]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr.c
spapr: Drop unused parameters from fdt building helper
[mirror_qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/numa.h"
32 #include "hw/hw.h"
33 #include "qemu/log.h"
34 #include "hw/fw-path-provider.h"
35 #include "elf.h"
36 #include "net/net.h"
37 #include "sysemu/device_tree.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/hw_accel.h"
40 #include "kvm_ppc.h"
41 #include "migration/misc.h"
42 #include "migration/global_state.h"
43 #include "migration/register.h"
44 #include "mmu-hash64.h"
45 #include "mmu-book3s-v3.h"
46 #include "cpu-models.h"
47 #include "qom/cpu.h"
48
49 #include "hw/boards.h"
50 #include "hw/ppc/ppc.h"
51 #include "hw/loader.h"
52
53 #include "hw/ppc/fdt.h"
54 #include "hw/ppc/spapr.h"
55 #include "hw/ppc/spapr_vio.h"
56 #include "hw/pci-host/spapr.h"
57 #include "hw/pci/msi.h"
58
59 #include "hw/pci/pci.h"
60 #include "hw/scsi/scsi.h"
61 #include "hw/virtio/virtio-scsi.h"
62 #include "hw/virtio/vhost-scsi-common.h"
63
64 #include "exec/address-spaces.h"
65 #include "exec/ram_addr.h"
66 #include "hw/usb.h"
67 #include "qemu/config-file.h"
68 #include "qemu/error-report.h"
69 #include "trace.h"
70 #include "hw/nmi.h"
71 #include "hw/intc/intc.h"
72
73 #include "qemu/cutils.h"
74 #include "hw/ppc/spapr_cpu_core.h"
75 #include "hw/mem/memory-device.h"
76
77 #include <libfdt.h>
78
79 /* SLOF memory layout:
80 *
81 * SLOF raw image loaded at 0, copies its romfs right below the flat
82 * device-tree, then position SLOF itself 31M below that
83 *
84 * So we set FW_OVERHEAD to 40MB which should account for all of that
85 * and more
86 *
87 * We load our kernel at 4M, leaving space for SLOF initial image
88 */
89 #define FDT_MAX_SIZE 0x100000
90 #define RTAS_MAX_SIZE 0x10000
91 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
92 #define FW_MAX_SIZE 0x400000
93 #define FW_FILE_NAME "slof.bin"
94 #define FW_OVERHEAD 0x2800000
95 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
96
97 #define MIN_RMA_SLOF 128UL
98
99 #define PHANDLE_XICP 0x00001111
100
101 /* These two functions implement the VCPU id numbering: one to compute them
102 * all and one to identify thread 0 of a VCORE. Any change to the first one
103 * is likely to have an impact on the second one, so let's keep them close.
104 */
105 static int spapr_vcpu_id(sPAPRMachineState *spapr, int cpu_index)
106 {
107 assert(spapr->vsmt);
108 return
109 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
110 }
111 static bool spapr_is_thread0_in_vcore(sPAPRMachineState *spapr,
112 PowerPCCPU *cpu)
113 {
114 assert(spapr->vsmt);
115 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
116 }
117
118 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
119 {
120 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
121 * and newer QEMUs don't even have them. In both cases, we don't want
122 * to send anything on the wire.
123 */
124 return false;
125 }
126
127 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
128 .name = "icp/server",
129 .version_id = 1,
130 .minimum_version_id = 1,
131 .needed = pre_2_10_vmstate_dummy_icp_needed,
132 .fields = (VMStateField[]) {
133 VMSTATE_UNUSED(4), /* uint32_t xirr */
134 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
135 VMSTATE_UNUSED(1), /* uint8_t mfrr */
136 VMSTATE_END_OF_LIST()
137 },
138 };
139
140 static void pre_2_10_vmstate_register_dummy_icp(int i)
141 {
142 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
143 (void *)(uintptr_t) i);
144 }
145
146 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
147 {
148 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
149 (void *)(uintptr_t) i);
150 }
151
152 int spapr_max_server_number(sPAPRMachineState *spapr)
153 {
154 assert(spapr->vsmt);
155 return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads);
156 }
157
158 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
159 int smt_threads)
160 {
161 int i, ret = 0;
162 uint32_t servers_prop[smt_threads];
163 uint32_t gservers_prop[smt_threads * 2];
164 int index = spapr_get_vcpu_id(cpu);
165
166 if (cpu->compat_pvr) {
167 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
168 if (ret < 0) {
169 return ret;
170 }
171 }
172
173 /* Build interrupt servers and gservers properties */
174 for (i = 0; i < smt_threads; i++) {
175 servers_prop[i] = cpu_to_be32(index + i);
176 /* Hack, direct the group queues back to cpu 0 */
177 gservers_prop[i*2] = cpu_to_be32(index + i);
178 gservers_prop[i*2 + 1] = 0;
179 }
180 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
181 servers_prop, sizeof(servers_prop));
182 if (ret < 0) {
183 return ret;
184 }
185 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
186 gservers_prop, sizeof(gservers_prop));
187
188 return ret;
189 }
190
191 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
192 {
193 int index = spapr_get_vcpu_id(cpu);
194 uint32_t associativity[] = {cpu_to_be32(0x5),
195 cpu_to_be32(0x0),
196 cpu_to_be32(0x0),
197 cpu_to_be32(0x0),
198 cpu_to_be32(cpu->node_id),
199 cpu_to_be32(index)};
200
201 /* Advertise NUMA via ibm,associativity */
202 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
203 sizeof(associativity));
204 }
205
206 /* Populate the "ibm,pa-features" property */
207 static void spapr_populate_pa_features(sPAPRMachineState *spapr,
208 PowerPCCPU *cpu,
209 void *fdt, int offset,
210 bool legacy_guest)
211 {
212 uint8_t pa_features_206[] = { 6, 0,
213 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
214 uint8_t pa_features_207[] = { 24, 0,
215 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
216 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
217 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
218 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
219 uint8_t pa_features_300[] = { 66, 0,
220 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
221 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
222 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
223 /* 6: DS207 */
224 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
225 /* 16: Vector */
226 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
227 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
228 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
229 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
230 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
231 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
232 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
233 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
234 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
235 /* 42: PM, 44: PC RA, 46: SC vec'd */
236 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
237 /* 48: SIMD, 50: QP BFP, 52: String */
238 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
239 /* 54: DecFP, 56: DecI, 58: SHA */
240 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
241 /* 60: NM atomic, 62: RNG */
242 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
243 };
244 uint8_t *pa_features = NULL;
245 size_t pa_size;
246
247 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
248 pa_features = pa_features_206;
249 pa_size = sizeof(pa_features_206);
250 }
251 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
252 pa_features = pa_features_207;
253 pa_size = sizeof(pa_features_207);
254 }
255 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
256 pa_features = pa_features_300;
257 pa_size = sizeof(pa_features_300);
258 }
259 if (!pa_features) {
260 return;
261 }
262
263 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
264 /*
265 * Note: we keep CI large pages off by default because a 64K capable
266 * guest provisioned with large pages might otherwise try to map a qemu
267 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
268 * even if that qemu runs on a 4k host.
269 * We dd this bit back here if we are confident this is not an issue
270 */
271 pa_features[3] |= 0x20;
272 }
273 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
274 pa_features[24] |= 0x80; /* Transactional memory support */
275 }
276 if (legacy_guest && pa_size > 40) {
277 /* Workaround for broken kernels that attempt (guest) radix
278 * mode when they can't handle it, if they see the radix bit set
279 * in pa-features. So hide it from them. */
280 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
281 }
282
283 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
284 }
285
286 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
287 {
288 int ret = 0, offset, cpus_offset;
289 CPUState *cs;
290 char cpu_model[32];
291 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
292
293 CPU_FOREACH(cs) {
294 PowerPCCPU *cpu = POWERPC_CPU(cs);
295 DeviceClass *dc = DEVICE_GET_CLASS(cs);
296 int index = spapr_get_vcpu_id(cpu);
297 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
298
299 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
300 continue;
301 }
302
303 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
304
305 cpus_offset = fdt_path_offset(fdt, "/cpus");
306 if (cpus_offset < 0) {
307 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
308 if (cpus_offset < 0) {
309 return cpus_offset;
310 }
311 }
312 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
313 if (offset < 0) {
314 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
315 if (offset < 0) {
316 return offset;
317 }
318 }
319
320 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
321 pft_size_prop, sizeof(pft_size_prop));
322 if (ret < 0) {
323 return ret;
324 }
325
326 if (nb_numa_nodes > 1) {
327 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
328 if (ret < 0) {
329 return ret;
330 }
331 }
332
333 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
334 if (ret < 0) {
335 return ret;
336 }
337
338 spapr_populate_pa_features(spapr, cpu, fdt, offset,
339 spapr->cas_legacy_guest_workaround);
340 }
341 return ret;
342 }
343
344 static hwaddr spapr_node0_size(MachineState *machine)
345 {
346 if (nb_numa_nodes) {
347 int i;
348 for (i = 0; i < nb_numa_nodes; ++i) {
349 if (numa_info[i].node_mem) {
350 return MIN(pow2floor(numa_info[i].node_mem),
351 machine->ram_size);
352 }
353 }
354 }
355 return machine->ram_size;
356 }
357
358 static void add_str(GString *s, const gchar *s1)
359 {
360 g_string_append_len(s, s1, strlen(s1) + 1);
361 }
362
363 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
364 hwaddr size)
365 {
366 uint32_t associativity[] = {
367 cpu_to_be32(0x4), /* length */
368 cpu_to_be32(0x0), cpu_to_be32(0x0),
369 cpu_to_be32(0x0), cpu_to_be32(nodeid)
370 };
371 char mem_name[32];
372 uint64_t mem_reg_property[2];
373 int off;
374
375 mem_reg_property[0] = cpu_to_be64(start);
376 mem_reg_property[1] = cpu_to_be64(size);
377
378 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
379 off = fdt_add_subnode(fdt, 0, mem_name);
380 _FDT(off);
381 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
382 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
383 sizeof(mem_reg_property))));
384 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
385 sizeof(associativity))));
386 return off;
387 }
388
389 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
390 {
391 MachineState *machine = MACHINE(spapr);
392 hwaddr mem_start, node_size;
393 int i, nb_nodes = nb_numa_nodes;
394 NodeInfo *nodes = numa_info;
395 NodeInfo ramnode;
396
397 /* No NUMA nodes, assume there is just one node with whole RAM */
398 if (!nb_numa_nodes) {
399 nb_nodes = 1;
400 ramnode.node_mem = machine->ram_size;
401 nodes = &ramnode;
402 }
403
404 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
405 if (!nodes[i].node_mem) {
406 continue;
407 }
408 if (mem_start >= machine->ram_size) {
409 node_size = 0;
410 } else {
411 node_size = nodes[i].node_mem;
412 if (node_size > machine->ram_size - mem_start) {
413 node_size = machine->ram_size - mem_start;
414 }
415 }
416 if (!mem_start) {
417 /* spapr_machine_init() checks for rma_size <= node0_size
418 * already */
419 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
420 mem_start += spapr->rma_size;
421 node_size -= spapr->rma_size;
422 }
423 for ( ; node_size; ) {
424 hwaddr sizetmp = pow2floor(node_size);
425
426 /* mem_start != 0 here */
427 if (ctzl(mem_start) < ctzl(sizetmp)) {
428 sizetmp = 1ULL << ctzl(mem_start);
429 }
430
431 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
432 node_size -= sizetmp;
433 mem_start += sizetmp;
434 }
435 }
436
437 return 0;
438 }
439
440 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
441 sPAPRMachineState *spapr)
442 {
443 PowerPCCPU *cpu = POWERPC_CPU(cs);
444 CPUPPCState *env = &cpu->env;
445 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
446 int index = spapr_get_vcpu_id(cpu);
447 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
448 0xffffffff, 0xffffffff};
449 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
450 : SPAPR_TIMEBASE_FREQ;
451 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
452 uint32_t page_sizes_prop[64];
453 size_t page_sizes_prop_size;
454 uint32_t vcpus_per_socket = smp_threads * smp_cores;
455 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
456 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
457 sPAPRDRConnector *drc;
458 int drc_index;
459 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
460 int i;
461
462 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
463 if (drc) {
464 drc_index = spapr_drc_index(drc);
465 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
466 }
467
468 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
469 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
470
471 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
472 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
473 env->dcache_line_size)));
474 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
475 env->dcache_line_size)));
476 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
477 env->icache_line_size)));
478 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
479 env->icache_line_size)));
480
481 if (pcc->l1_dcache_size) {
482 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
483 pcc->l1_dcache_size)));
484 } else {
485 warn_report("Unknown L1 dcache size for cpu");
486 }
487 if (pcc->l1_icache_size) {
488 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
489 pcc->l1_icache_size)));
490 } else {
491 warn_report("Unknown L1 icache size for cpu");
492 }
493
494 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
495 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
496 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
497 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
498 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
499 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
500
501 if (env->spr_cb[SPR_PURR].oea_read) {
502 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
503 }
504
505 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
506 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
507 segs, sizeof(segs))));
508 }
509
510 /* Advertise VSX (vector extensions) if available
511 * 1 == VMX / Altivec available
512 * 2 == VSX available
513 *
514 * Only CPUs for which we create core types in spapr_cpu_core.c
515 * are possible, and all of those have VMX */
516 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
517 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
518 } else {
519 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
520 }
521
522 /* Advertise DFP (Decimal Floating Point) if available
523 * 0 / no property == no DFP
524 * 1 == DFP available */
525 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
526 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
527 }
528
529 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
530 sizeof(page_sizes_prop));
531 if (page_sizes_prop_size) {
532 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
533 page_sizes_prop, page_sizes_prop_size)));
534 }
535
536 spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
537
538 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
539 cs->cpu_index / vcpus_per_socket)));
540
541 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
542 pft_size_prop, sizeof(pft_size_prop))));
543
544 if (nb_numa_nodes > 1) {
545 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
546 }
547
548 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
549
550 if (pcc->radix_page_info) {
551 for (i = 0; i < pcc->radix_page_info->count; i++) {
552 radix_AP_encodings[i] =
553 cpu_to_be32(pcc->radix_page_info->entries[i]);
554 }
555 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
556 radix_AP_encodings,
557 pcc->radix_page_info->count *
558 sizeof(radix_AP_encodings[0]))));
559 }
560 }
561
562 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
563 {
564 CPUState **rev;
565 CPUState *cs;
566 int n_cpus;
567 int cpus_offset;
568 char *nodename;
569 int i;
570
571 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
572 _FDT(cpus_offset);
573 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
574 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
575
576 /*
577 * We walk the CPUs in reverse order to ensure that CPU DT nodes
578 * created by fdt_add_subnode() end up in the right order in FDT
579 * for the guest kernel the enumerate the CPUs correctly.
580 *
581 * The CPU list cannot be traversed in reverse order, so we need
582 * to do extra work.
