]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr.c
spapr: add a 'reset' method to the sPAPR IRQ backend
[mirror_qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/numa.h"
32 #include "hw/hw.h"
33 #include "qemu/log.h"
34 #include "hw/fw-path-provider.h"
35 #include "elf.h"
36 #include "net/net.h"
37 #include "sysemu/device_tree.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/hw_accel.h"
40 #include "kvm_ppc.h"
41 #include "migration/misc.h"
42 #include "migration/global_state.h"
43 #include "migration/register.h"
44 #include "mmu-hash64.h"
45 #include "mmu-book3s-v3.h"
46 #include "cpu-models.h"
47 #include "qom/cpu.h"
48
49 #include "hw/boards.h"
50 #include "hw/ppc/ppc.h"
51 #include "hw/loader.h"
52
53 #include "hw/ppc/fdt.h"
54 #include "hw/ppc/spapr.h"
55 #include "hw/ppc/spapr_vio.h"
56 #include "hw/pci-host/spapr.h"
57 #include "hw/pci/msi.h"
58
59 #include "hw/pci/pci.h"
60 #include "hw/scsi/scsi.h"
61 #include "hw/virtio/virtio-scsi.h"
62 #include "hw/virtio/vhost-scsi-common.h"
63
64 #include "exec/address-spaces.h"
65 #include "exec/ram_addr.h"
66 #include "hw/usb.h"
67 #include "qemu/config-file.h"
68 #include "qemu/error-report.h"
69 #include "trace.h"
70 #include "hw/nmi.h"
71 #include "hw/intc/intc.h"
72
73 #include "hw/compat.h"
74 #include "qemu/cutils.h"
75 #include "hw/ppc/spapr_cpu_core.h"
76 #include "hw/mem/memory-device.h"
77
78 #include <libfdt.h>
79
80 /* SLOF memory layout:
81 *
82 * SLOF raw image loaded at 0, copies its romfs right below the flat
83 * device-tree, then position SLOF itself 31M below that
84 *
85 * So we set FW_OVERHEAD to 40MB which should account for all of that
86 * and more
87 *
88 * We load our kernel at 4M, leaving space for SLOF initial image
89 */
90 #define FDT_MAX_SIZE 0x100000
91 #define RTAS_MAX_SIZE 0x10000
92 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
93 #define FW_MAX_SIZE 0x400000
94 #define FW_FILE_NAME "slof.bin"
95 #define FW_OVERHEAD 0x2800000
96 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
97
98 #define MIN_RMA_SLOF 128UL
99
100 #define PHANDLE_XICP 0x00001111
101
102 /* These two functions implement the VCPU id numbering: one to compute them
103 * all and one to identify thread 0 of a VCORE. Any change to the first one
104 * is likely to have an impact on the second one, so let's keep them close.
105 */
106 static int spapr_vcpu_id(sPAPRMachineState *spapr, int cpu_index)
107 {
108 assert(spapr->vsmt);
109 return
110 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
111 }
112 static bool spapr_is_thread0_in_vcore(sPAPRMachineState *spapr,
113 PowerPCCPU *cpu)
114 {
115 assert(spapr->vsmt);
116 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
117 }
118
119 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
120 {
121 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
122 * and newer QEMUs don't even have them. In both cases, we don't want
123 * to send anything on the wire.
124 */
125 return false;
126 }
127
128 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
129 .name = "icp/server",
130 .version_id = 1,
131 .minimum_version_id = 1,
132 .needed = pre_2_10_vmstate_dummy_icp_needed,
133 .fields = (VMStateField[]) {
134 VMSTATE_UNUSED(4), /* uint32_t xirr */
135 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
136 VMSTATE_UNUSED(1), /* uint8_t mfrr */
137 VMSTATE_END_OF_LIST()
138 },
139 };
140
141 static void pre_2_10_vmstate_register_dummy_icp(int i)
142 {
143 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
144 (void *)(uintptr_t) i);
145 }
146
147 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
148 {
149 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
150 (void *)(uintptr_t) i);
151 }
152
153 int spapr_max_server_number(sPAPRMachineState *spapr)
154 {
155 assert(spapr->vsmt);
156 return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads);
157 }
158
159 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
160 int smt_threads)
161 {
162 int i, ret = 0;
163 uint32_t servers_prop[smt_threads];
164 uint32_t gservers_prop[smt_threads * 2];
165 int index = spapr_get_vcpu_id(cpu);
166
167 if (cpu->compat_pvr) {
168 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
169 if (ret < 0) {
170 return ret;
171 }
172 }
173
174 /* Build interrupt servers and gservers properties */
175 for (i = 0; i < smt_threads; i++) {
176 servers_prop[i] = cpu_to_be32(index + i);
177 /* Hack, direct the group queues back to cpu 0 */
178 gservers_prop[i*2] = cpu_to_be32(index + i);
179 gservers_prop[i*2 + 1] = 0;
180 }
181 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
182 servers_prop, sizeof(servers_prop));
183 if (ret < 0) {
184 return ret;
185 }
186 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
187 gservers_prop, sizeof(gservers_prop));
188
189 return ret;
190 }
191
192 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
193 {
194 int index = spapr_get_vcpu_id(cpu);
195 uint32_t associativity[] = {cpu_to_be32(0x5),
196 cpu_to_be32(0x0),
197 cpu_to_be32(0x0),
198 cpu_to_be32(0x0),
199 cpu_to_be32(cpu->node_id),
200 cpu_to_be32(index)};
201
202 /* Advertise NUMA via ibm,associativity */
203 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
204 sizeof(associativity));
205 }
206
207 /* Populate the "ibm,pa-features" property */
208 static void spapr_populate_pa_features(sPAPRMachineState *spapr,
209 PowerPCCPU *cpu,
210 void *fdt, int offset,
211 bool legacy_guest)
212 {
213 uint8_t pa_features_206[] = { 6, 0,
214 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
215 uint8_t pa_features_207[] = { 24, 0,
216 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
217 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
218 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
219 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
220 uint8_t pa_features_300[] = { 66, 0,
221 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
222 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
223 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
224 /* 6: DS207 */
225 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
226 /* 16: Vector */
227 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
228 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
229 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
230 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
231 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
232 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
233 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
234 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
235 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
236 /* 42: PM, 44: PC RA, 46: SC vec'd */
237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
238 /* 48: SIMD, 50: QP BFP, 52: String */
239 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
240 /* 54: DecFP, 56: DecI, 58: SHA */
241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
242 /* 60: NM atomic, 62: RNG */
243 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
244 };
245 uint8_t *pa_features = NULL;
246 size_t pa_size;
247
248 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
249 pa_features = pa_features_206;
250 pa_size = sizeof(pa_features_206);
251 }
252 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
253 pa_features = pa_features_207;
254 pa_size = sizeof(pa_features_207);
255 }
256 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
257 pa_features = pa_features_300;
258 pa_size = sizeof(pa_features_300);
259 }
260 if (!pa_features) {
261 return;
262 }
263
264 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
265 /*
266 * Note: we keep CI large pages off by default because a 64K capable
267 * guest provisioned with large pages might otherwise try to map a qemu
268 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
269 * even if that qemu runs on a 4k host.
270 * We dd this bit back here if we are confident this is not an issue
271 */
272 pa_features[3] |= 0x20;
273 }
274 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
275 pa_features[24] |= 0x80; /* Transactional memory support */
276 }
277 if (legacy_guest && pa_size > 40) {
278 /* Workaround for broken kernels that attempt (guest) radix
279 * mode when they can't handle it, if they see the radix bit set
280 * in pa-features. So hide it from them. */
281 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
282 }
283
284 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
285 }
286
287 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
288 {
289 int ret = 0, offset, cpus_offset;
290 CPUState *cs;
291 char cpu_model[32];
292 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
293
294 CPU_FOREACH(cs) {
295 PowerPCCPU *cpu = POWERPC_CPU(cs);
296 DeviceClass *dc = DEVICE_GET_CLASS(cs);
297 int index = spapr_get_vcpu_id(cpu);
298 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
299
300 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
301 continue;
302 }
303
304 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
305
306 cpus_offset = fdt_path_offset(fdt, "/cpus");
307 if (cpus_offset < 0) {
308 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
309 if (cpus_offset < 0) {
310 return cpus_offset;
311 }
312 }
313 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
314 if (offset < 0) {
315 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
316 if (offset < 0) {
317 return offset;
318 }
319 }
320
321 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
322 pft_size_prop, sizeof(pft_size_prop));
323 if (ret < 0) {
324 return ret;
325 }
326
327 if (nb_numa_nodes > 1) {
328 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
329 if (ret < 0) {
330 return ret;
331 }
332 }
333
334 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
335 if (ret < 0) {
336 return ret;
337 }
338
339 spapr_populate_pa_features(spapr, cpu, fdt, offset,
340 spapr->cas_legacy_guest_workaround);
341 }
342 return ret;
343 }
344
345 static hwaddr spapr_node0_size(MachineState *machine)
346 {
347 if (nb_numa_nodes) {
348 int i;
349 for (i = 0; i < nb_numa_nodes; ++i) {
350 if (numa_info[i].node_mem) {
351 return MIN(pow2floor(numa_info[i].node_mem),
352 machine->ram_size);
353 }
354 }
355 }
356 return machine->ram_size;
357 }
358
359 static void add_str(GString *s, const gchar *s1)
360 {
361 g_string_append_len(s, s1, strlen(s1) + 1);
362 }
363
364 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
365 hwaddr size)
366 {
367 uint32_t associativity[] = {
368 cpu_to_be32(0x4), /* length */
369 cpu_to_be32(0x0), cpu_to_be32(0x0),
370 cpu_to_be32(0x0), cpu_to_be32(nodeid)
371 };
372 char mem_name[32];
373 uint64_t mem_reg_property[2];
374 int off;
375
376 mem_reg_property[0] = cpu_to_be64(start);
377 mem_reg_property[1] = cpu_to_be64(size);
378
379 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
380 off = fdt_add_subnode(fdt, 0, mem_name);
381 _FDT(off);
382 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
383 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
384 sizeof(mem_reg_property))));
385 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
386 sizeof(associativity))));
387 return off;
388 }
389
390 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
391 {
392 MachineState *machine = MACHINE(spapr);
393 hwaddr mem_start, node_size;
394 int i, nb_nodes = nb_numa_nodes;
395 NodeInfo *nodes = numa_info;
396 NodeInfo ramnode;
397
398 /* No NUMA nodes, assume there is just one node with whole RAM */
399 if (!nb_numa_nodes) {
400 nb_nodes = 1;
401 ramnode.node_mem = machine->ram_size;
402 nodes = &ramnode;
403 }
404
405 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
406 if (!nodes[i].node_mem) {
407 continue;
408 }
409 if (mem_start >= machine->ram_size) {
410 node_size = 0;
411 } else {
412 node_size = nodes[i].node_mem;
413 if (node_size > machine->ram_size - mem_start) {
414 node_size = machine->ram_size - mem_start;
415 }
416 }
417 if (!mem_start) {
418 /* spapr_machine_init() checks for rma_size <= node0_size
419 * already */
420 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
421 mem_start += spapr->rma_size;
422 node_size -= spapr->rma_size;
423 }
424 for ( ; node_size; ) {
425 hwaddr sizetmp = pow2floor(node_size);
426
427 /* mem_start != 0 here */
428 if (ctzl(mem_start) < ctzl(sizetmp)) {
429 sizetmp = 1ULL << ctzl(mem_start);
430 }
431
432 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
433 node_size -= sizetmp;
434 mem_start += sizetmp;
435 }
436 }
437
438 return 0;
439 }
440
441 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
442 sPAPRMachineState *spapr)
443 {
444 PowerPCCPU *cpu = POWERPC_CPU(cs);
445 CPUPPCState *env = &cpu->env;
446 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
447 int index = spapr_get_vcpu_id(cpu);
448 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
449 0xffffffff, 0xffffffff};
450 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
451 : SPAPR_TIMEBASE_FREQ;
452 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
453 uint32_t page_sizes_prop[64];
454 size_t page_sizes_prop_size;
455 uint32_t vcpus_per_socket = smp_threads * smp_cores;
456 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
457 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
458 sPAPRDRConnector *drc;
459 int drc_index;
460 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
461 int i;
462
463 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
464 if (drc) {
465 drc_index = spapr_drc_index(drc);
466 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
467 }
468
469 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
470 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
471
472 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
473 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
474 env->dcache_line_size)));
475 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
476 env->dcache_line_size)));
477 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
478 env->icache_line_size)));
479 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
480 env->icache_line_size)));
481
482 if (pcc->l1_dcache_size) {
483 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
484 pcc->l1_dcache_size)));
485 } else {
486 warn_report("Unknown L1 dcache size for cpu");
487 }
488 if (pcc->l1_icache_size) {
489 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
490 pcc->l1_icache_size)));
491 } else {
492 warn_report("Unknown L1 icache size for cpu");
493 }
494
495 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
496 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
497 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
498 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
499 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
500 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
501
502 if (env->spr_cb[SPR_PURR].oea_read) {
503 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
504 }
505
506 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
507 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
508 segs, sizeof(segs))));
509 }
510
511 /* Advertise VSX (vector extensions) if available
512 * 1 == VMX / Altivec available
513 * 2 == VSX available
514 *
515 * Only CPUs for which we create core types in spapr_cpu_core.c
516 * are possible, and all of those have VMX */
517 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
518 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
519 } else {
520 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
521 }
522
523 /* Advertise DFP (Decimal Floating Point) if available
524 * 0 / no property == no DFP
525 * 1 == DFP available */
526 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
527 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
528 }
529
530 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
531 sizeof(page_sizes_prop));
532 if (page_sizes_prop_size) {
533 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
534 page_sizes_prop, page_sizes_prop_size)));
535 }
536
537 spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
538
539 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
540 cs->cpu_index / vcpus_per_socket)));
541
542 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
543 pft_size_prop, sizeof(pft_size_prop))));
544
545 if (nb_numa_nodes > 1) {
546 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
547 }
548
549 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
550
551 if (pcc->radix_page_info) {
552 for (i = 0; i < pcc->radix_page_info->count; i++) {
553 radix_AP_encodings[i] =
554 cpu_to_be32(pcc->radix_page_info->entries[i]);
555 }
556 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
557 radix_AP_encodings,
558 pcc->radix_page_info->count *
559 sizeof(radix_AP_encodings[0]))));
560 }
561 }
562
563 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
564 {
565 CPUState **rev;
566 CPUState *cs;
567 int n_cpus;
568 int cpus_offset;
569 char *nodename;
570 int i;
571
572 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
573 _FDT(cpus_offset);
574 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
575 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
576
577 /*
578 * We walk the CPUs in reverse order to ensure that CPU DT nodes
579 * created by fdt_add_subnode() end up in the right order in FDT
580 * for the guest kernel the enumerate the CPUs correctly.
