]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr.c
Merge remote-tracking branch 'remotes/agraf/tags/signed-ppc-for-upstream' into staging
[mirror_qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
27 #include "sysemu/sysemu.h"
28 #include "hw/hw.h"
29 #include "hw/fw-path-provider.h"
30 #include "elf.h"
31 #include "net/net.h"
32 #include "sysemu/blockdev.h"
33 #include "sysemu/cpus.h"
34 #include "sysemu/kvm.h"
35 #include "kvm_ppc.h"
36 #include "mmu-hash64.h"
37 #include "qom/cpu.h"
38
39 #include "hw/boards.h"
40 #include "hw/ppc/ppc.h"
41 #include "hw/loader.h"
42
43 #include "hw/ppc/spapr.h"
44 #include "hw/ppc/spapr_vio.h"
45 #include "hw/pci-host/spapr.h"
46 #include "hw/ppc/xics.h"
47 #include "hw/pci/msi.h"
48
49 #include "hw/pci/pci.h"
50 #include "hw/scsi/scsi.h"
51 #include "hw/virtio/virtio-scsi.h"
52
53 #include "exec/address-spaces.h"
54 #include "hw/usb.h"
55 #include "qemu/config-file.h"
56 #include "qemu/error-report.h"
57 #include "trace.h"
58
59 #include <libfdt.h>
60
61 /* SLOF memory layout:
62 *
63 * SLOF raw image loaded at 0, copies its romfs right below the flat
64 * device-tree, then position SLOF itself 31M below that
65 *
66 * So we set FW_OVERHEAD to 40MB which should account for all of that
67 * and more
68 *
69 * We load our kernel at 4M, leaving space for SLOF initial image
70 */
71 #define FDT_MAX_SIZE 0x40000
72 #define RTAS_MAX_SIZE 0x10000
73 #define FW_MAX_SIZE 0x400000
74 #define FW_FILE_NAME "slof.bin"
75 #define FW_OVERHEAD 0x2800000
76 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
77
78 #define MIN_RMA_SLOF 128UL
79
80 #define TIMEBASE_FREQ 512000000ULL
81
82 #define MAX_CPUS 256
83
84 #define PHANDLE_XICP 0x00001111
85
86 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
87
88
89 typedef struct SPAPRMachine SPAPRMachine;
90 #define TYPE_SPAPR_MACHINE "spapr-machine"
91 #define SPAPR_MACHINE(obj) \
92 OBJECT_CHECK(SPAPRMachine, (obj), TYPE_SPAPR_MACHINE)
93
94 /**
95 * SPAPRMachine:
96 */
97 struct SPAPRMachine {
98 /*< private >*/
99 MachineState parent_obj;
100
101 /*< public >*/
102 char *kvm_type;
103 };
104
105
106 sPAPREnvironment *spapr;
107
108 int spapr_allocate_irq(int hint, bool lsi)
109 {
110 int irq;
111
112 if (hint) {
113 irq = hint;
114 if (hint >= spapr->next_irq) {
115 spapr->next_irq = hint + 1;
116 }
117 /* FIXME: we should probably check for collisions somehow */
118 } else {
119 irq = spapr->next_irq++;
120 }
121
122 /* Configure irq type */
123 if (!xics_get_qirq(spapr->icp, irq)) {
124 return 0;
125 }
126
127 xics_set_irq_type(spapr->icp, irq, lsi);
128
129 return irq;
130 }
131
132 /*
133 * Allocate block of consequtive IRQs, returns a number of the first.
134 * If msi==true, aligns the first IRQ number to num.
135 */
136 int spapr_allocate_irq_block(int num, bool lsi, bool msi)
137 {
138 int first = -1;
139 int i, hint = 0;
140
141 /*
142 * MSIMesage::data is used for storing VIRQ so
143 * it has to be aligned to num to support multiple
144 * MSI vectors. MSI-X is not affected by this.
145 * The hint is used for the first IRQ, the rest should
146 * be allocated continuously.
147 */
148 if (msi) {
149 assert((num == 1) || (num == 2) || (num == 4) ||
150 (num == 8) || (num == 16) || (num == 32));
151 hint = (spapr->next_irq + num - 1) & ~(num - 1);
152 }
153
154 for (i = 0; i < num; ++i) {
155 int irq;
156
157 irq = spapr_allocate_irq(hint, lsi);
158 if (!irq) {
159 return -1;
160 }
161
162 if (0 == i) {
163 first = irq;
164 hint = 0;
165 }
166
167 /* If the above doesn't create a consecutive block then that's
168 * an internal bug */
169 assert(irq == (first + i));
170 }
171
172 return first;
173 }
174
175 static XICSState *try_create_xics(const char *type, int nr_servers,
176 int nr_irqs)
177 {
178 DeviceState *dev;
179
180 dev = qdev_create(NULL, type);
181 qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
182 qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
183 if (qdev_init(dev) < 0) {
184 return NULL;
185 }
186
187 return XICS_COMMON(dev);
188 }
189
190 static XICSState *xics_system_init(int nr_servers, int nr_irqs)
191 {
192 XICSState *icp = NULL;
193
194 if (kvm_enabled()) {
195 QemuOpts *machine_opts = qemu_get_machine_opts();
196 bool irqchip_allowed = qemu_opt_get_bool(machine_opts,
197 "kernel_irqchip", true);
198 bool irqchip_required = qemu_opt_get_bool(machine_opts,
199 "kernel_irqchip", false);
200 if (irqchip_allowed) {
201 icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs);
202 }
203
204 if (irqchip_required && !icp) {
205 perror("Failed to create in-kernel XICS\n");
206 abort();
207 }
208 }
209
210 if (!icp) {
211 icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs);
212 }
213
214 if (!icp) {
215 perror("Failed to create XICS\n");
216 abort();
217 }
218
219 return icp;
220 }
221
222 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
223 int smt_threads)
224 {
225 int i, ret = 0;
226 uint32_t servers_prop[smt_threads];
227 uint32_t gservers_prop[smt_threads * 2];
228 int index = ppc_get_vcpu_dt_id(cpu);
229
230 if (cpu->cpu_version) {
231 ret = fdt_setprop(fdt, offset, "cpu-version",
232 &cpu->cpu_version, sizeof(cpu->cpu_version));
233 if (ret < 0) {
234 return ret;
235 }
236 }
237
238 /* Build interrupt servers and gservers properties */
239 for (i = 0; i < smt_threads; i++) {
240 servers_prop[i] = cpu_to_be32(index + i);
241 /* Hack, direct the group queues back to cpu 0 */
242 gservers_prop[i*2] = cpu_to_be32(index + i);
243 gservers_prop[i*2 + 1] = 0;
244 }
245 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
246 servers_prop, sizeof(servers_prop));
247 if (ret < 0) {
248 return ret;
249 }
