]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr.c
pseries: Remove rtas_addr and fdt_addr fields from machinestate
[mirror_qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/numa.h"
31 #include "hw/hw.h"
32 #include "qemu/log.h"
33 #include "hw/fw-path-provider.h"
34 #include "elf.h"
35 #include "net/net.h"
36 #include "sysemu/device_tree.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/kvm.h"
40 #include "sysemu/device_tree.h"
41 #include "kvm_ppc.h"
42 #include "migration/migration.h"
43 #include "mmu-hash64.h"
44 #include "qom/cpu.h"
45
46 #include "hw/boards.h"
47 #include "hw/ppc/ppc.h"
48 #include "hw/loader.h"
49
50 #include "hw/ppc/fdt.h"
51 #include "hw/ppc/spapr.h"
52 #include "hw/ppc/spapr_vio.h"
53 #include "hw/pci-host/spapr.h"
54 #include "hw/ppc/xics.h"
55 #include "hw/pci/msi.h"
56
57 #include "hw/pci/pci.h"
58 #include "hw/scsi/scsi.h"
59 #include "hw/virtio/virtio-scsi.h"
60
61 #include "exec/address-spaces.h"
62 #include "hw/usb.h"
63 #include "qemu/config-file.h"
64 #include "qemu/error-report.h"
65 #include "trace.h"
66 #include "hw/nmi.h"
67
68 #include "hw/compat.h"
69 #include "qemu/cutils.h"
70 #include "hw/ppc/spapr_cpu_core.h"
71 #include "qmp-commands.h"
72
73 #include <libfdt.h>
74
75 /* SLOF memory layout:
76 *
77 * SLOF raw image loaded at 0, copies its romfs right below the flat
78 * device-tree, then position SLOF itself 31M below that
79 *
80 * So we set FW_OVERHEAD to 40MB which should account for all of that
81 * and more
82 *
83 * We load our kernel at 4M, leaving space for SLOF initial image
84 */
85 #define FDT_MAX_SIZE 0x100000
86 #define RTAS_MAX_SIZE 0x10000
87 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
88 #define FW_MAX_SIZE 0x400000
89 #define FW_FILE_NAME "slof.bin"
90 #define FW_OVERHEAD 0x2800000
91 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
92
93 #define MIN_RMA_SLOF 128UL
94
95 #define PHANDLE_XICP 0x00001111
96
97 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
98
99 static XICSState *try_create_xics(const char *type, int nr_servers,
100 int nr_irqs, Error **errp)
101 {
102 Error *err = NULL;
103 DeviceState *dev;
104
105 dev = qdev_create(NULL, type);
106 qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
107 qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
108 object_property_set_bool(OBJECT(dev), true, "realized", &err);
109 if (err) {
110 error_propagate(errp, err);
111 object_unparent(OBJECT(dev));
112 return NULL;
113 }
114 return XICS_COMMON(dev);
115 }
116
117 static XICSState *xics_system_init(MachineState *machine,
118 int nr_servers, int nr_irqs, Error **errp)
119 {
120 XICSState *xics = NULL;
121
122 if (kvm_enabled()) {
123 Error *err = NULL;
124
125 if (machine_kernel_irqchip_allowed(machine)) {
126 xics = try_create_xics(TYPE_XICS_SPAPR_KVM, nr_servers, nr_irqs,
127 &err);
128 }
129 if (machine_kernel_irqchip_required(machine) && !xics) {
130 error_reportf_err(err,
131 "kernel_irqchip requested but unavailable: ");
132 } else {
133 error_free(err);
134 }
135 }
136
137 if (!xics) {
138 xics = try_create_xics(TYPE_XICS_SPAPR, nr_servers, nr_irqs, errp);
139 }
140
141 return xics;
142 }
143
144 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
145 int smt_threads)
146 {
147 int i, ret = 0;
148 uint32_t servers_prop[smt_threads];
149 uint32_t gservers_prop[smt_threads * 2];
150 int index = ppc_get_vcpu_dt_id(cpu);
151
152 if (cpu->cpu_version) {
153 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
154 if (ret < 0) {
155 return ret;
156 }
157 }
158
159 /* Build interrupt servers and gservers properties */
160 for (i = 0; i < smt_threads; i++) {
161 servers_prop[i] = cpu_to_be32(index + i);
162 /* Hack, direct the group queues back to cpu 0 */
163 gservers_prop[i*2] = cpu_to_be32(index + i);
164 gservers_prop[i*2 + 1] = 0;
165 }
166 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
167 servers_prop, sizeof(servers_prop));
168 if (ret < 0) {
169 return ret;
170 }
171 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
172 gservers_prop, sizeof(gservers_prop));
173
174 return ret;
175 }
176
177 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
178 {
179 int ret = 0;
180 PowerPCCPU *cpu = POWERPC_CPU(cs);
181 int index = ppc_get_vcpu_dt_id(cpu);
182 uint32_t associativity[] = {cpu_to_be32(0x5),
183 cpu_to_be32(0x0),
184 cpu_to_be32(0x0),
185 cpu_to_be32(0x0),
186 cpu_to_be32(cs->numa_node),
187 cpu_to_be32(index)};
188
189 /* Advertise NUMA via ibm,associativity */
190 if (nb_numa_nodes > 1) {
191 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
192 sizeof(associativity));
193 }
194
195 return ret;
196 }
197
198 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
199 {
200 int ret = 0, offset, cpus_offset;
201 CPUState *cs;
202 char cpu_model[32];
203 int smt = kvmppc_smt_threads();
204 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
205
206 CPU_FOREACH(cs) {
207 PowerPCCPU *cpu = POWERPC_CPU(cs);
208 DeviceClass *dc = DEVICE_GET_CLASS(cs);
209 int index = ppc_get_vcpu_dt_id(cpu);
210
211 if ((index % smt) != 0) {
212 continue;
213 }
214
215 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
216
217 cpus_offset = fdt_path_offset(fdt, "/cpus");
218 if (cpus_offset < 0) {
219 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
220 "cpus");
221 if (cpus_offset < 0) {
222 return cpus_offset;
223 }
224 }
225 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
226 if (offset < 0) {
227 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
228 if (offset < 0) {
229 return offset;
230 }
231 }
232
233 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
234 pft_size_prop, sizeof(pft_size_prop));
235 if (ret < 0) {
236 return ret;
237 }
238
239 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
240 if (ret < 0) {
241 return ret;
242 }
243
244 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
245 ppc_get_compat_smt_threads(cpu));
246 if (ret < 0) {
247 return ret;
248 }
249 }
250 return ret;
251 }
252
253 static hwaddr spapr_node0_size(void)
254 {
255 MachineState *machine = MACHINE(qdev_get_machine());
256
257 if (nb_numa_nodes) {
258 int i;
259 for (i = 0; i < nb_numa_nodes; ++i) {
260 if (numa_info[i].node_mem) {
261 return MIN(pow2floor(numa_info[i].node_mem),
262 machine->ram_size);
263 }
264 }
265 }
266 return machine->ram_size;
267 }
268
269 static void add_str(GString *s, const gchar *s1)
270 {
271 g_string_append_len(s, s1, strlen(s1) + 1);
272 }
273
274 static void *spapr_create_fdt_skel(hwaddr initrd_base,
275 hwaddr initrd_size,
276 hwaddr kernel_size,
277 bool little_endian,
278 const char *kernel_cmdline,
279 uint32_t epow_irq)
280 {
281 void *fdt;
282 uint32_t start_prop = cpu_to_be32(initrd_base);
283 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
284 GString *hypertas = g_string_sized_new(256);
285 GString *qemu_hypertas = g_string_sized_new(256);
286 uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
287 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(max_cpus)};
288 unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
289 char *buf;
290
291 add_str(hypertas, "hcall-pft");
292 add_str(hypertas, "hcall-term");
293 add_str(hypertas, "hcall-dabr");
294 add_str(hypertas, "hcall-interrupt");
295 add_str(hypertas, "hcall-tce");
296 add_str(hypertas, "hcall-vio");
297 add_str(hypertas, "hcall-splpar");
298 add_str(hypertas, "hcall-bulk");
299 add_str(hypertas, "hcall-set-mode");
300 add_str(hypertas, "hcall-sprg0");
301 add_str(hypertas, "hcall-copy");
302 add_str(hypertas, "hcall-debug");
303 add_str(qemu_hypertas, "hcall-memop1");
304
305 fdt = g_malloc0(FDT_MAX_SIZE);
306 _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
307
308 if (kernel_size) {
309 _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
310 }
311 if (initrd_size) {
312 _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
313 }
314 _FDT((fdt_finish_reservemap(fdt)));
315
316 /* Root node */
317 _FDT((fdt_begin_node(fdt, "")));
318 _FDT((fdt_property_string(fdt, "device_type", "chrp")));
319 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
320 _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
321
322 /*
323 * Add info to guest to indentify which host is it being run on
324 * and what is the uuid of the guest
325 */
326 if (kvmppc_get_host_model(&buf)) {
327 _FDT((fdt_property_string(fdt, "host-model", buf)));
328 g_free(buf);
329 }
330 if (kvmppc_get_host_serial(&buf)) {
331 _FDT((fdt_property_string(fdt, "host-serial", buf)));
332 g_free(buf);
333 }
334
335 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
336
337 _FDT((fdt_property_string(fdt, "vm,uuid", buf)));
338 if (qemu_uuid_set) {
339 _FDT((fdt_property_string(fdt, "system-id", buf)));
340 }
341 g_free(buf);
342
343 if (qemu_get_vm_name()) {
344 _FDT((fdt_property_string(fdt, "ibm,partition-name",
345 qemu_get_vm_name())));
346 }
347
348 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
349 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
350
351 /* /chosen */
352 _FDT((fdt_begin_node(fdt, "chosen")));
353
354 /* Set Form1_affinity */
355 _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
356
357 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
358 _FDT((fdt_property(fdt, "linux,initrd-start",
359 &start_prop, sizeof(start_prop))));
360 _FDT((fdt_property(fdt, "linux,initrd-end",
361 &end_prop, sizeof(end_prop))));
362 if (kernel_size) {
363 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
364 cpu_to_be64(kernel_size) };
365
366 _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
367 if (little_endian) {
368 _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
369 }
370 }
371 if (boot_menu) {
372 _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu)));
373 }
374 _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
375 _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
376 _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
377
378 _FDT((fdt_end_node(fdt)));
379
380 /* RTAS */
381 _FDT((fdt_begin_node(fdt, "rtas")));
382
383 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
384 add_str(hypertas, "hcall-multi-tce");
385 }
386 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
387 hypertas->len)));
388 g_string_free(hypertas, TRUE);
389 _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
390 qemu_hypertas->len)));
391 g_string_free(qemu_hypertas, TRUE);
392
393 _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
394 refpoints, sizeof(refpoints))));
395
396 _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
397 _FDT((fdt_property_cell(fdt, "rtas-event-scan-rate",
398 RTAS_EVENT_SCAN_RATE)));
399
400 if (msi_nonbroken) {
401 _FDT((fdt_property(fdt, "ibm,change-msix-capable", NULL, 0)));
402 }
403
404 /*
405 * According to PAPR, rtas ibm,os-term does not guarantee a return
406 * back to the guest cpu.
