 if (ret < 0) {
1207 error_report("Couldn't set up CPU DR device tree properties");
1208 exit(1);
1209 }
1210 }
1211
1212 /* /event-sources */
1213 spapr_dt_events(spapr, fdt);
1214
1215 /* /rtas */
1216 spapr_dt_rtas(spapr, fdt);
1217
1218 /* /chosen */
1219 spapr_dt_chosen(spapr, fdt, reset);
1220
1221 /* /hypervisor */
1222 if (kvm_enabled()) {
1223 spapr_dt_hypervisor(spapr, fdt);
1224 }
1225
1226 /* Build memory reserve map */
1227 if (reset) {
1228 if (spapr->kernel_size) {
1229 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1230 spapr->kernel_size)));
1231 }
1232 if (spapr->initrd_size) {
1233 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1234 spapr->initrd_size)));
1235 }
1236 }
1237
1238 /* NVDIMM devices */
1239 if (mc->nvdimm_supported) {
1240 spapr_dt_persistent_memory(spapr, fdt);
1241 }
1242
1243 return fdt;
1244 }
1245
1246 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1247 {
1248 SpaprMachineState *spapr = opaque;
1249
1250 return (addr & 0x0fffffff) + spapr->kernel_addr;
1251 }
1252
1253 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1254 PowerPCCPU *cpu)
1255 {
1256 CPUPPCState *env = &cpu->env;
1257
1258 /* The TCG path should also be holding the BQL at this point */
1259 g_assert(qemu_mutex_iothread_locked());
1260
1261 if (msr_pr) {
1262 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1263 env->gpr[3] = H_PRIVILEGE;
1264 } else {
1265 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1266 }
1267 }
1268
1269 struct LPCRSyncState {
1270 target_ulong value;
1271 target_ulong mask;
1272 };
1273
1274 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1275 {
1276 struct LPCRSyncState *s = arg.host_ptr;
1277 PowerPCCPU *cpu = POWERPC_CPU(cs);
1278 CPUPPCState *env = &cpu->env;
1279 target_ulong lpcr;
1280
1281 cpu_synchronize_state(cs);
1282 lpcr = env->spr[SPR_LPCR];
1283 lpcr &= ~s->mask;
1284 lpcr |= s->value;
1285 ppc_store_lpcr(cpu, lpcr);
1286 }
1287
1288 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1289 {
1290 CPUState *cs;
1291 struct LPCRSyncState s = {
1292 .value = value,
1293 .mask = mask
1294 };
1295 CPU_FOREACH(cs) {
1296 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1297 }
1298 }
1299
1300 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1301 {
1302 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1303
1304 /* Copy PATE1:GR into PATE0:HR */
1305 entry->dw0 = spapr->patb_entry & PATE0_HR;
1306 entry->dw1 = spapr->patb_entry;
1307 }
1308
1309 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1310 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1311 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1312 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1313 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1314
1315 /*
1316 * Get the fd to access the kernel htab, re-opening it if necessary
1317 */
1318 static int get_htab_fd(SpaprMachineState *spapr)
1319 {
1320 Error *local_err = NULL;
1321
1322 if (spapr->htab_fd >= 0) {
1323 return spapr->htab_fd;
1324 }
1325
1326 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1327 if (spapr->htab_fd < 0) {
1328 error_report_err(local_err);
1329 }
1330
1331 return spapr->htab_fd;
1332 }
1333
1334 void close_htab_fd(SpaprMachineState *spapr)
1335 {
1336 if (spapr->htab_fd >= 0) {
1337 close(spapr->htab_fd);
1338 }
1339 spapr->htab_fd = -1;
1340 }
1341
1342 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1343 {
1344 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1345
1346 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1347 }
1348
1349 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1350 {
1351 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1352
1353 assert(kvm_enabled());
1354
1355 if (!spapr->htab) {
1356 return 0;
1357 }
1358
1359 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1360 }
1361
1362 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1363 hwaddr ptex, int n)
1364 {
1365 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1366 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1367
1368 if (!spapr->htab) {
1369 /*
1370 * HTAB is controlled by KVM. Fetch into temporary buffer
1371 */
1372 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1373 kvmppc_read_hptes(hptes, ptex, n);
1374 return hptes;
1375 }
1376
1377 /*
1378 * HTAB is controlled by QEMU. Just point to the internally
1379 * accessible PTEG.
1380 */
1381 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1382 }
1383
1384 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1385 const ppc_hash_pte64_t *hptes,
1386 hwaddr ptex, int n)
1387 {
1388 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1389
1390 if (!spapr->htab) {
1391 g_free((void *)hptes);
1392 }
1393
1394 /* Nothing to do for qemu managed HPT */
1395 }
1396
1397 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1398 uint64_t pte0, uint64_t pte1)
1399 {
1400 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1401 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1402
1403 if (!spapr->htab) {
1404 kvmppc_write_hpte(ptex, pte0, pte1);
1405 } else {
1406 if (pte0 & HPTE64_V_VALID) {
1407 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1408 /*
1409 * When setting valid, we write PTE1 first. This ensures
1410 * proper synchronization with the reading code in
1411 * ppc_hash64_pteg_search()
1412 */
1413 smp_wmb();
1414 stq_p(spapr->htab + offset, pte0);
1415 } else {
1416 stq_p(spapr->htab + offset, pte0);
1417 /*
1418 * When clearing it we set PTE0 first. This ensures proper
1419 * synchronization with the reading code in
1420 * ppc_hash64_pteg_search()
1421 */
1422 smp_wmb();
1423 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1424 }
1425 }
1426 }
1427
1428 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1429 uint64_t pte1)
1430 {
1431 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1432 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1433
1434 if (!spapr->htab) {
1435 /* There should always be a hash table when this is called */
1436 error_report("spapr_hpte_set_c called with no hash table !");
1437 return;
1438 }
1439
1440 /* The HW performs a non-atomic byte update */
1441 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1442 }
1443
1444 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1445 uint64_t pte1)
1446 {
1447 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1448 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1449
1450 if (!spapr->htab) {
1451 /* There should always be a hash table when this is called */
1452 error_report("spapr_hpte_set_r called with no hash table !");
1453 return;
1454 }
1455
1456 /* The HW performs a non-atomic byte update */
1457 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1458 }
1459
1460 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1461 {
1462 int shift;
1463
1464 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1465 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1466 * that's much more than is needed for Linux guests */
1467 shift = ctz64(pow2ceil(ramsize)) - 7;
1468 shift = MAX(shift, 18); /* Minimum architected size */
1469 shift = MIN(shift, 46); /* Maximum architected size */
1470 return shift;
1471 }
1472
1473 void spapr_free_hpt(SpaprMachineState *spapr)
1474 {
1475 g_free(spapr->htab);
1476 spapr->htab = NULL;
1477 spapr->htab_shift = 0;
1478 close_htab_fd(spapr);
1479 }
1480
1481 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp)
1482 {
1483 ERRP_GUARD();
1484 long rc;
1485
1486 /* Clean up any HPT info from a previous boot */
1487 spapr_free_hpt(spapr);
1488
1489 rc = kvmppc_reset_htab(shift);
1490
1491 if (rc == -EOPNOTSUPP) {
1492 error_setg(errp, "HPT not supported in nested guests");
1493 return -EOPNOTSUPP;
1494 }
1495
1496 if (rc < 0) {
1497 /* kernel-side HPT needed, but couldn't allocate one */
1498 error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
1499 shift);
1500 error_append_hint(errp, "Try smaller maxmem?\n");
1501 return -errno;
1502 } else if (rc > 0) {
1503 /* kernel-side HPT allocated */
1504 if (rc != shift) {
1505 error_setg(errp,
1506 "Requested order %d HPT, but kernel allocated order %ld",
1507 shift, rc);
1508 error_append_hint(errp, "Try smaller maxmem?\n");
1509 return -ENOSPC;
1510 }
1511
1512 spapr->htab_shift = shift;
1513 spapr->htab = NULL;
1514 } else {
1515 /* kernel-side HPT not needed, allocate in userspace instead */
1516 size_t size = 1ULL << shift;
1517 int i;
1518
1519 spapr->htab = qemu_memalign(size, size);
1520 memset(spapr->htab, 0, size);
1521 spapr->htab_shift = shift;
1522
1523 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1524 DIRTY_HPTE(HPTE(spapr->htab, i));
1525 }
1526 }
1527 /* We're setting up a hash table, so that means we're not radix */
1528 spapr->patb_entry = 0;
1529 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1530 return 0;
1531 }
1532
1533 void spapr_setup_hpt(SpaprMachineState *spapr)
1534 {
1535 int hpt_shift;
1536
1537 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1538 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1539 } else {
1540 uint64_t current_ram_size;
1541
1542 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1543 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1544 }
1545 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1546
1547 if (kvm_enabled()) {
1548 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1549
1550 /* Check our RMA fits in the possible VRMA */
1551 if (vrma_limit < spapr->rma_size) {
1552 error_report("Unable to create %" HWADDR_PRIu
1553 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1554 spapr->rma_size / MiB, vrma_limit / MiB);
1555 exit(EXIT_FAILURE);
1556 }
1557 }
1558 }
1559
1560 void spapr_check_mmu_mode(bool guest_radix)
1561 {
1562 if (guest_radix) {
1563 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1564 error_report("Guest requested unavailable MMU mode (radix).");
1565 exit(EXIT_FAILURE);
1566 }
1567 } else {
1568 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1569 && !kvmppc_has_cap_mmu_hash_v3()) {
1570 error_report("Guest requested unavailable MMU mode (hash).");
1571 exit(EXIT_FAILURE);
1572 }
1573 }
1574 }
1575
1576 static void spapr_machine_reset(MachineState *machine)
1577 {
1578 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1579 PowerPCCPU *first_ppc_cpu;
1580 hwaddr fdt_addr;
1581 void *fdt;
1582 int rc;
1583
1584 pef_kvm_reset(machine->cgs, &error_fatal);
1585 spapr_caps_apply(spapr);
1586
1587 first_ppc_cpu = POWERPC_CPU(first_cpu);
1588 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1589 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1590 spapr->max_compat_pvr)) {
1591 /*
1592 * If using KVM with radix mode available, VCPUs can be started
1593 * without a HPT because KVM will start them in radix mode.
1594 * Set the GR bit in PATE so that we know there is no HPT.
1595 */
1596 spapr->patb_entry = PATE1_GR;
1597 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1598 } else {
1599 spapr_setup_hpt(spapr);
1600 }
1601
1602 qemu_devices_reset();
1603
1604 spapr_ovec_cleanup(spapr->ov5_cas);
1605 spapr->ov5_cas = spapr_ovec_new();
1606
1607 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1608
1609 /*
1610 * This is fixing some of the default configuration of the XIVE
1611 * devices. To be called after the reset of the machine devices.
1612 */
1613 spapr_irq_reset(spapr, &error_fatal);
1614
1615 /*
1616 * There is no CAS under qtest. Simulate one to please the code that
1617 * depends on spapr->ov5_cas. This is especially needed to test device
1618 * unplug, so we do that before resetting the DRCs.
1619 */
1620 if (qtest_enabled()) {
1621 spapr_ovec_cleanup(spapr->ov5_cas);
1622 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1623 }
1624
1625 /* DRC reset may cause a device to be unplugged. This will cause troubles
1626 * if this device is used by another device (eg, a running vhost backend
1627 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1628 * situations, we reset DRCs after all devices have been reset.
