]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr.c
cpus: pass CPUState to run_on_cpu helpers
[mirror_qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/numa.h"
31 #include "hw/hw.h"
32 #include "qemu/log.h"
33 #include "hw/fw-path-provider.h"
34 #include "elf.h"
35 #include "net/net.h"
36 #include "sysemu/device_tree.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/kvm.h"
40 #include "sysemu/device_tree.h"
41 #include "kvm_ppc.h"
42 #include "migration/migration.h"
43 #include "mmu-hash64.h"
44 #include "qom/cpu.h"
45
46 #include "hw/boards.h"
47 #include "hw/ppc/ppc.h"
48 #include "hw/loader.h"
49
50 #include "hw/ppc/fdt.h"
51 #include "hw/ppc/spapr.h"
52 #include "hw/ppc/spapr_vio.h"
53 #include "hw/pci-host/spapr.h"
54 #include "hw/ppc/xics.h"
55 #include "hw/pci/msi.h"
56
57 #include "hw/pci/pci.h"
58 #include "hw/scsi/scsi.h"
59 #include "hw/virtio/virtio-scsi.h"
60
61 #include "exec/address-spaces.h"
62 #include "hw/usb.h"
63 #include "qemu/config-file.h"
64 #include "qemu/error-report.h"
65 #include "trace.h"
66 #include "hw/nmi.h"
67
68 #include "hw/compat.h"
69 #include "qemu/cutils.h"
70 #include "hw/ppc/spapr_cpu_core.h"
71 #include "qmp-commands.h"
72
73 #include <libfdt.h>
74
75 /* SLOF memory layout:
76 *
77 * SLOF raw image loaded at 0, copies its romfs right below the flat
78 * device-tree, then position SLOF itself 31M below that
79 *
80 * So we set FW_OVERHEAD to 40MB which should account for all of that
81 * and more
82 *
83 * We load our kernel at 4M, leaving space for SLOF initial image
84 */
85 #define FDT_MAX_SIZE 0x100000
86 #define RTAS_MAX_SIZE 0x10000
87 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
88 #define FW_MAX_SIZE 0x400000
89 #define FW_FILE_NAME "slof.bin"
90 #define FW_OVERHEAD 0x2800000
91 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
92
93 #define MIN_RMA_SLOF 128UL
94
95 #define PHANDLE_XICP 0x00001111
96
97 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
98
99 static XICSState *try_create_xics(const char *type, int nr_servers,
100 int nr_irqs, Error **errp)
101 {
102 Error *err = NULL;
103 DeviceState *dev;
104
105 dev = qdev_create(NULL, type);
106 qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
107 qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
108 object_property_set_bool(OBJECT(dev), true, "realized", &err);
109 if (err) {
110 error_propagate(errp, err);
111 object_unparent(OBJECT(dev));
112 return NULL;
113 }
114 return XICS_COMMON(dev);
115 }
116
117 static XICSState *xics_system_init(MachineState *machine,
118 int nr_servers, int nr_irqs, Error **errp)
119 {
120 XICSState *xics = NULL;
121
122 if (kvm_enabled()) {
123 Error *err = NULL;
124
125 if (machine_kernel_irqchip_allowed(machine)) {
126 xics = try_create_xics(TYPE_XICS_SPAPR_KVM, nr_servers, nr_irqs,
127 &err);
128 }
129 if (machine_kernel_irqchip_required(machine) && !xics) {
130 error_reportf_err(err,
131 "kernel_irqchip requested but unavailable: ");
132 } else {
133 error_free(err);
134 }
135 }
136
137 if (!xics) {
138 xics = try_create_xics(TYPE_XICS_SPAPR, nr_servers, nr_irqs, errp);
139 }
140
141 return xics;
142 }
143
144 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
145 int smt_threads)
146 {
147 int i, ret = 0;
148 uint32_t servers_prop[smt_threads];
149 uint32_t gservers_prop[smt_threads * 2];
150 int index = ppc_get_vcpu_dt_id(cpu);
151
152 if (cpu->cpu_version) {
153 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
154 if (ret < 0) {
155 return ret;
156 }
157 }
158
159 /* Build interrupt servers and gservers properties */
160 for (i = 0; i < smt_threads; i++) {
161 servers_prop[i] = cpu_to_be32(index + i);
162 /* Hack, direct the group queues back to cpu 0 */
163 gservers_prop[i*2] = cpu_to_be32(index + i);
164 gservers_prop[i*2 + 1] = 0;
165 }
166 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
167 servers_prop, sizeof(servers_prop));
168 if (ret < 0) {
169 return ret;
170 }
171 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
172 gservers_prop, sizeof(gservers_prop));
173
174 return ret;
175 }
176
177 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
178 {
179 int ret = 0;
180 PowerPCCPU *cpu = POWERPC_CPU(cs);