250 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
251 gservers_prop, sizeof(gservers_prop));
252
253 return ret;
254 }
255
256 static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr)
257 {
258 int ret = 0, offset, cpus_offset;
259 CPUState *cs;
260 char cpu_model[32];
261 int smt = kvmppc_smt_threads();
262 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
263
264 CPU_FOREACH(cs) {
265 PowerPCCPU *cpu = POWERPC_CPU(cs);
266 DeviceClass *dc = DEVICE_GET_CLASS(cs);
267 int index = ppc_get_vcpu_dt_id(cpu);
268 uint32_t associativity[] = {cpu_to_be32(0x5),
269 cpu_to_be32(0x0),
270 cpu_to_be32(0x0),
271 cpu_to_be32(0x0),
272 cpu_to_be32(cs->numa_node),
273 cpu_to_be32(index)};
274
275 if ((index % smt) != 0) {
276 continue;
277 }
278
279 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
280
281 cpus_offset = fdt_path_offset(fdt, "/cpus");
282 if (cpus_offset < 0) {
283 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
284 "cpus");
285 if (cpus_offset < 0) {
286 return cpus_offset;
287 }
288 }
289 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
290 if (offset < 0) {
291 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
292 if (offset < 0) {
293 return offset;
294 }
295 }
296
297 if (nb_numa_nodes > 1) {
298 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
299 sizeof(associativity));
300 if (ret < 0) {
301 return ret;
302 }
303 }
304
305 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
306 pft_size_prop, sizeof(pft_size_prop));
307 if (ret < 0) {
308 return ret;
309 }
310
311 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
312 ppc_get_compat_smt_threads(cpu));
313 if (ret < 0) {
314 return ret;
315 }
316 }
317 return ret;
318 }
319
320
321 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
322 size_t maxsize)
323 {
324 size_t maxcells = maxsize / sizeof(uint32_t);
325 int i, j, count;
326 uint32_t *p = prop;
327
328 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
329 struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
330
331 if (!sps->page_shift) {
332 break;
333 }
334 for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
335 if (sps->enc[count].page_shift == 0) {
336 break;
337 }
338 }
339 if ((p - prop) >= (maxcells - 3 - count * 2)) {
340 break;
341 }
342 *(p++) = cpu_to_be32(sps->page_shift);
343 *(p++) = cpu_to_be32(sps->slb_enc);
344 *(p++) = cpu_to_be32(count);
345 for (j = 0; j < count; j++) {
346 *(p++) = cpu_to_be32(sps->enc[j].page_shift);
347 *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
348 }
349 }
350
351 return (p - prop) * sizeof(uint32_t);
352 }
353
354 #define _FDT(exp) \
355 do { \
356 int ret = (exp); \
357 if (ret < 0) { \
358 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
359 #exp, fdt_strerror(ret)); \
360 exit(1); \
361 } \
362 } while (0)
363
364 static void add_str(GString *s, const gchar *s1)
365 {
366 g_string_append_len(s, s1, strlen(s1) + 1);
367 }
368
369 static void *spapr_create_fdt_skel(hwaddr initrd_base,
370 hwaddr initrd_size,
371 hwaddr kernel_size,
372 bool little_endian,
373 const char *boot_device,
374 const char *kernel_cmdline,
375 uint32_t epow_irq)
376 {
377 void *fdt;
378 CPUState *cs;
379 uint32_t start_prop = cpu_to_be32(initrd_base);
380 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
381 GString *hypertas = g_string_sized_new(256);
382 GString *qemu_hypertas = g_string_sized_new(256);
383 uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
384 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
385 int smt = kvmppc_smt_threads();
386 unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
387 QemuOpts *opts = qemu_opts_find(qemu_find_opts("smp-opts"), NULL);
388 unsigned sockets = opts ? qemu_opt_get_number(opts, "sockets", 0) : 0;
389 uint32_t cpus_per_socket = sockets ? (smp_cpus / sockets) : 1;
390
391 add_str(hypertas, "hcall-pft");
392 add_str(hypertas, "hcall-term");
393 add_str(hypertas, "hcall-dabr");
394 add_str(hypertas, "hcall-interrupt");
395 add_str(hypertas, "hcall-tce");
396 add_str(hypertas, "hcall-vio");
397 add_str(hypertas, "hcall-splpar");
398 add_str(hypertas, "hcall-bulk");
399 add_str(hypertas, "hcall-set-mode");
400 add_str(qemu_hypertas, "hcall-memop1");
401
402 fdt = g_malloc0(FDT_MAX_SIZE);
403 _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
404
405 if (kernel_size) {
406 _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
407 }
408 if (initrd_size) {
409 _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
410 }
411 _FDT((fdt_finish_reservemap(fdt)));
412
413 /* Root node */
414 _FDT((fdt_begin_node(fdt, "")));
415 _FDT((fdt_property_string(fdt, "device_type", "chrp")));
416 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
417 _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
418
419 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
420 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
421
422 /* /chosen */
423 _FDT((fdt_begin_node(fdt, "chosen")));
424
425 /* Set Form1_affinity */
426 _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
427
428 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
429 _FDT((fdt_property(fdt, "linux,initrd-start",
430 &start_prop, sizeof(start_prop))));
431 _FDT((fdt_property(fdt, "linux,initrd-end",
432 &end_prop, sizeof(end_prop))));
433 if (kernel_size) {
434 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
435 cpu_to_be64(kernel_size) };
436
437 _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
438 if (little_endian) {
439 _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
440 }
441 }
442 if (boot_device) {
443 _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
444 }
445 _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