1629 */
1630 spapr_drc_reset_all(spapr);
1631
1632 spapr_clear_pending_events(spapr);
1633
1634 /*
1635 * We place the device tree just below either the top of the RMA,
1636 * or just below 2GB, whichever is lower, so that it can be
1637 * processed with 32-bit real mode code if necessary
1638 */
1639 fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE;
1640
1641 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1642
1643 rc = fdt_pack(fdt);
1644
1645 /* Should only fail if we've built a corrupted tree */
1646 assert(rc == 0);
1647
1648 /* Load the fdt */
1649 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1650 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1651 g_free(spapr->fdt_blob);
1652 spapr->fdt_size = fdt_totalsize(fdt);
1653 spapr->fdt_initial_size = spapr->fdt_size;
1654 spapr->fdt_blob = fdt;
1655
1656 /* Set up the entry state */
1657 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 0, fdt_addr, 0);
1658 first_ppc_cpu->env.gpr[5] = 0;
1659
1660 spapr->fwnmi_system_reset_addr = -1;
1661 spapr->fwnmi_machine_check_addr = -1;
1662 spapr->fwnmi_machine_check_interlock = -1;
1663
1664 /* Signal all vCPUs waiting on this condition */
1665 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1666
1667 migrate_del_blocker(spapr->fwnmi_migration_blocker);
1668 }
1669
1670 static void spapr_create_nvram(SpaprMachineState *spapr)
1671 {
1672 DeviceState *dev = qdev_new("spapr-nvram");
1673 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1674
1675 if (dinfo) {
1676 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1677 &error_fatal);
1678 }
1679
1680 qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1681
1682 spapr->nvram = (struct SpaprNvram *)dev;
1683 }
1684
1685 static void spapr_rtc_create(SpaprMachineState *spapr)
1686 {
1687 object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1688 sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1689 &error_fatal, NULL);
1690 qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1691 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1692 "date");
1693 }
1694
1695 /* Returns whether we want to use VGA or not */
1696 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1697 {
1698 switch (vga_interface_type) {
1699 case VGA_NONE:
1700 return false;
1701 case VGA_DEVICE:
1702 return true;
1703 case VGA_STD:
1704 case VGA_VIRTIO:
1705 case VGA_CIRRUS:
1706 return pci_vga_init(pci_bus) != NULL;
1707 default:
1708 error_setg(errp,
1709 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1710 return false;
1711 }
1712 }
1713
1714 static int spapr_pre_load(void *opaque)
1715 {
1716 int rc;
1717
1718 rc = spapr_caps_pre_load(opaque);
1719 if (rc) {
1720 return rc;
1721 }
1722
1723 return 0;
1724 }
1725
1726 static int spapr_post_load(void *opaque, int version_id)
1727 {
1728 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1729 int err = 0;
1730
1731 err = spapr_caps_post_migration(spapr);
1732 if (err) {
1733 return err;
1734 }
1735
1736 /*
1737 * In earlier versions, there was no separate qdev for the PAPR
1738 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1739 * So when migrating from those versions, poke the incoming offset
1740 * value into the RTC device
1741 */
1742 if (version_id < 3) {
1743 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1744 if (err) {
1745 return err;
1746 }
1747 }
1748
1749 if (kvm_enabled() && spapr->patb_entry) {
1750 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1751 bool radix = !!(spapr->patb_entry & PATE1_GR);
1752 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1753
1754 /*
1755 * Update LPCR:HR and UPRT as they may not be set properly in
1756 * the stream
1757 */
1758 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1759 LPCR_HR | LPCR_UPRT);
1760
1761 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1762 if (err) {
1763 error_report("Process table config unsupported by the host");
1764 return -EINVAL;
1765 }
1766 }
1767
1768 err = spapr_irq_post_load(spapr, version_id);
1769 if (err) {
1770 return err;
1771 }
1772
1773 return err;
1774 }
1775
1776 static int spapr_pre_save(void *opaque)
1777 {
1778 int rc;
1779
1780 rc = spapr_caps_pre_save(opaque);
1781 if (rc) {
1782 return rc;
1783 }
1784
1785 return 0;
1786 }
1787
1788 static bool version_before_3(void *opaque, int version_id)
1789 {
1790 return version_id < 3;
1791 }
1792
1793 static bool spapr_pending_events_needed(void *opaque)
1794 {
1795 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1796 return !QTAILQ_EMPTY(&spapr->pending_events);
1797 }
1798
1799 static const VMStateDescription vmstate_spapr_event_entry = {
1800 .name = "spapr_event_log_entry",
1801 .version_id = 1,
1802 .minimum_version_id = 1,
1803 .fields = (VMStateField[]) {
1804 VMSTATE_UINT32(summary, SpaprEventLogEntry),
1805 VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1806 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1807 NULL, extended_length),
1808 VMSTATE_END_OF_LIST()
1809 },
1810 };
1811
1812 static const VMStateDescription vmstate_spapr_pending_events = {
1813 .name = "spapr_pending_events",
1814 .version_id = 1,
1815 .minimum_version_id = 1,
1816 .needed = spapr_pending_events_needed,
1817 .fields = (VMStateField[]) {
1818 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1819 vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1820 VMSTATE_END_OF_LIST()
1821 },
1822 };
1823
1824 static bool spapr_ov5_cas_needed(void *opaque)
1825 {
1826 SpaprMachineState *spapr = opaque;
1827 SpaprOptionVector *ov5_mask = spapr_ovec_new();
1828 bool cas_needed;
1829
1830 /* Prior to the introduction of SpaprOptionVector, we had two option
1831 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1832 * Both of these options encode machine topology into the device-tree
1833 * in such a way that the now-booted OS should still be able to interact
1834 * appropriately with QEMU regardless of what options were actually
1835 * negotiatied on the source side.
1836 *
1837 * As such, we can avoid migrating the CAS-negotiated options if these
1838 * are the only options available on the current machine/platform.
1839 * Since these are the only options available for pseries-2.7 and
1840 * earlier, this allows us to maintain old->new/new->old migration
1841 * compatibility.
1842 *
1843 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1844 * via default pseries-2.8 machines and explicit command-line parameters.
1845 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1846 * of the actual CAS-negotiated values to continue working properly. For
1847 * example, availability of memory unplug depends on knowing whether
1848 * OV5_HP_EVT was negotiated via CAS.
1849 *
1850 * Thus, for any cases where the set of available CAS-negotiatable
1851 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1852 * include the CAS-negotiated options in the migration stream, unless
1853 * if they affect boot time behaviour only.
1854 */
1855 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1856 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1857 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1858
1859 /* We need extra information if we have any bits outside the mask
1860 * defined above */
1861 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1862
1863 spapr_ovec_cleanup(ov5_mask);
1864
1865 return cas_needed;
1866 }
1867
1868 static const VMStateDescription vmstate_spapr_ov5_cas = {
1869 .name = "spapr_option_vector_ov5_cas",
1870 .version_id = 1,
1871 .minimum_version_id = 1,
1872 .needed = spapr_ov5_cas_needed,
1873 .fields = (VMStateField[]) {
1874 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1875 vmstate_spapr_ovec, SpaprOptionVector),
1876 VMSTATE_END_OF_LIST()
1877 },
1878 };
1879
1880 static bool spapr_patb_entry_needed(void *opaque)
1881 {
1882 SpaprMachineState *spapr = opaque;
1883
1884 return !!spapr->patb_entry;
1885 }
1886
1887 static const VMStateDescription vmstate_spapr_patb_entry = {
1888 .name = "spapr_patb_entry",
1889 .version_id = 1,
1890 .minimum_version_id = 1,
1891 .needed = spapr_patb_entry_needed,
1892 .fields = (VMStateField[]) {
1893 VMSTATE_UINT64(patb_entry, SpaprMachineState),
1894 VMSTATE_END_OF_LIST()
1895 },
1896 };
1897
1898 static bool spapr_irq_map_needed(void *opaque)
1899 {
1900 SpaprMachineState *spapr = opaque;
1901
1902 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1903 }
1904
1905 static const VMStateDescription vmstate_spapr_irq_map = {
1906 .name = "spapr_irq_map",
1907 .version_id = 1,
1908 .minimum_version_id = 1,
1909 .needed = spapr_irq_map_needed,
1910 .fields = (VMStateField[]) {
1911 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1912 VMSTATE_END_OF_LIST()
1913 },
1914 };
1915
1916 static bool spapr_dtb_needed(void *opaque)
1917 {
1918 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1919
1920 return smc->update_dt_enabled;
1921 }
1922
1923 static int spapr_dtb_pre_load(void *opaque)
1924 {
1925 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1926
1927 g_free(spapr->fdt_blob);
1928 spapr->fdt_blob = NULL;
1929 spapr->fdt_size = 0;
1930
1931 return 0;
1932 }
1933
1934 static const VMStateDescription vmstate_spapr_dtb = {
1935 .name = "spapr_dtb",
1936 .version_id = 1,
1937 .minimum_version_id = 1,
1938 .needed = spapr_dtb_needed,
1939 .pre_load = spapr_dtb_pre_load,
1940 .fields = (VMStateField[]) {
1941 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
1942 VMSTATE_UINT32(fdt_size, SpaprMachineState),
1943 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
1944 fdt_size),
1945 VMSTATE_END_OF_LIST()
1946 },
1947 };
1948
1949 static bool spapr_fwnmi_needed(void *opaque)
1950 {
1951 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1952
1953 return spapr->fwnmi_machine_check_addr != -1;
1954 }
1955
1956 static int spapr_fwnmi_pre_save(void *opaque)
1957 {
1958 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1959
1960 /*
1961 * Check if machine check handling is in progress and print a
1962 * warning message.
1963 */
1964 if (spapr->fwnmi_machine_check_interlock != -1) {
1965 warn_report("A machine check is being handled during migration. The"
1966 "handler may run and log hardware error on the destination");
1967 }
1968
1969 return 0;
1970 }
1971
1972 static const VMStateDescription vmstate_spapr_fwnmi = {
1973 .name = "spapr_fwnmi",
1974 .version_id = 1,
1975 .minimum_version_id = 1,
1976 .needed = spapr_fwnmi_needed,
1977 .pre_save = spapr_fwnmi_pre_save,
1978 .fields = (VMStateField[]) {
1979 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
1980 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
1981 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
1982 VMSTATE_END_OF_LIST()
1983 },
1984 };
1985
1986 static const VMStateDescription vmstate_spapr = {
1987 .name = "spapr",
1988 .version_id = 3,
1989 .minimum_version_id = 1,
1990 .pre_load = spapr_pre_load,
1991 .post_load = spapr_post_load,
1992 .pre_save = spapr_pre_save,
1993 .fields = (VMStateField[]) {
1994 /* used to be @next_irq */
1995 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1996
1997 /* RTC offset */
1998 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
1999
2000 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2001 VMSTATE_END_OF_LIST()
2002 },
2003 .subsections = (const VMStateDescription*[]) {
2004 &vmstate_spapr_ov5_cas,
2005 &vmstate_spapr_patb_entry,
2006 &vmstate_spapr_pending_events,
2007 &vmstate_spapr_cap_htm,
2008 &vmstate_spapr_cap_vsx,
2009 &vmstate_spapr_cap_dfp,
2010 &vmstate_spapr_cap_cfpc,
2011 &vmstate_spapr_cap_sbbc,
2012 &vmstate_spapr_cap_ibs,
2013 &vmstate_spapr_cap_hpt_maxpagesize,
2014 &vmstate_spapr_irq_map,
2015 &vmstate_spapr_cap_nested_kvm_hv,
2016 &vmstate_spapr_dtb,
2017 &vmstate_spapr_cap_large_decr,
2018 &vmstate_spapr_cap_ccf_assist,
2019 &vmstate_spapr_cap_fwnmi,
2020 &vmstate_spapr_fwnmi,
2021 NULL
2022 }
2023 };
2024
2025 static int htab_save_setup(QEMUFile *f, void *opaque)
2026 {
2027 SpaprMachineState *spapr = opaque;
2028
2029 /* "Iteration" header */
2030 if (!spapr->htab_shift) {
2031 qemu_put_be32(f, -1);
2032 } else {
2033 qemu_put_be32(f, spapr->htab_shift);
2034 }
2035
2036 if (spapr->htab) {
2037 spapr->htab_save_index = 0;
2038 spapr->htab_first_pass = true;
2039 } else {
2040 if (spapr->htab_shift) {
2041 assert(kvm_enabled());
2042 }
2043 }
2044
2045
2046 return 0;
2047 }
2048
2049 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2050 int chunkstart, int n_valid, int n_invalid)
2051 {
2052 qemu_put_be32(f, chunkstart);
2053 qemu_put_be16(f, n_valid);
2054 qemu_put_be16(f, n_invalid);
2055 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2056 HASH_PTE_SIZE_64 * n_valid);
2057 }
2058
2059 static void htab_save_end_marker(QEMUFile *f)
2060 {
2061 qemu_put_be32(f, 0);
2062 qemu_put_be16(f, 0);
2063 qemu_put_be16(f, 0);
2064 }
2065
2066 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2067 int64_t max_ns)
2068 {
2069 bool has_timeout = max_ns != -1;
2070 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2071 int index = spapr->htab_save_index;
2072 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2073
2074 assert(spapr->htab_first_pass);
2075
2076 do {
2077 int chunkstart;
2078
2079 /* Consume invalid HPTEs */
2080 while ((index < htabslots)
2081 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2082 CLEAN_HPTE(HPTE(spapr->htab, index));
2083 index++;
2084 }
2085
2086 /* Consume valid HPTEs */
2087 chunkstart = index;
2088 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2089 && HPTE_VALID(HPTE(spapr->htab, index))) {
2090 CLEAN_HPTE(HPTE(spapr->htab, index));
2091 index++;
2092 }
2093
2094 if (index > chunkstart) {
2095 int n_valid = index - chunkstart;
2096
2097 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2098
2099 if (has_timeout &&
2100 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2101 break;
2102 }
2103 }
2104 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2105
2106 if (index >= htabslots) {
2107 assert(index == htabslots);
2108 index = 0;
2109 spapr->htab_first_pass = false;
2110 }