583 */
584 n_cpus = 0;
585 rev = NULL;
586 CPU_FOREACH(cs) {
587 rev = g_renew(CPUState *, rev, n_cpus + 1);
588 rev[n_cpus++] = cs;
589 }
590
591 for (i = n_cpus - 1; i >= 0; i--) {
592 CPUState *cs = rev[i];
593 PowerPCCPU *cpu = POWERPC_CPU(cs);
594 int index = spapr_get_vcpu_id(cpu);
595 DeviceClass *dc = DEVICE_GET_CLASS(cs);
596 int offset;
597
598 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
599 continue;
600 }
601
602 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
603 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
604 g_free(nodename);
605 _FDT(offset);
606 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
607 }
608
609 g_free(rev);
610 }
611
612 static int spapr_rng_populate_dt(void *fdt)
613 {
614 int node;
615 int ret;
616
617 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
618 if (node <= 0) {
619 return -1;
620 }
621 ret = fdt_setprop_string(fdt, node, "device_type",
622 "ibm,platform-facilities");
623 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
624 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
625
626 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
627 if (node <= 0) {
628 return -1;
629 }
630 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
631
632 return ret ? -1 : 0;
633 }
634
635 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
636 {
637 MemoryDeviceInfoList *info;
638
639 for (info = list; info; info = info->next) {
640 MemoryDeviceInfo *value = info->value;
641
642 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
643 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
644
645 if (addr >= pcdimm_info->addr &&
646 addr < (pcdimm_info->addr + pcdimm_info->size)) {
647 return pcdimm_info->node;
648 }
649 }
650 }
651
652 return -1;
653 }
654
655 struct sPAPRDrconfCellV2 {
656 uint32_t seq_lmbs;
657 uint64_t base_addr;
658 uint32_t drc_index;
659 uint32_t aa_index;
660 uint32_t flags;
661 } QEMU_PACKED;
662
663 typedef struct DrconfCellQueue {
664 struct sPAPRDrconfCellV2 cell;
665 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
666 } DrconfCellQueue;
667
668 static DrconfCellQueue *
669 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
670 uint32_t drc_index, uint32_t aa_index,
671 uint32_t flags)
672 {
673 DrconfCellQueue *elem;
674
675 elem = g_malloc0(sizeof(*elem));
676 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
677 elem->cell.base_addr = cpu_to_be64(base_addr);
678 elem->cell.drc_index = cpu_to_be32(drc_index);
679 elem->cell.aa_index = cpu_to_be32(aa_index);
680 elem->cell.flags = cpu_to_be32(flags);
681
682 return elem;
683 }
684
685 /* ibm,dynamic-memory-v2 */
686 static int spapr_populate_drmem_v2(sPAPRMachineState *spapr, void *fdt,
687 int offset, MemoryDeviceInfoList *dimms)
688 {
689 MachineState *machine = MACHINE(spapr);
690 uint8_t *int_buf, *cur_index, buf_len;
691 int ret;
692 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
693 uint64_t addr, cur_addr, size;
694 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
695 uint64_t mem_end = machine->device_memory->base +
696 memory_region_size(&machine->device_memory->mr);
697 uint32_t node, nr_entries = 0;
698 sPAPRDRConnector *drc;
699 DrconfCellQueue *elem, *next;
700 MemoryDeviceInfoList *info;
701 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
702 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
703
704 /* Entry to cover RAM and the gap area */
705 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
706 SPAPR_LMB_FLAGS_RESERVED |
707 SPAPR_LMB_FLAGS_DRC_INVALID);
708 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
709 nr_entries++;
710
711 cur_addr = machine->device_memory->base;
712 for (info = dimms; info; info = info->next) {
713 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
714
715 addr = di->addr;
716 size = di->size;
717 node = di->node;
718
719 /* Entry for hot-pluggable area */
720 if (cur_addr < addr) {
721 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
722 g_assert(drc);
723 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
724 cur_addr, spapr_drc_index(drc), -1, 0);
725 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
726 nr_entries++;
727 }
728
729 /* Entry for DIMM */
730 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
731 g_assert(drc);
732 elem = spapr_get_drconf_cell(size / lmb_size, addr,
733 spapr_drc_index(drc), node,
734 SPAPR_LMB_FLAGS_ASSIGNED);
735 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
736 nr_entries++;
737 cur_addr = addr + size;
738 }
739
740 /* Entry for remaining hotpluggable area */
741 if (cur_addr < mem_end) {
742 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
743 g_assert(drc);
744 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
745 cur_addr, spapr_drc_index(drc), -1, 0);
746 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
747 nr_entries++;
748 }
749
750 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
751 int_buf = cur_index = g_malloc0(buf_len);
752 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
753 cur_index += sizeof(nr_entries);
754
755 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
756 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
757 cur_index += sizeof(elem->cell);
758 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
759 g_free(elem);
760 }
761
762 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
763 g_free(int_buf);
764 if (ret < 0) {
765 return -1;
766 }
767 return 0;
768 }
769
770 /* ibm,dynamic-memory */
771 static int spapr_populate_drmem_v1(sPAPRMachineState *spapr, void *fdt,
772 int offset, MemoryDeviceInfoList *dimms)
773 {
774 MachineState *machine = MACHINE(spapr);
775 int i, ret;
776 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
777 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
778 uint32_t nr_lmbs = (machine->device_memory->base +
779 memory_region_size(&machine->device_memory->mr)) /
780 lmb_size;
781 uint32_t *int_buf, *cur_index, buf_len;
782
783 /*
784 * Allocate enough buffer size to fit in ibm,dynamic-memory
785 */
786 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
787 cur_index = int_buf = g_malloc0(buf_len);
788 int_buf[0] = cpu_to_be32(nr_lmbs);
789 cur_index++;
790 for (i = 0; i < nr_lmbs; i++) {
791 uint64_t addr = i * lmb_size;
792 uint32_t *dynamic_memory = cur_index;
793
794 if (i >= device_lmb_start) {
795 sPAPRDRConnector *drc;
796
797 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
798 g_assert(drc);
799
800 dynamic_memory[0] = cpu_to_be32(addr >> 32);
801 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
802 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
803 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
804 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
805 if (memory_region_present(get_system_memory(), addr)) {
806 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
807 } else {
808 dynamic_memory[5] = cpu_to_be32(0);
809 }
810 } else {
811 /*
812 * LMB information for RMA, boot time RAM and gap b/n RAM and
813 * device memory region -- all these are marked as reserved
814 * and as having no valid DRC.
815 */
816 dynamic_memory[0] = cpu_to_be32(addr >> 32);
817 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
818 dynamic_memory[2] = cpu_to_be32(0);
819 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
820 dynamic_memory[4] = cpu_to_be32(-1);
821 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
822 SPAPR_LMB_FLAGS_DRC_INVALID);
823 }
824
825 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
826 }
827 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
828 g_free(int_buf);
829 if (ret < 0) {
830 return -1;
831 }
832 return 0;
833 }
834
835 /*
836 * Adds ibm,dynamic-reconfiguration-memory node.
837 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
838 * of this device tree node.
839 */
840 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
841 {
842 MachineState *machine = MACHINE(spapr);
843 int ret, i, offset;
844 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
845 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
846 uint32_t *int_buf, *cur_index, buf_len;
847 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
848 MemoryDeviceInfoList *dimms = NULL;
849
850 /*
851 * Don't create the node if there is no device memory
852 */
853 if (machine->ram_size == machine->maxram_size) {
854 return 0;
855 }
856
857 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
858
859 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
860 sizeof(prop_lmb_size));
861 if (ret < 0) {
862 return ret;
863 }
864
865 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
866 if (ret < 0) {
867 return ret;
868 }
869
870 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
871 if (ret < 0) {
872 return ret;
873 }
874
875 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
876 dimms = qmp_memory_device_list();
877 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
878 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
879 } else {
880 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
881 }
882 qapi_free_MemoryDeviceInfoList(dimms);
883
884 if (ret < 0) {
885 return ret;
886 }
887
888 /* ibm,associativity-lookup-arrays */
889 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
890 cur_index = int_buf = g_malloc0(buf_len);
891 int_buf[0] = cpu_to_be32(nr_nodes);
892 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
893 cur_index += 2;
894 for (i = 0; i < nr_nodes; i++) {
895 uint32_t associativity[] = {
896 cpu_to_be32(0x0),
897 cpu_to_be32(0x0),
898 cpu_to_be32(0x0),
899 cpu_to_be32(i)
900 };
901 memcpy(cur_index, associativity, sizeof(associativity));
902 cur_index += 4;
903 }
904 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
905 (cur_index - int_buf) * sizeof(uint32_t));
906 g_free(int_buf);
907
908 return ret;
909 }
910
911 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
912 sPAPROptionVector *ov5_updates)
913 {
914 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
915 int ret = 0, offset;
916
917 /* Generate ibm,dynamic-reconfiguration-memory node if required */
918 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
919 g_assert(smc->dr_lmb_enabled);
920 ret = spapr_populate_drconf_memory(spapr, fdt);
921 if (ret) {
922 goto out;
923 }
924 }
925
926 offset = fdt_path_offset(fdt, "/chosen");
927 if (offset < 0) {
928 offset = fdt_add_subnode(fdt, 0, "chosen");
929 if (offset < 0) {
930 return offset;
931 }
932 }
933 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
934 "ibm,architecture-vec-5");
935
936 out:
937 return ret;
938 }
939
940 static bool spapr_hotplugged_dev_before_cas(void)
941 {
942 Object *drc_container, *obj;
943 ObjectProperty *prop;
944 ObjectPropertyIterator iter;
945
946 drc_container = container_get(object_get_root(), "/dr-connector");
947 object_property_iter_init(&iter, drc_container);
948 while ((prop = object_property_iter_next(&iter))) {
949 if (!strstart(prop->type, "link<", NULL)) {
950 continue;
951 }
952 obj = object_property_get_link(drc_container, prop->name, NULL);
953 if (spapr_drc_needed(obj)) {
954 return true;
955 }
956 }
957 return false;
958 }
959
960 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
961 target_ulong addr, target_ulong size,
962 sPAPROptionVector *ov5_updates)
963 {
964 void *fdt, *fdt_skel;
965 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
966
967 if (spapr_hotplugged_dev_before_cas()) {
968 return 1;
969 }
970
971 if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
972 error_report("SLOF provided an unexpected CAS buffer size "
973 TARGET_FMT_lu " (min: %zu, max: %u)",
974 size, sizeof(hdr), FW_MAX_SIZE);
975 exit(EXIT_FAILURE);
976 }
977
978 size -= sizeof(hdr);
979
980 /* Create skeleton */
981 fdt_skel = g_malloc0(size);
982 _FDT((fdt_create(fdt_skel, size)));
983 _FDT((fdt_finish_reservemap(fdt_skel)));
984 _FDT((fdt_begin_node(fdt_skel, "")));
985 _FDT((fdt_end_node(fdt_skel)));
986 _FDT((fdt_finish(fdt_skel)));
987 fdt = g_malloc0(size);
988 _FDT((fdt_open_into(fdt_skel, fdt, size)));
989 g_free(fdt_skel);
990
991 /* Fixup cpu nodes */
992 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
993
994 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
995 return -1;
996 }
997
998 /* Pack resulting tree */
999 _FDT((fdt_pack(fdt)));
1000
1001 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1002 trace_spapr_cas_failed(size);
1003 return -1;
1004 }
1005
1006 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1007 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1008 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1009 g_free(fdt);
1010
1011 return 0;
1012 }
1013
1014 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
1015 {
1016 int rtas;
1017 GString *hypertas = g_string_sized_new(256);
1018 GString *qemu_hypertas = g_string_sized_new(256);
1019 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1020 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1021 memory_region_size(&MACHINE(spapr)->device_memory->mr);
1022 uint32_t lrdr_capacity[] = {
1023 cpu_to_be32(max_device_addr >> 32),
1024 cpu_to_be32(max_device_addr & 0xffffffff),
1025 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1026 cpu_to_be32(max_cpus / smp_threads),
1027 };
1028 uint32_t maxdomains[] = {
1029 cpu_to_be32(4),
1030 cpu_to_be32(0),
1031 cpu_to_be32(0),
1032 cpu_to_be32(0),
1033 cpu_to_be32(nb_numa_nodes ? nb_numa_nodes : 1),
1034 };
1035
1036 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1037
1038 /* hypertas */
1039 add_str(hypertas, "hcall-pft");
1040 add_str(hypertas, "hcall-term");
1041 add_str(hypertas, "hcall-dabr");
1042 add_str(hypertas, "hcall-interrupt");
1043 add_str(hypertas, "hcall-tce");
1044 add_str(hypertas, "hcall-vio");
1045 add_str(hypertas, "hcall-splpar");
1046 add_str(hypertas, "hcall-bulk");
1047 add_str(hypertas, "hcall-set-mode");
1048 add_str(hypertas, "hcall-sprg0");
1049 add_str(hypertas, "hcall-copy");
1050 add_str(hypertas, "hcall-debug");
1051 add_str(hypertas, "hcall-vphn");
1052 add_str(qemu_hypertas, "hcall-memop1");
1053
1054 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1055 add_str(hypertas, "hcall-multi-tce");
1056 }
1057
1058 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1059 add_str(hypertas, "hcall-hpt-resize");
1060 }
1061
1062 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1063 hypertas->str, hypertas->len));
1064 g_string_free(hypertas, TRUE);
1065 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1066 qemu_hypertas->str, qemu_hypertas->len));
1067 g_string_free(qemu_hypertas, TRUE);
1068
1069 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1070 refpoints, sizeof(refpoints)));
1071
1072 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1073 maxdomains, sizeof(maxdomains)));
1074
1075 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1076 RTAS_ERROR_LOG_MAX));
1077 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1078 RTAS_EVENT_SCAN_RATE));
1079
1080 g_assert(msi_nonbroken);
1081 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1082
1083 /*
1084 * According to PAPR, rtas ibm,os-term does not guarantee a return
1085 * back to the guest cpu.
1086 *
1087 * While an additional ibm,extended-os-term property indicates
1088 * that rtas call return will always occur. Set this property.
