]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr.c
Merge remote-tracking branch 'remotes/jnsnow/tags/ide-pull-request' into staging
[mirror_qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 */
26
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/hostmem.h"
33 #include "sysemu/numa.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/reset.h"
36 #include "sysemu/runstate.h"
37 #include "qemu/log.h"
38 #include "hw/fw-path-provider.h"
39 #include "elf.h"
40 #include "net/net.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/cpus.h"
43 #include "sysemu/hw_accel.h"
44 #include "kvm_ppc.h"
45 #include "migration/misc.h"
46 #include "migration/qemu-file-types.h"
47 #include "migration/global_state.h"
48 #include "migration/register.h"
49 #include "migration/blocker.h"
50 #include "mmu-hash64.h"
51 #include "mmu-book3s-v3.h"
52 #include "cpu-models.h"
53 #include "hw/core/cpu.h"
54
55 #include "hw/boards.h"
56 #include "hw/ppc/ppc.h"
57 #include "hw/loader.h"
58
59 #include "hw/ppc/fdt.h"
60 #include "hw/ppc/spapr.h"
61 #include "hw/ppc/spapr_vio.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/pci-host/spapr.h"
64 #include "hw/pci/msi.h"
65
66 #include "hw/pci/pci.h"
67 #include "hw/scsi/scsi.h"
68 #include "hw/virtio/virtio-scsi.h"
69 #include "hw/virtio/vhost-scsi-common.h"
70
71 #include "exec/address-spaces.h"
72 #include "exec/ram_addr.h"
73 #include "hw/usb.h"
74 #include "qemu/config-file.h"
75 #include "qemu/error-report.h"
76 #include "trace.h"
77 #include "hw/nmi.h"
78 #include "hw/intc/intc.h"
79
80 #include "hw/ppc/spapr_cpu_core.h"
81 #include "hw/mem/memory-device.h"
82 #include "hw/ppc/spapr_tpm_proxy.h"
83 #include "hw/ppc/spapr_nvdimm.h"
84
85 #include "monitor/monitor.h"
86
87 #include <libfdt.h>
88
89 /* SLOF memory layout:
90 *
91 * SLOF raw image loaded at 0, copies its romfs right below the flat
92 * device-tree, then position SLOF itself 31M below that
93 *
94 * So we set FW_OVERHEAD to 40MB which should account for all of that
95 * and more
96 *
97 * We load our kernel at 4M, leaving space for SLOF initial image
98 */
99 #define FDT_MAX_SIZE 0x100000
100 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
101 #define FW_MAX_SIZE 0x400000
102 #define FW_FILE_NAME "slof.bin"
103 #define FW_OVERHEAD 0x2800000
104 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
105
106 #define MIN_RMA_SLOF (128 * MiB)
107
108 #define PHANDLE_INTC 0x00001111
109
110 /* These two functions implement the VCPU id numbering: one to compute them
111 * all and one to identify thread 0 of a VCORE. Any change to the first one
112 * is likely to have an impact on the second one, so let's keep them close.
113 */
114 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
115 {
116 MachineState *ms = MACHINE(spapr);
117 unsigned int smp_threads = ms->smp.threads;
118
119 assert(spapr->vsmt);
120 return
121 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
122 }
123 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
124 PowerPCCPU *cpu)
125 {
126 assert(spapr->vsmt);
127 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
128 }
129
130 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
131 {
132 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
133 * and newer QEMUs don't even have them. In both cases, we don't want
134 * to send anything on the wire.
135 */
136 return false;
137 }
138
139 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
140 .name = "icp/server",
141 .version_id = 1,
142 .minimum_version_id = 1,
143 .needed = pre_2_10_vmstate_dummy_icp_needed,
144 .fields = (VMStateField[]) {
145 VMSTATE_UNUSED(4), /* uint32_t xirr */
146 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
147 VMSTATE_UNUSED(1), /* uint8_t mfrr */
148 VMSTATE_END_OF_LIST()
149 },
150 };
151
152 static void pre_2_10_vmstate_register_dummy_icp(int i)
153 {
154 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
155 (void *)(uintptr_t) i);
156 }
157
158 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
159 {
160 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
161 (void *)(uintptr_t) i);
162 }
163
164 int spapr_max_server_number(SpaprMachineState *spapr)
165 {
166 MachineState *ms = MACHINE(spapr);
167
168 assert(spapr->vsmt);
169 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
170 }
171
172 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
173 int smt_threads)
174 {
175 int i, ret = 0;
176 uint32_t servers_prop[smt_threads];
177 uint32_t gservers_prop[smt_threads * 2];
178 int index = spapr_get_vcpu_id(cpu);
179
180 if (cpu->compat_pvr) {
181 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
182 if (ret < 0) {
183 return ret;
184 }
185 }
186
187 /* Build interrupt servers and gservers properties */
188 for (i = 0; i < smt_threads; i++) {
189 servers_prop[i] = cpu_to_be32(index + i);
190 /* Hack, direct the group queues back to cpu 0 */
191 gservers_prop[i*2] = cpu_to_be32(index + i);
192 gservers_prop[i*2 + 1] = 0;
193 }
194 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
195 servers_prop, sizeof(servers_prop));
196 if (ret < 0) {
197 return ret;
198 }
199 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
200 gservers_prop, sizeof(gservers_prop));
201
202 return ret;
203 }
204
205 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
206 {
207 int index = spapr_get_vcpu_id(cpu);
208 uint32_t associativity[] = {cpu_to_be32(0x5),
209 cpu_to_be32(0x0),
210 cpu_to_be32(0x0),
211 cpu_to_be32(0x0),
212 cpu_to_be32(cpu->node_id),
213 cpu_to_be32(index)};
214
215 /* Advertise NUMA via ibm,associativity */
216 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
217 sizeof(associativity));
218 }
219
220 static void spapr_dt_pa_features(SpaprMachineState *spapr,
221 PowerPCCPU *cpu,
222 void *fdt, int offset)
223 {
224 uint8_t pa_features_206[] = { 6, 0,
225 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
226 uint8_t pa_features_207[] = { 24, 0,
227 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
228 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
229 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
230 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
231 uint8_t pa_features_300[] = { 66, 0,
232 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
233 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
234 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
235 /* 6: DS207 */
236 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
237 /* 16: Vector */
238 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
239 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
240 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
241 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
242 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
243 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
244 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
245 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
246 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
247 /* 42: PM, 44: PC RA, 46: SC vec'd */
248 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
249 /* 48: SIMD, 50: QP BFP, 52: String */
250 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
251 /* 54: DecFP, 56: DecI, 58: SHA */
252 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
253 /* 60: NM atomic, 62: RNG */
254 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
255 };
256 uint8_t *pa_features = NULL;
257 size_t pa_size;
258
259 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
260 pa_features = pa_features_206;
261 pa_size = sizeof(pa_features_206);
262 }
263 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
264 pa_features = pa_features_207;
265 pa_size = sizeof(pa_features_207);
266 }
267 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
268 pa_features = pa_features_300;
269 pa_size = sizeof(pa_features_300);
270 }
271 if (!pa_features) {
272 return;
273 }
274
275 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
276 /*
277 * Note: we keep CI large pages off by default because a 64K capable
278 * guest provisioned with large pages might otherwise try to map a qemu
279 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
280 * even if that qemu runs on a 4k host.
281 * We dd this bit back here if we are confident this is not an issue
282 */
283 pa_features[3] |= 0x20;
284 }
285 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
286 pa_features[24] |= 0x80; /* Transactional memory support */
287 }
288 if (spapr->cas_pre_isa3_guest && pa_size > 40) {
289 /* Workaround for broken kernels that attempt (guest) radix
290 * mode when they can't handle it, if they see the radix bit set
291 * in pa-features. So hide it from them. */
292 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
293 }
294
295 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
296 }
297
298 static hwaddr spapr_node0_size(MachineState *machine)
299 {
300 if (machine->numa_state->num_nodes) {
301 int i;
302 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
303 if (machine->numa_state->nodes[i].node_mem) {
304 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
305 machine->ram_size);
306 }
307 }
308 }
309 return machine->ram_size;
310 }
311
312 static void add_str(GString *s, const gchar *s1)
313 {
314 g_string_append_len(s, s1, strlen(s1) + 1);
315 }
316
317 static int spapr_dt_memory_node(void *fdt, int nodeid, hwaddr start,
318 hwaddr size)
319 {
320 uint32_t associativity[] = {
321 cpu_to_be32(0x4), /* length */
322 cpu_to_be32(0x0), cpu_to_be32(0x0),
323 cpu_to_be32(0x0), cpu_to_be32(nodeid)
324 };
325 char mem_name[32];
326 uint64_t mem_reg_property[2];
327 int off;
328
329 mem_reg_property[0] = cpu_to_be64(start);
330 mem_reg_property[1] = cpu_to_be64(size);
331
332 sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
333 off = fdt_add_subnode(fdt, 0, mem_name);
334 _FDT(off);
335 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
336 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
337 sizeof(mem_reg_property))));
338 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
339 sizeof(associativity))));
340 return off;
341 }
342
343 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
344 {
345 MemoryDeviceInfoList *info;
346
347 for (info = list; info; info = info->next) {
348 MemoryDeviceInfo *value = info->value;
349
350 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
351 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
352
353 if (addr >= pcdimm_info->addr &&
354 addr < (pcdimm_info->addr + pcdimm_info->size)) {
355 return pcdimm_info->node;
356 }
357 }
358 }
359
360 return -1;
361 }
362
363 struct sPAPRDrconfCellV2 {
364 uint32_t seq_lmbs;
365 uint64_t base_addr;
366 uint32_t drc_index;
367 uint32_t aa_index;
368 uint32_t flags;
369 } QEMU_PACKED;
370
371 typedef struct DrconfCellQueue {
372 struct sPAPRDrconfCellV2 cell;
373 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
374 } DrconfCellQueue;
375
376 static DrconfCellQueue *
377 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
378 uint32_t drc_index, uint32_t aa_index,
379 uint32_t flags)
380 {
381 DrconfCellQueue *elem;
382
383 elem = g_malloc0(sizeof(*elem));
384 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
385 elem->cell.base_addr = cpu_to_be64(base_addr);
386 elem->cell.drc_index = cpu_to_be32(drc_index);
387 elem->cell.aa_index = cpu_to_be32(aa_index);
388 elem->cell.flags = cpu_to_be32(flags);
389
390 return elem;
391 }
392
393 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
394 int offset, MemoryDeviceInfoList *dimms)
395 {
396 MachineState *machine = MACHINE(spapr);
397 uint8_t *int_buf, *cur_index;
398 int ret;
399 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
400 uint64_t addr, cur_addr, size;
401 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
402 uint64_t mem_end = machine->device_memory->base +
403 memory_region_size(&machine->device_memory->mr);
404 uint32_t node, buf_len, nr_entries = 0;
405 SpaprDrc *drc;
406 DrconfCellQueue *elem, *next;
407 MemoryDeviceInfoList *info;
408 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
409 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
410
411 /* Entry to cover RAM and the gap area */
412 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
413 SPAPR_LMB_FLAGS_RESERVED |
414 SPAPR_LMB_FLAGS_DRC_INVALID);
415 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
416 nr_entries++;
417
418 cur_addr = machine->device_memory->base;
419 for (info = dimms; info; info = info->next) {
420 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
421
422 addr = di->addr;
423 size = di->size;
424 node = di->node;
425
426 /*
427 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
428 * area is marked hotpluggable in the next iteration for the bigger
429 * chunk including the NVDIMM occupied area.
430 */
431 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
432 continue;
433
434 /* Entry for hot-pluggable area */
435 if (cur_addr < addr) {
436 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
437 g_assert(drc);
438 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
439 cur_addr, spapr_drc_index(drc), -1, 0);
440 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
441 nr_entries++;
442 }
443
444 /* Entry for DIMM */
445 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
446 g_assert(drc);
447 elem = spapr_get_drconf_cell(size / lmb_size, addr,
448 spapr_drc_index(drc), node,
449 SPAPR_LMB_FLAGS_ASSIGNED);
450 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
451 nr_entries++;
452 cur_addr = addr + size;
453 }
454
455 /* Entry for remaining hotpluggable area */
456 if (cur_addr < mem_end) {
457 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
458 g_assert(drc);
459 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
460 cur_addr, spapr_drc_index(drc), -1, 0);
461 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
462 nr_entries++;
463 }
464
465 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
466 int_buf = cur_index = g_malloc0(buf_len);
467 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
468 cur_index += sizeof(nr_entries);
469
470 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
471 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
472 cur_index += sizeof(elem->cell);
473 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
474 g_free(elem);
475 }
476
477 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
478 g_free(int_buf);
479 if (ret < 0) {
480 return -1;
481 }
482 return 0;
483 }
484
485 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
486 int offset, MemoryDeviceInfoList *dimms)
487 {
488 MachineState *machine = MACHINE(spapr);
489 int i, ret;
490 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
491 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
492 uint32_t nr_lmbs = (machine->device_memory->base +
493 memory_region_size(&machine->device_memory->mr)) /
494 lmb_size;
495 uint32_t *int_buf, *cur_index, buf_len;
496
497 /*
498 * Allocate enough buffer size to fit in ibm,dynamic-memory
499 */
500 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
501 cur_index = int_buf = g_malloc0(buf_len);
502 int_buf[0] = cpu_to_be32(nr_lmbs);
503 cur_index++;
504 for (i = 0; i < nr_lmbs; i++) {
505 uint64_t addr = i * lmb_size;
506 uint32_t *dynamic_memory = cur_index;
507
508 if (i >= device_lmb_start) {
509 SpaprDrc *drc;
510
511 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
512 g_assert(drc);
513
514 dynamic_memory[0] = cpu_to_be32(addr >> 32);
515 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
516 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
517 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
518 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
519 if (memory_region_present(get_system_memory(), addr)) {
520 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
521 } else {
522 dynamic_memory[5] = cpu_to_be32(0);
523 }
524 } else {
525 /*
526 * LMB information for RMA, boot time RAM and gap b/n RAM and
527 * device memory region -- all these are marked as reserved
528 * and as having no valid DRC.
529 */
530 dynamic_memory[0] = cpu_to_be32(addr >> 32);
531 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
532 dynamic_memory[2] = cpu_to_be32(0);
533 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
534 dynamic_memory[4] = cpu_to_be32(-1);
535 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
536 SPAPR_LMB_FLAGS_DRC_INVALID);
537 }
538
539 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
540 }
541 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
542 g_free(int_buf);
543 if (ret < 0) {
544 return -1;
545 }
546 return 0;
547 }
548
549 /*
550 * Adds ibm,dynamic-reconfiguration-memory node.
551 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
552 * of this device tree node.