2111 spapr->htab_save_index = index;
2112 }
2113
2114 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2115 int64_t max_ns)
2116 {
2117 bool final = max_ns < 0;
2118 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2119 int examined = 0, sent = 0;
2120 int index = spapr->htab_save_index;
2121 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2122
2123 assert(!spapr->htab_first_pass);
2124
2125 do {
2126 int chunkstart, invalidstart;
2127
2128 /* Consume non-dirty HPTEs */
2129 while ((index < htabslots)
2130 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2131 index++;
2132 examined++;
2133 }
2134
2135 chunkstart = index;
2136 /* Consume valid dirty HPTEs */
2137 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2138 && HPTE_DIRTY(HPTE(spapr->htab, index))
2139 && HPTE_VALID(HPTE(spapr->htab, index))) {
2140 CLEAN_HPTE(HPTE(spapr->htab, index));
2141 index++;
2142 examined++;
2143 }
2144
2145 invalidstart = index;
2146 /* Consume invalid dirty HPTEs */
2147 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2148 && HPTE_DIRTY(HPTE(spapr->htab, index))
2149 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2150 CLEAN_HPTE(HPTE(spapr->htab, index));
2151 index++;
2152 examined++;
2153 }
2154
2155 if (index > chunkstart) {
2156 int n_valid = invalidstart - chunkstart;
2157 int n_invalid = index - invalidstart;
2158
2159 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2160 sent += index - chunkstart;
2161
2162 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2163 break;
2164 }
2165 }
2166
2167 if (examined >= htabslots) {
2168 break;
2169 }
2170
2171 if (index >= htabslots) {
2172 assert(index == htabslots);
2173 index = 0;
2174 }
2175 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2176
2177 if (index >= htabslots) {
2178 assert(index == htabslots);
2179 index = 0;
2180 }
2181
2182 spapr->htab_save_index = index;
2183
2184 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2185 }
2186
2187 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2188 #define MAX_KVM_BUF_SIZE 2048
2189
2190 static int htab_save_iterate(QEMUFile *f, void *opaque)
2191 {
2192 SpaprMachineState *spapr = opaque;
2193 int fd;
2194 int rc = 0;
2195
2196 /* Iteration header */
2197 if (!spapr->htab_shift) {
2198 qemu_put_be32(f, -1);
2199 return 1;
2200 } else {
2201 qemu_put_be32(f, 0);
2202 }
2203
2204 if (!spapr->htab) {
2205 assert(kvm_enabled());
2206
2207 fd = get_htab_fd(spapr);
2208 if (fd < 0) {
2209 return fd;
2210 }
2211
2212 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2213 if (rc < 0) {
2214 return rc;
2215 }
2216 } else if (spapr->htab_first_pass) {
2217 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2218 } else {
2219 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2220 }
2221
2222 htab_save_end_marker(f);
2223
2224 return rc;
2225 }
2226
2227 static int htab_save_complete(QEMUFile *f, void *opaque)
2228 {
2229 SpaprMachineState *spapr = opaque;
2230 int fd;
2231
2232 /* Iteration header */
2233 if (!spapr->htab_shift) {
2234 qemu_put_be32(f, -1);
2235 return 0;
2236 } else {
2237 qemu_put_be32(f, 0);
2238 }
2239
2240 if (!spapr->htab) {
2241 int rc;
2242
2243 assert(kvm_enabled());
2244
2245 fd = get_htab_fd(spapr);
2246 if (fd < 0) {
2247 return fd;
2248 }
2249
2250 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2251 if (rc < 0) {
2252 return rc;
2253 }
2254 } else {
2255 if (spapr->htab_first_pass) {
2256 htab_save_first_pass(f, spapr, -1);
2257 }
2258 htab_save_later_pass(f, spapr, -1);
2259 }
2260
2261 /* End marker */
2262 htab_save_end_marker(f);
2263
2264 return 0;
2265 }
2266
2267 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2268 {
2269 SpaprMachineState *spapr = opaque;
2270 uint32_t section_hdr;
2271 int fd = -1;
2272 Error *local_err = NULL;
2273
2274 if (version_id < 1 || version_id > 1) {
2275 error_report("htab_load() bad version");
2276 return -EINVAL;
2277 }
2278
2279 section_hdr = qemu_get_be32(f);
2280
2281 if (section_hdr == -1) {
2282 spapr_free_hpt(spapr);
2283 return 0;
2284 }
2285
2286 if (section_hdr) {
2287 int ret;
2288
2289 /* First section gives the htab size */
2290 ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2291 if (ret < 0) {
2292 error_report_err(local_err);
2293 return ret;
2294 }
2295 return 0;
2296 }
2297
2298 if (!spapr->htab) {
2299 assert(kvm_enabled());
2300
2301 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2302 if (fd < 0) {
2303 error_report_err(local_err);
2304 return fd;
2305 }
2306 }
2307
2308 while (true) {
2309 uint32_t index;
2310 uint16_t n_valid, n_invalid;
2311
2312 index = qemu_get_be32(f);
2313 n_valid = qemu_get_be16(f);
2314 n_invalid = qemu_get_be16(f);
2315
2316 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2317 /* End of Stream */
2318 break;
2319 }
2320
2321 if ((index + n_valid + n_invalid) >
2322 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2323 /* Bad index in stream */
2324 error_report(
2325 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2326 index, n_valid, n_invalid, spapr->htab_shift);
2327 return -EINVAL;
2328 }
2329
2330 if (spapr->htab) {
2331 if (n_valid) {
2332 qemu_get_buffer(f, HPTE(spapr->htab, index),
2333 HASH_PTE_SIZE_64 * n_valid);
2334 }
2335 if (n_invalid) {
2336 memset(HPTE(spapr->htab, index + n_valid), 0,
2337 HASH_PTE_SIZE_64 * n_invalid);
2338 }
2339 } else {
2340 int rc;
2341
2342 assert(fd >= 0);
2343
2344 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid,
2345 &local_err);
2346 if (rc < 0) {
2347 error_report_err(local_err);
2348 return rc;
2349 }
2350 }
2351 }
2352
2353 if (!spapr->htab) {
2354 assert(fd >= 0);
2355 close(fd);
2356 }
2357
2358 return 0;
2359 }
2360
2361 static void htab_save_cleanup(void *opaque)
2362 {
2363 SpaprMachineState *spapr = opaque;
2364
2365 close_htab_fd(spapr);
2366 }
2367
2368 static SaveVMHandlers savevm_htab_handlers = {
2369 .save_setup = htab_save_setup,
2370 .save_live_iterate = htab_save_iterate,
2371 .save_live_complete_precopy = htab_save_complete,
2372 .save_cleanup = htab_save_cleanup,
2373 .load_state = htab_load,
2374 };
2375
2376 static void spapr_boot_set(void *opaque, const char *boot_device,
2377 Error **errp)
2378 {
2379 MachineState *machine = MACHINE(opaque);
2380 machine->boot_order = g_strdup(boot_device);
2381 }
2382
2383 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2384 {
2385 MachineState *machine = MACHINE(spapr);
2386 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2387 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2388 int i;
2389
2390 for (i = 0; i < nr_lmbs; i++) {
2391 uint64_t addr;
2392
2393 addr = i * lmb_size + machine->device_memory->base;
2394 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2395 addr / lmb_size);
2396 }
2397 }
2398
2399 /*
2400 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2401 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2402 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2403 */
2404 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2405 {
2406 int i;
2407
2408 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2409 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2410 " is not aligned to %" PRIu64 " MiB",
2411 machine->ram_size,
2412 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2413 return;
2414 }
2415
2416 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2417 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2418 " is not aligned to %" PRIu64 " MiB",
2419 machine->ram_size,
2420 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2421 return;
2422 }
2423
2424 for (i = 0; i < machine->numa_state->num_nodes; i++) {
2425 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2426 error_setg(errp,
2427 "Node %d memory size 0x%" PRIx64
2428 " is not aligned to %" PRIu64 " MiB",
2429 i, machine->numa_state->nodes[i].node_mem,
2430 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2431 return;
2432 }
2433 }
2434 }
2435
2436 /* find cpu slot in machine->possible_cpus by core_id */
2437 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2438 {
2439 int index = id / ms->smp.threads;
2440
2441 if (index >= ms->possible_cpus->len) {
2442 return NULL;
2443 }
2444 if (idx) {
2445 *idx = index;
2446 }
2447 return &ms->possible_cpus->cpus[index];
2448 }
2449
2450 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2451 {
2452 MachineState *ms = MACHINE(spapr);
2453 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2454 Error *local_err = NULL;
2455 bool vsmt_user = !!spapr->vsmt;
2456 int kvm_smt = kvmppc_smt_threads();
2457 int ret;
2458 unsigned int smp_threads = ms->smp.threads;
2459
2460 if (!kvm_enabled() && (smp_threads > 1)) {
2461 error_setg(errp, "TCG cannot support more than 1 thread/core "
2462 "on a pseries machine");
2463 return;
2464 }
2465 if (!is_power_of_2(smp_threads)) {
2466 error_setg(errp, "Cannot support %d threads/core on a pseries "
2467 "machine because it must be a power of 2", smp_threads);
2468 return;
2469 }
2470
2471 /* Detemine the VSMT mode to use: */
2472 if (vsmt_user) {
2473 if (spapr->vsmt < smp_threads) {
2474 error_setg(errp, "Cannot support VSMT mode %d"
2475 " because it must be >= threads/core (%d)",
2476 spapr->vsmt, smp_threads);
2477 return;
2478 }
2479 /* In this case, spapr->vsmt has been set by the command line */
2480 } else if (!smc->smp_threads_vsmt) {
2481 /*
2482 * Default VSMT value is tricky, because we need it to be as
2483 * consistent as possible (for migration), but this requires
2484 * changing it for at least some existing cases. We pick 8 as
2485 * the value that we'd get with KVM on POWER8, the
2486 * overwhelmingly common case in production systems.
2487 */
2488 spapr->vsmt = MAX(8, smp_threads);
2489 } else {
2490 spapr->vsmt = smp_threads;
2491 }
2492
2493 /* KVM: If necessary, set the SMT mode: */
2494 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2495 ret = kvmppc_set_smt_threads(spapr->vsmt);
2496 if (ret) {
2497 /* Looks like KVM isn't able to change VSMT mode */
2498 error_setg(&local_err,
2499 "Failed to set KVM's VSMT mode to %d (errno %d)",
2500 spapr->vsmt, ret);
2501 /* We can live with that if the default one is big enough
2502 * for the number of threads, and a submultiple of the one
2503 * we want. In this case we'll waste some vcpu ids, but
2504 * behaviour will be correct */
2505 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2506 warn_report_err(local_err);
2507 } else {
2508 if (!vsmt_user) {
2509 error_append_hint(&local_err,
2510 "On PPC, a VM with %d threads/core"
2511 " on a host with %d threads/core"
2512 " requires the use of VSMT mode %d.\n",
2513 smp_threads, kvm_smt, spapr->vsmt);
2514 }
2515 kvmppc_error_append_smt_possible_hint(&local_err);
2516 error_propagate(errp, local_err);
2517 }
2518 }
2519 }
2520 /* else TCG: nothing to do currently */
2521 }
2522
2523 static void spapr_init_cpus(SpaprMachineState *spapr)
2524 {
2525 MachineState *machine = MACHINE(spapr);
2526 MachineClass *mc = MACHINE_GET_CLASS(machine);
2527 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2528 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2529 const CPUArchIdList *possible_cpus;
2530 unsigned int smp_cpus = machine->smp.cpus;
2531 unsigned int smp_threads = machine->smp.threads;
2532 unsigned int max_cpus = machine->smp.max_cpus;
2533 int boot_cores_nr = smp_cpus / smp_threads;
2534 int i;
2535
2536 possible_cpus = mc->possible_cpu_arch_ids(machine);
2537 if (mc->has_hotpluggable_cpus) {
2538 if (smp_cpus % smp_threads) {
2539 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2540 smp_cpus, smp_threads);
2541 exit(1);
2542 }
2543 if (max_cpus % smp_threads) {
2544 error_report("max_cpus (%u) must be multiple of threads (%u)",
2545 max_cpus, smp_threads);
2546 exit(1);
2547 }
2548 } else {
2549 if (max_cpus != smp_cpus) {
2550 error_report("This machine version does not support CPU hotplug");
2551 exit(1);
2552 }
2553 boot_cores_nr = possible_cpus->len;
2554 }
2555
2556 if (smc->pre_2_10_has_unused_icps) {
2557 int i;
2558
2559 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2560 /* Dummy entries get deregistered when real ICPState objects
2561 * are registered during CPU core hotplug.
2562 */
2563 pre_2_10_vmstate_register_dummy_icp(i);
2564 }
2565 }
2566
2567 for (i = 0; i < possible_cpus->len; i++) {
2568 int core_id = i * smp_threads;
2569
2570 if (mc->has_hotpluggable_cpus) {
2571 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2572 spapr_vcpu_id(spapr, core_id));
2573 }
2574
2575 if (i < boot_cores_nr) {
2576 Object *core = object_new(type);
2577 int nr_threads = smp_threads;
2578
2579 /* Handle the partially filled core for older machine types */
2580 if ((i + 1) * smp_threads >= smp_cpus) {
2581 nr_threads = smp_cpus - i * smp_threads;
2582 }
2583
2584 object_property_set_int(core, "nr-threads", nr_threads,
2585 &error_fatal);
2586 object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2587 &error_fatal);
2588 qdev_realize(DEVICE(core), NULL, &error_fatal);
2589
2590 object_unref(core);
2591 }
2592 }
2593 }
2594
2595 static PCIHostState *spapr_create_default_phb(void)
2596 {
2597 DeviceState *dev;
2598
2599 dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2600 qdev_prop_set_uint32(dev, "index", 0);
2601 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2602
2603 return PCI_HOST_BRIDGE(dev);
2604 }
2605
2606 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2607 {
2608 MachineState *machine = MACHINE(spapr);
2609 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2610 hwaddr rma_size = machine->ram_size;
2611 hwaddr node0_size = spapr_node0_size(machine);
2612
2613 /* RMA has to fit in the first NUMA node */
2614 rma_size = MIN(rma_size, node0_size);
2615
2616 /*
2617 * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2618 * never exceed that
2619 */
2620 rma_size = MIN(rma_size, 1 * TiB);
2621
2622 /*
2623 * Clamp the RMA size based on machine type. This is for
2624 * migration compatibility with older qemu versions, which limited
2625 * the RMA size for complicated and mostly bad reasons.