581 *
582 * The CPU list cannot be traversed in reverse order, so we need
583 * to do extra work.
584 */
585 n_cpus = 0;
586 rev = NULL;
587 CPU_FOREACH(cs) {
588 rev = g_renew(CPUState *, rev, n_cpus + 1);
589 rev[n_cpus++] = cs;
590 }
591
592 for (i = n_cpus - 1; i >= 0; i--) {
593 CPUState *cs = rev[i];
594 PowerPCCPU *cpu = POWERPC_CPU(cs);
595 int index = spapr_get_vcpu_id(cpu);
596 DeviceClass *dc = DEVICE_GET_CLASS(cs);
597 int offset;
598
599 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
600 continue;
601 }
602
603 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
604 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
605 g_free(nodename);
606 _FDT(offset);
607 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
608 }
609
610 g_free(rev);
611 }
612
613 static int spapr_rng_populate_dt(void *fdt)
614 {
615 int node;
616 int ret;
617
618 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
619 if (node <= 0) {
620 return -1;
621 }
622 ret = fdt_setprop_string(fdt, node, "device_type",
623 "ibm,platform-facilities");
624 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
625 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
626
627 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
628 if (node <= 0) {
629 return -1;
630 }
631 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
632
633 return ret ? -1 : 0;
634 }
635
636 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
637 {
638 MemoryDeviceInfoList *info;
639
640 for (info = list; info; info = info->next) {
641 MemoryDeviceInfo *value = info->value;
642
643 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
644 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
645
646 if (addr >= pcdimm_info->addr &&
647 addr < (pcdimm_info->addr + pcdimm_info->size)) {
648 return pcdimm_info->node;
649 }
650 }
651 }
652
653 return -1;
654 }
655
656 struct sPAPRDrconfCellV2 {
657 uint32_t seq_lmbs;
658 uint64_t base_addr;
659 uint32_t drc_index;
660 uint32_t aa_index;
661 uint32_t flags;
662 } QEMU_PACKED;
663
664 typedef struct DrconfCellQueue {
665 struct sPAPRDrconfCellV2 cell;
666 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
667 } DrconfCellQueue;
668
669 static DrconfCellQueue *
670 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
671 uint32_t drc_index, uint32_t aa_index,
672 uint32_t flags)
673 {
674 DrconfCellQueue *elem;
675
676 elem = g_malloc0(sizeof(*elem));
677 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
678 elem->cell.base_addr = cpu_to_be64(base_addr);
679 elem->cell.drc_index = cpu_to_be32(drc_index);
680 elem->cell.aa_index = cpu_to_be32(aa_index);
681 elem->cell.flags = cpu_to_be32(flags);
682
683 return elem;
684 }
685
686 /* ibm,dynamic-memory-v2 */
687 static int spapr_populate_drmem_v2(sPAPRMachineState *spapr, void *fdt,
688 int offset, MemoryDeviceInfoList *dimms)
689 {
690 MachineState *machine = MACHINE(spapr);
691 uint8_t *int_buf, *cur_index, buf_len;
692 int ret;
693 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
694 uint64_t addr, cur_addr, size;
695 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
696 uint64_t mem_end = machine->device_memory->base +
697 memory_region_size(&machine->device_memory->mr);
698 uint32_t node, nr_entries = 0;
699 sPAPRDRConnector *drc;
700 DrconfCellQueue *elem, *next;
701 MemoryDeviceInfoList *info;
702 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
703 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
704
705 /* Entry to cover RAM and the gap area */
706 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
707 SPAPR_LMB_FLAGS_RESERVED |
708 SPAPR_LMB_FLAGS_DRC_INVALID);
709 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
710 nr_entries++;
711
712 cur_addr = machine->device_memory->base;
713 for (info = dimms; info; info = info->next) {
714 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
715
716 addr = di->addr;
717 size = di->size;
718 node = di->node;
719
720 /* Entry for hot-pluggable area */
721 if (cur_addr < addr) {
722 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
723 g_assert(drc);
724 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
725 cur_addr, spapr_drc_index(drc), -1, 0);
726 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
727 nr_entries++;
728 }
729
730 /* Entry for DIMM */
731 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
732 g_assert(drc);
733 elem = spapr_get_drconf_cell(size / lmb_size, addr,
734 spapr_drc_index(drc), node,
735 SPAPR_LMB_FLAGS_ASSIGNED);
736 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
737 nr_entries++;
738 cur_addr = addr + size;
739 }
740
741 /* Entry for remaining hotpluggable area */
742 if (cur_addr < mem_end) {
743 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
744 g_assert(drc);
745 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
746 cur_addr, spapr_drc_index(drc), -1, 0);
747 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
748 nr_entries++;
749 }
750
751 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
752 int_buf = cur_index = g_malloc0(buf_len);
753 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
754 cur_index += sizeof(nr_entries);
755
756 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
757 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
758 cur_index += sizeof(elem->cell);
759 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
760 g_free(elem);
761 }
762
763 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
764 g_free(int_buf);
765 if (ret < 0) {
766 return -1;
767 }
768 return 0;
769 }
770
771 /* ibm,dynamic-memory */
772 static int spapr_populate_drmem_v1(sPAPRMachineState *spapr, void *fdt,
773 int offset, MemoryDeviceInfoList *dimms)
774 {
775 MachineState *machine = MACHINE(spapr);
776 int i, ret;
777 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
778 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
779 uint32_t nr_lmbs = (machine->device_memory->base +
780 memory_region_size(&machine->device_memory->mr)) /
781 lmb_size;
782 uint32_t *int_buf, *cur_index, buf_len;
783
784 /*
785 * Allocate enough buffer size to fit in ibm,dynamic-memory
786 */
787 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
788 cur_index = int_buf = g_malloc0(buf_len);
789 int_buf[0] = cpu_to_be32(nr_lmbs);
790 cur_index++;
791 for (i = 0; i < nr_lmbs; i++) {
792 uint64_t addr = i * lmb_size;
793 uint32_t *dynamic_memory = cur_index;
794
795 if (i >= device_lmb_start) {
796 sPAPRDRConnector *drc;
797
798 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
799 g_assert(drc);
800
801 dynamic_memory[0] = cpu_to_be32(addr >> 32);
802 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
803 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
804 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
805 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
806 if (memory_region_present(get_system_memory(), addr)) {
807 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
808 } else {
809 dynamic_memory[5] = cpu_to_be32(0);
810 }
811 } else {
812 /*
813 * LMB information for RMA, boot time RAM and gap b/n RAM and
814 * device memory region -- all these are marked as reserved
815 * and as having no valid DRC.
816 */
817 dynamic_memory[0] = cpu_to_be32(addr >> 32);
818 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
819 dynamic_memory[2] = cpu_to_be32(0);
820 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
821 dynamic_memory[4] = cpu_to_be32(-1);
822 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
823 SPAPR_LMB_FLAGS_DRC_INVALID);
824 }
825
826 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
827 }
828 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
829 g_free(int_buf);
830 if (ret < 0) {
831 return -1;
832 }
833 return 0;
834 }
835
836 /*
837 * Adds ibm,dynamic-reconfiguration-memory node.
838 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
839 * of this device tree node.
840 */
841 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
842 {
843 MachineState *machine = MACHINE(spapr);
844 int ret, i, offset;
845 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
846 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
847 uint32_t *int_buf, *cur_index, buf_len;
848 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
849 MemoryDeviceInfoList *dimms = NULL;
850
851 /*
852 * Don't create the node if there is no device memory
853 */
854 if (machine->ram_size == machine->maxram_size) {
855 return 0;
856 }
857
858 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
859
860 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
861 sizeof(prop_lmb_size));
862 if (ret < 0) {
863 return ret;
864 }
865
866 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
867 if (ret < 0) {
868 return ret;
869 }
870
871 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
872 if (ret < 0) {
873 return ret;
874 }
875
876 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
877 dimms = qmp_memory_device_list();
878 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
879 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
880 } else {
881 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
882 }
883 qapi_free_MemoryDeviceInfoList(dimms);
884
885 if (ret < 0) {
886 return ret;
887 }
888
889 /* ibm,associativity-lookup-arrays */
890 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
891 cur_index = int_buf = g_malloc0(buf_len);
892 int_buf[0] = cpu_to_be32(nr_nodes);
893 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
894 cur_index += 2;
895 for (i = 0; i < nr_nodes; i++) {
896 uint32_t associativity[] = {
897 cpu_to_be32(0x0),
898 cpu_to_be32(0x0),
899 cpu_to_be32(0x0),
900 cpu_to_be32(i)
901 };
902 memcpy(cur_index, associativity, sizeof(associativity));
903 cur_index += 4;
904 }
905 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
906 (cur_index - int_buf) * sizeof(uint32_t));
907 g_free(int_buf);
908
909 return ret;
910 }
911
912 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
913 sPAPROptionVector *ov5_updates)
914 {
915 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
916 int ret = 0, offset;
917
918 /* Generate ibm,dynamic-reconfiguration-memory node if required */
919 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
920 g_assert(smc->dr_lmb_enabled);
921 ret = spapr_populate_drconf_memory(spapr, fdt);
922 if (ret) {
923 goto out;
924 }
925 }
926
927 offset = fdt_path_offset(fdt, "/chosen");
928 if (offset < 0) {
929 offset = fdt_add_subnode(fdt, 0, "chosen");
930 if (offset < 0) {
931 return offset;
932 }
933 }
934 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
935 "ibm,architecture-vec-5");
936
937 out:
938 return ret;
939 }
940
941 static bool spapr_hotplugged_dev_before_cas(void)
942 {
943 Object *drc_container, *obj;
944 ObjectProperty *prop;
945 ObjectPropertyIterator iter;
946
947 drc_container = container_get(object_get_root(), "/dr-connector");
948 object_property_iter_init(&iter, drc_container);
949 while ((prop = object_property_iter_next(&iter))) {
950 if (!strstart(prop->type, "link<", NULL)) {
951 continue;
952 }
953 obj = object_property_get_link(drc_container, prop->name, NULL);
954 if (spapr_drc_needed(obj)) {
955 return true;
956 }
957 }
958 return false;
959 }
960
961 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
962 target_ulong addr, target_ulong size,
963 sPAPROptionVector *ov5_updates)
964 {
965 void *fdt, *fdt_skel;
966 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
967
968 if (spapr_hotplugged_dev_before_cas()) {
969 return 1;
970 }
971
972 if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
973 error_report("SLOF provided an unexpected CAS buffer size "
974 TARGET_FMT_lu " (min: %zu, max: %u)",
975 size, sizeof(hdr), FW_MAX_SIZE);
976 exit(EXIT_FAILURE);
977 }
978
979 size -= sizeof(hdr);
980
981 /* Create skeleton */
982 fdt_skel = g_malloc0(size);
983 _FDT((fdt_create(fdt_skel, size)));
984 _FDT((fdt_finish_reservemap(fdt_skel)));
985 _FDT((fdt_begin_node(fdt_skel, "")));
986 _FDT((fdt_end_node(fdt_skel)));
987 _FDT((fdt_finish(fdt_skel)));
988 fdt = g_malloc0(size);
989 _FDT((fdt_open_into(fdt_skel, fdt, size)));
990 g_free(fdt_skel);
991
992 /* Fixup cpu nodes */
993 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
994
995 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
996 return -1;
997 }
998
999 /* Pack resulting tree */
1000 _FDT((fdt_pack(fdt)));
1001
1002 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1003 trace_spapr_cas_failed(size);
1004 return -1;
1005 }
1006
1007 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1008 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1009 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1010 g_free(fdt);
1011
1012 return 0;
1013 }
1014
1015 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
1016 {
1017 int rtas;
1018 GString *hypertas = g_string_sized_new(256);
1019 GString *qemu_hypertas = g_string_sized_new(256);
1020 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1021 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1022 memory_region_size(&MACHINE(spapr)->device_memory->mr);
1023 uint32_t lrdr_capacity[] = {
1024 cpu_to_be32(max_device_addr >> 32),
1025 cpu_to_be32(max_device_addr & 0xffffffff),
1026 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1027 cpu_to_be32(max_cpus / smp_threads),
1028 };
1029 uint32_t maxdomains[] = {
1030 cpu_to_be32(4),
1031 cpu_to_be32(0),
1032 cpu_to_be32(0),
1033 cpu_to_be32(0),
1034 cpu_to_be32(nb_numa_nodes ? nb_numa_nodes : 1),
1035 };
1036
1037 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1038
1039 /* hypertas */
1040 add_str(hypertas, "hcall-pft");
1041 add_str(hypertas, "hcall-term");
1042 add_str(hypertas, "hcall-dabr");
1043 add_str(hypertas, "hcall-interrupt");
1044 add_str(hypertas, "hcall-tce");
1045 add_str(hypertas, "hcall-vio");
1046 add_str(hypertas, "hcall-splpar");
1047 add_str(hypertas, "hcall-bulk");
1048 add_str(hypertas, "hcall-set-mode");
1049 add_str(hypertas, "hcall-sprg0");
1050 add_str(hypertas, "hcall-copy");
1051 add_str(hypertas, "hcall-debug");
1052 add_str(qemu_hypertas, "hcall-memop1");
1053
1054 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1055 add_str(hypertas, "hcall-multi-tce");
1056 }
1057
1058 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1059 add_str(hypertas, "hcall-hpt-resize");
1060 }
1061
1062 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1063 hypertas->str, hypertas->len));
1064 g_string_free(hypertas, TRUE);
1065 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1066 qemu_hypertas->str, qemu_hypertas->len));
1067 g_string_free(qemu_hypertas, TRUE);
1068
1069 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1070 refpoints, sizeof(refpoints)));
1071
1072 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1073 maxdomains, sizeof(maxdomains)));
1074
1075 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1076 RTAS_ERROR_LOG_MAX));
1077 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1078 RTAS_EVENT_SCAN_RATE));
1079
1080 g_assert(msi_nonbroken);
1081 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1082
1083 /*
1084 * According to PAPR, rtas ibm,os-term does not guarantee a return
1085 * back to the guest cpu.
1086 *
1087 * While an additional ibm,extended-os-term property indicates
1088 * that rtas call return will always occur. Set this property.
