]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr.c
Merge remote-tracking branch 'remotes/vivier2/tags/trivial-branch-for-6.1-pull-reques...
[mirror_qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 */
26
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qemu/datadir.h"
30 #include "qapi/error.h"
31 #include "qapi/qapi-events-machine.h"
32 #include "qapi/visitor.h"
33 #include "sysemu/sysemu.h"
34 #include "sysemu/hostmem.h"
35 #include "sysemu/numa.h"
36 #include "sysemu/qtest.h"
37 #include "sysemu/reset.h"
38 #include "sysemu/runstate.h"
39 #include "qemu/log.h"
40 #include "hw/fw-path-provider.h"
41 #include "elf.h"
42 #include "net/net.h"
43 #include "sysemu/device_tree.h"
44 #include "sysemu/cpus.h"
45 #include "sysemu/hw_accel.h"
46 #include "kvm_ppc.h"
47 #include "migration/misc.h"
48 #include "migration/qemu-file-types.h"
49 #include "migration/global_state.h"
50 #include "migration/register.h"
51 #include "migration/blocker.h"
52 #include "mmu-hash64.h"
53 #include "mmu-book3s-v3.h"
54 #include "cpu-models.h"
55 #include "hw/core/cpu.h"
56
57 #include "hw/ppc/ppc.h"
58 #include "hw/loader.h"
59
60 #include "hw/ppc/fdt.h"
61 #include "hw/ppc/spapr.h"
62 #include "hw/ppc/spapr_vio.h"
63 #include "hw/qdev-properties.h"
64 #include "hw/pci-host/spapr.h"
65 #include "hw/pci/msi.h"
66
67 #include "hw/pci/pci.h"
68 #include "hw/scsi/scsi.h"
69 #include "hw/virtio/virtio-scsi.h"
70 #include "hw/virtio/vhost-scsi-common.h"
71
72 #include "exec/ram_addr.h"
73 #include "hw/usb.h"
74 #include "qemu/config-file.h"
75 #include "qemu/error-report.h"
76 #include "trace.h"
77 #include "hw/nmi.h"
78 #include "hw/intc/intc.h"
79
80 #include "hw/ppc/spapr_cpu_core.h"
81 #include "hw/mem/memory-device.h"
82 #include "hw/ppc/spapr_tpm_proxy.h"
83 #include "hw/ppc/spapr_nvdimm.h"
84 #include "hw/ppc/spapr_numa.h"
85 #include "hw/ppc/pef.h"
86
87 #include "monitor/monitor.h"
88
89 #include <libfdt.h>
90
91 /* SLOF memory layout:
92 *
93 * SLOF raw image loaded at 0, copies its romfs right below the flat
94 * device-tree, then position SLOF itself 31M below that
95 *
96 * So we set FW_OVERHEAD to 40MB which should account for all of that
97 * and more
98 *
99 * We load our kernel at 4M, leaving space for SLOF initial image
100 */
101 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
102 #define FW_MAX_SIZE 0x400000
103 #define FW_FILE_NAME "slof.bin"
104 #define FW_OVERHEAD 0x2800000
105 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
106
107 #define MIN_RMA_SLOF (128 * MiB)
108
109 #define PHANDLE_INTC 0x00001111
110
111 /* These two functions implement the VCPU id numbering: one to compute them
112 * all and one to identify thread 0 of a VCORE. Any change to the first one
113 * is likely to have an impact on the second one, so let's keep them close.
114 */
115 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
116 {
117 MachineState *ms = MACHINE(spapr);
118 unsigned int smp_threads = ms->smp.threads;
119
120 assert(spapr->vsmt);
121 return
122 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
123 }
124 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
125 PowerPCCPU *cpu)
126 {
127 assert(spapr->vsmt);
128 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
129 }
130
131 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
132 {
133 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
134 * and newer QEMUs don't even have them. In both cases, we don't want
135 * to send anything on the wire.
136 */
137 return false;
138 }
139
140 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
141 .name = "icp/server",
142 .version_id = 1,
143 .minimum_version_id = 1,
144 .needed = pre_2_10_vmstate_dummy_icp_needed,
145 .fields = (VMStateField[]) {
146 VMSTATE_UNUSED(4), /* uint32_t xirr */
147 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
148 VMSTATE_UNUSED(1), /* uint8_t mfrr */
149 VMSTATE_END_OF_LIST()
150 },
151 };
152
153 static void pre_2_10_vmstate_register_dummy_icp(int i)
154 {
155 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
156 (void *)(uintptr_t) i);
157 }
158
159 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
160 {
161 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
162 (void *)(uintptr_t) i);
163 }
164
165 int spapr_max_server_number(SpaprMachineState *spapr)
166 {
167 MachineState *ms = MACHINE(spapr);
168
169 assert(spapr->vsmt);
170 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
171 }
172
173 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
174 int smt_threads)
175 {
176 int i, ret = 0;
177 uint32_t servers_prop[smt_threads];
178 uint32_t gservers_prop[smt_threads * 2];
179 int index = spapr_get_vcpu_id(cpu);
180
181 if (cpu->compat_pvr) {
182 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
183 if (ret < 0) {
184 return ret;
185 }
186 }
187
188 /* Build interrupt servers and gservers properties */
189 for (i = 0; i < smt_threads; i++) {
190 servers_prop[i] = cpu_to_be32(index + i);
191 /* Hack, direct the group queues back to cpu 0 */
192 gservers_prop[i*2] = cpu_to_be32(index + i);
193 gservers_prop[i*2 + 1] = 0;
194 }
195 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
196 servers_prop, sizeof(servers_prop));
197 if (ret < 0) {
198 return ret;
199 }
200 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
201 gservers_prop, sizeof(gservers_prop));
202
203 return ret;
204 }
205
206 static void spapr_dt_pa_features(SpaprMachineState *spapr,
207 PowerPCCPU *cpu,
208 void *fdt, int offset)
209 {
210 uint8_t pa_features_206[] = { 6, 0,
211 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
212 uint8_t pa_features_207[] = { 24, 0,
213 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
214 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
215 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
216 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
217 uint8_t pa_features_300[] = { 66, 0,
218 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
219 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
220 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
221 /* 6: DS207 */
222 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
223 /* 16: Vector */
224 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
225 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
226 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
227 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
228 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
229 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
230 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
231 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
232 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
233 /* 42: PM, 44: PC RA, 46: SC vec'd */
234 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
235 /* 48: SIMD, 50: QP BFP, 52: String */
236 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
237 /* 54: DecFP, 56: DecI, 58: SHA */
238 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
239 /* 60: NM atomic, 62: RNG */
240 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
241 };
242 uint8_t *pa_features = NULL;
243 size_t pa_size;
244
245 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
246 pa_features = pa_features_206;
247 pa_size = sizeof(pa_features_206);
248 }
249 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
250 pa_features = pa_features_207;
251 pa_size = sizeof(pa_features_207);
252 }
253 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
254 pa_features = pa_features_300;
255 pa_size = sizeof(pa_features_300);
256 }
257 if (!pa_features) {
258 return;
259 }
260
261 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
262 /*
263 * Note: we keep CI large pages off by default because a 64K capable
264 * guest provisioned with large pages might otherwise try to map a qemu
265 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
266 * even if that qemu runs on a 4k host.
267 * We dd this bit back here if we are confident this is not an issue
268 */
269 pa_features[3] |= 0x20;
270 }
271 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
272 pa_features[24] |= 0x80; /* Transactional memory support */
273 }
274 if (spapr->cas_pre_isa3_guest && pa_size > 40) {
275 /* Workaround for broken kernels that attempt (guest) radix
276 * mode when they can't handle it, if they see the radix bit set
277 * in pa-features. So hide it from them. */
278 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
279 }
280
281 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
282 }
283
284 static hwaddr spapr_node0_size(MachineState *machine)
285 {
286 if (machine->numa_state->num_nodes) {
287 int i;
288 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
289 if (machine->numa_state->nodes[i].node_mem) {
290 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
291 machine->ram_size);
292 }
293 }
294 }
295 return machine->ram_size;
296 }
297
298 static void add_str(GString *s, const gchar *s1)
299 {
300 g_string_append_len(s, s1, strlen(s1) + 1);
301 }
302
303 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
304 hwaddr start, hwaddr size)
305 {
306 char mem_name[32];
307 uint64_t mem_reg_property[2];
308 int off;
309
310 mem_reg_property[0] = cpu_to_be64(start);
311 mem_reg_property[1] = cpu_to_be64(size);
312
313 sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
314 off = fdt_add_subnode(fdt, 0, mem_name);
315 _FDT(off);
316 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
317 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
318 sizeof(mem_reg_property))));
319 spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
320 return off;
321 }
322
323 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
324 {
325 MemoryDeviceInfoList *info;
326
327 for (info = list; info; info = info->next) {
328 MemoryDeviceInfo *value = info->value;
329
330 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
331 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
332
333 if (addr >= pcdimm_info->addr &&
334 addr < (pcdimm_info->addr + pcdimm_info->size)) {
335 return pcdimm_info->node;
336 }
337 }
338 }
339
340 return -1;
341 }
342
343 struct sPAPRDrconfCellV2 {
344 uint32_t seq_lmbs;
345 uint64_t base_addr;
346 uint32_t drc_index;
347 uint32_t aa_index;
348 uint32_t flags;
349 } QEMU_PACKED;
350
351 typedef struct DrconfCellQueue {
352 struct sPAPRDrconfCellV2 cell;
353 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
354 } DrconfCellQueue;
355
356 static DrconfCellQueue *
357 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
358 uint32_t drc_index, uint32_t aa_index,
359 uint32_t flags)
360 {
361 DrconfCellQueue *elem;
362
363 elem = g_malloc0(sizeof(*elem));
364 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
365 elem->cell.base_addr = cpu_to_be64(base_addr);
366 elem->cell.drc_index = cpu_to_be32(drc_index);
367 elem->cell.aa_index = cpu_to_be32(aa_index);
368 elem->cell.flags = cpu_to_be32(flags);
369
370 return elem;
371 }
372
373 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
374 int offset, MemoryDeviceInfoList *dimms)
375 {
376 MachineState *machine = MACHINE(spapr);
377 uint8_t *int_buf, *cur_index;
378 int ret;
379 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
380 uint64_t addr, cur_addr, size;
381 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
382 uint64_t mem_end = machine->device_memory->base +
383 memory_region_size(&machine->device_memory->mr);
384 uint32_t node, buf_len, nr_entries = 0;
385 SpaprDrc *drc;
386 DrconfCellQueue *elem, *next;
387 MemoryDeviceInfoList *info;
388 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
389 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
390
391 /* Entry to cover RAM and the gap area */
392 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
393 SPAPR_LMB_FLAGS_RESERVED |
394 SPAPR_LMB_FLAGS_DRC_INVALID);
395 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
396 nr_entries++;
397
398 cur_addr = machine->device_memory->base;
399 for (info = dimms; info; info = info->next) {
400 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
401
402 addr = di->addr;
403 size = di->size;
404 node = di->node;
405
406 /*
407 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
408 * area is marked hotpluggable in the next iteration for the bigger
409 * chunk including the NVDIMM occupied area.
410 */
411 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
412 continue;
413
414 /* Entry for hot-pluggable area */
415 if (cur_addr < addr) {
416 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
417 g_assert(drc);
418 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
419 cur_addr, spapr_drc_index(drc), -1, 0);
420 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
421 nr_entries++;
422 }
423
424 /* Entry for DIMM */
425 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
426 g_assert(drc);
427 elem = spapr_get_drconf_cell(size / lmb_size, addr,
428 spapr_drc_index(drc), node,
429 (SPAPR_LMB_FLAGS_ASSIGNED |
430 SPAPR_LMB_FLAGS_HOTREMOVABLE));
431 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
432 nr_entries++;
433 cur_addr = addr + size;
434 }
435
436 /* Entry for remaining hotpluggable area */
437 if (cur_addr < mem_end) {
438 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
439 g_assert(drc);
440 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
441 cur_addr, spapr_drc_index(drc), -1, 0);
442 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
443 nr_entries++;
444 }
445
446 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
447 int_buf = cur_index = g_malloc0(buf_len);
448 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
449 cur_index += sizeof(nr_entries);
450
451 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
452 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
453 cur_index += sizeof(elem->cell);
454 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
455 g_free(elem);
456 }
457
458 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
459 g_free(int_buf);
460 if (ret < 0) {
461 return -1;
462 }
463 return 0;
464 }
465
466 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
467 int offset, MemoryDeviceInfoList *dimms)
468 {
469 MachineState *machine = MACHINE(spapr);
470 int i, ret;
471 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
472 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
473 uint32_t nr_lmbs = (machine->device_memory->base +
474 memory_region_size(&machine->device_memory->mr)) /
475 lmb_size;
476 uint32_t *int_buf, *cur_index, buf_len;
477
478 /*
479 * Allocate enough buffer size to fit in ibm,dynamic-memory
480 */
481 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
482 cur_index = int_buf = g_malloc0(buf_len);
483 int_buf[0] = cpu_to_be32(nr_lmbs);
484 cur_index++;
485 for (i = 0; i < nr_lmbs; i++) {
486 uint64_t addr = i * lmb_size;
487 uint32_t *dynamic_memory = cur_index;
488
489 if (i >= device_lmb_start) {
490 SpaprDrc *drc;
491
492 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
493 g_assert(drc);
494
495 dynamic_memory[0] = cpu_to_be32(addr >> 32);
496 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
497 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
498 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
499 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
500 if (memory_region_present(get_system_memory(), addr)) {
501 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
502 } else {
503 dynamic_memory[5] = cpu_to_be32(0);
504 }
505 } else {
506 /*
507 * LMB information for RMA, boot time RAM and gap b/n RAM and
508 * device memory region -- all these are marked as reserved
509 * and as having no valid DRC.
510 */
511 dynamic_memory[0] = cpu_to_be32(addr >> 32);
512 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
513 dynamic_memory[2] = cpu_to_be32(0);
514 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
515 dynamic_memory[4] = cpu_to_be32(-1);
516 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
517 SPAPR_LMB_FLAGS_DRC_INVALID);
518 }
519
520 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
521 }
522 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
523 g_free(int_buf);
524 if (ret < 0) {
525 return -1;
526 }
527 return 0;
528 }
529
530 /*
531 * Adds ibm,dynamic-reconfiguration-memory node.
532 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
533 * of this device tree node.
534 */
535 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
536 void *fdt)
537 {
538 MachineState *machine = MACHINE(spapr);
539 int ret, offset;
540 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
541 uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
542 cpu_to_be32(lmb_size & 0xffffffff)};
543 MemoryDeviceInfoList *dimms = NULL;
544
545 /*
546 * Don't create the node if there is no device memory
547 */
548 if (machine->ram_size == machine->maxram_size) {
549 return 0;
550 }
551
552 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
553
554 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
555 sizeof(prop_lmb_size));
556 if (ret < 0) {
557 return ret;
558 }
559
560 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
561 if (ret < 0) {
562 return ret;
563 }
564
565 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
566 if (ret < 0) {
567 return ret;
568 }
569
570 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
571 dimms = qmp_memory_device_list();
572 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
573 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
574 } else {
575 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
576 }
577 qapi_free_MemoryDeviceInfoList(dimms);
578
579 if (ret < 0) {
580 return ret;
581 }
582
583 ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
584
585 return ret;
586 }
587
588 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
589 {
590 MachineState *machine = MACHINE(spapr);
591 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
592 hwaddr mem_start, node_size;
593 int i, nb_nodes = machine->numa_state->num_nodes;
594 NodeInfo *nodes = machine->numa_state->nodes;
595
596 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
597 if (!nodes[i].node_mem) {
598 continue;
599 }
600 if (mem_start >= machine->ram_size) {
601 node_size = 0;
602 } else {
603 node_size = nodes[i].node_mem;
604 if (node_size > machine->ram_size - mem_start) {
605 node_size = machine->ram_size - mem_start;
606 }
607 }
608 if (!mem_start) {
609 /* spapr_machine_init() checks for rma_size <= node0_size
610 * already */
611 spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
612 mem_start += spapr->rma_size;
613 node_size -= spapr->rma_size;
614 }
615 for ( ; node_size; ) {
616 hwaddr sizetmp = pow2floor(node_size);
617
618 /* mem_start != 0 here */
619 if (ctzl(mem_start) < ctzl(sizetmp)) {
620 sizetmp = 1ULL << ctzl(mem_start);
621 }
622
623 spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
624 node_size -= sizetmp;
625 mem_start += sizetmp;
626 }
627 }
628
629 /* Generate ibm,dynamic-reconfiguration-memory node if required */
630 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
631 int ret;
632
633 g_assert(smc->dr_lmb_enabled);
634 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
635 if (ret) {
636 return ret;
637 }
638 }
639
640 return 0;
641 }
642
643 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
644 SpaprMachineState *spapr)
645 {
646 MachineState *ms = MACHINE(spapr);
647 PowerPCCPU *cpu = POWERPC_CPU(cs);
648 CPUPPCState *env = &cpu->env;
649 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
650 int index = spapr_get_vcpu_id(cpu);
651 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
652 0xffffffff, 0xffffffff};
653 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
654 : SPAPR_TIMEBASE_FREQ;
655 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
656 uint32_t page_sizes_prop[64];
657 size_t page_sizes_prop_size;
658 unsigned int smp_threads = ms->smp.threads;
659 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
660 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
661 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
662 SpaprDrc *drc;
663 int drc_index;
664 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
665 int i;
666
667 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
668 if (drc) {
669 drc_index = spapr_drc_index(drc);
670 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
671 }
672
673 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
674 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
675
676 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
677 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
678 env->dcache_line_size)));
679 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
680 env->dcache_line_size)));
681 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
682 env->icache_line_size)));
683 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
684 env->icache_line_size)));
685
686 if (pcc->l1_dcache_size) {
687 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
688 pcc->l1_dcache_size)));
689 } else {
690 warn_report("Unknown L1 dcache size for cpu");
691 }
692 if (pcc->l1_icache_size) {
693 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
694 pcc->l1_icache_size)));
695 } else {
696 warn_report("Unknown L1 icache size for cpu");
697 }
698
699 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
700 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
701 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
702 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
703 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
704 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
705
706 if (env->spr_cb[SPR_PURR].oea_read) {
707 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
708 }
709 if (env->spr_cb[SPR_SPURR].oea_read) {
710 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
711 }
712
713 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
714 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
715 segs, sizeof(segs))));
716 }
717
718 /* Advertise VSX (vector extensions) if available
719 * 1 == VMX / Altivec available
720 * 2 == VSX available
721 *
722 * Only CPUs for which we create core types in spapr_cpu_core.c
723 * are possible, and all of those have VMX */
724 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
725 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
726 } else {
727 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
728 }
729
730 /* Advertise DFP (Decimal Floating Point) if available
731 * 0 / no property == no DFP
732 * 1 == DFP available */
733 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
734 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
735 }
736
737 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
738 sizeof(page_sizes_prop));
739 if (page_sizes_prop_size) {
740 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
741 page_sizes_prop, page_sizes_prop_size)));
742 }
743
744 spapr_dt_pa_features(spapr, cpu, fdt, offset);
745
746 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
747 cs->cpu_index / vcpus_per_socket)));
748
749 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
750 pft_size_prop, sizeof(pft_size_prop))));
751
752 if (ms->numa_state->num_nodes > 1) {
753 _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
754 }
755
756 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
757
758 if (pcc->radix_page_info) {
759 for (i = 0; i < pcc->radix_page_info->count; i++) {
760 radix_AP_encodings[i] =
761 cpu_to_be32(pcc->radix_page_info->entries[i]);
762 }
763 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
764 radix_AP_encodings,
765 pcc->radix_page_info->count *
766 sizeof(radix_AP_encodings[0]))));
767 }
768
769 /*
770 * We set this property to let the guest know that it can use the large
771 * decrementer and its width in bits.