1089 */
1090 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1091
1092 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1093 lrdr_capacity, sizeof(lrdr_capacity)));
1094
1095 spapr_dt_rtas_tokens(fdt, rtas);
1096 }
1097
1098 /*
1099 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1100 * and the XIVE features that the guest may request and thus the valid
1101 * values for bytes 23..26 of option vector 5:
1102 */
1103 static void spapr_dt_ov5_platform_support(sPAPRMachineState *spapr, void *fdt,
1104 int chosen)
1105 {
1106 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1107
1108 char val[2 * 4] = {
1109 23, spapr->irq->ov5, /* Xive mode. */
1110 24, 0x00, /* Hash/Radix, filled in below. */
1111 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1112 26, 0x40, /* Radix options: GTSE == yes. */
1113 };
1114
1115 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1116 first_ppc_cpu->compat_pvr)) {
1117 /*
1118 * If we're in a pre POWER9 compat mode then the guest should
1119 * do hash and use the legacy interrupt mode
1120 */
1121 val[1] = 0x00; /* XICS */
1122 val[3] = 0x00; /* Hash */
1123 } else if (kvm_enabled()) {
1124 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1125 val[3] = 0x80; /* OV5_MMU_BOTH */
1126 } else if (kvmppc_has_cap_mmu_radix()) {
1127 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1128 } else {
1129 val[3] = 0x00; /* Hash */
1130 }
1131 } else {
1132 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1133 val[3] = 0xC0;
1134 }
1135 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1136 val, sizeof(val)));
1137 }
1138
1139 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
1140 {
1141 MachineState *machine = MACHINE(spapr);
1142 int chosen;
1143 const char *boot_device = machine->boot_order;
1144 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1145 size_t cb = 0;
1146 char *bootlist = get_boot_devices_list(&cb);
1147
1148 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1149
1150 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1151 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1152 spapr->initrd_base));
1153 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1154 spapr->initrd_base + spapr->initrd_size));
1155
1156 if (spapr->kernel_size) {
1157 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1158 cpu_to_be64(spapr->kernel_size) };
1159
1160 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1161 &kprop, sizeof(kprop)));
1162 if (spapr->kernel_le) {
1163 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1164 }
1165 }
1166 if (boot_menu) {
1167 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1168 }
1169 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1170 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1171 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1172
1173 if (cb && bootlist) {
1174 int i;
1175
1176 for (i = 0; i < cb; i++) {
1177 if (bootlist[i] == '\n') {
1178 bootlist[i] = ' ';
1179 }
1180 }
1181 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1182 }
1183
1184 if (boot_device && strlen(boot_device)) {
1185 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1186 }
1187
1188 if (!spapr->has_graphics && stdout_path) {
1189 /*
1190 * "linux,stdout-path" and "stdout" properties are deprecated by linux
1191 * kernel. New platforms should only use the "stdout-path" property. Set
1192 * the new property and continue using older property to remain
1193 * compatible with the existing firmware.
1194 */
1195 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1196 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1197 }
1198
1199 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1200
1201 g_free(stdout_path);
1202 g_free(bootlist);
1203 }
1204
1205 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1206 {
1207 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1208 * KVM to work under pHyp with some guest co-operation */
1209 int hypervisor;
1210 uint8_t hypercall[16];
1211
1212 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1213 /* indicate KVM hypercall interface */
1214 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1215 if (kvmppc_has_cap_fixup_hcalls()) {
1216 /*
1217 * Older KVM versions with older guest kernels were broken
1218 * with the magic page, don't allow the guest to map it.
1219 */
1220 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1221 sizeof(hypercall))) {
1222 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1223 hypercall, sizeof(hypercall)));
1224 }
1225 }
1226 }
1227
1228 static void *spapr_build_fdt(sPAPRMachineState *spapr)
1229 {
1230 MachineState *machine = MACHINE(spapr);
1231 MachineClass *mc = MACHINE_GET_CLASS(machine);
1232 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1233 int ret;
1234 void *fdt;
1235 sPAPRPHBState *phb;
1236 char *buf;
1237
1238 fdt = g_malloc0(FDT_MAX_SIZE);
1239 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1240
1241 /* Root node */
1242 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1243 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1244 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1245
1246 /*
1247 * Add info to guest to indentify which host is it being run on
1248 * and what is the uuid of the guest
1249 */
1250 if (kvmppc_get_host_model(&buf)) {
1251 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1252 g_free(buf);
1253 }
1254 if (kvmppc_get_host_serial(&buf)) {
1255 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1256 g_free(buf);
1257 }
1258
1259 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1260
1261 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1262 if (qemu_uuid_set) {
1263 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1264 }
1265 g_free(buf);
1266
1267 if (qemu_get_vm_name()) {
1268 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1269 qemu_get_vm_name()));
1270 }
1271
1272 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1273 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1274
1275 /* /interrupt controller */
1276 spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt,
1277 PHANDLE_XICP);
1278
1279 ret = spapr_populate_memory(spapr, fdt);
1280 if (ret < 0) {
1281 error_report("couldn't setup memory nodes in fdt");
1282 exit(1);
1283 }
1284
1285 /* /vdevice */
1286 spapr_dt_vdevice(spapr->vio_bus, fdt);
1287
1288 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1289 ret = spapr_rng_populate_dt(fdt);
1290 if (ret < 0) {
1291 error_report("could not set up rng device in the fdt");
1292 exit(1);
1293 }
1294 }
1295
1296 QLIST_FOREACH(phb, &spapr->phbs, list) {
1297 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt,
1298 spapr->irq->nr_msis);
1299 if (ret < 0) {
1300 error_report("couldn't setup PCI devices in fdt");
1301 exit(1);
1302 }
1303 }
1304
1305 /* cpus */
1306 spapr_populate_cpus_dt_node(fdt, spapr);
1307
1308 if (smc->dr_lmb_enabled) {
1309 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1310 }
1311
1312 if (mc->has_hotpluggable_cpus) {
1313 int offset = fdt_path_offset(fdt, "/cpus");
1314 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1315 SPAPR_DR_CONNECTOR_TYPE_CPU);
1316 if (ret < 0) {
1317 error_report("Couldn't set up CPU DR device tree properties");
1318 exit(1);
1319 }
1320 }
1321
1322 /* /event-sources */
1323 spapr_dt_events(spapr, fdt);
1324
1325 /* /rtas */
1326 spapr_dt_rtas(spapr, fdt);
1327
1328 /* /chosen */
1329 spapr_dt_chosen(spapr, fdt);
1330
1331 /* /hypervisor */
1332 if (kvm_enabled()) {
1333 spapr_dt_hypervisor(spapr, fdt);
1334 }
1335
1336 /* Build memory reserve map */
1337 if (spapr->kernel_size) {
1338 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1339 }
1340 if (spapr->initrd_size) {
1341 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1342 }
1343
1344 /* ibm,client-architecture-support updates */
1345 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1346 if (ret < 0) {
1347 error_report("couldn't setup CAS properties fdt");
1348 exit(1);
1349 }
1350
1351 return fdt;
1352 }
1353
1354 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1355 {
1356 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1357 }
1358
1359 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1360 PowerPCCPU *cpu)
1361 {
1362 CPUPPCState *env = &cpu->env;
1363
1364 /* The TCG path should also be holding the BQL at this point */
1365 g_assert(qemu_mutex_iothread_locked());
1366
1367 if (msr_pr) {
1368 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1369 env->gpr[3] = H_PRIVILEGE;
1370 } else {
1371 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1372 }
1373 }
1374
1375 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1376 {
1377 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1378
1379 return spapr->patb_entry;
1380 }
1381
1382 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1383 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1384 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1385 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1386 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1387
1388 /*
1389 * Get the fd to access the kernel htab, re-opening it if necessary
1390 */
1391 static int get_htab_fd(sPAPRMachineState *spapr)
1392 {
1393 Error *local_err = NULL;
1394
1395 if (spapr->htab_fd >= 0) {
1396 return spapr->htab_fd;
1397 }
1398
1399 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1400 if (spapr->htab_fd < 0) {
1401 error_report_err(local_err);
1402 }
1403
1404 return spapr->htab_fd;
1405 }
1406
1407 void close_htab_fd(sPAPRMachineState *spapr)
1408 {
1409 if (spapr->htab_fd >= 0) {
1410 close(spapr->htab_fd);
1411 }
1412 spapr->htab_fd = -1;
1413 }
1414
1415 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1416 {
1417 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1418
1419 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1420 }
1421
1422 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1423 {
1424 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1425
1426 assert(kvm_enabled());
1427
1428 if (!spapr->htab) {
1429 return 0;
1430 }
1431
1432 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1433 }
1434
1435 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1436 hwaddr ptex, int n)
1437 {
1438 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1439 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1440
1441 if (!spapr->htab) {
1442 /*
1443 * HTAB is controlled by KVM. Fetch into temporary buffer
1444 */
1445 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1446 kvmppc_read_hptes(hptes, ptex, n);
1447 return hptes;
1448 }
1449
1450 /*
1451 * HTAB is controlled by QEMU. Just point to the internally
1452 * accessible PTEG.
1453 */
1454 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1455 }
1456
1457 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1458 const ppc_hash_pte64_t *hptes,
1459 hwaddr ptex, int n)
1460 {
1461 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1462
1463 if (!spapr->htab) {
1464 g_free((void *)hptes);
1465 }
1466
1467 /* Nothing to do for qemu managed HPT */
1468 }
1469
1470 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1471 uint64_t pte0, uint64_t pte1)
1472 {
1473 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1474 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1475
1476 if (!spapr->htab) {
1477 kvmppc_write_hpte(ptex, pte0, pte1);
1478 } else {
1479 stq_p(spapr->htab + offset, pte0);
1480 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1481 }
1482 }
1483
1484 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1485 {
1486 int shift;
1487
1488 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1489 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1490 * that's much more than is needed for Linux guests */
1491 shift = ctz64(pow2ceil(ramsize)) - 7;
1492 shift = MAX(shift, 18); /* Minimum architected size */
1493 shift = MIN(shift, 46); /* Maximum architected size */
1494 return shift;
1495 }
1496
1497 void spapr_free_hpt(sPAPRMachineState *spapr)
1498 {
1499 g_free(spapr->htab);
1500 spapr->htab = NULL;
1501 spapr->htab_shift = 0;
1502 close_htab_fd(spapr);
1503 }
1504
1505 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1506 Error **errp)
1507 {
1508 long rc;
1509
1510 /* Clean up any HPT info from a previous boot */
1511 spapr_free_hpt(spapr);
1512
1513 rc = kvmppc_reset_htab(shift);
1514 if (rc < 0) {
1515 /* kernel-side HPT needed, but couldn't allocate one */
1516 error_setg_errno(errp, errno,
1517 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1518 shift);
1519 /* This is almost certainly fatal, but if the caller really
1520 * wants to carry on with shift == 0, it's welcome to try */
1521 } else if (rc > 0) {
1522 /* kernel-side HPT allocated */
1523 if (rc != shift) {
1524 error_setg(errp,
1525 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1526 shift, rc);
1527 }
1528
1529 spapr->htab_shift = shift;
1530 spapr->htab = NULL;
1531 } else {
1532 /* kernel-side HPT not needed, allocate in userspace instead */
1533 size_t size = 1ULL << shift;
1534 int i;
1535
1536 spapr->htab = qemu_memalign(size, size);
1537 if (!spapr->htab) {
1538 error_setg_errno(errp, errno,
1539 "Could not allocate HPT of order %d", shift);
1540 return;
1541 }
1542
1543 memset(spapr->htab, 0, size);
1544 spapr->htab_shift = shift;
1545
1546 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1547 DIRTY_HPTE(HPTE(spapr->htab, i));
1548 }
1549 }
1550 /* We're setting up a hash table, so that means we're not radix */
1551 spapr->patb_entry = 0;
1552 }
1553
1554 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1555 {
1556 int hpt_shift;
1557
1558 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1559 || (spapr->cas_reboot
1560 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1561 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1562 } else {
1563 uint64_t current_ram_size;
1564
1565 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1566 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1567 }
1568 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1569
1570 if (spapr->vrma_adjust) {
1571 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1572 spapr->htab_shift);
1573 }
1574 }
1575
1576 static int spapr_reset_drcs(Object *child, void *opaque)
1577 {
1578 sPAPRDRConnector *drc =
1579 (sPAPRDRConnector *) object_dynamic_cast(child,
1580 TYPE_SPAPR_DR_CONNECTOR);
1581
1582 if (drc) {
1583 spapr_drc_reset(drc);
1584 }
1585
1586 return 0;
1587 }
1588
1589 static void spapr_machine_reset(void)
1590 {
1591 MachineState *machine = MACHINE(qdev_get_machine());
1592 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1593 PowerPCCPU *first_ppc_cpu;
1594 uint32_t rtas_limit;
1595 hwaddr rtas_addr, fdt_addr;
1596 void *fdt;
1597 int rc;
1598
1599 spapr_caps_apply(spapr);
1600
1601 first_ppc_cpu = POWERPC_CPU(first_cpu);
1602 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1603 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1604 spapr->max_compat_pvr)) {
1605 /* If using KVM with radix mode available, VCPUs can be started
1606 * without a HPT because KVM will start them in radix mode.
1607 * Set the GR bit in PATB so that we know there is no HPT. */
1608 spapr->patb_entry = PATBE1_GR;
1609 } else {
1610 spapr_setup_hpt_and_vrma(spapr);
1611 }
1612
1613 /* if this reset wasn't generated by CAS, we should reset our
1614 * negotiated options and start from scratch */
1615 if (!spapr->cas_reboot) {
1616 spapr_ovec_cleanup(spapr->ov5_cas);
1617 spapr->ov5_cas = spapr_ovec_new();
1618
1619 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1620 }
1621
1622 if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
1623 spapr_irq_msi_reset(spapr);
1624 }
1625
1626 qemu_devices_reset();
1627
1628 /*
1629 * This is fixing some of the default configuration of the XIVE
1630 * devices. To be called after the reset of the machine devices.
1631 */
1632 spapr_irq_reset(spapr, &error_fatal);
1633
1634 /* DRC reset may cause a device to be unplugged. This will cause troubles
1635 * if this device is used by another device (eg, a running vhost backend
1636 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1637 * situations, we reset DRCs after all devices have been reset.