2626 */
2627 if (smc->rma_limit) {
2628 rma_size = MIN(rma_size, smc->rma_limit);
2629 }
2630
2631 if (rma_size < MIN_RMA_SLOF) {
2632 error_setg(errp,
2633 "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2634 "ldMiB guest RMA (Real Mode Area memory)",
2635 MIN_RMA_SLOF / MiB);
2636 return 0;
2637 }
2638
2639 return rma_size;
2640 }
2641
2642 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
2643 {
2644 MachineState *machine = MACHINE(spapr);
2645 int i;
2646
2647 for (i = 0; i < machine->ram_slots; i++) {
2648 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
2649 }
2650 }
2651
2652 /* pSeries LPAR / sPAPR hardware init */
2653 static void spapr_machine_init(MachineState *machine)
2654 {
2655 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2656 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2657 MachineClass *mc = MACHINE_GET_CLASS(machine);
2658 const char *bios_name = machine->firmware ?: FW_FILE_NAME;
2659 const char *kernel_filename = machine->kernel_filename;
2660 const char *initrd_filename = machine->initrd_filename;
2661 PCIHostState *phb;
2662 int i;
2663 MemoryRegion *sysmem = get_system_memory();
2664 long load_limit, fw_size;
2665 char *filename;
2666 Error *resize_hpt_err = NULL;
2667
2668 /*
2669 * if Secure VM (PEF) support is configured, then initialize it
2670 */
2671 pef_kvm_init(machine->cgs, &error_fatal);
2672
2673 msi_nonbroken = true;
2674
2675 QLIST_INIT(&spapr->phbs);
2676 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2677
2678 /* Determine capabilities to run with */
2679 spapr_caps_init(spapr);
2680
2681 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2682 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2683 /*
2684 * If the user explicitly requested a mode we should either
2685 * supply it, or fail completely (which we do below). But if
2686 * it's not set explicitly, we reset our mode to something
2687 * that works
2688 */
2689 if (resize_hpt_err) {
2690 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2691 error_free(resize_hpt_err);
2692 resize_hpt_err = NULL;
2693 } else {
2694 spapr->resize_hpt = smc->resize_hpt_default;
2695 }
2696 }
2697
2698 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2699
2700 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2701 /*
2702 * User requested HPT resize, but this host can't supply it. Bail out
2703 */
2704 error_report_err(resize_hpt_err);
2705 exit(1);
2706 }
2707 error_free(resize_hpt_err);
2708
2709 spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2710
2711 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2712 load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD;
2713
2714 /*
2715 * VSMT must be set in order to be able to compute VCPU ids, ie to
2716 * call spapr_max_server_number() or spapr_vcpu_id().
2717 */
2718 spapr_set_vsmt_mode(spapr, &error_fatal);
2719
2720 /* Set up Interrupt Controller before we create the VCPUs */
2721 spapr_irq_init(spapr, &error_fatal);
2722
2723 /* Set up containers for ibm,client-architecture-support negotiated options
2724 */
2725 spapr->ov5 = spapr_ovec_new();
2726 spapr->ov5_cas = spapr_ovec_new();
2727
2728 if (smc->dr_lmb_enabled) {
2729 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2730 spapr_validate_node_memory(machine, &error_fatal);
2731 }
2732
2733 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2734
2735 /* advertise support for dedicated HP event source to guests */
2736 if (spapr->use_hotplug_event_source) {
2737 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2738 }
2739
2740 /* advertise support for HPT resizing */
2741 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2742 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2743 }
2744
2745 /* advertise support for ibm,dyamic-memory-v2 */
2746 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2747
2748 /* advertise XIVE on POWER9 machines */
2749 if (spapr->irq->xive) {
2750 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2751 }
2752
2753 /* init CPUs */
2754 spapr_init_cpus(spapr);
2755
2756 /*
2757 * check we don't have a memory-less/cpu-less NUMA node
2758 * Firmware relies on the existing memory/cpu topology to provide the
2759 * NUMA topology to the kernel.
2760 * And the linux kernel needs to know the NUMA topology at start
2761 * to be able to hotplug CPUs later.
2762 */
2763 if (machine->numa_state->num_nodes) {
2764 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
2765 /* check for memory-less node */
2766 if (machine->numa_state->nodes[i].node_mem == 0) {
2767 CPUState *cs;
2768 int found = 0;
2769 /* check for cpu-less node */
2770 CPU_FOREACH(cs) {
2771 PowerPCCPU *cpu = POWERPC_CPU(cs);
2772 if (cpu->node_id == i) {
2773 found = 1;
2774 break;
2775 }
2776 }
2777 /* memory-less and cpu-less node */
2778 if (!found) {
2779 error_report(
2780 "Memory-less/cpu-less nodes are not supported (node %d)",
2781 i);
2782 exit(1);
2783 }
2784 }
2785 }
2786
2787 }
2788
2789 spapr->gpu_numa_id = spapr_numa_initial_nvgpu_numa_id(machine);
2790
2791 /* Init numa_assoc_array */
2792 spapr_numa_associativity_init(spapr, machine);
2793
2794 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2795 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2796 spapr->max_compat_pvr)) {
2797 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2798 /* KVM and TCG always allow GTSE with radix... */
2799 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2800 }
2801 /* ... but not with hash (currently). */
2802
2803 if (kvm_enabled()) {
2804 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2805 kvmppc_enable_logical_ci_hcalls();
2806 kvmppc_enable_set_mode_hcall();
2807
2808 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2809 kvmppc_enable_clear_ref_mod_hcalls();
2810
2811 /* Enable H_PAGE_INIT */
2812 kvmppc_enable_h_page_init();
2813 }
2814
2815 /* map RAM */
2816 memory_region_add_subregion(sysmem, 0, machine->ram);
2817
2818 /* always allocate the device memory information */
2819 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2820
2821 /* initialize hotplug memory address space */
2822 if (machine->ram_size < machine->maxram_size) {
2823 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2824 /*
2825 * Limit the number of hotpluggable memory slots to half the number
2826 * slots that KVM supports, leaving the other half for PCI and other
2827 * devices. However ensure that number of slots doesn't drop below 32.
2828 */
2829 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2830 SPAPR_MAX_RAM_SLOTS;
2831
2832 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2833 max_memslots = SPAPR_MAX_RAM_SLOTS;
2834 }
2835 if (machine->ram_slots > max_memslots) {
2836 error_report("Specified number of memory slots %"
2837 PRIu64" exceeds max supported %d",
2838 machine->ram_slots, max_memslots);
2839 exit(1);
2840 }
2841
2842 machine->device_memory->base = ROUND_UP(machine->ram_size,
2843 SPAPR_DEVICE_MEM_ALIGN);
2844 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2845 "device-memory", device_mem_size);
2846 memory_region_add_subregion(sysmem, machine->device_memory->base,
2847 &machine->device_memory->mr);
2848 }
2849
2850 if (smc->dr_lmb_enabled) {
2851 spapr_create_lmb_dr_connectors(spapr);
2852 }
2853
2854 if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2855 /* Create the error string for live migration blocker */
2856 error_setg(&spapr->fwnmi_migration_blocker,
2857 "A machine check is being handled during migration. The handler"
2858 "may run and log hardware error on the destination");
2859 }
2860
2861 if (mc->nvdimm_supported) {
2862 spapr_create_nvdimm_dr_connectors(spapr);
2863 }
2864
2865 /* Set up RTAS event infrastructure */
2866 spapr_events_init(spapr);
2867
2868 /* Set up the RTC RTAS interfaces */
2869 spapr_rtc_create(spapr);
2870
2871 /* Set up VIO bus */
2872 spapr->vio_bus = spapr_vio_bus_init();
2873
2874 for (i = 0; serial_hd(i); i++) {
2875 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2876 }
2877
2878 /* We always have at least the nvram device on VIO */
2879 spapr_create_nvram(spapr);
2880
2881 /*
2882 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2883 * connectors (described in root DT node's "ibm,drc-types" property)
2884 * are pre-initialized here. additional child connectors (such as
2885 * connectors for a PHBs PCI slots) are added as needed during their
2886 * parent's realization.
2887 */
2888 if (smc->dr_phb_enabled) {
2889 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2890 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2891 }
2892 }
2893
2894 /* Set up PCI */
2895 spapr_pci_rtas_init();
2896
2897 phb = spapr_create_default_phb();
2898
2899 for (i = 0; i < nb_nics; i++) {
2900 NICInfo *nd = &nd_table[i];
2901
2902 if (!nd->model) {
2903 nd->model = g_strdup("spapr-vlan");
2904 }
2905
2906 if (g_str_equal(nd->model, "spapr-vlan") ||
2907 g_str_equal(nd->model, "ibmveth")) {
2908 spapr_vlan_create(spapr->vio_bus, nd);
2909 } else {
2910 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2911 }
2912 }
2913
2914 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2915 spapr_vscsi_create(spapr->vio_bus);
2916 }
2917
2918 /* Graphics */
2919 if (spapr_vga_init(phb->bus, &error_fatal)) {
2920 spapr->has_graphics = true;
2921 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2922 }
2923
2924 if (machine->usb) {
2925 if (smc->use_ohci_by_default) {
2926 pci_create_simple(phb->bus, -1, "pci-ohci");
2927 } else {
2928 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2929 }
2930
2931 if (spapr->has_graphics) {
2932 USBBus *usb_bus = usb_bus_find(-1);
2933
2934 usb_create_simple(usb_bus, "usb-kbd");
2935 usb_create_simple(usb_bus, "usb-mouse");
2936 }
2937 }
2938
2939 if (kernel_filename) {
2940 spapr->kernel_size = load_elf(kernel_filename, NULL,
2941 translate_kernel_address, spapr,
2942 NULL, NULL, NULL, NULL, 1,
2943 PPC_ELF_MACHINE, 0, 0);
2944 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2945 spapr->kernel_size = load_elf(kernel_filename, NULL,
2946 translate_kernel_address, spapr,
2947 NULL, NULL, NULL, NULL, 0,
2948 PPC_ELF_MACHINE, 0, 0);
2949 spapr->kernel_le = spapr->kernel_size > 0;
2950 }
2951 if (spapr->kernel_size < 0) {
2952 error_report("error loading %s: %s", kernel_filename,
2953 load_elf_strerror(spapr->kernel_size));
2954 exit(1);
2955 }
2956
2957 /* load initrd */
2958 if (initrd_filename) {
2959 /* Try to locate the initrd in the gap between the kernel
2960 * and the firmware. Add a bit of space just in case
2961 */
2962 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
2963 + 0x1ffff) & ~0xffff;
2964 spapr->initrd_size = load_image_targphys(initrd_filename,
2965 spapr->initrd_base,
2966 load_limit
2967 - spapr->initrd_base);
2968 if (spapr->initrd_size < 0) {
2969 error_report("could not load initial ram disk '%s'",
2970 initrd_filename);
2971 exit(1);
2972 }
2973 }
2974 }
2975
2976 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2977 if (!filename) {
2978 error_report("Could not find LPAR firmware '%s'", bios_name);
2979 exit(1);
2980 }
2981 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2982 if (fw_size <= 0) {
2983 error_report("Could not load LPAR firmware '%s'", filename);
2984 exit(1);
2985 }
2986 g_free(filename);
2987
2988 /* FIXME: Should register things through the MachineState's qdev
2989 * interface, this is a legacy from the sPAPREnvironment structure
2990 * which predated MachineState but had a similar function */
2991 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2992 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
2993 &savevm_htab_handlers, spapr);
2994
2995 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
2996
2997 qemu_register_boot_set(spapr_boot_set, spapr);
2998
2999 /*
3000 * Nothing needs to be done to resume a suspended guest because
3001 * suspending does not change the machine state, so no need for
3002 * a ->wakeup method.
3003 */
3004 qemu_register_wakeup_support();
3005
3006 if (kvm_enabled()) {
3007 /* to stop and start vmclock */
3008 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3009 &spapr->tb);
3010
3011 kvmppc_spapr_enable_inkernel_multitce();
3012 }
3013
3014 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3015 }
3016
3017 #define DEFAULT_KVM_TYPE "auto"
3018 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3019 {
3020 /*
3021 * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3022 * accomodate the 'HV' and 'PV' formats that exists in the
3023 * wild. The 'auto' mode is being introduced already as
3024 * lower-case, thus we don't need to bother checking for
3025 * "AUTO".
3026 */
3027 if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) {
3028 return 0;
3029 }
3030
3031 if (!g_ascii_strcasecmp(vm_type, "hv")) {
3032 return 1;
3033 }
3034
3035 if (!g_ascii_strcasecmp(vm_type, "pr")) {
3036 return 2;
3037 }
3038
3039 error_report("Unknown kvm-type specified '%s'", vm_type);
3040 exit(1);
3041 }
3042
3043 /*
3044 * Implementation of an interface to adjust firmware path
3045 * for the bootindex property handling.