772 */
773 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
774 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
775 pcc->lrg_decr_bits)));
776 }
777
778 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
779 {
780 CPUState **rev;
781 CPUState *cs;
782 int n_cpus;
783 int cpus_offset;
784 int i;
785
786 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
787 _FDT(cpus_offset);
788 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
789 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
790
791 /*
792 * We walk the CPUs in reverse order to ensure that CPU DT nodes
793 * created by fdt_add_subnode() end up in the right order in FDT
794 * for the guest kernel the enumerate the CPUs correctly.
795 *
796 * The CPU list cannot be traversed in reverse order, so we need
797 * to do extra work.
798 */
799 n_cpus = 0;
800 rev = NULL;
801 CPU_FOREACH(cs) {
802 rev = g_renew(CPUState *, rev, n_cpus + 1);
803 rev[n_cpus++] = cs;
804 }
805
806 for (i = n_cpus - 1; i >= 0; i--) {
807 CPUState *cs = rev[i];
808 PowerPCCPU *cpu = POWERPC_CPU(cs);
809 int index = spapr_get_vcpu_id(cpu);
810 DeviceClass *dc = DEVICE_GET_CLASS(cs);
811 g_autofree char *nodename = NULL;
812 int offset;
813
814 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
815 continue;
816 }
817
818 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
819 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
820 _FDT(offset);
821 spapr_dt_cpu(cs, fdt, offset, spapr);
822 }
823
824 g_free(rev);
825 }
826
827 static int spapr_dt_rng(void *fdt)
828 {
829 int node;
830 int ret;
831
832 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
833 if (node <= 0) {
834 return -1;
835 }
836 ret = fdt_setprop_string(fdt, node, "device_type",
837 "ibm,platform-facilities");
838 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
839 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
840
841 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
842 if (node <= 0) {
843 return -1;
844 }
845 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
846
847 return ret ? -1 : 0;
848 }
849
850 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
851 {
852 MachineState *ms = MACHINE(spapr);
853 int rtas;
854 GString *hypertas = g_string_sized_new(256);
855 GString *qemu_hypertas = g_string_sized_new(256);
856 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
857 memory_region_size(&MACHINE(spapr)->device_memory->mr);
858 uint32_t lrdr_capacity[] = {
859 cpu_to_be32(max_device_addr >> 32),
860 cpu_to_be32(max_device_addr & 0xffffffff),
861 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
862 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
863 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
864 };
865
866 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
867
868 /* hypertas */
869 add_str(hypertas, "hcall-pft");
870 add_str(hypertas, "hcall-term");
871 add_str(hypertas, "hcall-dabr");
872 add_str(hypertas, "hcall-interrupt");
873 add_str(hypertas, "hcall-tce");
874 add_str(hypertas, "hcall-vio");
875 add_str(hypertas, "hcall-splpar");
876 add_str(hypertas, "hcall-join");
877 add_str(hypertas, "hcall-bulk");
878 add_str(hypertas, "hcall-set-mode");
879 add_str(hypertas, "hcall-sprg0");
880 add_str(hypertas, "hcall-copy");
881 add_str(hypertas, "hcall-debug");
882 add_str(hypertas, "hcall-vphn");
883 add_str(qemu_hypertas, "hcall-memop1");
884
885 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
886 add_str(hypertas, "hcall-multi-tce");
887 }
888
889 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
890 add_str(hypertas, "hcall-hpt-resize");
891 }
892
893 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
894 hypertas->str, hypertas->len));
895 g_string_free(hypertas, TRUE);
896 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
897 qemu_hypertas->str, qemu_hypertas->len));
898 g_string_free(qemu_hypertas, TRUE);
899
900 spapr_numa_write_rtas_dt(spapr, fdt, rtas);
901
902 /*
903 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
904 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
905 *
906 * The system reset requirements are driven by existing Linux and PowerVM
907 * implementation which (contrary to PAPR) saves r3 in the error log
908 * structure like machine check, so Linux expects to find the saved r3
909 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
910 * does not look at the error value).
911 *
912 * System reset interrupts are not subject to interlock like machine
913 * check, so this memory area could be corrupted if the sreset is
914 * interrupted by a machine check (or vice versa) if it was shared. To
915 * prevent this, system reset uses per-CPU areas for the sreset save
916 * area. A system reset that interrupts a system reset handler could
917 * still overwrite this area, but Linux doesn't try to recover in that
918 * case anyway.
919 *
920 * The extra 8 bytes is required because Linux's FWNMI error log check
921 * is off-by-one.
922 */
923 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_ERROR_LOG_MAX +
924 ms->smp.max_cpus * sizeof(uint64_t)*2 + sizeof(uint64_t)));
925 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
926 RTAS_ERROR_LOG_MAX));
927 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
928 RTAS_EVENT_SCAN_RATE));
929
930 g_assert(msi_nonbroken);
931 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
932
933 /*
934 * According to PAPR, rtas ibm,os-term does not guarantee a return
935 * back to the guest cpu.
936 *
937 * While an additional ibm,extended-os-term property indicates
938 * that rtas call return will always occur. Set this property.
939 */
940 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
941
942 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
943 lrdr_capacity, sizeof(lrdr_capacity)));
944
945 spapr_dt_rtas_tokens(fdt, rtas);
946 }
947
948 /*
949 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
950 * and the XIVE features that the guest may request and thus the valid
951 * values for bytes 23..26 of option vector 5:
952 */
953 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
954 int chosen)
955 {
956 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
957
958 char val[2 * 4] = {
959 23, 0x00, /* XICS / XIVE mode */
960 24, 0x00, /* Hash/Radix, filled in below. */
961 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
962 26, 0x40, /* Radix options: GTSE == yes. */
963 };
964
965 if (spapr->irq->xics && spapr->irq->xive) {
966 val[1] = SPAPR_OV5_XIVE_BOTH;
967 } else if (spapr->irq->xive) {
968 val[1] = SPAPR_OV5_XIVE_EXPLOIT;
969 } else {
970 assert(spapr->irq->xics);
971 val[1] = SPAPR_OV5_XIVE_LEGACY;
972 }
973
974 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
975 first_ppc_cpu->compat_pvr)) {
976 /*
977 * If we're in a pre POWER9 compat mode then the guest should
978 * do hash and use the legacy interrupt mode
979 */
980 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
981 val[3] = 0x00; /* Hash */
982 } else if (kvm_enabled()) {
983 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
984 val[3] = 0x80; /* OV5_MMU_BOTH */
985 } else if (kvmppc_has_cap_mmu_radix()) {
986 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
987 } else {
988 val[3] = 0x00; /* Hash */
989 }
990 } else {
991 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
992 val[3] = 0xC0;
993 }
994 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
995 val, sizeof(val)));
996 }
997
998 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
999 {
1000 MachineState *machine = MACHINE(spapr);
1001 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1002 int chosen;
1003
1004 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1005
1006 if (reset) {
1007 const char *boot_device = machine->boot_order;
1008 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1009 size_t cb = 0;
1010 char *bootlist = get_boot_devices_list(&cb);
1011
1012 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1013 _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1014 machine->kernel_cmdline));
1015 }
1016
1017 if (spapr->initrd_size) {
1018 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1019 spapr->initrd_base));
1020 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1021 spapr->initrd_base + spapr->initrd_size));
1022 }
1023
1024 if (spapr->kernel_size) {
1025 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1026 cpu_to_be64(spapr->kernel_size) };
1027
1028 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1029 &kprop, sizeof(kprop)));
1030 if (spapr->kernel_le) {
1031 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1032 }
1033 }
1034 if (boot_menu) {
1035 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1036 }
1037 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1038 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1039 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1040
1041 if (cb && bootlist) {
1042 int i;
1043
1044 for (i = 0; i < cb; i++) {
1045 if (bootlist[i] == '\n') {
1046 bootlist[i] = ' ';
1047 }
1048 }
1049 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1050 }
1051
1052 if (boot_device && strlen(boot_device)) {
1053 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1054 }
1055
1056 if (!spapr->has_graphics && stdout_path) {
1057 /*
1058 * "linux,stdout-path" and "stdout" properties are
1059 * deprecated by linux kernel. New platforms should only
1060 * use the "stdout-path" property. Set the new property
1061 * and continue using older property to remain compatible
1062 * with the existing firmware.
1063 */
1064 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1065 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1066 }
1067
1068 /*
1069 * We can deal with BAR reallocation just fine, advertise it
1070 * to the guest
1071 */
1072 if (smc->linux_pci_probe) {
1073 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1074 }
1075
1076 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1077
1078 g_free(stdout_path);
1079 g_free(bootlist);
1080 }
1081
1082 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1083 }
1084
1085 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1086 {
1087 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1088 * KVM to work under pHyp with some guest co-operation */
1089 int hypervisor;
1090 uint8_t hypercall[16];
1091
1092 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1093 /* indicate KVM hypercall interface */
1094 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1095 if (kvmppc_has_cap_fixup_hcalls()) {
1096 /*
1097 * Older KVM versions with older guest kernels were broken
1098 * with the magic page, don't allow the guest to map it.
1099 */
1100 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1101 sizeof(hypercall))) {
1102 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1103 hypercall, sizeof(hypercall)));
1104 }
1105 }
1106 }
1107
1108 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1109 {
1110 MachineState *machine = MACHINE(spapr);
1111 MachineClass *mc = MACHINE_GET_CLASS(machine);
1112 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1113 uint32_t root_drc_type_mask = 0;
1114 int ret;
1115 void *fdt;
1116 SpaprPhbState *phb;
1117 char *buf;
1118
1119 fdt = g_malloc0(space);
1120 _FDT((fdt_create_empty_tree(fdt, space)));
1121
1122 /* Root node */
1123 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1124 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1125 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1126
1127 /* Guest UUID & Name*/
1128 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1129 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1130 if (qemu_uuid_set) {
1131 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1132 }
1133 g_free(buf);
1134
1135 if (qemu_get_vm_name()) {
1136 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1137 qemu_get_vm_name()));
1138 }
1139
1140 /* Host Model & Serial Number */
1141 if (spapr->host_model) {
1142 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1143 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1144 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1145 g_free(buf);
1146 }
1147
1148 if (spapr->host_serial) {
1149 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1150 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1151 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1152 g_free(buf);
1153 }
1154
1155 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1156 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1157
1158 /* /interrupt controller */
1159 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1160
1161 ret = spapr_dt_memory(spapr, fdt);
1162 if (ret < 0) {
1163 error_report("couldn't setup memory nodes in fdt");
1164 exit(1);
1165 }
1166
1167 /* /vdevice */
1168 spapr_dt_vdevice(spapr->vio_bus, fdt);
1169
1170 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1171 ret = spapr_dt_rng(fdt);
1172 if (ret < 0) {
1173 error_report("could not set up rng device in the fdt");
1174 exit(1);
1175 }
1176 }
1177
1178 QLIST_FOREACH(phb, &spapr->phbs, list) {
1179 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1180 if (ret < 0) {
1181 error_report("couldn't setup PCI devices in fdt");
1182 exit(1);
1183 }
1184 }
1185
1186 spapr_dt_cpus(fdt, spapr);
1187
1188 /* ibm,drc-indexes and friends */
1189 if (smc->dr_lmb_enabled) {
1190 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB;
1191 }
1192 if (smc->dr_phb_enabled) {
1193 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB;
1194 }
1195 if (mc->nvdimm_supported) {
1196 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM;
1197 }
1198 if (root_drc_type_mask) {
1199 _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask));
1200 }
1201
1202 if (mc->has_hotpluggable_cpus) {
1203 int offset = fdt_path_offset(fdt, "/cpus");
1204 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1205 if (ret < 0) {
1206 error_report("Couldn't set up CPU DR device tree properties");
1207 exit(1);
1208 }
1209 }
1210
1211 /* /event-sources */
1212 spapr_dt_events(spapr, fdt);
1213
1214 /* /rtas */
1215 spapr_dt_rtas(spapr, fdt);
1216
1217 /* /chosen */
1218 spapr_dt_chosen(spapr, fdt, reset);
1219
1220 /* /hypervisor */
1221 if (kvm_enabled()) {
1222 spapr_dt_hypervisor(spapr, fdt);
1223 }
1224
1225 /* Build memory reserve map */
1226 if (reset) {
1227 if (spapr->kernel_size) {
1228 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1229 spapr->kernel_size)));
1230 }
1231 if (spapr->initrd_size) {
1232 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1233 spapr->initrd_size)));
1234 }
1235 }
1236
1237 /* NVDIMM devices */
1238 if (mc->nvdimm_supported) {
1239 spapr_dt_persistent_memory(spapr, fdt);
1240 }
1241
1242 return fdt;
1243 }
1244
1245 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1246 {
1247 SpaprMachineState *spapr = opaque;
1248
1249 return (addr & 0x0fffffff) + spapr->kernel_addr;
1250 }
1251
1252 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1253 PowerPCCPU *cpu)
1254 {
1255 CPUPPCState *env = &cpu->env;
1256
1257 /* The TCG path should also be holding the BQL at this point */
1258 g_assert(qemu_mutex_iothread_locked());
1259
1260 if (msr_pr) {
1261 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1262 env->gpr[3] = H_PRIVILEGE;
1263 } else {
1264 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1265 }
1266 }
1267
1268 struct LPCRSyncState {
1269 target_ulong value;
1270 target_ulong mask;
1271 };
1272
1273 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1274 {
1275 struct LPCRSyncState *s = arg.host_ptr;
1276 PowerPCCPU *cpu = POWERPC_CPU(cs);
1277 CPUPPCState *env = &cpu->env;
1278 target_ulong lpcr;
1279
1280 cpu_synchronize_state(cs);
1281 lpcr = env->spr[SPR_LPCR];
1282 lpcr &= ~s->mask;
1283 lpcr |= s->value;
1284 ppc_store_lpcr(cpu, lpcr);
1285 }
1286
1287 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1288 {
1289 CPUState *cs;
1290 struct LPCRSyncState s = {
1291 .value = value,
1292 .mask = mask
1293 };
1294 CPU_FOREACH(cs) {
1295 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1296 }
1297 }
1298
1299 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1300 {
1301 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1302
1303 /* Copy PATE1:GR into PATE0:HR */
1304 entry->dw0 = spapr->patb_entry & PATE0_HR;
1305 entry->dw1 = spapr->patb_entry;
1306 }
1307
1308 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1309 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1310 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1311 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1312 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1313
1314 /*
1315 * Get the fd to access the kernel htab, re-opening it if necessary
1316 */
1317 static int get_htab_fd(SpaprMachineState *spapr)
1318 {
1319 Error *local_err = NULL;
1320
1321 if (spapr->htab_fd >= 0) {
1322 return spapr->htab_fd;
1323 }
1324
1325 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1326 if (spapr->htab_fd < 0) {
1327 error_report_err(local_err);
1328 }
1329
1330 return spapr->htab_fd;
1331 }
1332
1333 void close_htab_fd(SpaprMachineState *spapr)
1334 {
1335 if (spapr->htab_fd >= 0) {
1336 close(spapr->htab_fd);
1337 }
1338 spapr->htab_fd = -1;
1339 }
1340
1341 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1342 {
1343 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1344
1345 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1346 }
1347
1348 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1349 {
1350 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1351
1352 assert(kvm_enabled());
1353
1354 if (!spapr->htab) {
1355 return 0;
1356 }
1357
1358 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1359 }
1360
1361 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1362 hwaddr ptex, int n)
1363 {
1364 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1365 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1366
1367 if (!spapr->htab) {
1368 /*
1369 * HTAB is controlled by KVM. Fetch into temporary buffer
1370 */
1371 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1372 kvmppc_read_hptes(hptes, ptex, n);
1373 return hptes;
1374 }
1375
1376 /*
1377 * HTAB is controlled by QEMU. Just point to the internally
1378 * accessible PTEG.