1089 */
1090 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1091
1092 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1093 lrdr_capacity, sizeof(lrdr_capacity)));
1094
1095 spapr_dt_rtas_tokens(fdt, rtas);
1096 }
1097
1098 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
1099 * that the guest may request and thus the valid values for bytes 24..26 of
1100 * option vector 5: */
1101 static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
1102 {
1103 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1104
1105 char val[2 * 4] = {
1106 23, 0x00, /* Xive mode, filled in below. */
1107 24, 0x00, /* Hash/Radix, filled in below. */
1108 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1109 26, 0x40, /* Radix options: GTSE == yes. */
1110 };
1111
1112 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1113 first_ppc_cpu->compat_pvr)) {
1114 /* If we're in a pre POWER9 compat mode then the guest should do hash */
1115 val[3] = 0x00; /* Hash */
1116 } else if (kvm_enabled()) {
1117 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1118 val[3] = 0x80; /* OV5_MMU_BOTH */
1119 } else if (kvmppc_has_cap_mmu_radix()) {
1120 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1121 } else {
1122 val[3] = 0x00; /* Hash */
1123 }
1124 } else {
1125 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1126 val[3] = 0xC0;
1127 }
1128 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1129 val, sizeof(val)));
1130 }
1131
1132 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
1133 {
1134 MachineState *machine = MACHINE(spapr);
1135 int chosen;
1136 const char *boot_device = machine->boot_order;
1137 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1138 size_t cb = 0;
1139 char *bootlist = get_boot_devices_list(&cb);
1140
1141 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1142
1143 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1144 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1145 spapr->initrd_base));
1146 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1147 spapr->initrd_base + spapr->initrd_size));
1148
1149 if (spapr->kernel_size) {
1150 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1151 cpu_to_be64(spapr->kernel_size) };
1152
1153 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1154 &kprop, sizeof(kprop)));
1155 if (spapr->kernel_le) {
1156 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1157 }
1158 }
1159 if (boot_menu) {
1160 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1161 }
1162 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1163 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1164 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1165
1166 if (cb && bootlist) {
1167 int i;
1168
1169 for (i = 0; i < cb; i++) {
1170 if (bootlist[i] == '\n') {
1171 bootlist[i] = ' ';
1172 }
1173 }
1174 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1175 }
1176
1177 if (boot_device && strlen(boot_device)) {
1178 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1179 }
1180
1181 if (!spapr->has_graphics && stdout_path) {
1182 /*
1183 * "linux,stdout-path" and "stdout" properties are deprecated by linux
1184 * kernel. New platforms should only use the "stdout-path" property. Set
1185 * the new property and continue using older property to remain
1186 * compatible with the existing firmware.
1187 */
1188 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1189 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1190 }
1191
1192 spapr_dt_ov5_platform_support(fdt, chosen);
1193
1194 g_free(stdout_path);
1195 g_free(bootlist);
1196 }
1197
1198 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1199 {
1200 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1201 * KVM to work under pHyp with some guest co-operation */
1202 int hypervisor;
1203 uint8_t hypercall[16];
1204
1205 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1206 /* indicate KVM hypercall interface */
1207 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1208 if (kvmppc_has_cap_fixup_hcalls()) {
1209 /*
1210 * Older KVM versions with older guest kernels were broken
1211 * with the magic page, don't allow the guest to map it.
1212 */
1213 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1214 sizeof(hypercall))) {
1215 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1216 hypercall, sizeof(hypercall)));
1217 }
1218 }
1219 }
1220
1221 static void *spapr_build_fdt(sPAPRMachineState *spapr,
1222 hwaddr rtas_addr,
1223 hwaddr rtas_size)
1224 {
1225 MachineState *machine = MACHINE(spapr);
1226 MachineClass *mc = MACHINE_GET_CLASS(machine);
1227 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1228 int ret;
1229 void *fdt;
1230 sPAPRPHBState *phb;
1231 char *buf;
1232
1233 fdt = g_malloc0(FDT_MAX_SIZE);
1234 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1235
1236 /* Root node */
1237 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1238 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1239 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1240
1241 /*
1242 * Add info to guest to indentify which host is it being run on
1243 * and what is the uuid of the guest
1244 */
1245 if (kvmppc_get_host_model(&buf)) {
1246 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1247 g_free(buf);
1248 }
1249 if (kvmppc_get_host_serial(&buf)) {
1250 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1251 g_free(buf);
1252 }
1253
1254 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1255
1256 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1257 if (qemu_uuid_set) {
1258 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1259 }
1260 g_free(buf);
1261
1262 if (qemu_get_vm_name()) {
1263 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1264 qemu_get_vm_name()));
1265 }
1266
1267 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1268 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1269
1270 /* /interrupt controller */
1271 smc->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt,
1272 PHANDLE_XICP);
1273
1274 ret = spapr_populate_memory(spapr, fdt);
1275 if (ret < 0) {
1276 error_report("couldn't setup memory nodes in fdt");
1277 exit(1);
1278 }
1279
1280 /* /vdevice */
1281 spapr_dt_vdevice(spapr->vio_bus, fdt);
1282
1283 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1284 ret = spapr_rng_populate_dt(fdt);
1285 if (ret < 0) {
1286 error_report("could not set up rng device in the fdt");
1287 exit(1);
1288 }
1289 }
1290
1291 QLIST_FOREACH(phb, &spapr->phbs, list) {
1292 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt, smc->irq->nr_msis);
1293 if (ret < 0) {
1294 error_report("couldn't setup PCI devices in fdt");
1295 exit(1);
1296 }
1297 }
1298
1299 /* cpus */
1300 spapr_populate_cpus_dt_node(fdt, spapr);
1301
1302 if (smc->dr_lmb_enabled) {
1303 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1304 }
1305
1306 if (mc->has_hotpluggable_cpus) {
1307 int offset = fdt_path_offset(fdt, "/cpus");
1308 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1309 SPAPR_DR_CONNECTOR_TYPE_CPU);
1310 if (ret < 0) {
1311 error_report("Couldn't set up CPU DR device tree properties");
1312 exit(1);
1313 }
1314 }
1315
1316 /* /event-sources */
1317 spapr_dt_events(spapr, fdt);
1318
1319 /* /rtas */
1320 spapr_dt_rtas(spapr, fdt);
1321
1322 /* /chosen */
1323 spapr_dt_chosen(spapr, fdt);
1324
1325 /* /hypervisor */
1326 if (kvm_enabled()) {
1327 spapr_dt_hypervisor(spapr, fdt);
1328 }
1329
1330 /* Build memory reserve map */
1331 if (spapr->kernel_size) {
1332 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1333 }
1334 if (spapr->initrd_size) {
1335 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1336 }
1337
1338 /* ibm,client-architecture-support updates */
1339 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1340 if (ret < 0) {
1341 error_report("couldn't setup CAS properties fdt");
1342 exit(1);
1343 }
1344
1345 return fdt;
1346 }
1347
1348 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1349 {
1350 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1351 }
1352
1353 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1354 PowerPCCPU *cpu)
1355 {
1356 CPUPPCState *env = &cpu->env;
1357
1358 /* The TCG path should also be holding the BQL at this point */
1359 g_assert(qemu_mutex_iothread_locked());
1360
1361 if (msr_pr) {
1362 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1363 env->gpr[3] = H_PRIVILEGE;
1364 } else {
1365 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1366 }
1367 }
1368
1369 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1370 {
1371 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1372
1373 return spapr->patb_entry;
1374 }
1375
1376 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1377 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1378 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1379 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1380 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1381
1382 /*
1383 * Get the fd to access the kernel htab, re-opening it if necessary
1384 */
1385 static int get_htab_fd(sPAPRMachineState *spapr)
1386 {
1387 Error *local_err = NULL;
1388
1389 if (spapr->htab_fd >= 0) {
1390 return spapr->htab_fd;
1391 }
1392
1393 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1394 if (spapr->htab_fd < 0) {
1395 error_report_err(local_err);
1396 }
1397
1398 return spapr->htab_fd;
1399 }
1400
1401 void close_htab_fd(sPAPRMachineState *spapr)
1402 {
1403 if (spapr->htab_fd >= 0) {
1404 close(spapr->htab_fd);
1405 }
1406 spapr->htab_fd = -1;
1407 }
1408
1409 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1410 {
1411 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1412
1413 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1414 }
1415
1416 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1417 {
1418 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1419
1420 assert(kvm_enabled());
1421
1422 if (!spapr->htab) {
1423 return 0;
1424 }
1425
1426 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1427 }
1428
1429 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1430 hwaddr ptex, int n)
1431 {
1432 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1433 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1434
1435 if (!spapr->htab) {
1436 /*
1437 * HTAB is controlled by KVM. Fetch into temporary buffer
1438 */
1439 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1440 kvmppc_read_hptes(hptes, ptex, n);
1441 return hptes;
1442 }
1443
1444 /*
1445 * HTAB is controlled by QEMU. Just point to the internally
1446 * accessible PTEG.
1447 */
1448 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1449 }
1450
1451 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1452 const ppc_hash_pte64_t *hptes,
1453 hwaddr ptex, int n)
1454 {
1455 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1456
1457 if (!spapr->htab) {
1458 g_free((void *)hptes);
1459 }
1460
1461 /* Nothing to do for qemu managed HPT */
1462 }
1463
1464 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1465 uint64_t pte0, uint64_t pte1)
1466 {
1467 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1468 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1469
1470 if (!spapr->htab) {
1471 kvmppc_write_hpte(ptex, pte0, pte1);
1472 } else {
1473 stq_p(spapr->htab + offset, pte0);
1474 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1475 }
1476 }
1477
1478 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1479 {
1480 int shift;
1481
1482 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1483 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1484 * that's much more than is needed for Linux guests */
1485 shift = ctz64(pow2ceil(ramsize)) - 7;
1486 shift = MAX(shift, 18); /* Minimum architected size */
1487 shift = MIN(shift, 46); /* Maximum architected size */
1488 return shift;
1489 }
1490
1491 void spapr_free_hpt(sPAPRMachineState *spapr)
1492 {
1493 g_free(spapr->htab);
1494 spapr->htab = NULL;
1495 spapr->htab_shift = 0;
1496 close_htab_fd(spapr);
1497 }
1498
1499 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1500 Error **errp)
1501 {
1502 long rc;
1503
1504 /* Clean up any HPT info from a previous boot */
1505 spapr_free_hpt(spapr);
1506
1507 rc = kvmppc_reset_htab(shift);
1508 if (rc < 0) {
1509 /* kernel-side HPT needed, but couldn't allocate one */
1510 error_setg_errno(errp, errno,
1511 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1512 shift);
1513 /* This is almost certainly fatal, but if the caller really
1514 * wants to carry on with shift == 0, it's welcome to try */
1515 } else if (rc > 0) {
1516 /* kernel-side HPT allocated */
1517 if (rc != shift) {
1518 error_setg(errp,
1519 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1520 shift, rc);
1521 }
1522
1523 spapr->htab_shift = shift;
1524 spapr->htab = NULL;
1525 } else {
1526 /* kernel-side HPT not needed, allocate in userspace instead */
1527 size_t size = 1ULL << shift;
1528 int i;
1529
1530 spapr->htab = qemu_memalign(size, size);
1531 if (!spapr->htab) {
1532 error_setg_errno(errp, errno,
1533 "Could not allocate HPT of order %d", shift);
1534 return;
1535 }
1536
1537 memset(spapr->htab, 0, size);
1538 spapr->htab_shift = shift;
1539
1540 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1541 DIRTY_HPTE(HPTE(spapr->htab, i));
1542 }
1543 }
1544 /* We're setting up a hash table, so that means we're not radix */
1545 spapr->patb_entry = 0;
1546 }
1547
1548 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1549 {
1550 int hpt_shift;
1551
1552 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1553 || (spapr->cas_reboot
1554 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1555 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1556 } else {
1557 uint64_t current_ram_size;
1558
1559 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1560 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1561 }
1562 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1563
1564 if (spapr->vrma_adjust) {
1565 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1566 spapr->htab_shift);
1567 }
1568 }
1569
1570 static int spapr_reset_drcs(Object *child, void *opaque)
1571 {
1572 sPAPRDRConnector *drc =
1573 (sPAPRDRConnector *) object_dynamic_cast(child,
1574 TYPE_SPAPR_DR_CONNECTOR);
1575
1576 if (drc) {
1577 spapr_drc_reset(drc);
1578 }
1579
1580 return 0;
1581 }
1582
1583 static void spapr_machine_reset(void)
1584 {
1585 MachineState *machine = MACHINE(qdev_get_machine());
1586 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1587 PowerPCCPU *first_ppc_cpu;
1588 uint32_t rtas_limit;
1589 hwaddr rtas_addr, fdt_addr;
1590 void *fdt;
1591 int rc;
1592
1593 spapr_caps_apply(spapr);
1594
1595 first_ppc_cpu = POWERPC_CPU(first_cpu);
1596 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1597 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1598 spapr->max_compat_pvr)) {
1599 /* If using KVM with radix mode available, VCPUs can be started
1600 * without a HPT because KVM will start them in radix mode.
1601 * Set the GR bit in PATB so that we know there is no HPT. */
1602 spapr->patb_entry = PATBE1_GR;
1603 } else {
1604 spapr_setup_hpt_and_vrma(spapr);
1605 }
1606
1607 /* if this reset wasn't generated by CAS, we should reset our
1608 * negotiated options and start from scratch */
1609 if (!spapr->cas_reboot) {
1610 spapr_ovec_cleanup(spapr->ov5_cas);
1611 spapr->ov5_cas = spapr_ovec_new();
1612
1613 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1614 }
1615
1616 if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
1617 spapr_irq_msi_reset(spapr);
1618 }
1619
1620 qemu_devices_reset();
1621
1622 /*
1623 * This is fixing some of the default configuration of the XIVE
1624 * devices. To be called after the reset of the machine devices.
1625 */
1626 spapr_irq_reset(spapr, &error_fatal);
1627
1628 /* DRC reset may cause a device to be unplugged. This will cause troubles
1629 * if this device is used by another device (eg, a running vhost backend
1630 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1631 * situations, we reset DRCs after all devices have been reset.