3046 */
3047 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3048 DeviceState *dev)
3049 {
3050 #define CAST(type, obj, name) \
3051 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3052 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3053 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3054 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3055 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3056
3057 if (d) {
3058 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3059 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3060 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3061
3062 if (spapr) {
3063 /*
3064 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3065 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3066 * 0x8000 | (target << 8) | (bus << 5) | lun
3067 * (see the "Logical unit addressing format" table in SAM5)
3068 */
3069 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3070 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3071 (uint64_t)id << 48);
3072 } else if (virtio) {
3073 /*
3074 * We use SRP luns of the form 01000000 | (target << 8) | lun
3075 * in the top 32 bits of the 64-bit LUN
3076 * Note: the quote above is from SLOF and it is wrong,
3077 * the actual binding is:
3078 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3079 */
3080 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3081 if (d->lun >= 256) {
3082 /* Use the LUN "flat space addressing method" */
3083 id |= 0x4000;
3084 }
3085 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3086 (uint64_t)id << 32);
3087 } else if (usb) {
3088 /*
3089 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3090 * in the top 32 bits of the 64-bit LUN
3091 */
3092 unsigned usb_port = atoi(usb->port->path);
3093 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3094 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3095 (uint64_t)id << 32);
3096 }
3097 }
3098
3099 /*
3100 * SLOF probes the USB devices, and if it recognizes that the device is a
3101 * storage device, it changes its name to "storage" instead of "usb-host",
3102 * and additionally adds a child node for the SCSI LUN, so the correct
3103 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3104 */
3105 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3106 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3107 if (usb_host_dev_is_scsi_storage(usbdev)) {
3108 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3109 }
3110 }
3111
3112 if (phb) {
3113 /* Replace "pci" with "pci@800000020000000" */
3114 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3115 }
3116
3117 if (vsc) {
3118 /* Same logic as virtio above */
3119 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3120 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3121 }
3122
3123 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3124 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3125 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3126 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3127 }
3128
3129 if (pcidev) {
3130 return spapr_pci_fw_dev_name(pcidev);
3131 }
3132
3133 return NULL;
3134 }
3135
3136 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3137 {
3138 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3139
3140 return g_strdup(spapr->kvm_type);
3141 }
3142
3143 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3144 {
3145 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3146
3147 g_free(spapr->kvm_type);
3148 spapr->kvm_type = g_strdup(value);
3149 }
3150
3151 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3152 {
3153 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3154
3155 return spapr->use_hotplug_event_source;
3156 }
3157
3158 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3159 Error **errp)
3160 {
3161 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3162
3163 spapr->use_hotplug_event_source = value;
3164 }
3165
3166 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3167 {
3168 return true;
3169 }
3170
3171 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3172 {
3173 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3174
3175 switch (spapr->resize_hpt) {
3176 case SPAPR_RESIZE_HPT_DEFAULT:
3177 return g_strdup("default");
3178 case SPAPR_RESIZE_HPT_DISABLED:
3179 return g_strdup("disabled");
3180 case SPAPR_RESIZE_HPT_ENABLED:
3181 return g_strdup("enabled");
3182 case SPAPR_RESIZE_HPT_REQUIRED:
3183 return g_strdup("required");
3184 }
3185 g_assert_not_reached();
3186 }
3187
3188 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3189 {
3190 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3191
3192 if (strcmp(value, "default") == 0) {
3193 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3194 } else if (strcmp(value, "disabled") == 0) {
3195 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3196 } else if (strcmp(value, "enabled") == 0) {
3197 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3198 } else if (strcmp(value, "required") == 0) {
3199 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3200 } else {
3201 error_setg(errp, "Bad value for \"resize-hpt\" property");
3202 }
3203 }
3204
3205 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3206 {
3207 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3208
3209 if (spapr->irq == &spapr_irq_xics_legacy) {
3210 return g_strdup("legacy");
3211 } else if (spapr->irq == &spapr_irq_xics) {
3212 return g_strdup("xics");
3213 } else if (spapr->irq == &spapr_irq_xive) {
3214 return g_strdup("xive");
3215 } else if (spapr->irq == &spapr_irq_dual) {
3216 return g_strdup("dual");
3217 }
3218 g_assert_not_reached();
3219 }
3220
3221 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3222 {
3223 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3224
3225 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3226 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3227 return;
3228 }
3229
3230 /* The legacy IRQ backend can not be set */
3231 if (strcmp(value, "xics") == 0) {
3232 spapr->irq = &spapr_irq_xics;
3233 } else if (strcmp(value, "xive") == 0) {
3234 spapr->irq = &spapr_irq_xive;
3235 } else if (strcmp(value, "dual") == 0) {
3236 spapr->irq = &spapr_irq_dual;
3237 } else {
3238 error_setg(errp, "Bad value for \"ic-mode\" property");
3239 }
3240 }
3241
3242 static char *spapr_get_host_model(Object *obj, Error **errp)
3243 {
3244 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3245
3246 return g_strdup(spapr->host_model);
3247 }
3248
3249 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3250 {
3251 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3252
3253 g_free(spapr->host_model);
3254 spapr->host_model = g_strdup(value);
3255 }
3256
3257 static char *spapr_get_host_serial(Object *obj, Error **errp)
3258 {
3259 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3260
3261 return g_strdup(spapr->host_serial);
3262 }
3263
3264 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3265 {
3266 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3267
3268 g_free(spapr->host_serial);
3269 spapr->host_serial = g_strdup(value);
3270 }
3271
3272 static void spapr_instance_init(Object *obj)
3273 {
3274 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3275 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3276 MachineState *ms = MACHINE(spapr);
3277 MachineClass *mc = MACHINE_GET_CLASS(ms);
3278
3279 /*
3280 * NVDIMM support went live in 5.1 without considering that, in
3281 * other archs, the user needs to enable NVDIMM support with the
3282 * 'nvdimm' machine option and the default behavior is NVDIMM
3283 * support disabled. It is too late to roll back to the standard
3284 * behavior without breaking 5.1 guests.
3285 */
3286 if (mc->nvdimm_supported) {
3287 ms->nvdimms_state->is_enabled = true;
3288 }
3289
3290 spapr->htab_fd = -1;
3291 spapr->use_hotplug_event_source = true;
3292 spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE);
3293 object_property_add_str(obj, "kvm-type",
3294 spapr_get_kvm_type, spapr_set_kvm_type);
3295 object_property_set_description(obj, "kvm-type",
3296 "Specifies the KVM virtualization mode (auto,"
3297 " hv, pr). Defaults to 'auto'. This mode will use"
3298 " any available KVM module loaded in the host,"
3299 " where kvm_hv takes precedence if both kvm_hv and"
3300 " kvm_pr are loaded.");
3301 object_property_add_bool(obj, "modern-hotplug-events",
3302 spapr_get_modern_hotplug_events,
3303 spapr_set_modern_hotplug_events);
3304 object_property_set_description(obj, "modern-hotplug-events",
3305 "Use dedicated hotplug event mechanism in"
3306 " place of standard EPOW events when possible"
3307 " (required for memory hot-unplug support)");
3308 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3309 "Maximum permitted CPU compatibility mode");
3310
3311 object_property_add_str(obj, "resize-hpt",
3312 spapr_get_resize_hpt, spapr_set_resize_hpt);
3313 object_property_set_description(obj, "resize-hpt",
3314 "Resizing of the Hash Page Table (enabled, disabled, required)");
3315 object_property_add_uint32_ptr(obj, "vsmt",
3316 &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3317 object_property_set_description(obj, "vsmt",
3318 "Virtual SMT: KVM behaves as if this were"
3319 " the host's SMT mode");
3320
3321 object_property_add_bool(obj, "vfio-no-msix-emulation",
3322 spapr_get_msix_emulation, NULL);
3323
3324 object_property_add_uint64_ptr(obj, "kernel-addr",
3325 &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3326 object_property_set_description(obj, "kernel-addr",
3327 stringify(KERNEL_LOAD_ADDR)
3328 " for -kernel is the default");
3329 spapr->kernel_addr = KERNEL_LOAD_ADDR;
3330 /* The machine class defines the default interrupt controller mode */
3331 spapr->irq = smc->irq;
3332 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3333 spapr_set_ic_mode);
3334 object_property_set_description(obj, "ic-mode",
3335 "Specifies the interrupt controller mode (xics, xive, dual)");
3336
3337 object_property_add_str(obj, "host-model",
3338 spapr_get_host_model, spapr_set_host_model);
3339 object_property_set_description(obj, "host-model",
3340 "Host model to advertise in guest device tree");
3341 object_property_add_str(obj, "host-serial",
3342 spapr_get_host_serial, spapr_set_host_serial);
3343 object_property_set_description(obj, "host-serial",
3344 "Host serial number to advertise in guest device tree");
3345 }
3346
3347 static void spapr_machine_finalizefn(Object *obj)
3348 {
3349 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3350
3351 g_free(spapr->kvm_type);
3352 }
3353
3354 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3355 {
3356 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3357 PowerPCCPU *cpu = POWERPC_CPU(cs);
3358 CPUPPCState *env = &cpu->env;
3359
3360 cpu_synchronize_state(cs);
3361 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3362 if (spapr->fwnmi_system_reset_addr != -1) {
3363 uint64_t rtas_addr, addr;
3364
3365 /* get rtas addr from fdt */
3366 rtas_addr = spapr_get_rtas_addr();
3367 if (!rtas_addr) {
3368 qemu_system_guest_panicked(NULL);
3369 return;
3370 }
3371
3372 addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3373 stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3374 stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3375 env->gpr[3] = addr;
3376 }
3377 ppc_cpu_do_system_reset(cs);
3378 if (spapr->fwnmi_system_reset_addr != -1) {
3379 env->nip = spapr->fwnmi_system_reset_addr;
3380 }
3381 }
3382
3383 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3384 {
3385 CPUState *cs;
3386
3387 CPU_FOREACH(cs) {
3388 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3389 }
3390 }
3391
3392 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3393 void *fdt, int *fdt_start_offset, Error **errp)
3394 {
3395 uint64_t addr;
3396 uint32_t node;
3397
3398 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3399 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3400 &error_abort);
3401 *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3402 SPAPR_MEMORY_BLOCK_SIZE);
3403 return 0;
3404 }
3405
3406 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3407 bool dedicated_hp_event_source)
3408 {
3409 SpaprDrc *drc;
3410 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3411 int i;
3412 uint64_t addr = addr_start;
3413 bool hotplugged = spapr_drc_hotplugged(dev);
3414
3415 for (i = 0; i < nr_lmbs; i++) {
3416 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3417 addr / SPAPR_MEMORY_BLOCK_SIZE);
3418 g_assert(drc);
3419
3420 /*
3421 * memory_device_get_free_addr() provided a range of free addresses
3422 * that doesn't overlap with any existing mapping at pre-plug. The
3423 * corresponding LMB DRCs are thus assumed to be all attachable.
3424 */
3425 spapr_drc_attach(drc, dev);
3426 if (!hotplugged) {
3427 spapr_drc_reset(drc);
3428 }
3429 addr += SPAPR_MEMORY_BLOCK_SIZE;
3430 }
3431 /* send hotplug notification to the
3432 * guest only in case of hotplugged memory
3433 */
3434 if (hotplugged) {
3435 if (dedicated_hp_event_source) {
3436 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3437 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3438 g_assert(drc);
3439 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3440 nr_lmbs,
3441 spapr_drc_index(drc));
3442 } else {
3443 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3444 nr_lmbs);
3445 }
3446 }
3447 }
3448
3449 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3450 {
3451 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3452 PCDIMMDevice *dimm = PC_DIMM(dev);
3453 uint64_t size, addr;
3454 int64_t slot;
3455 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3456
3457 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3458
3459 pc_dimm_plug(dimm, MACHINE(ms));
3460
3461 if (!is_nvdimm) {
3462 addr = object_property_get_uint(OBJECT(dimm),
3463 PC_DIMM_ADDR_PROP, &error_abort);
3464 spapr_add_lmbs(dev, addr, size,
3465 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT));
3466 } else {
3467 slot = object_property_get_int(OBJECT(dimm),
3468 PC_DIMM_SLOT_PROP, &error_abort);
3469 /* We should have valid slot number at this point */
3470 g_assert(slot >= 0);
3471 spapr_add_nvdimm(dev, slot);
3472 }
3473 }
3474
3475 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3476 Error **errp)
3477 {
3478 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3479 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3480 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3481 PCDIMMDevice *dimm = PC_DIMM(dev);
3482 Error *local_err = NULL;
3483 uint64_t size;
3484 Object *memdev;
3485 hwaddr pagesize;
3486
3487 if (!smc->dr_lmb_enabled) {
3488 error_setg(errp, "Memory hotplug not supported for this machine");
3489 return;
3490 }
3491
3492 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3493 if (local_err) {
3494 error_propagate(errp, local_err);
3495 return;
3496 }
3497
3498 if (is_nvdimm) {
3499 if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
3500 return;
3501 }
3502 } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3503 error_setg(errp, "Hotplugged memory size must be a multiple of "
3504 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3505 return;
3506 }
3507
3508 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3509 &error_abort);
3510 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3511 if (!spapr_check_pagesize(spapr, pagesize, errp)) {
3512 return;
3513 }
3514
3515 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3516 }
3517
3518 struct SpaprDimmState {
3519 PCDIMMDevice *dimm;
3520 uint32_t nr_lmbs;
3521 QTAILQ_ENTRY(SpaprDimmState) next;
3522 };
3523
3524 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3525 PCDIMMDevice *dimm)
3526 {
3527 SpaprDimmState *dimm_state = NULL;
3528
3529 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3530 if (dimm_state->dimm == dimm) {
3531 break;
3532 }
3533 }
3534 return dimm_state;
3535 }
3536
3537 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3538 uint32_t nr_lmbs,
3539 PCDIMMDevice *dimm)
3540 {
3541 SpaprDimmState *ds = NULL;
3542
3543 /*
3544 * If this request is for a DIMM whose removal had failed earlier
3545 * (due to guest's refusal to remove the LMBs), we would have this
3546 * dimm already in the pending_dimm_unplugs list. In that
3547 * case don't add again.