1379 */
1380 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1381 }
1382
1383 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1384 const ppc_hash_pte64_t *hptes,
1385 hwaddr ptex, int n)
1386 {
1387 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1388
1389 if (!spapr->htab) {
1390 g_free((void *)hptes);
1391 }
1392
1393 /* Nothing to do for qemu managed HPT */
1394 }
1395
1396 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1397 uint64_t pte0, uint64_t pte1)
1398 {
1399 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1400 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1401
1402 if (!spapr->htab) {
1403 kvmppc_write_hpte(ptex, pte0, pte1);
1404 } else {
1405 if (pte0 & HPTE64_V_VALID) {
1406 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1407 /*
1408 * When setting valid, we write PTE1 first. This ensures
1409 * proper synchronization with the reading code in
1410 * ppc_hash64_pteg_search()
1411 */
1412 smp_wmb();
1413 stq_p(spapr->htab + offset, pte0);
1414 } else {
1415 stq_p(spapr->htab + offset, pte0);
1416 /*
1417 * When clearing it we set PTE0 first. This ensures proper
1418 * synchronization with the reading code in
1419 * ppc_hash64_pteg_search()
1420 */
1421 smp_wmb();
1422 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1423 }
1424 }
1425 }
1426
1427 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1428 uint64_t pte1)
1429 {
1430 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1431 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1432
1433 if (!spapr->htab) {
1434 /* There should always be a hash table when this is called */
1435 error_report("spapr_hpte_set_c called with no hash table !");
1436 return;
1437 }
1438
1439 /* The HW performs a non-atomic byte update */
1440 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1441 }
1442
1443 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1444 uint64_t pte1)
1445 {
1446 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1447 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1448
1449 if (!spapr->htab) {
1450 /* There should always be a hash table when this is called */
1451 error_report("spapr_hpte_set_r called with no hash table !");
1452 return;
1453 }
1454
1455 /* The HW performs a non-atomic byte update */
1456 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1457 }
1458
1459 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1460 {
1461 int shift;
1462
1463 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1464 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1465 * that's much more than is needed for Linux guests */
1466 shift = ctz64(pow2ceil(ramsize)) - 7;
1467 shift = MAX(shift, 18); /* Minimum architected size */
1468 shift = MIN(shift, 46); /* Maximum architected size */
1469 return shift;
1470 }
1471
1472 void spapr_free_hpt(SpaprMachineState *spapr)
1473 {
1474 g_free(spapr->htab);
1475 spapr->htab = NULL;
1476 spapr->htab_shift = 0;
1477 close_htab_fd(spapr);
1478 }
1479
1480 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp)
1481 {
1482 ERRP_GUARD();
1483 long rc;
1484
1485 /* Clean up any HPT info from a previous boot */
1486 spapr_free_hpt(spapr);
1487
1488 rc = kvmppc_reset_htab(shift);
1489
1490 if (rc == -EOPNOTSUPP) {
1491 error_setg(errp, "HPT not supported in nested guests");
1492 return -EOPNOTSUPP;
1493 }
1494
1495 if (rc < 0) {
1496 /* kernel-side HPT needed, but couldn't allocate one */
1497 error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
1498 shift);
1499 error_append_hint(errp, "Try smaller maxmem?\n");
1500 return -errno;
1501 } else if (rc > 0) {
1502 /* kernel-side HPT allocated */
1503 if (rc != shift) {
1504 error_setg(errp,
1505 "Requested order %d HPT, but kernel allocated order %ld",
1506 shift, rc);
1507 error_append_hint(errp, "Try smaller maxmem?\n");
1508 return -ENOSPC;
1509 }
1510
1511 spapr->htab_shift = shift;
1512 spapr->htab = NULL;
1513 } else {
1514 /* kernel-side HPT not needed, allocate in userspace instead */
1515 size_t size = 1ULL << shift;
1516 int i;
1517
1518 spapr->htab = qemu_memalign(size, size);
1519 memset(spapr->htab, 0, size);
1520 spapr->htab_shift = shift;
1521
1522 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1523 DIRTY_HPTE(HPTE(spapr->htab, i));
1524 }
1525 }
1526 /* We're setting up a hash table, so that means we're not radix */
1527 spapr->patb_entry = 0;
1528 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1529 return 0;
1530 }
1531
1532 void spapr_setup_hpt(SpaprMachineState *spapr)
1533 {
1534 int hpt_shift;
1535
1536 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1537 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1538 } else {
1539 uint64_t current_ram_size;
1540
1541 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1542 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1543 }
1544 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1545
1546 if (kvm_enabled()) {
1547 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1548
1549 /* Check our RMA fits in the possible VRMA */
1550 if (vrma_limit < spapr->rma_size) {
1551 error_report("Unable to create %" HWADDR_PRIu
1552 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1553 spapr->rma_size / MiB, vrma_limit / MiB);
1554 exit(EXIT_FAILURE);
1555 }
1556 }
1557 }
1558
1559 static void spapr_machine_reset(MachineState *machine)
1560 {
1561 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1562 PowerPCCPU *first_ppc_cpu;
1563 hwaddr fdt_addr;
1564 void *fdt;
1565 int rc;
1566
1567 pef_kvm_reset(machine->cgs, &error_fatal);
1568 spapr_caps_apply(spapr);
1569
1570 first_ppc_cpu = POWERPC_CPU(first_cpu);
1571 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1572 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1573 spapr->max_compat_pvr)) {
1574 /*
1575 * If using KVM with radix mode available, VCPUs can be started
1576 * without a HPT because KVM will start them in radix mode.
1577 * Set the GR bit in PATE so that we know there is no HPT.
1578 */
1579 spapr->patb_entry = PATE1_GR;
1580 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1581 } else {
1582 spapr_setup_hpt(spapr);
1583 }
1584
1585 qemu_devices_reset();
1586
1587 spapr_ovec_cleanup(spapr->ov5_cas);
1588 spapr->ov5_cas = spapr_ovec_new();
1589
1590 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1591
1592 /*
1593 * This is fixing some of the default configuration of the XIVE
1594 * devices. To be called after the reset of the machine devices.
1595 */
1596 spapr_irq_reset(spapr, &error_fatal);
1597
1598 /*
1599 * There is no CAS under qtest. Simulate one to please the code that
1600 * depends on spapr->ov5_cas. This is especially needed to test device
1601 * unplug, so we do that before resetting the DRCs.
1602 */
1603 if (qtest_enabled()) {
1604 spapr_ovec_cleanup(spapr->ov5_cas);
1605 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1606 }
1607
1608 /* DRC reset may cause a device to be unplugged. This will cause troubles
1609 * if this device is used by another device (eg, a running vhost backend
1610 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1611 * situations, we reset DRCs after all devices have been reset.
1612 */
1613 spapr_drc_reset_all(spapr);
1614
1615 spapr_clear_pending_events(spapr);
1616
1617 /*
1618 * We place the device tree and RTAS just below either the top of the RMA,
1619 * or just below 2GB, whichever is lower, so that it can be
1620 * processed with 32-bit real mode code if necessary
1621 */
1622 fdt_addr = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FDT_MAX_SIZE;
1623
1624 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1625
1626 rc = fdt_pack(fdt);
1627
1628 /* Should only fail if we've built a corrupted tree */
1629 assert(rc == 0);
1630
1631 /* Load the fdt */
1632 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1633 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1634 g_free(spapr->fdt_blob);
1635 spapr->fdt_size = fdt_totalsize(fdt);
1636 spapr->fdt_initial_size = spapr->fdt_size;
1637 spapr->fdt_blob = fdt;
1638
1639 /* Set up the entry state */
1640 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 0, fdt_addr, 0);
1641 first_ppc_cpu->env.gpr[5] = 0;
1642
1643 spapr->fwnmi_system_reset_addr = -1;
1644 spapr->fwnmi_machine_check_addr = -1;
1645 spapr->fwnmi_machine_check_interlock = -1;
1646
1647 /* Signal all vCPUs waiting on this condition */
1648 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1649
1650 migrate_del_blocker(spapr->fwnmi_migration_blocker);
1651 }
1652
1653 static void spapr_create_nvram(SpaprMachineState *spapr)
1654 {
1655 DeviceState *dev = qdev_new("spapr-nvram");
1656 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1657
1658 if (dinfo) {
1659 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1660 &error_fatal);
1661 }
1662
1663 qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1664
1665 spapr->nvram = (struct SpaprNvram *)dev;
1666 }
1667
1668 static void spapr_rtc_create(SpaprMachineState *spapr)
1669 {
1670 object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1671 sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1672 &error_fatal, NULL);
1673 qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1674 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1675 "date");
1676 }
1677
1678 /* Returns whether we want to use VGA or not */
1679 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1680 {
1681 switch (vga_interface_type) {
1682 case VGA_NONE:
1683 return false;
1684 case VGA_DEVICE:
1685 return true;
1686 case VGA_STD:
1687 case VGA_VIRTIO:
1688 case VGA_CIRRUS:
1689 return pci_vga_init(pci_bus) != NULL;
1690 default:
1691 error_setg(errp,
1692 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1693 return false;
1694 }
1695 }
1696
1697 static int spapr_pre_load(void *opaque)
1698 {
1699 int rc;
1700
1701 rc = spapr_caps_pre_load(opaque);
1702 if (rc) {
1703 return rc;
1704 }
1705
1706 return 0;
1707 }
1708
1709 static int spapr_post_load(void *opaque, int version_id)
1710 {
1711 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1712 int err = 0;
1713
1714 err = spapr_caps_post_migration(spapr);
1715 if (err) {
1716 return err;
1717 }
1718
1719 /*
1720 * In earlier versions, there was no separate qdev for the PAPR
1721 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1722 * So when migrating from those versions, poke the incoming offset
1723 * value into the RTC device
1724 */
1725 if (version_id < 3) {
1726 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1727 if (err) {
1728 return err;
1729 }
1730 }
1731
1732 if (kvm_enabled() && spapr->patb_entry) {
1733 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1734 bool radix = !!(spapr->patb_entry & PATE1_GR);
1735 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1736
1737 /*
1738 * Update LPCR:HR and UPRT as they may not be set properly in
1739 * the stream
1740 */
1741 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1742 LPCR_HR | LPCR_UPRT);
1743
1744 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1745 if (err) {
1746 error_report("Process table config unsupported by the host");
1747 return -EINVAL;
1748 }
1749 }
1750
1751 err = spapr_irq_post_load(spapr, version_id);
1752 if (err) {
1753 return err;
1754 }
1755
1756 return err;
1757 }
1758
1759 static int spapr_pre_save(void *opaque)
1760 {
1761 int rc;
1762
1763 rc = spapr_caps_pre_save(opaque);
1764 if (rc) {
1765 return rc;
1766 }
1767
1768 return 0;
1769 }
1770
1771 static bool version_before_3(void *opaque, int version_id)
1772 {
1773 return version_id < 3;
1774 }
1775
1776 static bool spapr_pending_events_needed(void *opaque)
1777 {
1778 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1779 return !QTAILQ_EMPTY(&spapr->pending_events);
1780 }
1781
1782 static const VMStateDescription vmstate_spapr_event_entry = {
1783 .name = "spapr_event_log_entry",
1784 .version_id = 1,
1785 .minimum_version_id = 1,
1786 .fields = (VMStateField[]) {
1787 VMSTATE_UINT32(summary, SpaprEventLogEntry),
1788 VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1789 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1790 NULL, extended_length),
1791 VMSTATE_END_OF_LIST()
1792 },
1793 };
1794
1795 static const VMStateDescription vmstate_spapr_pending_events = {
1796 .name = "spapr_pending_events",
1797 .version_id = 1,
1798 .minimum_version_id = 1,
1799 .needed = spapr_pending_events_needed,
1800 .fields = (VMStateField[]) {
1801 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1802 vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1803 VMSTATE_END_OF_LIST()
1804 },
1805 };
1806
1807 static bool spapr_ov5_cas_needed(void *opaque)
1808 {
1809 SpaprMachineState *spapr = opaque;
1810 SpaprOptionVector *ov5_mask = spapr_ovec_new();
1811 bool cas_needed;
1812
1813 /* Prior to the introduction of SpaprOptionVector, we had two option
1814 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1815 * Both of these options encode machine topology into the device-tree
1816 * in such a way that the now-booted OS should still be able to interact
1817 * appropriately with QEMU regardless of what options were actually
1818 * negotiatied on the source side.
1819 *
1820 * As such, we can avoid migrating the CAS-negotiated options if these
1821 * are the only options available on the current machine/platform.
1822 * Since these are the only options available for pseries-2.7 and
1823 * earlier, this allows us to maintain old->new/new->old migration
1824 * compatibility.
1825 *
1826 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1827 * via default pseries-2.8 machines and explicit command-line parameters.
1828 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1829 * of the actual CAS-negotiated values to continue working properly. For
1830 * example, availability of memory unplug depends on knowing whether
1831 * OV5_HP_EVT was negotiated via CAS.
1832 *
1833 * Thus, for any cases where the set of available CAS-negotiatable
1834 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1835 * include the CAS-negotiated options in the migration stream, unless
1836 * if they affect boot time behaviour only.
1837 */
1838 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1839 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1840 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1841
1842 /* We need extra information if we have any bits outside the mask
1843 * defined above */
1844 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1845
1846 spapr_ovec_cleanup(ov5_mask);
1847
1848 return cas_needed;
1849 }
1850
1851 static const VMStateDescription vmstate_spapr_ov5_cas = {
1852 .name = "spapr_option_vector_ov5_cas",
1853 .version_id = 1,
1854 .minimum_version_id = 1,
1855 .needed = spapr_ov5_cas_needed,
1856 .fields = (VMStateField[]) {
1857 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1858 vmstate_spapr_ovec, SpaprOptionVector),
1859 VMSTATE_END_OF_LIST()
1860 },
1861 };
1862
1863 static bool spapr_patb_entry_needed(void *opaque)
1864 {
1865 SpaprMachineState *spapr = opaque;
1866
1867 return !!spapr->patb_entry;
1868 }
1869
1870 static const VMStateDescription vmstate_spapr_patb_entry = {
1871 .name = "spapr_patb_entry",
1872 .version_id = 1,
1873 .minimum_version_id = 1,
1874 .needed = spapr_patb_entry_needed,
1875 .fields = (VMStateField[]) {
1876 VMSTATE_UINT64(patb_entry, SpaprMachineState),
1877 VMSTATE_END_OF_LIST()
1878 },
1879 };
1880
1881 static bool spapr_irq_map_needed(void *opaque)
1882 {
1883 SpaprMachineState *spapr = opaque;
1884
1885 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1886 }
1887
1888 static const VMStateDescription vmstate_spapr_irq_map = {
1889 .name = "spapr_irq_map",
1890 .version_id = 1,
1891 .minimum_version_id = 1,
1892 .needed = spapr_irq_map_needed,
1893 .fields = (VMStateField[]) {
1894 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1895 VMSTATE_END_OF_LIST()
1896 },
1897 };
1898
1899 static bool spapr_dtb_needed(void *opaque)
1900 {
1901 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1902
1903 return smc->update_dt_enabled;
1904 }
1905
1906 static int spapr_dtb_pre_load(void *opaque)
1907 {
1908 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1909
1910 g_free(spapr->fdt_blob);
1911 spapr->fdt_blob = NULL;
1912 spapr->fdt_size = 0;
1913
1914 return 0;
1915 }
1916
1917 static const VMStateDescription vmstate_spapr_dtb = {
1918 .name = "spapr_dtb",
1919 .version_id = 1,
1920 .minimum_version_id = 1,
1921 .needed = spapr_dtb_needed,
1922 .pre_load = spapr_dtb_pre_load,
1923 .fields = (VMStateField[]) {
1924 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
1925 VMSTATE_UINT32(fdt_size, SpaprMachineState),
1926 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
1927 fdt_size),
1928 VMSTATE_END_OF_LIST()
1929 },
1930 };
1931
1932 static bool spapr_fwnmi_needed(void *opaque)
1933 {
1934 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1935
1936 return spapr->fwnmi_machine_check_addr != -1;
1937 }
1938
1939 static int spapr_fwnmi_pre_save(void *opaque)
1940 {
1941 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1942
1943 /*
1944 * Check if machine check handling is in progress and print a
1945 * warning message.