181 int index = ppc_get_vcpu_dt_id(cpu);
182 uint32_t associativity[] = {cpu_to_be32(0x5),
183 cpu_to_be32(0x0),
184 cpu_to_be32(0x0),
185 cpu_to_be32(0x0),
186 cpu_to_be32(cs->numa_node),
187 cpu_to_be32(index)};
188
189 /* Advertise NUMA via ibm,associativity */
190 if (nb_numa_nodes > 1) {
191 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
192 sizeof(associativity));
193 }
194
195 return ret;
196 }
197
198 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
199 {
200 int ret = 0, offset, cpus_offset;
201 CPUState *cs;
202 char cpu_model[32];
203 int smt = kvmppc_smt_threads();
204 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
205
206 CPU_FOREACH(cs) {
207 PowerPCCPU *cpu = POWERPC_CPU(cs);
208 DeviceClass *dc = DEVICE_GET_CLASS(cs);
209 int index = ppc_get_vcpu_dt_id(cpu);
210
211 if ((index % smt) != 0) {
212 continue;
213 }
214
215 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
216
217 cpus_offset = fdt_path_offset(fdt, "/cpus");
218 if (cpus_offset < 0) {
219 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
220 "cpus");
221 if (cpus_offset < 0) {
222 return cpus_offset;
223 }
224 }
225 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
226 if (offset < 0) {
227 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
228 if (offset < 0) {
229 return offset;
230 }
231 }
232
233 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
234 pft_size_prop, sizeof(pft_size_prop));
235 if (ret < 0) {
236 return ret;
237 }
238
239 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
240 if (ret < 0) {
241 return ret;
242 }
243
244 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
245 ppc_get_compat_smt_threads(cpu));
246 if (ret < 0) {
247 return ret;
248 }
249 }
250 return ret;
251 }
252
253 static hwaddr spapr_node0_size(void)
254 {
255 MachineState *machine = MACHINE(qdev_get_machine());
256
257 if (nb_numa_nodes) {
258 int i;
259 for (i = 0; i < nb_numa_nodes; ++i) {
260 if (numa_info[i].node_mem) {
261 return MIN(pow2floor(numa_info[i].node_mem),
262 machine->ram_size);
263 }
264 }
265 }
266 return machine->ram_size;
267 }
268
269 static void add_str(GString *s, const gchar *s1)
270 {
271 g_string_append_len(s, s1, strlen(s1) + 1);
272 }
273
274 static void *spapr_create_fdt_skel(hwaddr initrd_base,
275 hwaddr initrd_size,
276 hwaddr kernel_size,
277 bool little_endian,
278 const char *kernel_cmdline,
279 uint32_t epow_irq)
280 {
281 void *fdt;
282 uint32_t start_prop = cpu_to_be32(initrd_base);
283 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
284 GString *hypertas = g_string_sized_new(256);
285 GString *qemu_hypertas = g_string_sized_new(256);
286 uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
287 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(max_cpus)};
288 unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
289 char *buf;
290
291 add_str(hypertas, "hcall-pft");
292 add_str(hypertas, "hcall-term");
293 add_str(hypertas, "hcall-dabr");
294 add_str(hypertas, "hcall-interrupt");
295 add_str(hypertas, "hcall-tce");
296 add_str(hypertas, "hcall-vio");
297 add_str(hypertas, "hcall-splpar");
298 add_str(hypertas, "hcall-bulk");
299 add_str(hypertas, "hcall-set-mode");
300 add_str(hypertas, "hcall-sprg0");
301 add_str(hypertas, "hcall-copy");
302 add_str(hypertas, "hcall-debug");
303 add_str(qemu_hypertas, "hcall-memop1");
304
305 fdt = g_malloc0(FDT_MAX_SIZE);
306 _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
307
308 if (kernel_size) {
309 _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
310 }
311 if (initrd_size) {
312 _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
313 }
314 _FDT((fdt_finish_reservemap(fdt)));
315
316 /* Root node */
317 _FDT((fdt_begin_node(fdt, "")));
318 _FDT((fdt_property_string(fdt, "device_type", "chrp")));
319 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
320 _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
321
322 /*
323 * Add info to guest to indentify which host is it being run on
324 * and what is the uuid of the guest
325 */
326 if (kvmppc_get_host_model(&buf)) {
327 _FDT((fdt_property_string(fdt, "host-model", buf)));
328 g_free(buf);
329 }
330 if (kvmppc_get_host_serial(&buf)) {