553 */
554 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
555 void *fdt)
556 {
557 MachineState *machine = MACHINE(spapr);
558 int nb_numa_nodes = machine->numa_state->num_nodes;
559 int ret, i, offset;
560 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
561 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
562 uint32_t *int_buf, *cur_index, buf_len;
563 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
564 MemoryDeviceInfoList *dimms = NULL;
565
566 /*
567 * Don't create the node if there is no device memory
568 */
569 if (machine->ram_size == machine->maxram_size) {
570 return 0;
571 }
572
573 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
574
575 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
576 sizeof(prop_lmb_size));
577 if (ret < 0) {
578 return ret;
579 }
580
581 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
582 if (ret < 0) {
583 return ret;
584 }
585
586 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
587 if (ret < 0) {
588 return ret;
589 }
590
591 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
592 dimms = qmp_memory_device_list();
593 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
594 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
595 } else {
596 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
597 }
598 qapi_free_MemoryDeviceInfoList(dimms);
599
600 if (ret < 0) {
601 return ret;
602 }
603
604 /* ibm,associativity-lookup-arrays */
605 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
606 cur_index = int_buf = g_malloc0(buf_len);
607 int_buf[0] = cpu_to_be32(nr_nodes);
608 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
609 cur_index += 2;
610 for (i = 0; i < nr_nodes; i++) {
611 uint32_t associativity[] = {
612 cpu_to_be32(0x0),
613 cpu_to_be32(0x0),
614 cpu_to_be32(0x0),
615 cpu_to_be32(i)
616 };
617 memcpy(cur_index, associativity, sizeof(associativity));
618 cur_index += 4;
619 }
620 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
621 (cur_index - int_buf) * sizeof(uint32_t));
622 g_free(int_buf);
623
624 return ret;
625 }
626
627 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
628 {
629 MachineState *machine = MACHINE(spapr);
630 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
631 hwaddr mem_start, node_size;
632 int i, nb_nodes = machine->numa_state->num_nodes;
633 NodeInfo *nodes = machine->numa_state->nodes;
634
635 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
636 if (!nodes[i].node_mem) {
637 continue;
638 }
639 if (mem_start >= machine->ram_size) {
640 node_size = 0;
641 } else {
642 node_size = nodes[i].node_mem;
643 if (node_size > machine->ram_size - mem_start) {
644 node_size = machine->ram_size - mem_start;
645 }
646 }
647 if (!mem_start) {
648 /* spapr_machine_init() checks for rma_size <= node0_size
649 * already */
650 spapr_dt_memory_node(fdt, i, 0, spapr->rma_size);
651 mem_start += spapr->rma_size;
652 node_size -= spapr->rma_size;
653 }
654 for ( ; node_size; ) {
655 hwaddr sizetmp = pow2floor(node_size);
656
657 /* mem_start != 0 here */
658 if (ctzl(mem_start) < ctzl(sizetmp)) {
659 sizetmp = 1ULL << ctzl(mem_start);
660 }
661
662 spapr_dt_memory_node(fdt, i, mem_start, sizetmp);
663 node_size -= sizetmp;
664 mem_start += sizetmp;
665 }
666 }
667
668 /* Generate ibm,dynamic-reconfiguration-memory node if required */
669 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
670 int ret;
671
672 g_assert(smc->dr_lmb_enabled);
673 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
674 if (ret) {
675 return ret;
676 }
677 }
678
679 return 0;
680 }
681
682 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
683 SpaprMachineState *spapr)
684 {
685 MachineState *ms = MACHINE(spapr);
686 PowerPCCPU *cpu = POWERPC_CPU(cs);
687 CPUPPCState *env = &cpu->env;
688 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
689 int index = spapr_get_vcpu_id(cpu);
690 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
691 0xffffffff, 0xffffffff};
692 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
693 : SPAPR_TIMEBASE_FREQ;
694 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
695 uint32_t page_sizes_prop[64];
696 size_t page_sizes_prop_size;
697 unsigned int smp_threads = ms->smp.threads;
698 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
699 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
700 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
701 SpaprDrc *drc;
702 int drc_index;
703 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
704 int i;
705
706 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
707 if (drc) {
708 drc_index = spapr_drc_index(drc);
709 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
710 }
711
712 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
713 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
714
715 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
716 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
717 env->dcache_line_size)));
718 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
719 env->dcache_line_size)));
720 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
721 env->icache_line_size)));
722 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
723 env->icache_line_size)));
724
725 if (pcc->l1_dcache_size) {
726 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
727 pcc->l1_dcache_size)));
728 } else {
729 warn_report("Unknown L1 dcache size for cpu");
730 }
731 if (pcc->l1_icache_size) {
732 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
733 pcc->l1_icache_size)));
734 } else {
735 warn_report("Unknown L1 icache size for cpu");
736 }
737
738 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
739 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
740 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
741 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
742 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
743 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
744
745 if (env->spr_cb[SPR_PURR].oea_read) {
746 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
747 }
748 if (env->spr_cb[SPR_SPURR].oea_read) {
749 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
750 }
751
752 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
753 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
754 segs, sizeof(segs))));
755 }
756
757 /* Advertise VSX (vector extensions) if available
758 * 1 == VMX / Altivec available
759 * 2 == VSX available
760 *
761 * Only CPUs for which we create core types in spapr_cpu_core.c
762 * are possible, and all of those have VMX */
763 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
764 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
765 } else {
766 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
767 }
768
769 /* Advertise DFP (Decimal Floating Point) if available
770 * 0 / no property == no DFP
771 * 1 == DFP available */
772 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
773 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
774 }
775
776 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
777 sizeof(page_sizes_prop));
778 if (page_sizes_prop_size) {
779 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
780 page_sizes_prop, page_sizes_prop_size)));
781 }
782
783 spapr_dt_pa_features(spapr, cpu, fdt, offset);
784
785 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
786 cs->cpu_index / vcpus_per_socket)));
787
788 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
789 pft_size_prop, sizeof(pft_size_prop))));
790
791 if (ms->numa_state->num_nodes > 1) {
792 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
793 }
794
795 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
796
797 if (pcc->radix_page_info) {
798 for (i = 0; i < pcc->radix_page_info->count; i++) {
799 radix_AP_encodings[i] =
800 cpu_to_be32(pcc->radix_page_info->entries[i]);
801 }
802 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
803 radix_AP_encodings,
804 pcc->radix_page_info->count *
805 sizeof(radix_AP_encodings[0]))));
806 }
807
808 /*
809 * We set this property to let the guest know that it can use the large
810 * decrementer and its width in bits.
811 */
812 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
813 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
814 pcc->lrg_decr_bits)));
815 }
816
817 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
818 {
819 CPUState **rev;
820 CPUState *cs;
821 int n_cpus;
822 int cpus_offset;
823 char *nodename;
824 int i;
825
826 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
827 _FDT(cpus_offset);
828 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
829 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
830
831 /*
832 * We walk the CPUs in reverse order to ensure that CPU DT nodes
833 * created by fdt_add_subnode() end up in the right order in FDT
834 * for the guest kernel the enumerate the CPUs correctly.
835 *
836 * The CPU list cannot be traversed in reverse order, so we need
837 * to do extra work.
838 */
839 n_cpus = 0;
840 rev = NULL;
841 CPU_FOREACH(cs) {
842 rev = g_renew(CPUState *, rev, n_cpus + 1);
843 rev[n_cpus++] = cs;
844 }
845
846 for (i = n_cpus - 1; i >= 0; i--) {
847 CPUState *cs = rev[i];
848 PowerPCCPU *cpu = POWERPC_CPU(cs);
849 int index = spapr_get_vcpu_id(cpu);
850 DeviceClass *dc = DEVICE_GET_CLASS(cs);
851 int offset;
852
853 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
854 continue;
855 }
856
857 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
858 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
859 g_free(nodename);
860 _FDT(offset);
861 spapr_dt_cpu(cs, fdt, offset, spapr);
862 }
863
864 g_free(rev);
865 }
866
867 static int spapr_dt_rng(void *fdt)
868 {
869 int node;
870 int ret;
871
872 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
873 if (node <= 0) {
874 return -1;
875 }
876 ret = fdt_setprop_string(fdt, node, "device_type",
877 "ibm,platform-facilities");
878 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
879 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
880
881 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
882 if (node <= 0) {
883 return -1;
884 }
885 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
886
887 return ret ? -1 : 0;
888 }
889
890 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
891 {
892 MachineState *ms = MACHINE(spapr);
893 int rtas;
894 GString *hypertas = g_string_sized_new(256);
895 GString *qemu_hypertas = g_string_sized_new(256);
896 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
897 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
898 memory_region_size(&MACHINE(spapr)->device_memory->mr);
899 uint32_t lrdr_capacity[] = {
900 cpu_to_be32(max_device_addr >> 32),
901 cpu_to_be32(max_device_addr & 0xffffffff),
902 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
903 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
904 };
905 uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
906 uint32_t maxdomains[] = {
907 cpu_to_be32(4),
908 maxdomain,
909 maxdomain,
910 maxdomain,
911 cpu_to_be32(spapr->gpu_numa_id),
912 };
913
914 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
915
916 /* hypertas */
917 add_str(hypertas, "hcall-pft");
918 add_str(hypertas, "hcall-term");
919 add_str(hypertas, "hcall-dabr");
920 add_str(hypertas, "hcall-interrupt");
921 add_str(hypertas, "hcall-tce");
922 add_str(hypertas, "hcall-vio");
923 add_str(hypertas, "hcall-splpar");
924 add_str(hypertas, "hcall-join");
925 add_str(hypertas, "hcall-bulk");
926 add_str(hypertas, "hcall-set-mode");
927 add_str(hypertas, "hcall-sprg0");
928 add_str(hypertas, "hcall-copy");
929 add_str(hypertas, "hcall-debug");
930 add_str(hypertas, "hcall-vphn");
931 add_str(qemu_hypertas, "hcall-memop1");
932
933 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
934 add_str(hypertas, "hcall-multi-tce");
935 }
936
937 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
938 add_str(hypertas, "hcall-hpt-resize");
939 }
940
941 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
942 hypertas->str, hypertas->len));
943 g_string_free(hypertas, TRUE);
944 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
945 qemu_hypertas->str, qemu_hypertas->len));
946 g_string_free(qemu_hypertas, TRUE);
947
948 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
949 refpoints, sizeof(refpoints)));
950
951 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
952 maxdomains, sizeof(maxdomains)));
953
954 /*
955 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
956 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
957 *
958 * The system reset requirements are driven by existing Linux and PowerVM
959 * implementation which (contrary to PAPR) saves r3 in the error log
960 * structure like machine check, so Linux expects to find the saved r3
961 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
962 * does not look at the error value).
963 *
964 * System reset interrupts are not subject to interlock like machine
965 * check, so this memory area could be corrupted if the sreset is
966 * interrupted by a machine check (or vice versa) if it was shared. To
967 * prevent this, system reset uses per-CPU areas for the sreset save
968 * area. A system reset that interrupts a system reset handler could
969 * still overwrite this area, but Linux doesn't try to recover in that
970 * case anyway.
971 *
972 * The extra 8 bytes is required because Linux's FWNMI error log check
973 * is off-by-one.
974 */
975 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_ERROR_LOG_MAX +
976 ms->smp.max_cpus * sizeof(uint64_t)*2 + sizeof(uint64_t)));
977 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
978 RTAS_ERROR_LOG_MAX));
979 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
980 RTAS_EVENT_SCAN_RATE));
981
982 g_assert(msi_nonbroken);
983 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
984
985 /*
986 * According to PAPR, rtas ibm,os-term does not guarantee a return
987 * back to the guest cpu.
988 *
989 * While an additional ibm,extended-os-term property indicates
990 * that rtas call return will always occur. Set this property.
991 */
992 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
993
994 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
995 lrdr_capacity, sizeof(lrdr_capacity)));
996
997 spapr_dt_rtas_tokens(fdt, rtas);
998 }
999
1000 /*
1001 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1002 * and the XIVE features that the guest may request and thus the valid
1003 * values for bytes 23..26 of option vector 5:
1004 */
1005 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
1006 int chosen)
1007 {
1008 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1009
1010 char val[2 * 4] = {
1011 23, 0x00, /* XICS / XIVE mode */
1012 24, 0x00, /* Hash/Radix, filled in below. */
1013 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1014 26, 0x40, /* Radix options: GTSE == yes. */
1015 };
1016
1017 if (spapr->irq->xics && spapr->irq->xive) {
1018 val[1] = SPAPR_OV5_XIVE_BOTH;
1019 } else if (spapr->irq->xive) {
1020 val[1] = SPAPR_OV5_XIVE_EXPLOIT;
1021 } else {
1022 assert(spapr->irq->xics);
1023 val[1] = SPAPR_OV5_XIVE_LEGACY;
1024 }
1025
1026 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1027 first_ppc_cpu->compat_pvr)) {
1028 /*
1029 * If we're in a pre POWER9 compat mode then the guest should
1030 * do hash and use the legacy interrupt mode
1031 */
1032 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
1033 val[3] = 0x00; /* Hash */
1034 } else if (kvm_enabled()) {
1035 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1036 val[3] = 0x80; /* OV5_MMU_BOTH */
1037 } else if (kvmppc_has_cap_mmu_radix()) {
1038 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1039 } else {
1040 val[3] = 0x00; /* Hash */
1041 }
1042 } else {
1043 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1044 val[3] = 0xC0;
1045 }
1046 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1047 val, sizeof(val)));
1048 }
1049
1050 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1051 {
1052 MachineState *machine = MACHINE(spapr);
1053 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1054 int chosen;
1055
1056 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1057
1058 if (reset) {
1059 const char *boot_device = machine->boot_order;
1060 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1061 size_t cb = 0;
1062 char *bootlist = get_boot_devices_list(&cb);
1063
1064 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1065 _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1066 machine->kernel_cmdline));
1067 }
1068
1069 if (spapr->initrd_size) {
1070 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1071 spapr->initrd_base));
1072 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1073 spapr->initrd_base + spapr->initrd_size));
1074 }
1075
1076 if (spapr->kernel_size) {
1077 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1078 cpu_to_be64(spapr->kernel_size) };
1079
1080 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1081 &kprop, sizeof(kprop)));
1082 if (spapr->kernel_le) {
1083 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1084 }
1085 }
1086 if (boot_menu) {
1087 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1088 }
1089 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1090 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1091 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1092
1093 if (cb && bootlist) {
1094 int i;
1095
1096 for (i = 0; i < cb; i++) {
1097 if (bootlist[i] == '\n') {
1098 bootlist[i] = ' ';
1099 }
1100 }
1101 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1102 }
1103
1104 if (boot_device && strlen(boot_device)) {
1105 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1106 }
1107
1108 if (!spapr->has_graphics && stdout_path) {
1109 /*
1110 * "linux,stdout-path" and "stdout" properties are
1111 * deprecated by linux kernel. New platforms should only
1112 * use the "stdout-path" property. Set the new property
1113 * and continue using older property to remain compatible
1114 * with the existing firmware.
1115 */
1116 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1117 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1118 }
1119
1120 /*
1121 * We can deal with BAR reallocation just fine, advertise it
1122 * to the guest
1123 */
1124 if (smc->linux_pci_probe) {
1125 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1126 }
1127
1128 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1129
1130 g_free(stdout_path);
1131 g_free(bootlist);
1132 }
1133
1134 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1135 }
1136
1137 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1138 {
1139 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1140 * KVM to work under pHyp with some guest co-operation */
1141 int hypervisor;
1142 uint8_t hypercall[16];
1143
1144 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1145 /* indicate KVM hypercall interface */
1146 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1147 if (kvmppc_has_cap_fixup_hcalls()) {
1148 /*
1149 * Older KVM versions with older guest kernels were broken
1150 * with the magic page, don't allow the guest to map it.
1151 */
1152 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1153 sizeof(hypercall))) {
1154 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1155 hypercall, sizeof(hypercall)));
1156 }
1157 }
1158 }
1159
1160 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1161 {
1162 MachineState *machine = MACHINE(spapr);
1163 MachineClass *mc = MACHINE_GET_CLASS(machine);
1164 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1165 int ret;
1166 void *fdt;
1167 SpaprPhbState *phb;
1168 char *buf;
1169
1170 fdt = g_malloc0(space);
1171 _FDT((fdt_create_empty_tree(fdt, space)));
1172
1173 /* Root node */
1174 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1175 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1176 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1177
1178 /* Guest UUID & Name*/
1179 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1180 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1181 if (qemu_uuid_set) {
1182 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1183 }
1184 g_free(buf);
1185
1186 if (qemu_get_vm_name()) {
1187 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1188 qemu_get_vm_name()));
1189 }
1190
1191 /* Host Model & Serial Number */
1192 if (spapr->host_model) {
1193 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1194 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1195 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1196 g_free(buf);
1197 }
1198
1199 if (spapr->host_serial) {
1200 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1201 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1202 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1203 g_free(buf);
1204 }
1205
1206 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1207 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1208
1209 /* /interrupt controller */
1210 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1211
1212 ret = spapr_dt_memory(spapr, fdt);
1213 if (ret < 0) {
1214 error_report("couldn't setup memory nodes in fdt");
1215 exit(1);
1216 }
1217
1218 /* /vdevice */
1219 spapr_dt_vdevice(spapr->vio_bus, fdt);
1220
1221 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1222 ret = spapr_dt_rng(fdt);
1223 if (ret < 0) {
1224 error_report("could not set up rng device in the fdt");
1225 exit(1);
1226 }
1227 }
1228
1229 QLIST_FOREACH(phb, &spapr->phbs, list) {
1230 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1231 if (ret < 0) {
1232 error_report("couldn't setup PCI devices in fdt");
1233 exit(1);
1234 }
1235 }
1236
1237 spapr_dt_cpus(fdt, spapr);
1238
1239 if (smc->dr_lmb_enabled) {
1240 _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1241 }
1242
1243 if (mc->has_hotpluggable_cpus) {
1244 int offset = fdt_path_offset(fdt, "/cpus");
1245 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1246 if (ret < 0) {
1247 error_report("Couldn't set up CPU DR device tree properties");
1248 exit(1);
1249 }
1250 }
1251
1252 /* /event-sources */
1253 spapr_dt_events(spapr, fdt);
1254
1255 /* /rtas */
1256 spapr_dt_rtas(spapr, fdt);
1257
1258 /* /chosen */
1259 spapr_dt_chosen(spapr, fdt, reset);
1260
1261 /* /hypervisor */
1262 if (kvm_enabled()) {
1263 spapr_dt_hypervisor(spapr, fdt);
1264 }
1265
1266 /* Build memory reserve map */
1267 if (reset) {
1268 if (spapr->kernel_size) {
1269 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1270 spapr->kernel_size)));
1271 }
1272 if (spapr->initrd_size) {
1273 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1274 spapr->initrd_size)));
1275 }
1276 }
1277
1278 if (smc->dr_phb_enabled) {
1279 ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1280 if (ret < 0) {
1281 error_report("Couldn't set up PHB DR device tree properties");
1282 exit(1);
1283 }
1284 }
1285
1286 /* NVDIMM devices */
1287 if (mc->nvdimm_supported) {
1288 spapr_dt_persistent_memory(fdt);
1289 }
1290
1291 return fdt;
1292 }
1293
1294 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1295 {
1296 SpaprMachineState *spapr = opaque;
1297
1298 return (addr & 0x0fffffff) + spapr->kernel_addr;
1299 }
1300
1301 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1302 PowerPCCPU *cpu)
1303 {
1304 CPUPPCState *env = &cpu->env;
1305
1306 /* The TCG path should also be holding the BQL at this point */
1307 g_assert(qemu_mutex_iothread_locked());
1308
1309 if (msr_pr) {
1310 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1311 env->gpr[3] = H_PRIVILEGE;
1312 } else {
1313 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1314 }
1315 }
1316
1317 struct LPCRSyncState {
1318 target_ulong value;
1319 target_ulong mask;
1320 };
1321
1322 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1323 {
1324 struct LPCRSyncState *s = arg.host_ptr;
1325 PowerPCCPU *cpu = POWERPC_CPU(cs);
1326 CPUPPCState *env = &cpu->env;
1327 target_ulong lpcr;
1328
1329 cpu_synchronize_state(cs);
1330 lpcr = env->spr[SPR_LPCR];
1331 lpcr &= ~s->mask;
1332 lpcr |= s->value;
1333 ppc_store_lpcr(cpu, lpcr);
1334 }
1335
1336 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1337 {
1338 CPUState *cs;
1339 struct LPCRSyncState s = {
1340 .value = value,
1341 .mask = mask
1342 };
1343 CPU_FOREACH(cs) {
1344 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1345 }
1346 }
1347
1348 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1349 {
1350 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1351
1352 /* Copy PATE1:GR into PATE0:HR */
1353 entry->dw0 = spapr->patb_entry & PATE0_HR;
1354 entry->dw1 = spapr->patb_entry;
1355 }
1356
1357 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1358 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1359 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1360 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1361 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1362
1363 /*
1364 * Get the fd to access the kernel htab, re-opening it if necessary
1365 */
1366 static int get_htab_fd(SpaprMachineState *spapr)
1367 {
1368 Error *local_err = NULL;
1369
1370 if (spapr->htab_fd >= 0) {
1371 return spapr->htab_fd;
1372 }
1373
1374 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1375 if (spapr->htab_fd < 0) {
1376 error_report_err(local_err);
1377 }
1378
1379 return spapr->htab_fd;
1380 }
1381
1382 void close_htab_fd(SpaprMachineState *spapr)
1383 {
1384 if (spapr->htab_fd >= 0) {
1385 close(spapr->htab_fd);
1386 }
1387 spapr->htab_fd = -1;
1388 }
1389
1390 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1391 {
1392 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1393
1394 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1395 }
1396
1397 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1398 {
1399 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1400
1401 assert(kvm_enabled());
1402
1403 if (!spapr->htab) {
1404 return 0;
1405 }
1406
1407 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1408 }
1409
1410 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1411 hwaddr ptex, int n)
1412 {
1413 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1414 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1415
1416 if (!spapr->htab) {
1417 /*
1418 * HTAB is controlled by KVM. Fetch into temporary buffer
1419 */
1420 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1421 kvmppc_read_hptes(hptes, ptex, n);
1422 return hptes;
1423 }
1424
1425 /*
1426 * HTAB is controlled by QEMU. Just point to the internally
1427 * accessible PTEG.