1946 */
1947 if (spapr->fwnmi_machine_check_interlock != -1) {
1948 warn_report("A machine check is being handled during migration. The"
1949 "handler may run and log hardware error on the destination");
1950 }
1951
1952 return 0;
1953 }
1954
1955 static const VMStateDescription vmstate_spapr_fwnmi = {
1956 .name = "spapr_fwnmi",
1957 .version_id = 1,
1958 .minimum_version_id = 1,
1959 .needed = spapr_fwnmi_needed,
1960 .pre_save = spapr_fwnmi_pre_save,
1961 .fields = (VMStateField[]) {
1962 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
1963 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
1964 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
1965 VMSTATE_END_OF_LIST()
1966 },
1967 };
1968
1969 static const VMStateDescription vmstate_spapr = {
1970 .name = "spapr",
1971 .version_id = 3,
1972 .minimum_version_id = 1,
1973 .pre_load = spapr_pre_load,
1974 .post_load = spapr_post_load,
1975 .pre_save = spapr_pre_save,
1976 .fields = (VMStateField[]) {
1977 /* used to be @next_irq */
1978 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1979
1980 /* RTC offset */
1981 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
1982
1983 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
1984 VMSTATE_END_OF_LIST()
1985 },
1986 .subsections = (const VMStateDescription*[]) {
1987 &vmstate_spapr_ov5_cas,
1988 &vmstate_spapr_patb_entry,
1989 &vmstate_spapr_pending_events,
1990 &vmstate_spapr_cap_htm,
1991 &vmstate_spapr_cap_vsx,
1992 &vmstate_spapr_cap_dfp,
1993 &vmstate_spapr_cap_cfpc,
1994 &vmstate_spapr_cap_sbbc,
1995 &vmstate_spapr_cap_ibs,
1996 &vmstate_spapr_cap_hpt_maxpagesize,
1997 &vmstate_spapr_irq_map,
1998 &vmstate_spapr_cap_nested_kvm_hv,
1999 &vmstate_spapr_dtb,
2000 &vmstate_spapr_cap_large_decr,
2001 &vmstate_spapr_cap_ccf_assist,
2002 &vmstate_spapr_cap_fwnmi,
2003 &vmstate_spapr_fwnmi,
2004 NULL
2005 }
2006 };
2007
2008 static int htab_save_setup(QEMUFile *f, void *opaque)
2009 {
2010 SpaprMachineState *spapr = opaque;
2011
2012 /* "Iteration" header */
2013 if (!spapr->htab_shift) {
2014 qemu_put_be32(f, -1);
2015 } else {
2016 qemu_put_be32(f, spapr->htab_shift);
2017 }
2018
2019 if (spapr->htab) {
2020 spapr->htab_save_index = 0;
2021 spapr->htab_first_pass = true;
2022 } else {
2023 if (spapr->htab_shift) {
2024 assert(kvm_enabled());
2025 }
2026 }
2027
2028
2029 return 0;
2030 }
2031
2032 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2033 int chunkstart, int n_valid, int n_invalid)
2034 {
2035 qemu_put_be32(f, chunkstart);
2036 qemu_put_be16(f, n_valid);
2037 qemu_put_be16(f, n_invalid);
2038 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2039 HASH_PTE_SIZE_64 * n_valid);
2040 }
2041
2042 static void htab_save_end_marker(QEMUFile *f)
2043 {
2044 qemu_put_be32(f, 0);
2045 qemu_put_be16(f, 0);
2046 qemu_put_be16(f, 0);
2047 }
2048
2049 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2050 int64_t max_ns)
2051 {
2052 bool has_timeout = max_ns != -1;
2053 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2054 int index = spapr->htab_save_index;
2055 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2056
2057 assert(spapr->htab_first_pass);
2058
2059 do {
2060 int chunkstart;
2061
2062 /* Consume invalid HPTEs */
2063 while ((index < htabslots)
2064 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2065 CLEAN_HPTE(HPTE(spapr->htab, index));
2066 index++;
2067 }
2068
2069 /* Consume valid HPTEs */
2070 chunkstart = index;
2071 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2072 && HPTE_VALID(HPTE(spapr->htab, index))) {
2073 CLEAN_HPTE(HPTE(spapr->htab, index));
2074 index++;
2075 }
2076
2077 if (index > chunkstart) {
2078 int n_valid = index - chunkstart;
2079
2080 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2081
2082 if (has_timeout &&
2083 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2084 break;
2085 }
2086 }
2087 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2088
2089 if (index >= htabslots) {
2090 assert(index == htabslots);
2091 index = 0;
2092 spapr->htab_first_pass = false;
2093 }
2094 spapr->htab_save_index = index;
2095 }
2096
2097 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2098 int64_t max_ns)
2099 {
2100 bool final = max_ns < 0;
2101 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2102 int examined = 0, sent = 0;
2103 int index = spapr->htab_save_index;
2104 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2105
2106 assert(!spapr->htab_first_pass);
2107
2108 do {
2109 int chunkstart, invalidstart;
2110
2111 /* Consume non-dirty HPTEs */
2112 while ((index < htabslots)
2113 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2114 index++;
2115 examined++;
2116 }
2117
2118 chunkstart = index;
2119 /* Consume valid dirty HPTEs */
2120 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2121 && HPTE_DIRTY(HPTE(spapr->htab, index))
2122 && HPTE_VALID(HPTE(spapr->htab, index))) {
2123 CLEAN_HPTE(HPTE(spapr->htab, index));
2124 index++;
2125 examined++;
2126 }
2127
2128 invalidstart = index;
2129 /* Consume invalid dirty HPTEs */
2130 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2131 && HPTE_DIRTY(HPTE(spapr->htab, index))
2132 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2133 CLEAN_HPTE(HPTE(spapr->htab, index));
2134 index++;
2135 examined++;
2136 }
2137
2138 if (index > chunkstart) {
2139 int n_valid = invalidstart - chunkstart;
2140 int n_invalid = index - invalidstart;
2141
2142 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2143 sent += index - chunkstart;
2144
2145 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2146 break;
2147 }
2148 }
2149
2150 if (examined >= htabslots) {
2151 break;
2152 }
2153
2154 if (index >= htabslots) {
2155 assert(index == htabslots);
2156 index = 0;
2157 }
2158 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2159
2160 if (index >= htabslots) {
2161 assert(index == htabslots);
2162 index = 0;
2163 }
2164
2165 spapr->htab_save_index = index;
2166
2167 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2168 }
2169
2170 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2171 #define MAX_KVM_BUF_SIZE 2048
2172
2173 static int htab_save_iterate(QEMUFile *f, void *opaque)
2174 {
2175 SpaprMachineState *spapr = opaque;
2176 int fd;
2177 int rc = 0;
2178
2179 /* Iteration header */
2180 if (!spapr->htab_shift) {
2181 qemu_put_be32(f, -1);
2182 return 1;
2183 } else {
2184 qemu_put_be32(f, 0);
2185 }
2186
2187 if (!spapr->htab) {
2188 assert(kvm_enabled());
2189
2190 fd = get_htab_fd(spapr);
2191 if (fd < 0) {
2192 return fd;
2193 }
2194
2195 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2196 if (rc < 0) {
2197 return rc;
2198 }
2199 } else if (spapr->htab_first_pass) {
2200 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2201 } else {
2202 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2203 }
2204
2205 htab_save_end_marker(f);
2206
2207 return rc;
2208 }
2209
2210 static int htab_save_complete(QEMUFile *f, void *opaque)
2211 {
2212 SpaprMachineState *spapr = opaque;
2213 int fd;
2214
2215 /* Iteration header */
2216 if (!spapr->htab_shift) {
2217 qemu_put_be32(f, -1);
2218 return 0;
2219 } else {
2220 qemu_put_be32(f, 0);
2221 }
2222
2223 if (!spapr->htab) {
2224 int rc;
2225
2226 assert(kvm_enabled());
2227
2228 fd = get_htab_fd(spapr);
2229 if (fd < 0) {
2230 return fd;
2231 }
2232
2233 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2234 if (rc < 0) {
2235 return rc;
2236 }
2237 } else {
2238 if (spapr->htab_first_pass) {
2239 htab_save_first_pass(f, spapr, -1);
2240 }
2241 htab_save_later_pass(f, spapr, -1);
2242 }
2243
2244 /* End marker */
2245 htab_save_end_marker(f);
2246
2247 return 0;
2248 }
2249
2250 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2251 {
2252 SpaprMachineState *spapr = opaque;
2253 uint32_t section_hdr;
2254 int fd = -1;
2255 Error *local_err = NULL;
2256
2257 if (version_id < 1 || version_id > 1) {
2258 error_report("htab_load() bad version");
2259 return -EINVAL;
2260 }
2261
2262 section_hdr = qemu_get_be32(f);
2263
2264 if (section_hdr == -1) {
2265 spapr_free_hpt(spapr);
2266 return 0;
2267 }
2268
2269 if (section_hdr) {
2270 int ret;
2271
2272 /* First section gives the htab size */
2273 ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2274 if (ret < 0) {
2275 error_report_err(local_err);
2276 return ret;
2277 }
2278 return 0;
2279 }
2280
2281 if (!spapr->htab) {
2282 assert(kvm_enabled());
2283
2284 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2285 if (fd < 0) {
2286 error_report_err(local_err);
2287 return fd;
2288 }
2289 }
2290
2291 while (true) {
2292 uint32_t index;
2293 uint16_t n_valid, n_invalid;
2294
2295 index = qemu_get_be32(f);
2296 n_valid = qemu_get_be16(f);
2297 n_invalid = qemu_get_be16(f);
2298
2299 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2300 /* End of Stream */
2301 break;
2302 }
2303
2304 if ((index + n_valid + n_invalid) >
2305 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2306 /* Bad index in stream */
2307 error_report(
2308 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2309 index, n_valid, n_invalid, spapr->htab_shift);
2310 return -EINVAL;
2311 }
2312
2313 if (spapr->htab) {
2314 if (n_valid) {
2315 qemu_get_buffer(f, HPTE(spapr->htab, index),
2316 HASH_PTE_SIZE_64 * n_valid);
2317 }
2318 if (n_invalid) {
2319 memset(HPTE(spapr->htab, index + n_valid), 0,
2320 HASH_PTE_SIZE_64 * n_invalid);
2321 }
2322 } else {
2323 int rc;
2324
2325 assert(fd >= 0);
2326
2327 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid,
2328 &local_err);
2329 if (rc < 0) {
2330 error_report_err(local_err);
2331 return rc;
2332 }
2333 }
2334 }
2335
2336 if (!spapr->htab) {
2337 assert(fd >= 0);
2338 close(fd);
2339 }
2340
2341 return 0;
2342 }
2343
2344 static void htab_save_cleanup(void *opaque)
2345 {
2346 SpaprMachineState *spapr = opaque;
2347
2348 close_htab_fd(spapr);
2349 }
2350
2351 static SaveVMHandlers savevm_htab_handlers = {
2352 .save_setup = htab_save_setup,
2353 .save_live_iterate = htab_save_iterate,
2354 .save_live_complete_precopy = htab_save_complete,
2355 .save_cleanup = htab_save_cleanup,
2356 .load_state = htab_load,
2357 };
2358
2359 static void spapr_boot_set(void *opaque, const char *boot_device,
2360 Error **errp)
2361 {
2362 MachineState *machine = MACHINE(opaque);
2363 machine->boot_order = g_strdup(boot_device);
2364 }
2365
2366 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2367 {
2368 MachineState *machine = MACHINE(spapr);
2369 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2370 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2371 int i;
2372
2373 for (i = 0; i < nr_lmbs; i++) {
2374 uint64_t addr;
2375
2376 addr = i * lmb_size + machine->device_memory->base;
2377 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2378 addr / lmb_size);
2379 }
2380 }
2381
2382 /*
2383 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2384 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2385 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2386 */
2387 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2388 {
2389 int i;
2390
2391 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2392 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2393 " is not aligned to %" PRIu64 " MiB",
2394 machine->ram_size,
2395 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2396 return;
2397 }
2398
2399 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2400 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2401 " is not aligned to %" PRIu64 " MiB",
2402 machine->ram_size,
2403 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2404 return;
2405 }
2406
2407 for (i = 0; i < machine->numa_state->num_nodes; i++) {
2408 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2409 error_setg(errp,
2410 "Node %d memory size 0x%" PRIx64
2411 " is not aligned to %" PRIu64 " MiB",
2412 i, machine->numa_state->nodes[i].node_mem,
2413 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2414 return;
2415 }
2416 }
2417 }
2418
2419 /* find cpu slot in machine->possible_cpus by core_id */
2420 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2421 {
2422 int index = id / ms->smp.threads;
2423
2424 if (index >= ms->possible_cpus->len) {
2425 return NULL;
2426 }
2427 if (idx) {
2428 *idx = index;
2429 }
2430 return &ms->possible_cpus->cpus[index];
2431 }
2432
2433 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2434 {
2435 MachineState *ms = MACHINE(spapr);
2436 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2437 Error *local_err = NULL;
2438 bool vsmt_user = !!spapr->vsmt;
2439 int kvm_smt = kvmppc_smt_threads();
2440 int ret;
2441 unsigned int smp_threads = ms->smp.threads;
2442
2443 if (!kvm_enabled() && (smp_threads > 1)) {
2444 error_setg(errp, "TCG cannot support more than 1 thread/core "
2445 "on a pseries machine");
2446 return;
2447 }
2448 if (!is_power_of_2(smp_threads)) {
2449 error_setg(errp, "Cannot support %d threads/core on a pseries "
2450 "machine because it must be a power of 2", smp_threads);
2451 return;
2452 }
2453
2454 /* Detemine the VSMT mode to use: */
2455 if (vsmt_user) {
2456 if (spapr->vsmt < smp_threads) {
2457 error_setg(errp, "Cannot support VSMT mode %d"
2458 " because it must be >= threads/core (%d)",
2459 spapr->vsmt, smp_threads);
2460 return;
2461 }
2462 /* In this case, spapr->vsmt has been set by the command line */
2463 } else if (!smc->smp_threads_vsmt) {
2464 /*
2465 * Default VSMT value is tricky, because we need it to be as
2466 * consistent as possible (for migration), but this requires
2467 * changing it for at least some existing cases. We pick 8 as
2468 * the value that we'd get with KVM on POWER8, the
2469 * overwhelmingly common case in production systems.
2470 */
2471 spapr->vsmt = MAX(8, smp_threads);
2472 } else {
2473 spapr->vsmt = smp_threads;
2474 }
2475
2476 /* KVM: If necessary, set the SMT mode: */
2477 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2478 ret = kvmppc_set_smt_threads(spapr->vsmt);
2479 if (ret) {
2480 /* Looks like KVM isn't able to change VSMT mode */
2481 error_setg(&local_err,
2482 "Failed to set KVM's VSMT mode to %d (errno %d)",
2483 spapr->vsmt, ret);
2484 /* We can live with that if the default one is big enough
2485 * for the number of threads, and a submultiple of the one
2486 * we want. In this case we'll waste some vcpu ids, but
2487 * behaviour will be correct */
2488 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2489 warn_report_err(local_err);
2490 } else {
2491 if (!vsmt_user) {
2492 error_append_hint(&local_err,
2493 "On PPC, a VM with %d threads/core"
2494 " on a host with %d threads/core"
2495 " requires the use of VSMT mode %d.\n",
2496 smp_threads, kvm_smt, spapr->vsmt);
2497 }
2498 kvmppc_error_append_smt_possible_hint(&local_err);
2499 error_propagate(errp, local_err);
2500 }
2501 }
2502 }
2503 /* else TCG: nothing to do currently */
2504 }
2505
2506 static void spapr_init_cpus(SpaprMachineState *spapr)
2507 {
2508 MachineState *machine = MACHINE(spapr);
2509 MachineClass *mc = MACHINE_GET_CLASS(machine);
2510 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2511 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2512 const CPUArchIdList *possible_cpus;
2513 unsigned int smp_cpus = machine->smp.cpus;
2514 unsigned int smp_threads = machine->smp.threads;
2515 unsigned int max_cpus = machine->smp.max_cpus;
2516 int boot_cores_nr = smp_cpus / smp_threads;
2517 int i;
2518
2519 possible_cpus = mc->possible_cpu_arch_ids(machine);
2520 if (mc->has_hotpluggable_cpus) {
2521 if (smp_cpus % smp_threads) {
2522 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2523 smp_cpus, smp_threads);
2524 exit(1);
2525 }
2526 if (max_cpus % smp_threads) {
2527 error_report("max_cpus (%u) must be multiple of threads (%u)",
2528 max_cpus, smp_threads);
2529 exit(1);
2530 }
2531 } else {
2532 if (max_cpus != smp_cpus) {
2533 error_report("This machine version does not support CPU hotplug");
2534 exit(1);
2535 }
2536 boot_cores_nr = possible_cpus->len;
2537 }
2538
2539 if (smc->pre_2_10_has_unused_icps) {
2540 int i;
2541
2542 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2543 /* Dummy entries get deregistered when real ICPState objects
2544 * are registered during CPU core hotplug.