407 *
408 * While an additional ibm,extended-os-term property indicates that
409 * rtas call return will always occur. Set this property.
410 */
411 _FDT((fdt_property(fdt, "ibm,extended-os-term", NULL, 0)));
412
413 _FDT((fdt_end_node(fdt)));
414
415 /* interrupt controller */
416 _FDT((fdt_begin_node(fdt, "interrupt-controller")));
417
418 _FDT((fdt_property_string(fdt, "device_type",
419 "PowerPC-External-Interrupt-Presentation")));
420 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
421 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
422 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
423 interrupt_server_ranges_prop,
424 sizeof(interrupt_server_ranges_prop))));
425 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
426 _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
427 _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
428
429 _FDT((fdt_end_node(fdt)));
430
431 /* vdevice */
432 _FDT((fdt_begin_node(fdt, "vdevice")));
433
434 _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
435 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
436 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
437 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
438 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
439 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
440
441 _FDT((fdt_end_node(fdt)));
442
443 /* event-sources */
444 spapr_events_fdt_skel(fdt, epow_irq);
445
446 /* /hypervisor node */
447 if (kvm_enabled()) {
448 uint8_t hypercall[16];
449
450 /* indicate KVM hypercall interface */
451 _FDT((fdt_begin_node(fdt, "hypervisor")));
452 _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
453 if (kvmppc_has_cap_fixup_hcalls()) {
454 /*
455 * Older KVM versions with older guest kernels were broken with the
456 * magic page, don't allow the guest to map it.
457 */
458 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
459 sizeof(hypercall))) {
460 _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
461 sizeof(hypercall))));
462 }
463 }
464 _FDT((fdt_end_node(fdt)));
465 }
466
467 _FDT((fdt_end_node(fdt))); /* close root node */
468 _FDT((fdt_finish(fdt)));
469
470 return fdt;
471 }
472
473 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
474 hwaddr size)
475 {
476 uint32_t associativity[] = {
477 cpu_to_be32(0x4), /* length */
478 cpu_to_be32(0x0), cpu_to_be32(0x0),
479 cpu_to_be32(0x0), cpu_to_be32(nodeid)
480 };
481 char mem_name[32];
482 uint64_t mem_reg_property[2];
483 int off;
484
485 mem_reg_property[0] = cpu_to_be64(start);
486 mem_reg_property[1] = cpu_to_be64(size);
487
488 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
489 off = fdt_add_subnode(fdt, 0, mem_name);
490 _FDT(off);
491 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
492 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
493 sizeof(mem_reg_property))));
494 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
495 sizeof(associativity))));
496 return off;
497 }
498
499 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
500 {
501 MachineState *machine = MACHINE(spapr);
502 hwaddr mem_start, node_size;
503 int i, nb_nodes = nb_numa_nodes;
504 NodeInfo *nodes = numa_info;
505 NodeInfo ramnode;
506
507 /* No NUMA nodes, assume there is just one node with whole RAM */
508 if (!nb_numa_nodes) {
509 nb_nodes = 1;
510 ramnode.node_mem = machine->ram_size;
511 nodes = &ramnode;
512 }
513
514 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
515 if (!nodes[i].node_mem) {
516 continue;
517 }
518 if (mem_start >= machine->ram_size) {
519 node_size = 0;
520 } else {
521 node_size = nodes[i].node_mem;
522 if (node_size > machine->ram_size - mem_start) {
523 node_size = machine->ram_size - mem_start;
524 }
525 }
526 if (!mem_start) {
527 /* ppc_spapr_init() checks for rma_size <= node0_size already */
528 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
529 mem_start += spapr->rma_size;
530 node_size -= spapr->rma_size;
531 }
532 for ( ; node_size; ) {
533 hwaddr sizetmp = pow2floor(node_size);
534
535 /* mem_start != 0 here */
536 if (ctzl(mem_start) < ctzl(sizetmp)) {
537 sizetmp = 1ULL << ctzl(mem_start);
538 }
539
540 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
541 node_size -= sizetmp;
542 mem_start += sizetmp;
543 }
544 }
545
546 return 0;
547 }
548
549 /* Populate the "ibm,pa-features" property */
550 static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset)
551 {
552 uint8_t pa_features_206[] = { 6, 0,
553 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
554 uint8_t pa_features_207[] = { 24, 0,
555 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
556 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
557 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
558 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
559 uint8_t *pa_features;
560 size_t pa_size;
561
562 switch (env->mmu_model) {
563 case POWERPC_MMU_2_06:
564 case POWERPC_MMU_2_06a:
565 pa_features = pa_features_206;
566 pa_size = sizeof(pa_features_206);
567 break;
568 case POWERPC_MMU_2_07:
569 case POWERPC_MMU_2_07a:
570 pa_features = pa_features_207;
571 pa_size = sizeof(pa_features_207);
572 break;
573 default:
574 return;
575 }
576
577 if (env->ci_large_pages) {
578 /*
579 * Note: we keep CI large pages off by default because a 64K capable
580 * guest provisioned with large pages might otherwise try to map a qemu
581 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
582 * even if that qemu runs on a 4k host.
583 * We dd this bit back here if we are confident this is not an issue
584 */
585 pa_features[3] |= 0x20;
586 }
587 if (kvmppc_has_cap_htm() && pa_size > 24) {
588 pa_features[24] |= 0x80; /* Transactional memory support */
589 }
590
591 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
592 }
593
594 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
595 sPAPRMachineState *spapr)
596 {
597 PowerPCCPU *cpu = POWERPC_CPU(cs);
598 CPUPPCState *env = &cpu->env;
599 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
600 int index = ppc_get_vcpu_dt_id(cpu);
601 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
602 0xffffffff, 0xffffffff};
603 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
604 : SPAPR_TIMEBASE_FREQ;
605 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
606 uint32_t page_sizes_prop[64];
607 size_t page_sizes_prop_size;
608 uint32_t vcpus_per_socket = smp_threads * smp_cores;
609 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
610 sPAPRDRConnector *drc;
611 sPAPRDRConnectorClass *drck;
612 int drc_index;
613
614 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index);
615 if (drc) {
616 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
617 drc_index = drck->get_index(drc);
618 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
619 }
620
621 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
622 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
623
624 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
625 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
626 env->dcache_line_size)));
627 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
628 env->dcache_line_size)));
629 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
630 env->icache_line_size)));
631 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
632 env->icache_line_size)));
633
634 if (pcc->l1_dcache_size) {
635 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
636 pcc->l1_dcache_size)));
637 } else {
638 error_report("Warning: Unknown L1 dcache size for cpu");
639 }
640 if (pcc->l1_icache_size) {
641 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
642 pcc->l1_icache_size)));
643 } else {
644 error_report("Warning: Unknown L1 icache size for cpu");
645 }
646
647 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
648 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
649 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
650 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
651 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
652 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
653
654 if (env->spr_cb[SPR_PURR].oea_read) {
655 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
656 }
657
658 if (env->mmu_model & POWERPC_MMU_1TSEG) {
659 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
660 segs, sizeof(segs))));
661 }
662
663 /* Advertise VMX/VSX (vector extensions) if available
664 * 0 / no property == no vector extensions
665 * 1 == VMX / Altivec available
666 * 2 == VSX available */
667 if (env->insns_flags & PPC_ALTIVEC) {
668 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
669
670 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
671 }
672
673 /* Advertise DFP (Decimal Floating Point) if available
674 * 0 / no property == no DFP
675 * 1 == DFP available */
676 if (env->insns_flags2 & PPC2_DFP) {
677 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
678 }
679
680 page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
681 sizeof(page_sizes_prop));
682 if (page_sizes_prop_size) {
683 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
684 page_sizes_prop, page_sizes_prop_size)));
685 }
686
687 spapr_populate_pa_features(env, fdt, offset);
688
689 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
690 cs->cpu_index / vcpus_per_socket)));
691
692 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
693 pft_size_prop, sizeof(pft_size_prop))));
694
695 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));
696
697 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
698 ppc_get_compat_smt_threads(cpu)));
699 }
700
701 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
702 {
703 CPUState *cs;
704 int cpus_offset;
705 char *nodename;
706 int smt = kvmppc_smt_threads();
707
708 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
709 _FDT(cpus_offset);
710 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
711 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
712
713 /*
714 * We walk the CPUs in reverse order to ensure that CPU DT nodes
715 * created by fdt_add_subnode() end up in the right order in FDT
716 * for the guest kernel the enumerate the CPUs correctly.