1632 */
1633 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1634
1635 spapr_clear_pending_events(spapr);
1636
1637 /*
1638 * We place the device tree and RTAS just below either the top of the RMA,
1639 * or just below 2GB, whichever is lowere, so that it can be
1640 * processed with 32-bit real mode code if necessary
1641 */
1642 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1643 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1644 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1645
1646 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1647
1648 spapr_load_rtas(spapr, fdt, rtas_addr);
1649
1650 rc = fdt_pack(fdt);
1651
1652 /* Should only fail if we've built a corrupted tree */
1653 assert(rc == 0);
1654
1655 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1656 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1657 fdt_totalsize(fdt), FDT_MAX_SIZE);
1658 exit(1);
1659 }
1660
1661 /* Load the fdt */
1662 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1663 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1664 g_free(fdt);
1665
1666 /* Set up the entry state */
1667 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1668 first_ppc_cpu->env.gpr[5] = 0;
1669
1670 spapr->cas_reboot = false;
1671 }
1672
1673 static void spapr_create_nvram(sPAPRMachineState *spapr)
1674 {
1675 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1676 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1677
1678 if (dinfo) {
1679 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1680 &error_fatal);
1681 }
1682
1683 qdev_init_nofail(dev);
1684
1685 spapr->nvram = (struct sPAPRNVRAM *)dev;
1686 }
1687
1688 static void spapr_rtc_create(sPAPRMachineState *spapr)
1689 {
1690 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1691 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1692 &error_fatal);
1693 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1694 &error_fatal);
1695 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1696 "date", &error_fatal);
1697 }
1698
1699 /* Returns whether we want to use VGA or not */
1700 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1701 {
1702 switch (vga_interface_type) {
1703 case VGA_NONE:
1704 return false;
1705 case VGA_DEVICE:
1706 return true;
1707 case VGA_STD:
1708 case VGA_VIRTIO:
1709 return pci_vga_init(pci_bus) != NULL;
1710 default:
1711 error_setg(errp,
1712 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1713 return false;
1714 }
1715 }
1716
1717 static int spapr_pre_load(void *opaque)
1718 {
1719 int rc;
1720
1721 rc = spapr_caps_pre_load(opaque);
1722 if (rc) {
1723 return rc;
1724 }
1725
1726 return 0;
1727 }
1728
1729 static int spapr_post_load(void *opaque, int version_id)
1730 {
1731 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1732 int err = 0;
1733
1734 err = spapr_caps_post_migration(spapr);
1735 if (err) {
1736 return err;
1737 }
1738
1739 /* In earlier versions, there was no separate qdev for the PAPR
1740 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1741 * So when migrating from those versions, poke the incoming offset
1742 * value into the RTC device */
1743 if (version_id < 3) {
1744 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1745 }
1746
1747 if (kvm_enabled() && spapr->patb_entry) {
1748 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1749 bool radix = !!(spapr->patb_entry & PATBE1_GR);
1750 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1751
1752 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1753 if (err) {
1754 error_report("Process table config unsupported by the host");
1755 return -EINVAL;
1756 }
1757 }
1758
1759 err = spapr_irq_post_load(spapr, version_id);
1760 if (err) {
1761 return err;
1762 }
1763
1764 return err;
1765 }
1766
1767 static int spapr_pre_save(void *opaque)
1768 {
1769 int rc;
1770
1771 rc = spapr_caps_pre_save(opaque);
1772 if (rc) {
1773 return rc;
1774 }
1775
1776 return 0;
1777 }
1778
1779 static bool version_before_3(void *opaque, int version_id)
1780 {
1781 return version_id < 3;
1782 }
1783
1784 static bool spapr_pending_events_needed(void *opaque)
1785 {
1786 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1787 return !QTAILQ_EMPTY(&spapr->pending_events);
1788 }
1789
1790 static const VMStateDescription vmstate_spapr_event_entry = {
1791 .name = "spapr_event_log_entry",
1792 .version_id = 1,
1793 .minimum_version_id = 1,
1794 .fields = (VMStateField[]) {
1795 VMSTATE_UINT32(summary, sPAPREventLogEntry),
1796 VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
1797 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
1798 NULL, extended_length),
1799 VMSTATE_END_OF_LIST()
1800 },
1801 };
1802
1803 static const VMStateDescription vmstate_spapr_pending_events = {
1804 .name = "spapr_pending_events",
1805 .version_id = 1,
1806 .minimum_version_id = 1,
1807 .needed = spapr_pending_events_needed,
1808 .fields = (VMStateField[]) {
1809 VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
1810 vmstate_spapr_event_entry, sPAPREventLogEntry, next),
1811 VMSTATE_END_OF_LIST()
1812 },
1813 };
1814
1815 static bool spapr_ov5_cas_needed(void *opaque)
1816 {
1817 sPAPRMachineState *spapr = opaque;
1818 sPAPROptionVector *ov5_mask = spapr_ovec_new();
1819 sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1820 sPAPROptionVector *ov5_removed = spapr_ovec_new();
1821 bool cas_needed;
1822
1823 /* Prior to the introduction of sPAPROptionVector, we had two option
1824 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1825 * Both of these options encode machine topology into the device-tree
1826 * in such a way that the now-booted OS should still be able to interact
1827 * appropriately with QEMU regardless of what options were actually
1828 * negotiatied on the source side.
1829 *
1830 * As such, we can avoid migrating the CAS-negotiated options if these
1831 * are the only options available on the current machine/platform.
1832 * Since these are the only options available for pseries-2.7 and
1833 * earlier, this allows us to maintain old->new/new->old migration
1834 * compatibility.
1835 *
1836 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1837 * via default pseries-2.8 machines and explicit command-line parameters.
1838 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1839 * of the actual CAS-negotiated values to continue working properly. For
1840 * example, availability of memory unplug depends on knowing whether
1841 * OV5_HP_EVT was negotiated via CAS.
1842 *
1843 * Thus, for any cases where the set of available CAS-negotiatable
1844 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1845 * include the CAS-negotiated options in the migration stream, unless
1846 * if they affect boot time behaviour only.
1847 */
1848 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1849 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1850 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1851
1852 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1853 * the mask itself since in the future it's possible "legacy" bits may be
1854 * removed via machine options, which could generate a false positive
1855 * that breaks migration.
1856 */
1857 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1858 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1859
1860 spapr_ovec_cleanup(ov5_mask);
1861 spapr_ovec_cleanup(ov5_legacy);
1862 spapr_ovec_cleanup(ov5_removed);
1863
1864 return cas_needed;
1865 }
1866
1867 static const VMStateDescription vmstate_spapr_ov5_cas = {
1868 .name = "spapr_option_vector_ov5_cas",
1869 .version_id = 1,
1870 .minimum_version_id = 1,
1871 .needed = spapr_ov5_cas_needed,
1872 .fields = (VMStateField[]) {
1873 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1874 vmstate_spapr_ovec, sPAPROptionVector),
1875 VMSTATE_END_OF_LIST()
1876 },
1877 };
1878
1879 static bool spapr_patb_entry_needed(void *opaque)
1880 {
1881 sPAPRMachineState *spapr = opaque;
1882
1883 return !!spapr->patb_entry;
1884 }
1885
1886 static const VMStateDescription vmstate_spapr_patb_entry = {
1887 .name = "spapr_patb_entry",
1888 .version_id = 1,
1889 .minimum_version_id = 1,
1890 .needed = spapr_patb_entry_needed,
1891 .fields = (VMStateField[]) {
1892 VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1893 VMSTATE_END_OF_LIST()
1894 },
1895 };
1896
1897 static bool spapr_irq_map_needed(void *opaque)
1898 {
1899 sPAPRMachineState *spapr = opaque;
1900
1901 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1902 }
1903
1904 static const VMStateDescription vmstate_spapr_irq_map = {
1905 .name = "spapr_irq_map",
1906 .version_id = 1,
1907 .minimum_version_id = 1,
1908 .needed = spapr_irq_map_needed,
1909 .fields = (VMStateField[]) {
1910 VMSTATE_BITMAP(irq_map, sPAPRMachineState, 0, irq_map_nr),
1911 VMSTATE_END_OF_LIST()
1912 },
1913 };
1914
1915 static const VMStateDescription vmstate_spapr = {
1916 .name = "spapr",
1917 .version_id = 3,
1918 .minimum_version_id = 1,
1919 .pre_load = spapr_pre_load,
1920 .post_load = spapr_post_load,
1921 .pre_save = spapr_pre_save,
1922 .fields = (VMStateField[]) {
1923 /* used to be @next_irq */
1924 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1925
1926 /* RTC offset */
1927 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1928
1929 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1930 VMSTATE_END_OF_LIST()
1931 },
1932 .subsections = (const VMStateDescription*[]) {
1933 &vmstate_spapr_ov5_cas,
1934 &vmstate_spapr_patb_entry,
1935 &vmstate_spapr_pending_events,
1936 &vmstate_spapr_cap_htm,
1937 &vmstate_spapr_cap_vsx,
1938 &vmstate_spapr_cap_dfp,
1939 &vmstate_spapr_cap_cfpc,
1940 &vmstate_spapr_cap_sbbc,
1941 &vmstate_spapr_cap_ibs,
1942 &vmstate_spapr_irq_map,
1943 &vmstate_spapr_cap_nested_kvm_hv,
1944 NULL
1945 }
1946 };
1947
1948 static int htab_save_setup(QEMUFile *f, void *opaque)
1949 {
1950 sPAPRMachineState *spapr = opaque;
1951
1952 /* "Iteration" header */
1953 if (!spapr->htab_shift) {
1954 qemu_put_be32(f, -1);
1955 } else {
1956 qemu_put_be32(f, spapr->htab_shift);
1957 }
1958
1959 if (spapr->htab) {
1960 spapr->htab_save_index = 0;
1961 spapr->htab_first_pass = true;
1962 } else {
1963 if (spapr->htab_shift) {
1964 assert(kvm_enabled());
1965 }
1966 }
1967
1968
1969 return 0;
1970 }
1971
1972 static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr,
1973 int chunkstart, int n_valid, int n_invalid)
1974 {
1975 qemu_put_be32(f, chunkstart);
1976 qemu_put_be16(f, n_valid);
1977 qemu_put_be16(f, n_invalid);
1978 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1979 HASH_PTE_SIZE_64 * n_valid);
1980 }
1981
1982 static void htab_save_end_marker(QEMUFile *f)
1983 {
1984 qemu_put_be32(f, 0);
1985 qemu_put_be16(f, 0);
1986 qemu_put_be16(f, 0);
1987 }
1988
1989 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1990 int64_t max_ns)
1991 {
1992 bool has_timeout = max_ns != -1;
1993 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1994 int index = spapr->htab_save_index;
1995 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1996
1997 assert(spapr->htab_first_pass);
1998
1999 do {
2000 int chunkstart;
2001
2002 /* Consume invalid HPTEs */
2003 while ((index < htabslots)
2004 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2005 CLEAN_HPTE(HPTE(spapr->htab, index));
2006 index++;
2007 }
2008
2009 /* Consume valid HPTEs */
2010 chunkstart = index;
2011 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2012 && HPTE_VALID(HPTE(spapr->htab, index))) {
2013 CLEAN_HPTE(HPTE(spapr->htab, index));
2014 index++;
2015 }
2016
2017 if (index > chunkstart) {
2018 int n_valid = index - chunkstart;
2019
2020 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2021
2022 if (has_timeout &&
2023 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2024 break;
2025 }
2026 }
2027 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2028
2029 if (index >= htabslots) {
2030 assert(index == htabslots);
2031 index = 0;
2032 spapr->htab_first_pass = false;
2033 }
2034 spapr->htab_save_index = index;
2035 }
2036
2037 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
2038 int64_t max_ns)
2039 {
2040 bool final = max_ns < 0;
2041 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2042 int examined = 0, sent = 0;
2043 int index = spapr->htab_save_index;
2044 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2045
2046 assert(!spapr->htab_first_pass);
2047
2048 do {
2049 int chunkstart, invalidstart;
2050
2051 /* Consume non-dirty HPTEs */
2052 while ((index < htabslots)
2053 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2054 index++;
2055 examined++;
2056 }
2057
2058 chunkstart = index;
2059 /* Consume valid dirty HPTEs */
2060 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2061 && HPTE_DIRTY(HPTE(spapr->htab, index))
2062 && HPTE_VALID(HPTE(spapr->htab, index))) {
2063 CLEAN_HPTE(HPTE(spapr->htab, index));
2064 index++;
2065 examined++;
2066 }
2067
2068 invalidstart = index;
2069 /* Consume invalid dirty HPTEs */
2070 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2071 && HPTE_DIRTY(HPTE(spapr->htab, index))
2072 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2073 CLEAN_HPTE(HPTE(spapr->htab, index));
2074 index++;
2075 examined++;
2076 }
2077
2078 if (index > chunkstart) {
2079 int n_valid = invalidstart - chunkstart;
2080 int n_invalid = index - invalidstart;
2081
2082 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2083 sent += index - chunkstart;
2084
2085 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2086 break;
2087 }
2088 }
2089
2090 if (examined >= htabslots) {
2091 break;
2092 }
2093
2094 if (index >= htabslots) {
2095 assert(index == htabslots);
2096 index = 0;
2097 }
2098 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2099
2100 if (index >= htabslots) {
2101 assert(index == htabslots);
2102 index = 0;
2103 }
2104
2105 spapr->htab_save_index = index;
2106
2107 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2108 }
2109
2110 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2111 #define MAX_KVM_BUF_SIZE 2048
2112
2113 static int htab_save_iterate(QEMUFile *f, void *opaque)
2114 {
2115 sPAPRMachineState *spapr = opaque;
2116 int fd;
2117 int rc = 0;
2118
2119 /* Iteration header */
2120 if (!spapr->htab_shift) {
2121 qemu_put_be32(f, -1);
2122 return 1;
2123 } else {
2124 qemu_put_be32(f, 0);
2125 }
2126
2127 if (!spapr->htab) {
2128 assert(kvm_enabled());
2129
2130 fd = get_htab_fd(spapr);
2131 if (fd < 0) {
2132 return fd;
2133 }
2134
2135 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2136 if (rc < 0) {
2137 return rc;
2138 }
2139 } else if (spapr->htab_first_pass) {
2140 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2141 } else {
2142 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2143 }
2144
2145 htab_save_end_marker(f);
2146
2147 return rc;
2148 }
2149
2150 static int htab_save_complete(QEMUFile *f, void *opaque)
2151 {
2152 sPAPRMachineState *spapr = opaque;
2153 int fd;
2154
2155 /* Iteration header */
2156 if (!spapr->htab_shift) {