1428 */
1429 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1430 }
1431
1432 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1433 const ppc_hash_pte64_t *hptes,
1434 hwaddr ptex, int n)
1435 {
1436 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1437
1438 if (!spapr->htab) {
1439 g_free((void *)hptes);
1440 }
1441
1442 /* Nothing to do for qemu managed HPT */
1443 }
1444
1445 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1446 uint64_t pte0, uint64_t pte1)
1447 {
1448 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1449 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1450
1451 if (!spapr->htab) {
1452 kvmppc_write_hpte(ptex, pte0, pte1);
1453 } else {
1454 if (pte0 & HPTE64_V_VALID) {
1455 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1456 /*
1457 * When setting valid, we write PTE1 first. This ensures
1458 * proper synchronization with the reading code in
1459 * ppc_hash64_pteg_search()
1460 */
1461 smp_wmb();
1462 stq_p(spapr->htab + offset, pte0);
1463 } else {
1464 stq_p(spapr->htab + offset, pte0);
1465 /*
1466 * When clearing it we set PTE0 first. This ensures proper
1467 * synchronization with the reading code in
1468 * ppc_hash64_pteg_search()
1469 */
1470 smp_wmb();
1471 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1472 }
1473 }
1474 }
1475
1476 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1477 uint64_t pte1)
1478 {
1479 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1480 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1481
1482 if (!spapr->htab) {
1483 /* There should always be a hash table when this is called */
1484 error_report("spapr_hpte_set_c called with no hash table !");
1485 return;
1486 }
1487
1488 /* The HW performs a non-atomic byte update */
1489 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1490 }
1491
1492 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1493 uint64_t pte1)
1494 {
1495 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1496 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1497
1498 if (!spapr->htab) {
1499 /* There should always be a hash table when this is called */
1500 error_report("spapr_hpte_set_r called with no hash table !");
1501 return;
1502 }
1503
1504 /* The HW performs a non-atomic byte update */
1505 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1506 }
1507
1508 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1509 {
1510 int shift;
1511
1512 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1513 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1514 * that's much more than is needed for Linux guests */
1515 shift = ctz64(pow2ceil(ramsize)) - 7;
1516 shift = MAX(shift, 18); /* Minimum architected size */
1517 shift = MIN(shift, 46); /* Maximum architected size */
1518 return shift;
1519 }
1520
1521 void spapr_free_hpt(SpaprMachineState *spapr)
1522 {
1523 g_free(spapr->htab);
1524 spapr->htab = NULL;
1525 spapr->htab_shift = 0;
1526 close_htab_fd(spapr);
1527 }
1528
1529 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1530 Error **errp)
1531 {
1532 long rc;
1533
1534 /* Clean up any HPT info from a previous boot */
1535 spapr_free_hpt(spapr);
1536
1537 rc = kvmppc_reset_htab(shift);
1538 if (rc < 0) {
1539 /* kernel-side HPT needed, but couldn't allocate one */
1540 error_setg_errno(errp, errno,
1541 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1542 shift);
1543 /* This is almost certainly fatal, but if the caller really
1544 * wants to carry on with shift == 0, it's welcome to try */
1545 } else if (rc > 0) {
1546 /* kernel-side HPT allocated */
1547 if (rc != shift) {
1548 error_setg(errp,
1549 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1550 shift, rc);
1551 }
1552
1553 spapr->htab_shift = shift;
1554 spapr->htab = NULL;
1555 } else {
1556 /* kernel-side HPT not needed, allocate in userspace instead */
1557 size_t size = 1ULL << shift;
1558 int i;
1559
1560 spapr->htab = qemu_memalign(size, size);
1561 if (!spapr->htab) {
1562 error_setg_errno(errp, errno,
1563 "Could not allocate HPT of order %d", shift);
1564 return;
1565 }
1566
1567 memset(spapr->htab, 0, size);
1568 spapr->htab_shift = shift;
1569
1570 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1571 DIRTY_HPTE(HPTE(spapr->htab, i));
1572 }
1573 }
1574 /* We're setting up a hash table, so that means we're not radix */
1575 spapr->patb_entry = 0;
1576 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1577 }
1578
1579 void spapr_setup_hpt(SpaprMachineState *spapr)
1580 {
1581 int hpt_shift;
1582
1583 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1584 || (spapr->cas_reboot
1585 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1586 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1587 } else {
1588 uint64_t current_ram_size;
1589
1590 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1591 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1592 }
1593 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1594
1595 if (kvm_enabled()) {
1596 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1597
1598 /* Check our RMA fits in the possible VRMA */
1599 if (vrma_limit < spapr->rma_size) {
1600 error_report("Unable to create %" HWADDR_PRIu
1601 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1602 spapr->rma_size / MiB, vrma_limit / MiB);
1603 exit(EXIT_FAILURE);
1604 }
1605 }
1606 }
1607
1608 static int spapr_reset_drcs(Object *child, void *opaque)
1609 {
1610 SpaprDrc *drc =
1611 (SpaprDrc *) object_dynamic_cast(child,
1612 TYPE_SPAPR_DR_CONNECTOR);
1613
1614 if (drc) {
1615 spapr_drc_reset(drc);
1616 }
1617
1618 return 0;
1619 }
1620
1621 static void spapr_machine_reset(MachineState *machine)
1622 {
1623 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1624 PowerPCCPU *first_ppc_cpu;
1625 hwaddr fdt_addr;
1626 void *fdt;
1627 int rc;
1628
1629 kvmppc_svm_off(&error_fatal);
1630 spapr_caps_apply(spapr);
1631
1632 first_ppc_cpu = POWERPC_CPU(first_cpu);
1633 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1634 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1635 spapr->max_compat_pvr)) {
1636 /*
1637 * If using KVM with radix mode available, VCPUs can be started
1638 * without a HPT because KVM will start them in radix mode.
1639 * Set the GR bit in PATE so that we know there is no HPT.
1640 */
1641 spapr->patb_entry = PATE1_GR;
1642 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1643 } else {
1644 spapr_setup_hpt(spapr);
1645 }
1646
1647 qemu_devices_reset();
1648
1649 /*
1650 * If this reset wasn't generated by CAS, we should reset our
1651 * negotiated options and start from scratch
1652 */
1653 if (!spapr->cas_reboot) {
1654 spapr_ovec_cleanup(spapr->ov5_cas);
1655 spapr->ov5_cas = spapr_ovec_new();
1656
1657 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1658 }
1659
1660 /*
1661 * This is fixing some of the default configuration of the XIVE
1662 * devices. To be called after the reset of the machine devices.
1663 */
1664 spapr_irq_reset(spapr, &error_fatal);
1665
1666 /*
1667 * There is no CAS under qtest. Simulate one to please the code that
1668 * depends on spapr->ov5_cas. This is especially needed to test device
1669 * unplug, so we do that before resetting the DRCs.
1670 */
1671 if (qtest_enabled()) {
1672 spapr_ovec_cleanup(spapr->ov5_cas);
1673 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1674 }
1675
1676 /* DRC reset may cause a device to be unplugged. This will cause troubles
1677 * if this device is used by another device (eg, a running vhost backend
1678 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1679 * situations, we reset DRCs after all devices have been reset.
1680 */
1681 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1682
1683 spapr_clear_pending_events(spapr);
1684
1685 /*
1686 * We place the device tree and RTAS just below either the top of the RMA,
1687 * or just below 2GB, whichever is lower, so that it can be
1688 * processed with 32-bit real mode code if necessary
1689 */
1690 fdt_addr = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FDT_MAX_SIZE;
1691
1692 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1693
1694 rc = fdt_pack(fdt);
1695
1696 /* Should only fail if we've built a corrupted tree */
1697 assert(rc == 0);
1698
1699 /* Load the fdt */
1700 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1701 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1702 g_free(spapr->fdt_blob);
1703 spapr->fdt_size = fdt_totalsize(fdt);
1704 spapr->fdt_initial_size = spapr->fdt_size;
1705 spapr->fdt_blob = fdt;
1706
1707 /* Set up the entry state */
1708 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 0, fdt_addr, 0);
1709 first_ppc_cpu->env.gpr[5] = 0;
1710
1711 spapr->cas_reboot = false;
1712
1713 spapr->fwnmi_system_reset_addr = -1;
1714 spapr->fwnmi_machine_check_addr = -1;
1715 spapr->fwnmi_machine_check_interlock = -1;
1716
1717 /* Signal all vCPUs waiting on this condition */
1718 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1719
1720 migrate_del_blocker(spapr->fwnmi_migration_blocker);
1721 }
1722
1723 static void spapr_create_nvram(SpaprMachineState *spapr)
1724 {
1725 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1726 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1727
1728 if (dinfo) {
1729 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1730 &error_fatal);
1731 }
1732
1733 qdev_init_nofail(dev);
1734
1735 spapr->nvram = (struct SpaprNvram *)dev;
1736 }
1737
1738 static void spapr_rtc_create(SpaprMachineState *spapr)
1739 {
1740 object_initialize_child(OBJECT(spapr), "rtc",
1741 &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1742 &error_fatal, NULL);
1743 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1744 &error_fatal);
1745 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1746 "date", &error_fatal);
1747 }
1748
1749 /* Returns whether we want to use VGA or not */
1750 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1751 {
1752 switch (vga_interface_type) {
1753 case VGA_NONE:
1754 return false;
1755 case VGA_DEVICE:
1756 return true;
1757 case VGA_STD:
1758 case VGA_VIRTIO:
1759 case VGA_CIRRUS:
1760 return pci_vga_init(pci_bus) != NULL;
1761 default:
1762 error_setg(errp,
1763 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1764 return false;
1765 }
1766 }
1767
1768 static int spapr_pre_load(void *opaque)
1769 {
1770 int rc;
1771
1772 rc = spapr_caps_pre_load(opaque);
1773 if (rc) {
1774 return rc;
1775 }
1776
1777 return 0;
1778 }
1779
1780 static int spapr_post_load(void *opaque, int version_id)
1781 {
1782 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1783 int err = 0;
1784
1785 err = spapr_caps_post_migration(spapr);
1786 if (err) {
1787 return err;
1788 }
1789
1790 /*
1791 * In earlier versions, there was no separate qdev for the PAPR
1792 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1793 * So when migrating from those versions, poke the incoming offset
1794 * value into the RTC device
1795 */
1796 if (version_id < 3) {
1797 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1798 if (err) {
1799 return err;
1800 }
1801 }
1802
1803 if (kvm_enabled() && spapr->patb_entry) {
1804 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1805 bool radix = !!(spapr->patb_entry & PATE1_GR);
1806 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1807
1808 /*
1809 * Update LPCR:HR and UPRT as they may not be set properly in
1810 * the stream
1811 */
1812 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1813 LPCR_HR | LPCR_UPRT);
1814
1815 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1816 if (err) {
1817 error_report("Process table config unsupported by the host");
1818 return -EINVAL;
1819 }
1820 }
1821
1822 err = spapr_irq_post_load(spapr, version_id);
1823 if (err) {
1824 return err;
1825 }
1826
1827 return err;
1828 }
1829
1830 static int spapr_pre_save(void *opaque)
1831 {
1832 int rc;
1833
1834 rc = spapr_caps_pre_save(opaque);
1835 if (rc) {
1836 return rc;
1837 }
1838
1839 return 0;
1840 }
1841
1842 static bool version_before_3(void *opaque, int version_id)
1843 {
1844 return version_id < 3;
1845 }
1846
1847 static bool spapr_pending_events_needed(void *opaque)
1848 {
1849 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1850 return !QTAILQ_EMPTY(&spapr->pending_events);
1851 }
1852
1853 static const VMStateDescription vmstate_spapr_event_entry = {
1854 .name = "spapr_event_log_entry",
1855 .version_id = 1,
1856 .minimum_version_id = 1,
1857 .fields = (VMStateField[]) {
1858 VMSTATE_UINT32(summary, SpaprEventLogEntry),
1859 VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1860 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1861 NULL, extended_length),
1862 VMSTATE_END_OF_LIST()
1863 },
1864 };
1865
1866 static const VMStateDescription vmstate_spapr_pending_events = {
1867 .name = "spapr_pending_events",
1868 .version_id = 1,
1869 .minimum_version_id = 1,
1870 .needed = spapr_pending_events_needed,
1871 .fields = (VMStateField[]) {
1872 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1873 vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1874 VMSTATE_END_OF_LIST()
1875 },
1876 };
1877
1878 static bool spapr_ov5_cas_needed(void *opaque)
1879 {
1880 SpaprMachineState *spapr = opaque;
1881 SpaprOptionVector *ov5_mask = spapr_ovec_new();
1882 bool cas_needed;
1883
1884 /* Prior to the introduction of SpaprOptionVector, we had two option
1885 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1886 * Both of these options encode machine topology into the device-tree
1887 * in such a way that the now-booted OS should still be able to interact
1888 * appropriately with QEMU regardless of what options were actually
1889 * negotiatied on the source side.
1890 *
1891 * As such, we can avoid migrating the CAS-negotiated options if these
1892 * are the only options available on the current machine/platform.
1893 * Since these are the only options available for pseries-2.7 and
1894 * earlier, this allows us to maintain old->new/new->old migration
1895 * compatibility.
1896 *
1897 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1898 * via default pseries-2.8 machines and explicit command-line parameters.
1899 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1900 * of the actual CAS-negotiated values to continue working properly. For
1901 * example, availability of memory unplug depends on knowing whether
1902 * OV5_HP_EVT was negotiated via CAS.
1903 *
1904 * Thus, for any cases where the set of available CAS-negotiatable
1905 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1906 * include the CAS-negotiated options in the migration stream, unless
1907 * if they affect boot time behaviour only.