446 _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
447 _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
448
449 _FDT((fdt_end_node(fdt)));
450
451 /* cpus */
452 _FDT((fdt_begin_node(fdt, "cpus")));
453
454 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
455 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
456
457 CPU_FOREACH(cs) {
458 PowerPCCPU *cpu = POWERPC_CPU(cs);
459 CPUPPCState *env = &cpu->env;
460 DeviceClass *dc = DEVICE_GET_CLASS(cs);
461 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
462 int index = ppc_get_vcpu_dt_id(cpu);
463 char *nodename;
464 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
465 0xffffffff, 0xffffffff};
466 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
467 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
468 uint32_t page_sizes_prop[64];
469 size_t page_sizes_prop_size;
470
471 if ((index % smt) != 0) {
472 continue;
473 }
474
475 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
476
477 _FDT((fdt_begin_node(fdt, nodename)));
478
479 g_free(nodename);
480
481 _FDT((fdt_property_cell(fdt, "reg", index)));
482 _FDT((fdt_property_string(fdt, "device_type", "cpu")));
483
484 _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
485 _FDT((fdt_property_cell(fdt, "d-cache-block-size",
486 env->dcache_line_size)));
487 _FDT((fdt_property_cell(fdt, "d-cache-line-size",
488 env->dcache_line_size)));
489 _FDT((fdt_property_cell(fdt, "i-cache-block-size",
490 env->icache_line_size)));
491 _FDT((fdt_property_cell(fdt, "i-cache-line-size",
492 env->icache_line_size)));
493
494 if (pcc->l1_dcache_size) {
495 _FDT((fdt_property_cell(fdt, "d-cache-size", pcc->l1_dcache_size)));
496 } else {
497 fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
498 }
499 if (pcc->l1_icache_size) {
500 _FDT((fdt_property_cell(fdt, "i-cache-size", pcc->l1_icache_size)));
501 } else {
502 fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
503 }
504
505 _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
506 _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
507 _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
508 _FDT((fdt_property_string(fdt, "status", "okay")));
509 _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
510
511 if (env->spr_cb[SPR_PURR].oea_read) {
512 _FDT((fdt_property(fdt, "ibm,purr", NULL, 0)));
513 }
514
515 if (env->mmu_model & POWERPC_MMU_1TSEG) {
516 _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
517 segs, sizeof(segs))));
518 }
519
520 /* Advertise VMX/VSX (vector extensions) if available
521 * 0 / no property == no vector extensions
522 * 1 == VMX / Altivec available
523 * 2 == VSX available */
524 if (env->insns_flags & PPC_ALTIVEC) {
525 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
526
527 _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
528 }
529
530 /* Advertise DFP (Decimal Floating Point) if available
531 * 0 / no property == no DFP
532 * 1 == DFP available */
533 if (env->insns_flags2 & PPC2_DFP) {
534 _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
535 }
536
537 page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
538 sizeof(page_sizes_prop));
539 if (page_sizes_prop_size) {
540 _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
541 page_sizes_prop, page_sizes_prop_size)));
542 }
543
544 _FDT((fdt_property_cell(fdt, "ibm,chip-id",
545 cs->cpu_index / cpus_per_socket)));
546
547 _FDT((fdt_end_node(fdt)));
548 }
549
550 _FDT((fdt_end_node(fdt)));
551
552 /* RTAS */
553 _FDT((fdt_begin_node(fdt, "rtas")));
554
555 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
556 add_str(hypertas, "hcall-multi-tce");
557 }
558 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
559 hypertas->len)));
560 g_string_free(hypertas, TRUE);
561 _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
562 qemu_hypertas->len)));
563 g_string_free(qemu_hypertas, TRUE);
564
565 _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
566 refpoints, sizeof(refpoints))));
567
568 _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
569
570 _FDT((fdt_end_node(fdt)));
571
572 /* interrupt controller */
573 _FDT((fdt_begin_node(fdt, "interrupt-controller")));
574
575 _FDT((fdt_property_string(fdt, "device_type",
576 "PowerPC-External-Interrupt-Presentation")));
577 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
578 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
579 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
580 interrupt_server_ranges_prop,
581 sizeof(interrupt_server_ranges_prop))));
582 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
583 _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
584 _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
585
586 _FDT((fdt_end_node(fdt)));
587
588 /* vdevice */
589 _FDT((fdt_begin_node(fdt, "vdevice")));
590
591 _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
592 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
593 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
594 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
595 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
596 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
597
598 _FDT((fdt_end_node(fdt)));
599
600 /* event-sources */
601 spapr_events_fdt_skel(fdt, epow_irq);
602
603 /* /hypervisor node */
604 if (kvm_enabled()) {
605 uint8_t hypercall[16];
606
607 /* indicate KVM hypercall interface */
608 _FDT((fdt_begin_node(fdt, "hypervisor")));
609 _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
610 if (kvmppc_has_cap_fixup_hcalls()) {
611 /*
612 * Older KVM versions with older guest kernels were broken with the
613 * magic page, don't allow the guest to map it.