2157 qemu_put_be32(f, -1);
2158 return 0;
2159 } else {
2160 qemu_put_be32(f, 0);
2161 }
2162
2163 if (!spapr->htab) {
2164 int rc;
2165
2166 assert(kvm_enabled());
2167
2168 fd = get_htab_fd(spapr);
2169 if (fd < 0) {
2170 return fd;
2171 }
2172
2173 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2174 if (rc < 0) {
2175 return rc;
2176 }
2177 } else {
2178 if (spapr->htab_first_pass) {
2179 htab_save_first_pass(f, spapr, -1);
2180 }
2181 htab_save_later_pass(f, spapr, -1);
2182 }
2183
2184 /* End marker */
2185 htab_save_end_marker(f);
2186
2187 return 0;
2188 }
2189
2190 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2191 {
2192 sPAPRMachineState *spapr = opaque;
2193 uint32_t section_hdr;
2194 int fd = -1;
2195 Error *local_err = NULL;
2196
2197 if (version_id < 1 || version_id > 1) {
2198 error_report("htab_load() bad version");
2199 return -EINVAL;
2200 }
2201
2202 section_hdr = qemu_get_be32(f);
2203
2204 if (section_hdr == -1) {
2205 spapr_free_hpt(spapr);
2206 return 0;
2207 }
2208
2209 if (section_hdr) {
2210 /* First section gives the htab size */
2211 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2212 if (local_err) {
2213 error_report_err(local_err);
2214 return -EINVAL;
2215 }
2216 return 0;
2217 }
2218
2219 if (!spapr->htab) {
2220 assert(kvm_enabled());
2221
2222 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2223 if (fd < 0) {
2224 error_report_err(local_err);
2225 return fd;
2226 }
2227 }
2228
2229 while (true) {
2230 uint32_t index;
2231 uint16_t n_valid, n_invalid;
2232
2233 index = qemu_get_be32(f);
2234 n_valid = qemu_get_be16(f);
2235 n_invalid = qemu_get_be16(f);
2236
2237 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2238 /* End of Stream */
2239 break;
2240 }
2241
2242 if ((index + n_valid + n_invalid) >
2243 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2244 /* Bad index in stream */
2245 error_report(
2246 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2247 index, n_valid, n_invalid, spapr->htab_shift);
2248 return -EINVAL;
2249 }
2250
2251 if (spapr->htab) {
2252 if (n_valid) {
2253 qemu_get_buffer(f, HPTE(spapr->htab, index),
2254 HASH_PTE_SIZE_64 * n_valid);
2255 }
2256 if (n_invalid) {
2257 memset(HPTE(spapr->htab, index + n_valid), 0,
2258 HASH_PTE_SIZE_64 * n_invalid);
2259 }
2260 } else {
2261 int rc;
2262
2263 assert(fd >= 0);
2264
2265 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2266 if (rc < 0) {
2267 return rc;
2268 }
2269 }
2270 }
2271
2272 if (!spapr->htab) {
2273 assert(fd >= 0);
2274 close(fd);
2275 }
2276
2277 return 0;
2278 }
2279
2280 static void htab_save_cleanup(void *opaque)
2281 {
2282 sPAPRMachineState *spapr = opaque;
2283
2284 close_htab_fd(spapr);
2285 }
2286
2287 static SaveVMHandlers savevm_htab_handlers = {
2288 .save_setup = htab_save_setup,
2289 .save_live_iterate = htab_save_iterate,
2290 .save_live_complete_precopy = htab_save_complete,
2291 .save_cleanup = htab_save_cleanup,
2292 .load_state = htab_load,
2293 };
2294
2295 static void spapr_boot_set(void *opaque, const char *boot_device,
2296 Error **errp)
2297 {
2298 MachineState *machine = MACHINE(opaque);
2299 machine->boot_order = g_strdup(boot_device);
2300 }
2301
2302 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
2303 {
2304 MachineState *machine = MACHINE(spapr);
2305 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2306 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2307 int i;
2308
2309 for (i = 0; i < nr_lmbs; i++) {
2310 uint64_t addr;
2311
2312 addr = i * lmb_size + machine->device_memory->base;
2313 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2314 addr / lmb_size);
2315 }
2316 }
2317
2318 /*
2319 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2320 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2321 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2322 */
2323 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2324 {
2325 int i;
2326
2327 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2328 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2329 " is not aligned to %" PRIu64 " MiB",
2330 machine->ram_size,
2331 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2332 return;
2333 }
2334
2335 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2336 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2337 " is not aligned to %" PRIu64 " MiB",
2338 machine->ram_size,
2339 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2340 return;
2341 }
2342
2343 for (i = 0; i < nb_numa_nodes; i++) {
2344 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2345 error_setg(errp,
2346 "Node %d memory size 0x%" PRIx64
2347 " is not aligned to %" PRIu64 " MiB",
2348 i, numa_info[i].node_mem,
2349 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2350 return;
2351 }
2352 }
2353 }
2354
2355 /* find cpu slot in machine->possible_cpus by core_id */
2356 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2357 {
2358 int index = id / smp_threads;
2359
2360 if (index >= ms->possible_cpus->len) {
2361 return NULL;
2362 }
2363 if (idx) {
2364 *idx = index;
2365 }
2366 return &ms->possible_cpus->cpus[index];
2367 }
2368
2369 static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp)
2370 {
2371 Error *local_err = NULL;
2372 bool vsmt_user = !!spapr->vsmt;
2373 int kvm_smt = kvmppc_smt_threads();
2374 int ret;
2375
2376 if (!kvm_enabled() && (smp_threads > 1)) {
2377 error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2378 "on a pseries machine");
2379 goto out;
2380 }
2381 if (!is_power_of_2(smp_threads)) {
2382 error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2383 "machine because it must be a power of 2", smp_threads);
2384 goto out;
2385 }
2386
2387 /* Detemine the VSMT mode to use: */
2388 if (vsmt_user) {
2389 if (spapr->vsmt < smp_threads) {
2390 error_setg(&local_err, "Cannot support VSMT mode %d"
2391 " because it must be >= threads/core (%d)",
2392 spapr->vsmt, smp_threads);
2393 goto out;
2394 }
2395 /* In this case, spapr->vsmt has been set by the command line */
2396 } else {
2397 /*
2398 * Default VSMT value is tricky, because we need it to be as
2399 * consistent as possible (for migration), but this requires
2400 * changing it for at least some existing cases. We pick 8 as
2401 * the value that we'd get with KVM on POWER8, the
2402 * overwhelmingly common case in production systems.
2403 */
2404 spapr->vsmt = MAX(8, smp_threads);
2405 }
2406
2407 /* KVM: If necessary, set the SMT mode: */
2408 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2409 ret = kvmppc_set_smt_threads(spapr->vsmt);
2410 if (ret) {
2411 /* Looks like KVM isn't able to change VSMT mode */
2412 error_setg(&local_err,
2413 "Failed to set KVM's VSMT mode to %d (errno %d)",
2414 spapr->vsmt, ret);
2415 /* We can live with that if the default one is big enough
2416 * for the number of threads, and a submultiple of the one
2417 * we want. In this case we'll waste some vcpu ids, but
2418 * behaviour will be correct */
2419 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2420 warn_report_err(local_err);
2421 local_err = NULL;
2422 goto out;
2423 } else {
2424 if (!vsmt_user) {
2425 error_append_hint(&local_err,
2426 "On PPC, a VM with %d threads/core"
2427 " on a host with %d threads/core"
2428 " requires the use of VSMT mode %d.\n",
2429 smp_threads, kvm_smt, spapr->vsmt);
2430 }
2431 kvmppc_hint_smt_possible(&local_err);
2432 goto out;
2433 }
2434 }
2435 }
2436 /* else TCG: nothing to do currently */
2437 out:
2438 error_propagate(errp, local_err);
2439 }
2440
2441 static void spapr_init_cpus(sPAPRMachineState *spapr)
2442 {
2443 MachineState *machine = MACHINE(spapr);
2444 MachineClass *mc = MACHINE_GET_CLASS(machine);
2445 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2446 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2447 const CPUArchIdList *possible_cpus;
2448 int boot_cores_nr = smp_cpus / smp_threads;
2449 int i;
2450
2451 possible_cpus = mc->possible_cpu_arch_ids(machine);
2452 if (mc->has_hotpluggable_cpus) {
2453 if (smp_cpus % smp_threads) {
2454 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2455 smp_cpus, smp_threads);
2456 exit(1);
2457 }
2458 if (max_cpus % smp_threads) {
2459 error_report("max_cpus (%u) must be multiple of threads (%u)",
2460 max_cpus, smp_threads);
2461 exit(1);
2462 }
2463 } else {
2464 if (max_cpus != smp_cpus) {
2465 error_report("This machine version does not support CPU hotplug");
2466 exit(1);
2467 }
2468 boot_cores_nr = possible_cpus->len;
2469 }
2470
2471 if (smc->pre_2_10_has_unused_icps) {
2472 int i;
2473
2474 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2475 /* Dummy entries get deregistered when real ICPState objects
2476 * are registered during CPU core hotplug.
2477 */
2478 pre_2_10_vmstate_register_dummy_icp(i);
2479 }
2480 }
2481
2482 for (i = 0; i < possible_cpus->len; i++) {
2483 int core_id = i * smp_threads;
2484
2485 if (mc->has_hotpluggable_cpus) {
2486 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2487 spapr_vcpu_id(spapr, core_id));
2488 }
2489
2490 if (i < boot_cores_nr) {
2491 Object *core = object_new(type);
2492 int nr_threads = smp_threads;
2493
2494 /* Handle the partially filled core for older machine types */
2495 if ((i + 1) * smp_threads >= smp_cpus) {
2496 nr_threads = smp_cpus - i * smp_threads;
2497 }
2498
2499 object_property_set_int(core, nr_threads, "nr-threads",
2500 &error_fatal);
2501 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2502 &error_fatal);
2503 object_property_set_bool(core, true, "realized", &error_fatal);
2504
2505 object_unref(core);
2506 }
2507 }
2508 }
2509
2510 /* pSeries LPAR / sPAPR hardware init */
2511 static void spapr_machine_init(MachineState *machine)
2512 {
2513 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2514 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2515 const char *kernel_filename = machine->kernel_filename;
2516 const char *initrd_filename = machine->initrd_filename;
2517 PCIHostState *phb;
2518 int i;
2519 MemoryRegion *sysmem = get_system_memory();
2520 MemoryRegion *ram = g_new(MemoryRegion, 1);
2521 hwaddr node0_size = spapr_node0_size(machine);
2522 long load_limit, fw_size;
2523 char *filename;
2524 Error *resize_hpt_err = NULL;
2525
2526 msi_nonbroken = true;
2527
2528 QLIST_INIT(&spapr->phbs);
2529 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2530
2531 /* Determine capabilities to run with */
2532 spapr_caps_init(spapr);
2533
2534 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2535 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2536 /*
2537 * If the user explicitly requested a mode we should either
2538 * supply it, or fail completely (which we do below). But if
2539 * it's not set explicitly, we reset our mode to something
2540 * that works
2541 */
2542 if (resize_hpt_err) {
2543 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2544 error_free(resize_hpt_err);
2545 resize_hpt_err = NULL;
2546 } else {
2547 spapr->resize_hpt = smc->resize_hpt_default;
2548 }
2549 }
2550
2551 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2552
2553 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2554 /*
2555 * User requested HPT resize, but this host can't supply it. Bail out
2556 */
2557 error_report_err(resize_hpt_err);
2558 exit(1);
2559 }
2560
2561 spapr->rma_size = node0_size;
2562
2563 /* With KVM, we don't actually know whether KVM supports an
2564 * unbounded RMA (PR KVM) or is limited by the hash table size
2565 * (HV KVM using VRMA), so we always assume the latter
2566 *
2567 * In that case, we also limit the initial allocations for RTAS
2568 * etc... to 256M since we have no way to know what the VRMA size
2569 * is going to be as it depends on the size of the hash table
2570 * which isn't determined yet.
2571 */
2572 if (kvm_enabled()) {
2573 spapr->vrma_adjust = 1;
2574 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2575 }
2576
2577 /* Actually we don't support unbounded RMA anymore since we added
2578 * proper emulation of HV mode. The max we can get is 16G which
2579 * also happens to be what we configure for PAPR mode so make sure
2580 * we don't do anything bigger than that
2581 */
2582 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2583
2584 if (spapr->rma_size > node0_size) {
2585 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2586 spapr->rma_size);
2587 exit(1);
2588 }
2589
2590 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2591 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2592
2593 /*
2594 * VSMT must be set in order to be able to compute VCPU ids, ie to
2595 * call spapr_max_server_number() or spapr_vcpu_id().
2596 */
2597 spapr_set_vsmt_mode(spapr, &error_fatal);
2598
2599 /* Set up Interrupt Controller before we create the VCPUs */
2600 spapr_irq_init(spapr, &error_fatal);
2601
2602 /* Set up containers for ibm,client-architecture-support negotiated options
2603 */
2604 spapr->ov5 = spapr_ovec_new();
2605 spapr->ov5_cas = spapr_ovec_new();
2606
2607 if (smc->dr_lmb_enabled) {
2608 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2609 spapr_validate_node_memory(machine, &error_fatal);
2610 }
2611
2612 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2613
2614 /* advertise support for dedicated HP event source to guests */
2615 if (spapr->use_hotplug_event_source) {
2616 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2617 }
2618
2619 /* advertise support for HPT resizing */
2620 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2621 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2622 }
2623
2624 /* advertise support for ibm,dyamic-memory-v2 */
2625 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2626
2627 /* init CPUs */
2628 spapr_init_cpus(spapr);
2629
2630 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2631 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2632 spapr->max_compat_pvr)) {
2633 /* KVM and TCG always allow GTSE with radix... */
2634 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2635 }
2636 /* ... but not with hash (currently). */
2637
2638 if (kvm_enabled()) {
2639 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2640 kvmppc_enable_logical_ci_hcalls();
2641 kvmppc_enable_set_mode_hcall();
2642
2643 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2644 kvmppc_enable_clear_ref_mod_hcalls();
2645 }
2646
2647 /* allocate RAM */
2648 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2649 machine->ram_size);
2650 memory_region_add_subregion(sysmem, 0, ram);
2651
2652 /* always allocate the device memory information */
2653 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2654
2655 /* initialize hotplug memory address space */
2656 if (machine->ram_size < machine->maxram_size) {
2657 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2658 /*
2659 * Limit the number of hotpluggable memory slots to half the number
2660 * slots that KVM supports, leaving the other half for PCI and other
2661 * devices. However ensure that number of slots doesn't drop below 32.