1638 */
1639 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1640
1641 spapr_clear_pending_events(spapr);
1642
1643 /*
1644 * We place the device tree and RTAS just below either the top of the RMA,
1645 * or just below 2GB, whichever is lower, so that it can be
1646 * processed with 32-bit real mode code if necessary
1647 */
1648 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1649 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1650 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1651
1652 fdt = spapr_build_fdt(spapr);
1653
1654 spapr_load_rtas(spapr, fdt, rtas_addr);
1655
1656 rc = fdt_pack(fdt);
1657
1658 /* Should only fail if we've built a corrupted tree */
1659 assert(rc == 0);
1660
1661 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1662 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1663 fdt_totalsize(fdt), FDT_MAX_SIZE);
1664 exit(1);
1665 }
1666
1667 /* Load the fdt */
1668 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1669 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1670 g_free(spapr->fdt_blob);
1671 spapr->fdt_size = fdt_totalsize(fdt);
1672 spapr->fdt_initial_size = spapr->fdt_size;
1673 spapr->fdt_blob = fdt;
1674
1675 /* Set up the entry state */
1676 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1677 first_ppc_cpu->env.gpr[5] = 0;
1678
1679 spapr->cas_reboot = false;
1680 }
1681
1682 static void spapr_create_nvram(sPAPRMachineState *spapr)
1683 {
1684 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1685 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1686
1687 if (dinfo) {
1688 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1689 &error_fatal);
1690 }
1691
1692 qdev_init_nofail(dev);
1693
1694 spapr->nvram = (struct sPAPRNVRAM *)dev;
1695 }
1696
1697 static void spapr_rtc_create(sPAPRMachineState *spapr)
1698 {
1699 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1700 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1701 &error_fatal);
1702 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1703 &error_fatal);
1704 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1705 "date", &error_fatal);
1706 }
1707
1708 /* Returns whether we want to use VGA or not */
1709 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1710 {
1711 switch (vga_interface_type) {
1712 case VGA_NONE:
1713 return false;
1714 case VGA_DEVICE:
1715 return true;
1716 case VGA_STD:
1717 case VGA_VIRTIO:
1718 return pci_vga_init(pci_bus) != NULL;
1719 default:
1720 error_setg(errp,
1721 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1722 return false;
1723 }
1724 }
1725
1726 static int spapr_pre_load(void *opaque)
1727 {
1728 int rc;
1729
1730 rc = spapr_caps_pre_load(opaque);
1731 if (rc) {
1732 return rc;
1733 }
1734
1735 return 0;
1736 }
1737
1738 static int spapr_post_load(void *opaque, int version_id)
1739 {
1740 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1741 int err = 0;
1742
1743 err = spapr_caps_post_migration(spapr);
1744 if (err) {
1745 return err;
1746 }
1747
1748 /*
1749 * In earlier versions, there was no separate qdev for the PAPR
1750 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1751 * So when migrating from those versions, poke the incoming offset
1752 * value into the RTC device
1753 */
1754 if (version_id < 3) {
1755 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1756 if (err) {
1757 return err;
1758 }
1759 }
1760
1761 if (kvm_enabled() && spapr->patb_entry) {
1762 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1763 bool radix = !!(spapr->patb_entry & PATBE1_GR);
1764 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1765
1766 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1767 if (err) {
1768 error_report("Process table config unsupported by the host");
1769 return -EINVAL;
1770 }
1771 }
1772
1773 err = spapr_irq_post_load(spapr, version_id);
1774 if (err) {
1775 return err;
1776 }
1777
1778 return err;
1779 }
1780
1781 static int spapr_pre_save(void *opaque)
1782 {
1783 int rc;
1784
1785 rc = spapr_caps_pre_save(opaque);
1786 if (rc) {
1787 return rc;
1788 }
1789
1790 return 0;
1791 }
1792
1793 static bool version_before_3(void *opaque, int version_id)
1794 {
1795 return version_id < 3;
1796 }
1797
1798 static bool spapr_pending_events_needed(void *opaque)
1799 {
1800 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1801 return !QTAILQ_EMPTY(&spapr->pending_events);
1802 }
1803
1804 static const VMStateDescription vmstate_spapr_event_entry = {
1805 .name = "spapr_event_log_entry",
1806 .version_id = 1,
1807 .minimum_version_id = 1,
1808 .fields = (VMStateField[]) {
1809 VMSTATE_UINT32(summary, sPAPREventLogEntry),
1810 VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
1811 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
1812 NULL, extended_length),
1813 VMSTATE_END_OF_LIST()
1814 },
1815 };
1816
1817 static const VMStateDescription vmstate_spapr_pending_events = {
1818 .name = "spapr_pending_events",
1819 .version_id = 1,
1820 .minimum_version_id = 1,
1821 .needed = spapr_pending_events_needed,
1822 .fields = (VMStateField[]) {
1823 VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
1824 vmstate_spapr_event_entry, sPAPREventLogEntry, next),
1825 VMSTATE_END_OF_LIST()
1826 },
1827 };
1828
1829 static bool spapr_ov5_cas_needed(void *opaque)
1830 {
1831 sPAPRMachineState *spapr = opaque;
1832 sPAPROptionVector *ov5_mask = spapr_ovec_new();
1833 sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1834 sPAPROptionVector *ov5_removed = spapr_ovec_new();
1835 bool cas_needed;
1836
1837 /* Prior to the introduction of sPAPROptionVector, we had two option
1838 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1839 * Both of these options encode machine topology into the device-tree
1840 * in such a way that the now-booted OS should still be able to interact
1841 * appropriately with QEMU regardless of what options were actually
1842 * negotiatied on the source side.
1843 *
1844 * As such, we can avoid migrating the CAS-negotiated options if these
1845 * are the only options available on the current machine/platform.
1846 * Since these are the only options available for pseries-2.7 and
1847 * earlier, this allows us to maintain old->new/new->old migration
1848 * compatibility.
1849 *
1850 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1851 * via default pseries-2.8 machines and explicit command-line parameters.
1852 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1853 * of the actual CAS-negotiated values to continue working properly. For
1854 * example, availability of memory unplug depends on knowing whether
1855 * OV5_HP_EVT was negotiated via CAS.
1856 *
1857 * Thus, for any cases where the set of available CAS-negotiatable
1858 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1859 * include the CAS-negotiated options in the migration stream, unless
1860 * if they affect boot time behaviour only.
1861 */
1862 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1863 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1864 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1865
1866 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1867 * the mask itself since in the future it's possible "legacy" bits may be
1868 * removed via machine options, which could generate a false positive
1869 * that breaks migration.
1870 */
1871 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1872 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1873
1874 spapr_ovec_cleanup(ov5_mask);
1875 spapr_ovec_cleanup(ov5_legacy);
1876 spapr_ovec_cleanup(ov5_removed);
1877
1878 return cas_needed;
1879 }
1880
1881 static const VMStateDescription vmstate_spapr_ov5_cas = {
1882 .name = "spapr_option_vector_ov5_cas",
1883 .version_id = 1,
1884 .minimum_version_id = 1,
1885 .needed = spapr_ov5_cas_needed,
1886 .fields = (VMStateField[]) {
1887 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1888 vmstate_spapr_ovec, sPAPROptionVector),
1889 VMSTATE_END_OF_LIST()
1890 },
1891 };
1892
1893 static bool spapr_patb_entry_needed(void *opaque)
1894 {
1895 sPAPRMachineState *spapr = opaque;
1896
1897 return !!spapr->patb_entry;
1898 }
1899
1900 static const VMStateDescription vmstate_spapr_patb_entry = {
1901 .name = "spapr_patb_entry",
1902 .version_id = 1,
1903 .minimum_version_id = 1,
1904 .needed = spapr_patb_entry_needed,
1905 .fields = (VMStateField[]) {
1906 VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1907 VMSTATE_END_OF_LIST()
1908 },
1909 };
1910
1911 static bool spapr_irq_map_needed(void *opaque)
1912 {
1913 sPAPRMachineState *spapr = opaque;
1914
1915 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1916 }
1917
1918 static const VMStateDescription vmstate_spapr_irq_map = {
1919 .name = "spapr_irq_map",
1920 .version_id = 1,
1921 .minimum_version_id = 1,
1922 .needed = spapr_irq_map_needed,
1923 .fields = (VMStateField[]) {
1924 VMSTATE_BITMAP(irq_map, sPAPRMachineState, 0, irq_map_nr),
1925 VMSTATE_END_OF_LIST()
1926 },
1927 };
1928
1929 static bool spapr_dtb_needed(void *opaque)
1930 {
1931 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1932
1933 return smc->update_dt_enabled;
1934 }
1935
1936 static int spapr_dtb_pre_load(void *opaque)
1937 {
1938 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1939
1940 g_free(spapr->fdt_blob);
1941 spapr->fdt_blob = NULL;
1942 spapr->fdt_size = 0;
1943
1944 return 0;
1945 }
1946
1947 static const VMStateDescription vmstate_spapr_dtb = {
1948 .name = "spapr_dtb",
1949 .version_id = 1,
1950 .minimum_version_id = 1,
1951 .needed = spapr_dtb_needed,
1952 .pre_load = spapr_dtb_pre_load,
1953 .fields = (VMStateField[]) {
1954 VMSTATE_UINT32(fdt_initial_size, sPAPRMachineState),
1955 VMSTATE_UINT32(fdt_size, sPAPRMachineState),
1956 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, sPAPRMachineState, 0, NULL,
1957 fdt_size),
1958 VMSTATE_END_OF_LIST()
1959 },
1960 };
1961
1962 static const VMStateDescription vmstate_spapr = {
1963 .name = "spapr",
1964 .version_id = 3,
1965 .minimum_version_id = 1,
1966 .pre_load = spapr_pre_load,
1967 .post_load = spapr_post_load,
1968 .pre_save = spapr_pre_save,
1969 .fields = (VMStateField[]) {
1970 /* used to be @next_irq */
1971 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1972
1973 /* RTC offset */
1974 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1975
1976 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1977 VMSTATE_END_OF_LIST()
1978 },
1979 .subsections = (const VMStateDescription*[]) {
1980 &vmstate_spapr_ov5_cas,
1981 &vmstate_spapr_patb_entry,
1982 &vmstate_spapr_pending_events,
1983 &vmstate_spapr_cap_htm,
1984 &vmstate_spapr_cap_vsx,
1985 &vmstate_spapr_cap_dfp,
1986 &vmstate_spapr_cap_cfpc,
1987 &vmstate_spapr_cap_sbbc,
1988 &vmstate_spapr_cap_ibs,
1989 &vmstate_spapr_irq_map,
1990 &vmstate_spapr_cap_nested_kvm_hv,
1991 &vmstate_spapr_dtb,
1992 NULL
1993 }
1994 };
1995
1996 static int htab_save_setup(QEMUFile *f, void *opaque)
1997 {
1998 sPAPRMachineState *spapr = opaque;
1999
2000 /* "Iteration" header */
2001 if (!spapr->htab_shift) {
2002 qemu_put_be32(f, -1);
2003 } else {
2004 qemu_put_be32(f, spapr->htab_shift);
2005 }
2006
2007 if (spapr->htab) {
2008 spapr->htab_save_index = 0;
2009 spapr->htab_first_pass = true;
2010 } else {
2011 if (spapr->htab_shift) {
2012 assert(kvm_enabled());
2013 }
2014 }
2015
2016
2017 return 0;
2018 }
2019
2020 static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr,
2021 int chunkstart, int n_valid, int n_invalid)
2022 {
2023 qemu_put_be32(f, chunkstart);
2024 qemu_put_be16(f, n_valid);
2025 qemu_put_be16(f, n_invalid);
2026 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2027 HASH_PTE_SIZE_64 * n_valid);
2028 }
2029
2030 static void htab_save_end_marker(QEMUFile *f)
2031 {
2032 qemu_put_be32(f, 0);
2033 qemu_put_be16(f, 0);
2034 qemu_put_be16(f, 0);
2035 }
2036
2037 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
2038 int64_t max_ns)
2039 {
2040 bool has_timeout = max_ns != -1;
2041 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2042 int index = spapr->htab_save_index;
2043 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2044
2045 assert(spapr->htab_first_pass);
2046
2047 do {
2048 int chunkstart;
2049
2050 /* Consume invalid HPTEs */
2051 while ((index < htabslots)
2052 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2053 CLEAN_HPTE(HPTE(spapr->htab, index));
2054 index++;
2055 }
2056
2057 /* Consume valid HPTEs */
2058 chunkstart = index;
2059 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2060 && HPTE_VALID(HPTE(spapr->htab, index))) {
2061 CLEAN_HPTE(HPTE(spapr->htab, index));
2062 index++;
2063 }
2064
2065 if (index > chunkstart) {
2066 int n_valid = index - chunkstart;
2067
2068 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2069
2070 if (has_timeout &&
2071 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2072 break;
2073 }
2074 }
2075 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2076
2077 if (index >= htabslots) {
2078 assert(index == htabslots);
2079 index = 0;
2080 spapr->htab_first_pass = false;
2081 }
2082 spapr->htab_save_index = index;
2083 }
2084
2085 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
2086 int64_t max_ns)
2087 {
2088 bool final = max_ns < 0;
2089 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2090 int examined = 0, sent = 0;
2091 int index = spapr->htab_save_index;
2092 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2093
2094 assert(!spapr->htab_first_pass);
2095
2096 do {
2097 int chunkstart, invalidstart;
2098
2099 /* Consume non-dirty HPTEs */
2100 while ((index < htabslots)
2101 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2102 index++;
2103 examined++;
2104 }
2105
2106 chunkstart = index;
2107 /* Consume valid dirty HPTEs */
2108 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2109 && HPTE_DIRTY(HPTE(spapr->htab, index))
2110 && HPTE_VALID(HPTE(spapr->htab, index))) {
2111 CLEAN_HPTE(HPTE(spapr->htab, index));
2112 index++;
2113 examined++;
2114 }
2115
2116 invalidstart = index;
2117 /* Consume invalid dirty HPTEs */
2118 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2119 && HPTE_DIRTY(HPTE(spapr->htab, index))
2120 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2121 CLEAN_HPTE(HPTE(spapr->htab, index));
2122 index++;
2123 examined++;
2124 }
2125
2126 if (index > chunkstart) {
2127 int n_valid = invalidstart - chunkstart;
2128 int n_invalid = index - invalidstart;
2129
2130 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2131 sent += index - chunkstart;
2132
2133 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2134 break;
2135 }
2136 }
2137
2138 if (examined >= htabslots) {
2139 break;
2140 }
2141
2142 if (index >= htabslots) {
2143 assert(index == htabslots);
2144 index = 0;
2145 }
2146 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2147
2148 if (index >= htabslots) {
2149 assert(index == htabslots);
2150 index = 0;
2151 }
2152
2153 spapr->htab_save_index = index;
2154
2155 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2156 }
2157
2158 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2159 #define MAX_KVM_BUF_SIZE 2048
2160
2161 static int htab_save_iterate(QEMUFile *f, void *opaque)
2162 {
2163 sPAPRMachineState *spapr = opaque;
2164 int fd;
2165 int rc = 0;
2166
2167 /* Iteration header */
2168 if (!spapr->htab_shift) {
2169 qemu_put_be32(f, -1);
2170 return 1;
2171 } else {
2172 qemu_put_be32(f, 0);
2173 }
2174
2175 if (!spapr->htab) {
2176 assert(kvm_enabled());
2177
2178 fd = get_htab_fd(spapr);
2179 if (fd < 0) {
2180 return fd;
2181 }
2182
2183 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2184 if (rc < 0) {
2185 return rc;
2186 }
2187 } else if (spapr->htab_first_pass) {
2188 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2189 } else {
2190 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2191 }
2192
2193 htab_save_end_marker(f);
2194
2195 return rc;
2196 }