717 */
718 CPU_FOREACH_REVERSE(cs) {
719 PowerPCCPU *cpu = POWERPC_CPU(cs);
720 int index = ppc_get_vcpu_dt_id(cpu);
721 DeviceClass *dc = DEVICE_GET_CLASS(cs);
722 int offset;
723
724 if ((index % smt) != 0) {
725 continue;
726 }
727
728 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
729 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
730 g_free(nodename);
731 _FDT(offset);
732 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
733 }
734
735 }
736
737 /*
738 * Adds ibm,dynamic-reconfiguration-memory node.
739 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
740 * of this device tree node.
741 */
742 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
743 {
744 MachineState *machine = MACHINE(spapr);
745 int ret, i, offset;
746 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
747 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
748 uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
749 uint32_t nr_lmbs = (spapr->hotplug_memory.base +
750 memory_region_size(&spapr->hotplug_memory.mr)) /
751 lmb_size;
752 uint32_t *int_buf, *cur_index, buf_len;
753 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
754
755 /*
756 * Don't create the node if there is no hotpluggable memory
757 */
758 if (machine->ram_size == machine->maxram_size) {
759 return 0;
760 }
761
762 /*
763 * Allocate enough buffer size to fit in ibm,dynamic-memory
764 * or ibm,associativity-lookup-arrays
765 */
766 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
767 * sizeof(uint32_t);
768 cur_index = int_buf = g_malloc0(buf_len);
769
770 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
771
772 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
773 sizeof(prop_lmb_size));
774 if (ret < 0) {
775 goto out;
776 }
777
778 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
779 if (ret < 0) {
780 goto out;
781 }
782
783 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
784 if (ret < 0) {
785 goto out;
786 }
787
788 /* ibm,dynamic-memory */
789 int_buf[0] = cpu_to_be32(nr_lmbs);
790 cur_index++;
791 for (i = 0; i < nr_lmbs; i++) {
792 uint64_t addr = i * lmb_size;
793 uint32_t *dynamic_memory = cur_index;
794
795 if (i >= hotplug_lmb_start) {
796 sPAPRDRConnector *drc;
797 sPAPRDRConnectorClass *drck;
798
799 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, i);
800 g_assert(drc);
801 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
802
803 dynamic_memory[0] = cpu_to_be32(addr >> 32);
804 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
805 dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
806 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
807 dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
808 if (memory_region_present(get_system_memory(), addr)) {
809 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
810 } else {
811 dynamic_memory[5] = cpu_to_be32(0);
812 }
813 } else {
814 /*
815 * LMB information for RMA, boot time RAM and gap b/n RAM and
816 * hotplug memory region -- all these are marked as reserved
817 * and as having no valid DRC.
818 */
819 dynamic_memory[0] = cpu_to_be32(addr >> 32);
820 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
821 dynamic_memory[2] = cpu_to_be32(0);
822 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
823 dynamic_memory[4] = cpu_to_be32(-1);
824 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
825 SPAPR_LMB_FLAGS_DRC_INVALID);
826 }
827
828 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
829 }
830 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
831 if (ret < 0) {
832 goto out;
833 }
834
835 /* ibm,associativity-lookup-arrays */
836 cur_index = int_buf;
837 int_buf[0] = cpu_to_be32(nr_nodes);
838 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
839 cur_index += 2;
840 for (i = 0; i < nr_nodes; i++) {
841 uint32_t associativity[] = {
842 cpu_to_be32(0x0),
843 cpu_to_be32(0x0),
844 cpu_to_be32(0x0),
845 cpu_to_be32(i)
846 };
847 memcpy(cur_index, associativity, sizeof(associativity));
848 cur_index += 4;
849 }
850 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
851 (cur_index - int_buf) * sizeof(uint32_t));
852 out:
853 g_free(int_buf);
854 return ret;
855 }
856
857 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
858 target_ulong addr, target_ulong size,
859 bool cpu_update, bool memory_update)
860 {
861 void *fdt, *fdt_skel;
862 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
863 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
864
865 size -= sizeof(hdr);
866
867 /* Create sceleton */
868 fdt_skel = g_malloc0(size);
869 _FDT((fdt_create(fdt_skel, size)));
870 _FDT((fdt_begin_node(fdt_skel, "")));
871 _FDT((fdt_end_node(fdt_skel)));
872 _FDT((fdt_finish(fdt_skel)));
873 fdt = g_malloc0(size);
874 _FDT((fdt_open_into(fdt_skel, fdt, size)));
875 g_free(fdt_skel);
876
877 /* Fixup cpu nodes */
878 if (cpu_update) {
879 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
880 }
881
882 /* Generate ibm,dynamic-reconfiguration-memory node if required */
883 if (memory_update && smc->dr_lmb_enabled) {
884 _FDT((spapr_populate_drconf_memory(spapr, fdt)));
885 }
886
887 /* Pack resulting tree */
888 _FDT((fdt_pack(fdt)));
889
890 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
891 trace_spapr_cas_failed(size);
892 return -1;
893 }
894
895 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
896 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
897 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
898 g_free(fdt);
899
900 return 0;
901 }
902
903 static void *spapr_build_fdt(sPAPRMachineState *spapr,
904 hwaddr rtas_addr,
905 hwaddr rtas_size)
906 {
907 MachineState *machine = MACHINE(qdev_get_machine());
908 MachineClass *mc = MACHINE_GET_CLASS(machine);
909 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
910 const char *boot_device = machine->boot_order;
911 int ret, i;
912 size_t cb = 0;
913 char *bootlist;
914 void *fdt;
915 sPAPRPHBState *phb;
916
917 fdt = g_malloc(FDT_MAX_SIZE);
918
919 /* open out the base tree into a temp buffer for the final tweaks */
920 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
921
922 ret = spapr_populate_memory(spapr, fdt);
923 if (ret < 0) {
924 error_report("couldn't setup memory nodes in fdt");
925 exit(1);
926 }
927
928 ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
929 if (ret < 0) {
930 error_report("couldn't setup vio devices in fdt");
931 exit(1);
932 }
933
934 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
935 ret = spapr_rng_populate_dt(fdt);
936 if (ret < 0) {
937 error_report("could not set up rng device in the fdt");
938 exit(1);
939 }
940 }
941
942 QLIST_FOREACH(phb, &spapr->phbs, list) {
943 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
944 if (ret < 0) {
945 error_report("couldn't setup PCI devices in fdt");
946 exit(1);
947 }
948 }
949
950 /* RTAS */
951 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
952 if (ret < 0) {
953 error_report("Couldn't set up RTAS device tree properties");
954 }
955
956 /* cpus */
957 spapr_populate_cpus_dt_node(fdt, spapr);
958
959 bootlist = get_boot_devices_list(&cb, true);
960 if (cb && bootlist) {
961 int offset = fdt_path_offset(fdt, "/chosen");
962 if (offset < 0) {
963 exit(1);
964 }
965 for (i = 0; i < cb; i++) {
966 if (bootlist[i] == '\n') {
967 bootlist[i] = ' ';
968 }
969
970 }
971 ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
972 }
973
974 if (boot_device && strlen(boot_device)) {
975 int offset = fdt_path_offset(fdt, "/chosen");
976
977 if (offset < 0) {
978 exit(1);
979 }
980 fdt_setprop_string(fdt, offset, "qemu,boot-device", boot_device);
981 }
982
983 if (!spapr->has_graphics) {
984 spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
985 }
986
987 if (smc->dr_lmb_enabled) {
988 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
989 }
990
991 if (mc->query_hotpluggable_cpus) {
992 int offset = fdt_path_offset(fdt, "/cpus");
993 ret = spapr_drc_populate_dt(fdt, offset, NULL,
994 SPAPR_DR_CONNECTOR_TYPE_CPU);
995 if (ret < 0) {
996 error_report("Couldn't set up CPU DR device tree properties");
997 exit(1);
998 }
999 }
1000
1001 g_free(bootlist);
1002 return fdt;
1003 }
1004
1005 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1006 {
1007 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1008 }
1009
1010 static void emulate_spapr_hypercall(PowerPCCPU *cpu)
1011 {
1012 CPUPPCState *env = &cpu->env;
1013
1014 if (msr_pr) {
1015 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1016 env->gpr[3] = H_PRIVILEGE;
1017 } else {
1018 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1019 }
1020 }
1021
1022 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1023 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1024 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1025 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1026 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1027
1028 /*
1029 * Get the fd to access the kernel htab, re-opening it if necessary
1030 */
1031 static int get_htab_fd(sPAPRMachineState *spapr)
1032 {
1033 if (spapr->htab_fd >= 0) {
1034 return spapr->htab_fd;
1035 }
1036
1037 spapr->htab_fd = kvmppc_get_htab_fd(false);
1038 if (spapr->htab_fd < 0) {
1039 error_report("Unable to open fd for reading hash table from KVM: %s",
1040 strerror(errno));
1041 }
1042
1043 return spapr->htab_fd;
1044 }
1045
1046 static void close_htab_fd(sPAPRMachineState *spapr)
1047 {
1048 if (spapr->htab_fd >= 0) {
1049 close(spapr->htab_fd);
1050 }
1051 spapr->htab_fd = -1;