614 */
615 kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
616 sizeof(hypercall));
617 _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
618 sizeof(hypercall))));
619 }
620 _FDT((fdt_end_node(fdt)));
621 }
622
623 _FDT((fdt_end_node(fdt))); /* close root node */
624 _FDT((fdt_finish(fdt)));
625
626 return fdt;
627 }
628
629 int spapr_h_cas_compose_response(target_ulong addr, target_ulong size)
630 {
631 void *fdt, *fdt_skel;
632 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
633
634 size -= sizeof(hdr);
635
636 /* Create sceleton */
637 fdt_skel = g_malloc0(size);
638 _FDT((fdt_create(fdt_skel, size)));
639 _FDT((fdt_begin_node(fdt_skel, "")));
640 _FDT((fdt_end_node(fdt_skel)));
641 _FDT((fdt_finish(fdt_skel)));
642 fdt = g_malloc0(size);
643 _FDT((fdt_open_into(fdt_skel, fdt, size)));
644 g_free(fdt_skel);
645
646 /* Fix skeleton up */
647 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
648
649 /* Pack resulting tree */
650 _FDT((fdt_pack(fdt)));
651
652 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
653 trace_spapr_cas_failed(size);
654 return -1;
655 }
656
657 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
658 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
659 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
660 g_free(fdt);
661
662 return 0;
663 }
664
665 static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt)
666 {
667 uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
668 cpu_to_be32(0x0), cpu_to_be32(0x0),
669 cpu_to_be32(0x0)};
670 char mem_name[32];
671 hwaddr node0_size, mem_start, node_size;
672 uint64_t mem_reg_property[2];
673 int i, off;
674
675 /* memory node(s) */
676 if (nb_numa_nodes > 1 && node_mem[0] < ram_size) {
677 node0_size = node_mem[0];
678 } else {
679 node0_size = ram_size;
680 }
681
682 /* RMA */
683 mem_reg_property[0] = 0;
684 mem_reg_property[1] = cpu_to_be64(spapr->rma_size);
685 off = fdt_add_subnode(fdt, 0, "memory@0");
686 _FDT(off);
687 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
688 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
689 sizeof(mem_reg_property))));
690 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
691 sizeof(associativity))));
692
693 /* RAM: Node 0 */
694 if (node0_size > spapr->rma_size) {
695 mem_reg_property[0] = cpu_to_be64(spapr->rma_size);
696 mem_reg_property[1] = cpu_to_be64(node0_size - spapr->rma_size);
697
698 sprintf(mem_name, "memory@" TARGET_FMT_lx, spapr->rma_size);
699 off = fdt_add_subnode(fdt, 0, mem_name);
700 _FDT(off);
701 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
702 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
703 sizeof(mem_reg_property))));
704 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
705 sizeof(associativity))));
706 }
707
708 /* RAM: Node 1 and beyond */
709 mem_start = node0_size;
710 for (i = 1; i < nb_numa_nodes; i++) {
711 mem_reg_property[0] = cpu_to_be64(mem_start);
712 if (mem_start >= ram_size) {
713 node_size = 0;
714 } else {
715 node_size = node_mem[i];
716 if (node_size > ram_size - mem_start) {
717 node_size = ram_size - mem_start;
718 }
719 }
720 mem_reg_property[1] = cpu_to_be64(node_size);
721 associativity[3] = associativity[4] = cpu_to_be32(i);
722 sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start);
723 off = fdt_add_subnode(fdt, 0, mem_name);
724 _FDT(off);
725 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
726 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
727 sizeof(mem_reg_property))));
728 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
729 sizeof(associativity))));
730 mem_start += node_size;
731 }
732
733 return 0;
734 }
735
736 static void spapr_finalize_fdt(sPAPREnvironment *spapr,
737 hwaddr fdt_addr,
738 hwaddr rtas_addr,
739 hwaddr rtas_size)
740 {
741 int ret, i;
742 size_t cb = 0;
743 char *bootlist;
744 void *fdt;
745 sPAPRPHBState *phb;
746
747 fdt = g_malloc(FDT_MAX_SIZE);
748
749 /* open out the base tree into a temp buffer for the final tweaks */
750 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
751
752 ret = spapr_populate_memory(spapr, fdt);
753 if (ret < 0) {
754 fprintf(stderr, "couldn't setup memory nodes in fdt\n");
755 exit(1);
756 }
757
758 ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
759 if (ret < 0) {
760 fprintf(stderr, "couldn't setup vio devices in fdt\n");
761 exit(1);
762 }
763
764 QLIST_FOREACH(phb, &spapr->phbs, list) {
765 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
766 }
767
768 if (ret < 0) {
769 fprintf(stderr, "couldn't setup PCI devices in fdt\n");
770 exit(1);
771 }
772
773 /* RTAS */
774 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
775 if (ret < 0) {
776 fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
777 }
778
779 /* Advertise NUMA via ibm,associativity */
780 ret = spapr_fixup_cpu_dt(fdt, spapr);
781 if (ret < 0) {
782 fprintf(stderr, "Couldn't finalize CPU device tree properties\n");
783 }
784
785 bootlist = get_boot_devices_list(&cb, true);
786 if (cb && bootlist) {
787 int offset = fdt_path_offset(fdt, "/chosen");
788 if (offset < 0) {
789 exit(1);
790 }
791 for (i = 0; i < cb; i++) {
792 if (bootlist[i] == '\n') {
793 bootlist[i] = ' ';
794 }
795
796 }
797 ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
798 }
799
800 if (!spapr->has_graphics) {
801 spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
802 }
803
804 _FDT((fdt_pack(fdt)));
805
806 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
807 hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
808 fdt_totalsize(fdt), FDT_MAX_SIZE);
809 exit(1);
810 }
811
812 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
813
814 g_free(fdt);
815 }
816
817 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
818 {
819 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
820 }
821
822 static void emulate_spapr_hypercall(PowerPCCPU *cpu)
823 {
824 CPUPPCState *env = &cpu->env;
825
826 if (msr_pr) {
827 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
828 env->gpr[3] = H_PRIVILEGE;
829 } else {
830 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
831 }
832 }
833
834 static void spapr_reset_htab(sPAPREnvironment *spapr)
835 {
836 long shift;
837
838 /* allocate hash page table. For now we always make this 16mb,
839 * later we should probably make it scale to the size of guest
840 * RAM */
841
842 shift = kvmppc_reset_htab(spapr->htab_shift);
843
844 if (shift > 0) {
845 /* Kernel handles htab, we don't need to allocate one */
846 spapr->htab_shift = shift;
847 kvmppc_kern_htab = true;
848 } else {
849 if (!spapr->htab) {
850 /* Allocate an htab if we don't yet have one */
851 spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
852 }
853
854 /* And clear it */
855 memset(spapr->htab, 0, HTAB_SIZE(spapr));
856 }
857
858 /* Update the RMA size if necessary */
859 if (spapr->vrma_adjust) {
860 hwaddr node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
861 spapr->rma_size = kvmppc_rma_size(node0_size, spapr->htab_shift);
862 }
863 }
864
865 static void ppc_spapr_reset(void)
866 {
867 PowerPCCPU *first_ppc_cpu;
868
869 /* Reset the hash table & recalc the RMA */
870 spapr_reset_htab(spapr);
871
872 qemu_devices_reset();
873
874 /* Load the fdt */
875 spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
876 spapr->rtas_size);
877
878 /* Set up the entry state */
879 first_ppc_cpu = POWERPC_CPU(first_cpu);
880 first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
881 first_ppc_cpu->env.gpr[5] = 0;
882 first_cpu->halted = 0;
883 first_ppc_cpu->env.nip = spapr->entry_point;
884
885 }
886
887 static void spapr_cpu_reset(void *opaque)
888 {
889 PowerPCCPU *cpu = opaque;
890 CPUState *cs = CPU(cpu);
891 CPUPPCState *env = &cpu->env;
892
893 cpu_reset(cs);
894
895 /* All CPUs start halted. CPU0 is unhalted from the machine level
896 * reset code and the rest are explicitly started up by the guest
897 * using an RTAS call */
898 cs->halted = 1;
899
900 env->spr[SPR_HIOR] = 0;
901
902 env->external_htab = (uint8_t *)spapr->htab;
903 if (kvm_enabled() && !env->external_htab) {
904 /*
905 * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte*
906 * functions do the right thing.