2545 */
2546 pre_2_10_vmstate_register_dummy_icp(i);
2547 }
2548 }
2549
2550 for (i = 0; i < possible_cpus->len; i++) {
2551 int core_id = i * smp_threads;
2552
2553 if (mc->has_hotpluggable_cpus) {
2554 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2555 spapr_vcpu_id(spapr, core_id));
2556 }
2557
2558 if (i < boot_cores_nr) {
2559 Object *core = object_new(type);
2560 int nr_threads = smp_threads;
2561
2562 /* Handle the partially filled core for older machine types */
2563 if ((i + 1) * smp_threads >= smp_cpus) {
2564 nr_threads = smp_cpus - i * smp_threads;
2565 }
2566
2567 object_property_set_int(core, "nr-threads", nr_threads,
2568 &error_fatal);
2569 object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2570 &error_fatal);
2571 qdev_realize(DEVICE(core), NULL, &error_fatal);
2572
2573 object_unref(core);
2574 }
2575 }
2576 }
2577
2578 static PCIHostState *spapr_create_default_phb(void)
2579 {
2580 DeviceState *dev;
2581
2582 dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2583 qdev_prop_set_uint32(dev, "index", 0);
2584 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2585
2586 return PCI_HOST_BRIDGE(dev);
2587 }
2588
2589 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2590 {
2591 MachineState *machine = MACHINE(spapr);
2592 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2593 hwaddr rma_size = machine->ram_size;
2594 hwaddr node0_size = spapr_node0_size(machine);
2595
2596 /* RMA has to fit in the first NUMA node */
2597 rma_size = MIN(rma_size, node0_size);
2598
2599 /*
2600 * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2601 * never exceed that
2602 */
2603 rma_size = MIN(rma_size, 1 * TiB);
2604
2605 /*
2606 * Clamp the RMA size based on machine type. This is for
2607 * migration compatibility with older qemu versions, which limited
2608 * the RMA size for complicated and mostly bad reasons.
2609 */
2610 if (smc->rma_limit) {
2611 rma_size = MIN(rma_size, smc->rma_limit);
2612 }
2613
2614 if (rma_size < MIN_RMA_SLOF) {
2615 error_setg(errp,
2616 "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2617 "ldMiB guest RMA (Real Mode Area memory)",
2618 MIN_RMA_SLOF / MiB);
2619 return 0;
2620 }
2621
2622 return rma_size;
2623 }
2624
2625 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
2626 {
2627 MachineState *machine = MACHINE(spapr);
2628 int i;
2629
2630 for (i = 0; i < machine->ram_slots; i++) {
2631 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
2632 }
2633 }
2634
2635 /* pSeries LPAR / sPAPR hardware init */
2636 static void spapr_machine_init(MachineState *machine)
2637 {
2638 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2639 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2640 MachineClass *mc = MACHINE_GET_CLASS(machine);
2641 const char *bios_name = machine->firmware ?: FW_FILE_NAME;
2642 const char *kernel_filename = machine->kernel_filename;
2643 const char *initrd_filename = machine->initrd_filename;
2644 PCIHostState *phb;
2645 int i;
2646 MemoryRegion *sysmem = get_system_memory();
2647 long load_limit, fw_size;
2648 char *filename;
2649 Error *resize_hpt_err = NULL;
2650
2651 /*
2652 * if Secure VM (PEF) support is configured, then initialize it
2653 */
2654 pef_kvm_init(machine->cgs, &error_fatal);
2655
2656 msi_nonbroken = true;
2657
2658 QLIST_INIT(&spapr->phbs);
2659 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2660
2661 /* Determine capabilities to run with */
2662 spapr_caps_init(spapr);
2663
2664 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2665 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2666 /*
2667 * If the user explicitly requested a mode we should either
2668 * supply it, or fail completely (which we do below). But if
2669 * it's not set explicitly, we reset our mode to something
2670 * that works
2671 */
2672 if (resize_hpt_err) {
2673 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2674 error_free(resize_hpt_err);
2675 resize_hpt_err = NULL;
2676 } else {
2677 spapr->resize_hpt = smc->resize_hpt_default;
2678 }
2679 }
2680
2681 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2682
2683 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2684 /*
2685 * User requested HPT resize, but this host can't supply it. Bail out
2686 */
2687 error_report_err(resize_hpt_err);
2688 exit(1);
2689 }
2690 error_free(resize_hpt_err);
2691
2692 spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2693
2694 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2695 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2696
2697 /*
2698 * VSMT must be set in order to be able to compute VCPU ids, ie to
2699 * call spapr_max_server_number() or spapr_vcpu_id().
2700 */
2701 spapr_set_vsmt_mode(spapr, &error_fatal);
2702
2703 /* Set up Interrupt Controller before we create the VCPUs */
2704 spapr_irq_init(spapr, &error_fatal);
2705
2706 /* Set up containers for ibm,client-architecture-support negotiated options
2707 */
2708 spapr->ov5 = spapr_ovec_new();
2709 spapr->ov5_cas = spapr_ovec_new();
2710
2711 if (smc->dr_lmb_enabled) {
2712 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2713 spapr_validate_node_memory(machine, &error_fatal);
2714 }
2715
2716 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2717
2718 /* advertise support for dedicated HP event source to guests */
2719 if (spapr->use_hotplug_event_source) {
2720 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2721 }
2722
2723 /* advertise support for HPT resizing */
2724 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2725 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2726 }
2727
2728 /* advertise support for ibm,dyamic-memory-v2 */
2729 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2730
2731 /* advertise XIVE on POWER9 machines */
2732 if (spapr->irq->xive) {
2733 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2734 }
2735
2736 /* init CPUs */
2737 spapr_init_cpus(spapr);
2738
2739 /*
2740 * check we don't have a memory-less/cpu-less NUMA node
2741 * Firmware relies on the existing memory/cpu topology to provide the
2742 * NUMA topology to the kernel.
2743 * And the linux kernel needs to know the NUMA topology at start
2744 * to be able to hotplug CPUs later.
2745 */
2746 if (machine->numa_state->num_nodes) {
2747 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
2748 /* check for memory-less node */
2749 if (machine->numa_state->nodes[i].node_mem == 0) {
2750 CPUState *cs;
2751 int found = 0;
2752 /* check for cpu-less node */
2753 CPU_FOREACH(cs) {
2754 PowerPCCPU *cpu = POWERPC_CPU(cs);
2755 if (cpu->node_id == i) {
2756 found = 1;
2757 break;
2758 }
2759 }
2760 /* memory-less and cpu-less node */
2761 if (!found) {
2762 error_report(
2763 "Memory-less/cpu-less nodes are not supported (node %d)",
2764 i);
2765 exit(1);
2766 }
2767 }
2768 }
2769
2770 }
2771
2772 spapr->gpu_numa_id = spapr_numa_initial_nvgpu_numa_id(machine);
2773
2774 /* Init numa_assoc_array */
2775 spapr_numa_associativity_init(spapr, machine);
2776
2777 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2778 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2779 spapr->max_compat_pvr)) {
2780 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2781 /* KVM and TCG always allow GTSE with radix... */
2782 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2783 }
2784 /* ... but not with hash (currently). */
2785
2786 if (kvm_enabled()) {
2787 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2788 kvmppc_enable_logical_ci_hcalls();
2789 kvmppc_enable_set_mode_hcall();
2790
2791 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2792 kvmppc_enable_clear_ref_mod_hcalls();
2793
2794 /* Enable H_PAGE_INIT */
2795 kvmppc_enable_h_page_init();
2796 }
2797
2798 /* map RAM */
2799 memory_region_add_subregion(sysmem, 0, machine->ram);
2800
2801 /* always allocate the device memory information */
2802 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2803
2804 /* initialize hotplug memory address space */
2805 if (machine->ram_size < machine->maxram_size) {
2806 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2807 /*
2808 * Limit the number of hotpluggable memory slots to half the number
2809 * slots that KVM supports, leaving the other half for PCI and other
2810 * devices. However ensure that number of slots doesn't drop below 32.
2811 */
2812 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2813 SPAPR_MAX_RAM_SLOTS;
2814
2815 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2816 max_memslots = SPAPR_MAX_RAM_SLOTS;
2817 }
2818 if (machine->ram_slots > max_memslots) {
2819 error_report("Specified number of memory slots %"
2820 PRIu64" exceeds max supported %d",
2821 machine->ram_slots, max_memslots);
2822 exit(1);
2823 }
2824
2825 machine->device_memory->base = ROUND_UP(machine->ram_size,
2826 SPAPR_DEVICE_MEM_ALIGN);
2827 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2828 "device-memory", device_mem_size);
2829 memory_region_add_subregion(sysmem, machine->device_memory->base,
2830 &machine->device_memory->mr);
2831 }
2832
2833 if (smc->dr_lmb_enabled) {
2834 spapr_create_lmb_dr_connectors(spapr);
2835 }
2836
2837 if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2838 /* Create the error string for live migration blocker */
2839 error_setg(&spapr->fwnmi_migration_blocker,
2840 "A machine check is being handled during migration. The handler"
2841 "may run and log hardware error on the destination");
2842 }
2843
2844 if (mc->nvdimm_supported) {
2845 spapr_create_nvdimm_dr_connectors(spapr);
2846 }
2847
2848 /* Set up RTAS event infrastructure */
2849 spapr_events_init(spapr);
2850
2851 /* Set up the RTC RTAS interfaces */
2852 spapr_rtc_create(spapr);
2853
2854 /* Set up VIO bus */
2855 spapr->vio_bus = spapr_vio_bus_init();
2856
2857 for (i = 0; serial_hd(i); i++) {
2858 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2859 }
2860
2861 /* We always have at least the nvram device on VIO */
2862 spapr_create_nvram(spapr);
2863
2864 /*
2865 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2866 * connectors (described in root DT node's "ibm,drc-types" property)
2867 * are pre-initialized here. additional child connectors (such as
2868 * connectors for a PHBs PCI slots) are added as needed during their
2869 * parent's realization.
2870 */
2871 if (smc->dr_phb_enabled) {
2872 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2873 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2874 }
2875 }
2876
2877 /* Set up PCI */
2878 spapr_pci_rtas_init();
2879
2880 phb = spapr_create_default_phb();
2881
2882 for (i = 0; i < nb_nics; i++) {
2883 NICInfo *nd = &nd_table[i];
2884
2885 if (!nd->model) {
2886 nd->model = g_strdup("spapr-vlan");
2887 }
2888
2889 if (g_str_equal(nd->model, "spapr-vlan") ||
2890 g_str_equal(nd->model, "ibmveth")) {
2891 spapr_vlan_create(spapr->vio_bus, nd);
2892 } else {
2893 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2894 }
2895 }
2896
2897 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2898 spapr_vscsi_create(spapr->vio_bus);
2899 }
2900
2901 /* Graphics */
2902 if (spapr_vga_init(phb->bus, &error_fatal)) {
2903 spapr->has_graphics = true;
2904 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2905 }
2906
2907 if (machine->usb) {
2908 if (smc->use_ohci_by_default) {
2909 pci_create_simple(phb->bus, -1, "pci-ohci");
2910 } else {
2911 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2912 }
2913
2914 if (spapr->has_graphics) {
2915 USBBus *usb_bus = usb_bus_find(-1);
2916
2917 usb_create_simple(usb_bus, "usb-kbd");
2918 usb_create_simple(usb_bus, "usb-mouse");
2919 }
2920 }
2921
2922 if (kernel_filename) {
2923 spapr->kernel_size = load_elf(kernel_filename, NULL,
2924 translate_kernel_address, spapr,
2925 NULL, NULL, NULL, NULL, 1,
2926 PPC_ELF_MACHINE, 0, 0);
2927 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2928 spapr->kernel_size = load_elf(kernel_filename, NULL,
2929 translate_kernel_address, spapr,
2930 NULL, NULL, NULL, NULL, 0,
2931 PPC_ELF_MACHINE, 0, 0);
2932 spapr->kernel_le = spapr->kernel_size > 0;
2933 }
2934 if (spapr->kernel_size < 0) {
2935 error_report("error loading %s: %s", kernel_filename,
2936 load_elf_strerror(spapr->kernel_size));
2937 exit(1);
2938 }
2939
2940 /* load initrd */
2941 if (initrd_filename) {
2942 /* Try to locate the initrd in the gap between the kernel
2943 * and the firmware. Add a bit of space just in case
2944 */
2945 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
2946 + 0x1ffff) & ~0xffff;
2947 spapr->initrd_size = load_image_targphys(initrd_filename,
2948 spapr->initrd_base,
2949 load_limit
2950 - spapr->initrd_base);
2951 if (spapr->initrd_size < 0) {
2952 error_report("could not load initial ram disk '%s'",
2953 initrd_filename);
2954 exit(1);
2955 }
2956 }
2957 }
2958
2959 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2960 if (!filename) {
2961 error_report("Could not find LPAR firmware '%s'", bios_name);
2962 exit(1);
2963 }
2964 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2965 if (fw_size <= 0) {
2966 error_report("Could not load LPAR firmware '%s'", filename);
2967 exit(1);
2968 }
2969 g_free(filename);
2970
2971 /* FIXME: Should register things through the MachineState's qdev
2972 * interface, this is a legacy from the sPAPREnvironment structure
2973 * which predated MachineState but had a similar function */
2974 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2975 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
2976 &savevm_htab_handlers, spapr);
2977
2978 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
2979
2980 qemu_register_boot_set(spapr_boot_set, spapr);
2981
2982 /*
2983 * Nothing needs to be done to resume a suspended guest because
2984 * suspending does not change the machine state, so no need for
2985 * a ->wakeup method.
2986 */
2987 qemu_register_wakeup_support();
2988
2989 if (kvm_enabled()) {
2990 /* to stop and start vmclock */
2991 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2992 &spapr->tb);
2993
2994 kvmppc_spapr_enable_inkernel_multitce();
2995 }
2996
2997 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
2998 }
2999
3000 #define DEFAULT_KVM_TYPE "auto"
3001 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3002 {
3003 /*
3004 * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3005 * accomodate the 'HV' and 'PV' formats that exists in the
3006 * wild. The 'auto' mode is being introduced already as
3007 * lower-case, thus we don't need to bother checking for
3008 * "AUTO".
3009 */
3010 if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) {
3011 return 0;
3012 }
3013
3014 if (!g_ascii_strcasecmp(vm_type, "hv")) {
3015 return 1;
3016 }
3017
3018 if (!g_ascii_strcasecmp(vm_type, "pr")) {
3019 return 2;
3020 }
3021
3022 error_report("Unknown kvm-type specified '%s'", vm_type);
3023 exit(1);
3024 }
3025
3026 /*
3027 * Implementation of an interface to adjust firmware path
3028 * for the bootindex property handling.