331 _FDT((fdt_property_string(fdt, "host-serial", buf)));
332 g_free(buf);
333 }
334
335 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
336
337 _FDT((fdt_property_string(fdt, "vm,uuid", buf)));
338 if (qemu_uuid_set) {
339 _FDT((fdt_property_string(fdt, "system-id", buf)));
340 }
341 g_free(buf);
342
343 if (qemu_get_vm_name()) {
344 _FDT((fdt_property_string(fdt, "ibm,partition-name",
345 qemu_get_vm_name())));
346 }
347
348 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
349 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
350
351 /* /chosen */
352 _FDT((fdt_begin_node(fdt, "chosen")));
353
354 /* Set Form1_affinity */
355 _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
356
357 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
358 _FDT((fdt_property(fdt, "linux,initrd-start",
359 &start_prop, sizeof(start_prop))));
360 _FDT((fdt_property(fdt, "linux,initrd-end",
361 &end_prop, sizeof(end_prop))));
362 if (kernel_size) {
363 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
364 cpu_to_be64(kernel_size) };
365
366 _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
367 if (little_endian) {
368 _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
369 }
370 }
371 if (boot_menu) {
372 _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu)));
373 }
374 _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
375 _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
376 _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
377
378 _FDT((fdt_end_node(fdt)));
379
380 /* RTAS */
381 _FDT((fdt_begin_node(fdt, "rtas")));
382
383 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
384 add_str(hypertas, "hcall-multi-tce");
385 }
386 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
387 hypertas->len)));
388 g_string_free(hypertas, TRUE);
389 _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
390 qemu_hypertas->len)));
391 g_string_free(qemu_hypertas, TRUE);
392
393 _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
394 refpoints, sizeof(refpoints))));
395
396 _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
397 _FDT((fdt_property_cell(fdt, "rtas-event-scan-rate",
398 RTAS_EVENT_SCAN_RATE)));
399
400 if (msi_nonbroken) {
401 _FDT((fdt_property(fdt, "ibm,change-msix-capable", NULL, 0)));
402 }
403
404 /*
405 * According to PAPR, rtas ibm,os-term does not guarantee a return
406 * back to the guest cpu.
407 *
408 * While an additional ibm,extended-os-term property indicates that
409 * rtas call return will always occur. Set this property.
410 */
411 _FDT((fdt_property(fdt, "ibm,extended-os-term", NULL, 0)));
412
413 _FDT((fdt_end_node(fdt)));
414
415 /* interrupt controller */
416 _FDT((fdt_begin_node(fdt, "interrupt-controller")));
417
418 _FDT((fdt_property_string(fdt, "device_type",
419 "PowerPC-External-Interrupt-Presentation")));
420 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
421 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
422 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
423 interrupt_server_ranges_prop,
424 sizeof(interrupt_server_ranges_prop))));
425 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
426 _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
427 _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
428
429 _FDT((fdt_end_node(fdt)));
430
431 /* vdevice */
432 _FDT((fdt_begin_node(fdt, "vdevice")));
433
434 _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
435 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
436 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
437 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
438 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
439 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
440
441 _FDT((fdt_end_node(fdt)));
442
443 /* event-sources */
444 spapr_events_fdt_skel(fdt, epow_irq);
445
446 /* /hypervisor node */
447 if (kvm_enabled()) {
448 uint8_t hypercall[16];
449
450 /* indicate KVM hypercall interface */
451 _FDT((fdt_begin_node(fdt, "hypervisor")));
452 _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
453 if (kvmppc_has_cap_fixup_hcalls()) {
454 /*
455 * Older KVM versions with older guest kernels were broken with the
456 * magic page, don't allow the guest to map it.