907 */
908 env->external_htab = (void *)1;
909 }
910 env->htab_base = -1;
911 /*
912 * htab_mask is the mask used to normalize hash value to PTEG index.
913 * htab_shift is log2 of hash table size.
914 * We have 8 hpte per group, and each hpte is 16 bytes.
915 * ie have 128 bytes per hpte entry.
916 */
917 env->htab_mask = (1ULL << ((spapr)->htab_shift - 7)) - 1;
918 env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
919 (spapr->htab_shift - 18);
920 }
921
922 static void spapr_create_nvram(sPAPREnvironment *spapr)
923 {
924 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
925 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
926
927 if (dinfo) {
928 qdev_prop_set_drive_nofail(dev, "drive", dinfo->bdrv);
929 }
930
931 qdev_init_nofail(dev);
932
933 spapr->nvram = (struct sPAPRNVRAM *)dev;
934 }
935
936 /* Returns whether we want to use VGA or not */
937 static int spapr_vga_init(PCIBus *pci_bus)
938 {
939 switch (vga_interface_type) {
940 case VGA_NONE:
941 return false;
942 case VGA_DEVICE:
943 return true;
944 case VGA_STD:
945 return pci_vga_init(pci_bus) != NULL;
946 default:
947 fprintf(stderr, "This vga model is not supported,"
948 "currently it only supports -vga std\n");
949 exit(0);
950 }
951 }
952
953 static const VMStateDescription vmstate_spapr = {
954 .name = "spapr",
955 .version_id = 2,
956 .minimum_version_id = 1,
957 .fields = (VMStateField[]) {
958 VMSTATE_UINT32(next_irq, sPAPREnvironment),
959
960 /* RTC offset */
961 VMSTATE_UINT64(rtc_offset, sPAPREnvironment),
962 VMSTATE_PPC_TIMEBASE_V(tb, sPAPREnvironment, 2),
963 VMSTATE_END_OF_LIST()
964 },
965 };
966
967 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
968 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
969 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
970 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
971
972 static int htab_save_setup(QEMUFile *f, void *opaque)
973 {
974 sPAPREnvironment *spapr = opaque;
975
976 /* "Iteration" header */
977 qemu_put_be32(f, spapr->htab_shift);
978
979 if (spapr->htab) {
980 spapr->htab_save_index = 0;
981 spapr->htab_first_pass = true;
982 } else {
983 assert(kvm_enabled());
984
985 spapr->htab_fd = kvmppc_get_htab_fd(false);
986 if (spapr->htab_fd < 0) {
987 fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
988 strerror(errno));
989 return -1;
990 }
991 }
992
993
994 return 0;
995 }
996
997 static void htab_save_first_pass(QEMUFile *f, sPAPREnvironment *spapr,
998 int64_t max_ns)
999 {
1000 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1001 int index = spapr->htab_save_index;
1002 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1003
1004 assert(spapr->htab_first_pass);
1005
1006 do {
1007 int chunkstart;
1008
1009 /* Consume invalid HPTEs */
1010 while ((index < htabslots)
1011 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1012 index++;
1013 CLEAN_HPTE(HPTE(spapr->htab, index));
1014 }
1015
1016 /* Consume valid HPTEs */
1017 chunkstart = index;
1018 while ((index < htabslots)
1019 && HPTE_VALID(HPTE(spapr->htab, index))) {
1020 index++;
1021 CLEAN_HPTE(HPTE(spapr->htab, index));
1022 }
1023
1024 if (index > chunkstart) {
1025 int n_valid = index - chunkstart;
1026
1027 qemu_put_be32(f, chunkstart);
1028 qemu_put_be16(f, n_valid);
1029 qemu_put_be16(f, 0);
1030 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1031 HASH_PTE_SIZE_64 * n_valid);
1032
1033 if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1034 break;
1035 }
1036 }
1037 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1038
1039 if (index >= htabslots) {
1040 assert(index == htabslots);
1041 index = 0;
1042 spapr->htab_first_pass = false;
1043 }
1044 spapr->htab_save_index = index;
1045 }
1046
1047 static int htab_save_later_pass(QEMUFile *f, sPAPREnvironment *spapr,
1048 int64_t max_ns)
1049 {
1050 bool final = max_ns < 0;
1051 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1052 int examined = 0, sent = 0;
1053 int index = spapr->htab_save_index;
1054 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1055
1056 assert(!spapr->htab_first_pass);
1057
1058 do {
1059 int chunkstart, invalidstart;
1060
1061 /* Consume non-dirty HPTEs */
1062 while ((index < htabslots)
1063 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1064 index++;
1065 examined++;
1066 }
1067
1068 chunkstart = index;
1069 /* Consume valid dirty HPTEs */
1070 while ((index < htabslots)
1071 && HPTE_DIRTY(HPTE(spapr->htab, index))
1072 && HPTE_VALID(HPTE(spapr->htab, index))) {
1073 CLEAN_HPTE(HPTE(spapr->htab, index));
1074 index++;
1075 examined++;
1076 }
1077
1078 invalidstart = index;
1079 /* Consume invalid dirty HPTEs */
1080 while ((index < htabslots)
1081 && HPTE_DIRTY(HPTE(spapr->htab, index))
1082 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1083 CLEAN_HPTE(HPTE(spapr->htab, index));
1084 index++;
1085 examined++;
1086 }
1087
1088 if (index > chunkstart) {
1089 int n_valid = invalidstart - chunkstart;
1090 int n_invalid = index - invalidstart;
1091
1092 qemu_put_be32(f, chunkstart);
1093 qemu_put_be16(f, n_valid);
1094 qemu_put_be16(f, n_invalid);
1095 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1096 HASH_PTE_SIZE_64 * n_valid);
1097 sent += index - chunkstart;
1098
1099 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1100 break;
1101 }
1102 }
1103
1104 if (examined >= htabslots) {
1105 break;
1106 }
1107
1108 if (index >= htabslots) {
1109 assert(index == htabslots);
1110 index = 0;
1111 }
1112 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1113