2197
2198 static int htab_save_complete(QEMUFile *f, void *opaque)
2199 {
2200 sPAPRMachineState *spapr = opaque;
2201 int fd;
2202
2203 /* Iteration header */
2204 if (!spapr->htab_shift) {
2205 qemu_put_be32(f, -1);
2206 return 0;
2207 } else {
2208 qemu_put_be32(f, 0);
2209 }
2210
2211 if (!spapr->htab) {
2212 int rc;
2213
2214 assert(kvm_enabled());
2215
2216 fd = get_htab_fd(spapr);
2217 if (fd < 0) {
2218 return fd;
2219 }
2220
2221 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2222 if (rc < 0) {
2223 return rc;
2224 }
2225 } else {
2226 if (spapr->htab_first_pass) {
2227 htab_save_first_pass(f, spapr, -1);
2228 }
2229 htab_save_later_pass(f, spapr, -1);
2230 }
2231
2232 /* End marker */
2233 htab_save_end_marker(f);
2234
2235 return 0;
2236 }
2237
2238 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2239 {
2240 sPAPRMachineState *spapr = opaque;
2241 uint32_t section_hdr;
2242 int fd = -1;
2243 Error *local_err = NULL;
2244
2245 if (version_id < 1 || version_id > 1) {
2246 error_report("htab_load() bad version");
2247 return -EINVAL;
2248 }
2249
2250 section_hdr = qemu_get_be32(f);
2251
2252 if (section_hdr == -1) {
2253 spapr_free_hpt(spapr);
2254 return 0;
2255 }
2256
2257 if (section_hdr) {
2258 /* First section gives the htab size */
2259 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2260 if (local_err) {
2261 error_report_err(local_err);
2262 return -EINVAL;
2263 }
2264 return 0;
2265 }
2266
2267 if (!spapr->htab) {
2268 assert(kvm_enabled());
2269
2270 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2271 if (fd < 0) {
2272 error_report_err(local_err);
2273 return fd;
2274 }
2275 }
2276
2277 while (true) {
2278 uint32_t index;
2279 uint16_t n_valid, n_invalid;
2280
2281 index = qemu_get_be32(f);
2282 n_valid = qemu_get_be16(f);
2283 n_invalid = qemu_get_be16(f);
2284
2285 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2286 /* End of Stream */
2287 break;
2288 }
2289
2290 if ((index + n_valid + n_invalid) >
2291 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2292 /* Bad index in stream */
2293 error_report(
2294 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2295 index, n_valid, n_invalid, spapr->htab_shift);
2296 return -EINVAL;
2297 }
2298
2299 if (spapr->htab) {
2300 if (n_valid) {
2301 qemu_get_buffer(f, HPTE(spapr->htab, index),
2302 HASH_PTE_SIZE_64 * n_valid);
2303 }
2304 if (n_invalid) {
2305 memset(HPTE(spapr->htab, index + n_valid), 0,
2306 HASH_PTE_SIZE_64 * n_invalid);
2307 }
2308 } else {
2309 int rc;
2310
2311 assert(fd >= 0);
2312
2313 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2314 if (rc < 0) {
2315 return rc;
2316 }
2317 }
2318 }
2319
2320 if (!spapr->htab) {
2321 assert(fd >= 0);
2322 close(fd);
2323 }
2324
2325 return 0;
2326 }
2327
2328 static void htab_save_cleanup(void *opaque)
2329 {
2330 sPAPRMachineState *spapr = opaque;
2331
2332 close_htab_fd(spapr);
2333 }
2334
2335 static SaveVMHandlers savevm_htab_handlers = {
2336 .save_setup = htab_save_setup,
2337 .save_live_iterate = htab_save_iterate,
2338 .save_live_complete_precopy = htab_save_complete,
2339 .save_cleanup = htab_save_cleanup,
2340 .load_state = htab_load,
2341 };
2342
2343 static void spapr_boot_set(void *opaque, const char *boot_device,
2344 Error **errp)
2345 {
2346 MachineState *machine = MACHINE(opaque);
2347 machine->boot_order = g_strdup(boot_device);
2348 }
2349
2350 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
2351 {
2352 MachineState *machine = MACHINE(spapr);
2353 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2354 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2355 int i;
2356
2357 for (i = 0; i < nr_lmbs; i++) {
2358 uint64_t addr;
2359
2360 addr = i * lmb_size + machine->device_memory->base;
2361 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2362 addr / lmb_size);
2363 }
2364 }
2365
2366 /*
2367 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2368 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2369 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2370 */
2371 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2372 {
2373 int i;
2374
2375 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2376 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2377 " is not aligned to %" PRIu64 " MiB",
2378 machine->ram_size,
2379 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2380 return;
2381 }
2382
2383 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2384 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2385 " is not aligned to %" PRIu64 " MiB",
2386 machine->ram_size,
2387 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2388 return;
2389 }
2390
2391 for (i = 0; i < nb_numa_nodes; i++) {
2392 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2393 error_setg(errp,
2394 "Node %d memory size 0x%" PRIx64
2395 " is not aligned to %" PRIu64 " MiB",
2396 i, numa_info[i].node_mem,
2397 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2398 return;
2399 }
2400 }
2401 }
2402
2403 /* find cpu slot in machine->possible_cpus by core_id */
2404 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2405 {
2406 int index = id / smp_threads;
2407
2408 if (index >= ms->possible_cpus->len) {
2409 return NULL;
2410 }
2411 if (idx) {
2412 *idx = index;
2413 }
2414 return &ms->possible_cpus->cpus[index];
2415 }
2416
2417 static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp)
2418 {
2419 Error *local_err = NULL;
2420 bool vsmt_user = !!spapr->vsmt;
2421 int kvm_smt = kvmppc_smt_threads();
2422 int ret;
2423
2424 if (!kvm_enabled() && (smp_threads > 1)) {
2425 error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2426 "on a pseries machine");
2427 goto out;
2428 }
2429 if (!is_power_of_2(smp_threads)) {
2430 error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2431 "machine because it must be a power of 2", smp_threads);
2432 goto out;
2433 }
2434
2435 /* Detemine the VSMT mode to use: */
2436 if (vsmt_user) {
2437 if (spapr->vsmt < smp_threads) {
2438 error_setg(&local_err, "Cannot support VSMT mode %d"
2439 " because it must be >= threads/core (%d)",
2440 spapr->vsmt, smp_threads);
2441 goto out;
2442 }
2443 /* In this case, spapr->vsmt has been set by the command line */
2444 } else {
2445 /*
2446 * Default VSMT value is tricky, because we need it to be as
2447 * consistent as possible (for migration), but this requires
2448 * changing it for at least some existing cases. We pick 8 as
2449 * the value that we'd get with KVM on POWER8, the
2450 * overwhelmingly common case in production systems.
2451 */
2452 spapr->vsmt = MAX(8, smp_threads);
2453 }
2454
2455 /* KVM: If necessary, set the SMT mode: */
2456 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2457 ret = kvmppc_set_smt_threads(spapr->vsmt);
2458 if (ret) {
2459 /* Looks like KVM isn't able to change VSMT mode */
2460 error_setg(&local_err,
2461 "Failed to set KVM's VSMT mode to %d (errno %d)",
2462 spapr->vsmt, ret);
2463 /* We can live with that if the default one is big enough
2464 * for the number of threads, and a submultiple of the one
2465 * we want. In this case we'll waste some vcpu ids, but
2466 * behaviour will be correct */
2467 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2468 warn_report_err(local_err);
2469 local_err = NULL;
2470 goto out;
2471 } else {
2472 if (!vsmt_user) {
2473 error_append_hint(&local_err,
2474 "On PPC, a VM with %d threads/core"
2475 " on a host with %d threads/core"
2476 " requires the use of VSMT mode %d.\n",
2477 smp_threads, kvm_smt, spapr->vsmt);
2478 }
2479 kvmppc_hint_smt_possible(&local_err);
2480 goto out;
2481 }
2482 }
2483 }
2484 /* else TCG: nothing to do currently */
2485 out:
2486 error_propagate(errp, local_err);
2487 }
2488
2489 static void spapr_init_cpus(sPAPRMachineState *spapr)
2490 {
2491 MachineState *machine = MACHINE(spapr);
2492 MachineClass *mc = MACHINE_GET_CLASS(machine);
2493 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2494 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2495 const CPUArchIdList *possible_cpus;
2496 int boot_cores_nr = smp_cpus / smp_threads;
2497 int i;
2498
2499 possible_cpus = mc->possible_cpu_arch_ids(machine);
2500 if (mc->has_hotpluggable_cpus) {
2501 if (smp_cpus % smp_threads) {
2502 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2503 smp_cpus, smp_threads);
2504 exit(1);
2505 }
2506 if (max_cpus % smp_threads) {
2507 error_report("max_cpus (%u) must be multiple of threads (%u)",
2508 max_cpus, smp_threads);
2509 exit(1);
2510 }
2511 } else {
2512 if (max_cpus != smp_cpus) {
2513 error_report("This machine version does not support CPU hotplug");
2514 exit(1);
2515 }
2516 boot_cores_nr = possible_cpus->len;
2517 }
2518
2519 if (smc->pre_2_10_has_unused_icps) {
2520 int i;
2521
2522 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2523 /* Dummy entries get deregistered when real ICPState objects
2524 * are registered during CPU core hotplug.
2525 */
2526 pre_2_10_vmstate_register_dummy_icp(i);
2527 }
2528 }
2529
2530 for (i = 0; i < possible_cpus->len; i++) {
2531 int core_id = i * smp_threads;
2532
2533 if (mc->has_hotpluggable_cpus) {
2534 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2535 spapr_vcpu_id(spapr, core_id));
2536 }
2537
2538 if (i < boot_cores_nr) {
2539 Object *core = object_new(type);
2540 int nr_threads = smp_threads;
2541
2542 /* Handle the partially filled core for older machine types */
2543 if ((i + 1) * smp_threads >= smp_cpus) {
2544 nr_threads = smp_cpus - i * smp_threads;
2545 }
2546
2547 object_property_set_int(core, nr_threads, "nr-threads",
2548 &error_fatal);
2549 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2550 &error_fatal);
2551 object_property_set_bool(core, true, "realized", &error_fatal);
2552
2553 object_unref(core);
2554 }
2555 }
2556 }
2557
2558 static PCIHostState *spapr_create_default_phb(void)
2559 {
2560 DeviceState *dev;
2561
2562 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2563 qdev_prop_set_uint32(dev, "index", 0);
2564 qdev_init_nofail(dev);
2565
2566 return PCI_HOST_BRIDGE(dev);
2567 }
2568
2569 /* pSeries LPAR / sPAPR hardware init */
2570 static void spapr_machine_init(MachineState *machine)
2571 {
2572 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2573 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2574 const char *kernel_filename = machine->kernel_filename;
2575 const char *initrd_filename = machine->initrd_filename;
2576 PCIHostState *phb;
2577 int i;
2578 MemoryRegion *sysmem = get_system_memory();
2579 MemoryRegion *ram = g_new(MemoryRegion, 1);
2580 hwaddr node0_size = spapr_node0_size(machine);
2581 long load_limit, fw_size;
2582 char *filename;
2583 Error *resize_hpt_err = NULL;
2584
2585 msi_nonbroken = true;
2586
2587 QLIST_INIT(&spapr->phbs);
2588 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2589
2590 /* Determine capabilities to run with */
2591 spapr_caps_init(spapr);
2592
2593 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2594 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2595 /*
2596 * If the user explicitly requested a mode we should either
2597 * supply it, or fail completely (which we do below). But if
2598 * it's not set explicitly, we reset our mode to something
2599 * that works
2600 */
2601 if (resize_hpt_err) {
2602 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2603 error_free(resize_hpt_err);
2604 resize_hpt_err = NULL;
2605 } else {
2606 spapr->resize_hpt = smc->resize_hpt_default;
2607 }
2608 }
2609
2610 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2611
2612 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2613 /*
2614 * User requested HPT resize, but this host can't supply it. Bail out
2615 */
2616 error_report_err(resize_hpt_err);
2617 exit(1);
2618 }
2619
2620 spapr->rma_size = node0_size;
2621
2622 /* With KVM, we don't actually know whether KVM supports an
2623 * unbounded RMA (PR KVM) or is limited by the hash table size
2624 * (HV KVM using VRMA), so we always assume the latter
2625 *
2626 * In that case, we also limit the initial allocations for RTAS
2627 * etc... to 256M since we have no way to know what the VRMA size
2628 * is going to be as it depends on the size of the hash table
2629 * which isn't determined yet.
2630 */
2631 if (kvm_enabled()) {
2632 spapr->vrma_adjust = 1;
2633 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2634 }
2635
2636 /* Actually we don't support unbounded RMA anymore since we added
2637 * proper emulation of HV mode. The max we can get is 16G which
2638 * also happens to be what we configure for PAPR mode so make sure
2639 * we don't do anything bigger than that
2640 */
2641 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2642
2643 if (spapr->rma_size > node0_size) {
2644 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2645 spapr->rma_size);
2646 exit(1);
2647 }
2648
2649 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2650 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2651
2652 /*
2653 * VSMT must be set in order to be able to compute VCPU ids, ie to
2654 * call spapr_max_server_number() or spapr_vcpu_id().
2655 */
2656 spapr_set_vsmt_mode(spapr, &error_fatal);
2657
2658 /* Set up Interrupt Controller before we create the VCPUs */
2659 spapr_irq_init(spapr, &error_fatal);
2660
2661 /* Set up containers for ibm,client-architecture-support negotiated options
2662 */
2663 spapr->ov5 = spapr_ovec_new();
2664 spapr->ov5_cas = spapr_ovec_new();
2665
2666 if (smc->dr_lmb_enabled) {
2667 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2668 spapr_validate_node_memory(machine, &error_fatal);
2669 }
2670
2671 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2672
2673 /* advertise support for dedicated HP event source to guests */
2674 if (spapr->use_hotplug_event_source) {
2675 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2676 }
2677
2678 /* advertise support for HPT resizing */
2679 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2680 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2681 }
2682
2683 /* advertise support for ibm,dyamic-memory-v2 */
2684 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2685
2686 /* advertise XIVE on POWER9 machines */
2687 if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) {
2688 if (ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00,
2689 0, spapr->max_compat_pvr)) {
2690 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2691 } else if (spapr->irq->ov5 & SPAPR_OV5_XIVE_EXPLOIT) {
2692 error_report("XIVE-only machines require a POWER9 CPU");
2693 exit(1);
2694 }
2695 }
2696
2697 /* init CPUs */
2698 spapr_init_cpus(spapr);
2699
2700 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2701 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2702 spapr->max_compat_pvr)) {
2703 /* KVM and TCG always allow GTSE with radix... */
2704 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2705 }
2706 /* ... but not with hash (currently). */
2707
2708 if (kvm_enabled()) {
2709 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2710 kvmppc_enable_logical_ci_hcalls();
2711 kvmppc_enable_set_mode_hcall();
2712
2713 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2714 kvmppc_enable_clear_ref_mod_hcalls();
2715 }
2716
2717 /* allocate RAM */
2718 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2719 machine->ram_size);
2720 memory_region_add_subregion(sysmem, 0, ram);
2721
2722 /* always allocate the device memory information */
2723 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2724
2725 /* initialize hotplug memory address space */
2726 if (machine->ram_size < machine->maxram_size) {
2727 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2728 /*
2729 * Limit the number of hotpluggable memory slots to half the number
2730 * slots that KVM supports, leaving the other half for PCI and other
2731 * devices. However ensure that number of slots doesn't drop below 32.