3548 */
3549 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3550 if (!ds) {
3551 ds = g_malloc0(sizeof(SpaprDimmState));
3552 ds->nr_lmbs = nr_lmbs;
3553 ds->dimm = dimm;
3554 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3555 }
3556 return ds;
3557 }
3558
3559 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3560 SpaprDimmState *dimm_state)
3561 {
3562 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3563 g_free(dimm_state);
3564 }
3565
3566 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3567 PCDIMMDevice *dimm)
3568 {
3569 SpaprDrc *drc;
3570 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3571 &error_abort);
3572 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3573 uint32_t avail_lmbs = 0;
3574 uint64_t addr_start, addr;
3575 int i;
3576
3577 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3578 &error_abort);
3579
3580 addr = addr_start;
3581 for (i = 0; i < nr_lmbs; i++) {
3582 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3583 addr / SPAPR_MEMORY_BLOCK_SIZE);
3584 g_assert(drc);
3585 if (drc->dev) {
3586 avail_lmbs++;
3587 }
3588 addr += SPAPR_MEMORY_BLOCK_SIZE;
3589 }
3590
3591 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3592 }
3593
3594 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev)
3595 {
3596 SpaprDimmState *ds;
3597 PCDIMMDevice *dimm;
3598 SpaprDrc *drc;
3599 uint32_t nr_lmbs;
3600 uint64_t size, addr_start, addr;
3601 g_autofree char *qapi_error = NULL;
3602 int i;
3603
3604 if (!dev) {
3605 return;
3606 }
3607
3608 dimm = PC_DIMM(dev);
3609 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3610
3611 /*
3612 * 'ds == NULL' would mean that the DIMM doesn't have a pending
3613 * unplug state, but one of its DRC is marked as unplug_requested.
3614 * This is bad and weird enough to g_assert() out.
3615 */
3616 g_assert(ds);
3617
3618 spapr_pending_dimm_unplugs_remove(spapr, ds);
3619
3620 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3621 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3622
3623 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3624 &error_abort);
3625
3626 addr = addr_start;
3627 for (i = 0; i < nr_lmbs; i++) {
3628 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3629 addr / SPAPR_MEMORY_BLOCK_SIZE);
3630 g_assert(drc);
3631
3632 drc->unplug_requested = false;
3633 addr += SPAPR_MEMORY_BLOCK_SIZE;
3634 }
3635
3636 /*
3637 * Tell QAPI that something happened and the memory
3638 * hotunplug wasn't successful.
3639 */
3640 qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest "
3641 "for device %s", dev->id);
3642 qapi_event_send_mem_unplug_error(dev->id, qapi_error);
3643 }
3644
3645 /* Callback to be called during DRC release. */
3646 void spapr_lmb_release(DeviceState *dev)
3647 {
3648 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3649 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3650 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3651
3652 /* This information will get lost if a migration occurs
3653 * during the unplug process. In this case recover it. */
3654 if (ds == NULL) {
3655 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3656 g_assert(ds);
3657 /* The DRC being examined by the caller at least must be counted */
3658 g_assert(ds->nr_lmbs);
3659 }
3660
3661 if (--ds->nr_lmbs) {
3662 return;
3663 }
3664
3665 /*
3666 * Now that all the LMBs have been removed by the guest, call the
3667 * unplug handler chain. This can never fail.
3668 */
3669 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3670 object_unparent(OBJECT(dev));
3671 }
3672
3673 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3674 {
3675 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3676 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3677
3678 /* We really shouldn't get this far without anything to unplug */
3679 g_assert(ds);
3680
3681 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3682 qdev_unrealize(dev);
3683 spapr_pending_dimm_unplugs_remove(spapr, ds);
3684 }
3685
3686 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3687 DeviceState *dev, Error **errp)
3688 {
3689 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3690 PCDIMMDevice *dimm = PC_DIMM(dev);
3691 uint32_t nr_lmbs;
3692 uint64_t size, addr_start, addr;
3693 int i;
3694 SpaprDrc *drc;
3695
3696 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3697 error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3698 return;
3699 }
3700
3701 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3702 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3703
3704 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3705 &error_abort);
3706
3707 /*
3708 * An existing pending dimm state for this DIMM means that there is an
3709 * unplug operation in progress, waiting for the spapr_lmb_release
3710 * callback to complete the job (BQL can't cover that far). In this case,
3711 * bail out to avoid detaching DRCs that were already released.
3712 */
3713 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3714 error_setg(errp, "Memory unplug already in progress for device %s",
3715 dev->id);
3716 return;
3717 }
3718
3719 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3720
3721 addr = addr_start;
3722 for (i = 0; i < nr_lmbs; i++) {
3723 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3724 addr / SPAPR_MEMORY_BLOCK_SIZE);
3725 g_assert(drc);
3726
3727 spapr_drc_unplug_request(drc);
3728 addr += SPAPR_MEMORY_BLOCK_SIZE;
3729 }
3730
3731 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3732 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3733 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3734 nr_lmbs, spapr_drc_index(drc));
3735 }
3736
3737 /* Callback to be called during DRC release. */
3738 void spapr_core_release(DeviceState *dev)
3739 {
3740 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3741
3742 /* Call the unplug handler chain. This can never fail. */
3743 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3744 object_unparent(OBJECT(dev));
3745 }
3746
3747 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3748 {
3749 MachineState *ms = MACHINE(hotplug_dev);
3750 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3751 CPUCore *cc = CPU_CORE(dev);
3752 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3753
3754 if (smc->pre_2_10_has_unused_icps) {
3755 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3756 int i;
3757
3758 for (i = 0; i < cc->nr_threads; i++) {
3759 CPUState *cs = CPU(sc->threads[i]);
3760
3761 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3762 }
3763 }
3764
3765 assert(core_slot);
3766 core_slot->cpu = NULL;
3767 qdev_unrealize(dev);
3768 }
3769
3770 static
3771 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3772 Error **errp)
3773 {
3774 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3775 int index;
3776 SpaprDrc *drc;
3777 CPUCore *cc = CPU_CORE(dev);
3778
3779 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3780 error_setg(errp, "Unable to find CPU core with core-id: %d",
3781 cc->core_id);
3782 return;
3783 }
3784 if (index == 0) {
3785 error_setg(errp, "Boot CPU core may not be unplugged");
3786 return;
3787 }
3788
3789 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3790 spapr_vcpu_id(spapr, cc->core_id));
3791 g_assert(drc);
3792
3793 if (!spapr_drc_unplug_requested(drc)) {
3794 spapr_drc_unplug_request(drc);
3795 }
3796
3797 /*
3798 * spapr_hotplug_req_remove_by_index is left unguarded, out of the
3799 * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ
3800 * pulses removing the same CPU. Otherwise, in an failed hotunplug
3801 * attempt (e.g. the kernel will refuse to remove the last online
3802 * CPU), we will never attempt it again because unplug_requested
3803 * will still be 'true' in that case.
3804 */
3805 spapr_hotplug_req_remove_by_index(drc);
3806 }
3807
3808 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3809 void *fdt, int *fdt_start_offset, Error **errp)
3810 {
3811 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3812 CPUState *cs = CPU(core->threads[0]);
3813 PowerPCCPU *cpu = POWERPC_CPU(cs);
3814 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3815 int id = spapr_get_vcpu_id(cpu);
3816 g_autofree char *nodename = NULL;
3817 int offset;
3818
3819 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3820 offset = fdt_add_subnode(fdt, 0, nodename);
3821
3822 spapr_dt_cpu(cs, fdt, offset, spapr);
3823
3824 /*
3825 * spapr_dt_cpu() does not fill the 'name' property in the
3826 * CPU node. The function is called during boot process, before
3827 * and after CAS, and overwriting the 'name' property written
3828 * by SLOF is not allowed.
3829 *
3830 * Write it manually after spapr_dt_cpu(). This makes the hotplug
3831 * CPUs more compatible with the coldplugged ones, which have
3832 * the 'name' property. Linux Kernel also relies on this
3833 * property to identify CPU nodes.
3834 */
3835 _FDT((fdt_setprop_string(fdt, offset, "name", nodename)));
3836
3837 *fdt_start_offset = offset;
3838 return 0;
3839 }
3840
3841 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3842 {
3843 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3844 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3845 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3846 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3847 CPUCore *cc = CPU_CORE(dev);
3848 CPUState *cs;
3849 SpaprDrc *drc;
3850 CPUArchId *core_slot;
3851 int index;
3852 bool hotplugged = spapr_drc_hotplugged(dev);
3853 int i;
3854
3855 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3856 g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */
3857
3858 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3859 spapr_vcpu_id(spapr, cc->core_id));
3860
3861 g_assert(drc || !mc->has_hotpluggable_cpus);
3862
3863 if (drc) {
3864 /*
3865 * spapr_core_pre_plug() already buys us this is a brand new
3866 * core being plugged into a free slot. Nothing should already
3867 * be attached to the corresponding DRC.
3868 */
3869 spapr_drc_attach(drc, dev);
3870
3871 if (hotplugged) {
3872 /*
3873 * Send hotplug notification interrupt to the guest only
3874 * in case of hotplugged CPUs.
3875 */
3876 spapr_hotplug_req_add_by_index(drc);
3877 } else {
3878 spapr_drc_reset(drc);
3879 }
3880 }
3881
3882 core_slot->cpu = OBJECT(dev);
3883
3884 /*
3885 * Set compatibility mode to match the boot CPU, which was either set
3886 * by the machine reset code or by CAS. This really shouldn't fail at
3887 * this point.
3888 */
3889 if (hotplugged) {
3890 for (i = 0; i < cc->nr_threads; i++) {
3891 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3892 &error_abort);
3893 }
3894 }
3895
3896 if (smc->pre_2_10_has_unused_icps) {
3897 for (i = 0; i < cc->nr_threads; i++) {
3898 cs = CPU(core->threads[i]);
3899 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3900 }
3901 }
3902 }
3903
3904 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3905 Error **errp)
3906 {
3907 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3908 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3909 CPUCore *cc = CPU_CORE(dev);
3910 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3911 const char *type = object_get_typename(OBJECT(dev));
3912 CPUArchId *core_slot;
3913 int index;
3914 unsigned int smp_threads = machine->smp.threads;
3915
3916 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3917 error_setg(errp, "CPU hotplug not supported for this machine");
3918 return;
3919 }
3920
3921 if (strcmp(base_core_type, type)) {
3922 error_setg(errp, "CPU core type should be %s", base_core_type);
3923 return;
3924 }
3925
3926 if (cc->core_id % smp_threads) {
3927 error_setg(errp, "invalid core id %d", cc->core_id);
3928 return;
3929 }
3930
3931 /*
3932 * In general we should have homogeneous threads-per-core, but old
3933 * (pre hotplug support) machine types allow the last core to have
3934 * reduced threads as a compatibility hack for when we allowed
3935 * total vcpus not a multiple of threads-per-core.
3936 */
3937 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3938 error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
3939 smp_threads);
3940 return;
3941 }
3942
3943 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3944 if (!core_slot) {
3945 error_setg(errp, "core id %d out of range", cc->core_id);
3946 return;
3947 }
3948
3949 if (core_slot->cpu) {
3950 error_setg(errp, "core %d already populated", cc->core_id);
3951 return;
3952 }
3953
3954 numa_cpu_pre_plug(core_slot, dev, errp);
3955 }
3956
3957 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3958 void *fdt, int *fdt_start_offset, Error **errp)
3959 {
3960 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3961 int intc_phandle;
3962
3963 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3964 if (intc_phandle <= 0) {
3965 return -1;
3966 }
3967
3968 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
3969 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3970 return -1;
3971 }
3972
3973 /* generally SLOF creates these, for hotplug it's up to QEMU */
3974 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3975
3976 return 0;
3977 }
3978
3979 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3980 Error **errp)
3981 {
3982 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3983 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3984 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3985 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3986 SpaprDrc *drc;
3987
3988 if (dev->hotplugged && !smc->dr_phb_enabled) {
3989 error_setg(errp, "PHB hotplug not supported for this machine");
3990 return false;
3991 }
3992
3993 if (sphb->index == (uint32_t)-1) {
3994 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3995 return false;
3996 }
3997
3998 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3999 if (drc && drc->dev) {
4000 error_setg(errp, "PHB %d already attached", sphb->index);
4001 return false;
4002 }
4003
4004 /*
4005 * This will check that sphb->index doesn't exceed the maximum number of
4006 * PHBs for the current machine type.