1908 */
1909 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1910 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1911 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1912
1913 /* We need extra information if we have any bits outside the mask
1914 * defined above */
1915 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1916
1917 spapr_ovec_cleanup(ov5_mask);
1918
1919 return cas_needed;
1920 }
1921
1922 static const VMStateDescription vmstate_spapr_ov5_cas = {
1923 .name = "spapr_option_vector_ov5_cas",
1924 .version_id = 1,
1925 .minimum_version_id = 1,
1926 .needed = spapr_ov5_cas_needed,
1927 .fields = (VMStateField[]) {
1928 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1929 vmstate_spapr_ovec, SpaprOptionVector),
1930 VMSTATE_END_OF_LIST()
1931 },
1932 };
1933
1934 static bool spapr_patb_entry_needed(void *opaque)
1935 {
1936 SpaprMachineState *spapr = opaque;
1937
1938 return !!spapr->patb_entry;
1939 }
1940
1941 static const VMStateDescription vmstate_spapr_patb_entry = {
1942 .name = "spapr_patb_entry",
1943 .version_id = 1,
1944 .minimum_version_id = 1,
1945 .needed = spapr_patb_entry_needed,
1946 .fields = (VMStateField[]) {
1947 VMSTATE_UINT64(patb_entry, SpaprMachineState),
1948 VMSTATE_END_OF_LIST()
1949 },
1950 };
1951
1952 static bool spapr_irq_map_needed(void *opaque)
1953 {
1954 SpaprMachineState *spapr = opaque;
1955
1956 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1957 }
1958
1959 static const VMStateDescription vmstate_spapr_irq_map = {
1960 .name = "spapr_irq_map",
1961 .version_id = 1,
1962 .minimum_version_id = 1,
1963 .needed = spapr_irq_map_needed,
1964 .fields = (VMStateField[]) {
1965 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1966 VMSTATE_END_OF_LIST()
1967 },
1968 };
1969
1970 static bool spapr_dtb_needed(void *opaque)
1971 {
1972 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1973
1974 return smc->update_dt_enabled;
1975 }
1976
1977 static int spapr_dtb_pre_load(void *opaque)
1978 {
1979 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1980
1981 g_free(spapr->fdt_blob);
1982 spapr->fdt_blob = NULL;
1983 spapr->fdt_size = 0;
1984
1985 return 0;
1986 }
1987
1988 static const VMStateDescription vmstate_spapr_dtb = {
1989 .name = "spapr_dtb",
1990 .version_id = 1,
1991 .minimum_version_id = 1,
1992 .needed = spapr_dtb_needed,
1993 .pre_load = spapr_dtb_pre_load,
1994 .fields = (VMStateField[]) {
1995 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
1996 VMSTATE_UINT32(fdt_size, SpaprMachineState),
1997 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
1998 fdt_size),
1999 VMSTATE_END_OF_LIST()
2000 },
2001 };
2002
2003 static bool spapr_fwnmi_needed(void *opaque)
2004 {
2005 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2006
2007 return spapr->fwnmi_machine_check_addr != -1;
2008 }
2009
2010 static int spapr_fwnmi_pre_save(void *opaque)
2011 {
2012 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2013
2014 /*
2015 * Check if machine check handling is in progress and print a
2016 * warning message.
2017 */
2018 if (spapr->fwnmi_machine_check_interlock != -1) {
2019 warn_report("A machine check is being handled during migration. The"
2020 "handler may run and log hardware error on the destination");
2021 }
2022
2023 return 0;
2024 }
2025
2026 static const VMStateDescription vmstate_spapr_fwnmi = {
2027 .name = "spapr_fwnmi",
2028 .version_id = 1,
2029 .minimum_version_id = 1,
2030 .needed = spapr_fwnmi_needed,
2031 .pre_save = spapr_fwnmi_pre_save,
2032 .fields = (VMStateField[]) {
2033 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
2034 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
2035 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
2036 VMSTATE_END_OF_LIST()
2037 },
2038 };
2039
2040 static const VMStateDescription vmstate_spapr = {
2041 .name = "spapr",
2042 .version_id = 3,
2043 .minimum_version_id = 1,
2044 .pre_load = spapr_pre_load,
2045 .post_load = spapr_post_load,
2046 .pre_save = spapr_pre_save,
2047 .fields = (VMStateField[]) {
2048 /* used to be @next_irq */
2049 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2050
2051 /* RTC offset */
2052 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2053
2054 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2055 VMSTATE_END_OF_LIST()
2056 },
2057 .subsections = (const VMStateDescription*[]) {
2058 &vmstate_spapr_ov5_cas,
2059 &vmstate_spapr_patb_entry,
2060 &vmstate_spapr_pending_events,
2061 &vmstate_spapr_cap_htm,
2062 &vmstate_spapr_cap_vsx,
2063 &vmstate_spapr_cap_dfp,
2064 &vmstate_spapr_cap_cfpc,
2065 &vmstate_spapr_cap_sbbc,
2066 &vmstate_spapr_cap_ibs,
2067 &vmstate_spapr_cap_hpt_maxpagesize,
2068 &vmstate_spapr_irq_map,
2069 &vmstate_spapr_cap_nested_kvm_hv,
2070 &vmstate_spapr_dtb,
2071 &vmstate_spapr_cap_large_decr,
2072 &vmstate_spapr_cap_ccf_assist,
2073 &vmstate_spapr_cap_fwnmi,
2074 &vmstate_spapr_fwnmi,
2075 NULL
2076 }
2077 };
2078
2079 static int htab_save_setup(QEMUFile *f, void *opaque)
2080 {
2081 SpaprMachineState *spapr = opaque;
2082
2083 /* "Iteration" header */
2084 if (!spapr->htab_shift) {
2085 qemu_put_be32(f, -1);
2086 } else {
2087 qemu_put_be32(f, spapr->htab_shift);
2088 }
2089
2090 if (spapr->htab) {
2091 spapr->htab_save_index = 0;
2092 spapr->htab_first_pass = true;
2093 } else {
2094 if (spapr->htab_shift) {
2095 assert(kvm_enabled());
2096 }
2097 }
2098
2099
2100 return 0;
2101 }
2102
2103 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2104 int chunkstart, int n_valid, int n_invalid)
2105 {
2106 qemu_put_be32(f, chunkstart);
2107 qemu_put_be16(f, n_valid);
2108 qemu_put_be16(f, n_invalid);
2109 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2110 HASH_PTE_SIZE_64 * n_valid);
2111 }
2112
2113 static void htab_save_end_marker(QEMUFile *f)
2114 {
2115 qemu_put_be32(f, 0);
2116 qemu_put_be16(f, 0);
2117 qemu_put_be16(f, 0);
2118 }
2119
2120 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2121 int64_t max_ns)
2122 {
2123 bool has_timeout = max_ns != -1;
2124 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2125 int index = spapr->htab_save_index;
2126 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2127
2128 assert(spapr->htab_first_pass);
2129
2130 do {
2131 int chunkstart;
2132
2133 /* Consume invalid HPTEs */
2134 while ((index < htabslots)
2135 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2136 CLEAN_HPTE(HPTE(spapr->htab, index));
2137 index++;
2138 }
2139
2140 /* Consume valid HPTEs */
2141 chunkstart = index;
2142 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2143 && HPTE_VALID(HPTE(spapr->htab, index))) {
2144 CLEAN_HPTE(HPTE(spapr->htab, index));
2145 index++;
2146 }
2147
2148 if (index > chunkstart) {
2149 int n_valid = index - chunkstart;
2150
2151 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2152
2153 if (has_timeout &&
2154 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2155 break;
2156 }
2157 }
2158 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2159
2160 if (index >= htabslots) {
2161 assert(index == htabslots);
2162 index = 0;
2163 spapr->htab_first_pass = false;
2164 }
2165 spapr->htab_save_index = index;
2166 }
2167
2168 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2169 int64_t max_ns)
2170 {
2171 bool final = max_ns < 0;
2172 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2173 int examined = 0, sent = 0;
2174 int index = spapr->htab_save_index;
2175 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2176
2177 assert(!spapr->htab_first_pass);
2178
2179 do {
2180 int chunkstart, invalidstart;
2181
2182 /* Consume non-dirty HPTEs */
2183 while ((index < htabslots)
2184 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2185 index++;
2186 examined++;
2187 }
2188
2189 chunkstart = index;
2190 /* Consume valid dirty HPTEs */
2191 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2192 && HPTE_DIRTY(HPTE(spapr->htab, index))
2193 && HPTE_VALID(HPTE(spapr->htab, index))) {
2194 CLEAN_HPTE(HPTE(spapr->htab, index));
2195 index++;
2196 examined++;
2197 }
2198
2199 invalidstart = index;
2200 /* Consume invalid dirty HPTEs */
2201 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2202 && HPTE_DIRTY(HPTE(spapr->htab, index))
2203 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2204 CLEAN_HPTE(HPTE(spapr->htab, index));
2205 index++;
2206 examined++;
2207 }
2208
2209 if (index > chunkstart) {
2210 int n_valid = invalidstart - chunkstart;
2211 int n_invalid = index - invalidstart;
2212
2213 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2214 sent += index - chunkstart;
2215
2216 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2217 break;
2218 }
2219 }
2220
2221 if (examined >= htabslots) {
2222 break;
2223 }
2224
2225 if (index >= htabslots) {
2226 assert(index == htabslots);
2227 index = 0;
2228 }
2229 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2230
2231 if (index >= htabslots) {
2232 assert(index == htabslots);
2233 index = 0;
2234 }
2235
2236 spapr->htab_save_index = index;
2237
2238 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2239 }
2240
2241 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2242 #define MAX_KVM_BUF_SIZE 2048
2243
2244 static int htab_save_iterate(QEMUFile *f, void *opaque)
2245 {
2246 SpaprMachineState *spapr = opaque;
2247 int fd;
2248 int rc = 0;
2249
2250 /* Iteration header */
2251 if (!spapr->htab_shift) {
2252 qemu_put_be32(f, -1);
2253 return 1;
2254 } else {
2255 qemu_put_be32(f, 0);
2256 }
2257
2258 if (!spapr->htab) {
2259 assert(kvm_enabled());
2260
2261 fd = get_htab_fd(spapr);
2262 if (fd < 0) {
2263 return fd;
2264 }
2265
2266 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2267 if (rc < 0) {
2268 return rc;
2269 }
2270 } else if (spapr->htab_first_pass) {
2271 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2272 } else {
2273 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2274 }
2275
2276 htab_save_end_marker(f);
2277
2278 return rc;
2279 }
2280
2281 static int htab_save_complete(QEMUFile *f, void *opaque)
2282 {
2283 SpaprMachineState *spapr = opaque;
2284 int fd;
2285
2286 /* Iteration header */
2287 if (!spapr->htab_shift) {
2288 qemu_put_be32(f, -1);
2289 return 0;
2290 } else {
2291 qemu_put_be32(f, 0);
2292 }
2293
2294 if (!spapr->htab) {
2295 int rc;
2296
2297 assert(kvm_enabled());
2298
2299 fd = get_htab_fd(spapr);
2300 if (fd < 0) {
2301 return fd;
2302 }
2303
2304 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2305 if (rc < 0) {
2306 return rc;
2307 }
2308 } else {
2309 if (spapr->htab_first_pass) {
2310 htab_save_first_pass(f, spapr, -1);
2311 }
2312 htab_save_later_pass(f, spapr, -1);
2313 }
2314
2315 /* End marker */
2316 htab_save_end_marker(f);
2317
2318 return 0;
2319 }
2320
2321 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2322 {
2323 SpaprMachineState *spapr = opaque;
2324 uint32_t section_hdr;
2325 int fd = -1;
2326 Error *local_err = NULL;
2327
2328 if (version_id < 1 || version_id > 1) {
2329 error_report("htab_load() bad version");
2330 return -EINVAL;
2331 }
2332
2333 section_hdr = qemu_get_be32(f);
2334
2335 if (section_hdr == -1) {
2336 spapr_free_hpt(spapr);
2337 return 0;
2338 }
2339
2340 if (section_hdr) {
2341 /* First section gives the htab size */
2342 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2343 if (local_err) {
2344 error_report_err(local_err);
2345 return -EINVAL;
2346 }
2347 return 0;
2348 }
2349
2350 if (!spapr->htab) {
2351 assert(kvm_enabled());
2352
2353 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2354 if (fd < 0) {
2355 error_report_err(local_err);
2356 return fd;
2357 }
2358 }
2359
2360 while (true) {
2361 uint32_t index;
2362 uint16_t n_valid, n_invalid;
2363
2364 index = qemu_get_be32(f);
2365 n_valid = qemu_get_be16(f);
2366 n_invalid = qemu_get_be16(f);
2367
2368 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2369 /* End of Stream */
2370 break;
2371 }
2372
2373 if ((index + n_valid + n_invalid) >
2374 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2375 /* Bad index in stream */
2376 error_report(
2377 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2378 index, n_valid, n_invalid, spapr->htab_shift);
2379 return -EINVAL;
2380 }
2381
2382 if (spapr->htab) {
2383 if (n_valid) {
2384 qemu_get_buffer(f, HPTE(spapr->htab, index),
2385 HASH_PTE_SIZE_64 * n_valid);
2386 }
2387 if (n_invalid) {
2388 memset(HPTE(spapr->htab, index + n_valid), 0,
2389 HASH_PTE_SIZE_64 * n_invalid);
2390 }
2391 } else {
2392 int rc;
2393
2394 assert(fd >= 0);
2395
2396 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2397 if (rc < 0) {
2398 return rc;
2399 }
2400 }
2401 }
2402
2403 if (!spapr->htab) {
2404 assert(fd >= 0);
2405 close(fd);
2406 }
2407
2408 return 0;
2409 }
2410
2411 static void htab_save_cleanup(void *opaque)
2412 {
2413 SpaprMachineState *spapr = opaque;
2414
2415 close_htab_fd(spapr);
2416 }
2417
2418 static SaveVMHandlers savevm_htab_handlers = {
2419 .save_setup = htab_save_setup,
2420 .save_live_iterate = htab_save_iterate,
2421 .save_live_complete_precopy = htab_save_complete,
2422 .save_cleanup = htab_save_cleanup,
2423 .load_state = htab_load,
2424 };
2425
2426 static void spapr_boot_set(void *opaque, const char *boot_device,
2427 Error **errp)
2428 {
2429 MachineState *machine = MACHINE(opaque);
2430 machine->boot_order = g_strdup(boot_device);
2431 }
2432
2433 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2434 {
2435 MachineState *machine = MACHINE(spapr);
2436 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2437 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2438 int i;
2439
2440 for (i = 0; i < nr_lmbs; i++) {
2441 uint64_t addr;
2442
2443 addr = i * lmb_size + machine->device_memory->base;
2444 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2445 addr / lmb_size);
2446 }
2447 }
2448
2449 /*
2450 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2451 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2452 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2453 */
2454 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2455 {
2456 int i;
2457
2458 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2459 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2460 " is not aligned to %" PRIu64 " MiB",
2461 machine->ram_size,
2462 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2463 return;
2464 }
2465
2466 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2467 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2468 " is not aligned to %" PRIu64 " MiB",
2469 machine->ram_size,
2470 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2471 return;
2472 }
2473
2474 for (i = 0; i < machine->numa_state->num_nodes; i++) {
2475 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2476 error_setg(errp,
2477 "Node %d memory size 0x%" PRIx64
2478 " is not aligned to %" PRIu64 " MiB",
2479 i, machine->numa_state->nodes[i].node_mem,
2480 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2481 return;
2482 }
2483 }
2484 }
2485
2486 /* find cpu slot in machine->possible_cpus by core_id */
2487 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2488 {
2489 int index = id / ms->smp.threads;
2490
2491 if (index >= ms->possible_cpus->len) {
2492 return NULL;
2493 }
2494 if (idx) {
2495 *idx = index;
2496 }
2497 return &ms->possible_cpus->cpus[index];
2498 }
2499
2500 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2501 {
2502 MachineState *ms = MACHINE(spapr);
2503 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2504 Error *local_err = NULL;
2505 bool vsmt_user = !!spapr->vsmt;
2506 int kvm_smt = kvmppc_smt_threads();
2507 int ret;
2508 unsigned int smp_threads = ms->smp.threads;
2509
2510 if (!kvm_enabled() && (smp_threads > 1)) {
2511 error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2512 "on a pseries machine");
2513 goto out;
2514 }
2515 if (!is_power_of_2(smp_threads)) {
2516 error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2517 "machine because it must be a power of 2", smp_threads);
2518 goto out;
2519 }
2520
2521 /* Detemine the VSMT mode to use: */
2522 if (vsmt_user) {
2523 if (spapr->vsmt < smp_threads) {
2524 error_setg(&local_err, "Cannot support VSMT mode %d"
2525 " because it must be >= threads/core (%d)",
2526 spapr->vsmt, smp_threads);
2527 goto out;
2528 }
2529 /* In this case, spapr->vsmt has been set by the command line */
2530 } else if (!smc->smp_threads_vsmt) {
2531 /*
2532 * Default VSMT value is tricky, because we need it to be as
2533 * consistent as possible (for migration), but this requires
2534 * changing it for at least some existing cases. We pick 8 as
2535 * the value that we'd get with KVM on POWER8, the
2536 * overwhelmingly common case in production systems.