2732 */
2733 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2734 SPAPR_MAX_RAM_SLOTS;
2735
2736 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2737 max_memslots = SPAPR_MAX_RAM_SLOTS;
2738 }
2739 if (machine->ram_slots > max_memslots) {
2740 error_report("Specified number of memory slots %"
2741 PRIu64" exceeds max supported %d",
2742 machine->ram_slots, max_memslots);
2743 exit(1);
2744 }
2745
2746 machine->device_memory->base = ROUND_UP(machine->ram_size,
2747 SPAPR_DEVICE_MEM_ALIGN);
2748 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2749 "device-memory", device_mem_size);
2750 memory_region_add_subregion(sysmem, machine->device_memory->base,
2751 &machine->device_memory->mr);
2752 }
2753
2754 if (smc->dr_lmb_enabled) {
2755 spapr_create_lmb_dr_connectors(spapr);
2756 }
2757
2758 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2759 if (!filename) {
2760 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2761 exit(1);
2762 }
2763 spapr->rtas_size = get_image_size(filename);
2764 if (spapr->rtas_size < 0) {
2765 error_report("Could not get size of LPAR rtas '%s'", filename);
2766 exit(1);
2767 }
2768 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2769 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2770 error_report("Could not load LPAR rtas '%s'", filename);
2771 exit(1);
2772 }
2773 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2774 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2775 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2776 exit(1);
2777 }
2778 g_free(filename);
2779
2780 /* Set up RTAS event infrastructure */
2781 spapr_events_init(spapr);
2782
2783 /* Set up the RTC RTAS interfaces */
2784 spapr_rtc_create(spapr);
2785
2786 /* Set up VIO bus */
2787 spapr->vio_bus = spapr_vio_bus_init();
2788
2789 for (i = 0; i < serial_max_hds(); i++) {
2790 if (serial_hd(i)) {
2791 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2792 }
2793 }
2794
2795 /* We always have at least the nvram device on VIO */
2796 spapr_create_nvram(spapr);
2797
2798 /* Set up PCI */
2799 spapr_pci_rtas_init();
2800
2801 phb = spapr_create_default_phb();
2802
2803 for (i = 0; i < nb_nics; i++) {
2804 NICInfo *nd = &nd_table[i];
2805
2806 if (!nd->model) {
2807 nd->model = g_strdup("spapr-vlan");
2808 }
2809
2810 if (g_str_equal(nd->model, "spapr-vlan") ||
2811 g_str_equal(nd->model, "ibmveth")) {
2812 spapr_vlan_create(spapr->vio_bus, nd);
2813 } else {
2814 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2815 }
2816 }
2817
2818 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2819 spapr_vscsi_create(spapr->vio_bus);
2820 }
2821
2822 /* Graphics */
2823 if (spapr_vga_init(phb->bus, &error_fatal)) {
2824 spapr->has_graphics = true;
2825 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2826 }
2827
2828 if (machine->usb) {
2829 if (smc->use_ohci_by_default) {
2830 pci_create_simple(phb->bus, -1, "pci-ohci");
2831 } else {
2832 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2833 }
2834
2835 if (spapr->has_graphics) {
2836 USBBus *usb_bus = usb_bus_find(-1);
2837
2838 usb_create_simple(usb_bus, "usb-kbd");
2839 usb_create_simple(usb_bus, "usb-mouse");
2840 }
2841 }
2842
2843 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
2844 error_report(
2845 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2846 MIN_RMA_SLOF);
2847 exit(1);
2848 }
2849
2850 if (kernel_filename) {
2851 uint64_t lowaddr = 0;
2852
2853 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2854 NULL, NULL, &lowaddr, NULL, 1,
2855 PPC_ELF_MACHINE, 0, 0);
2856 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2857 spapr->kernel_size = load_elf(kernel_filename,
2858 translate_kernel_address, NULL, NULL,
2859 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2860 0, 0);
2861 spapr->kernel_le = spapr->kernel_size > 0;
2862 }
2863 if (spapr->kernel_size < 0) {
2864 error_report("error loading %s: %s", kernel_filename,
2865 load_elf_strerror(spapr->kernel_size));
2866 exit(1);
2867 }
2868
2869 /* load initrd */
2870 if (initrd_filename) {
2871 /* Try to locate the initrd in the gap between the kernel
2872 * and the firmware. Add a bit of space just in case
2873 */
2874 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2875 + 0x1ffff) & ~0xffff;
2876 spapr->initrd_size = load_image_targphys(initrd_filename,
2877 spapr->initrd_base,
2878 load_limit
2879 - spapr->initrd_base);
2880 if (spapr->initrd_size < 0) {
2881 error_report("could not load initial ram disk '%s'",
2882 initrd_filename);
2883 exit(1);
2884 }
2885 }
2886 }
2887
2888 if (bios_name == NULL) {
2889 bios_name = FW_FILE_NAME;
2890 }
2891 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2892 if (!filename) {
2893 error_report("Could not find LPAR firmware '%s'", bios_name);
2894 exit(1);
2895 }
2896 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2897 if (fw_size <= 0) {
2898 error_report("Could not load LPAR firmware '%s'", filename);
2899 exit(1);
2900 }
2901 g_free(filename);
2902
2903 /* FIXME: Should register things through the MachineState's qdev
2904 * interface, this is a legacy from the sPAPREnvironment structure
2905 * which predated MachineState but had a similar function */
2906 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2907 register_savevm_live(NULL, "spapr/htab", -1, 1,
2908 &savevm_htab_handlers, spapr);
2909
2910 qemu_register_boot_set(spapr_boot_set, spapr);
2911
2912 if (kvm_enabled()) {
2913 /* to stop and start vmclock */
2914 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2915 &spapr->tb);
2916
2917 kvmppc_spapr_enable_inkernel_multitce();
2918 }
2919 }
2920
2921 static int spapr_kvm_type(const char *vm_type)
2922 {
2923 if (!vm_type) {
2924 return 0;
2925 }
2926
2927 if (!strcmp(vm_type, "HV")) {
2928 return 1;
2929 }
2930
2931 if (!strcmp(vm_type, "PR")) {
2932 return 2;
2933 }
2934
2935 error_report("Unknown kvm-type specified '%s'", vm_type);
2936 exit(1);
2937 }
2938
2939 /*
2940 * Implementation of an interface to adjust firmware path
2941 * for the bootindex property handling.
2942 */
2943 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2944 DeviceState *dev)
2945 {
2946 #define CAST(type, obj, name) \
2947 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2948 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2949 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2950 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
2951
2952 if (d) {
2953 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2954 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2955 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2956
2957 if (spapr) {
2958 /*
2959 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2960 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
2961 * 0x8000 | (target << 8) | (bus << 5) | lun
2962 * (see the "Logical unit addressing format" table in SAM5)
2963 */
2964 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
2965 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2966 (uint64_t)id << 48);
2967 } else if (virtio) {
2968 /*
2969 * We use SRP luns of the form 01000000 | (target << 8) | lun
2970 * in the top 32 bits of the 64-bit LUN
2971 * Note: the quote above is from SLOF and it is wrong,
2972 * the actual binding is:
2973 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2974 */
2975 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2976 if (d->lun >= 256) {
2977 /* Use the LUN "flat space addressing method" */
2978 id |= 0x4000;
2979 }
2980 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2981 (uint64_t)id << 32);
2982 } else if (usb) {
2983 /*
2984 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2985 * in the top 32 bits of the 64-bit LUN
2986 */
2987 unsigned usb_port = atoi(usb->port->path);
2988 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2989 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2990 (uint64_t)id << 32);
2991 }
2992 }
2993
2994 /*
2995 * SLOF probes the USB devices, and if it recognizes that the device is a
2996 * storage device, it changes its name to "storage" instead of "usb-host",
2997 * and additionally adds a child node for the SCSI LUN, so the correct
2998 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2999 */
3000 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3001 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3002 if (usb_host_dev_is_scsi_storage(usbdev)) {
3003 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3004 }
3005 }
3006
3007 if (phb) {
3008 /* Replace "pci" with "pci@800000020000000" */
3009 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3010 }
3011
3012 if (vsc) {
3013 /* Same logic as virtio above */
3014 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3015 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3016 }
3017
3018 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3019 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3020 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3021 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3022 }
3023
3024 return NULL;
3025 }
3026
3027 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3028 {
3029 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3030
3031 return g_strdup(spapr->kvm_type);
3032 }
3033
3034 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3035 {
3036 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3037
3038 g_free(spapr->kvm_type);
3039 spapr->kvm_type = g_strdup(value);
3040 }
3041
3042 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3043 {
3044 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3045
3046 return spapr->use_hotplug_event_source;
3047 }
3048
3049 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3050 Error **errp)
3051 {
3052 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3053
3054 spapr->use_hotplug_event_source = value;
3055 }
3056
3057 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3058 {
3059 return true;
3060 }
3061
3062 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3063 {
3064 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3065
3066 switch (spapr->resize_hpt) {
3067 case SPAPR_RESIZE_HPT_DEFAULT:
3068 return g_strdup("default");
3069 case SPAPR_RESIZE_HPT_DISABLED:
3070 return g_strdup("disabled");
3071 case SPAPR_RESIZE_HPT_ENABLED:
3072 return g_strdup("enabled");
3073 case SPAPR_RESIZE_HPT_REQUIRED:
3074 return g_strdup("required");
3075 }
3076 g_assert_not_reached();
3077 }
3078
3079 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3080 {
3081 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3082
3083 if (strcmp(value, "default") == 0) {
3084 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3085 } else if (strcmp(value, "disabled") == 0) {
3086 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3087 } else if (strcmp(value, "enabled") == 0) {
3088 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3089 } else if (strcmp(value, "required") == 0) {
3090 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3091 } else {
3092 error_setg(errp, "Bad value for \"resize-hpt\" property");
3093 }
3094 }
3095
3096 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3097 void *opaque, Error **errp)
3098 {
3099 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3100 }
3101
3102 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3103 void *opaque, Error **errp)
3104 {
3105 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3106 }
3107
3108 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3109 {
3110 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3111
3112 if (spapr->irq == &spapr_irq_xics_legacy) {
3113 return g_strdup("legacy");
3114 } else if (spapr->irq == &spapr_irq_xics) {
3115 return g_strdup("xics");
3116 } else if (spapr->irq == &spapr_irq_xive) {
3117 return g_strdup("xive");
3118 } else if (spapr->irq == &spapr_irq_dual) {
3119 return g_strdup("dual");
3120 }
3121 g_assert_not_reached();
3122 }
3123
3124 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3125 {
3126 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3127
3128 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3129 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3130 return;
3131 }
3132
3133 /* The legacy IRQ backend can not be set */
3134 if (strcmp(value, "xics") == 0) {
3135 spapr->irq = &spapr_irq_xics;
3136 } else if (strcmp(value, "xive") == 0) {
3137 spapr->irq = &spapr_irq_xive;
3138 } else if (strcmp(value, "dual") == 0) {
3139 spapr->irq = &spapr_irq_dual;
3140 } else {
3141 error_setg(errp, "Bad value for \"ic-mode\" property");
3142 }
3143 }
3144
3145 static void spapr_instance_init(Object *obj)
3146 {
3147 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3148 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3149
3150 spapr->htab_fd = -1;
3151 spapr->use_hotplug_event_source = true;
3152 object_property_add_str(obj, "kvm-type",
3153 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3154 object_property_set_description(obj, "kvm-type",
3155 "Specifies the KVM virtualization mode (HV, PR)",
3156 NULL);
3157 object_property_add_bool(obj, "modern-hotplug-events",
3158 spapr_get_modern_hotplug_events,
3159 spapr_set_modern_hotplug_events,
3160 NULL);
3161 object_property_set_description(obj, "modern-hotplug-events",
3162 "Use dedicated hotplug event mechanism in"
3163 " place of standard EPOW events when possible"
3164 " (required for memory hot-unplug support)",
3165 NULL);
3166 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3167 "Maximum permitted CPU compatibility mode",
3168 &error_fatal);
3169
3170 object_property_add_str(obj, "resize-hpt",
3171 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3172 object_property_set_description(obj, "resize-hpt",
3173 "Resizing of the Hash Page Table (enabled, disabled, required)",
3174 NULL);
3175 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3176 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3177 object_property_set_description(obj, "vsmt",
3178 "Virtual SMT: KVM behaves as if this were"
3179 " the host's SMT mode", &error_abort);
3180 object_property_add_bool(obj, "vfio-no-msix-emulation",
3181 spapr_get_msix_emulation, NULL, NULL);
3182
3183 /* The machine class defines the default interrupt controller mode */
3184 spapr->irq = smc->irq;
3185 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3186 spapr_set_ic_mode, NULL);
3187 object_property_set_description(obj, "ic-mode",
3188 "Specifies the interrupt controller mode (xics, xive, dual)",
3189 NULL);
3190 }
3191
3192 static void spapr_machine_finalizefn(Object *obj)
3193 {
3194 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3195
3196 g_free(spapr->kvm_type);
3197 }
3198
3199 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3200 {
3201 cpu_synchronize_state(cs);
3202 ppc_cpu_do_system_reset(cs);
3203 }
3204
3205 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3206 {
3207 CPUState *cs;
3208
3209 CPU_FOREACH(cs) {
3210 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3211 }
3212 }
3213
3214 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3215 uint32_t node, bool dedicated_hp_event_source,
3216 Error **errp)
3217 {
3218 sPAPRDRConnector *drc;
3219 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3220 int i, fdt_offset, fdt_size;
3221 void *fdt;
3222 uint64_t addr = addr_start;
3223 bool hotplugged = spapr_drc_hotplugged(dev);
3224 Error *local_err = NULL;
3225
3226 for (i = 0; i < nr_lmbs; i++) {
3227 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3228 addr / SPAPR_MEMORY_BLOCK_SIZE);
3229 g_assert(drc);
3230
3231 fdt = create_device_tree(&fdt_size);
3232 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
3233 SPAPR_MEMORY_BLOCK_SIZE);
3234
3235 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3236 if (local_err) {
3237 while (addr > addr_start) {
3238 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3239 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3240 addr / SPAPR_MEMORY_BLOCK_SIZE);
3241 spapr_drc_detach(drc);
3242 }
3243 g_free(fdt);
3244 error_propagate(errp, local_err);
3245 return;
3246 }
3247 if (!hotplugged) {
3248 spapr_drc_reset(drc);
3249 }
3250 addr += SPAPR_MEMORY_BLOCK_SIZE;
3251 }
3252 /* send hotplug notification to the
3253 * guest only in case of hotplugged memory
3254 */
3255 if (hotplugged) {
3256 if (dedicated_hp_event_source) {
3257 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3258 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3259 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3260 nr_lmbs,
3261 spapr_drc_index(drc));
3262 } else {
3263 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3264 nr_lmbs);
3265 }
3266 }
3267 }
3268
3269 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3270 Error **errp)
3271 {
3272 Error *local_err = NULL;
3273 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3274 PCDIMMDevice *dimm = PC_DIMM(dev);
3275 uint64_t size, addr;
3276 uint32_t node;
3277
3278 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3279
3280 pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3281 if (local_err) {
3282 goto out;
3283 }
3284
3285 addr = object_property_get_uint(OBJECT(dimm),
3286 PC_DIMM_ADDR_PROP, &local_err);
3287 if (local_err) {
3288 goto out_unplug;
3289 }
3290
3291 node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP,
3292 &error_abort);
3293 spapr_add_lmbs(dev, addr, size, node,
3294 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3295 &local_err);
3296 if (local_err) {
3297 goto out_unplug;
3298 }
3299
3300 return;
3301
3302 out_unplug:
3303 pc_dimm_unplug(dimm, MACHINE(ms));
3304 out:
3305 error_propagate(errp, local_err);
3306 }
3307
3308 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3309 Error **errp)
3310 {
3311 const sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3312 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3313 PCDIMMDevice *dimm = PC_DIMM(dev);
3314 Error *local_err = NULL;
3315 uint64_t size;
3316 Object *memdev;
3317 hwaddr pagesize;
3318
3319 if (!smc->dr_lmb_enabled) {
3320 error_setg(errp, "Memory hotplug not supported for this machine");
3321 return;
3322 }
3323
3324 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3325 if (local_err) {
3326 error_propagate(errp, local_err);
3327 return;
3328 }
3329
3330 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3331 error_setg(errp, "Hotplugged memory size must be a multiple of "
3332 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3333 return;
3334 }
3335
3336 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3337 &error_abort);
3338 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3339 spapr_check_pagesize(spapr, pagesize, &local_err);
3340 if (local_err) {
3341 error_propagate(errp, local_err);
3342 return;
3343 }
3344
3345 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3346 }
3347
3348 struct sPAPRDIMMState {
3349 PCDIMMDevice *dimm;
3350 uint32_t nr_lmbs;
3351 QTAILQ_ENTRY(sPAPRDIMMState) next;
3352 };
3353
3354 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
3355 PCDIMMDevice *dimm)
3356 {
3357 sPAPRDIMMState *dimm_state = NULL;
3358
3359 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3360 if (dimm_state->dimm == dimm) {
3361 break;
3362 }
3363 }
3364 return dimm_state;
3365 }
3366
3367 static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
3368 uint32_t nr_lmbs,
3369 PCDIMMDevice *dimm)
3370 {
3371 sPAPRDIMMState *ds = NULL;
3372
3373 /*
3374 * If this request is for a DIMM whose removal had failed earlier
3375 * (due to guest's refusal to remove the LMBs), we would have this
3376 * dimm already in the pending_dimm_unplugs list. In that
3377 * case don't add again.