1114 if (index >= htabslots) {
1115 assert(index == htabslots);
1116 index = 0;
1117 }
1118
1119 spapr->htab_save_index = index;
1120
1121 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1122 }
1123
1124 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1125 #define MAX_KVM_BUF_SIZE 2048
1126
1127 static int htab_save_iterate(QEMUFile *f, void *opaque)
1128 {
1129 sPAPREnvironment *spapr = opaque;
1130 int rc = 0;
1131
1132 /* Iteration header */
1133 qemu_put_be32(f, 0);
1134
1135 if (!spapr->htab) {
1136 assert(kvm_enabled());
1137
1138 rc = kvmppc_save_htab(f, spapr->htab_fd,
1139 MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1140 if (rc < 0) {
1141 return rc;
1142 }
1143 } else if (spapr->htab_first_pass) {
1144 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1145 } else {
1146 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1147 }
1148
1149 /* End marker */
1150 qemu_put_be32(f, 0);
1151 qemu_put_be16(f, 0);
1152 qemu_put_be16(f, 0);
1153
1154 return rc;
1155 }
1156
1157 static int htab_save_complete(QEMUFile *f, void *opaque)
1158 {
1159 sPAPREnvironment *spapr = opaque;
1160
1161 /* Iteration header */
1162 qemu_put_be32(f, 0);
1163
1164 if (!spapr->htab) {
1165 int rc;
1166
1167 assert(kvm_enabled());
1168
1169 rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1);
1170 if (rc < 0) {
1171 return rc;
1172 }
1173 close(spapr->htab_fd);
1174 spapr->htab_fd = -1;
1175 } else {
1176 htab_save_later_pass(f, spapr, -1);
1177 }
1178
1179 /* End marker */
1180 qemu_put_be32(f, 0);
1181 qemu_put_be16(f, 0);
1182 qemu_put_be16(f, 0);
1183
1184 return 0;
1185 }
1186
1187 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1188 {
1189 sPAPREnvironment *spapr = opaque;
1190 uint32_t section_hdr;
1191 int fd = -1;
1192
1193 if (version_id < 1 || version_id > 1) {
1194 fprintf(stderr, "htab_load() bad version\n");
1195 return -EINVAL;
1196 }
1197
1198 section_hdr = qemu_get_be32(f);
1199
1200 if (section_hdr) {
1201 /* First section, just the hash shift */
1202 if (spapr->htab_shift != section_hdr) {
1203 return -EINVAL;
1204 }
1205 return 0;
1206 }
1207
1208 if (!spapr->htab) {
1209 assert(kvm_enabled());
1210
1211 fd = kvmppc_get_htab_fd(true);
1212 if (fd < 0) {
1213 fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n",
1214 strerror(errno));
1215 }
1216 }
1217
1218 while (true) {
1219 uint32_t index;
1220 uint16_t n_valid, n_invalid;
1221
1222 index = qemu_get_be32(f);
1223 n_valid = qemu_get_be16(f);
1224 n_invalid = qemu_get_be16(f);
1225
1226 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1227 /* End of Stream */
1228 break;
1229 }
1230
1231 if ((index + n_valid + n_invalid) >
1232 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1233 /* Bad index in stream */
1234 fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) "
1235 "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid,
1236 spapr->htab_shift);
1237 return -EINVAL;
1238 }
1239
1240 if (spapr->htab) {
1241 if (n_valid) {
1242 qemu_get_buffer(f, HPTE(spapr->htab, index),
1243 HASH_PTE_SIZE_64 * n_valid);
1244 }
1245 if (n_invalid) {
1246 memset(HPTE(spapr->htab, index + n_valid), 0,
1247 HASH_PTE_SIZE_64 * n_invalid);
1248 }
1249 } else {
1250 int rc;
1251
1252 assert(fd >= 0);
1253
1254 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1255 if (rc < 0) {
1256 return rc;
1257 }
1258 }
1259 }
1260
1261 if (!spapr->htab) {
1262 assert(fd >= 0);
1263 close(fd);
1264 }
1265
1266 return 0;
1267 }
1268
1269 static SaveVMHandlers savevm_htab_handlers = {
1270 .save_live_setup = htab_save_setup,
1271 .save_live_iterate = htab_save_iterate,
1272 .save_live_complete = htab_save_complete,
1273 .load_state = htab_load,
1274 };
1275
1276 /* pSeries LPAR / sPAPR hardware init */
1277 static void ppc_spapr_init(MachineState *machine)
1278 {
1279 ram_addr_t ram_size = machine->ram_size;
1280 const char *cpu_model = machine->cpu_model;
1281 const char *kernel_filename = machine->kernel_filename;
1282 const char *kernel_cmdline = machine->kernel_cmdline;
1283 const char *initrd_filename = machine->initrd_filename;
1284 const char *boot_device = machine->boot_order;
1285 PowerPCCPU *cpu;
1286 CPUPPCState *env;
1287 PCIHostState *phb;
1288 int i;
1289 MemoryRegion *sysmem = get_system_memory();
1290 MemoryRegion *ram = g_new(MemoryRegion, 1);
1291 hwaddr rma_alloc_size;
1292 hwaddr node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
1293 uint32_t initrd_base = 0;
1294 long kernel_size = 0, initrd_size = 0;
1295 long load_limit, rtas_limit, fw_size;
1296 bool kernel_le = false;
1297 char *filename;
1298
1299 msi_supported = true;
1300
1301 spapr = g_malloc0(sizeof(*spapr));
1302 QLIST_INIT(&spapr->phbs);
1303
1304 cpu_ppc_hypercall = emulate_spapr_hypercall;
1305
1306 /* Allocate RMA if necessary */
1307 rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem);
1308
1309 if (rma_alloc_size == -1) {
1310 hw_error("qemu: Unable to create RMA\n");
1311 exit(1);
1312 }
1313
1314 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1315 spapr->rma_size = rma_alloc_size;
1316 } else {
1317 spapr->rma_size = node0_size;
1318
1319 /* With KVM, we don't actually know whether KVM supports an
1320 * unbounded RMA (PR KVM) or is limited by the hash table size
1321 * (HV KVM using VRMA), so we always assume the latter
1322 *
1323 * In that case, we also limit the initial allocations for RTAS
1324 * etc... to 256M since we have no way to know what the VRMA size
1325 * is going to be as it depends on the size of the hash table
1326 * isn't determined yet.