1052 }
1053
1054 static int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1055 {
1056 int shift;
1057
1058 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1059 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1060 * that's much more than is needed for Linux guests */
1061 shift = ctz64(pow2ceil(ramsize)) - 7;
1062 shift = MAX(shift, 18); /* Minimum architected size */
1063 shift = MIN(shift, 46); /* Maximum architected size */
1064 return shift;
1065 }
1066
1067 static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1068 Error **errp)
1069 {
1070 long rc;
1071
1072 /* Clean up any HPT info from a previous boot */
1073 g_free(spapr->htab);
1074 spapr->htab = NULL;
1075 spapr->htab_shift = 0;
1076 close_htab_fd(spapr);
1077
1078 rc = kvmppc_reset_htab(shift);
1079 if (rc < 0) {
1080 /* kernel-side HPT needed, but couldn't allocate one */
1081 error_setg_errno(errp, errno,
1082 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1083 shift);
1084 /* This is almost certainly fatal, but if the caller really
1085 * wants to carry on with shift == 0, it's welcome to try */
1086 } else if (rc > 0) {
1087 /* kernel-side HPT allocated */
1088 if (rc != shift) {
1089 error_setg(errp,
1090 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1091 shift, rc);
1092 }
1093
1094 spapr->htab_shift = shift;
1095 spapr->htab = NULL;
1096 } else {
1097 /* kernel-side HPT not needed, allocate in userspace instead */
1098 size_t size = 1ULL << shift;
1099 int i;
1100
1101 spapr->htab = qemu_memalign(size, size);
1102 if (!spapr->htab) {
1103 error_setg_errno(errp, errno,
1104 "Could not allocate HPT of order %d", shift);
1105 return;
1106 }
1107
1108 memset(spapr->htab, 0, size);
1109 spapr->htab_shift = shift;
1110
1111 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1112 DIRTY_HPTE(HPTE(spapr->htab, i));
1113 }
1114 }
1115 }
1116
1117 static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1118 {
1119 bool matched = false;
1120
1121 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1122 matched = true;
1123 }
1124
1125 if (!matched) {
1126 error_report("Device %s is not supported by this machine yet.",
1127 qdev_fw_name(DEVICE(sbdev)));
1128 exit(1);
1129 }
1130 }
1131
1132 static void ppc_spapr_reset(void)
1133 {
1134 MachineState *machine = MACHINE(qdev_get_machine());
1135 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1136 PowerPCCPU *first_ppc_cpu;
1137 uint32_t rtas_limit;
1138 hwaddr rtas_addr, fdt_addr;
1139 void *fdt;
1140 int rc;
1141
1142 /* Check for unknown sysbus devices */
1143 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1144
1145 /* Allocate and/or reset the hash page table */
1146 spapr_reallocate_hpt(spapr,
1147 spapr_hpt_shift_for_ramsize(machine->maxram_size),
1148 &error_fatal);
1149
1150 /* Update the RMA size if necessary */
1151 if (spapr->vrma_adjust) {
1152 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1153 spapr->htab_shift);
1154 }
1155
1156 qemu_devices_reset();
1157
1158 /*
1159 * We place the device tree and RTAS just below either the top of the RMA,
1160 * or just below 2GB, whichever is lowere, so that it can be
1161 * processed with 32-bit real mode code if necessary
1162 */
1163 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1164 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1165 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1166
1167 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1168
1169 /* Copy RTAS over */
1170 cpu_physical_memory_write(rtas_addr, spapr->rtas_blob, spapr->rtas_size);
1171
1172 rc = fdt_pack(fdt);
1173
1174 /* Should only fail if we've built a corrupted tree */
1175 assert(rc == 0);
1176
1177 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1178 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1179 fdt_totalsize(fdt), FDT_MAX_SIZE);
1180 exit(1);
1181 }
1182
1183 /* Load the fdt */
1184 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1185 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1186 g_free(fdt);
1187
1188 /* Set up the entry state */
1189 first_ppc_cpu = POWERPC_CPU(first_cpu);
1190 first_ppc_cpu->env.gpr[3] = fdt_addr;
1191 first_ppc_cpu->env.gpr[5] = 0;
1192 first_cpu->halted = 0;
1193 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1194
1195 }
1196
1197 static void spapr_create_nvram(sPAPRMachineState *spapr)
1198 {
1199 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1200 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1201
1202 if (dinfo) {
1203 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1204 &error_fatal);
1205 }
1206
1207 qdev_init_nofail(dev);
1208
1209 spapr->nvram = (struct sPAPRNVRAM *)dev;
1210 }
1211
1212 static void spapr_rtc_create(sPAPRMachineState *spapr)
1213 {
1214 DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);
1215
1216 qdev_init_nofail(dev);
1217 spapr->rtc = dev;
1218
1219 object_property_add_alias(qdev_get_machine(), "rtc-time",
1220 OBJECT(spapr->rtc), "date", NULL);
1221 }
1222
1223 /* Returns whether we want to use VGA or not */
1224 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1225 {
1226 switch (vga_interface_type) {
1227 case VGA_NONE:
1228 return false;
1229 case VGA_DEVICE:
1230 return true;
1231 case VGA_STD:
1232 case VGA_VIRTIO:
1233 return pci_vga_init(pci_bus) != NULL;
1234 default:
1235 error_setg(errp,
1236 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1237 return false;
1238 }
1239 }
1240
1241 static int spapr_post_load(void *opaque, int version_id)
1242 {
1243 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1244 int err = 0;
1245
1246 /* In earlier versions, there was no separate qdev for the PAPR
1247 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1248 * So when migrating from those versions, poke the incoming offset
1249 * value into the RTC device */
1250 if (version_id < 3) {
1251 err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
1252 }
1253
1254 return err;
1255 }
1256
1257 static bool version_before_3(void *opaque, int version_id)
1258 {
1259 return version_id < 3;
1260 }
1261
1262 static const VMStateDescription vmstate_spapr = {
1263 .name = "spapr",
1264 .version_id = 3,
1265 .minimum_version_id = 1,
1266 .post_load = spapr_post_load,
1267 .fields = (VMStateField[]) {
1268 /* used to be @next_irq */
1269 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1270
1271 /* RTC offset */
1272 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1273
1274 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1275 VMSTATE_END_OF_LIST()
1276 },
1277 };
1278
1279 static int htab_save_setup(QEMUFile *f, void *opaque)
1280 {
1281 sPAPRMachineState *spapr = opaque;
1282
1283 /* "Iteration" header */
1284 qemu_put_be32(f, spapr->htab_shift);
1285
1286 if (spapr->htab) {
1287 spapr->htab_save_index = 0;
1288 spapr->htab_first_pass = true;
1289 } else {
1290 assert(kvm_enabled());
1291 }
1292
1293
1294 return 0;
1295 }
1296
1297 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1298 int64_t max_ns)
1299 {
1300 bool has_timeout = max_ns != -1;
1301 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1302 int index = spapr->htab_save_index;
1303 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1304
1305 assert(spapr->htab_first_pass);
1306
1307 do {
1308 int chunkstart;
1309
1310 /* Consume invalid HPTEs */
1311 while ((index < htabslots)
1312 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1313 index++;
1314 CLEAN_HPTE(HPTE(spapr->htab, index));
1315 }
1316
1317 /* Consume valid HPTEs */
1318 chunkstart = index;
1319 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1320 && HPTE_VALID(HPTE(spapr->htab, index))) {
1321 index++;
1322 CLEAN_HPTE(HPTE(spapr->htab, index));
1323 }
1324
1325 if (index > chunkstart) {
1326 int n_valid = index - chunkstart;
1327
1328 qemu_put_be32(f, chunkstart);
1329 qemu_put_be16(f, n_valid);
1330 qemu_put_be16(f, 0);
1331 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1332 HASH_PTE_SIZE_64 * n_valid);
1333
1334 if (has_timeout &&
1335 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1336 break;
1337 }
1338 }
1339 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1340
1341 if (index >= htabslots) {
1342 assert(index == htabslots);
1343 index = 0;
1344 spapr->htab_first_pass = false;
1345 }
1346 spapr->htab_save_index = index;
1347 }
1348
1349 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1350 int64_t max_ns)
1351 {
1352 bool final = max_ns < 0;
1353 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1354 int examined = 0, sent = 0;
1355 int index = spapr->htab_save_index;
1356 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1357
1358 assert(!spapr->htab_first_pass);
1359
1360 do {
1361 int chunkstart, invalidstart;
1362
1363 /* Consume non-dirty HPTEs */
1364 while ((index < htabslots)
1365 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1366 index++;
1367 examined++;
1368 }
1369
1370 chunkstart = index;
1371 /* Consume valid dirty HPTEs */
1372 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1373 && HPTE_DIRTY(HPTE(spapr->htab, index))
1374 && HPTE_VALID(HPTE(spapr->htab, index))) {
1375 CLEAN_HPTE(HPTE(spapr->htab, index));
1376 index++;
1377 examined++;
1378 }
1379
1380 invalidstart = index;
1381 /* Consume invalid dirty HPTEs */
1382 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1383 && HPTE_DIRTY(HPTE(spapr->htab, index))
1384 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1385 CLEAN_HPTE(HPTE(spapr->htab, index));
1386 index++;