3029 */
3030 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3031 DeviceState *dev)
3032 {
3033 #define CAST(type, obj, name) \
3034 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3035 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3036 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3037 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3038 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3039
3040 if (d) {
3041 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3042 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3043 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3044
3045 if (spapr) {
3046 /*
3047 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3048 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3049 * 0x8000 | (target << 8) | (bus << 5) | lun
3050 * (see the "Logical unit addressing format" table in SAM5)
3051 */
3052 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3053 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3054 (uint64_t)id << 48);
3055 } else if (virtio) {
3056 /*
3057 * We use SRP luns of the form 01000000 | (target << 8) | lun
3058 * in the top 32 bits of the 64-bit LUN
3059 * Note: the quote above is from SLOF and it is wrong,
3060 * the actual binding is:
3061 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3062 */
3063 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3064 if (d->lun >= 256) {
3065 /* Use the LUN "flat space addressing method" */
3066 id |= 0x4000;
3067 }
3068 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3069 (uint64_t)id << 32);
3070 } else if (usb) {
3071 /*
3072 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3073 * in the top 32 bits of the 64-bit LUN
3074 */
3075 unsigned usb_port = atoi(usb->port->path);
3076 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3077 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3078 (uint64_t)id << 32);
3079 }
3080 }
3081
3082 /*
3083 * SLOF probes the USB devices, and if it recognizes that the device is a
3084 * storage device, it changes its name to "storage" instead of "usb-host",
3085 * and additionally adds a child node for the SCSI LUN, so the correct
3086 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3087 */
3088 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3089 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3090 if (usb_host_dev_is_scsi_storage(usbdev)) {
3091 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3092 }
3093 }
3094
3095 if (phb) {
3096 /* Replace "pci" with "pci@800000020000000" */
3097 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3098 }
3099
3100 if (vsc) {
3101 /* Same logic as virtio above */
3102 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3103 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3104 }
3105
3106 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3107 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3108 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3109 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3110 }
3111
3112 if (pcidev) {
3113 return spapr_pci_fw_dev_name(pcidev);
3114 }
3115
3116 return NULL;
3117 }
3118
3119 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3120 {
3121 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3122
3123 return g_strdup(spapr->kvm_type);
3124 }
3125
3126 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3127 {
3128 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3129
3130 g_free(spapr->kvm_type);
3131 spapr->kvm_type = g_strdup(value);
3132 }
3133
3134 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3135 {
3136 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3137
3138 return spapr->use_hotplug_event_source;
3139 }
3140
3141 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3142 Error **errp)
3143 {
3144 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3145
3146 spapr->use_hotplug_event_source = value;
3147 }
3148
3149 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3150 {
3151 return true;
3152 }
3153
3154 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3155 {
3156 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3157
3158 switch (spapr->resize_hpt) {
3159 case SPAPR_RESIZE_HPT_DEFAULT:
3160 return g_strdup("default");
3161 case SPAPR_RESIZE_HPT_DISABLED:
3162 return g_strdup("disabled");
3163 case SPAPR_RESIZE_HPT_ENABLED:
3164 return g_strdup("enabled");
3165 case SPAPR_RESIZE_HPT_REQUIRED:
3166 return g_strdup("required");
3167 }
3168 g_assert_not_reached();
3169 }
3170
3171 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3172 {
3173 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3174
3175 if (strcmp(value, "default") == 0) {
3176 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3177 } else if (strcmp(value, "disabled") == 0) {
3178 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3179 } else if (strcmp(value, "enabled") == 0) {
3180 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3181 } else if (strcmp(value, "required") == 0) {
3182 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3183 } else {
3184 error_setg(errp, "Bad value for \"resize-hpt\" property");
3185 }
3186 }
3187
3188 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3189 {
3190 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3191
3192 if (spapr->irq == &spapr_irq_xics_legacy) {
3193 return g_strdup("legacy");
3194 } else if (spapr->irq == &spapr_irq_xics) {
3195 return g_strdup("xics");
3196 } else if (spapr->irq == &spapr_irq_xive) {
3197 return g_strdup("xive");
3198 } else if (spapr->irq == &spapr_irq_dual) {
3199 return g_strdup("dual");
3200 }
3201 g_assert_not_reached();
3202 }
3203
3204 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3205 {
3206 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3207
3208 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3209 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3210 return;
3211 }
3212
3213 /* The legacy IRQ backend can not be set */
3214 if (strcmp(value, "xics") == 0) {
3215 spapr->irq = &spapr_irq_xics;
3216 } else if (strcmp(value, "xive") == 0) {
3217 spapr->irq = &spapr_irq_xive;
3218 } else if (strcmp(value, "dual") == 0) {
3219 spapr->irq = &spapr_irq_dual;
3220 } else {
3221 error_setg(errp, "Bad value for \"ic-mode\" property");
3222 }
3223 }
3224
3225 static char *spapr_get_host_model(Object *obj, Error **errp)
3226 {
3227 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3228
3229 return g_strdup(spapr->host_model);
3230 }
3231
3232 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3233 {
3234 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3235
3236 g_free(spapr->host_model);
3237 spapr->host_model = g_strdup(value);
3238 }
3239
3240 static char *spapr_get_host_serial(Object *obj, Error **errp)
3241 {
3242 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3243
3244 return g_strdup(spapr->host_serial);
3245 }
3246
3247 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3248 {
3249 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3250
3251 g_free(spapr->host_serial);
3252 spapr->host_serial = g_strdup(value);
3253 }
3254
3255 static void spapr_instance_init(Object *obj)
3256 {
3257 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3258 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3259 MachineState *ms = MACHINE(spapr);
3260 MachineClass *mc = MACHINE_GET_CLASS(ms);
3261
3262 /*
3263 * NVDIMM support went live in 5.1 without considering that, in
3264 * other archs, the user needs to enable NVDIMM support with the
3265 * 'nvdimm' machine option and the default behavior is NVDIMM
3266 * support disabled. It is too late to roll back to the standard
3267 * behavior without breaking 5.1 guests.
3268 */
3269 if (mc->nvdimm_supported) {
3270 ms->nvdimms_state->is_enabled = true;
3271 }
3272
3273 spapr->htab_fd = -1;
3274 spapr->use_hotplug_event_source = true;
3275 spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE);
3276 object_property_add_str(obj, "kvm-type",
3277 spapr_get_kvm_type, spapr_set_kvm_type);
3278 object_property_set_description(obj, "kvm-type",
3279 "Specifies the KVM virtualization mode (auto,"
3280 " hv, pr). Defaults to 'auto'. This mode will use"
3281 " any available KVM module loaded in the host,"
3282 " where kvm_hv takes precedence if both kvm_hv and"
3283 " kvm_pr are loaded.");
3284 object_property_add_bool(obj, "modern-hotplug-events",
3285 spapr_get_modern_hotplug_events,
3286 spapr_set_modern_hotplug_events);
3287 object_property_set_description(obj, "modern-hotplug-events",
3288 "Use dedicated hotplug event mechanism in"
3289 " place of standard EPOW events when possible"
3290 " (required for memory hot-unplug support)");
3291 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3292 "Maximum permitted CPU compatibility mode");
3293
3294 object_property_add_str(obj, "resize-hpt",
3295 spapr_get_resize_hpt, spapr_set_resize_hpt);
3296 object_property_set_description(obj, "resize-hpt",
3297 "Resizing of the Hash Page Table (enabled, disabled, required)");
3298 object_property_add_uint32_ptr(obj, "vsmt",
3299 &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3300 object_property_set_description(obj, "vsmt",
3301 "Virtual SMT: KVM behaves as if this were"
3302 " the host's SMT mode");
3303
3304 object_property_add_bool(obj, "vfio-no-msix-emulation",
3305 spapr_get_msix_emulation, NULL);
3306
3307 object_property_add_uint64_ptr(obj, "kernel-addr",
3308 &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3309 object_property_set_description(obj, "kernel-addr",
3310 stringify(KERNEL_LOAD_ADDR)
3311 " for -kernel is the default");
3312 spapr->kernel_addr = KERNEL_LOAD_ADDR;
3313 /* The machine class defines the default interrupt controller mode */
3314 spapr->irq = smc->irq;
3315 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3316 spapr_set_ic_mode);
3317 object_property_set_description(obj, "ic-mode",
3318 "Specifies the interrupt controller mode (xics, xive, dual)");
3319
3320 object_property_add_str(obj, "host-model",
3321 spapr_get_host_model, spapr_set_host_model);
3322 object_property_set_description(obj, "host-model",
3323 "Host model to advertise in guest device tree");
3324 object_property_add_str(obj, "host-serial",
3325 spapr_get_host_serial, spapr_set_host_serial);
3326 object_property_set_description(obj, "host-serial",
3327 "Host serial number to advertise in guest device tree");
3328 }
3329
3330 static void spapr_machine_finalizefn(Object *obj)
3331 {
3332 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3333
3334 g_free(spapr->kvm_type);
3335 }
3336
3337 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3338 {
3339 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3340 PowerPCCPU *cpu = POWERPC_CPU(cs);
3341 CPUPPCState *env = &cpu->env;
3342
3343 cpu_synchronize_state(cs);
3344 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3345 if (spapr->fwnmi_system_reset_addr != -1) {
3346 uint64_t rtas_addr, addr;
3347
3348 /* get rtas addr from fdt */
3349 rtas_addr = spapr_get_rtas_addr();
3350 if (!rtas_addr) {
3351 qemu_system_guest_panicked(NULL);
3352 return;
3353 }
3354
3355 addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3356 stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3357 stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3358 env->gpr[3] = addr;
3359 }
3360 ppc_cpu_do_system_reset(cs);
3361 if (spapr->fwnmi_system_reset_addr != -1) {
3362 env->nip = spapr->fwnmi_system_reset_addr;
3363 }
3364 }
3365
3366 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3367 {
3368 CPUState *cs;
3369
3370 CPU_FOREACH(cs) {
3371 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3372 }
3373 }
3374
3375 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3376 void *fdt, int *fdt_start_offset, Error **errp)
3377 {
3378 uint64_t addr;
3379 uint32_t node;
3380
3381 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3382 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3383 &error_abort);
3384 *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3385 SPAPR_MEMORY_BLOCK_SIZE);
3386 return 0;
3387 }
3388
3389 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3390 bool dedicated_hp_event_source)
3391 {
3392 SpaprDrc *drc;
3393 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3394 int i;
3395 uint64_t addr = addr_start;
3396 bool hotplugged = spapr_drc_hotplugged(dev);
3397
3398 for (i = 0; i < nr_lmbs; i++) {
3399 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3400 addr / SPAPR_MEMORY_BLOCK_SIZE);
3401 g_assert(drc);
3402
3403 /*
3404 * memory_device_get_free_addr() provided a range of free addresses
3405 * that doesn't overlap with any existing mapping at pre-plug. The
3406 * corresponding LMB DRCs are thus assumed to be all attachable.
3407 */
3408 spapr_drc_attach(drc, dev);
3409 if (!hotplugged) {
3410 spapr_drc_reset(drc);
3411 }
3412 addr += SPAPR_MEMORY_BLOCK_SIZE;
3413 }
3414 /* send hotplug notification to the
3415 * guest only in case of hotplugged memory
3416 */
3417 if (hotplugged) {
3418 if (dedicated_hp_event_source) {
3419 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3420 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3421 g_assert(drc);
3422 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3423 nr_lmbs,
3424 spapr_drc_index(drc));
3425 } else {
3426 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3427 nr_lmbs);
3428 }
3429 }
3430 }
3431
3432 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3433 {
3434 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3435 PCDIMMDevice *dimm = PC_DIMM(dev);
3436 uint64_t size, addr;
3437 int64_t slot;
3438 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3439
3440 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3441
3442 pc_dimm_plug(dimm, MACHINE(ms));
3443
3444 if (!is_nvdimm) {
3445 addr = object_property_get_uint(OBJECT(dimm),
3446 PC_DIMM_ADDR_PROP, &error_abort);
3447 spapr_add_lmbs(dev, addr, size,
3448 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT));
3449 } else {
3450 slot = object_property_get_int(OBJECT(dimm),
3451 PC_DIMM_SLOT_PROP, &error_abort);
3452 /* We should have valid slot number at this point */
3453 g_assert(slot >= 0);
3454 spapr_add_nvdimm(dev, slot);
3455 }
3456 }
3457
3458 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3459 Error **errp)
3460 {
3461 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3462 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3463 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3464 PCDIMMDevice *dimm = PC_DIMM(dev);
3465 Error *local_err = NULL;
3466 uint64_t size;
3467 Object *memdev;
3468 hwaddr pagesize;
3469
3470 if (!smc->dr_lmb_enabled) {
3471 error_setg(errp, "Memory hotplug not supported for this machine");
3472 return;
3473 }
3474
3475 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3476 if (local_err) {
3477 error_propagate(errp, local_err);
3478 return;
3479 }
3480
3481 if (is_nvdimm) {
3482 if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
3483 return;
3484 }
3485 } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3486 error_setg(errp, "Hotplugged memory size must be a multiple of "
3487 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3488 return;
3489 }
3490
3491 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3492 &error_abort);
3493 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3494 if (!spapr_check_pagesize(spapr, pagesize, errp)) {
3495 return;
3496 }
3497
3498 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3499 }
3500
3501 struct SpaprDimmState {
3502 PCDIMMDevice *dimm;
3503 uint32_t nr_lmbs;
3504 QTAILQ_ENTRY(SpaprDimmState) next;
3505 };
3506
3507 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3508 PCDIMMDevice *dimm)
3509 {
3510 SpaprDimmState *dimm_state = NULL;
3511
3512 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3513 if (dimm_state->dimm == dimm) {
3514 break;
3515 }
3516 }
3517 return dimm_state;
3518 }
3519
3520 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3521 uint32_t nr_lmbs,
3522 PCDIMMDevice *dimm)
3523 {
3524 SpaprDimmState *ds = NULL;
3525
3526 /*
3527 * If this request is for a DIMM whose removal had failed earlier
3528 * (due to guest's refusal to remove the LMBs), we would have this
3529 * dimm already in the pending_dimm_unplugs list. In that
3530 * case don't add again.
3531 */
3532 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3533 if (!ds) {
3534 ds = g_malloc0(sizeof(SpaprDimmState));
3535 ds->nr_lmbs = nr_lmbs;
3536 ds->dimm = dimm;
3537 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3538 }
3539 return ds;
3540 }
3541
3542 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3543 SpaprDimmState *dimm_state)
3544 {
3545 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3546 g_free(dimm_state);
3547 }
3548
3549 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3550 PCDIMMDevice *dimm)
3551 {
3552 SpaprDrc *drc;
3553 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3554 &error_abort);
3555 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3556 uint32_t avail_lmbs = 0;
3557 uint64_t addr_start, addr;
3558 int i;
3559
3560 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3561 &error_abort);
3562
3563 addr = addr_start;
3564 for (i = 0; i < nr_lmbs; i++) {
3565 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3566 addr / SPAPR_MEMORY_BLOCK_SIZE);
3567 g_assert(drc);
3568 if (drc->dev) {
3569 avail_lmbs++;
3570 }
3571 addr += SPAPR_MEMORY_BLOCK_SIZE;
3572 }
3573
3574 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3575 }
3576
3577 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev)
3578 {
3579 SpaprDimmState *ds;
3580 PCDIMMDevice *dimm;
3581 SpaprDrc *drc;
3582 uint32_t nr_lmbs;
3583 uint64_t size, addr_start, addr;
3584 g_autofree char *qapi_error = NULL;
3585 int i;
3586
3587 if (!dev) {
3588 return;
3589 }
3590
3591 dimm = PC_DIMM(dev);
3592 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3593
3594 /*
3595 * 'ds == NULL' would mean that the DIMM doesn't have a pending
3596 * unplug state, but one of its DRC is marked as unplug_requested.
3597 * This is bad and weird enough to g_assert() out.
3598 */
3599 g_assert(ds);
3600
3601 spapr_pending_dimm_unplugs_remove(spapr, ds);
3602
3603 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3604 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3605
3606 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3607 &error_abort);
3608
3609 addr = addr_start;
3610 for (i = 0; i < nr_lmbs; i++) {
3611 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3612 addr / SPAPR_MEMORY_BLOCK_SIZE);
3613 g_assert(drc);
3614
3615 drc->unplug_requested = false;
3616 addr += SPAPR_MEMORY_BLOCK_SIZE;
3617 }
3618
3619 /*
3620 * Tell QAPI that something happened and the memory
3621 * hotunplug wasn't successful.
3622 */
3623 qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest "
3624 "for device %s", dev->id);
3625 qapi_event_send_mem_unplug_error(dev->id, qapi_error);
3626 }
3627
3628 /* Callback to be called during DRC release. */
3629 void spapr_lmb_release(DeviceState *dev)
3630 {
3631 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3632 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3633 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3634
3635 /* This information will get lost if a migration occurs
3636 * during the unplug process. In this case recover it. */
3637 if (ds == NULL) {
3638 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3639 g_assert(ds);
3640 /* The DRC being examined by the caller at least must be counted */
3641 g_assert(ds->nr_lmbs);
3642 }
3643
3644 if (--ds->nr_lmbs) {
3645 return;
3646 }
3647
3648 /*
3649 * Now that all the LMBs have been removed by the guest, call the
3650 * unplug handler chain. This can never fail.
3651 */
3652 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3653 object_unparent(OBJECT(dev));
3654 }
3655
3656 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3657 {
3658 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3659 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3660
3661 /* We really shouldn't get this far without anything to unplug */
3662 g_assert(ds);
3663
3664 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3665 qdev_unrealize(dev);
3666 spapr_pending_dimm_unplugs_remove(spapr, ds);
3667 }
3668
3669 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3670 DeviceState *dev, Error **errp)
3671 {
3672 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3673 PCDIMMDevice *dimm = PC_DIMM(dev);
3674 uint32_t nr_lmbs;
3675 uint64_t size, addr_start, addr;
3676 int i;
3677 SpaprDrc *drc;
3678
3679 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3680 error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3681 return;
3682 }
3683
3684 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3685 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3686
3687 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3688 &error_abort);
3689
3690 /*
3691 * An existing pending dimm state for this DIMM means that there is an
3692 * unplug operation in progress, waiting for the spapr_lmb_release
3693 * callback to complete the job (BQL can't cover that far). In this case,
3694 * bail out to avoid detaching DRCs that were already released.