457 */
458 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
459 sizeof(hypercall))) {
460 _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
461 sizeof(hypercall))));
462 }
463 }
464 _FDT((fdt_end_node(fdt)));
465 }
466
467 _FDT((fdt_end_node(fdt))); /* close root node */
468 _FDT((fdt_finish(fdt)));
469
470 return fdt;
471 }
472
473 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
474 hwaddr size)
475 {
476 uint32_t associativity[] = {
477 cpu_to_be32(0x4), /* length */
478 cpu_to_be32(0x0), cpu_to_be32(0x0),
479 cpu_to_be32(0x0), cpu_to_be32(nodeid)
480 };
481 char mem_name[32];
482 uint64_t mem_reg_property[2];
483 int off;
484
485 mem_reg_property[0] = cpu_to_be64(start);
486 mem_reg_property[1] = cpu_to_be64(size);
487
488 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
489 off = fdt_add_subnode(fdt, 0, mem_name);
490 _FDT(off);
491 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
492 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
493 sizeof(mem_reg_property))));
494 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
495 sizeof(associativity))));
496 return off;
497 }
498
499 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
500 {
501 MachineState *machine = MACHINE(spapr);
502 hwaddr mem_start, node_size;
503 int i, nb_nodes = nb_numa_nodes;
504 NodeInfo *nodes = numa_info;
505 NodeInfo ramnode;
506
507 /* No NUMA nodes, assume there is just one node with whole RAM */
508 if (!nb_numa_nodes) {
509 nb_nodes = 1;
510 ramnode.node_mem = machine->ram_size;
511 nodes = &ramnode;
512 }
513
514 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
515 if (!nodes[i].node_mem) {
516 continue;
517 }
518 if (mem_start >= machine->ram_size) {
519 node_size = 0;
520 } else {
521 node_size = nodes[i].node_mem;
522 if (node_size > machine->ram_size - mem_start) {
523 node_size = machine->ram_size - mem_start;
524 }
525 }
526 if (!mem_start) {
527 /* ppc_spapr_init() checks for rma_size <= node0_size already */
528 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
529 mem_start += spapr->rma_size;
530 node_size -= spapr->rma_size;
531 }
532 for ( ; node_size; ) {
533 hwaddr sizetmp = pow2floor(node_size);
534
535 /* mem_start != 0 here */
536 if (ctzl(mem_start) < ctzl(sizetmp)) {
537 sizetmp = 1ULL << ctzl(mem_start);
538 }
539
540 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
541 node_size -= sizetmp;
542 mem_start += sizetmp;
543 }
544 }
545
546 return 0;
547 }
548
549 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
550 sPAPRMachineState *spapr)
551 {
552 PowerPCCPU *cpu = POWERPC_CPU(cs);
553 CPUPPCState *env = &cpu->env;
554 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
555 int index = ppc_get_vcpu_dt_id(cpu);
556 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
557 0xffffffff, 0xffffffff};
558 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
559 : SPAPR_TIMEBASE_FREQ;
560 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
561 uint32_t page_sizes_prop[64];
562 size_t page_sizes_prop_size;
563 uint32_t vcpus_per_socket = smp_threads * smp_cores;
564 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
565 sPAPRDRConnector *drc;
566 sPAPRDRConnectorClass *drck;
567 int drc_index;
568
569 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index);
570 if (drc) {
571 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
572 drc_index = drck->get_index(drc);
573 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
574 }
575
576 /* Note: we keep CI large pages off for now because a 64K capable guest
577 * provisioned with large pages might otherwise try to map a qemu
578 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
579 * even if that qemu runs on a 4k host.