1387 examined++;
1388 }
1389
1390 if (index > chunkstart) {
1391 int n_valid = invalidstart - chunkstart;
1392 int n_invalid = index - invalidstart;
1393
1394 qemu_put_be32(f, chunkstart);
1395 qemu_put_be16(f, n_valid);
1396 qemu_put_be16(f, n_invalid);
1397 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1398 HASH_PTE_SIZE_64 * n_valid);
1399 sent += index - chunkstart;
1400
1401 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1402 break;
1403 }
1404 }
1405
1406 if (examined >= htabslots) {
1407 break;
1408 }
1409
1410 if (index >= htabslots) {
1411 assert(index == htabslots);
1412 index = 0;
1413 }
1414 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1415
1416 if (index >= htabslots) {
1417 assert(index == htabslots);
1418 index = 0;
1419 }
1420
1421 spapr->htab_save_index = index;
1422
1423 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1424 }
1425
1426 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1427 #define MAX_KVM_BUF_SIZE 2048
1428
1429 static int htab_save_iterate(QEMUFile *f, void *opaque)
1430 {
1431 sPAPRMachineState *spapr = opaque;
1432 int fd;
1433 int rc = 0;
1434
1435 /* Iteration header */
1436 qemu_put_be32(f, 0);
1437
1438 if (!spapr->htab) {
1439 assert(kvm_enabled());
1440
1441 fd = get_htab_fd(spapr);
1442 if (fd < 0) {
1443 return fd;
1444 }
1445
1446 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1447 if (rc < 0) {
1448 return rc;
1449 }
1450 } else if (spapr->htab_first_pass) {
1451 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1452 } else {
1453 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1454 }
1455
1456 /* End marker */
1457 qemu_put_be32(f, 0);
1458 qemu_put_be16(f, 0);
1459 qemu_put_be16(f, 0);
1460
1461 return rc;
1462 }
1463
1464 static int htab_save_complete(QEMUFile *f, void *opaque)
1465 {
1466 sPAPRMachineState *spapr = opaque;
1467 int fd;
1468
1469 /* Iteration header */
1470 qemu_put_be32(f, 0);
1471
1472 if (!spapr->htab) {
1473 int rc;
1474
1475 assert(kvm_enabled());
1476
1477 fd = get_htab_fd(spapr);
1478 if (fd < 0) {
1479 return fd;
1480 }
1481
1482 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1483 if (rc < 0) {
1484 return rc;
1485 }
1486 } else {
1487 if (spapr->htab_first_pass) {
1488 htab_save_first_pass(f, spapr, -1);
1489 }
1490 htab_save_later_pass(f, spapr, -1);
1491 }
1492
1493 /* End marker */
1494 qemu_put_be32(f, 0);
1495 qemu_put_be16(f, 0);
1496 qemu_put_be16(f, 0);
1497
1498 return 0;
1499 }
1500
1501 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1502 {
1503 sPAPRMachineState *spapr = opaque;
1504 uint32_t section_hdr;
1505 int fd = -1;
1506
1507 if (version_id < 1 || version_id > 1) {
1508 error_report("htab_load() bad version");
1509 return -EINVAL;
1510 }
1511
1512 section_hdr = qemu_get_be32(f);
1513
1514 if (section_hdr) {
1515 Error *local_err = NULL;
1516
1517 /* First section gives the htab size */
1518 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1519 if (local_err) {
1520 error_report_err(local_err);
1521 return -EINVAL;
1522 }
1523 return 0;
1524 }
1525
1526 if (!spapr->htab) {
1527 assert(kvm_enabled());
1528
1529 fd = kvmppc_get_htab_fd(true);
1530 if (fd < 0) {
1531 error_report("Unable to open fd to restore KVM hash table: %s",
1532 strerror(errno));
1533 }
1534 }
1535
1536 while (true) {
1537 uint32_t index;
1538 uint16_t n_valid, n_invalid;
1539
1540 index = qemu_get_be32(f);
1541 n_valid = qemu_get_be16(f);
1542 n_invalid = qemu_get_be16(f);
1543
1544 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1545 /* End of Stream */
1546 break;
1547 }
1548
1549 if ((index + n_valid + n_invalid) >
1550 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1551 /* Bad index in stream */
1552 error_report(
1553 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1554 index, n_valid, n_invalid, spapr->htab_shift);
1555 return -EINVAL;
1556 }
1557
1558 if (spapr->htab) {
1559 if (n_valid) {
1560 qemu_get_buffer(f, HPTE(spapr->htab, index),
1561 HASH_PTE_SIZE_64 * n_valid);
1562 }
1563 if (n_invalid) {
1564 memset(HPTE(spapr->htab, index + n_valid), 0,
1565 HASH_PTE_SIZE_64 * n_invalid);
1566 }
1567 } else {
1568 int rc;
1569
1570 assert(fd >= 0);
1571
1572 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1573 if (rc < 0) {
1574 return rc;
1575 }
1576 }
1577 }
1578
1579 if (!spapr->htab) {
1580 assert(fd >= 0);
1581 close(fd);
1582 }
1583
1584 return 0;
1585 }
1586
1587 static void htab_cleanup(void *opaque)
1588 {
1589 sPAPRMachineState *spapr = opaque;
1590
1591 close_htab_fd(spapr);
1592 }
1593
1594 static SaveVMHandlers savevm_htab_handlers = {
1595 .save_live_setup = htab_save_setup,
1596 .save_live_iterate = htab_save_iterate,
1597 .save_live_complete_precopy = htab_save_complete,
1598 .cleanup = htab_cleanup,
1599 .load_state = htab_load,
1600 };
1601
1602 static void spapr_boot_set(void *opaque, const char *boot_device,
1603 Error **errp)
1604 {
1605 MachineState *machine = MACHINE(qdev_get_machine());
1606 machine->boot_order = g_strdup(boot_device);
1607 }
1608
1609 /*
1610 * Reset routine for LMB DR devices.
1611 *
1612 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1613 * routine. Reset for PCI DR devices will be handled by PHB reset routine
1614 * when it walks all its children devices. LMB devices reset occurs
1615 * as part of spapr_ppc_reset().
1616 */
1617 static void spapr_drc_reset(void *opaque)
1618 {
1619 sPAPRDRConnector *drc = opaque;
1620 DeviceState *d = DEVICE(drc);
1621
1622 if (d) {
1623 device_reset(d);
1624 }
1625 }
1626
1627 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1628 {
1629 MachineState *machine = MACHINE(spapr);
1630 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
1631 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
1632 int i;
1633
1634 for (i = 0; i < nr_lmbs; i++) {
1635 sPAPRDRConnector *drc;
1636 uint64_t addr;
1637
1638 addr = i * lmb_size + spapr->hotplug_memory.base;
1639 drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
1640 addr/lmb_size);
1641 qemu_register_reset(spapr_drc_reset, drc);
1642 }
1643 }
1644
1645 /*
1646 * If RAM size, maxmem size and individual node mem sizes aren't aligned
1647 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1648 * since we can't support such unaligned sizes with DRCONF_MEMORY.
1649 */
1650 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
1651 {
1652 int i;
1653
1654 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1655 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
1656 " is not aligned to %llu MiB",
1657 machine->ram_size,
1658 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1659 return;
1660 }
1661
1662 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1663 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
1664 " is not aligned to %llu MiB",
1665 machine->ram_size,
1666 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1667 return;
1668 }
1669
1670 for (i = 0; i < nb_numa_nodes; i++) {
1671 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
1672 error_setg(errp,
1673 "Node %d memory size 0x%" PRIx64
1674 " is not aligned to %llu MiB",
1675 i, numa_info[i].node_mem,
1676 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1677 return;
1678 }
1679 }
1680 }
1681
1682 /* pSeries LPAR / sPAPR hardware init */
1683 static void ppc_spapr_init(MachineState *machine)
1684 {
1685 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1686 MachineClass *mc = MACHINE_GET_CLASS(machine);
1687 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1688 const char *kernel_filename = machine->kernel_filename;
1689 const char *kernel_cmdline = machine->kernel_cmdline;
1690 const char *initrd_filename = machine->initrd_filename;
1691 PCIHostState *phb;
1692 int i;
1693 MemoryRegion *sysmem = get_system_memory();
1694 MemoryRegion *ram = g_new(MemoryRegion, 1);
1695 MemoryRegion *rma_region;
1696 void *rma = NULL;
1697 hwaddr rma_alloc_size;
1698 hwaddr node0_size = spapr_node0_size();
1699 uint32_t initrd_base = 0;
1700 long kernel_size = 0, initrd_size = 0;
1701 long load_limit, fw_size;
1702 bool kernel_le = false;
1703 char *filename;
1704 int smt = kvmppc_smt_threads();
1705 int spapr_cores = smp_cpus / smp_threads;
1706 int spapr_max_cores = max_cpus / smp_threads;
1707
1708 if (mc->query_hotpluggable_cpus) {
1709 if (smp_cpus % smp_threads) {
1710 error_report("smp_cpus (%u) must be multiple of threads (%u)",
1711 smp_cpus, smp_threads);
1712 exit(1);
1713 }
1714 if (max_cpus % smp_threads) {
1715 error_report("max_cpus (%u) must be multiple of threads (%u)",
1716 max_cpus, smp_threads);
1717 exit(1);
1718 }
1719 }
1720
1721 msi_nonbroken = true;
1722
1723 QLIST_INIT(&spapr->phbs);
1724
1725 cpu_ppc_hypercall = emulate_spapr_hypercall;
1726
1727 /* Allocate RMA if necessary */
1728 rma_alloc_size = kvmppc_alloc_rma(&rma);
1729
1730 if (rma_alloc_size == -1) {
1731 error_report("Unable to create RMA");
1732 exit(1);
1733 }
1734
1735 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1736 spapr->rma_size = rma_alloc_size;
1737 } else {
1738 spapr->rma_size = node0_size;
1739
1740 /* With KVM, we don't actually know whether KVM supports an
1741 * unbounded RMA (PR KVM) or is limited by the hash table size
1742 * (HV KVM using VRMA), so we always assume the latter
1743 *
1744 * In that case, we also limit the initial allocations for RTAS
1745 * etc... to 256M since we have no way to know what the VRMA size
1746 * is going to be as it depends on the size of the hash table
1747 * isn't determined yet.