3695 */
3696 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3697 error_setg(errp, "Memory unplug already in progress for device %s",
3698 dev->id);
3699 return;
3700 }
3701
3702 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3703
3704 addr = addr_start;
3705 for (i = 0; i < nr_lmbs; i++) {
3706 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3707 addr / SPAPR_MEMORY_BLOCK_SIZE);
3708 g_assert(drc);
3709
3710 spapr_drc_unplug_request(drc);
3711 addr += SPAPR_MEMORY_BLOCK_SIZE;
3712 }
3713
3714 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3715 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3716 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3717 nr_lmbs, spapr_drc_index(drc));
3718 }
3719
3720 /* Callback to be called during DRC release. */
3721 void spapr_core_release(DeviceState *dev)
3722 {
3723 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3724
3725 /* Call the unplug handler chain. This can never fail. */
3726 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3727 object_unparent(OBJECT(dev));
3728 }
3729
3730 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3731 {
3732 MachineState *ms = MACHINE(hotplug_dev);
3733 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3734 CPUCore *cc = CPU_CORE(dev);
3735 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3736
3737 if (smc->pre_2_10_has_unused_icps) {
3738 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3739 int i;
3740
3741 for (i = 0; i < cc->nr_threads; i++) {
3742 CPUState *cs = CPU(sc->threads[i]);
3743
3744 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3745 }
3746 }
3747
3748 assert(core_slot);
3749 core_slot->cpu = NULL;
3750 qdev_unrealize(dev);
3751 }
3752
3753 static
3754 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3755 Error **errp)
3756 {
3757 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3758 int index;
3759 SpaprDrc *drc;
3760 CPUCore *cc = CPU_CORE(dev);
3761
3762 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3763 error_setg(errp, "Unable to find CPU core with core-id: %d",
3764 cc->core_id);
3765 return;
3766 }
3767 if (index == 0) {
3768 error_setg(errp, "Boot CPU core may not be unplugged");
3769 return;
3770 }
3771
3772 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3773 spapr_vcpu_id(spapr, cc->core_id));
3774 g_assert(drc);
3775
3776 if (!spapr_drc_unplug_requested(drc)) {
3777 spapr_drc_unplug_request(drc);
3778 }
3779
3780 /*
3781 * spapr_hotplug_req_remove_by_index is left unguarded, out of the
3782 * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ
3783 * pulses removing the same CPU. Otherwise, in an failed hotunplug
3784 * attempt (e.g. the kernel will refuse to remove the last online
3785 * CPU), we will never attempt it again because unplug_requested
3786 * will still be 'true' in that case.
3787 */
3788 spapr_hotplug_req_remove_by_index(drc);
3789 }
3790
3791 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3792 void *fdt, int *fdt_start_offset, Error **errp)
3793 {
3794 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3795 CPUState *cs = CPU(core->threads[0]);
3796 PowerPCCPU *cpu = POWERPC_CPU(cs);
3797 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3798 int id = spapr_get_vcpu_id(cpu);
3799 g_autofree char *nodename = NULL;
3800 int offset;
3801
3802 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3803 offset = fdt_add_subnode(fdt, 0, nodename);
3804
3805 spapr_dt_cpu(cs, fdt, offset, spapr);
3806
3807 /*
3808 * spapr_dt_cpu() does not fill the 'name' property in the
3809 * CPU node. The function is called during boot process, before
3810 * and after CAS, and overwriting the 'name' property written
3811 * by SLOF is not allowed.
3812 *
3813 * Write it manually after spapr_dt_cpu(). This makes the hotplug
3814 * CPUs more compatible with the coldplugged ones, which have
3815 * the 'name' property. Linux Kernel also relies on this
3816 * property to identify CPU nodes.
3817 */
3818 _FDT((fdt_setprop_string(fdt, offset, "name", nodename)));
3819
3820 *fdt_start_offset = offset;
3821 return 0;
3822 }
3823
3824 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3825 {
3826 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3827 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3828 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3829 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3830 CPUCore *cc = CPU_CORE(dev);
3831 CPUState *cs;
3832 SpaprDrc *drc;
3833 CPUArchId *core_slot;
3834 int index;
3835 bool hotplugged = spapr_drc_hotplugged(dev);
3836 int i;
3837
3838 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3839 g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */
3840
3841 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3842 spapr_vcpu_id(spapr, cc->core_id));
3843
3844 g_assert(drc || !mc->has_hotpluggable_cpus);
3845
3846 if (drc) {
3847 /*
3848 * spapr_core_pre_plug() already buys us this is a brand new
3849 * core being plugged into a free slot. Nothing should already
3850 * be attached to the corresponding DRC.
3851 */
3852 spapr_drc_attach(drc, dev);
3853
3854 if (hotplugged) {
3855 /*
3856 * Send hotplug notification interrupt to the guest only
3857 * in case of hotplugged CPUs.
3858 */
3859 spapr_hotplug_req_add_by_index(drc);
3860 } else {
3861 spapr_drc_reset(drc);
3862 }
3863 }
3864
3865 core_slot->cpu = OBJECT(dev);
3866
3867 /*
3868 * Set compatibility mode to match the boot CPU, which was either set
3869 * by the machine reset code or by CAS. This really shouldn't fail at
3870 * this point.
3871 */
3872 if (hotplugged) {
3873 for (i = 0; i < cc->nr_threads; i++) {
3874 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3875 &error_abort);
3876 }
3877 }
3878
3879 if (smc->pre_2_10_has_unused_icps) {
3880 for (i = 0; i < cc->nr_threads; i++) {
3881 cs = CPU(core->threads[i]);
3882 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3883 }
3884 }
3885 }
3886
3887 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3888 Error **errp)
3889 {
3890 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3891 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3892 CPUCore *cc = CPU_CORE(dev);
3893 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3894 const char *type = object_get_typename(OBJECT(dev));
3895 CPUArchId *core_slot;
3896 int index;
3897 unsigned int smp_threads = machine->smp.threads;
3898
3899 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3900 error_setg(errp, "CPU hotplug not supported for this machine");
3901 return;
3902 }
3903
3904 if (strcmp(base_core_type, type)) {
3905 error_setg(errp, "CPU core type should be %s", base_core_type);
3906 return;
3907 }
3908
3909 if (cc->core_id % smp_threads) {
3910 error_setg(errp, "invalid core id %d", cc->core_id);
3911 return;
3912 }
3913
3914 /*
3915 * In general we should have homogeneous threads-per-core, but old
3916 * (pre hotplug support) machine types allow the last core to have
3917 * reduced threads as a compatibility hack for when we allowed
3918 * total vcpus not a multiple of threads-per-core.
3919 */
3920 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3921 error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
3922 smp_threads);
3923 return;
3924 }
3925
3926 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3927 if (!core_slot) {
3928 error_setg(errp, "core id %d out of range", cc->core_id);
3929 return;
3930 }
3931
3932 if (core_slot->cpu) {
3933 error_setg(errp, "core %d already populated", cc->core_id);
3934 return;
3935 }
3936
3937 numa_cpu_pre_plug(core_slot, dev, errp);
3938 }
3939
3940 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3941 void *fdt, int *fdt_start_offset, Error **errp)
3942 {
3943 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3944 int intc_phandle;
3945
3946 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3947 if (intc_phandle <= 0) {
3948 return -1;
3949 }
3950
3951 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
3952 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3953 return -1;
3954 }
3955
3956 /* generally SLOF creates these, for hotplug it's up to QEMU */
3957 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3958
3959 return 0;
3960 }
3961
3962 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3963 Error **errp)
3964 {
3965 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3966 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3967 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3968 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3969 SpaprDrc *drc;
3970
3971 if (dev->hotplugged && !smc->dr_phb_enabled) {
3972 error_setg(errp, "PHB hotplug not supported for this machine");
3973 return false;
3974 }
3975
3976 if (sphb->index == (uint32_t)-1) {
3977 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3978 return false;
3979 }
3980
3981 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3982 if (drc && drc->dev) {
3983 error_setg(errp, "PHB %d already attached", sphb->index);
3984 return false;
3985 }
3986
3987 /*
3988 * This will check that sphb->index doesn't exceed the maximum number of
3989 * PHBs for the current machine type.
3990 */
3991 return
3992 smc->phb_placement(spapr, sphb->index,
3993 &sphb->buid, &sphb->io_win_addr,
3994 &sphb->mem_win_addr, &sphb->mem64_win_addr,
3995 windows_supported, sphb->dma_liobn,
3996 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3997 errp);
3998 }
3999
4000 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4001 {
4002 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4003 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4004 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4005 SpaprDrc *drc;
4006 bool hotplugged = spapr_drc_hotplugged(dev);
4007
4008 if (!smc->dr_phb_enabled) {
4009 return;
4010 }
4011
4012 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4013 /* hotplug hooks should check it's enabled before getting this far */
4014 assert(drc);
4015
4016 /* spapr_phb_pre_plug() already checked the DRC is attachable */
4017 spapr_drc_attach(drc, dev);
4018
4019 if (hotplugged) {
4020 spapr_hotplug_req_add_by_index(drc);
4021 } else {
4022 spapr_drc_reset(drc);
4023 }
4024 }
4025
4026 void spapr_phb_release(DeviceState *dev)
4027 {
4028 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4029
4030 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4031 object_unparent(OBJECT(dev));
4032 }
4033
4034 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4035 {
4036 qdev_unrealize(dev);
4037 }
4038
4039 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4040 DeviceState *dev, Error **errp)
4041 {
4042 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4043 SpaprDrc *drc;
4044
4045 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4046 assert(drc);
4047
4048 if (!spapr_drc_unplug_requested(drc)) {
4049 spapr_drc_unplug_request(drc);
4050 spapr_hotplug_req_remove_by_index(drc);
4051 } else {
4052 error_setg(errp,
4053 "PCI Host Bridge unplug already in progress for device %s",
4054 dev->id);
4055 }
4056 }
4057
4058 static
4059 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4060 Error **errp)
4061 {
4062 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4063
4064 if (spapr->tpm_proxy != NULL) {
4065 error_setg(errp, "Only one TPM proxy can be specified for this machine");
4066 return false;
4067 }
4068
4069 return true;
4070 }
4071
4072 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4073 {
4074 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4075 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4076
4077 /* Already checked in spapr_tpm_proxy_pre_plug() */
4078 g_assert(spapr->tpm_proxy == NULL);
4079
4080 spapr->tpm_proxy = tpm_proxy;
4081 }
4082
4083 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4084 {
4085 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4086
4087 qdev_unrealize(dev);
4088 object_unparent(OBJECT(dev));
4089 spapr->tpm_proxy = NULL;
4090 }
4091
4092 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4093 DeviceState *dev, Error **errp)
4094 {
4095 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4096 spapr_memory_plug(hotplug_dev, dev);
4097 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4098 spapr_core_plug(hotplug_dev, dev);
4099 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4100 spapr_phb_plug(hotplug_dev, dev);
4101 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4102 spapr_tpm_proxy_plug(hotplug_dev, dev);
4103 }
4104 }
4105
4106 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4107 DeviceState *dev, Error **errp)
4108 {
4109 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4110 spapr_memory_unplug(hotplug_dev, dev);
4111 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4112 spapr_core_unplug(hotplug_dev, dev);
4113 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4114 spapr_phb_unplug(hotplug_dev, dev);
4115 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4116 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4117 }
4118 }
4119
4120 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr)
4121 {
4122 return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) ||
4123 /*
4124 * CAS will process all pending unplug requests.
4125 *
4126 * HACK: a guest could theoretically have cleared all bits in OV5,
4127 * but none of the guests we care for do.
4128 */
4129 spapr_ovec_empty(spapr->ov5_cas);
4130 }
4131
4132 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4133 DeviceState *dev, Error **errp)
4134 {
4135 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4136 MachineClass *mc = MACHINE_GET_CLASS(sms);
4137 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4138
4139 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4140 if (spapr_memory_hot_unplug_supported(sms)) {
4141 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4142 } else {
4143 error_setg(errp, "Memory hot unplug not supported for this guest");
4144 }
4145 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4146 if (!mc->has_hotpluggable_cpus) {
4147 error_setg(errp, "CPU hot unplug not supported on this machine");
4148 return;
4149 }
4150 spapr_core_unplug_request(hotplug_dev, dev, errp);
4151 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4152 if (!smc->dr_phb_enabled) {
4153 error_setg(errp, "PHB hot unplug not supported on this machine");
4154 return;
4155 }
4156 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4157 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4158 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4159 }
4160 }
4161
4162 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4163 DeviceState *dev, Error **errp)
4164 {
4165 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4166 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4167 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4168 spapr_core_pre_plug(hotplug_dev, dev, errp);
4169 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4170 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4171 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4172 spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp);
4173 }
4174 }
4175
4176 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4177 DeviceState *dev)
4178 {
4179 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4180 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4181 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4182 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4183 return HOTPLUG_HANDLER(machine);
4184 }
4185 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4186 PCIDevice *pcidev = PCI_DEVICE(dev);
4187 PCIBus *root = pci_device_root_bus(pcidev);
4188 SpaprPhbState *phb =
4189 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4190 TYPE_SPAPR_PCI_HOST_BRIDGE);
4191
4192 if (phb) {
4193 return HOTPLUG_HANDLER(phb);
4194 }
4195 }
4196 return NULL;
4197 }
4198
4199 static CpuInstanceProperties
4200 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4201 {
4202 CPUArchId *core_slot;
4203 MachineClass *mc = MACHINE_GET_CLASS(machine);
4204
4205 /* make sure possible_cpu are intialized */
4206 mc->possible_cpu_arch_ids(machine);
4207 /* get CPU core slot containing thread that matches cpu_index */
4208 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4209 assert(core_slot);
4210 return core_slot->props;
4211 }
4212
4213 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4214 {
4215 return idx / ms->smp.cores % ms->numa_state->num_nodes;
4216 }
4217
4218 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4219 {
4220 int i;
4221 unsigned int smp_threads = machine->smp.threads;
4222 unsigned int smp_cpus = machine->smp.cpus;
4223 const char *core_type;
4224 int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4225 MachineClass *mc = MACHINE_GET_CLASS(machine);
4226
4227 if (!mc->has_hotpluggable_cpus) {
4228 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4229 }
4230 if (machine->possible_cpus) {
4231 assert(machine->possible_cpus->len == spapr_max_cores);
4232 return machine->possible_cpus;
4233 }
4234
4235 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4236 if (!core_type) {
4237 error_report("Unable to find sPAPR CPU Core definition");
4238 exit(1);
4239 }
4240
4241 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4242 sizeof(CPUArchId) * spapr_max_cores);
4243 machine->possible_cpus->len = spapr_max_cores;
4244 for (i = 0; i < machine->possible_cpus->len; i++) {
4245 int core_id = i * smp_threads;
4246
4247 machine->possible_cpus->cpus[i].type = core_type;
4248 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4249 machine->possible_cpus->cpus[i].arch_id = core_id;
4250 machine->possible_cpus->cpus[i].props.has_core_id = true;
4251 machine->possible_cpus->cpus[i].props.core_id = core_id;
4252 }
4253 return machine->possible_cpus;
4254 }
4255
4256 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4257 uint64_t *buid, hwaddr *pio,
4258 hwaddr *mmio32, hwaddr *mmio64,
4259 unsigned n_dma, uint32_t *liobns,
4260 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4261 {
4262 /*
4263 * New-style PHB window placement.
4264 *
4265 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4266 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4267 * windows.
4268 *
4269 * Some guest kernels can't work with MMIO windows above 1<<46
4270 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4271 *
4272 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4273 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4274 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4275 * 1TiB 64-bit MMIO windows for each PHB.
4276 */
4277 const uint64_t base_buid = 0x800000020000000ULL;
4278 int i;
4279
4280 /* Sanity check natural alignments */
4281 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4282 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4283 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4284 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4285 /* Sanity check bounds */
4286 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4287 SPAPR_PCI_MEM32_WIN_SIZE);
4288 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4289 SPAPR_PCI_MEM64_WIN_SIZE);
4290
4291 if (index >= SPAPR_MAX_PHBS) {
4292 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4293 SPAPR_MAX_PHBS - 1);
4294 return false;
4295 }
4296
4297 *buid = base_buid + index;
4298 for (i = 0; i < n_dma; ++i) {
4299 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4300 }
4301
4302 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4303 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4304 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4305
4306 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4307 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4308 return true;
4309 }
4310
4311 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4312 {
4313 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4314
4315 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4316 }
4317
4318 static void spapr_ics_resend(XICSFabric *dev)
4319 {
4320 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4321
4322 ics_resend(spapr->ics);
4323 }
4324
4325 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4326 {
4327 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4328
4329 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4330 }
4331
4332 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4333 Monitor *mon)
4334 {
4335 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4336
4337 spapr_irq_print_info(spapr, mon);
4338 monitor_printf(mon, "irqchip: %s\n",
4339 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4340 }
4341
4342 /*
4343 * This is a XIVE only operation
4344 */
4345 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4346 uint8_t nvt_blk, uint32_t nvt_idx,
4347 bool cam_ignore, uint8_t priority,
4348 uint32_t logic_serv, XiveTCTXMatch *match)
4349 {
4350 SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4351 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4352 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4353 int count;
4354
4355 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4356 priority, logic_serv, match);
4357 if (count < 0) {
4358 return count;
4359 }
4360
4361 /*
4362 * When we implement the save and restore of the thread interrupt
4363 * contexts in the enter/exit CPU handlers of the machine and the
4364 * escalations in QEMU, we should be able to handle non dispatched
4365 * vCPUs.
4366 *
4367 * Until this is done, the sPAPR machine should find at least one
4368 * matching context always.