580 *
581 * We can later add this bit back when we are confident this is not
582 * an issue (!HV KVM or 64K host)
583 */
584 uint8_t pa_features_206[] = { 6, 0,
585 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
586 uint8_t pa_features_207[] = { 24, 0,
587 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
588 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
589 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
590 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
591 uint8_t *pa_features;
592 size_t pa_size;
593
594 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
595 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
596
597 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
598 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
599 env->dcache_line_size)));
600 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
601 env->dcache_line_size)));
602 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
603 env->icache_line_size)));
604 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
605 env->icache_line_size)));
606
607 if (pcc->l1_dcache_size) {
608 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
609 pcc->l1_dcache_size)));
610 } else {
611 error_report("Warning: Unknown L1 dcache size for cpu");
612 }
613 if (pcc->l1_icache_size) {
614 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
615 pcc->l1_icache_size)));
616 } else {
617 error_report("Warning: Unknown L1 icache size for cpu");
618 }
619
620 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
621 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
622 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
623 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
624 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
625 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
626
627 if (env->spr_cb[SPR_PURR].oea_read) {
628 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
629 }
630
631 if (env->mmu_model & POWERPC_MMU_1TSEG) {
632 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
633 segs, sizeof(segs))));
634 }
635
636 /* Advertise VMX/VSX (vector extensions) if available
637 * 0 / no property == no vector extensions
638 * 1 == VMX / Altivec available
639 * 2 == VSX available */
640 if (env->insns_flags & PPC_ALTIVEC) {
641 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
642
643 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
644 }
645
646 /* Advertise DFP (Decimal Floating Point) if available
647 * 0 / no property == no DFP
648 * 1 == DFP available */
649 if (env->insns_flags2 & PPC2_DFP) {
650 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
651 }
652
653 page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
654 sizeof(page_sizes_prop));
655 if (page_sizes_prop_size) {
656 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
657 page_sizes_prop, page_sizes_prop_size)));
658 }
659
660 /* Do the ibm,pa-features property, adjust it for ci-large-pages */
661 if (env->mmu_model == POWERPC_MMU_2_06) {
662 pa_features = pa_features_206;
663 pa_size = sizeof(pa_features_206);
664 } else /* env->mmu_model == POWERPC_MMU_2_07 */ {
665 pa_features = pa_features_207;
666 pa_size = sizeof(pa_features_207);
667 }
668 if (env->ci_large_pages) {
669 pa_features[3] |= 0x20;
670 }
671 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
672
673 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
674 cs->cpu_index / vcpus_per_socket)));
675
676 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
677 pft_size_prop, sizeof(pft_size_prop))));
678
679 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));
680
681 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
682 ppc_get_compat_smt_threads(cpu)));
683 }
684
685 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
686 {
687 CPUState *cs;
688 int cpus_offset;
689 char *nodename;
690 int smt = kvmppc_smt_threads();
691
692 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
693 _FDT(cpus_offset);
694 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
695 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
696
697 /*
698 * We walk the CPUs in reverse order to ensure that CPU DT nodes
699 * created by fdt_add_subnode() end up in the right order in FDT
700 * for the guest kernel the enumerate the CPUs correctly.
701 */
702 CPU_FOREACH_REVERSE(cs) {
703 PowerPCCPU *cpu = POWERPC_CPU(cs);
704 int index = ppc_get_vcpu_dt_id(cpu);
705 DeviceClass *dc = DEVICE_GET_CLASS(cs);
706 int offset;
707
708 if ((index % smt) != 0) {
709 continue;
710 }
711
712 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
713 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
714 g_free(nodename);
715 _FDT(offset);
716 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
717 }
718
719 }
720
721 /*
722 * Adds ibm,dynamic-reconfiguration-memory node.
723 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
724 * of this device tree node.
725 */
726 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
727 {
728 MachineState *machine = MACHINE(spapr);
729 int ret, i, offset;
730 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
731 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
732 uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
733 uint32_t nr_lmbs = (spapr->hotplug_memory.base +
734 memory_region_size(&spapr->hotplug_memory.mr)) /
735 lmb_size;
736 uint32_t *int_buf, *cur_index, buf_len;
737 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
738
739 /*
740 * Don't create the node if there is no hotpluggable memory
741 */
742 if (machine->ram_size == machine->maxram_size) {
743 return 0;
744 }
745
746 /*
747 * Allocate enough buffer size to fit in ibm,dynamic-memory
748 * or ibm,associativity-lookup-arrays
749 */
750 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
751 * sizeof(uint32_t);
752 cur_index = int_buf = g_malloc0(buf_len);
753
754 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
755
756 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
757 sizeof(prop_lmb_size));
758 if (ret < 0) {
759 goto out;
760 }
761
762 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
763 if (ret < 0) {
764 goto out;
765 }
766
767 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
768 if (ret < 0) {
769 goto out;
770 }
771
772 /* ibm,dynamic-memory */
773 int_buf[0] = cpu_to_be32(nr_lmbs);
774 cur_index++;
775 for (i = 0; i < nr_lmbs; i++) {
776 uint64_t addr = i * lmb_size;
777 uint32_t *dynamic_memory = cur_index;
778
779 if (i >= hotplug_lmb_start) {
780 sPAPRDRConnector *drc;
781 sPAPRDRConnectorClass *drck;
782
783 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, i);
784 g_assert(drc);
785 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
786
787 dynamic_memory[0] = cpu_to_be32(addr >> 32);
788 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
789 dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
790 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
791 dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
792 if (memory_region_present(get_system_memory(), addr)) {
793 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
794 } else {
795 dynamic_memory[5] = cpu_to_be32(0);
796 }
797 } else {
798 /*
799 * LMB information for RMA, boot time RAM and gap b/n RAM and
800 * hotplug memory region -- all these are marked as reserved
801 * and as having no valid DRC.