2662 */
2663 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2664 SPAPR_MAX_RAM_SLOTS;
2665
2666 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2667 max_memslots = SPAPR_MAX_RAM_SLOTS;
2668 }
2669 if (machine->ram_slots > max_memslots) {
2670 error_report("Specified number of memory slots %"
2671 PRIu64" exceeds max supported %d",
2672 machine->ram_slots, max_memslots);
2673 exit(1);
2674 }
2675
2676 machine->device_memory->base = ROUND_UP(machine->ram_size,
2677 SPAPR_DEVICE_MEM_ALIGN);
2678 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2679 "device-memory", device_mem_size);
2680 memory_region_add_subregion(sysmem, machine->device_memory->base,
2681 &machine->device_memory->mr);
2682 }
2683
2684 if (smc->dr_lmb_enabled) {
2685 spapr_create_lmb_dr_connectors(spapr);
2686 }
2687
2688 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2689 if (!filename) {
2690 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2691 exit(1);
2692 }
2693 spapr->rtas_size = get_image_size(filename);
2694 if (spapr->rtas_size < 0) {
2695 error_report("Could not get size of LPAR rtas '%s'", filename);
2696 exit(1);
2697 }
2698 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2699 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2700 error_report("Could not load LPAR rtas '%s'", filename);
2701 exit(1);
2702 }
2703 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2704 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2705 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2706 exit(1);
2707 }
2708 g_free(filename);
2709
2710 /* Set up RTAS event infrastructure */
2711 spapr_events_init(spapr);
2712
2713 /* Set up the RTC RTAS interfaces */
2714 spapr_rtc_create(spapr);
2715
2716 /* Set up VIO bus */
2717 spapr->vio_bus = spapr_vio_bus_init();
2718
2719 for (i = 0; i < serial_max_hds(); i++) {
2720 if (serial_hd(i)) {
2721 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2722 }
2723 }
2724
2725 /* We always have at least the nvram device on VIO */
2726 spapr_create_nvram(spapr);
2727
2728 /* Set up PCI */
2729 spapr_pci_rtas_init();
2730
2731 phb = spapr_create_phb(spapr, 0);
2732
2733 for (i = 0; i < nb_nics; i++) {
2734 NICInfo *nd = &nd_table[i];
2735
2736 if (!nd->model) {
2737 nd->model = g_strdup("spapr-vlan");
2738 }
2739
2740 if (g_str_equal(nd->model, "spapr-vlan") ||
2741 g_str_equal(nd->model, "ibmveth")) {
2742 spapr_vlan_create(spapr->vio_bus, nd);
2743 } else {
2744 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2745 }
2746 }
2747
2748 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2749 spapr_vscsi_create(spapr->vio_bus);
2750 }
2751
2752 /* Graphics */
2753 if (spapr_vga_init(phb->bus, &error_fatal)) {
2754 spapr->has_graphics = true;
2755 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2756 }
2757
2758 if (machine->usb) {
2759 if (smc->use_ohci_by_default) {
2760 pci_create_simple(phb->bus, -1, "pci-ohci");
2761 } else {
2762 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2763 }
2764
2765 if (spapr->has_graphics) {
2766 USBBus *usb_bus = usb_bus_find(-1);
2767
2768 usb_create_simple(usb_bus, "usb-kbd");
2769 usb_create_simple(usb_bus, "usb-mouse");
2770 }
2771 }
2772
2773 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
2774 error_report(
2775 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2776 MIN_RMA_SLOF);
2777 exit(1);
2778 }
2779
2780 if (kernel_filename) {
2781 uint64_t lowaddr = 0;
2782
2783 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2784 NULL, NULL, &lowaddr, NULL, 1,
2785 PPC_ELF_MACHINE, 0, 0);
2786 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2787 spapr->kernel_size = load_elf(kernel_filename,
2788 translate_kernel_address, NULL, NULL,
2789 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2790 0, 0);
2791 spapr->kernel_le = spapr->kernel_size > 0;
2792 }
2793 if (spapr->kernel_size < 0) {
2794 error_report("error loading %s: %s", kernel_filename,
2795 load_elf_strerror(spapr->kernel_size));
2796 exit(1);
2797 }
2798
2799 /* load initrd */
2800 if (initrd_filename) {
2801 /* Try to locate the initrd in the gap between the kernel
2802 * and the firmware. Add a bit of space just in case
2803 */
2804 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2805 + 0x1ffff) & ~0xffff;
2806 spapr->initrd_size = load_image_targphys(initrd_filename,
2807 spapr->initrd_base,
2808 load_limit
2809 - spapr->initrd_base);
2810 if (spapr->initrd_size < 0) {
2811 error_report("could not load initial ram disk '%s'",
2812 initrd_filename);
2813 exit(1);
2814 }
2815 }
2816 }
2817
2818 if (bios_name == NULL) {
2819 bios_name = FW_FILE_NAME;
2820 }
2821 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2822 if (!filename) {
2823 error_report("Could not find LPAR firmware '%s'", bios_name);
2824 exit(1);
2825 }
2826 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2827 if (fw_size <= 0) {
2828 error_report("Could not load LPAR firmware '%s'", filename);
2829 exit(1);
2830 }
2831 g_free(filename);
2832
2833 /* FIXME: Should register things through the MachineState's qdev
2834 * interface, this is a legacy from the sPAPREnvironment structure
2835 * which predated MachineState but had a similar function */
2836 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2837 register_savevm_live(NULL, "spapr/htab", -1, 1,
2838 &savevm_htab_handlers, spapr);
2839
2840 qemu_register_boot_set(spapr_boot_set, spapr);
2841
2842 if (kvm_enabled()) {
2843 /* to stop and start vmclock */
2844 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2845 &spapr->tb);
2846
2847 kvmppc_spapr_enable_inkernel_multitce();
2848 }
2849 }
2850
2851 static int spapr_kvm_type(const char *vm_type)
2852 {
2853 if (!vm_type) {
2854 return 0;
2855 }
2856
2857 if (!strcmp(vm_type, "HV")) {
2858 return 1;
2859 }
2860
2861 if (!strcmp(vm_type, "PR")) {
2862 return 2;
2863 }
2864
2865 error_report("Unknown kvm-type specified '%s'", vm_type);
2866 exit(1);
2867 }
2868
2869 /*
2870 * Implementation of an interface to adjust firmware path
2871 * for the bootindex property handling.
2872 */
2873 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2874 DeviceState *dev)
2875 {
2876 #define CAST(type, obj, name) \
2877 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2878 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2879 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2880 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
2881
2882 if (d) {
2883 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2884 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2885 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2886
2887 if (spapr) {
2888 /*
2889 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2890 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2891 * in the top 16 bits of the 64-bit LUN
2892 */
2893 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2894 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2895 (uint64_t)id << 48);
2896 } else if (virtio) {
2897 /*
2898 * We use SRP luns of the form 01000000 | (target << 8) | lun
2899 * in the top 32 bits of the 64-bit LUN
2900 * Note: the quote above is from SLOF and it is wrong,
2901 * the actual binding is:
2902 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2903 */
2904 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2905 if (d->lun >= 256) {
2906 /* Use the LUN "flat space addressing method" */
2907 id |= 0x4000;
2908 }
2909 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2910 (uint64_t)id << 32);
2911 } else if (usb) {
2912 /*
2913 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2914 * in the top 32 bits of the 64-bit LUN
2915 */
2916 unsigned usb_port = atoi(usb->port->path);
2917 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2918 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2919 (uint64_t)id << 32);
2920 }
2921 }
2922
2923 /*
2924 * SLOF probes the USB devices, and if it recognizes that the device is a
2925 * storage device, it changes its name to "storage" instead of "usb-host",
2926 * and additionally adds a child node for the SCSI LUN, so the correct
2927 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2928 */
2929 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2930 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2931 if (usb_host_dev_is_scsi_storage(usbdev)) {
2932 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2933 }
2934 }
2935
2936 if (phb) {
2937 /* Replace "pci" with "pci@800000020000000" */
2938 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2939 }
2940
2941 if (vsc) {
2942 /* Same logic as virtio above */
2943 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
2944 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
2945 }
2946
2947 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
2948 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
2949 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
2950 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
2951 }
2952
2953 return NULL;
2954 }
2955
2956 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2957 {
2958 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2959
2960 return g_strdup(spapr->kvm_type);
2961 }
2962
2963 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2964 {
2965 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2966
2967 g_free(spapr->kvm_type);
2968 spapr->kvm_type = g_strdup(value);
2969 }
2970
2971 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2972 {
2973 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2974
2975 return spapr->use_hotplug_event_source;
2976 }
2977
2978 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2979 Error **errp)
2980 {
2981 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2982
2983 spapr->use_hotplug_event_source = value;
2984 }
2985
2986 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
2987 {
2988 return true;
2989 }
2990
2991 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
2992 {
2993 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2994
2995 switch (spapr->resize_hpt) {
2996 case SPAPR_RESIZE_HPT_DEFAULT:
2997 return g_strdup("default");
2998 case SPAPR_RESIZE_HPT_DISABLED:
2999 return g_strdup("disabled");
3000 case SPAPR_RESIZE_HPT_ENABLED:
3001 return g_strdup("enabled");
3002 case SPAPR_RESIZE_HPT_REQUIRED:
3003 return g_strdup("required");
3004 }
3005 g_assert_not_reached();
3006 }
3007
3008 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3009 {
3010 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3011
3012 if (strcmp(value, "default") == 0) {
3013 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3014 } else if (strcmp(value, "disabled") == 0) {
3015 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3016 } else if (strcmp(value, "enabled") == 0) {
3017 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3018 } else if (strcmp(value, "required") == 0) {
3019 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3020 } else {
3021 error_setg(errp, "Bad value for \"resize-hpt\" property");
3022 }
3023 }
3024
3025 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3026 void *opaque, Error **errp)
3027 {
3028 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3029 }
3030
3031 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3032 void *opaque, Error **errp)
3033 {
3034 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3035 }
3036
3037 static void spapr_instance_init(Object *obj)
3038 {
3039 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3040
3041 spapr->htab_fd = -1;
3042 spapr->use_hotplug_event_source = true;
3043 object_property_add_str(obj, "kvm-type",
3044 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3045 object_property_set_description(obj, "kvm-type",
3046 "Specifies the KVM virtualization mode (HV, PR)",
3047 NULL);
3048 object_property_add_bool(obj, "modern-hotplug-events",
3049 spapr_get_modern_hotplug_events,
3050 spapr_set_modern_hotplug_events,
3051 NULL);
3052 object_property_set_description(obj, "modern-hotplug-events",
3053 "Use dedicated hotplug event mechanism in"
3054 " place of standard EPOW events when possible"
3055 " (required for memory hot-unplug support)",
3056 NULL);
3057 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3058 "Maximum permitted CPU compatibility mode",
3059 &error_fatal);
3060
3061 object_property_add_str(obj, "resize-hpt",
3062 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3063 object_property_set_description(obj, "resize-hpt",
3064 "Resizing of the Hash Page Table (enabled, disabled, required)",
3065 NULL);
3066 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3067 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3068 object_property_set_description(obj, "vsmt",
3069 "Virtual SMT: KVM behaves as if this were"
3070 " the host's SMT mode", &error_abort);
3071 object_property_add_bool(obj, "vfio-no-msix-emulation",
3072 spapr_get_msix_emulation, NULL, NULL);
3073 }
3074
3075 static void spapr_machine_finalizefn(Object *obj)
3076 {
3077 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3078
3079 g_free(spapr->kvm_type);
3080 }
3081
3082 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3083 {
3084 cpu_synchronize_state(cs);
3085 ppc_cpu_do_system_reset(cs);
3086 }
3087
3088 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3089 {
3090 CPUState *cs;
3091
3092 CPU_FOREACH(cs) {
3093 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3094 }
3095 }
3096
3097 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3098 uint32_t node, bool dedicated_hp_event_source,
3099 Error **errp)
3100 {
3101 sPAPRDRConnector *drc;
3102 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3103 int i, fdt_offset, fdt_size;
3104 void *fdt;
3105 uint64_t addr = addr_start;
3106 bool hotplugged = spapr_drc_hotplugged(dev);
3107 Error *local_err = NULL;
3108
3109 for (i = 0; i < nr_lmbs; i++) {
3110 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3111 addr / SPAPR_MEMORY_BLOCK_SIZE);
3112 g_assert(drc);
3113
3114 fdt = create_device_tree(&fdt_size);
3115 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
3116 SPAPR_MEMORY_BLOCK_SIZE);
3117
3118 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3119 if (local_err) {
3120 while (addr > addr_start) {
3121 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3122 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3123 addr / SPAPR_MEMORY_BLOCK_SIZE);
3124 spapr_drc_detach(drc);
3125 }
3126 g_free(fdt);
3127 error_propagate(errp, local_err);
3128 return;
3129 }
3130 if (!hotplugged) {
3131 spapr_drc_reset(drc);
3132 }
3133 addr += SPAPR_MEMORY_BLOCK_SIZE;
3134 }
3135 /* send hotplug notification to the
3136 * guest only in case of hotplugged memory
3137 */
3138 if (hotplugged) {
3139 if (dedicated_hp_event_source) {
3140 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3141 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3142 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3143 nr_lmbs,
3144 spapr_drc_index(drc));
3145 } else {
3146 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3147 nr_lmbs);
3148 }
3149 }
3150 }
3151
3152 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3153 Error **errp)
3154 {
3155 Error *local_err = NULL;
3156 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3157 PCDIMMDevice *dimm = PC_DIMM(dev);
3158 uint64_t size, addr;
3159 uint32_t node;
3160
3161 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3162
3163 pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3164 if (local_err) {
3165 goto out;
3166 }
3167
3168 addr = object_property_get_uint(OBJECT(dimm),
3169 PC_DIMM_ADDR_PROP, &local_err);
3170 if (local_err) {
3171 goto out_unplug;
3172 }
3173
3174 node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP,
3175 &error_abort);
3176 spapr_add_lmbs(dev, addr, size, node,
3177 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3178 &local_err);
3179 if (local_err) {
3180 goto out_unplug;
3181 }
3182
3183 return;
3184
3185 out_unplug:
3186 pc_dimm_unplug(dimm, MACHINE(ms));
3187 out:
3188 error_propagate(errp, local_err);
3189 }
3190
3191 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3192 Error **errp)
3193 {
3194 const sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3195 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3196 PCDIMMDevice *dimm = PC_DIMM(dev);
3197 Error *local_err = NULL;
3198 uint64_t size;
3199 Object *memdev;
3200 hwaddr pagesize;
3201
3202 if (!smc->dr_lmb_enabled) {
3203 error_setg(errp, "Memory hotplug not supported for this machine");
3204 return;
3205 }
3206
3207 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3208 if (local_err) {
3209 error_propagate(errp, local_err);
3210 return;
3211 }
3212
3213 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3214 error_setg(errp, "Hotplugged memory size must be a multiple of "
3215 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3216 return;
3217 }
3218
3219 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3220 &error_abort);
3221 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3222 spapr_check_pagesize(spapr, pagesize, &local_err);
3223 if (local_err) {
3224 error_propagate(errp, local_err);
3225 return;
3226 }
3227
3228 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3229 }
3230
3231 struct sPAPRDIMMState {
3232 PCDIMMDevice *dimm;
3233 uint32_t nr_lmbs;
3234 QTAILQ_ENTRY(sPAPRDIMMState) next;
3235 };
3236
3237 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
3238 PCDIMMDevice *dimm)
3239 {
3240 sPAPRDIMMState *dimm_state = NULL;
3241
3242 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3243 if (dimm_state->dimm == dimm) {
3244 break;
3245 }
3246 }
3247 return dimm_state;
3248 }
3249
3250 static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
3251 uint32_t nr_lmbs,
3252 PCDIMMDevice *dimm)
3253 {
3254 sPAPRDIMMState *ds = NULL;
3255
3256 /*
3257 * If this request is for a DIMM whose removal had failed earlier
3258 * (due to guest's refusal to remove the LMBs), we would have this
3259 * dimm already in the pending_dimm_unplugs list. In that
3260 * case don't add again.