1327 */
1328 if (kvm_enabled()) {
1329 spapr->vrma_adjust = 1;
1330 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1331 }
1332 }
1333
1334 if (spapr->rma_size > node0_size) {
1335 fprintf(stderr, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")\n",
1336 spapr->rma_size);
1337 exit(1);
1338 }
1339
1340 /* We place the device tree and RTAS just below either the top of the RMA,
1341 * or just below 2GB, whichever is lowere, so that it can be
1342 * processed with 32-bit real mode code if necessary */
1343 rtas_limit = MIN(spapr->rma_size, 0x80000000);
1344 spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1345 spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
1346 load_limit = spapr->fdt_addr - FW_OVERHEAD;
1347
1348 /* We aim for a hash table of size 1/128 the size of RAM. The
1349 * normal rule of thumb is 1/64 the size of RAM, but that's much
1350 * more than needed for the Linux guests we support. */
1351 spapr->htab_shift = 18; /* Minimum architected size */
1352 while (spapr->htab_shift <= 46) {
1353 if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) {
1354 break;
1355 }
1356 spapr->htab_shift++;
1357 }
1358
1359 /* Set up Interrupt Controller before we create the VCPUs */
1360 spapr->icp = xics_system_init(smp_cpus * kvmppc_smt_threads() / smp_threads,
1361 XICS_IRQS);
1362 spapr->next_irq = XICS_IRQ_BASE;
1363
1364 /* init CPUs */
1365 if (cpu_model == NULL) {
1366 cpu_model = kvm_enabled() ? "host" : "POWER7";
1367 }
1368 for (i = 0; i < smp_cpus; i++) {
1369 cpu = cpu_ppc_init(cpu_model);
1370 if (cpu == NULL) {
1371 fprintf(stderr, "Unable to find PowerPC CPU definition\n");
1372 exit(1);
1373 }
1374 env = &cpu->env;
1375
1376 /* Set time-base frequency to 512 MHz */
1377 cpu_ppc_tb_init(env, TIMEBASE_FREQ);
1378
1379 /* PAPR always has exception vectors in RAM not ROM. To ensure this,
1380 * MSR[IP] should never be set.
1381 */
1382 env->msr_mask &= ~(1 << 6);
1383
1384 /* Tell KVM that we're in PAPR mode */
1385 if (kvm_enabled()) {
1386 kvmppc_set_papr(cpu);
1387 }
1388
1389 if (cpu->max_compat) {
1390 if (ppc_set_compat(cpu, cpu->max_compat) < 0) {
1391 exit(1);
1392 }
1393 }
1394
1395 xics_cpu_setup(spapr->icp, cpu);
1396
1397 qemu_register_reset(spapr_cpu_reset, cpu);
1398 }
1399
1400 /* allocate RAM */
1401 spapr->ram_limit = ram_size;
1402 if (spapr->ram_limit > rma_alloc_size) {
1403 ram_addr_t nonrma_base = rma_alloc_size;
1404 ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size;
1405
1406 memory_region_init_ram(ram, NULL, "ppc_spapr.ram", nonrma_size);
1407 vmstate_register_ram_global(ram);
1408 memory_region_add_subregion(sysmem, nonrma_base, ram);
1409 }
1410
1411 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1412 spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
1413 rtas_limit - spapr->rtas_addr);
1414 if (spapr->rtas_size < 0) {
1415 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
1416 exit(1);
1417 }
1418 if (spapr->rtas_size > RTAS_MAX_SIZE) {
1419 hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
1420 spapr->rtas_size, RTAS_MAX_SIZE);
1421 exit(1);
1422 }
1423 g_free(filename);
1424
1425 /* Set up EPOW events infrastructure */
1426 spapr_events_init(spapr);
1427
1428 /* Set up VIO bus */
1429 spapr->vio_bus = spapr_vio_bus_init();
1430
1431 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1432 if (serial_hds[i]) {
1433 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1434 }
1435 }
1436
1437 /* We always have at least the nvram device on VIO */
1438 spapr_create_nvram(spapr);
1439
1440 /* Set up PCI */
1441 spapr_pci_msi_init(spapr, SPAPR_PCI_MSI_WINDOW);
1442 spapr_pci_rtas_init();
1443
1444 phb = spapr_create_phb(spapr, 0);
1445
1446 for (i = 0; i < nb_nics; i++) {
1447 NICInfo *nd = &nd_table[i];
1448
1449 if (!nd->model) {
1450 nd->model = g_strdup("ibmveth");
1451 }
1452
1453 if (strcmp(nd->model, "ibmveth") == 0) {
1454 spapr_vlan_create(spapr->vio_bus, nd);
1455 } else {
1456 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1457 }
1458 }
1459
1460 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1461 spapr_vscsi_create(spapr->vio_bus);
1462 }
1463
1464 /* Graphics */
1465 if (spapr_vga_init(phb->bus)) {
1466 spapr->has_graphics = true;
1467 }
1468
1469 if (usb_enabled(spapr->has_graphics)) {
1470 pci_create_simple(phb->bus, -1, "pci-ohci");
1471 if (spapr->has_graphics) {
1472 usbdevice_create("keyboard");
1473 usbdevice_create("mouse");
1474 }
1475 }
1476
1477 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1478 fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
1479 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
1480 exit(1);
1481 }
1482
1483 if (kernel_filename) {
1484 uint64_t lowaddr = 0;
1485
1486 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
1487 NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
1488 if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1489 kernel_size = load_elf(kernel_filename,
1490 translate_kernel_address, NULL,
1491 NULL, &lowaddr, NULL, 0, ELF_MACHINE, 0);
1492 kernel_le = kernel_size > 0;
1493 }
1494 if (kernel_size < 0) {
1495 fprintf(stderr, "qemu: error loading %s: %s\n",
1496 kernel_filename, load_elf_strerror(kernel_size));