802 */
803 dynamic_memory[0] = cpu_to_be32(addr >> 32);
804 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
805 dynamic_memory[2] = cpu_to_be32(0);
806 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
807 dynamic_memory[4] = cpu_to_be32(-1);
808 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
809 SPAPR_LMB_FLAGS_DRC_INVALID);
810 }
811
812 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
813 }
814 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
815 if (ret < 0) {
816 goto out;
817 }
818
819 /* ibm,associativity-lookup-arrays */
820 cur_index = int_buf;
821 int_buf[0] = cpu_to_be32(nr_nodes);
822 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
823 cur_index += 2;
824 for (i = 0; i < nr_nodes; i++) {
825 uint32_t associativity[] = {
826 cpu_to_be32(0x0),
827 cpu_to_be32(0x0),
828 cpu_to_be32(0x0),
829 cpu_to_be32(i)
830 };
831 memcpy(cur_index, associativity, sizeof(associativity));
832 cur_index += 4;
833 }
834 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
835 (cur_index - int_buf) * sizeof(uint32_t));
836 out:
837 g_free(int_buf);
838 return ret;
839 }
840
841 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
842 target_ulong addr, target_ulong size,
843 bool cpu_update, bool memory_update)
844 {
845 void *fdt, *fdt_skel;
846 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
847 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
848
849 size -= sizeof(hdr);
850
851 /* Create sceleton */
852 fdt_skel = g_malloc0(size);
853 _FDT((fdt_create(fdt_skel, size)));
854 _FDT((fdt_begin_node(fdt_skel, "")));
855 _FDT((fdt_end_node(fdt_skel)));
856 _FDT((fdt_finish(fdt_skel)));
857 fdt = g_malloc0(size);
858 _FDT((fdt_open_into(fdt_skel, fdt, size)));
859 g_free(fdt_skel);
860
861 /* Fixup cpu nodes */
862 if (cpu_update) {
863 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
864 }
865
866 /* Generate ibm,dynamic-reconfiguration-memory node if required */
867 if (memory_update && smc->dr_lmb_enabled) {
868 _FDT((spapr_populate_drconf_memory(spapr, fdt)));
869 }
870
871 /* Pack resulting tree */
872 _FDT((fdt_pack(fdt)));
873
874 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
875 trace_spapr_cas_failed(size);
876 return -1;
877 }
878
879 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
880 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
881 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
882 g_free(fdt);
883
884 return 0;
885 }
886
887 static void spapr_finalize_fdt(sPAPRMachineState *spapr,
888 hwaddr fdt_addr,
889 hwaddr rtas_addr,
890 hwaddr rtas_size)
891 {
892 MachineState *machine = MACHINE(qdev_get_machine());
893 MachineClass *mc = MACHINE_GET_CLASS(machine);
894 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
895 const char *boot_device = machine->boot_order;
896 int ret, i;
897 size_t cb = 0;
898 char *bootlist;
899 void *fdt;
900 sPAPRPHBState *phb;
901
902 fdt = g_malloc(FDT_MAX_SIZE);
903
904 /* open out the base tree into a temp buffer for the final tweaks */
905 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
906
907 ret = spapr_populate_memory(spapr, fdt);
908 if (ret < 0) {
909 error_report("couldn't setup memory nodes in fdt");
910 exit(1);
911 }
912
913 ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
914 if (ret < 0) {
915 error_report("couldn't setup vio devices in fdt");
916 exit(1);
917 }
918
919 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
920 ret = spapr_rng_populate_dt(fdt);
921 if (ret < 0) {
922 error_report("could not set up rng device in the fdt");
923 exit(1);
924 }
925 }
926
927 QLIST_FOREACH(phb, &spapr->phbs, list) {
928 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
929 if (ret < 0) {
930 error_report("couldn't setup PCI devices in fdt");
931 exit(1);
932 }
933 }
934
935 /* RTAS */
936 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
937 if (ret < 0) {
938 error_report("Couldn't set up RTAS device tree properties");
939 }
940
941 /* cpus */
942 spapr_populate_cpus_dt_node(fdt, spapr);
943
944 bootlist = get_boot_devices_list(&cb, true);
945 if (cb && bootlist) {
946 int offset = fdt_path_offset(fdt, "/chosen");
947 if (offset < 0) {