2537 */
2538 spapr->vsmt = MAX(8, smp_threads);
2539 } else {
2540 spapr->vsmt = smp_threads;
2541 }
2542
2543 /* KVM: If necessary, set the SMT mode: */
2544 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2545 ret = kvmppc_set_smt_threads(spapr->vsmt);
2546 if (ret) {
2547 /* Looks like KVM isn't able to change VSMT mode */
2548 error_setg(&local_err,
2549 "Failed to set KVM's VSMT mode to %d (errno %d)",
2550 spapr->vsmt, ret);
2551 /* We can live with that if the default one is big enough
2552 * for the number of threads, and a submultiple of the one
2553 * we want. In this case we'll waste some vcpu ids, but
2554 * behaviour will be correct */
2555 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2556 warn_report_err(local_err);
2557 local_err = NULL;
2558 goto out;
2559 } else {
2560 if (!vsmt_user) {
2561 error_append_hint(&local_err,
2562 "On PPC, a VM with %d threads/core"
2563 " on a host with %d threads/core"
2564 " requires the use of VSMT mode %d.\n",
2565 smp_threads, kvm_smt, spapr->vsmt);
2566 }
2567 kvmppc_error_append_smt_possible_hint(&local_err);
2568 goto out;
2569 }
2570 }
2571 }
2572 /* else TCG: nothing to do currently */
2573 out:
2574 error_propagate(errp, local_err);
2575 }
2576
2577 static void spapr_init_cpus(SpaprMachineState *spapr)
2578 {
2579 MachineState *machine = MACHINE(spapr);
2580 MachineClass *mc = MACHINE_GET_CLASS(machine);
2581 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2582 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2583 const CPUArchIdList *possible_cpus;
2584 unsigned int smp_cpus = machine->smp.cpus;
2585 unsigned int smp_threads = machine->smp.threads;
2586 unsigned int max_cpus = machine->smp.max_cpus;
2587 int boot_cores_nr = smp_cpus / smp_threads;
2588 int i;
2589
2590 possible_cpus = mc->possible_cpu_arch_ids(machine);
2591 if (mc->has_hotpluggable_cpus) {
2592 if (smp_cpus % smp_threads) {
2593 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2594 smp_cpus, smp_threads);
2595 exit(1);
2596 }
2597 if (max_cpus % smp_threads) {
2598 error_report("max_cpus (%u) must be multiple of threads (%u)",
2599 max_cpus, smp_threads);
2600 exit(1);
2601 }
2602 } else {
2603 if (max_cpus != smp_cpus) {
2604 error_report("This machine version does not support CPU hotplug");
2605 exit(1);
2606 }
2607 boot_cores_nr = possible_cpus->len;
2608 }
2609
2610 if (smc->pre_2_10_has_unused_icps) {
2611 int i;
2612
2613 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2614 /* Dummy entries get deregistered when real ICPState objects
2615 * are registered during CPU core hotplug.
2616 */
2617 pre_2_10_vmstate_register_dummy_icp(i);
2618 }
2619 }
2620
2621 for (i = 0; i < possible_cpus->len; i++) {
2622 int core_id = i * smp_threads;
2623
2624 if (mc->has_hotpluggable_cpus) {
2625 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2626 spapr_vcpu_id(spapr, core_id));
2627 }
2628
2629 if (i < boot_cores_nr) {
2630 Object *core = object_new(type);
2631 int nr_threads = smp_threads;
2632
2633 /* Handle the partially filled core for older machine types */
2634 if ((i + 1) * smp_threads >= smp_cpus) {
2635 nr_threads = smp_cpus - i * smp_threads;
2636 }
2637
2638 object_property_set_int(core, nr_threads, "nr-threads",
2639 &error_fatal);
2640 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2641 &error_fatal);
2642 object_property_set_bool(core, true, "realized", &error_fatal);
2643
2644 object_unref(core);
2645 }
2646 }
2647 }
2648
2649 static PCIHostState *spapr_create_default_phb(void)
2650 {
2651 DeviceState *dev;
2652
2653 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2654 qdev_prop_set_uint32(dev, "index", 0);
2655 qdev_init_nofail(dev);
2656
2657 return PCI_HOST_BRIDGE(dev);
2658 }
2659
2660 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2661 {
2662 MachineState *machine = MACHINE(spapr);
2663 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2664 hwaddr rma_size = machine->ram_size;
2665 hwaddr node0_size = spapr_node0_size(machine);
2666
2667 /* RMA has to fit in the first NUMA node */
2668 rma_size = MIN(rma_size, node0_size);
2669
2670 /*
2671 * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2672 * never exceed that
2673 */
2674 rma_size = MIN(rma_size, 1 * TiB);
2675
2676 /*
2677 * Clamp the RMA size based on machine type. This is for
2678 * migration compatibility with older qemu versions, which limited
2679 * the RMA size for complicated and mostly bad reasons.
2680 */
2681 if (smc->rma_limit) {
2682 rma_size = MIN(rma_size, smc->rma_limit);
2683 }
2684
2685 if (rma_size < MIN_RMA_SLOF) {
2686 error_setg(errp,
2687 "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2688 "ldMiB guest RMA (Real Mode Area memory)",
2689 MIN_RMA_SLOF / MiB);
2690 return 0;
2691 }
2692
2693 return rma_size;
2694 }
2695
2696 /* pSeries LPAR / sPAPR hardware init */
2697 static void spapr_machine_init(MachineState *machine)
2698 {
2699 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2700 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2701 MachineClass *mc = MACHINE_GET_CLASS(machine);
2702 const char *kernel_filename = machine->kernel_filename;
2703 const char *initrd_filename = machine->initrd_filename;
2704 PCIHostState *phb;
2705 int i;
2706 MemoryRegion *sysmem = get_system_memory();
2707 long load_limit, fw_size;
2708 char *filename;
2709 Error *resize_hpt_err = NULL;
2710
2711 msi_nonbroken = true;
2712
2713 QLIST_INIT(&spapr->phbs);
2714 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2715
2716 /* Determine capabilities to run with */
2717 spapr_caps_init(spapr);
2718
2719 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2720 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2721 /*
2722 * If the user explicitly requested a mode we should either
2723 * supply it, or fail completely (which we do below). But if
2724 * it's not set explicitly, we reset our mode to something
2725 * that works
2726 */
2727 if (resize_hpt_err) {
2728 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2729 error_free(resize_hpt_err);
2730 resize_hpt_err = NULL;
2731 } else {
2732 spapr->resize_hpt = smc->resize_hpt_default;
2733 }
2734 }
2735
2736 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2737
2738 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2739 /*
2740 * User requested HPT resize, but this host can't supply it. Bail out
2741 */
2742 error_report_err(resize_hpt_err);
2743 exit(1);
2744 }
2745
2746 spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2747
2748 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2749 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2750
2751 /*
2752 * VSMT must be set in order to be able to compute VCPU ids, ie to
2753 * call spapr_max_server_number() or spapr_vcpu_id().
2754 */
2755 spapr_set_vsmt_mode(spapr, &error_fatal);
2756
2757 /* Set up Interrupt Controller before we create the VCPUs */
2758 spapr_irq_init(spapr, &error_fatal);
2759
2760 /* Set up containers for ibm,client-architecture-support negotiated options
2761 */
2762 spapr->ov5 = spapr_ovec_new();
2763 spapr->ov5_cas = spapr_ovec_new();
2764
2765 if (smc->dr_lmb_enabled) {
2766 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2767 spapr_validate_node_memory(machine, &error_fatal);
2768 }
2769
2770 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2771
2772 /* advertise support for dedicated HP event source to guests */
2773 if (spapr->use_hotplug_event_source) {
2774 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2775 }
2776
2777 /* advertise support for HPT resizing */
2778 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2779 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2780 }
2781
2782 /* advertise support for ibm,dyamic-memory-v2 */
2783 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2784
2785 /* advertise XIVE on POWER9 machines */
2786 if (spapr->irq->xive) {
2787 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2788 }
2789
2790 /* init CPUs */
2791 spapr_init_cpus(spapr);
2792
2793 /*
2794 * check we don't have a memory-less/cpu-less NUMA node
2795 * Firmware relies on the existing memory/cpu topology to provide the
2796 * NUMA topology to the kernel.
2797 * And the linux kernel needs to know the NUMA topology at start
2798 * to be able to hotplug CPUs later.
2799 */
2800 if (machine->numa_state->num_nodes) {
2801 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
2802 /* check for memory-less node */
2803 if (machine->numa_state->nodes[i].node_mem == 0) {
2804 CPUState *cs;
2805 int found = 0;
2806 /* check for cpu-less node */
2807 CPU_FOREACH(cs) {
2808 PowerPCCPU *cpu = POWERPC_CPU(cs);
2809 if (cpu->node_id == i) {
2810 found = 1;
2811 break;
2812 }
2813 }
2814 /* memory-less and cpu-less node */
2815 if (!found) {
2816 error_report(
2817 "Memory-less/cpu-less nodes are not supported (node %d)",
2818 i);
2819 exit(1);
2820 }
2821 }
2822 }
2823
2824 }
2825
2826 /*
2827 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
2828 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
2829 * called from vPHB reset handler so we initialize the counter here.
2830 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
2831 * must be equally distant from any other node.
2832 * The final value of spapr->gpu_numa_id is going to be written to
2833 * max-associativity-domains in spapr_build_fdt().
2834 */
2835 spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes);
2836
2837 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2838 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2839 spapr->max_compat_pvr)) {
2840 /* KVM and TCG always allow GTSE with radix... */
2841 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2842 }
2843 /* ... but not with hash (currently). */
2844
2845 if (kvm_enabled()) {
2846 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2847 kvmppc_enable_logical_ci_hcalls();
2848 kvmppc_enable_set_mode_hcall();
2849
2850 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2851 kvmppc_enable_clear_ref_mod_hcalls();
2852
2853 /* Enable H_PAGE_INIT */
2854 kvmppc_enable_h_page_init();
2855 }
2856
2857 /* map RAM */
2858 memory_region_add_subregion(sysmem, 0, machine->ram);
2859
2860 /* always allocate the device memory information */
2861 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2862
2863 /* initialize hotplug memory address space */
2864 if (machine->ram_size < machine->maxram_size) {
2865 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2866 /*
2867 * Limit the number of hotpluggable memory slots to half the number
2868 * slots that KVM supports, leaving the other half for PCI and other
2869 * devices. However ensure that number of slots doesn't drop below 32.
2870 */
2871 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2872 SPAPR_MAX_RAM_SLOTS;
2873
2874 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2875 max_memslots = SPAPR_MAX_RAM_SLOTS;
2876 }
2877 if (machine->ram_slots > max_memslots) {
2878 error_report("Specified number of memory slots %"
2879 PRIu64" exceeds max supported %d",
2880 machine->ram_slots, max_memslots);
2881 exit(1);
2882 }
2883
2884 machine->device_memory->base = ROUND_UP(machine->ram_size,
2885 SPAPR_DEVICE_MEM_ALIGN);
2886 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2887 "device-memory", device_mem_size);
2888 memory_region_add_subregion(sysmem, machine->device_memory->base,
2889 &machine->device_memory->mr);
2890 }
2891
2892 if (smc->dr_lmb_enabled) {
2893 spapr_create_lmb_dr_connectors(spapr);
2894 }
2895
2896 if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2897 /* Create the error string for live migration blocker */
2898 error_setg(&spapr->fwnmi_migration_blocker,
2899 "A machine check is being handled during migration. The handler"
2900 "may run and log hardware error on the destination");
2901 }
2902
2903 if (mc->nvdimm_supported) {
2904 spapr_create_nvdimm_dr_connectors(spapr);
2905 }
2906
2907 /* Set up RTAS event infrastructure */
2908 spapr_events_init(spapr);
2909
2910 /* Set up the RTC RTAS interfaces */
2911 spapr_rtc_create(spapr);
2912
2913 /* Set up VIO bus */
2914 spapr->vio_bus = spapr_vio_bus_init();
2915
2916 for (i = 0; i < serial_max_hds(); i++) {
2917 if (serial_hd(i)) {
2918 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2919 }
2920 }
2921
2922 /* We always have at least the nvram device on VIO */
2923 spapr_create_nvram(spapr);
2924
2925 /*
2926 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2927 * connectors (described in root DT node's "ibm,drc-types" property)
2928 * are pre-initialized here. additional child connectors (such as
2929 * connectors for a PHBs PCI slots) are added as needed during their
2930 * parent's realization.
2931 */
2932 if (smc->dr_phb_enabled) {
2933 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2934 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2935 }
2936 }
2937
2938 /* Set up PCI */
2939 spapr_pci_rtas_init();
2940
2941 phb = spapr_create_default_phb();
2942
2943 for (i = 0; i < nb_nics; i++) {
2944 NICInfo *nd = &nd_table[i];
2945
2946 if (!nd->model) {
2947 nd->model = g_strdup("spapr-vlan");
2948 }
2949
2950 if (g_str_equal(nd->model, "spapr-vlan") ||
2951 g_str_equal(nd->model, "ibmveth")) {
2952 spapr_vlan_create(spapr->vio_bus, nd);
2953 } else {
2954 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2955 }
2956 }
2957
2958 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2959 spapr_vscsi_create(spapr->vio_bus);
2960 }
2961
2962 /* Graphics */
2963 if (spapr_vga_init(phb->bus, &error_fatal)) {
2964 spapr->has_graphics = true;
2965 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2966 }
2967
2968 if (machine->usb) {
2969 if (smc->use_ohci_by_default) {
2970 pci_create_simple(phb->bus, -1, "pci-ohci");
2971 } else {
2972 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2973 }
2974
2975 if (spapr->has_graphics) {
2976 USBBus *usb_bus = usb_bus_find(-1);
2977
2978 usb_create_simple(usb_bus, "usb-kbd");
2979 usb_create_simple(usb_bus, "usb-mouse");
2980 }
2981 }
2982
2983 if (kernel_filename) {
2984 uint64_t lowaddr = 0;
2985
2986 spapr->kernel_size = load_elf(kernel_filename, NULL,
2987 translate_kernel_address, spapr,
2988 NULL, &lowaddr, NULL, NULL, 1,
2989 PPC_ELF_MACHINE, 0, 0);
2990 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2991 spapr->kernel_size = load_elf(kernel_filename, NULL,
2992 translate_kernel_address, spapr, NULL,
2993 &lowaddr, NULL, NULL, 0,
2994 PPC_ELF_MACHINE,
2995 0, 0);
2996 spapr->kernel_le = spapr->kernel_size > 0;
2997 }
2998 if (spapr->kernel_size < 0) {
2999 error_report("error loading %s: %s", kernel_filename,
3000 load_elf_strerror(spapr->kernel_size));
3001 exit(1);
3002 }
3003
3004 /* load initrd */
3005 if (initrd_filename) {
3006 /* Try to locate the initrd in the gap between the kernel
3007 * and the firmware. Add a bit of space just in case
3008 */
3009 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
3010 + 0x1ffff) & ~0xffff;
3011 spapr->initrd_size = load_image_targphys(initrd_filename,
3012 spapr->initrd_base,
3013 load_limit
3014 - spapr->initrd_base);
3015 if (spapr->initrd_size < 0) {
3016 error_report("could not load initial ram disk '%s'",
3017 initrd_filename);
3018 exit(1);
3019 }
3020 }
3021 }
3022
3023 if (bios_name == NULL) {
3024 bios_name = FW_FILE_NAME;
3025 }
3026 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
3027 if (!filename) {
3028 error_report("Could not find LPAR firmware '%s'", bios_name);
3029 exit(1);
3030 }
3031 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3032 if (fw_size <= 0) {
3033 error_report("Could not load LPAR firmware '%s'", filename);
3034 exit(1);
3035 }
3036 g_free(filename);
3037
3038 /* FIXME: Should register things through the MachineState's qdev
3039 * interface, this is a legacy from the sPAPREnvironment structure
3040 * which predated MachineState but had a similar function */
3041 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3042 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
3043 &savevm_htab_handlers, spapr);
3044
3045 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine),
3046 &error_fatal);
3047
3048 qemu_register_boot_set(spapr_boot_set, spapr);
3049
3050 /*
3051 * Nothing needs to be done to resume a suspended guest because
3052 * suspending does not change the machine state, so no need for
3053 * a ->wakeup method.