3378 */
3379 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3380 if (!ds) {
3381 ds = g_malloc0(sizeof(sPAPRDIMMState));
3382 ds->nr_lmbs = nr_lmbs;
3383 ds->dimm = dimm;
3384 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3385 }
3386 return ds;
3387 }
3388
3389 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
3390 sPAPRDIMMState *dimm_state)
3391 {
3392 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3393 g_free(dimm_state);
3394 }
3395
3396 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
3397 PCDIMMDevice *dimm)
3398 {
3399 sPAPRDRConnector *drc;
3400 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3401 &error_abort);
3402 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3403 uint32_t avail_lmbs = 0;
3404 uint64_t addr_start, addr;
3405 int i;
3406
3407 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3408 &error_abort);
3409
3410 addr = addr_start;
3411 for (i = 0; i < nr_lmbs; i++) {
3412 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3413 addr / SPAPR_MEMORY_BLOCK_SIZE);
3414 g_assert(drc);
3415 if (drc->dev) {
3416 avail_lmbs++;
3417 }
3418 addr += SPAPR_MEMORY_BLOCK_SIZE;
3419 }
3420
3421 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3422 }
3423
3424 /* Callback to be called during DRC release. */
3425 void spapr_lmb_release(DeviceState *dev)
3426 {
3427 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3428 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3429 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3430
3431 /* This information will get lost if a migration occurs
3432 * during the unplug process. In this case recover it. */
3433 if (ds == NULL) {
3434 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3435 g_assert(ds);
3436 /* The DRC being examined by the caller at least must be counted */
3437 g_assert(ds->nr_lmbs);
3438 }
3439
3440 if (--ds->nr_lmbs) {
3441 return;
3442 }
3443
3444 /*
3445 * Now that all the LMBs have been removed by the guest, call the
3446 * unplug handler chain. This can never fail.
3447 */
3448 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3449 }
3450
3451 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3452 {
3453 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3454 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3455
3456 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3457 object_unparent(OBJECT(dev));
3458 spapr_pending_dimm_unplugs_remove(spapr, ds);
3459 }
3460
3461 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3462 DeviceState *dev, Error **errp)
3463 {
3464 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3465 Error *local_err = NULL;
3466 PCDIMMDevice *dimm = PC_DIMM(dev);
3467 uint32_t nr_lmbs;
3468 uint64_t size, addr_start, addr;
3469 int i;
3470 sPAPRDRConnector *drc;
3471
3472 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3473 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3474
3475 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3476 &local_err);
3477 if (local_err) {
3478 goto out;
3479 }
3480
3481 /*
3482 * An existing pending dimm state for this DIMM means that there is an
3483 * unplug operation in progress, waiting for the spapr_lmb_release
3484 * callback to complete the job (BQL can't cover that far). In this case,
3485 * bail out to avoid detaching DRCs that were already released.
3486 */
3487 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3488 error_setg(&local_err,
3489 "Memory unplug already in progress for device %s",
3490 dev->id);
3491 goto out;
3492 }
3493
3494 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3495
3496 addr = addr_start;
3497 for (i = 0; i < nr_lmbs; i++) {
3498 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3499 addr / SPAPR_MEMORY_BLOCK_SIZE);
3500 g_assert(drc);
3501
3502 spapr_drc_detach(drc);
3503 addr += SPAPR_MEMORY_BLOCK_SIZE;
3504 }
3505
3506 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3507 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3508 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3509 nr_lmbs, spapr_drc_index(drc));
3510 out:
3511 error_propagate(errp, local_err);
3512 }
3513
3514 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
3515 sPAPRMachineState *spapr)
3516 {
3517 PowerPCCPU *cpu = POWERPC_CPU(cs);
3518 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3519 int id = spapr_get_vcpu_id(cpu);
3520 void *fdt;
3521 int offset, fdt_size;
3522 char *nodename;
3523
3524 fdt = create_device_tree(&fdt_size);
3525 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3526 offset = fdt_add_subnode(fdt, 0, nodename);
3527
3528 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3529 g_free(nodename);
3530
3531 *fdt_offset = offset;
3532 return fdt;
3533 }
3534
3535 /* Callback to be called during DRC release. */
3536 void spapr_core_release(DeviceState *dev)
3537 {
3538 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3539
3540 /* Call the unplug handler chain. This can never fail. */
3541 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3542 }
3543
3544 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3545 {
3546 MachineState *ms = MACHINE(hotplug_dev);
3547 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3548 CPUCore *cc = CPU_CORE(dev);
3549 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3550
3551 if (smc->pre_2_10_has_unused_icps) {
3552 sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3553 int i;
3554
3555 for (i = 0; i < cc->nr_threads; i++) {
3556 CPUState *cs = CPU(sc->threads[i]);
3557
3558 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3559 }
3560 }
3561
3562 assert(core_slot);
3563 core_slot->cpu = NULL;
3564 object_unparent(OBJECT(dev));
3565 }
3566
3567 static
3568 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3569 Error **errp)
3570 {
3571 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3572 int index;
3573 sPAPRDRConnector *drc;
3574 CPUCore *cc = CPU_CORE(dev);
3575
3576 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3577 error_setg(errp, "Unable to find CPU core with core-id: %d",
3578 cc->core_id);
3579 return;
3580 }
3581 if (index == 0) {
3582 error_setg(errp, "Boot CPU core may not be unplugged");
3583 return;
3584 }
3585
3586 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3587 spapr_vcpu_id(spapr, cc->core_id));
3588 g_assert(drc);
3589
3590 spapr_drc_detach(drc);
3591
3592 spapr_hotplug_req_remove_by_index(drc);
3593 }
3594
3595 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3596 Error **errp)
3597 {
3598 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3599 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3600 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3601 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3602 CPUCore *cc = CPU_CORE(dev);
3603 CPUState *cs = CPU(core->threads[0]);
3604 sPAPRDRConnector *drc;
3605 Error *local_err = NULL;
3606 CPUArchId *core_slot;
3607 int index;
3608 bool hotplugged = spapr_drc_hotplugged(dev);
3609
3610 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3611 if (!core_slot) {
3612 error_setg(errp, "Unable to find CPU core with core-id: %d",
3613 cc->core_id);
3614 return;
3615 }
3616 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3617 spapr_vcpu_id(spapr, cc->core_id));
3618
3619 g_assert(drc || !mc->has_hotpluggable_cpus);
3620
3621 if (drc) {
3622 void *fdt;
3623 int fdt_offset;
3624
3625 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
3626
3627 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3628 if (local_err) {
3629 g_free(fdt);
3630 error_propagate(errp, local_err);
3631 return;
3632 }
3633
3634 if (hotplugged) {
3635 /*
3636 * Send hotplug notification interrupt to the guest only
3637 * in case of hotplugged CPUs.
3638 */
3639 spapr_hotplug_req_add_by_index(drc);
3640 } else {
3641 spapr_drc_reset(drc);
3642 }
3643 }
3644
3645 core_slot->cpu = OBJECT(dev);
3646
3647 if (smc->pre_2_10_has_unused_icps) {
3648 int i;
3649
3650 for (i = 0; i < cc->nr_threads; i++) {
3651 cs = CPU(core->threads[i]);
3652 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3653 }
3654 }
3655 }
3656
3657 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3658 Error **errp)
3659 {
3660 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3661 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3662 Error *local_err = NULL;
3663 CPUCore *cc = CPU_CORE(dev);
3664 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3665 const char *type = object_get_typename(OBJECT(dev));
3666 CPUArchId *core_slot;
3667 int index;
3668
3669 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3670 error_setg(&local_err, "CPU hotplug not supported for this machine");
3671 goto out;
3672 }
3673
3674 if (strcmp(base_core_type, type)) {
3675 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3676 goto out;
3677 }
3678
3679 if (cc->core_id % smp_threads) {
3680 error_setg(&local_err, "invalid core id %d", cc->core_id);
3681 goto out;
3682 }
3683
3684 /*
3685 * In general we should have homogeneous threads-per-core, but old
3686 * (pre hotplug support) machine types allow the last core to have
3687 * reduced threads as a compatibility hack for when we allowed
3688 * total vcpus not a multiple of threads-per-core.
3689 */
3690 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3691 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3692 cc->nr_threads, smp_threads);
3693 goto out;
3694 }
3695
3696 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3697 if (!core_slot) {
3698 error_setg(&local_err, "core id %d out of range", cc->core_id);
3699 goto out;
3700 }
3701
3702 if (core_slot->cpu) {
3703 error_setg(&local_err, "core %d already populated", cc->core_id);
3704 goto out;
3705 }
3706
3707 numa_cpu_pre_plug(core_slot, dev, &local_err);
3708
3709 out:
3710 error_propagate(errp, local_err);
3711 }
3712
3713 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3714 DeviceState *dev, Error **errp)
3715 {
3716 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3717 spapr_memory_plug(hotplug_dev, dev, errp);
3718 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3719 spapr_core_plug(hotplug_dev, dev, errp);
3720 }
3721 }
3722
3723 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
3724 DeviceState *dev, Error **errp)
3725 {
3726 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3727 spapr_memory_unplug(hotplug_dev, dev);
3728 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3729 spapr_core_unplug(hotplug_dev, dev);
3730 }
3731 }
3732
3733 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3734 DeviceState *dev, Error **errp)
3735 {
3736 sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
3737 MachineClass *mc = MACHINE_GET_CLASS(sms);
3738
3739 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3740 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3741 spapr_memory_unplug_request(hotplug_dev, dev, errp);
3742 } else {
3743 /* NOTE: this means there is a window after guest reset, prior to
3744 * CAS negotiation, where unplug requests will fail due to the
3745 * capability not being detected yet. This is a bit different than
3746 * the case with PCI unplug, where the events will be queued and
3747 * eventually handled by the guest after boot
3748 */
3749 error_setg(errp, "Memory hot unplug not supported for this guest");
3750 }
3751 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3752 if (!mc->has_hotpluggable_cpus) {
3753 error_setg(errp, "CPU hot unplug not supported on this machine");
3754 return;
3755 }
3756 spapr_core_unplug_request(hotplug_dev, dev, errp);
3757 }
3758 }
3759
3760 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3761 DeviceState *dev, Error **errp)
3762 {
3763 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3764 spapr_memory_pre_plug(hotplug_dev, dev, errp);
3765 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3766 spapr_core_pre_plug(hotplug_dev, dev, errp);
3767 }
3768 }
3769
3770 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3771 DeviceState *dev)
3772 {
3773 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3774 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3775 return HOTPLUG_HANDLER(machine);
3776 }
3777 return NULL;
3778 }
3779
3780 static CpuInstanceProperties
3781 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3782 {
3783 CPUArchId *core_slot;
3784 MachineClass *mc = MACHINE_GET_CLASS(machine);
3785
3786 /* make sure possible_cpu are intialized */
3787 mc->possible_cpu_arch_ids(machine);
3788 /* get CPU core slot containing thread that matches cpu_index */
3789 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3790 assert(core_slot);
3791 return core_slot->props;
3792 }
3793
3794 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
3795 {
3796 return idx / smp_cores % nb_numa_nodes;
3797 }
3798
3799 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3800 {
3801 int i;
3802 const char *core_type;
3803 int spapr_max_cores = max_cpus / smp_threads;
3804 MachineClass *mc = MACHINE_GET_CLASS(machine);
3805
3806 if (!mc->has_hotpluggable_cpus) {
3807 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3808 }
3809 if (machine->possible_cpus) {
3810 assert(machine->possible_cpus->len == spapr_max_cores);
3811 return machine->possible_cpus;
3812 }
3813
3814 core_type = spapr_get_cpu_core_type(machine->cpu_type);
3815 if (!core_type) {
3816 error_report("Unable to find sPAPR CPU Core definition");
3817 exit(1);
3818 }
3819
3820 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3821 sizeof(CPUArchId) * spapr_max_cores);
3822 machine->possible_cpus->len = spapr_max_cores;
3823 for (i = 0; i < machine->possible_cpus->len; i++) {
3824 int core_id = i * smp_threads;
3825
3826 machine->possible_cpus->cpus[i].type = core_type;
3827 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3828 machine->possible_cpus->cpus[i].arch_id = core_id;
3829 machine->possible_cpus->cpus[i].props.has_core_id = true;
3830 machine->possible_cpus->cpus[i].props.core_id = core_id;
3831 }
3832 return machine->possible_cpus;
3833 }
3834
3835 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3836 uint64_t *buid, hwaddr *pio,
3837 hwaddr *mmio32, hwaddr *mmio64,
3838 unsigned n_dma, uint32_t *liobns, Error **errp)
3839 {
3840 /*
3841 * New-style PHB window placement.