4369 */
4370 if (count == 0) {
4371 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4372 nvt_blk, nvt_idx);
4373 }
4374
4375 return count;
4376 }
4377
4378 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4379 {
4380 return cpu->vcpu_id;
4381 }
4382
4383 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4384 {
4385 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4386 MachineState *ms = MACHINE(spapr);
4387 int vcpu_id;
4388
4389 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4390
4391 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4392 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4393 error_append_hint(errp, "Adjust the number of cpus to %d "
4394 "or try to raise the number of threads per core\n",
4395 vcpu_id * ms->smp.threads / spapr->vsmt);
4396 return false;
4397 }
4398
4399 cpu->vcpu_id = vcpu_id;
4400 return true;
4401 }
4402
4403 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4404 {
4405 CPUState *cs;
4406
4407 CPU_FOREACH(cs) {
4408 PowerPCCPU *cpu = POWERPC_CPU(cs);
4409
4410 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4411 return cpu;
4412 }
4413 }
4414
4415 return NULL;
4416 }
4417
4418 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4419 {
4420 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4421
4422 /* These are only called by TCG, KVM maintains dispatch state */
4423
4424 spapr_cpu->prod = false;
4425 if (spapr_cpu->vpa_addr) {
4426 CPUState *cs = CPU(cpu);
4427 uint32_t dispatch;
4428
4429 dispatch = ldl_be_phys(cs->as,
4430 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4431 dispatch++;
4432 if ((dispatch & 1) != 0) {
4433 qemu_log_mask(LOG_GUEST_ERROR,
4434 "VPA: incorrect dispatch counter value for "
4435 "dispatched partition %u, correcting.\n", dispatch);
4436 dispatch++;
4437 }
4438 stl_be_phys(cs->as,
4439 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4440 }
4441 }
4442
4443 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4444 {
4445 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4446
4447 if (spapr_cpu->vpa_addr) {
4448 CPUState *cs = CPU(cpu);
4449 uint32_t dispatch;
4450
4451 dispatch = ldl_be_phys(cs->as,
4452 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4453 dispatch++;
4454 if ((dispatch & 1) != 1) {
4455 qemu_log_mask(LOG_GUEST_ERROR,
4456 "VPA: incorrect dispatch counter value for "
4457 "preempted partition %u, correcting.\n", dispatch);
4458 dispatch++;
4459 }
4460 stl_be_phys(cs->as,
4461 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4462 }
4463 }
4464
4465 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4466 {
4467 MachineClass *mc = MACHINE_CLASS(oc);
4468 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4469 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4470 NMIClass *nc = NMI_CLASS(oc);
4471 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4472 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4473 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4474 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4475 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4476
4477 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4478 mc->ignore_boot_device_suffixes = true;
4479
4480 /*
4481 * We set up the default / latest behaviour here. The class_init
4482 * functions for the specific versioned machine types can override
4483 * these details for backwards compatibility
4484 */
4485 mc->init = spapr_machine_init;
4486 mc->reset = spapr_machine_reset;
4487 mc->block_default_type = IF_SCSI;
4488 mc->max_cpus = 1024;
4489 mc->no_parallel = 1;
4490 mc->default_boot_order = "";
4491 mc->default_ram_size = 512 * MiB;
4492 mc->default_ram_id = "ppc_spapr.ram";
4493 mc->default_display = "std";
4494 mc->kvm_type = spapr_kvm_type;
4495 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4496 mc->pci_allow_0_address = true;
4497 assert(!mc->get_hotplug_handler);
4498 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4499 hc->pre_plug = spapr_machine_device_pre_plug;
4500 hc->plug = spapr_machine_device_plug;
4501 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4502 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4503 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4504 hc->unplug_request = spapr_machine_device_unplug_request;
4505 hc->unplug = spapr_machine_device_unplug;
4506
4507 smc->dr_lmb_enabled = true;
4508 smc->update_dt_enabled = true;
4509 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4510 mc->has_hotpluggable_cpus = true;
4511 mc->nvdimm_supported = true;
4512 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4513 fwc->get_dev_path = spapr_get_fw_dev_path;
4514 nc->nmi_monitor_handler = spapr_nmi;
4515 smc->phb_placement = spapr_phb_placement;
4516 vhc->hypercall = emulate_spapr_hypercall;
4517 vhc->hpt_mask = spapr_hpt_mask;
4518 vhc->map_hptes = spapr_map_hptes;
4519 vhc->unmap_hptes = spapr_unmap_hptes;
4520 vhc->hpte_set_c = spapr_hpte_set_c;
4521 vhc->hpte_set_r = spapr_hpte_set_r;
4522 vhc->get_pate = spapr_get_pate;
4523 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4524 vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4525 vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4526 xic->ics_get = spapr_ics_get;
4527 xic->ics_resend = spapr_ics_resend;
4528 xic->icp_get = spapr_icp_get;
4529 ispc->print_info = spapr_pic_print_info;
4530 /* Force NUMA node memory size to be a multiple of
4531 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4532 * in which LMBs are represented and hot-added
4533 */
4534 mc->numa_mem_align_shift = 28;
4535 mc->auto_enable_numa = true;
4536
4537 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4538 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4539 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4540 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4541 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4542 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4543 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4544 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4545 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4546 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4547 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4548 spapr_caps_add_properties(smc);
4549 smc->irq = &spapr_irq_dual;
4550 smc->dr_phb_enabled = true;
4551 smc->linux_pci_probe = true;
4552 smc->smp_threads_vsmt = true;
4553 smc->nr_xirqs = SPAPR_NR_XIRQS;
4554 xfc->match_nvt = spapr_match_nvt;
4555 }
4556
4557 static const TypeInfo spapr_machine_info = {
4558 .name = TYPE_SPAPR_MACHINE,
4559 .parent = TYPE_MACHINE,
4560 .abstract = true,
4561 .instance_size = sizeof(SpaprMachineState),
4562 .instance_init = spapr_instance_init,
4563 .instance_finalize = spapr_machine_finalizefn,
4564 .class_size = sizeof(SpaprMachineClass),
4565 .class_init = spapr_machine_class_init,
4566 .interfaces = (InterfaceInfo[]) {
4567 { TYPE_FW_PATH_PROVIDER },
4568 { TYPE_NMI },
4569 { TYPE_HOTPLUG_HANDLER },
4570 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4571 { TYPE_XICS_FABRIC },
4572 { TYPE_INTERRUPT_STATS_PROVIDER },
4573 { TYPE_XIVE_FABRIC },
4574 { }
4575 },
4576 };
4577
4578 static void spapr_machine_latest_class_options(MachineClass *mc)
4579 {
4580 mc->alias = "pseries";
4581 mc->is_default = true;
4582 }
4583
4584 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4585 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4586 void *data) \
4587 { \
4588 MachineClass *mc = MACHINE_CLASS(oc); \
4589 spapr_machine_##suffix##_class_options(mc); \
4590 if (latest) { \
4591 spapr_machine_latest_class_options(mc); \
4592 } \
4593 } \
4594 static const TypeInfo spapr_machine_##suffix##_info = { \
4595 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4596 .parent = TYPE_SPAPR_MACHINE, \
4597 .class_init = spapr_machine_##suffix##_class_init, \
4598 }; \
4599 static void spapr_machine_register_##suffix(void) \
4600 { \
4601 type_register(&spapr_machine_##suffix##_info); \
4602 } \
4603 type_init(spapr_machine_register_##suffix)
4604
4605 /*
4606 * pseries-6.1
4607 */
4608 static void spapr_machine_6_1_class_options(MachineClass *mc)
4609 {
4610 /* Defaults for the latest behaviour inherited from the base class */
4611 }
4612
4613 DEFINE_SPAPR_MACHINE(6_1, "6.1", true);
4614
4615 /*
4616 * pseries-6.0
4617 */
4618 static void spapr_machine_6_0_class_options(MachineClass *mc)
4619 {
4620 spapr_machine_6_1_class_options(mc);
4621 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
4622 }
4623
4624 DEFINE_SPAPR_MACHINE(6_0, "6.0", false);
4625
4626 /*
4627 * pseries-5.2
4628 */
4629 static void spapr_machine_5_2_class_options(MachineClass *mc)
4630 {
4631 spapr_machine_6_0_class_options(mc);
4632 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
4633 }
4634
4635 DEFINE_SPAPR_MACHINE(5_2, "5.2", false);
4636
4637 /*
4638 * pseries-5.1
4639 */
4640 static void spapr_machine_5_1_class_options(MachineClass *mc)
4641 {
4642 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4643
4644 spapr_machine_5_2_class_options(mc);
4645 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4646 smc->pre_5_2_numa_associativity = true;
4647 }
4648
4649 DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4650
4651 /*
4652 * pseries-5.0
4653 */
4654 static void spapr_machine_5_0_class_options(MachineClass *mc)
4655 {
4656 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4657 static GlobalProperty compat[] = {
4658 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4659 };
4660
4661 spapr_machine_5_1_class_options(mc);
4662 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4663 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4664 mc->numa_mem_supported = true;
4665 smc->pre_5_1_assoc_refpoints = true;
4666 }
4667
4668 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4669
4670 /*
4671 * pseries-4.2
4672 */
4673 static void spapr_machine_4_2_class_options(MachineClass *mc)
4674 {
4675 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4676
4677 spapr_machine_5_0_class_options(mc);
4678 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4679 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4680 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4681 smc->rma_limit = 16 * GiB;
4682 mc->nvdimm_supported = false;
4683 }
4684
4685 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4686
4687 /*
4688 * pseries-4.1
4689 */
4690 static void spapr_machine_4_1_class_options(MachineClass *mc)
4691 {
4692 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4693 static GlobalProperty compat[] = {
4694 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4695 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4696 };
4697
4698 spapr_machine_4_2_class_options(mc);
4699 smc->linux_pci_probe = false;
4700 smc->smp_threads_vsmt = false;
4701 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4702 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4703 }
4704
4705 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4706
4707 /*
4708 * pseries-4.0
4709 */
4710 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4711 uint64_t *buid, hwaddr *pio,
4712 hwaddr *mmio32, hwaddr *mmio64,
4713 unsigned n_dma, uint32_t *liobns,
4714 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4715 {
4716 if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma,
4717 liobns, nv2gpa, nv2atsd, errp)) {
4718 return false;
4719 }
4720
4721 *nv2gpa = 0;
4722 *nv2atsd = 0;
4723 return true;
4724 }
4725 static void spapr_machine_4_0_class_options(MachineClass *mc)
4726 {
4727 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4728
4729 spapr_machine_4_1_class_options(mc);
4730 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4731 smc->phb_placement = phb_placement_4_0;
4732 smc->irq = &spapr_irq_xics;
4733 smc->pre_4_1_migration = true;
4734 }
4735
4736 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4737
4738 /*
4739 * pseries-3.1
4740 */
4741 static void spapr_machine_3_1_class_options(MachineClass *mc)
4742 {
4743 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4744
4745 spapr_machine_4_0_class_options(mc);
4746 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4747
4748 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4749 smc->update_dt_enabled = false;
4750 smc->dr_phb_enabled = false;
4751 smc->broken_host_serial_model = true;
4752 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4753 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4754 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4755 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4756 }
4757
4758 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4759
4760 /*
4761 * pseries-3.0
4762 */
4763
4764 static void spapr_machine_3_0_class_options(MachineClass *mc)
4765 {
4766 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4767
4768 spapr_machine_3_1_class_options(mc);
4769 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4770
4771 smc->legacy_irq_allocation = true;
4772 smc->nr_xirqs = 0x400;
4773 smc->irq = &spapr_irq_xics_legacy;
4774 }
4775
4776 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4777
4778 /*
4779 * pseries-2.12
4780 */
4781 static void spapr_machine_2_12_class_options(MachineClass *mc)
4782 {
4783 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4784 static GlobalProperty compat[] = {
4785 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4786 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4787 };
4788
4789 spapr_machine_3_0_class_options(mc);
4790 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4791 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4792
4793 /* We depend on kvm_enabled() to choose a default value for the
4794 * hpt-max-page-size capability. Of course we can't do it here
4795 * because this is too early and the HW accelerator isn't initialzed
4796 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4797 */
4798 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4799 }
4800
4801 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4802
4803 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4804 {
4805 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4806
4807 spapr_machine_2_12_class_options(mc);
4808 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4809 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4810 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4811 }
4812
4813 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4814
4815 /*
4816 * pseries-2.11
4817 */
4818
4819 static void spapr_machine_2_11_class_options(MachineClass *mc)
4820 {
4821 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4822
4823 spapr_machine_2_12_class_options(mc);
4824 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4825 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4826 }
4827
4828 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4829
4830 /*
4831 * pseries-2.10
4832 */
4833
4834 static void spapr_machine_2_10_class_options(MachineClass *mc)
4835 {
4836 spapr_machine_2_11_class_options(mc);
4837 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4838 }
4839
4840 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4841
4842 /*
4843 * pseries-2.9
4844 */
4845
4846 static void spapr_machine_2_9_class_options(MachineClass *mc)
4847 {
4848 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4849 static GlobalProperty compat[] = {
4850 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4851 };
4852
4853 spapr_machine_2_10_class_options(mc);
4854 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4855 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4856 smc->pre_2_10_has_unused_icps = true;
4857 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4858 }
4859
4860 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4861
4862 /*
4863 * pseries-2.8
4864 */
4865
4866 static void spapr_machine_2_8_class_options(MachineClass *mc)
4867 {
4868 static GlobalProperty compat[] = {
4869 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4870 };
4871
4872 spapr_machine_2_9_class_options(mc);
4873 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4874 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4875 mc->numa_mem_align_shift = 23;
4876 }
4877
4878 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4879
4880 /*
4881 * pseries-2.7
4882 */
4883
4884 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4885 uint64_t *buid, hwaddr *pio,
4886 hwaddr *mmio32, hwaddr *mmio64,
4887 unsigned n_dma, uint32_t *liobns,
4888 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4889 {
4890 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4891 const uint64_t base_buid = 0x800000020000000ULL;
4892 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4893 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4894 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4895 const uint32_t max_index = 255;
4896 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4897
4898 uint64_t ram_top = MACHINE(spapr)->ram_size;
4899 hwaddr phb0_base, phb_base;
4900 int i;
4901
4902 /* Do we have device memory? */
4903 if (MACHINE(spapr)->maxram_size > ram_top) {
4904 /* Can't just use maxram_size, because there may be an
4905 * alignment gap between normal and device memory regions
4906 */
4907 ram_top = MACHINE(spapr)->device_memory->base +
4908 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4909 }
4910
4911 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4912
4913 if (index > max_index) {
4914 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4915 max_index);
4916 return false;
4917 }
4918
4919 *buid = base_buid + index;
4920 for (i = 0; i < n_dma; ++i) {
4921 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4922 }
4923
4924 phb_base = phb0_base + index * phb_spacing;
4925 *pio = phb_base + pio_offset;
4926 *mmio32 = phb_base + mmio_offset;
4927 /*
4928 * We don't set the 64-bit MMIO window, relying on the PHB's
4929 * fallback behaviour of automatically splitting a large "32-bit"
4930 * window into contiguous 32-bit and 64-bit windows
4931 */
4932
4933 *nv2gpa = 0;
4934 *nv2atsd = 0;
4935 return true;
4936 }
4937
4938 static void spapr_machine_2_7_class_options(MachineClass *mc)
4939 {
4940 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4941 static GlobalProperty compat[] = {
4942 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4943 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4944 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4945 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4946 };
4947
4948 spapr_machine_2_8_class_options(mc);
4949 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4950 mc->default_machine_opts = "modern-hotplug-events=off";
4951 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4952 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4953 smc->phb_placement = phb_placement_2_7;
4954 }
4955
4956 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4957
4958 /*
4959 * pseries-2.6
4960 */
4961
4962 static void spapr_machine_2_6_class_options(MachineClass *mc)
4963 {
4964 static GlobalProperty compat[] = {
4965 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4966 };
4967
4968 spapr_machine_2_7_class_options(mc);
4969 mc->has_hotpluggable_cpus = false;
4970 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4971 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4972 }
4973
4974 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4975
4976 /*
4977 * pseries-2.5
4978 */
4979
4980 static void spapr_machine_2_5_class_options(MachineClass *mc)
4981 {
4982 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4983 static GlobalProperty compat[] = {
4984 { "spapr-vlan", "use-rx-buffer-pools", "off" },
4985 };
4986
4987 spapr_machine_2_6_class_options(mc);
4988 smc->use_ohci_by_default = true;
4989 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4990 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4991 }
4992
4993 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4994
4995 /*
4996 * pseries-2.4
4997 */
4998
4999 static void spapr_machine_2_4_class_options(MachineClass *mc)
5000 {
5001 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5002
5003 spapr_machine_2_5_class_options(mc);
5004 smc->dr_lmb_enabled = false;
5005 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
5006 }
5007
5008 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
5009
5010 /*
5011 * pseries-2.3
5012 */
5013
5014 static void spapr_machine_2_3_class_options(MachineClass *mc)
5015 {
5016 static GlobalProperty compat[] = {
5017 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
5018 };
5019 spapr_machine_2_4_class_options(mc);
5020 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
5021 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5022 }
5023 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
5024
5025 /*
5026 * pseries-2.2
5027 */
5028
5029 static void spapr_machine_2_2_class_options(MachineClass *mc)
5030 {
5031 static GlobalProperty compat[] = {
5032 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
5033 };
5034
5035 spapr_machine_2_3_class_options(mc);
5036 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
5037 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5038 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
5039 }
5040 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
5041
5042 /*
5043 * pseries-2.1
5044 */
5045
5046 static void spapr_machine_2_1_class_options(MachineClass *mc)
5047 {
5048 spapr_machine_2_2_class_options(mc);
5049 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
5050 }
5051 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
5052
5053 static void spapr_machine_register_types(void)
5054 {
5055 type_register_static(&spapr_machine_info);
5056 }
5057
5058 type_init(spapr_machine_register_types)