4007 */
4008 return
4009 smc->phb_placement(spapr, sphb->index,
4010 &sphb->buid, &sphb->io_win_addr,
4011 &sphb->mem_win_addr, &sphb->mem64_win_addr,
4012 windows_supported, sphb->dma_liobn,
4013 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
4014 errp);
4015 }
4016
4017 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4018 {
4019 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4020 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4021 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4022 SpaprDrc *drc;
4023 bool hotplugged = spapr_drc_hotplugged(dev);
4024
4025 if (!smc->dr_phb_enabled) {
4026 return;
4027 }
4028
4029 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4030 /* hotplug hooks should check it's enabled before getting this far */
4031 assert(drc);
4032
4033 /* spapr_phb_pre_plug() already checked the DRC is attachable */
4034 spapr_drc_attach(drc, dev);
4035
4036 if (hotplugged) {
4037 spapr_hotplug_req_add_by_index(drc);
4038 } else {
4039 spapr_drc_reset(drc);
4040 }
4041 }
4042
4043 void spapr_phb_release(DeviceState *dev)
4044 {
4045 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4046
4047 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4048 object_unparent(OBJECT(dev));
4049 }
4050
4051 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4052 {
4053 qdev_unrealize(dev);
4054 }
4055
4056 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4057 DeviceState *dev, Error **errp)
4058 {
4059 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4060 SpaprDrc *drc;
4061
4062 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4063 assert(drc);
4064
4065 if (!spapr_drc_unplug_requested(drc)) {
4066 spapr_drc_unplug_request(drc);
4067 spapr_hotplug_req_remove_by_index(drc);
4068 } else {
4069 error_setg(errp,
4070 "PCI Host Bridge unplug already in progress for device %s",
4071 dev->id);
4072 }
4073 }
4074
4075 static
4076 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4077 Error **errp)
4078 {
4079 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4080
4081 if (spapr->tpm_proxy != NULL) {
4082 error_setg(errp, "Only one TPM proxy can be specified for this machine");
4083 return false;
4084 }
4085
4086 return true;
4087 }
4088
4089 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4090 {
4091 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4092 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4093
4094 /* Already checked in spapr_tpm_proxy_pre_plug() */
4095 g_assert(spapr->tpm_proxy == NULL);
4096
4097 spapr->tpm_proxy = tpm_proxy;
4098 }
4099
4100 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4101 {
4102 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4103
4104 qdev_unrealize(dev);
4105 object_unparent(OBJECT(dev));
4106 spapr->tpm_proxy = NULL;
4107 }
4108
4109 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4110 DeviceState *dev, Error **errp)
4111 {
4112 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4113 spapr_memory_plug(hotplug_dev, dev);
4114 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4115 spapr_core_plug(hotplug_dev, dev);
4116 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4117 spapr_phb_plug(hotplug_dev, dev);
4118 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4119 spapr_tpm_proxy_plug(hotplug_dev, dev);
4120 }
4121 }
4122
4123 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4124 DeviceState *dev, Error **errp)
4125 {
4126 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4127 spapr_memory_unplug(hotplug_dev, dev);
4128 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4129 spapr_core_unplug(hotplug_dev, dev);
4130 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4131 spapr_phb_unplug(hotplug_dev, dev);
4132 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4133 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4134 }
4135 }
4136
4137 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr)
4138 {
4139 return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) ||
4140 /*
4141 * CAS will process all pending unplug requests.
4142 *
4143 * HACK: a guest could theoretically have cleared all bits in OV5,
4144 * but none of the guests we care for do.
4145 */
4146 spapr_ovec_empty(spapr->ov5_cas);
4147 }
4148
4149 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4150 DeviceState *dev, Error **errp)
4151 {
4152 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4153 MachineClass *mc = MACHINE_GET_CLASS(sms);
4154 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4155
4156 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4157 if (spapr_memory_hot_unplug_supported(sms)) {
4158 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4159 } else {
4160 error_setg(errp, "Memory hot unplug not supported for this guest");
4161 }
4162 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4163 if (!mc->has_hotpluggable_cpus) {
4164 error_setg(errp, "CPU hot unplug not supported on this machine");
4165 return;
4166 }
4167 spapr_core_unplug_request(hotplug_dev, dev, errp);
4168 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4169 if (!smc->dr_phb_enabled) {
4170 error_setg(errp, "PHB hot unplug not supported on this machine");
4171 return;
4172 }
4173 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4174 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4175 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4176 }
4177 }
4178
4179 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4180 DeviceState *dev, Error **errp)
4181 {
4182 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4183 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4184 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4185 spapr_core_pre_plug(hotplug_dev, dev, errp);
4186 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4187 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4188 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4189 spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp);
4190 }
4191 }
4192
4193 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4194 DeviceState *dev)
4195 {
4196 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4197 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4198 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4199 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4200 return HOTPLUG_HANDLER(machine);
4201 }
4202 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4203 PCIDevice *pcidev = PCI_DEVICE(dev);
4204 PCIBus *root = pci_device_root_bus(pcidev);
4205 SpaprPhbState *phb =
4206 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4207 TYPE_SPAPR_PCI_HOST_BRIDGE);
4208
4209 if (phb) {
4210 return HOTPLUG_HANDLER(phb);
4211 }
4212 }
4213 return NULL;
4214 }
4215
4216 static CpuInstanceProperties
4217 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4218 {
4219 CPUArchId *core_slot;
4220 MachineClass *mc = MACHINE_GET_CLASS(machine);
4221
4222 /* make sure possible_cpu are intialized */
4223 mc->possible_cpu_arch_ids(machine);
4224 /* get CPU core slot containing thread that matches cpu_index */
4225 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4226 assert(core_slot);
4227 return core_slot->props;
4228 }
4229
4230 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4231 {
4232 return idx / ms->smp.cores % ms->numa_state->num_nodes;
4233 }
4234
4235 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4236 {
4237 int i;
4238 unsigned int smp_threads = machine->smp.threads;
4239 unsigned int smp_cpus = machine->smp.cpus;
4240 const char *core_type;
4241 int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4242 MachineClass *mc = MACHINE_GET_CLASS(machine);
4243
4244 if (!mc->has_hotpluggable_cpus) {
4245 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4246 }
4247 if (machine->possible_cpus) {
4248 assert(machine->possible_cpus->len == spapr_max_cores);
4249 return machine->possible_cpus;
4250 }
4251
4252 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4253 if (!core_type) {
4254 error_report("Unable to find sPAPR CPU Core definition");
4255 exit(1);
4256 }
4257
4258 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4259 sizeof(CPUArchId) * spapr_max_cores);
4260 machine->possible_cpus->len = spapr_max_cores;
4261 for (i = 0; i < machine->possible_cpus->len; i++) {
4262 int core_id = i * smp_threads;
4263
4264 machine->possible_cpus->cpus[i].type = core_type;
4265 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4266 machine->possible_cpus->cpus[i].arch_id = core_id;
4267 machine->possible_cpus->cpus[i].props.has_core_id = true;
4268 machine->possible_cpus->cpus[i].props.core_id = core_id;
4269 }
4270 return machine->possible_cpus;
4271 }
4272
4273 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4274 uint64_t *buid, hwaddr *pio,
4275 hwaddr *mmio32, hwaddr *mmio64,
4276 unsigned n_dma, uint32_t *liobns,
4277 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4278 {
4279 /*
4280 * New-style PHB window placement.
4281 *
4282 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4283 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4284 * windows.
4285 *
4286 * Some guest kernels can't work with MMIO windows above 1<<46
4287 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4288 *
4289 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4290 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4291 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4292 * 1TiB 64-bit MMIO windows for each PHB.
4293 */
4294 const uint64_t base_buid = 0x800000020000000ULL;
4295 int i;
4296
4297 /* Sanity check natural alignments */
4298 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4299 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4300 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4301 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4302 /* Sanity check bounds */
4303 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4304 SPAPR_PCI_MEM32_WIN_SIZE);
4305 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4306 SPAPR_PCI_MEM64_WIN_SIZE);
4307
4308 if (index >= SPAPR_MAX_PHBS) {
4309 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4310 SPAPR_MAX_PHBS - 1);
4311 return false;
4312 }
4313
4314 *buid = base_buid + index;
4315 for (i = 0; i < n_dma; ++i) {
4316 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4317 }
4318
4319 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4320 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4321 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4322
4323 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4324 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4325 return true;
4326 }
4327
4328 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4329 {
4330 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4331
4332 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4333 }
4334
4335 static void spapr_ics_resend(XICSFabric *dev)
4336 {
4337 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4338
4339 ics_resend(spapr->ics);
4340 }
4341
4342 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4343 {
4344 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4345
4346 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4347 }
4348
4349 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4350 Monitor *mon)
4351 {
4352 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4353
4354 spapr_irq_print_info(spapr, mon);
4355 monitor_printf(mon, "irqchip: %s\n",
4356 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4357 }
4358
4359 /*
4360 * This is a XIVE only operation
4361 */
4362 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4363 uint8_t nvt_blk, uint32_t nvt_idx,
4364 bool cam_ignore, uint8_t priority,
4365 uint32_t logic_serv, XiveTCTXMatch *match)
4366 {
4367 SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4368 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4369 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4370 int count;
4371
4372 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4373 priority, logic_serv, match);
4374 if (count < 0) {
4375 return count;
4376 }
4377
4378 /*
4379 * When we implement the save and restore of the thread interrupt
4380 * contexts in the enter/exit CPU handlers of the machine and the
4381 * escalations in QEMU, we should be able to handle non dispatched
4382 * vCPUs.
4383 *
4384 * Until this is done, the sPAPR machine should find at least one
4385 * matching context always.
4386 */
4387 if (count == 0) {
4388 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4389 nvt_blk, nvt_idx);
4390 }
4391
4392 return count;
4393 }
4394
4395 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4396 {
4397 return cpu->vcpu_id;
4398 }
4399
4400 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4401 {
4402 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4403 MachineState *ms = MACHINE(spapr);
4404 int vcpu_id;
4405
4406 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4407
4408 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4409 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4410 error_append_hint(errp, "Adjust the number of cpus to %d "
4411 "or try to raise the number of threads per core\n",
4412 vcpu_id * ms->smp.threads / spapr->vsmt);
4413 return false;
4414 }
4415
4416 cpu->vcpu_id = vcpu_id;
4417 return true;
4418 }
4419
4420 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4421 {
4422 CPUState *cs;
4423
4424 CPU_FOREACH(cs) {
4425 PowerPCCPU *cpu = POWERPC_CPU(cs);
4426
4427 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4428 return cpu;
4429 }
4430 }
4431
4432 return NULL;
4433 }
4434
4435 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4436 {
4437 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4438
4439 /* These are only called by TCG, KVM maintains dispatch state */
4440
4441 spapr_cpu->prod = false;
4442 if (spapr_cpu->vpa_addr) {
4443 CPUState *cs = CPU(cpu);
4444 uint32_t dispatch;
4445
4446 dispatch = ldl_be_phys(cs->as,
4447 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4448 dispatch++;
4449 if ((dispatch & 1) != 0) {
4450 qemu_log_mask(LOG_GUEST_ERROR,
4451 "VPA: incorrect dispatch counter value for "
4452 "dispatched partition %u, correcting.\n", dispatch);
4453 dispatch++;
4454 }
4455 stl_be_phys(cs->as,
4456 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4457 }
4458 }
4459
4460 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4461 {
4462 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4463
4464 if (spapr_cpu->vpa_addr) {
4465 CPUState *cs = CPU(cpu);
4466 uint32_t dispatch;
4467
4468 dispatch = ldl_be_phys(cs->as,
4469 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4470 dispatch++;
4471 if ((dispatch & 1) != 1) {
4472 qemu_log_mask(LOG_GUEST_ERROR,
4473 "VPA: incorrect dispatch counter value for "
4474 "preempted partition %u, correcting.\n", dispatch);
4475 dispatch++;
4476 }
4477 stl_be_phys(cs->as,
4478 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4479 }
4480 }
4481
4482 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4483 {
4484 MachineClass *mc = MACHINE_CLASS(oc);
4485 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4486 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4487 NMIClass *nc = NMI_CLASS(oc);
4488 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4489 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4490 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4491 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4492 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4493
4494 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4495 mc->ignore_boot_device_suffixes = true;
4496
4497 /*
4498 * We set up the default / latest behaviour here. The class_init
4499 * functions for the specific versioned machine types can override
4500 * these details for backwards compatibility
4501 */
4502 mc->init = spapr_machine_init;
4503 mc->reset = spapr_machine_reset;
4504 mc->block_default_type = IF_SCSI;
4505
4506 /*
4507 * Setting max_cpus to INT32_MAX. Both KVM and TCG max_cpus values
4508 * should be limited by the host capability instead of hardcoded.
4509 * max_cpus for KVM guests will be checked in kvm_init(), and TCG
4510 * guests are welcome to have as many CPUs as the host are capable
4511 * of emulate.