3842 *
3843 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3844 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3845 * windows.
3846 *
3847 * Some guest kernels can't work with MMIO windows above 1<<46
3848 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3849 *
3850 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3851 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
3852 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
3853 * 1TiB 64-bit MMIO windows for each PHB.
3854 */
3855 const uint64_t base_buid = 0x800000020000000ULL;
3856 int i;
3857
3858 /* Sanity check natural alignments */
3859 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3860 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3861 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3862 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3863 /* Sanity check bounds */
3864 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3865 SPAPR_PCI_MEM32_WIN_SIZE);
3866 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3867 SPAPR_PCI_MEM64_WIN_SIZE);
3868
3869 if (index >= SPAPR_MAX_PHBS) {
3870 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3871 SPAPR_MAX_PHBS - 1);
3872 return;
3873 }
3874
3875 *buid = base_buid + index;
3876 for (i = 0; i < n_dma; ++i) {
3877 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3878 }
3879
3880 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3881 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3882 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3883 }
3884
3885 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3886 {
3887 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3888
3889 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3890 }
3891
3892 static void spapr_ics_resend(XICSFabric *dev)
3893 {
3894 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3895
3896 ics_resend(spapr->ics);
3897 }
3898
3899 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
3900 {
3901 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
3902
3903 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
3904 }
3905
3906 static void spapr_pic_print_info(InterruptStatsProvider *obj,
3907 Monitor *mon)
3908 {
3909 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3910
3911 spapr->irq->print_info(spapr, mon);
3912 }
3913
3914 int spapr_get_vcpu_id(PowerPCCPU *cpu)
3915 {
3916 return cpu->vcpu_id;
3917 }
3918
3919 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
3920 {
3921 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3922 int vcpu_id;
3923
3924 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
3925
3926 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
3927 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
3928 error_append_hint(errp, "Adjust the number of cpus to %d "
3929 "or try to raise the number of threads per core\n",
3930 vcpu_id * smp_threads / spapr->vsmt);
3931 return;
3932 }
3933
3934 cpu->vcpu_id = vcpu_id;
3935 }
3936
3937 PowerPCCPU *spapr_find_cpu(int vcpu_id)
3938 {
3939 CPUState *cs;
3940
3941 CPU_FOREACH(cs) {
3942 PowerPCCPU *cpu = POWERPC_CPU(cs);
3943
3944 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
3945 return cpu;
3946 }
3947 }
3948
3949 return NULL;
3950 }
3951
3952 static void spapr_machine_class_init(ObjectClass *oc, void *data)
3953 {
3954 MachineClass *mc = MACHINE_CLASS(oc);
3955 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3956 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3957 NMIClass *nc = NMI_CLASS(oc);
3958 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3959 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3960 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3961 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3962
3963 mc->desc = "pSeries Logical Partition (PAPR compliant)";
3964 mc->ignore_boot_device_suffixes = true;
3965
3966 /*
3967 * We set up the default / latest behaviour here. The class_init
3968 * functions for the specific versioned machine types can override
3969 * these details for backwards compatibility
3970 */
3971 mc->init = spapr_machine_init;
3972 mc->reset = spapr_machine_reset;
3973 mc->block_default_type = IF_SCSI;
3974 mc->max_cpus = 1024;
3975 mc->no_parallel = 1;
3976 mc->default_boot_order = "";
3977 mc->default_ram_size = 512 * MiB;
3978 mc->default_display = "std";
3979 mc->kvm_type = spapr_kvm_type;
3980 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
3981 mc->pci_allow_0_address = true;
3982 assert(!mc->get_hotplug_handler);
3983 mc->get_hotplug_handler = spapr_get_hotplug_handler;
3984 hc->pre_plug = spapr_machine_device_pre_plug;
3985 hc->plug = spapr_machine_device_plug;
3986 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
3987 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
3988 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3989 hc->unplug_request = spapr_machine_device_unplug_request;
3990 hc->unplug = spapr_machine_device_unplug;
3991
3992 smc->dr_lmb_enabled = true;
3993 smc->update_dt_enabled = true;
3994 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
3995 mc->has_hotpluggable_cpus = true;
3996 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
3997 fwc->get_dev_path = spapr_get_fw_dev_path;
3998 nc->nmi_monitor_handler = spapr_nmi;
3999 smc->phb_placement = spapr_phb_placement;
4000 vhc->hypercall = emulate_spapr_hypercall;
4001 vhc->hpt_mask = spapr_hpt_mask;
4002 vhc->map_hptes = spapr_map_hptes;
4003 vhc->unmap_hptes = spapr_unmap_hptes;
4004 vhc->store_hpte = spapr_store_hpte;
4005 vhc->get_patbe = spapr_get_patbe;
4006 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4007 xic->ics_get = spapr_ics_get;
4008 xic->ics_resend = spapr_ics_resend;
4009 xic->icp_get = spapr_icp_get;
4010 ispc->print_info = spapr_pic_print_info;
4011 /* Force NUMA node memory size to be a multiple of
4012 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4013 * in which LMBs are represented and hot-added
4014 */
4015 mc->numa_mem_align_shift = 28;
4016
4017 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4018 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4019 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4020 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4021 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4022 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4023 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4024 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4025 spapr_caps_add_properties(smc, &error_abort);
4026 smc->irq = &spapr_irq_xics;
4027 }
4028
4029 static const TypeInfo spapr_machine_info = {
4030 .name = TYPE_SPAPR_MACHINE,
4031 .parent = TYPE_MACHINE,
4032 .abstract = true,
4033 .instance_size = sizeof(sPAPRMachineState),
4034 .instance_init = spapr_instance_init,
4035 .instance_finalize = spapr_machine_finalizefn,
4036 .class_size = sizeof(sPAPRMachineClass),
4037 .class_init = spapr_machine_class_init,
4038 .interfaces = (InterfaceInfo[]) {
4039 { TYPE_FW_PATH_PROVIDER },
4040 { TYPE_NMI },
4041 { TYPE_HOTPLUG_HANDLER },
4042 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4043 { TYPE_XICS_FABRIC },
4044 { TYPE_INTERRUPT_STATS_PROVIDER },
4045 { }
4046 },
4047 };
4048
4049 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4050 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4051 void *data) \
4052 { \
4053 MachineClass *mc = MACHINE_CLASS(oc); \
4054 spapr_machine_##suffix##_class_options(mc); \
4055 if (latest) { \
4056 mc->alias = "pseries"; \
4057 mc->is_default = 1; \
4058 } \
4059 } \
4060 static const TypeInfo spapr_machine_##suffix##_info = { \
4061 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4062 .parent = TYPE_SPAPR_MACHINE, \
4063 .class_init = spapr_machine_##suffix##_class_init, \
4064 }; \
4065 static void spapr_machine_register_##suffix(void) \
4066 { \
4067 type_register(&spapr_machine_##suffix##_info); \
4068 } \
4069 type_init(spapr_machine_register_##suffix)
4070
4071 /*
4072 * pseries-4.0
4073 */
4074 static void spapr_machine_4_0_class_options(MachineClass *mc)
4075 {
4076 /* Defaults for the latest behaviour inherited from the base class */
4077 }
4078
4079 DEFINE_SPAPR_MACHINE(4_0, "4.0", true);
4080
4081 /*
4082 * pseries-3.1
4083 */
4084 static void spapr_machine_3_1_class_options(MachineClass *mc)
4085 {
4086 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4087
4088 spapr_machine_4_0_class_options(mc);
4089 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4090 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4091 smc->update_dt_enabled = false;
4092 }
4093
4094 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4095
4096 /*
4097 * pseries-3.0
4098 */
4099
4100 static void spapr_machine_3_0_class_options(MachineClass *mc)
4101 {
4102 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4103
4104 spapr_machine_3_1_class_options(mc);
4105 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4106
4107 smc->legacy_irq_allocation = true;
4108 smc->irq = &spapr_irq_xics_legacy;
4109 }
4110
4111 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4112
4113 /*
4114 * pseries-2.12
4115 */
4116 static void spapr_machine_2_12_class_options(MachineClass *mc)
4117 {
4118 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4119 static GlobalProperty compat[] = {
4120 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4121 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4122 };
4123
4124 spapr_machine_3_0_class_options(mc);
4125 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4126 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4127
4128 /* We depend on kvm_enabled() to choose a default value for the
4129 * hpt-max-page-size capability. Of course we can't do it here
4130 * because this is too early and the HW accelerator isn't initialzed
4131 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4132 */
4133 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4134 }
4135
4136 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4137
4138 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4139 {
4140 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4141
4142 spapr_machine_2_12_class_options(mc);
4143 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4144 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4145 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4146 }
4147
4148 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4149
4150 /*
4151 * pseries-2.11
4152 */
4153
4154 static void spapr_machine_2_11_class_options(MachineClass *mc)
4155 {
4156 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4157
4158 spapr_machine_2_12_class_options(mc);
4159 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4160 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4161 }
4162
4163 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4164
4165 /*
4166 * pseries-2.10
4167 */
4168
4169 static void spapr_machine_2_10_class_options(MachineClass *mc)
4170 {
4171 spapr_machine_2_11_class_options(mc);
4172 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4173 }
4174
4175 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4176
4177 /*
4178 * pseries-2.9
4179 */
4180
4181 static void spapr_machine_2_9_class_options(MachineClass *mc)
4182 {
4183 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4184 static GlobalProperty compat[] = {
4185 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4186 };
4187
4188 spapr_machine_2_10_class_options(mc);
4189 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4190 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4191 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4192 smc->pre_2_10_has_unused_icps = true;
4193 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4194 }
4195
4196 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4197
4198 /*
4199 * pseries-2.8
4200 */
4201
4202 static void spapr_machine_2_8_class_options(MachineClass *mc)
4203 {
4204 static GlobalProperty compat[] = {
4205 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4206 };
4207
4208 spapr_machine_2_9_class_options(mc);
4209 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4210 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4211 mc->numa_mem_align_shift = 23;
4212 }
4213
4214 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4215
4216 /*
4217 * pseries-2.7
4218 */
4219
4220 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
4221 uint64_t *buid, hwaddr *pio,
4222 hwaddr *mmio32, hwaddr *mmio64,
4223 unsigned n_dma, uint32_t *liobns, Error **errp)
4224 {
4225 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4226 const uint64_t base_buid = 0x800000020000000ULL;
4227 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4228 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4229 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4230 const uint32_t max_index = 255;
4231 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4232
4233 uint64_t ram_top = MACHINE(spapr)->ram_size;
4234 hwaddr phb0_base, phb_base;
4235 int i;
4236
4237 /* Do we have device memory? */
4238 if (MACHINE(spapr)->maxram_size > ram_top) {
4239 /* Can't just use maxram_size, because there may be an
4240 * alignment gap between normal and device memory regions
4241 */
4242 ram_top = MACHINE(spapr)->device_memory->base +
4243 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4244 }
4245
4246 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4247
4248 if (index > max_index) {
4249 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4250 max_index);
4251 return;
4252 }
4253
4254 *buid = base_buid + index;
4255 for (i = 0; i < n_dma; ++i) {
4256 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4257 }
4258
4259 phb_base = phb0_base + index * phb_spacing;
4260 *pio = phb_base + pio_offset;
4261 *mmio32 = phb_base + mmio_offset;
4262 /*
4263 * We don't set the 64-bit MMIO window, relying on the PHB's
4264 * fallback behaviour of automatically splitting a large "32-bit"
4265 * window into contiguous 32-bit and 64-bit windows
4266 */
4267 }
4268
4269 static void spapr_machine_2_7_class_options(MachineClass *mc)
4270 {
4271 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4272 static GlobalProperty compat[] = {
4273 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4274 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4275 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4276 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4277 };
4278
4279 spapr_machine_2_8_class_options(mc);
4280 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4281 mc->default_machine_opts = "modern-hotplug-events=off";
4282 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4283 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4284 smc->phb_placement = phb_placement_2_7;
4285 }
4286
4287 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4288
4289 /*
4290 * pseries-2.6
4291 */
4292
4293 static void spapr_machine_2_6_class_options(MachineClass *mc)
4294 {
4295 static GlobalProperty compat[] = {
4296 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4297 };
4298
4299 spapr_machine_2_7_class_options(mc);
4300 mc->has_hotpluggable_cpus = false;
4301 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4302 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4303 }
4304
4305 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4306
4307 /*
4308 * pseries-2.5
4309 */
4310
4311 static void spapr_machine_2_5_class_options(MachineClass *mc)
4312 {
4313 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4314 static GlobalProperty compat[] = {
4315 { "spapr-vlan", "use-rx-buffer-pools", "off" },
4316 };
4317
4318 spapr_machine_2_6_class_options(mc);
4319 smc->use_ohci_by_default = true;
4320 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4321 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4322 }
4323
4324 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4325
4326 /*
4327 * pseries-2.4
4328 */
4329
4330 static void spapr_machine_2_4_class_options(MachineClass *mc)
4331 {
4332 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4333
4334 spapr_machine_2_5_class_options(mc);
4335 smc->dr_lmb_enabled = false;
4336 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4337 }
4338
4339 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4340
4341 /*
4342 * pseries-2.3
4343 */
4344
4345 static void spapr_machine_2_3_class_options(MachineClass *mc)
4346 {
4347 static GlobalProperty compat[] = {
4348 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4349 };
4350 spapr_machine_2_4_class_options(mc);
4351 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4352 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4353 }
4354 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4355
4356 /*
4357 * pseries-2.2
4358 */
4359
4360 static void spapr_machine_2_2_class_options(MachineClass *mc)
4361 {
4362 static GlobalProperty compat[] = {
4363 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4364 };
4365
4366 spapr_machine_2_3_class_options(mc);
4367 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4368 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4369 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4370 }
4371 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4372
4373 /*
4374 * pseries-2.1
4375 */
4376
4377 static void spapr_machine_2_1_class_options(MachineClass *mc)
4378 {
4379 spapr_machine_2_2_class_options(mc);
4380 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4381 }
4382 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4383
4384 static void spapr_machine_register_types(void)
4385 {
4386 type_register_static(&spapr_machine_info);
4387 }
4388
4389 type_init(spapr_machine_register_types)