3261 */
3262 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3263 if (!ds) {
3264 ds = g_malloc0(sizeof(sPAPRDIMMState));
3265 ds->nr_lmbs = nr_lmbs;
3266 ds->dimm = dimm;
3267 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3268 }
3269 return ds;
3270 }
3271
3272 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
3273 sPAPRDIMMState *dimm_state)
3274 {
3275 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3276 g_free(dimm_state);
3277 }
3278
3279 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
3280 PCDIMMDevice *dimm)
3281 {
3282 sPAPRDRConnector *drc;
3283 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3284 &error_abort);
3285 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3286 uint32_t avail_lmbs = 0;
3287 uint64_t addr_start, addr;
3288 int i;
3289
3290 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3291 &error_abort);
3292
3293 addr = addr_start;
3294 for (i = 0; i < nr_lmbs; i++) {
3295 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3296 addr / SPAPR_MEMORY_BLOCK_SIZE);
3297 g_assert(drc);
3298 if (drc->dev) {
3299 avail_lmbs++;
3300 }
3301 addr += SPAPR_MEMORY_BLOCK_SIZE;
3302 }
3303
3304 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3305 }
3306
3307 /* Callback to be called during DRC release. */
3308 void spapr_lmb_release(DeviceState *dev)
3309 {
3310 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3311 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3312 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3313
3314 /* This information will get lost if a migration occurs
3315 * during the unplug process. In this case recover it. */
3316 if (ds == NULL) {
3317 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3318 g_assert(ds);
3319 /* The DRC being examined by the caller at least must be counted */
3320 g_assert(ds->nr_lmbs);
3321 }
3322
3323 if (--ds->nr_lmbs) {
3324 return;
3325 }
3326
3327 /*
3328 * Now that all the LMBs have been removed by the guest, call the
3329 * unplug handler chain. This can never fail.
3330 */
3331 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3332 }
3333
3334 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3335 {
3336 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3337 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3338
3339 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3340 object_unparent(OBJECT(dev));
3341 spapr_pending_dimm_unplugs_remove(spapr, ds);
3342 }
3343
3344 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3345 DeviceState *dev, Error **errp)
3346 {
3347 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3348 Error *local_err = NULL;
3349 PCDIMMDevice *dimm = PC_DIMM(dev);
3350 uint32_t nr_lmbs;
3351 uint64_t size, addr_start, addr;
3352 int i;
3353 sPAPRDRConnector *drc;
3354
3355 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3356 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3357
3358 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3359 &local_err);
3360 if (local_err) {
3361 goto out;
3362 }
3363
3364 /*
3365 * An existing pending dimm state for this DIMM means that there is an
3366 * unplug operation in progress, waiting for the spapr_lmb_release
3367 * callback to complete the job (BQL can't cover that far). In this case,
3368 * bail out to avoid detaching DRCs that were already released.
3369 */
3370 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3371 error_setg(&local_err,
3372 "Memory unplug already in progress for device %s",
3373 dev->id);
3374 goto out;
3375 }
3376
3377 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3378
3379 addr = addr_start;
3380 for (i = 0; i < nr_lmbs; i++) {
3381 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3382 addr / SPAPR_MEMORY_BLOCK_SIZE);
3383 g_assert(drc);
3384
3385 spapr_drc_detach(drc);
3386 addr += SPAPR_MEMORY_BLOCK_SIZE;
3387 }
3388
3389 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3390 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3391 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3392 nr_lmbs, spapr_drc_index(drc));
3393 out:
3394 error_propagate(errp, local_err);
3395 }
3396
3397 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
3398 sPAPRMachineState *spapr)
3399 {
3400 PowerPCCPU *cpu = POWERPC_CPU(cs);
3401 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3402 int id = spapr_get_vcpu_id(cpu);
3403 void *fdt;
3404 int offset, fdt_size;
3405 char *nodename;
3406
3407 fdt = create_device_tree(&fdt_size);
3408 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3409 offset = fdt_add_subnode(fdt, 0, nodename);
3410
3411 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3412 g_free(nodename);
3413
3414 *fdt_offset = offset;
3415 return fdt;
3416 }
3417
3418 /* Callback to be called during DRC release. */
3419 void spapr_core_release(DeviceState *dev)
3420 {
3421 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3422
3423 /* Call the unplug handler chain. This can never fail. */
3424 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3425 }
3426
3427 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3428 {
3429 MachineState *ms = MACHINE(hotplug_dev);
3430 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3431 CPUCore *cc = CPU_CORE(dev);
3432 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3433
3434 if (smc->pre_2_10_has_unused_icps) {
3435 sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3436 int i;
3437
3438 for (i = 0; i < cc->nr_threads; i++) {
3439 CPUState *cs = CPU(sc->threads[i]);
3440
3441 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3442 }
3443 }
3444
3445 assert(core_slot);
3446 core_slot->cpu = NULL;
3447 object_unparent(OBJECT(dev));
3448 }
3449
3450 static
3451 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3452 Error **errp)
3453 {
3454 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3455 int index;
3456 sPAPRDRConnector *drc;
3457 CPUCore *cc = CPU_CORE(dev);
3458
3459 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3460 error_setg(errp, "Unable to find CPU core with core-id: %d",
3461 cc->core_id);
3462 return;
3463 }
3464 if (index == 0) {
3465 error_setg(errp, "Boot CPU core may not be unplugged");
3466 return;
3467 }
3468
3469 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3470 spapr_vcpu_id(spapr, cc->core_id));
3471 g_assert(drc);
3472
3473 spapr_drc_detach(drc);
3474
3475 spapr_hotplug_req_remove_by_index(drc);
3476 }
3477
3478 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3479 Error **errp)
3480 {
3481 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3482 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3483 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3484 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3485 CPUCore *cc = CPU_CORE(dev);
3486 CPUState *cs = CPU(core->threads[0]);
3487 sPAPRDRConnector *drc;
3488 Error *local_err = NULL;
3489 CPUArchId *core_slot;
3490 int index;
3491 bool hotplugged = spapr_drc_hotplugged(dev);
3492
3493 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3494 if (!core_slot) {
3495 error_setg(errp, "Unable to find CPU core with core-id: %d",
3496 cc->core_id);
3497 return;
3498 }
3499 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3500 spapr_vcpu_id(spapr, cc->core_id));
3501
3502 g_assert(drc || !mc->has_hotpluggable_cpus);
3503
3504 if (drc) {
3505 void *fdt;
3506 int fdt_offset;
3507
3508 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
3509
3510 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3511 if (local_err) {
3512 g_free(fdt);
3513 error_propagate(errp, local_err);
3514 return;
3515 }
3516
3517 if (hotplugged) {
3518 /*
3519 * Send hotplug notification interrupt to the guest only
3520 * in case of hotplugged CPUs.
3521 */
3522 spapr_hotplug_req_add_by_index(drc);
3523 } else {
3524 spapr_drc_reset(drc);
3525 }
3526 }
3527
3528 core_slot->cpu = OBJECT(dev);
3529
3530 if (smc->pre_2_10_has_unused_icps) {
3531 int i;
3532
3533 for (i = 0; i < cc->nr_threads; i++) {
3534 cs = CPU(core->threads[i]);
3535 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3536 }
3537 }
3538 }
3539
3540 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3541 Error **errp)
3542 {
3543 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3544 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3545 Error *local_err = NULL;
3546 CPUCore *cc = CPU_CORE(dev);
3547 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3548 const char *type = object_get_typename(OBJECT(dev));
3549 CPUArchId *core_slot;
3550 int index;
3551
3552 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3553 error_setg(&local_err, "CPU hotplug not supported for this machine");
3554 goto out;
3555 }
3556
3557 if (strcmp(base_core_type, type)) {
3558 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3559 goto out;
3560 }
3561
3562 if (cc->core_id % smp_threads) {
3563 error_setg(&local_err, "invalid core id %d", cc->core_id);
3564 goto out;
3565 }
3566
3567 /*
3568 * In general we should have homogeneous threads-per-core, but old
3569 * (pre hotplug support) machine types allow the last core to have
3570 * reduced threads as a compatibility hack for when we allowed
3571 * total vcpus not a multiple of threads-per-core.
3572 */
3573 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3574 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3575 cc->nr_threads, smp_threads);
3576 goto out;
3577 }
3578
3579 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3580 if (!core_slot) {
3581 error_setg(&local_err, "core id %d out of range", cc->core_id);
3582 goto out;
3583 }
3584
3585 if (core_slot->cpu) {
3586 error_setg(&local_err, "core %d already populated", cc->core_id);
3587 goto out;
3588 }
3589
3590 numa_cpu_pre_plug(core_slot, dev, &local_err);
3591
3592 out:
3593 error_propagate(errp, local_err);
3594 }
3595
3596 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3597 DeviceState *dev, Error **errp)
3598 {
3599 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3600 spapr_memory_plug(hotplug_dev, dev, errp);
3601 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3602 spapr_core_plug(hotplug_dev, dev, errp);
3603 }
3604 }
3605
3606 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
3607 DeviceState *dev, Error **errp)
3608 {
3609 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3610 spapr_memory_unplug(hotplug_dev, dev);
3611 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3612 spapr_core_unplug(hotplug_dev, dev);
3613 }
3614 }
3615
3616 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3617 DeviceState *dev, Error **errp)
3618 {
3619 sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
3620 MachineClass *mc = MACHINE_GET_CLASS(sms);
3621
3622 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3623 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3624 spapr_memory_unplug_request(hotplug_dev, dev, errp);
3625 } else {
3626 /* NOTE: this means there is a window after guest reset, prior to
3627 * CAS negotiation, where unplug requests will fail due to the
3628 * capability not being detected yet. This is a bit different than
3629 * the case with PCI unplug, where the events will be queued and
3630 * eventually handled by the guest after boot
3631 */
3632 error_setg(errp, "Memory hot unplug not supported for this guest");
3633 }
3634 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3635 if (!mc->has_hotpluggable_cpus) {
3636 error_setg(errp, "CPU hot unplug not supported on this machine");
3637 return;
3638 }
3639 spapr_core_unplug_request(hotplug_dev, dev, errp);
3640 }
3641 }
3642
3643 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3644 DeviceState *dev, Error **errp)
3645 {
3646 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3647 spapr_memory_pre_plug(hotplug_dev, dev, errp);
3648 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3649 spapr_core_pre_plug(hotplug_dev, dev, errp);
3650 }
3651 }
3652
3653 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3654 DeviceState *dev)
3655 {
3656 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3657 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3658 return HOTPLUG_HANDLER(machine);
3659 }
3660 return NULL;
3661 }
3662
3663 static CpuInstanceProperties
3664 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3665 {
3666 CPUArchId *core_slot;
3667 MachineClass *mc = MACHINE_GET_CLASS(machine);
3668
3669 /* make sure possible_cpu are intialized */
3670 mc->possible_cpu_arch_ids(machine);
3671 /* get CPU core slot containing thread that matches cpu_index */
3672 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3673 assert(core_slot);
3674 return core_slot->props;
3675 }
3676
3677 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
3678 {
3679 return idx / smp_cores % nb_numa_nodes;
3680 }
3681
3682 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3683 {
3684 int i;
3685 const char *core_type;
3686 int spapr_max_cores = max_cpus / smp_threads;
3687 MachineClass *mc = MACHINE_GET_CLASS(machine);
3688
3689 if (!mc->has_hotpluggable_cpus) {
3690 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3691 }
3692 if (machine->possible_cpus) {
3693 assert(machine->possible_cpus->len == spapr_max_cores);
3694 return machine->possible_cpus;
3695 }
3696
3697 core_type = spapr_get_cpu_core_type(machine->cpu_type);
3698 if (!core_type) {
3699 error_report("Unable to find sPAPR CPU Core definition");
3700 exit(1);
3701 }
3702
3703 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3704 sizeof(CPUArchId) * spapr_max_cores);
3705 machine->possible_cpus->len = spapr_max_cores;
3706 for (i = 0; i < machine->possible_cpus->len; i++) {
3707 int core_id = i * smp_threads;
3708
3709 machine->possible_cpus->cpus[i].type = core_type;
3710 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3711 machine->possible_cpus->cpus[i].arch_id = core_id;
3712 machine->possible_cpus->cpus[i].props.has_core_id = true;
3713 machine->possible_cpus->cpus[i].props.core_id = core_id;
3714 }
3715 return machine->possible_cpus;
3716 }
3717
3718 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3719 uint64_t *buid, hwaddr *pio,
3720 hwaddr *mmio32, hwaddr *mmio64,
3721 unsigned n_dma, uint32_t *liobns, Error **errp)
3722 {
3723 /*
3724 * New-style PHB window placement.
3725 *
3726 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3727 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3728 * windows.
3729 *
3730 * Some guest kernels can't work with MMIO windows above 1<<46
3731 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3732 *
3733 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3734 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
3735 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
3736 * 1TiB 64-bit MMIO windows for each PHB.