3054 */
3055 qemu_register_wakeup_support();
3056
3057 if (kvm_enabled()) {
3058 /* to stop and start vmclock */
3059 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3060 &spapr->tb);
3061
3062 kvmppc_spapr_enable_inkernel_multitce();
3063 }
3064
3065 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3066 }
3067
3068 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3069 {
3070 if (!vm_type) {
3071 return 0;
3072 }
3073
3074 if (!strcmp(vm_type, "HV")) {
3075 return 1;
3076 }
3077
3078 if (!strcmp(vm_type, "PR")) {
3079 return 2;
3080 }
3081
3082 error_report("Unknown kvm-type specified '%s'", vm_type);
3083 exit(1);
3084 }
3085
3086 /*
3087 * Implementation of an interface to adjust firmware path
3088 * for the bootindex property handling.
3089 */
3090 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3091 DeviceState *dev)
3092 {
3093 #define CAST(type, obj, name) \
3094 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3095 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3096 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3097 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3098
3099 if (d) {
3100 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3101 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3102 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3103
3104 if (spapr) {
3105 /*
3106 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3107 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3108 * 0x8000 | (target << 8) | (bus << 5) | lun
3109 * (see the "Logical unit addressing format" table in SAM5)
3110 */
3111 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3112 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3113 (uint64_t)id << 48);
3114 } else if (virtio) {
3115 /*
3116 * We use SRP luns of the form 01000000 | (target << 8) | lun
3117 * in the top 32 bits of the 64-bit LUN
3118 * Note: the quote above is from SLOF and it is wrong,
3119 * the actual binding is:
3120 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3121 */
3122 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3123 if (d->lun >= 256) {
3124 /* Use the LUN "flat space addressing method" */
3125 id |= 0x4000;
3126 }
3127 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3128 (uint64_t)id << 32);
3129 } else if (usb) {
3130 /*
3131 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3132 * in the top 32 bits of the 64-bit LUN
3133 */
3134 unsigned usb_port = atoi(usb->port->path);
3135 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3136 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3137 (uint64_t)id << 32);
3138 }
3139 }
3140
3141 /*
3142 * SLOF probes the USB devices, and if it recognizes that the device is a
3143 * storage device, it changes its name to "storage" instead of "usb-host",
3144 * and additionally adds a child node for the SCSI LUN, so the correct
3145 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3146 */
3147 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3148 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3149 if (usb_host_dev_is_scsi_storage(usbdev)) {
3150 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3151 }
3152 }
3153
3154 if (phb) {
3155 /* Replace "pci" with "pci@800000020000000" */
3156 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3157 }
3158
3159 if (vsc) {
3160 /* Same logic as virtio above */
3161 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3162 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3163 }
3164
3165 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3166 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3167 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3168 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3169 }
3170
3171 return NULL;
3172 }
3173
3174 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3175 {
3176 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3177
3178 return g_strdup(spapr->kvm_type);
3179 }
3180
3181 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3182 {
3183 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3184
3185 g_free(spapr->kvm_type);
3186 spapr->kvm_type = g_strdup(value);
3187 }
3188
3189 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3190 {
3191 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3192
3193 return spapr->use_hotplug_event_source;
3194 }
3195
3196 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3197 Error **errp)
3198 {
3199 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3200
3201 spapr->use_hotplug_event_source = value;
3202 }
3203
3204 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3205 {
3206 return true;
3207 }
3208
3209 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3210 {
3211 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3212
3213 switch (spapr->resize_hpt) {
3214 case SPAPR_RESIZE_HPT_DEFAULT:
3215 return g_strdup("default");
3216 case SPAPR_RESIZE_HPT_DISABLED:
3217 return g_strdup("disabled");
3218 case SPAPR_RESIZE_HPT_ENABLED:
3219 return g_strdup("enabled");
3220 case SPAPR_RESIZE_HPT_REQUIRED:
3221 return g_strdup("required");
3222 }
3223 g_assert_not_reached();
3224 }
3225
3226 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3227 {
3228 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3229
3230 if (strcmp(value, "default") == 0) {
3231 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3232 } else if (strcmp(value, "disabled") == 0) {
3233 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3234 } else if (strcmp(value, "enabled") == 0) {
3235 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3236 } else if (strcmp(value, "required") == 0) {
3237 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3238 } else {
3239 error_setg(errp, "Bad value for \"resize-hpt\" property");
3240 }
3241 }
3242
3243 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3244 {
3245 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3246
3247 if (spapr->irq == &spapr_irq_xics_legacy) {
3248 return g_strdup("legacy");
3249 } else if (spapr->irq == &spapr_irq_xics) {
3250 return g_strdup("xics");
3251 } else if (spapr->irq == &spapr_irq_xive) {
3252 return g_strdup("xive");
3253 } else if (spapr->irq == &spapr_irq_dual) {
3254 return g_strdup("dual");
3255 }
3256 g_assert_not_reached();
3257 }
3258
3259 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3260 {
3261 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3262
3263 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3264 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3265 return;
3266 }
3267
3268 /* The legacy IRQ backend can not be set */
3269 if (strcmp(value, "xics") == 0) {
3270 spapr->irq = &spapr_irq_xics;
3271 } else if (strcmp(value, "xive") == 0) {
3272 spapr->irq = &spapr_irq_xive;
3273 } else if (strcmp(value, "dual") == 0) {
3274 spapr->irq = &spapr_irq_dual;
3275 } else {
3276 error_setg(errp, "Bad value for \"ic-mode\" property");
3277 }
3278 }
3279
3280 static char *spapr_get_host_model(Object *obj, Error **errp)
3281 {
3282 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3283
3284 return g_strdup(spapr->host_model);
3285 }
3286
3287 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3288 {
3289 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3290
3291 g_free(spapr->host_model);
3292 spapr->host_model = g_strdup(value);
3293 }
3294
3295 static char *spapr_get_host_serial(Object *obj, Error **errp)
3296 {
3297 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3298
3299 return g_strdup(spapr->host_serial);
3300 }
3301
3302 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3303 {
3304 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3305
3306 g_free(spapr->host_serial);
3307 spapr->host_serial = g_strdup(value);
3308 }
3309
3310 static void spapr_instance_init(Object *obj)
3311 {
3312 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3313 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3314
3315 spapr->htab_fd = -1;
3316 spapr->use_hotplug_event_source = true;
3317 object_property_add_str(obj, "kvm-type",
3318 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3319 object_property_set_description(obj, "kvm-type",
3320 "Specifies the KVM virtualization mode (HV, PR)",
3321 NULL);
3322 object_property_add_bool(obj, "modern-hotplug-events",
3323 spapr_get_modern_hotplug_events,
3324 spapr_set_modern_hotplug_events,
3325 NULL);
3326 object_property_set_description(obj, "modern-hotplug-events",
3327 "Use dedicated hotplug event mechanism in"
3328 " place of standard EPOW events when possible"
3329 " (required for memory hot-unplug support)",
3330 NULL);
3331 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3332 "Maximum permitted CPU compatibility mode",
3333 &error_fatal);
3334
3335 object_property_add_str(obj, "resize-hpt",
3336 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3337 object_property_set_description(obj, "resize-hpt",
3338 "Resizing of the Hash Page Table (enabled, disabled, required)",
3339 NULL);
3340 object_property_add_uint32_ptr(obj, "vsmt",
3341 &spapr->vsmt, OBJ_PROP_FLAG_READWRITE,
3342 &error_abort);
3343 object_property_set_description(obj, "vsmt",
3344 "Virtual SMT: KVM behaves as if this were"
3345 " the host's SMT mode", &error_abort);
3346
3347 object_property_add_bool(obj, "vfio-no-msix-emulation",
3348 spapr_get_msix_emulation, NULL, NULL);
3349
3350 object_property_add_uint64_ptr(obj, "kernel-addr",
3351 &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE,
3352 &error_abort);
3353 object_property_set_description(obj, "kernel-addr",
3354 stringify(KERNEL_LOAD_ADDR)
3355 " for -kernel is the default",
3356 NULL);
3357 spapr->kernel_addr = KERNEL_LOAD_ADDR;
3358 /* The machine class defines the default interrupt controller mode */
3359 spapr->irq = smc->irq;
3360 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3361 spapr_set_ic_mode, NULL);
3362 object_property_set_description(obj, "ic-mode",
3363 "Specifies the interrupt controller mode (xics, xive, dual)",
3364 NULL);
3365
3366 object_property_add_str(obj, "host-model",
3367 spapr_get_host_model, spapr_set_host_model,
3368 &error_abort);
3369 object_property_set_description(obj, "host-model",
3370 "Host model to advertise in guest device tree", &error_abort);
3371 object_property_add_str(obj, "host-serial",
3372 spapr_get_host_serial, spapr_set_host_serial,
3373 &error_abort);
3374 object_property_set_description(obj, "host-serial",
3375 "Host serial number to advertise in guest device tree", &error_abort);
3376 }
3377
3378 static void spapr_machine_finalizefn(Object *obj)
3379 {
3380 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3381
3382 g_free(spapr->kvm_type);
3383 }
3384
3385 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3386 {
3387 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3388
3389 cpu_synchronize_state(cs);
3390 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3391 if (spapr->fwnmi_system_reset_addr != -1) {
3392 uint64_t rtas_addr, addr;
3393 PowerPCCPU *cpu = POWERPC_CPU(cs);
3394 CPUPPCState *env = &cpu->env;
3395
3396 /* get rtas addr from fdt */
3397 rtas_addr = spapr_get_rtas_addr();
3398 if (!rtas_addr) {
3399 qemu_system_guest_panicked(NULL);
3400 return;
3401 }
3402
3403 addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3404 stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3405 stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3406 env->gpr[3] = addr;
3407 }
3408 ppc_cpu_do_system_reset(cs, spapr->fwnmi_system_reset_addr);
3409 }
3410
3411 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3412 {
3413 CPUState *cs;
3414
3415 CPU_FOREACH(cs) {
3416 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3417 }
3418 }
3419
3420 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3421 void *fdt, int *fdt_start_offset, Error **errp)
3422 {
3423 uint64_t addr;
3424 uint32_t node;
3425
3426 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3427 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3428 &error_abort);
3429 *fdt_start_offset = spapr_dt_memory_node(fdt, node, addr,
3430 SPAPR_MEMORY_BLOCK_SIZE);
3431 return 0;
3432 }
3433
3434 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3435 bool dedicated_hp_event_source, Error **errp)
3436 {
3437 SpaprDrc *drc;
3438 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3439 int i;
3440 uint64_t addr = addr_start;
3441 bool hotplugged = spapr_drc_hotplugged(dev);
3442 Error *local_err = NULL;
3443
3444 for (i = 0; i < nr_lmbs; i++) {
3445 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3446 addr / SPAPR_MEMORY_BLOCK_SIZE);
3447 g_assert(drc);
3448
3449 spapr_drc_attach(drc, dev, &local_err);
3450 if (local_err) {
3451 while (addr > addr_start) {
3452 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3453 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3454 addr / SPAPR_MEMORY_BLOCK_SIZE);
3455 spapr_drc_detach(drc);
3456 }
3457 error_propagate(errp, local_err);
3458 return;
3459 }
3460 if (!hotplugged) {
3461 spapr_drc_reset(drc);
3462 }
3463 addr += SPAPR_MEMORY_BLOCK_SIZE;
3464 }
3465 /* send hotplug notification to the
3466 * guest only in case of hotplugged memory
3467 */
3468 if (hotplugged) {
3469 if (dedicated_hp_event_source) {
3470 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3471 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3472 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3473 nr_lmbs,
3474 spapr_drc_index(drc));
3475 } else {
3476 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3477 nr_lmbs);
3478 }
3479 }
3480 }
3481
3482 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3483 Error **errp)
3484 {
3485 Error *local_err = NULL;
3486 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3487 PCDIMMDevice *dimm = PC_DIMM(dev);
3488 uint64_t size, addr, slot;
3489 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3490
3491 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3492
3493 pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3494 if (local_err) {
3495 goto out;
3496 }
3497
3498 if (!is_nvdimm) {
3499 addr = object_property_get_uint(OBJECT(dimm),
3500 PC_DIMM_ADDR_PROP, &local_err);
3501 if (local_err) {
3502 goto out_unplug;
3503 }
3504 spapr_add_lmbs(dev, addr, size,
3505 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3506 &local_err);
3507 } else {
3508 slot = object_property_get_uint(OBJECT(dimm),
3509 PC_DIMM_SLOT_PROP, &local_err);
3510 if (local_err) {
3511 goto out_unplug;
3512 }
3513 spapr_add_nvdimm(dev, slot, &local_err);
3514 }
3515
3516 if (local_err) {
3517 goto out_unplug;
3518 }
3519
3520 return;
3521
3522 out_unplug:
3523 pc_dimm_unplug(dimm, MACHINE(ms));
3524 out:
3525 error_propagate(errp, local_err);
3526 }
3527
3528 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3529 Error **errp)
3530 {
3531 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3532 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3533 const MachineClass *mc = MACHINE_CLASS(smc);
3534 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3535 PCDIMMDevice *dimm = PC_DIMM(dev);
3536 Error *local_err = NULL;
3537 uint64_t size;
3538 Object *memdev;
3539 hwaddr pagesize;
3540
3541 if (!smc->dr_lmb_enabled) {
3542 error_setg(errp, "Memory hotplug not supported for this machine");
3543 return;
3544 }
3545
3546 if (is_nvdimm && !mc->nvdimm_supported) {
3547 error_setg(errp, "NVDIMM hotplug not supported for this machine");
3548 return;
3549 }
3550
3551 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3552 if (local_err) {
3553 error_propagate(errp, local_err);
3554 return;
3555 }
3556
3557 if (!is_nvdimm && size % SPAPR_MEMORY_BLOCK_SIZE) {
3558 error_setg(errp, "Hotplugged memory size must be a multiple of "
3559 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3560 return;
3561 } else if (is_nvdimm) {
3562 spapr_nvdimm_validate_opts(NVDIMM(dev), size, &local_err);
3563 if (local_err) {
3564 error_propagate(errp, local_err);
3565 return;
3566 }
3567 }
3568
3569 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3570 &error_abort);
3571 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3572 spapr_check_pagesize(spapr, pagesize, &local_err);
3573 if (local_err) {
3574 error_propagate(errp, local_err);
3575 return;
3576 }
3577
3578 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3579 }
3580
3581 struct SpaprDimmState {
3582 PCDIMMDevice *dimm;
3583 uint32_t nr_lmbs;
3584 QTAILQ_ENTRY(SpaprDimmState) next;
3585 };
3586
3587 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3588 PCDIMMDevice *dimm)
3589 {
3590 SpaprDimmState *dimm_state = NULL;
3591
3592 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3593 if (dimm_state->dimm == dimm) {
3594 break;
3595 }
3596 }
3597 return dimm_state;
3598 }
3599
3600 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3601 uint32_t nr_lmbs,
3602 PCDIMMDevice *dimm)
3603 {
3604 SpaprDimmState *ds = NULL;
3605
3606 /*
3607 * If this request is for a DIMM whose removal had failed earlier
3608 * (due to guest's refusal to remove the LMBs), we would have this
3609 * dimm already in the pending_dimm_unplugs list. In that
3610 * case don't add again.
3611 */
3612 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3613 if (!ds) {
3614 ds = g_malloc0(sizeof(SpaprDimmState));
3615 ds->nr_lmbs = nr_lmbs;
3616 ds->dimm = dimm;
3617 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3618 }
3619 return ds;
3620 }
3621
3622 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3623 SpaprDimmState *dimm_state)
3624 {
3625 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3626 g_free(dimm_state);
3627 }
3628
3629 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3630 PCDIMMDevice *dimm)
3631 {
3632 SpaprDrc *drc;
3633 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3634 &error_abort);
3635 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3636 uint32_t avail_lmbs = 0;
3637 uint64_t addr_start, addr;
3638 int i;
3639
3640 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3641 &error_abort);
3642
3643 addr = addr_start;
3644 for (i = 0; i < nr_lmbs; i++) {
3645 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3646 addr / SPAPR_MEMORY_BLOCK_SIZE);
3647 g_assert(drc);
3648 if (drc->dev) {
3649 avail_lmbs++;
3650 }
3651 addr += SPAPR_MEMORY_BLOCK_SIZE;
3652 }
3653
3654 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3655 }
3656
3657 /* Callback to be called during DRC release. */
3658 void spapr_lmb_release(DeviceState *dev)
3659 {
3660 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3661 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3662 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3663
3664 /* This information will get lost if a migration occurs
3665 * during the unplug process. In this case recover it. */
3666 if (ds == NULL) {
3667 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3668 g_assert(ds);
3669 /* The DRC being examined by the caller at least must be counted */
3670 g_assert(ds->nr_lmbs);
3671 }
3672
3673 if (--ds->nr_lmbs) {
3674 return;
3675 }
3676
3677 /*
3678 * Now that all the LMBs have been removed by the guest, call the
3679 * unplug handler chain. This can never fail.