1497 exit(1);
1498 }
1499
1500 /* load initrd */
1501 if (initrd_filename) {
1502 /* Try to locate the initrd in the gap between the kernel
1503 * and the firmware. Add a bit of space just in case
1504 */
1505 initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1506 initrd_size = load_image_targphys(initrd_filename, initrd_base,
1507 load_limit - initrd_base);
1508 if (initrd_size < 0) {
1509 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
1510 initrd_filename);
1511 exit(1);
1512 }
1513 } else {
1514 initrd_base = 0;
1515 initrd_size = 0;
1516 }
1517 }
1518
1519 if (bios_name == NULL) {
1520 bios_name = FW_FILE_NAME;
1521 }
1522 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1523 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
1524 if (fw_size < 0) {
1525 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
1526 exit(1);
1527 }
1528 g_free(filename);
1529
1530 spapr->entry_point = 0x100;
1531
1532 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
1533 register_savevm_live(NULL, "spapr/htab", -1, 1,
1534 &savevm_htab_handlers, spapr);
1535
1536 /* Prepare the device tree */
1537 spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
1538 kernel_size, kernel_le,
1539 boot_device, kernel_cmdline,
1540 spapr->epow_irq);
1541 assert(spapr->fdt_skel != NULL);
1542 }
1543
1544 static int spapr_kvm_type(const char *vm_type)
1545 {
1546 if (!vm_type) {
1547 return 0;
1548 }
1549
1550 if (!strcmp(vm_type, "HV")) {
1551 return 1;
1552 }
1553
1554 if (!strcmp(vm_type, "PR")) {
1555 return 2;
1556 }
1557
1558 error_report("Unknown kvm-type specified '%s'", vm_type);
1559 exit(1);
1560 }
1561
1562 /*
1563 * Implementation of an interface to adjust firmware patch
1564 * for the bootindex property handling.
1565 */
1566 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
1567 DeviceState *dev)
1568 {
1569 #define CAST(type, obj, name) \
1570 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
1571 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
1572 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
1573
1574 if (d) {
1575 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
1576 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
1577 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
1578
1579 if (spapr) {
1580 /*
1581 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
1582 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
1583 * in the top 16 bits of the 64-bit LUN
1584 */
1585 unsigned id = 0x8000 | (d->id << 8) | d->lun;
1586 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1587 (uint64_t)id << 48);
1588 } else if (virtio) {
1589 /*
1590 * We use SRP luns of the form 01000000 | (target << 8) | lun
1591 * in the top 32 bits of the 64-bit LUN
1592 * Note: the quote above is from SLOF and it is wrong,
1593 * the actual binding is:
1594 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
1595 */
1596 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
1597 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1598 (uint64_t)id << 32);
1599 } else if (usb) {
1600 /*
1601 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
1602 * in the top 32 bits of the 64-bit LUN
1603 */
1604 unsigned usb_port = atoi(usb->port->path);
1605 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
1606 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1607 (uint64_t)id << 32);
1608 }
1609 }
1610
1611 if (phb) {
1612 /* Replace "pci" with "pci@800000020000000" */
1613 return g_strdup_printf("pci@%"PRIX64, phb->buid);
1614 }
1615
1616 return NULL;
1617 }
1618
1619 static char *spapr_get_kvm_type(Object *obj, Error **errp)
1620 {
1621 SPAPRMachine *sm = SPAPR_MACHINE(obj);
1622
1623 return g_strdup(sm->kvm_type);
1624 }
1625
1626 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
1627 {
1628 SPAPRMachine *sm = SPAPR_MACHINE(obj);
1629
1630 g_free(sm->kvm_type);
1631 sm->kvm_type = g_strdup(value);
1632 }
1633
1634 static void spapr_machine_initfn(Object *obj)
1635 {
1636 object_property_add_str(obj, "kvm-type",
1637 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
1638 }
1639
1640 static void spapr_machine_class_init(ObjectClass *oc, void *data)
1641 {
1642 MachineClass *mc = MACHINE_CLASS(oc);
1643 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
1644
1645 mc->name = "pseries";
1646 mc->desc = "pSeries Logical Partition (PAPR compliant)";
1647 mc->is_default = 1;
1648 mc->init = ppc_spapr_init;
1649 mc->reset = ppc_spapr_reset;
1650 mc->block_default_type = IF_SCSI;
1651 mc->max_cpus = MAX_CPUS;
1652 mc->no_parallel = 1;
1653 mc->default_boot_order = NULL;
1654 mc->kvm_type = spapr_kvm_type;
1655
1656 fwc->get_dev_path = spapr_get_fw_dev_path;
1657 }
1658
1659 static const TypeInfo spapr_machine_info = {
1660 .name = TYPE_SPAPR_MACHINE,
1661 .parent = TYPE_MACHINE,
1662 .instance_size = sizeof(SPAPRMachine),
1663 .instance_init = spapr_machine_initfn,
1664 .class_init = spapr_machine_class_init,
1665 .interfaces = (InterfaceInfo[]) {
1666 { TYPE_FW_PATH_PROVIDER },
1667 { }
1668 },
1669 };
1670
1671 static void spapr_machine_register_types(void)
1672 {
1673 type_register_static(&spapr_machine_info);
1674 }
1675
1676 type_init(spapr_machine_register_types)