3737 */
3738 const uint64_t base_buid = 0x800000020000000ULL;
3739 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3740 SPAPR_PCI_MEM64_WIN_SIZE - 1)
3741 int i;
3742
3743 /* Sanity check natural alignments */
3744 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3745 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3746 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3747 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3748 /* Sanity check bounds */
3749 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3750 SPAPR_PCI_MEM32_WIN_SIZE);
3751 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3752 SPAPR_PCI_MEM64_WIN_SIZE);
3753
3754 if (index >= SPAPR_MAX_PHBS) {
3755 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3756 SPAPR_MAX_PHBS - 1);
3757 return;
3758 }
3759
3760 *buid = base_buid + index;
3761 for (i = 0; i < n_dma; ++i) {
3762 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3763 }
3764
3765 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3766 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3767 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3768 }
3769
3770 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3771 {
3772 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3773
3774 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3775 }
3776
3777 static void spapr_ics_resend(XICSFabric *dev)
3778 {
3779 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3780
3781 ics_resend(spapr->ics);
3782 }
3783
3784 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
3785 {
3786 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
3787
3788 return cpu ? ICP(cpu->intc) : NULL;
3789 }
3790
3791 static void spapr_pic_print_info(InterruptStatsProvider *obj,
3792 Monitor *mon)
3793 {
3794 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3795 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3796
3797 smc->irq->print_info(spapr, mon);
3798 }
3799
3800 int spapr_get_vcpu_id(PowerPCCPU *cpu)
3801 {
3802 return cpu->vcpu_id;
3803 }
3804
3805 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
3806 {
3807 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3808 int vcpu_id;
3809
3810 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
3811
3812 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
3813 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
3814 error_append_hint(errp, "Adjust the number of cpus to %d "
3815 "or try to raise the number of threads per core\n",
3816 vcpu_id * smp_threads / spapr->vsmt);
3817 return;
3818 }
3819
3820 cpu->vcpu_id = vcpu_id;
3821 }
3822
3823 PowerPCCPU *spapr_find_cpu(int vcpu_id)
3824 {
3825 CPUState *cs;
3826
3827 CPU_FOREACH(cs) {
3828 PowerPCCPU *cpu = POWERPC_CPU(cs);
3829
3830 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
3831 return cpu;
3832 }
3833 }
3834
3835 return NULL;
3836 }
3837
3838 static void spapr_machine_class_init(ObjectClass *oc, void *data)
3839 {
3840 MachineClass *mc = MACHINE_CLASS(oc);
3841 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3842 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3843 NMIClass *nc = NMI_CLASS(oc);
3844 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3845 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3846 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3847 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3848
3849 mc->desc = "pSeries Logical Partition (PAPR compliant)";
3850 mc->ignore_boot_device_suffixes = true;
3851
3852 /*
3853 * We set up the default / latest behaviour here. The class_init
3854 * functions for the specific versioned machine types can override
3855 * these details for backwards compatibility
3856 */
3857 mc->init = spapr_machine_init;
3858 mc->reset = spapr_machine_reset;
3859 mc->block_default_type = IF_SCSI;
3860 mc->max_cpus = 1024;
3861 mc->no_parallel = 1;
3862 mc->default_boot_order = "";
3863 mc->default_ram_size = 512 * MiB;
3864 mc->default_display = "std";
3865 mc->kvm_type = spapr_kvm_type;
3866 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
3867 mc->pci_allow_0_address = true;
3868 assert(!mc->get_hotplug_handler);
3869 mc->get_hotplug_handler = spapr_get_hotplug_handler;
3870 hc->pre_plug = spapr_machine_device_pre_plug;
3871 hc->plug = spapr_machine_device_plug;
3872 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
3873 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
3874 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3875 hc->unplug_request = spapr_machine_device_unplug_request;
3876 hc->unplug = spapr_machine_device_unplug;
3877
3878 smc->dr_lmb_enabled = true;
3879 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
3880 mc->has_hotpluggable_cpus = true;
3881 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
3882 fwc->get_dev_path = spapr_get_fw_dev_path;
3883 nc->nmi_monitor_handler = spapr_nmi;
3884 smc->phb_placement = spapr_phb_placement;
3885 vhc->hypercall = emulate_spapr_hypercall;
3886 vhc->hpt_mask = spapr_hpt_mask;
3887 vhc->map_hptes = spapr_map_hptes;
3888 vhc->unmap_hptes = spapr_unmap_hptes;
3889 vhc->store_hpte = spapr_store_hpte;
3890 vhc->get_patbe = spapr_get_patbe;
3891 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
3892 xic->ics_get = spapr_ics_get;
3893 xic->ics_resend = spapr_ics_resend;
3894 xic->icp_get = spapr_icp_get;
3895 ispc->print_info = spapr_pic_print_info;
3896 /* Force NUMA node memory size to be a multiple of
3897 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3898 * in which LMBs are represented and hot-added
3899 */
3900 mc->numa_mem_align_shift = 28;
3901
3902 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
3903 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
3904 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
3905 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
3906 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
3907 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
3908 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
3909 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
3910 spapr_caps_add_properties(smc, &error_abort);
3911 smc->irq = &spapr_irq_xics;
3912 }
3913
3914 static const TypeInfo spapr_machine_info = {
3915 .name = TYPE_SPAPR_MACHINE,
3916 .parent = TYPE_MACHINE,
3917 .abstract = true,
3918 .instance_size = sizeof(sPAPRMachineState),
3919 .instance_init = spapr_instance_init,
3920 .instance_finalize = spapr_machine_finalizefn,
3921 .class_size = sizeof(sPAPRMachineClass),
3922 .class_init = spapr_machine_class_init,
3923 .interfaces = (InterfaceInfo[]) {
3924 { TYPE_FW_PATH_PROVIDER },
3925 { TYPE_NMI },
3926 { TYPE_HOTPLUG_HANDLER },
3927 { TYPE_PPC_VIRTUAL_HYPERVISOR },
3928 { TYPE_XICS_FABRIC },
3929 { TYPE_INTERRUPT_STATS_PROVIDER },
3930 { }
3931 },
3932 };
3933
3934 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
3935 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3936 void *data) \
3937 { \
3938 MachineClass *mc = MACHINE_CLASS(oc); \
3939 spapr_machine_##suffix##_class_options(mc); \
3940 if (latest) { \
3941 mc->alias = "pseries"; \
3942 mc->is_default = 1; \
3943 } \
3944 } \
3945 static const TypeInfo spapr_machine_##suffix##_info = { \
3946 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
3947 .parent = TYPE_SPAPR_MACHINE, \
3948 .class_init = spapr_machine_##suffix##_class_init, \
3949 }; \
3950 static void spapr_machine_register_##suffix(void) \
3951 { \
3952 type_register(&spapr_machine_##suffix##_info); \
3953 } \
3954 type_init(spapr_machine_register_##suffix)
3955
3956 /*
3957 * pseries-4.0
3958 */
3959 static void spapr_machine_4_0_class_options(MachineClass *mc)
3960 {
3961 /* Defaults for the latest behaviour inherited from the base class */
3962 }
3963
3964 DEFINE_SPAPR_MACHINE(4_0, "4.0", true);
3965
3966 /*
3967 * pseries-3.1
3968 */
3969 #define SPAPR_COMPAT_3_1 \
3970 HW_COMPAT_3_1
3971
3972 static void spapr_machine_3_1_class_options(MachineClass *mc)
3973 {
3974 spapr_machine_4_0_class_options(mc);
3975 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_3_1);
3976 }
3977
3978 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
3979
3980 /*
3981 * pseries-3.0
3982 */
3983 #define SPAPR_COMPAT_3_0 \
3984 HW_COMPAT_3_0
3985
3986 static void spapr_machine_3_0_class_options(MachineClass *mc)
3987 {
3988 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3989
3990 spapr_machine_3_1_class_options(mc);
3991 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_3_0);
3992
3993 smc->legacy_irq_allocation = true;
3994 smc->irq = &spapr_irq_xics_legacy;
3995 }
3996
3997 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
3998
3999 /*
4000 * pseries-2.12
4001 */
4002 #define SPAPR_COMPAT_2_12 \
4003 HW_COMPAT_2_12 \
4004 { \
4005 .driver = TYPE_POWERPC_CPU, \
4006 .property = "pre-3.0-migration", \
4007 .value = "on", \
4008 }, \
4009 { \
4010 .driver = TYPE_SPAPR_CPU_CORE, \
4011 .property = "pre-3.0-migration", \
4012 .value = "on", \
4013 },
4014
4015 static void spapr_machine_2_12_class_options(MachineClass *mc)
4016 {
4017 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4018
4019 spapr_machine_3_0_class_options(mc);
4020 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_12);
4021
4022 /* We depend on kvm_enabled() to choose a default value for the
4023 * hpt-max-page-size capability. Of course we can't do it here
4024 * because this is too early and the HW accelerator isn't initialzed
4025 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4026 */
4027 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4028 }
4029
4030 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4031
4032 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4033 {
4034 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4035
4036 spapr_machine_2_12_class_options(mc);
4037 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4038 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4039 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4040 }
4041
4042 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4043
4044 /*
4045 * pseries-2.11
4046 */
4047 #define SPAPR_COMPAT_2_11 \
4048 HW_COMPAT_2_11
4049
4050 static void spapr_machine_2_11_class_options(MachineClass *mc)
4051 {
4052 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4053
4054 spapr_machine_2_12_class_options(mc);
4055 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4056 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_11);
4057 }
4058
4059 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4060
4061 /*
4062 * pseries-2.10
4063 */
4064 #define SPAPR_COMPAT_2_10 \
4065 HW_COMPAT_2_10
4066
4067 static void spapr_machine_2_10_class_options(MachineClass *mc)
4068 {
4069 spapr_machine_2_11_class_options(mc);
4070 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_10);
4071 }
4072
4073 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4074
4075 /*
4076 * pseries-2.9
4077 */
4078 #define SPAPR_COMPAT_2_9 \
4079 HW_COMPAT_2_9 \
4080 { \
4081 .driver = TYPE_POWERPC_CPU, \
4082 .property = "pre-2.10-migration", \
4083 .value = "on", \
4084 }, \
4085
4086 static void spapr_machine_2_9_class_options(MachineClass *mc)
4087 {
4088 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4089
4090 spapr_machine_2_10_class_options(mc);
4091 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
4092 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4093 smc->pre_2_10_has_unused_icps = true;
4094 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4095 }
4096
4097 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4098
4099 /*
4100 * pseries-2.8
4101 */
4102 #define SPAPR_COMPAT_2_8 \
4103 HW_COMPAT_2_8 \
4104 { \
4105 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4106 .property = "pcie-extended-configuration-space", \
4107 .value = "off", \
4108 },
4109
4110 static void spapr_machine_2_8_class_options(MachineClass *mc)
4111 {
4112 spapr_machine_2_9_class_options(mc);
4113 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
4114 mc->numa_mem_align_shift = 23;
4115 }
4116
4117 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4118
4119 /*
4120 * pseries-2.7
4121 */
4122 #define SPAPR_COMPAT_2_7 \
4123 HW_COMPAT_2_7 \
4124 { \
4125 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4126 .property = "mem_win_size", \
4127 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
4128 }, \
4129 { \
4130 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4131 .property = "mem64_win_size", \
4132 .value = "0", \
4133 }, \
4134 { \
4135 .driver = TYPE_POWERPC_CPU, \
4136 .property = "pre-2.8-migration", \
4137 .value = "on", \
4138 }, \
4139 { \
4140 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4141 .property = "pre-2.8-migration", \
4142 .value = "on", \
4143 },
4144
4145 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
4146 uint64_t *buid, hwaddr *pio,
4147 hwaddr *mmio32, hwaddr *mmio64,
4148 unsigned n_dma, uint32_t *liobns, Error **errp)
4149 {
4150 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4151 const uint64_t base_buid = 0x800000020000000ULL;
4152 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4153 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4154 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4155 const uint32_t max_index = 255;
4156 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4157
4158 uint64_t ram_top = MACHINE(spapr)->ram_size;
4159 hwaddr phb0_base, phb_base;
4160 int i;
4161
4162 /* Do we have device memory? */
4163 if (MACHINE(spapr)->maxram_size > ram_top) {
4164 /* Can't just use maxram_size, because there may be an
4165 * alignment gap between normal and device memory regions
4166 */
4167 ram_top = MACHINE(spapr)->device_memory->base +
4168 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4169 }
4170
4171 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4172
4173 if (index > max_index) {
4174 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4175 max_index);
4176 return;
4177 }
4178
4179 *buid = base_buid + index;
4180 for (i = 0; i < n_dma; ++i) {
4181 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4182 }
4183
4184 phb_base = phb0_base + index * phb_spacing;
4185 *pio = phb_base + pio_offset;
4186 *mmio32 = phb_base + mmio_offset;
4187 /*
4188 * We don't set the 64-bit MMIO window, relying on the PHB's
4189 * fallback behaviour of automatically splitting a large "32-bit"
4190 * window into contiguous 32-bit and 64-bit windows
4191 */
4192 }
4193
4194 static void spapr_machine_2_7_class_options(MachineClass *mc)
4195 {
4196 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4197
4198 spapr_machine_2_8_class_options(mc);
4199 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4200 mc->default_machine_opts = "modern-hotplug-events=off";
4201 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
4202 smc->phb_placement = phb_placement_2_7;
4203 }
4204
4205 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4206
4207 /*
4208 * pseries-2.6
4209 */
4210 #define SPAPR_COMPAT_2_6 \
4211 HW_COMPAT_2_6 \
4212 { \
4213 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4214 .property = "ddw",\
4215 .value = stringify(off),\
4216 },
4217
4218 static void spapr_machine_2_6_class_options(MachineClass *mc)
4219 {
4220 spapr_machine_2_7_class_options(mc);
4221 mc->has_hotpluggable_cpus = false;
4222 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
4223 }
4224
4225 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4226
4227 /*
4228 * pseries-2.5
4229 */
4230 #define SPAPR_COMPAT_2_5 \
4231 HW_COMPAT_2_5 \
4232 { \
4233 .driver = "spapr-vlan", \
4234 .property = "use-rx-buffer-pools", \
4235 .value = "off", \
4236 },
4237
4238 static void spapr_machine_2_5_class_options(MachineClass *mc)
4239 {
4240 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4241
4242 spapr_machine_2_6_class_options(mc);
4243 smc->use_ohci_by_default = true;
4244 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
4245 }
4246
4247 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4248
4249 /*
4250 * pseries-2.4
4251 */
4252 #define SPAPR_COMPAT_2_4 \
4253 HW_COMPAT_2_4
4254
4255 static void spapr_machine_2_4_class_options(MachineClass *mc)
4256 {
4257 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4258
4259 spapr_machine_2_5_class_options(mc);
4260 smc->dr_lmb_enabled = false;
4261 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
4262 }
4263
4264 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4265
4266 /*
4267 * pseries-2.3
4268 */
4269 #define SPAPR_COMPAT_2_3 \
4270 HW_COMPAT_2_3 \
4271 {\
4272 .driver = "spapr-pci-host-bridge",\
4273 .property = "dynamic-reconfiguration",\
4274 .value = "off",\
4275 },
4276
4277 static void spapr_machine_2_3_class_options(MachineClass *mc)
4278 {
4279 spapr_machine_2_4_class_options(mc);
4280 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
4281 }
4282 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4283
4284 /*
4285 * pseries-2.2
4286 */
4287
4288 #define SPAPR_COMPAT_2_2 \
4289 HW_COMPAT_2_2 \
4290 {\
4291 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4292 .property = "mem_win_size",\
4293 .value = "0x20000000",\
4294 },
4295
4296 static void spapr_machine_2_2_class_options(MachineClass *mc)
4297 {
4298 spapr_machine_2_3_class_options(mc);
4299 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
4300 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4301 }
4302 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4303
4304 /*
4305 * pseries-2.1
4306 */
4307 #define SPAPR_COMPAT_2_1 \
4308 HW_COMPAT_2_1
4309
4310 static void spapr_machine_2_1_class_options(MachineClass *mc)
4311 {
4312 spapr_machine_2_2_class_options(mc);
4313 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
4314 }
4315 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4316
4317 static void spapr_machine_register_types(void)
4318 {
4319 type_register_static(&spapr_machine_info);
4320 }
4321
4322 type_init(spapr_machine_register_types)