3680 */
3681 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3682 object_unparent(OBJECT(dev));
3683 }
3684
3685 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3686 {
3687 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3688 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3689
3690 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3691 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3692 spapr_pending_dimm_unplugs_remove(spapr, ds);
3693 }
3694
3695 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3696 DeviceState *dev, Error **errp)
3697 {
3698 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3699 Error *local_err = NULL;
3700 PCDIMMDevice *dimm = PC_DIMM(dev);
3701 uint32_t nr_lmbs;
3702 uint64_t size, addr_start, addr;
3703 int i;
3704 SpaprDrc *drc;
3705
3706 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3707 error_setg(&local_err,
3708 "nvdimm device hot unplug is not supported yet.");
3709 goto out;
3710 }
3711
3712 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3713 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3714
3715 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3716 &local_err);
3717 if (local_err) {
3718 goto out;
3719 }
3720
3721 /*
3722 * An existing pending dimm state for this DIMM means that there is an
3723 * unplug operation in progress, waiting for the spapr_lmb_release
3724 * callback to complete the job (BQL can't cover that far). In this case,
3725 * bail out to avoid detaching DRCs that were already released.
3726 */
3727 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3728 error_setg(&local_err,
3729 "Memory unplug already in progress for device %s",
3730 dev->id);
3731 goto out;
3732 }
3733
3734 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3735
3736 addr = addr_start;
3737 for (i = 0; i < nr_lmbs; i++) {
3738 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3739 addr / SPAPR_MEMORY_BLOCK_SIZE);
3740 g_assert(drc);
3741
3742 spapr_drc_detach(drc);
3743 addr += SPAPR_MEMORY_BLOCK_SIZE;
3744 }
3745
3746 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3747 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3748 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3749 nr_lmbs, spapr_drc_index(drc));
3750 out:
3751 error_propagate(errp, local_err);
3752 }
3753
3754 /* Callback to be called during DRC release. */
3755 void spapr_core_release(DeviceState *dev)
3756 {
3757 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3758
3759 /* Call the unplug handler chain. This can never fail. */
3760 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3761 object_unparent(OBJECT(dev));
3762 }
3763
3764 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3765 {
3766 MachineState *ms = MACHINE(hotplug_dev);
3767 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3768 CPUCore *cc = CPU_CORE(dev);
3769 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3770
3771 if (smc->pre_2_10_has_unused_icps) {
3772 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3773 int i;
3774
3775 for (i = 0; i < cc->nr_threads; i++) {
3776 CPUState *cs = CPU(sc->threads[i]);
3777
3778 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3779 }
3780 }
3781
3782 assert(core_slot);
3783 core_slot->cpu = NULL;
3784 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3785 }
3786
3787 static
3788 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3789 Error **errp)
3790 {
3791 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3792 int index;
3793 SpaprDrc *drc;
3794 CPUCore *cc = CPU_CORE(dev);
3795
3796 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3797 error_setg(errp, "Unable to find CPU core with core-id: %d",
3798 cc->core_id);
3799 return;
3800 }
3801 if (index == 0) {
3802 error_setg(errp, "Boot CPU core may not be unplugged");
3803 return;
3804 }
3805
3806 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3807 spapr_vcpu_id(spapr, cc->core_id));
3808 g_assert(drc);
3809
3810 if (!spapr_drc_unplug_requested(drc)) {
3811 spapr_drc_detach(drc);
3812 spapr_hotplug_req_remove_by_index(drc);
3813 }
3814 }
3815
3816 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3817 void *fdt, int *fdt_start_offset, Error **errp)
3818 {
3819 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3820 CPUState *cs = CPU(core->threads[0]);
3821 PowerPCCPU *cpu = POWERPC_CPU(cs);
3822 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3823 int id = spapr_get_vcpu_id(cpu);
3824 char *nodename;
3825 int offset;
3826
3827 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3828 offset = fdt_add_subnode(fdt, 0, nodename);
3829 g_free(nodename);
3830
3831 spapr_dt_cpu(cs, fdt, offset, spapr);
3832
3833 *fdt_start_offset = offset;
3834 return 0;
3835 }
3836
3837 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3838 Error **errp)
3839 {
3840 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3841 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3842 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3843 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3844 CPUCore *cc = CPU_CORE(dev);
3845 CPUState *cs;
3846 SpaprDrc *drc;
3847 Error *local_err = NULL;
3848 CPUArchId *core_slot;
3849 int index;
3850 bool hotplugged = spapr_drc_hotplugged(dev);
3851 int i;
3852
3853 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3854 if (!core_slot) {
3855 error_setg(errp, "Unable to find CPU core with core-id: %d",
3856 cc->core_id);
3857 return;
3858 }
3859 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3860 spapr_vcpu_id(spapr, cc->core_id));
3861
3862 g_assert(drc || !mc->has_hotpluggable_cpus);
3863
3864 if (drc) {
3865 spapr_drc_attach(drc, dev, &local_err);
3866 if (local_err) {
3867 error_propagate(errp, local_err);
3868 return;
3869 }
3870
3871 if (hotplugged) {
3872 /*
3873 * Send hotplug notification interrupt to the guest only
3874 * in case of hotplugged CPUs.
3875 */
3876 spapr_hotplug_req_add_by_index(drc);
3877 } else {
3878 spapr_drc_reset(drc);
3879 }
3880 }
3881
3882 core_slot->cpu = OBJECT(dev);
3883
3884 if (smc->pre_2_10_has_unused_icps) {
3885 for (i = 0; i < cc->nr_threads; i++) {
3886 cs = CPU(core->threads[i]);
3887 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3888 }
3889 }
3890
3891 /*
3892 * Set compatibility mode to match the boot CPU, which was either set
3893 * by the machine reset code or by CAS.
3894 */
3895 if (hotplugged) {
3896 for (i = 0; i < cc->nr_threads; i++) {
3897 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3898 &local_err);
3899 if (local_err) {
3900 error_propagate(errp, local_err);
3901 return;
3902 }
3903 }
3904 }
3905 }
3906
3907 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3908 Error **errp)
3909 {
3910 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3911 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3912 Error *local_err = NULL;
3913 CPUCore *cc = CPU_CORE(dev);
3914 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3915 const char *type = object_get_typename(OBJECT(dev));
3916 CPUArchId *core_slot;
3917 int index;
3918 unsigned int smp_threads = machine->smp.threads;
3919
3920 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3921 error_setg(&local_err, "CPU hotplug not supported for this machine");
3922 goto out;
3923 }
3924
3925 if (strcmp(base_core_type, type)) {
3926 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3927 goto out;
3928 }
3929
3930 if (cc->core_id % smp_threads) {
3931 error_setg(&local_err, "invalid core id %d", cc->core_id);
3932 goto out;
3933 }
3934
3935 /*
3936 * In general we should have homogeneous threads-per-core, but old
3937 * (pre hotplug support) machine types allow the last core to have
3938 * reduced threads as a compatibility hack for when we allowed
3939 * total vcpus not a multiple of threads-per-core.
3940 */
3941 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3942 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3943 cc->nr_threads, smp_threads);
3944 goto out;
3945 }
3946
3947 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3948 if (!core_slot) {
3949 error_setg(&local_err, "core id %d out of range", cc->core_id);
3950 goto out;
3951 }
3952
3953 if (core_slot->cpu) {
3954 error_setg(&local_err, "core %d already populated", cc->core_id);
3955 goto out;
3956 }
3957
3958 numa_cpu_pre_plug(core_slot, dev, &local_err);
3959
3960 out:
3961 error_propagate(errp, local_err);
3962 }
3963
3964 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3965 void *fdt, int *fdt_start_offset, Error **errp)
3966 {
3967 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3968 int intc_phandle;
3969
3970 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3971 if (intc_phandle <= 0) {
3972 return -1;
3973 }
3974
3975 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
3976 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3977 return -1;
3978 }
3979
3980 /* generally SLOF creates these, for hotplug it's up to QEMU */
3981 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3982
3983 return 0;
3984 }
3985
3986 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3987 Error **errp)
3988 {
3989 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3990 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3991 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3992 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3993
3994 if (dev->hotplugged && !smc->dr_phb_enabled) {
3995 error_setg(errp, "PHB hotplug not supported for this machine");
3996 return;
3997 }
3998
3999 if (sphb->index == (uint32_t)-1) {
4000 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
4001 return;
4002 }
4003
4004 /*
4005 * This will check that sphb->index doesn't exceed the maximum number of
4006 * PHBs for the current machine type.
4007 */
4008 smc->phb_placement(spapr, sphb->index,
4009 &sphb->buid, &sphb->io_win_addr,
4010 &sphb->mem_win_addr, &sphb->mem64_win_addr,
4011 windows_supported, sphb->dma_liobn,
4012 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
4013 errp);
4014 }
4015
4016 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4017 Error **errp)
4018 {
4019 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4020 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4021 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4022 SpaprDrc *drc;
4023 bool hotplugged = spapr_drc_hotplugged(dev);
4024 Error *local_err = NULL;
4025
4026 if (!smc->dr_phb_enabled) {
4027 return;
4028 }
4029
4030 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4031 /* hotplug hooks should check it's enabled before getting this far */
4032 assert(drc);
4033
4034 spapr_drc_attach(drc, DEVICE(dev), &local_err);
4035 if (local_err) {
4036 error_propagate(errp, local_err);
4037 return;
4038 }
4039
4040 if (hotplugged) {
4041 spapr_hotplug_req_add_by_index(drc);
4042 } else {
4043 spapr_drc_reset(drc);
4044 }
4045 }
4046
4047 void spapr_phb_release(DeviceState *dev)
4048 {
4049 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4050
4051 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4052 object_unparent(OBJECT(dev));
4053 }
4054
4055 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4056 {
4057 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4058 }
4059
4060 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4061 DeviceState *dev, Error **errp)
4062 {
4063 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4064 SpaprDrc *drc;
4065
4066 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4067 assert(drc);
4068
4069 if (!spapr_drc_unplug_requested(drc)) {
4070 spapr_drc_detach(drc);
4071 spapr_hotplug_req_remove_by_index(drc);
4072 }
4073 }
4074
4075 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4076 Error **errp)
4077 {
4078 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4079 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4080
4081 if (spapr->tpm_proxy != NULL) {
4082 error_setg(errp, "Only one TPM proxy can be specified for this machine");
4083 return;
4084 }
4085
4086 spapr->tpm_proxy = tpm_proxy;
4087 }
4088
4089 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4090 {
4091 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4092
4093 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4094 object_unparent(OBJECT(dev));
4095 spapr->tpm_proxy = NULL;
4096 }
4097
4098 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4099 DeviceState *dev, Error **errp)
4100 {
4101 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4102 spapr_memory_plug(hotplug_dev, dev, errp);
4103 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4104 spapr_core_plug(hotplug_dev, dev, errp);
4105 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4106 spapr_phb_plug(hotplug_dev, dev, errp);
4107 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4108 spapr_tpm_proxy_plug(hotplug_dev, dev, errp);
4109 }
4110 }
4111
4112 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4113 DeviceState *dev, Error **errp)
4114 {
4115 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4116 spapr_memory_unplug(hotplug_dev, dev);
4117 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4118 spapr_core_unplug(hotplug_dev, dev);
4119 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4120 spapr_phb_unplug(hotplug_dev, dev);
4121 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4122 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4123 }
4124 }
4125
4126 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4127 DeviceState *dev, Error **errp)
4128 {
4129 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4130 MachineClass *mc = MACHINE_GET_CLASS(sms);
4131 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4132
4133 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4134 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4135 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4136 } else {
4137 /* NOTE: this means there is a window after guest reset, prior to
4138 * CAS negotiation, where unplug requests will fail due to the
4139 * capability not being detected yet. This is a bit different than
4140 * the case with PCI unplug, where the events will be queued and
4141 * eventually handled by the guest after boot
4142 */
4143 error_setg(errp, "Memory hot unplug not supported for this guest");
4144 }
4145 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4146 if (!mc->has_hotpluggable_cpus) {
4147 error_setg(errp, "CPU hot unplug not supported on this machine");
4148 return;
4149 }
4150 spapr_core_unplug_request(hotplug_dev, dev, errp);
4151 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4152 if (!smc->dr_phb_enabled) {
4153 error_setg(errp, "PHB hot unplug not supported on this machine");
4154 return;
4155 }
4156 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4157 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4158 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4159 }
4160 }
4161
4162 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4163 DeviceState *dev, Error **errp)
4164 {
4165 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4166 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4167 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4168 spapr_core_pre_plug(hotplug_dev, dev, errp);
4169 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4170 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4171 }
4172 }
4173
4174 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4175 DeviceState *dev)
4176 {
4177 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4178 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4179 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4180 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4181 return HOTPLUG_HANDLER(machine);
4182 }
4183 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4184 PCIDevice *pcidev = PCI_DEVICE(dev);
4185 PCIBus *root = pci_device_root_bus(pcidev);
4186 SpaprPhbState *phb =
4187 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4188 TYPE_SPAPR_PCI_HOST_BRIDGE);
4189
4190 if (phb) {
4191 return HOTPLUG_HANDLER(phb);
4192 }
4193 }
4194 return NULL;
4195 }
4196
4197 static CpuInstanceProperties
4198 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4199 {
4200 CPUArchId *core_slot;
4201 MachineClass *mc = MACHINE_GET_CLASS(machine);
4202
4203 /* make sure possible_cpu are intialized */
4204 mc->possible_cpu_arch_ids(machine);
4205 /* get CPU core slot containing thread that matches cpu_index */
4206 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4207 assert(core_slot);
4208 return core_slot->props;
4209 }
4210
4211 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4212 {
4213 return idx / ms->smp.cores % ms->numa_state->num_nodes;
4214 }
4215
4216 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4217 {
4218 int i;
4219 unsigned int smp_threads = machine->smp.threads;
4220 unsigned int smp_cpus = machine->smp.cpus;
4221 const char *core_type;
4222 int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4223 MachineClass *mc = MACHINE_GET_CLASS(machine);
4224
4225 if (!mc->has_hotpluggable_cpus) {
4226 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4227 }
4228 if (machine->possible_cpus) {
4229 assert(machine->possible_cpus->len == spapr_max_cores);
4230 return machine->possible_cpus;
4231 }
4232
4233 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4234 if (!core_type) {
4235 error_report("Unable to find sPAPR CPU Core definition");
4236 exit(1);
4237 }
4238
4239 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4240 sizeof(CPUArchId) * spapr_max_cores);
4241 machine->possible_cpus->len = spapr_max_cores;
4242 for (i = 0; i < machine->possible_cpus->len; i++) {
4243 int core_id = i * smp_threads;
4244
4245 machine->possible_cpus->cpus[i].type = core_type;
4246 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4247 machine->possible_cpus->cpus[i].arch_id = core_id;
4248 machine->possible_cpus->cpus[i].props.has_core_id = true;
4249 machine->possible_cpus->cpus[i].props.core_id = core_id;
4250 }
4251 return machine->possible_cpus;
4252 }
4253
4254 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4255 uint64_t *buid, hwaddr *pio,
4256 hwaddr *mmio32, hwaddr *mmio64,
4257 unsigned n_dma, uint32_t *liobns,
4258 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4259 {
4260 /*
4261 * New-style PHB window placement.
4262 *
4263 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4264 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4265 * windows.
4266 *
4267 * Some guest kernels can't work with MMIO windows above 1<<46
4268 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4269 *
4270 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4271 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4272 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4273 * 1TiB 64-bit MMIO windows for each PHB.
4274 */
4275 const uint64_t base_buid = 0x800000020000000ULL;
4276 int i;
4277
4278 /* Sanity check natural alignments */
4279 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4280 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4281 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4282 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4283 /* Sanity check bounds */
4284 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4285 SPAPR_PCI_MEM32_WIN_SIZE);
4286 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4287 SPAPR_PCI_MEM64_WIN_SIZE);
4288
4289 if (index >= SPAPR_MAX_PHBS) {
4290 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4291 SPAPR_MAX_PHBS - 1);
4292 return;
4293 }
4294
4295 *buid = base_buid + index;
4296 for (i = 0; i < n_dma; ++i) {
4297 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4298 }
4299
4300 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4301 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4302 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4303
4304 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4305 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4306 }
4307
4308 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4309 {
4310 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4311
4312 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4313 }
4314
4315 static void spapr_ics_resend(XICSFabric *dev)
4316 {
4317 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4318
4319 ics_resend(spapr->ics);
4320 }
4321
4322 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4323 {
4324 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4325
4326 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4327 }
4328
4329 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4330 Monitor *mon)
4331 {
4332 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4333
4334 spapr_irq_print_info(spapr, mon);
4335 monitor_printf(mon, "irqchip: %s\n",
4336 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4337 }
4338
4339 /*
4340 * This is a XIVE only operation
4341 */
4342 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4343 uint8_t nvt_blk, uint32_t nvt_idx,
4344 bool cam_ignore, uint8_t priority,
4345 uint32_t logic_serv, XiveTCTXMatch *match)
4346 {
4347 SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4348 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4349 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4350 int count;
4351
4352 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4353 priority, logic_serv, match);
4354 if (count < 0) {
4355 return count;
4356 }
4357
4358 /*
4359 * When we implement the save and restore of the thread interrupt
4360 * contexts in the enter/exit CPU handlers of the machine and the
4361 * escalations in QEMU, we should be able to handle non dispatched
4362 * vCPUs.