1748 */
1749 if (kvm_enabled()) {
1750 spapr->vrma_adjust = 1;
1751 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1752 }
1753
1754 /* Actually we don't support unbounded RMA anymore since we
1755 * added proper emulation of HV mode. The max we can get is
1756 * 16G which also happens to be what we configure for PAPR
1757 * mode so make sure we don't do anything bigger than that
1758 */
1759 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
1760 }
1761
1762 if (spapr->rma_size > node0_size) {
1763 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
1764 spapr->rma_size);
1765 exit(1);
1766 }
1767
1768 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
1769 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
1770
1771 /* Set up Interrupt Controller before we create the VCPUs */
1772 spapr->xics = xics_system_init(machine,
1773 DIV_ROUND_UP(max_cpus * smt, smp_threads),
1774 XICS_IRQS_SPAPR, &error_fatal);
1775
1776 if (smc->dr_lmb_enabled) {
1777 spapr_validate_node_memory(machine, &error_fatal);
1778 }
1779
1780 /* init CPUs */
1781 if (machine->cpu_model == NULL) {
1782 machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu;
1783 }
1784
1785 ppc_cpu_parse_features(machine->cpu_model);
1786
1787 if (mc->query_hotpluggable_cpus) {
1788 char *type = spapr_get_cpu_core_type(machine->cpu_model);
1789
1790 if (type == NULL) {
1791 error_report("Unable to find sPAPR CPU Core definition");
1792 exit(1);
1793 }
1794
1795 spapr->cores = g_new0(Object *, spapr_max_cores);
1796 for (i = 0; i < spapr_max_cores; i++) {
1797 int core_id = i * smp_threads;
1798 sPAPRDRConnector *drc =
1799 spapr_dr_connector_new(OBJECT(spapr),
1800 SPAPR_DR_CONNECTOR_TYPE_CPU,
1801 (core_id / smp_threads) * smt);
1802
1803 qemu_register_reset(spapr_drc_reset, drc);
1804
1805 if (i < spapr_cores) {
1806 Object *core = object_new(type);
1807 object_property_set_int(core, smp_threads, "nr-threads",
1808 &error_fatal);
1809 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
1810 &error_fatal);
1811 object_property_set_bool(core, true, "realized", &error_fatal);
1812 }
1813 }
1814 g_free(type);
1815 } else {
1816 for (i = 0; i < smp_cpus; i++) {
1817 PowerPCCPU *cpu = cpu_ppc_init(machine->cpu_model);
1818 if (cpu == NULL) {
1819 error_report("Unable to find PowerPC CPU definition");
1820 exit(1);
1821 }
1822 spapr_cpu_init(spapr, cpu, &error_fatal);
1823 }
1824 }
1825
1826 if (kvm_enabled()) {
1827 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
1828 kvmppc_enable_logical_ci_hcalls();
1829 kvmppc_enable_set_mode_hcall();
1830
1831 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
1832 kvmppc_enable_clear_ref_mod_hcalls();
1833 }
1834
1835 /* allocate RAM */
1836 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
1837 machine->ram_size);
1838 memory_region_add_subregion(sysmem, 0, ram);
1839
1840 if (rma_alloc_size && rma) {
1841 rma_region = g_new(MemoryRegion, 1);
1842 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
1843 rma_alloc_size, rma);
1844 vmstate_register_ram_global(rma_region);
1845 memory_region_add_subregion(sysmem, 0, rma_region);
1846 }
1847
1848 /* initialize hotplug memory address space */
1849 if (machine->ram_size < machine->maxram_size) {
1850 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
1851 /*
1852 * Limit the number of hotpluggable memory slots to half the number
1853 * slots that KVM supports, leaving the other half for PCI and other
1854 * devices. However ensure that number of slots doesn't drop below 32.
1855 */
1856 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
1857 SPAPR_MAX_RAM_SLOTS;
1858
1859 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
1860 max_memslots = SPAPR_MAX_RAM_SLOTS;
1861 }
1862 if (machine->ram_slots > max_memslots) {
1863 error_report("Specified number of memory slots %"
1864 PRIu64" exceeds max supported %d",
1865 machine->ram_slots, max_memslots);
1866 exit(1);
1867 }
1868
1869 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
1870 SPAPR_HOTPLUG_MEM_ALIGN);
1871 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
1872 "hotplug-memory", hotplug_mem_size);
1873 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
1874 &spapr->hotplug_memory.mr);
1875 }
1876
1877 if (smc->dr_lmb_enabled) {
1878 spapr_create_lmb_dr_connectors(spapr);
1879 }
1880
1881 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1882 if (!filename) {
1883 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
1884 exit(1);
1885 }
1886 spapr->rtas_size = get_image_size(filename);
1887 if (spapr->rtas_size < 0) {
1888 error_report("Could not get size of LPAR rtas '%s'", filename);
1889 exit(1);
1890 }
1891 spapr->rtas_blob = g_malloc(spapr->rtas_size);
1892 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
1893 error_report("Could not load LPAR rtas '%s'", filename);
1894 exit(1);
1895 }
1896 if (spapr->rtas_size > RTAS_MAX_SIZE) {
1897 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
1898 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
1899 exit(1);
1900 }
1901 g_free(filename);
1902
1903 /* Set up EPOW events infrastructure */
1904 spapr_events_init(spapr);
1905
1906 /* Set up the RTC RTAS interfaces */
1907 spapr_rtc_create(spapr);
1908
1909 /* Set up VIO bus */
1910 spapr->vio_bus = spapr_vio_bus_init();
1911
1912 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1913 if (serial_hds[i]) {
1914 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1915 }
1916 }
1917
1918 /* We always have at least the nvram device on VIO */
1919 spapr_create_nvram(spapr);
1920
1921 /* Set up PCI */
1922 spapr_pci_rtas_init();
1923
1924 phb = spapr_create_phb(spapr, 0);
1925
1926 for (i = 0; i < nb_nics; i++) {
1927 NICInfo *nd = &nd_table[i];
1928
1929 if (!nd->model) {
1930 nd->model = g_strdup("ibmveth");
1931 }
1932
1933 if (strcmp(nd->model, "ibmveth") == 0) {
1934 spapr_vlan_create(spapr->vio_bus, nd);
1935 } else {
1936 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1937 }
1938 }
1939
1940 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1941 spapr_vscsi_create(spapr->vio_bus);
1942 }
1943
1944 /* Graphics */
1945 if (spapr_vga_init(phb->bus, &error_fatal)) {
1946 spapr->has_graphics = true;
1947 machine->usb |= defaults_enabled() && !machine->usb_disabled;
1948 }
1949
1950 if (machine->usb) {
1951 if (smc->use_ohci_by_default) {
1952 pci_create_simple(phb->bus, -1, "pci-ohci");
1953 } else {
1954 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
1955 }
1956
1957 if (spapr->has_graphics) {
1958 USBBus *usb_bus = usb_bus_find(-1);
1959
1960 usb_create_simple(usb_bus, "usb-kbd");
1961 usb_create_simple(usb_bus, "usb-mouse");
1962 }
1963 }
1964
1965 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1966 error_report(
1967 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
1968 MIN_RMA_SLOF);
1969 exit(1);
1970 }
1971
1972 if (kernel_filename) {
1973 uint64_t lowaddr = 0;
1974
1975 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
1976 NULL, &lowaddr, NULL, 1, PPC_ELF_MACHINE,
1977 0, 0);
1978 if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1979 kernel_size = load_elf(kernel_filename,
1980 translate_kernel_address, NULL,
1981 NULL, &lowaddr, NULL, 0, PPC_ELF_MACHINE,
1982 0, 0);
1983 kernel_le = kernel_size > 0;
1984 }
1985 if (kernel_size < 0) {
1986 error_report("error loading %s: %s",
1987 kernel_filename, load_elf_strerror(kernel_size));
1988 exit(1);
1989 }
1990
1991 /* load initrd */
1992 if (initrd_filename) {
1993 /* Try to locate the initrd in the gap between the kernel
1994 * and the firmware. Add a bit of space just in case
1995 */
1996 initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1997 initrd_size = load_image_targphys(initrd_filename, initrd_base,
1998 load_limit - initrd_base);
1999 if (initrd_size < 0) {
2000 error_report("could not load initial ram disk '%s'",
2001 initrd_filename);
2002 exit(1);
2003 }
2004 } else {
2005 initrd_base = 0;
2006 initrd_size = 0;
2007 }
2008 }
2009
2010 if (bios_name == NULL) {
2011 bios_name = FW_FILE_NAME;
2012 }
2013 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2014 if (!filename) {
2015 error_report("Could not find LPAR firmware '%s'", bios_name);
2016 exit(1);
2017 }
2018 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2019 if (fw_size <= 0) {
2020 error_report("Could not load LPAR firmware '%s'", filename);
2021 exit(1);
2022 }
2023 g_free(filename);
2024
2025 /* FIXME: Should register things through the MachineState's qdev
2026 * interface, this is a legacy from the sPAPREnvironment structure
2027 * which predated MachineState but had a similar function */
2028 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2029 register_savevm_live(NULL, "spapr/htab", -1, 1,
2030 &savevm_htab_handlers, spapr);
2031
2032 /* Prepare the device tree */
2033 spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
2034 kernel_size, kernel_le,
2035 kernel_cmdline,
2036 spapr->check_exception_irq);
2037 assert(spapr->fdt_skel != NULL);
2038
2039 /* used by RTAS */
2040 QTAILQ_INIT(&spapr->ccs_list);
2041 qemu_register_reset(spapr_ccs_reset_hook, spapr);
2042
2043 qemu_register_boot_set(spapr_boot_set, spapr);
2044 }
2045
2046 static int spapr_kvm_type(const char *vm_type)
2047 {
2048 if (!vm_type) {
2049 return 0;
2050 }
2051
2052 if (!strcmp(vm_type, "HV")) {
2053 return 1;
2054 }
2055
2056 if (!strcmp(vm_type, "PR")) {
2057 return 2;
2058 }
2059
2060 error_report("Unknown kvm-type specified '%s'", vm_type);
2061 exit(1);
2062 }
2063
2064 /*
2065 * Implementation of an interface to adjust firmware path
2066 * for the bootindex property handling.