4512 */
4513 mc->max_cpus = INT32_MAX;
4514
4515 mc->no_parallel = 1;
4516 mc->default_boot_order = "";
4517 mc->default_ram_size = 512 * MiB;
4518 mc->default_ram_id = "ppc_spapr.ram";
4519 mc->default_display = "std";
4520 mc->kvm_type = spapr_kvm_type;
4521 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4522 mc->pci_allow_0_address = true;
4523 assert(!mc->get_hotplug_handler);
4524 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4525 hc->pre_plug = spapr_machine_device_pre_plug;
4526 hc->plug = spapr_machine_device_plug;
4527 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4528 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4529 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4530 hc->unplug_request = spapr_machine_device_unplug_request;
4531 hc->unplug = spapr_machine_device_unplug;
4532
4533 smc->dr_lmb_enabled = true;
4534 smc->update_dt_enabled = true;
4535 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4536 mc->has_hotpluggable_cpus = true;
4537 mc->nvdimm_supported = true;
4538 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4539 fwc->get_dev_path = spapr_get_fw_dev_path;
4540 nc->nmi_monitor_handler = spapr_nmi;
4541 smc->phb_placement = spapr_phb_placement;
4542 vhc->hypercall = emulate_spapr_hypercall;
4543 vhc->hpt_mask = spapr_hpt_mask;
4544 vhc->map_hptes = spapr_map_hptes;
4545 vhc->unmap_hptes = spapr_unmap_hptes;
4546 vhc->hpte_set_c = spapr_hpte_set_c;
4547 vhc->hpte_set_r = spapr_hpte_set_r;
4548 vhc->get_pate = spapr_get_pate;
4549 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4550 vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4551 vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4552 xic->ics_get = spapr_ics_get;
4553 xic->ics_resend = spapr_ics_resend;
4554 xic->icp_get = spapr_icp_get;
4555 ispc->print_info = spapr_pic_print_info;
4556 /* Force NUMA node memory size to be a multiple of
4557 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4558 * in which LMBs are represented and hot-added
4559 */
4560 mc->numa_mem_align_shift = 28;
4561 mc->auto_enable_numa = true;
4562
4563 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4564 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4565 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4566 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4567 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4568 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4569 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4570 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4571 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4572 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4573 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4574 spapr_caps_add_properties(smc);
4575 smc->irq = &spapr_irq_dual;
4576 smc->dr_phb_enabled = true;
4577 smc->linux_pci_probe = true;
4578 smc->smp_threads_vsmt = true;
4579 smc->nr_xirqs = SPAPR_NR_XIRQS;
4580 xfc->match_nvt = spapr_match_nvt;
4581 }
4582
4583 static const TypeInfo spapr_machine_info = {
4584 .name = TYPE_SPAPR_MACHINE,
4585 .parent = TYPE_MACHINE,
4586 .abstract = true,
4587 .instance_size = sizeof(SpaprMachineState),
4588 .instance_init = spapr_instance_init,
4589 .instance_finalize = spapr_machine_finalizefn,
4590 .class_size = sizeof(SpaprMachineClass),
4591 .class_init = spapr_machine_class_init,
4592 .interfaces = (InterfaceInfo[]) {
4593 { TYPE_FW_PATH_PROVIDER },
4594 { TYPE_NMI },
4595 { TYPE_HOTPLUG_HANDLER },
4596 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4597 { TYPE_XICS_FABRIC },
4598 { TYPE_INTERRUPT_STATS_PROVIDER },
4599 { TYPE_XIVE_FABRIC },
4600 { }
4601 },
4602 };
4603
4604 static void spapr_machine_latest_class_options(MachineClass *mc)
4605 {
4606 mc->alias = "pseries";
4607 mc->is_default = true;
4608 }
4609
4610 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4611 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4612 void *data) \
4613 { \
4614 MachineClass *mc = MACHINE_CLASS(oc); \
4615 spapr_machine_##suffix##_class_options(mc); \
4616 if (latest) { \
4617 spapr_machine_latest_class_options(mc); \
4618 } \
4619 } \
4620 static const TypeInfo spapr_machine_##suffix##_info = { \
4621 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4622 .parent = TYPE_SPAPR_MACHINE, \
4623 .class_init = spapr_machine_##suffix##_class_init, \
4624 }; \
4625 static void spapr_machine_register_##suffix(void) \
4626 { \
4627 type_register(&spapr_machine_##suffix##_info); \
4628 } \
4629 type_init(spapr_machine_register_##suffix)
4630
4631 /*
4632 * pseries-6.1
4633 */
4634 static void spapr_machine_6_1_class_options(MachineClass *mc)
4635 {
4636 /* Defaults for the latest behaviour inherited from the base class */
4637 }
4638
4639 DEFINE_SPAPR_MACHINE(6_1, "6.1", true);
4640
4641 /*
4642 * pseries-6.0
4643 */
4644 static void spapr_machine_6_0_class_options(MachineClass *mc)
4645 {
4646 spapr_machine_6_1_class_options(mc);
4647 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
4648 }
4649
4650 DEFINE_SPAPR_MACHINE(6_0, "6.0", false);
4651
4652 /*
4653 * pseries-5.2
4654 */
4655 static void spapr_machine_5_2_class_options(MachineClass *mc)
4656 {
4657 spapr_machine_6_0_class_options(mc);
4658 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
4659 }
4660
4661 DEFINE_SPAPR_MACHINE(5_2, "5.2", false);
4662
4663 /*
4664 * pseries-5.1
4665 */
4666 static void spapr_machine_5_1_class_options(MachineClass *mc)
4667 {
4668 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4669
4670 spapr_machine_5_2_class_options(mc);
4671 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4672 smc->pre_5_2_numa_associativity = true;
4673 }
4674
4675 DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4676
4677 /*
4678 * pseries-5.0
4679 */
4680 static void spapr_machine_5_0_class_options(MachineClass *mc)
4681 {
4682 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4683 static GlobalProperty compat[] = {
4684 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4685 };
4686
4687 spapr_machine_5_1_class_options(mc);
4688 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4689 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4690 mc->numa_mem_supported = true;
4691 smc->pre_5_1_assoc_refpoints = true;
4692 }
4693
4694 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4695
4696 /*
4697 * pseries-4.2
4698 */
4699 static void spapr_machine_4_2_class_options(MachineClass *mc)
4700 {
4701 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4702
4703 spapr_machine_5_0_class_options(mc);
4704 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4705 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4706 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4707 smc->rma_limit = 16 * GiB;
4708 mc->nvdimm_supported = false;
4709 }
4710
4711 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4712
4713 /*
4714 * pseries-4.1
4715 */
4716 static void spapr_machine_4_1_class_options(MachineClass *mc)
4717 {
4718 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4719 static GlobalProperty compat[] = {
4720 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4721 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4722 };
4723
4724 spapr_machine_4_2_class_options(mc);
4725 smc->linux_pci_probe = false;
4726 smc->smp_threads_vsmt = false;
4727 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4728 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4729 }
4730
4731 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4732
4733 /*
4734 * pseries-4.0
4735 */
4736 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4737 uint64_t *buid, hwaddr *pio,
4738 hwaddr *mmio32, hwaddr *mmio64,
4739 unsigned n_dma, uint32_t *liobns,
4740 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4741 {
4742 if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma,
4743 liobns, nv2gpa, nv2atsd, errp)) {
4744 return false;
4745 }
4746
4747 *nv2gpa = 0;
4748 *nv2atsd = 0;
4749 return true;
4750 }
4751 static void spapr_machine_4_0_class_options(MachineClass *mc)
4752 {
4753 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4754
4755 spapr_machine_4_1_class_options(mc);
4756 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4757 smc->phb_placement = phb_placement_4_0;
4758 smc->irq = &spapr_irq_xics;
4759 smc->pre_4_1_migration = true;
4760 }
4761
4762 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4763
4764 /*
4765 * pseries-3.1
4766 */
4767 static void spapr_machine_3_1_class_options(MachineClass *mc)
4768 {
4769 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4770
4771 spapr_machine_4_0_class_options(mc);
4772 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4773
4774 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4775 smc->update_dt_enabled = false;
4776 smc->dr_phb_enabled = false;
4777 smc->broken_host_serial_model = true;
4778 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4779 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4780 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4781 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4782 }
4783
4784 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4785
4786 /*
4787 * pseries-3.0
4788 */
4789
4790 static void spapr_machine_3_0_class_options(MachineClass *mc)
4791 {
4792 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4793
4794 spapr_machine_3_1_class_options(mc);
4795 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4796
4797 smc->legacy_irq_allocation = true;
4798 smc->nr_xirqs = 0x400;
4799 smc->irq = &spapr_irq_xics_legacy;
4800 }
4801
4802 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4803
4804 /*
4805 * pseries-2.12
4806 */
4807 static void spapr_machine_2_12_class_options(MachineClass *mc)
4808 {
4809 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4810 static GlobalProperty compat[] = {
4811 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4812 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4813 };
4814
4815 spapr_machine_3_0_class_options(mc);
4816 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4817 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4818
4819 /* We depend on kvm_enabled() to choose a default value for the
4820 * hpt-max-page-size capability. Of course we can't do it here
4821 * because this is too early and the HW accelerator isn't initialzed
4822 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4823 */
4824 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4825 }
4826
4827 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4828
4829 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4830 {
4831 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4832
4833 spapr_machine_2_12_class_options(mc);
4834 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4835 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4836 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4837 }
4838
4839 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4840
4841 /*
4842 * pseries-2.11
4843 */
4844
4845 static void spapr_machine_2_11_class_options(MachineClass *mc)
4846 {
4847 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4848
4849 spapr_machine_2_12_class_options(mc);
4850 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4851 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4852 }
4853
4854 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4855
4856 /*
4857 * pseries-2.10
4858 */
4859
4860 static void spapr_machine_2_10_class_options(MachineClass *mc)
4861 {
4862 spapr_machine_2_11_class_options(mc);
4863 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4864 }
4865
4866 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4867
4868 /*
4869 * pseries-2.9
4870 */
4871
4872 static void spapr_machine_2_9_class_options(MachineClass *mc)
4873 {
4874 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4875 static GlobalProperty compat[] = {
4876 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4877 };
4878
4879 spapr_machine_2_10_class_options(mc);
4880 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4881 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4882 smc->pre_2_10_has_unused_icps = true;
4883 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4884 }
4885
4886 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4887
4888 /*
4889 * pseries-2.8
4890 */
4891
4892 static void spapr_machine_2_8_class_options(MachineClass *mc)
4893 {
4894 static GlobalProperty compat[] = {
4895 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4896 };
4897
4898 spapr_machine_2_9_class_options(mc);
4899 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4900 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4901 mc->numa_mem_align_shift = 23;
4902 }
4903
4904 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4905
4906 /*
4907 * pseries-2.7
4908 */
4909
4910 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4911 uint64_t *buid, hwaddr *pio,
4912 hwaddr *mmio32, hwaddr *mmio64,
4913 unsigned n_dma, uint32_t *liobns,
4914 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4915 {
4916 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4917 const uint64_t base_buid = 0x800000020000000ULL;
4918 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4919 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4920 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4921 const uint32_t max_index = 255;
4922 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4923
4924 uint64_t ram_top = MACHINE(spapr)->ram_size;
4925 hwaddr phb0_base, phb_base;
4926 int i;
4927
4928 /* Do we have device memory? */
4929 if (MACHINE(spapr)->maxram_size > ram_top) {
4930 /* Can't just use maxram_size, because there may be an
4931 * alignment gap between normal and device memory regions
4932 */
4933 ram_top = MACHINE(spapr)->device_memory->base +
4934 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4935 }
4936
4937 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4938
4939 if (index > max_index) {
4940 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4941 max_index);
4942 return false;
4943 }
4944
4945 *buid = base_buid + index;
4946 for (i = 0; i < n_dma; ++i) {
4947 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4948 }
4949
4950 phb_base = phb0_base + index * phb_spacing;
4951 *pio = phb_base + pio_offset;
4952 *mmio32 = phb_base + mmio_offset;
4953 /*
4954 * We don't set the 64-bit MMIO window, relying on the PHB's
4955 * fallback behaviour of automatically splitting a large "32-bit"
4956 * window into contiguous 32-bit and 64-bit windows
4957 */
4958
4959 *nv2gpa = 0;
4960 *nv2atsd = 0;
4961 return true;
4962 }
4963
4964 static void spapr_machine_2_7_class_options(MachineClass *mc)
4965 {
4966 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4967 static GlobalProperty compat[] = {
4968 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4969 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4970 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4971 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4972 };
4973
4974 spapr_machine_2_8_class_options(mc);
4975 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4976 mc->default_machine_opts = "modern-hotplug-events=off";
4977 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4978 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4979 smc->phb_placement = phb_placement_2_7;
4980 }
4981
4982 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4983
4984 /*
4985 * pseries-2.6
4986 */
4987
4988 static void spapr_machine_2_6_class_options(MachineClass *mc)
4989 {
4990 static GlobalProperty compat[] = {
4991 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4992 };
4993
4994 spapr_machine_2_7_class_options(mc);
4995 mc->has_hotpluggable_cpus = false;
4996 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4997 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4998 }
4999
5000 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
5001
5002 /*
5003 * pseries-2.5
5004 */
5005
5006 static void spapr_machine_2_5_class_options(MachineClass *mc)
5007 {
5008 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5009 static GlobalProperty compat[] = {
5010 { "spapr-vlan", "use-rx-buffer-pools", "off" },
5011 };
5012
5013 spapr_machine_2_6_class_options(mc);
5014 smc->use_ohci_by_default = true;
5015 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
5016 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5017 }
5018
5019 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
5020
5021 /*
5022 * pseries-2.4
5023 */
5024
5025 static void spapr_machine_2_4_class_options(MachineClass *mc)
5026 {
5027 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5028
5029 spapr_machine_2_5_class_options(mc);
5030 smc->dr_lmb_enabled = false;
5031 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
5032 }
5033
5034 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
5035
5036 /*
5037 * pseries-2.3
5038 */
5039
5040 static void spapr_machine_2_3_class_options(MachineClass *mc)
5041 {
5042 static GlobalProperty compat[] = {
5043 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
5044 };
5045 spapr_machine_2_4_class_options(mc);
5046 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
5047 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5048 }
5049 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
5050
5051 /*
5052 * pseries-2.2
5053 */
5054
5055 static void spapr_machine_2_2_class_options(MachineClass *mc)
5056 {
5057 static GlobalProperty compat[] = {
5058 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
5059 };
5060
5061 spapr_machine_2_3_class_options(mc);
5062 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
5063 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5064 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
5065 }
5066 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
5067
5068 /*
5069 * pseries-2.1
5070 */
5071
5072 static void spapr_machine_2_1_class_options(MachineClass *mc)
5073 {
5074 spapr_machine_2_2_class_options(mc);
5075 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
5076 }
5077 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
5078
5079 static void spapr_machine_register_types(void)
5080 {
5081 type_register_static(&spapr_machine_info);
5082 }
5083
5084 type_init(spapr_machine_register_types)