4363 *
4364 * Until this is done, the sPAPR machine should find at least one
4365 * matching context always.
4366 */
4367 if (count == 0) {
4368 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4369 nvt_blk, nvt_idx);
4370 }
4371
4372 return count;
4373 }
4374
4375 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4376 {
4377 return cpu->vcpu_id;
4378 }
4379
4380 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4381 {
4382 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4383 MachineState *ms = MACHINE(spapr);
4384 int vcpu_id;
4385
4386 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4387
4388 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4389 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4390 error_append_hint(errp, "Adjust the number of cpus to %d "
4391 "or try to raise the number of threads per core\n",
4392 vcpu_id * ms->smp.threads / spapr->vsmt);
4393 return;
4394 }
4395
4396 cpu->vcpu_id = vcpu_id;
4397 }
4398
4399 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4400 {
4401 CPUState *cs;
4402
4403 CPU_FOREACH(cs) {
4404 PowerPCCPU *cpu = POWERPC_CPU(cs);
4405
4406 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4407 return cpu;
4408 }
4409 }
4410
4411 return NULL;
4412 }
4413
4414 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4415 {
4416 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4417
4418 /* These are only called by TCG, KVM maintains dispatch state */
4419
4420 spapr_cpu->prod = false;
4421 if (spapr_cpu->vpa_addr) {
4422 CPUState *cs = CPU(cpu);
4423 uint32_t dispatch;
4424
4425 dispatch = ldl_be_phys(cs->as,
4426 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4427 dispatch++;
4428 if ((dispatch & 1) != 0) {
4429 qemu_log_mask(LOG_GUEST_ERROR,
4430 "VPA: incorrect dispatch counter value for "
4431 "dispatched partition %u, correcting.\n", dispatch);
4432 dispatch++;
4433 }
4434 stl_be_phys(cs->as,
4435 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4436 }
4437 }
4438
4439 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4440 {
4441 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4442
4443 if (spapr_cpu->vpa_addr) {
4444 CPUState *cs = CPU(cpu);
4445 uint32_t dispatch;
4446
4447 dispatch = ldl_be_phys(cs->as,
4448 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4449 dispatch++;
4450 if ((dispatch & 1) != 1) {
4451 qemu_log_mask(LOG_GUEST_ERROR,
4452 "VPA: incorrect dispatch counter value for "
4453 "preempted partition %u, correcting.\n", dispatch);
4454 dispatch++;
4455 }
4456 stl_be_phys(cs->as,
4457 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4458 }
4459 }
4460
4461 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4462 {
4463 MachineClass *mc = MACHINE_CLASS(oc);
4464 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4465 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4466 NMIClass *nc = NMI_CLASS(oc);
4467 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4468 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4469 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4470 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4471 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4472
4473 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4474 mc->ignore_boot_device_suffixes = true;
4475
4476 /*
4477 * We set up the default / latest behaviour here. The class_init
4478 * functions for the specific versioned machine types can override
4479 * these details for backwards compatibility
4480 */
4481 mc->init = spapr_machine_init;
4482 mc->reset = spapr_machine_reset;
4483 mc->block_default_type = IF_SCSI;
4484 mc->max_cpus = 1024;
4485 mc->no_parallel = 1;
4486 mc->default_boot_order = "";
4487 mc->default_ram_size = 512 * MiB;
4488 mc->default_ram_id = "ppc_spapr.ram";
4489 mc->default_display = "std";
4490 mc->kvm_type = spapr_kvm_type;
4491 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4492 mc->pci_allow_0_address = true;
4493 assert(!mc->get_hotplug_handler);
4494 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4495 hc->pre_plug = spapr_machine_device_pre_plug;
4496 hc->plug = spapr_machine_device_plug;
4497 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4498 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4499 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4500 hc->unplug_request = spapr_machine_device_unplug_request;
4501 hc->unplug = spapr_machine_device_unplug;
4502
4503 smc->dr_lmb_enabled = true;
4504 smc->update_dt_enabled = true;
4505 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4506 mc->has_hotpluggable_cpus = true;
4507 mc->nvdimm_supported = true;
4508 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4509 fwc->get_dev_path = spapr_get_fw_dev_path;
4510 nc->nmi_monitor_handler = spapr_nmi;
4511 smc->phb_placement = spapr_phb_placement;
4512 vhc->hypercall = emulate_spapr_hypercall;
4513 vhc->hpt_mask = spapr_hpt_mask;
4514 vhc->map_hptes = spapr_map_hptes;
4515 vhc->unmap_hptes = spapr_unmap_hptes;
4516 vhc->hpte_set_c = spapr_hpte_set_c;
4517 vhc->hpte_set_r = spapr_hpte_set_r;
4518 vhc->get_pate = spapr_get_pate;
4519 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4520 vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4521 vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4522 xic->ics_get = spapr_ics_get;
4523 xic->ics_resend = spapr_ics_resend;
4524 xic->icp_get = spapr_icp_get;
4525 ispc->print_info = spapr_pic_print_info;
4526 /* Force NUMA node memory size to be a multiple of
4527 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4528 * in which LMBs are represented and hot-added
4529 */
4530 mc->numa_mem_align_shift = 28;
4531 mc->numa_mem_supported = true;
4532 mc->auto_enable_numa = true;
4533
4534 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4535 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4536 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4537 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4538 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4539 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4540 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4541 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4542 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4543 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4544 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4545 spapr_caps_add_properties(smc, &error_abort);
4546 smc->irq = &spapr_irq_dual;
4547 smc->dr_phb_enabled = true;
4548 smc->linux_pci_probe = true;
4549 smc->smp_threads_vsmt = true;
4550 smc->nr_xirqs = SPAPR_NR_XIRQS;
4551 xfc->match_nvt = spapr_match_nvt;
4552 }
4553
4554 static const TypeInfo spapr_machine_info = {
4555 .name = TYPE_SPAPR_MACHINE,
4556 .parent = TYPE_MACHINE,
4557 .abstract = true,
4558 .instance_size = sizeof(SpaprMachineState),
4559 .instance_init = spapr_instance_init,
4560 .instance_finalize = spapr_machine_finalizefn,
4561 .class_size = sizeof(SpaprMachineClass),
4562 .class_init = spapr_machine_class_init,
4563 .interfaces = (InterfaceInfo[]) {
4564 { TYPE_FW_PATH_PROVIDER },
4565 { TYPE_NMI },
4566 { TYPE_HOTPLUG_HANDLER },
4567 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4568 { TYPE_XICS_FABRIC },
4569 { TYPE_INTERRUPT_STATS_PROVIDER },
4570 { TYPE_XIVE_FABRIC },
4571 { }
4572 },
4573 };
4574
4575 static void spapr_machine_latest_class_options(MachineClass *mc)
4576 {
4577 mc->alias = "pseries";
4578 mc->is_default = true;
4579 }
4580
4581 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4582 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4583 void *data) \
4584 { \
4585 MachineClass *mc = MACHINE_CLASS(oc); \
4586 spapr_machine_##suffix##_class_options(mc); \
4587 if (latest) { \
4588 spapr_machine_latest_class_options(mc); \
4589 } \
4590 } \
4591 static const TypeInfo spapr_machine_##suffix##_info = { \
4592 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4593 .parent = TYPE_SPAPR_MACHINE, \
4594 .class_init = spapr_machine_##suffix##_class_init, \
4595 }; \
4596 static void spapr_machine_register_##suffix(void) \
4597 { \
4598 type_register(&spapr_machine_##suffix##_info); \
4599 } \
4600 type_init(spapr_machine_register_##suffix)
4601
4602 /*
4603 * pseries-5.0
4604 */
4605 static void spapr_machine_5_0_class_options(MachineClass *mc)
4606 {
4607 /* Defaults for the latest behaviour inherited from the base class */
4608 }
4609
4610 DEFINE_SPAPR_MACHINE(5_0, "5.0", true);
4611
4612 /*
4613 * pseries-4.2
4614 */
4615 static void spapr_machine_4_2_class_options(MachineClass *mc)
4616 {
4617 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4618
4619 spapr_machine_5_0_class_options(mc);
4620 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4621 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4622 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4623 smc->rma_limit = 16 * GiB;
4624 mc->nvdimm_supported = false;
4625 }
4626
4627 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4628
4629 /*
4630 * pseries-4.1
4631 */
4632 static void spapr_machine_4_1_class_options(MachineClass *mc)
4633 {
4634 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4635 static GlobalProperty compat[] = {
4636 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4637 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4638 };
4639
4640 spapr_machine_4_2_class_options(mc);
4641 smc->linux_pci_probe = false;
4642 smc->smp_threads_vsmt = false;
4643 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4644 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4645 }
4646
4647 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4648
4649 /*
4650 * pseries-4.0
4651 */
4652 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4653 uint64_t *buid, hwaddr *pio,
4654 hwaddr *mmio32, hwaddr *mmio64,
4655 unsigned n_dma, uint32_t *liobns,
4656 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4657 {
4658 spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4659 nv2gpa, nv2atsd, errp);
4660 *nv2gpa = 0;
4661 *nv2atsd = 0;
4662 }
4663
4664 static void spapr_machine_4_0_class_options(MachineClass *mc)
4665 {
4666 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4667
4668 spapr_machine_4_1_class_options(mc);
4669 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4670 smc->phb_placement = phb_placement_4_0;
4671 smc->irq = &spapr_irq_xics;
4672 smc->pre_4_1_migration = true;
4673 }
4674
4675 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4676
4677 /*
4678 * pseries-3.1
4679 */
4680 static void spapr_machine_3_1_class_options(MachineClass *mc)
4681 {
4682 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4683
4684 spapr_machine_4_0_class_options(mc);
4685 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4686
4687 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4688 smc->update_dt_enabled = false;
4689 smc->dr_phb_enabled = false;
4690 smc->broken_host_serial_model = true;
4691 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4692 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4693 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4694 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4695 }
4696
4697 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4698
4699 /*
4700 * pseries-3.0
4701 */
4702
4703 static void spapr_machine_3_0_class_options(MachineClass *mc)
4704 {
4705 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4706
4707 spapr_machine_3_1_class_options(mc);
4708 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4709
4710 smc->legacy_irq_allocation = true;
4711 smc->nr_xirqs = 0x400;
4712 smc->irq = &spapr_irq_xics_legacy;
4713 }
4714
4715 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4716
4717 /*
4718 * pseries-2.12
4719 */
4720 static void spapr_machine_2_12_class_options(MachineClass *mc)
4721 {
4722 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4723 static GlobalProperty compat[] = {
4724 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4725 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4726 };
4727
4728 spapr_machine_3_0_class_options(mc);
4729 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4730 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4731
4732 /* We depend on kvm_enabled() to choose a default value for the
4733 * hpt-max-page-size capability. Of course we can't do it here
4734 * because this is too early and the HW accelerator isn't initialzed
4735 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4736 */
4737 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4738 }
4739
4740 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4741
4742 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4743 {
4744 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4745
4746 spapr_machine_2_12_class_options(mc);
4747 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4748 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4749 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4750 }
4751
4752 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4753
4754 /*
4755 * pseries-2.11
4756 */
4757
4758 static void spapr_machine_2_11_class_options(MachineClass *mc)
4759 {
4760 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4761
4762 spapr_machine_2_12_class_options(mc);
4763 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4764 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4765 }
4766
4767 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4768
4769 /*
4770 * pseries-2.10
4771 */
4772
4773 static void spapr_machine_2_10_class_options(MachineClass *mc)
4774 {
4775 spapr_machine_2_11_class_options(mc);
4776 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4777 }
4778
4779 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4780
4781 /*
4782 * pseries-2.9
4783 */
4784
4785 static void spapr_machine_2_9_class_options(MachineClass *mc)
4786 {
4787 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4788 static GlobalProperty compat[] = {
4789 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4790 };
4791
4792 spapr_machine_2_10_class_options(mc);
4793 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4794 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4795 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4796 smc->pre_2_10_has_unused_icps = true;
4797 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4798 }
4799
4800 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4801
4802 /*
4803 * pseries-2.8
4804 */
4805
4806 static void spapr_machine_2_8_class_options(MachineClass *mc)
4807 {
4808 static GlobalProperty compat[] = {
4809 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4810 };
4811
4812 spapr_machine_2_9_class_options(mc);
4813 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4814 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4815 mc->numa_mem_align_shift = 23;
4816 }
4817
4818 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4819
4820 /*
4821 * pseries-2.7
4822 */
4823
4824 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4825 uint64_t *buid, hwaddr *pio,
4826 hwaddr *mmio32, hwaddr *mmio64,
4827 unsigned n_dma, uint32_t *liobns,
4828 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4829 {
4830 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4831 const uint64_t base_buid = 0x800000020000000ULL;
4832 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4833 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4834 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4835 const uint32_t max_index = 255;
4836 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4837
4838 uint64_t ram_top = MACHINE(spapr)->ram_size;
4839 hwaddr phb0_base, phb_base;
4840 int i;
4841
4842 /* Do we have device memory? */
4843 if (MACHINE(spapr)->maxram_size > ram_top) {
4844 /* Can't just use maxram_size, because there may be an
4845 * alignment gap between normal and device memory regions
4846 */
4847 ram_top = MACHINE(spapr)->device_memory->base +
4848 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4849 }
4850
4851 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4852
4853 if (index > max_index) {
4854 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4855 max_index);
4856 return;
4857 }
4858
4859 *buid = base_buid + index;
4860 for (i = 0; i < n_dma; ++i) {
4861 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4862 }
4863
4864 phb_base = phb0_base + index * phb_spacing;
4865 *pio = phb_base + pio_offset;
4866 *mmio32 = phb_base + mmio_offset;
4867 /*
4868 * We don't set the 64-bit MMIO window, relying on the PHB's
4869 * fallback behaviour of automatically splitting a large "32-bit"
4870 * window into contiguous 32-bit and 64-bit windows
4871 */
4872
4873 *nv2gpa = 0;
4874 *nv2atsd = 0;
4875 }
4876
4877 static void spapr_machine_2_7_class_options(MachineClass *mc)
4878 {
4879 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4880 static GlobalProperty compat[] = {
4881 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4882 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4883 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4884 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4885 };
4886
4887 spapr_machine_2_8_class_options(mc);
4888 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4889 mc->default_machine_opts = "modern-hotplug-events=off";
4890 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4891 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4892 smc->phb_placement = phb_placement_2_7;
4893 }
4894
4895 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4896
4897 /*
4898 * pseries-2.6
4899 */
4900
4901 static void spapr_machine_2_6_class_options(MachineClass *mc)
4902 {
4903 static GlobalProperty compat[] = {
4904 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4905 };
4906
4907 spapr_machine_2_7_class_options(mc);
4908 mc->has_hotpluggable_cpus = false;
4909 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4910 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4911 }
4912
4913 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4914
4915 /*
4916 * pseries-2.5
4917 */
4918
4919 static void spapr_machine_2_5_class_options(MachineClass *mc)
4920 {
4921 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4922 static GlobalProperty compat[] = {
4923 { "spapr-vlan", "use-rx-buffer-pools", "off" },
4924 };
4925
4926 spapr_machine_2_6_class_options(mc);
4927 smc->use_ohci_by_default = true;
4928 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4929 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4930 }
4931
4932 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4933
4934 /*
4935 * pseries-2.4
4936 */
4937
4938 static void spapr_machine_2_4_class_options(MachineClass *mc)
4939 {
4940 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4941
4942 spapr_machine_2_5_class_options(mc);
4943 smc->dr_lmb_enabled = false;
4944 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4945 }
4946
4947 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4948
4949 /*
4950 * pseries-2.3
4951 */
4952
4953 static void spapr_machine_2_3_class_options(MachineClass *mc)
4954 {
4955 static GlobalProperty compat[] = {
4956 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4957 };
4958 spapr_machine_2_4_class_options(mc);
4959 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4960 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4961 }
4962 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4963
4964 /*
4965 * pseries-2.2
4966 */
4967
4968 static void spapr_machine_2_2_class_options(MachineClass *mc)
4969 {
4970 static GlobalProperty compat[] = {
4971 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4972 };
4973
4974 spapr_machine_2_3_class_options(mc);
4975 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4976 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4977 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4978 }
4979 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4980
4981 /*
4982 * pseries-2.1
4983 */
4984
4985 static void spapr_machine_2_1_class_options(MachineClass *mc)
4986 {
4987 spapr_machine_2_2_class_options(mc);
4988 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4989 }
4990 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4991
4992 static void spapr_machine_register_types(void)
4993 {
4994 type_register_static(&spapr_machine_info);
4995 }
4996
4997 type_init(spapr_machine_register_types)