2067 */
2068 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2069 DeviceState *dev)
2070 {
2071 #define CAST(type, obj, name) \
2072 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2073 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2074 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2075
2076 if (d) {
2077 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2078 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2079 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2080
2081 if (spapr) {
2082 /*
2083 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2084 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2085 * in the top 16 bits of the 64-bit LUN
2086 */
2087 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2088 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2089 (uint64_t)id << 48);
2090 } else if (virtio) {
2091 /*
2092 * We use SRP luns of the form 01000000 | (target << 8) | lun
2093 * in the top 32 bits of the 64-bit LUN
2094 * Note: the quote above is from SLOF and it is wrong,
2095 * the actual binding is:
2096 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2097 */
2098 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2099 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2100 (uint64_t)id << 32);
2101 } else if (usb) {
2102 /*
2103 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2104 * in the top 32 bits of the 64-bit LUN
2105 */
2106 unsigned usb_port = atoi(usb->port->path);
2107 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2108 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2109 (uint64_t)id << 32);
2110 }
2111 }
2112
2113 if (phb) {
2114 /* Replace "pci" with "pci@800000020000000" */
2115 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2116 }
2117
2118 return NULL;
2119 }
2120
2121 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2122 {
2123 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2124
2125 return g_strdup(spapr->kvm_type);
2126 }
2127
2128 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2129 {
2130 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2131
2132 g_free(spapr->kvm_type);
2133 spapr->kvm_type = g_strdup(value);
2134 }
2135
2136 static void spapr_machine_initfn(Object *obj)
2137 {
2138 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2139
2140 spapr->htab_fd = -1;
2141 object_property_add_str(obj, "kvm-type",
2142 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2143 object_property_set_description(obj, "kvm-type",
2144 "Specifies the KVM virtualization mode (HV, PR)",
2145 NULL);
2146 }
2147
2148 static void spapr_machine_finalizefn(Object *obj)
2149 {
2150 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2151
2152 g_free(spapr->kvm_type);
2153 }
2154
2155 static void ppc_cpu_do_nmi_on_cpu(CPUState *cs, void *arg)
2156 {
2157 cpu_synchronize_state(cs);
2158 ppc_cpu_do_system_reset(cs);
2159 }
2160
2161 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2162 {
2163 CPUState *cs;
2164
2165 CPU_FOREACH(cs) {
2166 async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, NULL);
2167 }
2168 }
2169
2170 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr, uint64_t size,
2171 uint32_t node, Error **errp)
2172 {
2173 sPAPRDRConnector *drc;
2174 sPAPRDRConnectorClass *drck;
2175 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2176 int i, fdt_offset, fdt_size;
2177 void *fdt;
2178
2179 for (i = 0; i < nr_lmbs; i++) {
2180 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2181 addr/SPAPR_MEMORY_BLOCK_SIZE);
2182 g_assert(drc);
2183
2184 fdt = create_device_tree(&fdt_size);
2185 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2186 SPAPR_MEMORY_BLOCK_SIZE);
2187
2188 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2189 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
2190 addr += SPAPR_MEMORY_BLOCK_SIZE;
2191 }
2192 /* send hotplug notification to the
2193 * guest only in case of hotplugged memory
2194 */
2195 if (dev->hotplugged) {
2196 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, nr_lmbs);
2197 }
2198 }
2199
2200 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2201 uint32_t node, Error **errp)
2202 {
2203 Error *local_err = NULL;
2204 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2205 PCDIMMDevice *dimm = PC_DIMM(dev);
2206 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2207 MemoryRegion *mr = ddc->get_memory_region(dimm);
2208 uint64_t align = memory_region_get_alignment(mr);
2209 uint64_t size = memory_region_size(mr);
2210 uint64_t addr;
2211
2212 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2213 error_setg(&local_err, "Hotplugged memory size must be a multiple of "
2214 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
2215 goto out;
2216 }
2217
2218 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2219 if (local_err) {
2220 goto out;
2221 }
2222
2223 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2224 if (local_err) {
2225 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2226 goto out;
2227 }
2228
2229 spapr_add_lmbs(dev, addr, size, node, &error_abort);
2230
2231 out:
2232 error_propagate(errp, local_err);
2233 }
2234
2235 void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
2236 sPAPRMachineState *spapr)
2237 {
2238 PowerPCCPU *cpu = POWERPC_CPU(cs);
2239 DeviceClass *dc = DEVICE_GET_CLASS(cs);
2240 int id = ppc_get_vcpu_dt_id(cpu);
2241 void *fdt;
2242 int offset, fdt_size;
2243 char *nodename;
2244
2245 fdt = create_device_tree(&fdt_size);
2246 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
2247 offset = fdt_add_subnode(fdt, 0, nodename);
2248
2249 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
2250 g_free(nodename);
2251
2252 *fdt_offset = offset;
2253 return fdt;
2254 }
2255
2256 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
2257 DeviceState *dev, Error **errp)
2258 {
2259 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2260
2261 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2262 int node;
2263
2264 if (!smc->dr_lmb_enabled) {
2265 error_setg(errp, "Memory hotplug not supported for this machine");
2266 return;
2267 }
2268 node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
2269 if (*errp) {
2270 return;
2271 }
2272 if (node < 0 || node >= MAX_NODES) {
2273 error_setg(errp, "Invaild node %d", node);
2274 return;
2275 }
2276
2277 /*
2278 * Currently PowerPC kernel doesn't allow hot-adding memory to
2279 * memory-less node, but instead will silently add the memory
2280 * to the first node that has some memory. This causes two
2281 * unexpected behaviours for the user.
2282 *
2283 * - Memory gets hotplugged to a different node than what the user
2284 * specified.
2285 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2286 * to memory-less node, a reboot will set things accordingly
2287 * and the previously hotplugged memory now ends in the right node.
2288 * This appears as if some memory moved from one node to another.
2289 *
2290 * So until kernel starts supporting memory hotplug to memory-less
2291 * nodes, just prevent such attempts upfront in QEMU.
2292 */
2293 if (nb_numa_nodes && !numa_info[node].node_mem) {
2294 error_setg(errp, "Can't hotplug memory to memory-less node %d",
2295 node);
2296 return;
2297 }
2298
2299 spapr_memory_plug(hotplug_dev, dev, node, errp);
2300 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2301 spapr_core_plug(hotplug_dev, dev, errp);
2302 }
2303 }
2304
2305 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
2306 DeviceState *dev, Error **errp)
2307 {
2308 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
2309
2310 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2311 error_setg(errp, "Memory hot unplug not supported by sPAPR");
2312 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2313 if (!mc->query_hotpluggable_cpus) {
2314 error_setg(errp, "CPU hot unplug not supported on this machine");
2315 return;
2316 }
2317 spapr_core_unplug(hotplug_dev, dev, errp);
2318 }
2319 }
2320
2321 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
2322 DeviceState *dev, Error **errp)
2323 {
2324 if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2325 spapr_core_pre_plug(hotplug_dev, dev, errp);
2326 }
2327 }
2328
2329 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
2330 DeviceState *dev)
2331 {
2332 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2333 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2334 return HOTPLUG_HANDLER(machine);
2335 }
2336 return NULL;
2337 }
2338
2339 static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index)
2340 {
2341 /* Allocate to NUMA nodes on a "socket" basis (not that concept of
2342 * socket means much for the paravirtualized PAPR platform) */
2343 return cpu_index / smp_threads / smp_cores;
2344 }
2345
2346 static HotpluggableCPUList *spapr_query_hotpluggable_cpus(MachineState *machine)
2347 {
2348 int i;
2349 HotpluggableCPUList *head = NULL;
2350 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2351 int spapr_max_cores = max_cpus / smp_threads;
2352
2353 for (i = 0; i < spapr_max_cores; i++) {
2354 HotpluggableCPUList *list_item = g_new0(typeof(*list_item), 1);
2355 HotpluggableCPU *cpu_item = g_new0(typeof(*cpu_item), 1);
2356 CpuInstanceProperties *cpu_props = g_new0(typeof(*cpu_props), 1);
2357
2358 cpu_item->type = spapr_get_cpu_core_type(machine->cpu_model);
2359 cpu_item->vcpus_count = smp_threads;
2360 cpu_props->has_core_id = true;
2361 cpu_props->core_id = i * smp_threads;
2362 /* TODO: add 'has_node/node' here to describe
2363 to which node core belongs */
2364
2365 cpu_item->props = cpu_props;
2366 if (spapr->cores[i]) {
2367 cpu_item->has_qom_path = true;
2368 cpu_item->qom_path = object_get_canonical_path(spapr->cores[i]);
2369 }
2370 list_item->value = cpu_item;
2371 list_item->next = head;
2372 head = list_item;
2373 }
2374 return head;
2375 }
2376
2377 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
2378 uint64_t *buid, hwaddr *pio,
2379 hwaddr *mmio32, hwaddr *mmio64,
2380 unsigned n_dma, uint32_t *liobns, Error **errp)
2381 {
2382 /*
2383 * New-style PHB window placement.
2384 *
2385 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
2386 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
2387 * windows.
2388 *
2389 * Some guest kernels can't work with MMIO windows above 1<<46
2390 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
2391 *
2392 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
2393 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
2394 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
2395 * 1TiB 64-bit MMIO windows for each PHB.
2396 */
2397 const uint64_t base_buid = 0x800000020000000ULL;
2398 const int max_phbs =
2399 (SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / SPAPR_PCI_MEM64_WIN_SIZE - 1;
2400 int i;
2401
2402 /* Sanity check natural alignments */
2403 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
2404 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
2405 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
2406 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
2407 /* Sanity check bounds */
2408 QEMU_BUILD_BUG_ON((max_phbs * SPAPR_PCI_IO_WIN_SIZE) > SPAPR_PCI_MEM32_WIN_SIZE);
2409 QEMU_BUILD_BUG_ON((max_phbs * SPAPR_PCI_MEM32_WIN_SIZE) > SPAPR_PCI_MEM64_WIN_SIZE);
2410
2411 if (index >= max_phbs) {
2412 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
2413 max_phbs - 1);
2414 return;
2415 }
2416
2417 *buid = base_buid + index;
2418 for (i = 0; i < n_dma; ++i) {
2419 liobns[i] = SPAPR_PCI_LIOBN(index, i);
2420 }
2421
2422 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
2423 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
2424 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
2425 }
2426
2427 static void spapr_machine_class_init(ObjectClass *oc, void *data)
2428 {
2429 MachineClass *mc = MACHINE_CLASS(oc);
2430 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
2431 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
2432 NMIClass *nc = NMI_CLASS(oc);
2433 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2434
2435 mc->desc = "pSeries Logical Partition (PAPR compliant)";
2436
2437 /*
2438 * We set up the default / latest behaviour here. The class_init
2439 * functions for the specific versioned machine types can override
2440 * these details for backwards compatibility
2441 */
2442 mc->init = ppc_spapr_init;
2443 mc->reset = ppc_spapr_reset;
2444 mc->block_default_type = IF_SCSI;
2445 mc->max_cpus = 255;
2446 mc->no_parallel = 1;
2447 mc->default_boot_order = "";
2448 mc->default_ram_size = 512 * M_BYTE;
2449 mc->kvm_type = spapr_kvm_type;
2450 mc->has_dynamic_sysbus = true;
2451 mc->pci_allow_0_address = true;
2452 mc->get_hotplug_handler = spapr_get_hotplug_handler;
2453 hc->pre_plug = spapr_machine_device_pre_plug;
2454 hc->plug = spapr_machine_device_plug;
2455 hc->unplug = spapr_machine_device_unplug;
2456 mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id;
2457
2458 smc->dr_lmb_enabled = true;
2459 smc->tcg_default_cpu = "POWER8";
2460 mc->query_hotpluggable_cpus = spapr_query_hotpluggable_cpus;
2461 fwc->get_dev_path = spapr_get_fw_dev_path;
2462 nc->nmi_monitor_handler = spapr_nmi;
2463 smc->phb_placement = spapr_phb_placement;
2464 }
2465
2466 static const TypeInfo spapr_machine_info = {
2467 .name = TYPE_SPAPR_MACHINE,
2468 .parent = TYPE_MACHINE,
2469 .abstract = true,
2470 .instance_size = sizeof(sPAPRMachineState),
2471 .instance_init = spapr_machine_initfn,
2472 .instance_finalize = spapr_machine_finalizefn,
2473 .class_size = sizeof(sPAPRMachineClass),
2474 .class_init = spapr_machine_class_init,
2475 .interfaces = (InterfaceInfo[]) {
2476 { TYPE_FW_PATH_PROVIDER },
2477 { TYPE_NMI },
2478 { TYPE_HOTPLUG_HANDLER },
2479 { }
2480 },
2481 };
2482
2483 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
2484 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
2485 void *data) \
2486 { \
2487 MachineClass *mc = MACHINE_CLASS(oc); \
2488 spapr_machine_##suffix##_class_options(mc); \
2489 if (latest) { \
2490 mc->alias = "pseries"; \
2491 mc->is_default = 1; \
2492 } \
2493 } \
2494 static void spapr_machine_##suffix##_instance_init(Object *obj) \
2495 { \
2496 MachineState *machine = MACHINE(obj); \
2497 spapr_machine_##suffix##_instance_options(machine); \
2498 } \
2499 static const TypeInfo spapr_machine_##suffix##_info = { \
2500 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
2501 .parent = TYPE_SPAPR_MACHINE, \
2502 .class_init = spapr_machine_##suffix##_class_init, \
2503 .instance_init = spapr_machine_##suffix##_instance_init, \
2504 }; \
2505 static void spapr_machine_register_##suffix(void) \
2506 { \
2507 type_register(&spapr_machine_##suffix##_info); \
2508 } \
2509 type_init(spapr_machine_register_##suffix)
2510
2511 /*
2512 * pseries-2.8
2513 */
2514 static void spapr_machine_2_8_instance_options(MachineState *machine)
2515 {
2516 }
2517
2518 static void spapr_machine_2_8_class_options(MachineClass *mc)
2519 {
2520 /* Defaults for the latest behaviour inherited from the base class */
2521 }
2522
2523 DEFINE_SPAPR_MACHINE(2_8, "2.8", true);
2524
2525 /*
2526 * pseries-2.7
2527 */
2528 #define SPAPR_COMPAT_2_7 \
2529 HW_COMPAT_2_7 \
2530 { \
2531 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
2532 .property = "mem_win_size", \
2533 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
2534 }, \
2535 { \
2536 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
2537 .property = "mem64_win_size", \
2538 .value = "0", \
2539 },
2540
2541 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
2542 uint64_t *buid, hwaddr *pio,
2543 hwaddr *mmio32, hwaddr *mmio64,
2544 unsigned n_dma, uint32_t *liobns, Error **errp)
2545 {
2546 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
2547 const uint64_t base_buid = 0x800000020000000ULL;
2548 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
2549 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
2550 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
2551 const uint32_t max_index = 255;
2552 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
2553
2554 uint64_t ram_top = MACHINE(spapr)->ram_size;
2555 hwaddr phb0_base, phb_base;
2556 int i;
2557
2558 /* Do we have hotpluggable memory? */
2559 if (MACHINE(spapr)->maxram_size > ram_top) {
2560 /* Can't just use maxram_size, because there may be an
2561 * alignment gap between normal and hotpluggable memory
2562 * regions */
2563 ram_top = spapr->hotplug_memory.base +
2564 memory_region_size(&spapr->hotplug_memory.mr);
2565 }
2566
2567 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
2568
2569 if (index > max_index) {
2570 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
2571 max_index);
2572 return;
2573 }
2574
2575 *buid = base_buid + index;
2576 for (i = 0; i < n_dma; ++i) {
2577 liobns[i] = SPAPR_PCI_LIOBN(index, i);
2578 }
2579
2580 phb_base = phb0_base + index * phb_spacing;
2581 *pio = phb_base + pio_offset;
2582 *mmio32 = phb_base + mmio_offset;
2583 /*
2584 * We don't set the 64-bit MMIO window, relying on the PHB's
2585 * fallback behaviour of automatically splitting a large "32-bit"
2586 * window into contiguous 32-bit and 64-bit windows
2587 */
2588 }
2589
2590 static void spapr_machine_2_7_instance_options(MachineState *machine)
2591 {
2592 spapr_machine_2_8_instance_options(machine);
2593 }
2594
2595 static void spapr_machine_2_7_class_options(MachineClass *mc)
2596 {
2597 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2598
2599 spapr_machine_2_8_class_options(mc);
2600 smc->tcg_default_cpu = "POWER7";
2601 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
2602 smc->phb_placement = phb_placement_2_7;
2603 }
2604
2605 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
2606
2607 /*
2608 * pseries-2.6
2609 */
2610 #define SPAPR_COMPAT_2_6 \
2611 HW_COMPAT_2_6 \
2612 { \
2613 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
2614 .property = "ddw",\
2615 .value = stringify(off),\
2616 },
2617
2618 static void spapr_machine_2_6_instance_options(MachineState *machine)
2619 {
2620 spapr_machine_2_7_instance_options(machine);
2621 }
2622
2623 static void spapr_machine_2_6_class_options(MachineClass *mc)
2624 {
2625 spapr_machine_2_7_class_options(mc);
2626 mc->query_hotpluggable_cpus = NULL;
2627 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
2628 }
2629
2630 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
2631
2632 /*
2633 * pseries-2.5
2634 */
2635 #define SPAPR_COMPAT_2_5 \
2636 HW_COMPAT_2_5 \
2637 { \
2638 .driver = "spapr-vlan", \
2639 .property = "use-rx-buffer-pools", \
2640 .value = "off", \
2641 },
2642
2643 static void spapr_machine_2_5_instance_options(MachineState *machine)
2644 {
2645 spapr_machine_2_6_instance_options(machine);
2646 }
2647
2648 static void spapr_machine_2_5_class_options(MachineClass *mc)
2649 {
2650 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2651
2652 spapr_machine_2_6_class_options(mc);
2653 smc->use_ohci_by_default = true;
2654 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
2655 }
2656
2657 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
2658
2659 /*
2660 * pseries-2.4
2661 */
2662 #define SPAPR_COMPAT_2_4 \
2663 HW_COMPAT_2_4
2664
2665 static void spapr_machine_2_4_instance_options(MachineState *machine)
2666 {
2667 spapr_machine_2_5_instance_options(machine);
2668 }
2669
2670 static void spapr_machine_2_4_class_options(MachineClass *mc)
2671 {
2672 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2673
2674 spapr_machine_2_5_class_options(mc);
2675 smc->dr_lmb_enabled = false;
2676 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
2677 }
2678
2679 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
2680
2681 /*
2682 * pseries-2.3
2683 */
2684 #define SPAPR_COMPAT_2_3 \
2685 HW_COMPAT_2_3 \
2686 {\
2687 .driver = "spapr-pci-host-bridge",\
2688 .property = "dynamic-reconfiguration",\
2689 .value = "off",\
2690 },
2691
2692 static void spapr_machine_2_3_instance_options(MachineState *machine)
2693 {
2694 spapr_machine_2_4_instance_options(machine);
2695 savevm_skip_section_footers();
2696 global_state_set_optional();
2697 savevm_skip_configuration();
2698 }
2699
2700 static void spapr_machine_2_3_class_options(MachineClass *mc)
2701 {
2702 spapr_machine_2_4_class_options(mc);
2703 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
2704 }
2705 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
2706
2707 /*
2708 * pseries-2.2
2709 */
2710
2711 #define SPAPR_COMPAT_2_2 \
2712 HW_COMPAT_2_2 \
2713 {\
2714 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
2715 .property = "mem_win_size",\
2716 .value = "0x20000000",\
2717 },
2718
2719 static void spapr_machine_2_2_instance_options(MachineState *machine)
2720 {
2721 spapr_machine_2_3_instance_options(machine);
2722 machine->suppress_vmdesc = true;
2723 }
2724
2725 static void spapr_machine_2_2_class_options(MachineClass *mc)
2726 {
2727 spapr_machine_2_3_class_options(mc);
2728 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
2729 }
2730 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
2731
2732 /*
2733 * pseries-2.1
2734 */
2735 #define SPAPR_COMPAT_2_1 \
2736 HW_COMPAT_2_1
2737
2738 static void spapr_machine_2_1_instance_options(MachineState *machine)
2739 {
2740 spapr_machine_2_2_instance_options(machine);
2741 }
2742
2743 static void spapr_machine_2_1_class_options(MachineClass *mc)
2744 {
2745 spapr_machine_2_2_class_options(mc);
2746 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
2747 }
2748 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
2749
2750 static void spapr_machine_register_types(void)
2751 {
2752 type_register_static(&spapr_machine_info);
2753 }
2754
2755 type_init(spapr_machine_register_types)