948 exit(1);
949 }
950 for (i = 0; i < cb; i++) {
951 if (bootlist[i] == '\n') {
952 bootlist[i] = ' ';
953 }
954
955 }
956 ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
957 }
958
959 if (boot_device && strlen(boot_device)) {
960 int offset = fdt_path_offset(fdt, "/chosen");
961
962 if (offset < 0) {
963 exit(1);
964 }
965 fdt_setprop_string(fdt, offset, "qemu,boot-device", boot_device);
966 }
967
968 if (!spapr->has_graphics) {
969 spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
970 }
971
972 if (smc->dr_lmb_enabled) {
973 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
974 }
975
976 if (mc->query_hotpluggable_cpus) {
977 int offset = fdt_path_offset(fdt, "/cpus");
978 ret = spapr_drc_populate_dt(fdt, offset, NULL,
979 SPAPR_DR_CONNECTOR_TYPE_CPU);
980 if (ret < 0) {
981 error_report("Couldn't set up CPU DR device tree properties");
982 exit(1);
983 }
984 }
985
986 _FDT((fdt_pack(fdt)));
987
988 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
989 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
990 fdt_totalsize(fdt), FDT_MAX_SIZE);
991 exit(1);
992 }
993
994 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
995 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
996
997 g_free(bootlist);
998 g_free(fdt);
999 }
1000
1001 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1002 {
1003 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1004 }
1005
1006 static void emulate_spapr_hypercall(PowerPCCPU *cpu)
1007 {
1008 CPUPPCState *env = &cpu->env;
1009
1010 if (msr_pr) {
1011 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1012 env->gpr[3] = H_PRIVILEGE;
1013 } else {
1014 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1015 }
1016 }
1017
1018 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1019 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1020 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1021 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1022 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1023
1024 /*
1025 * Get the fd to access the kernel htab, re-opening it if necessary
1026 */
1027 static int get_htab_fd(sPAPRMachineState *spapr)
1028 {
1029 if (spapr->htab_fd >= 0) {
1030 return spapr->htab_fd;
1031 }
1032
1033 spapr->htab_fd = kvmppc_get_htab_fd(false);
1034 if (spapr->htab_fd < 0) {
1035 error_report("Unable to open fd for reading hash table from KVM: %s",
1036 strerror(errno));
1037 }
1038
1039 return spapr->htab_fd;
1040 }
1041
1042 static void close_htab_fd(sPAPRMachineState *spapr)
1043 {
1044 if (spapr->htab_fd >= 0) {
1045 close(spapr->htab_fd);
1046 }
1047 spapr->htab_fd = -1;
1048 }
1049
1050 static int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1051 {
1052 int shift;
1053
1054 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1055 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1056 * that's much more than is needed for Linux guests */
1057 shift = ctz64(pow2ceil(ramsize)) - 7;
1058 shift = MAX(shift, 18); /* Minimum architected size */
1059 shift = MIN(shift, 46); /* Maximum architected size */
1060 return shift;
1061 }
1062
1063 static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1064 Error **errp)
1065 {
1066 long rc;
1067
1068 /* Clean up any HPT info from a previous boot */
1069 g_free(spapr->htab);
1070 spapr->htab = NULL;
1071 spapr->htab_shift = 0;
1072 close_htab_fd(spapr);
1073
1074 rc = kvmppc_reset_htab(shift);
1075 if (rc < 0) {
1076 /* kernel-side HPT needed, but couldn't allocate one */
1077 error_setg_errno(errp, errno,
1078 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1079 shift);
1080 /* This is almost certainly fatal, but if the caller really
1081 * wants to carry on with shift == 0, it's welcome to try */
1082 } else if (rc > 0) {
1083 /* kernel-side HPT allocated */
1084 if (rc != shift) {
1085 error_setg(errp,
1086 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1087 shift, rc);
1088 }
1089
1090 spapr->htab_shift = shift;
1091 spapr->htab = NULL;
1092 } else {
1093 /* kernel-side HPT not needed, allocate in userspace instead */
1094 size_t size = 1ULL << shift;
1095 int i;
1096
1097 spapr->htab = qemu_memalign(size, size);
1098 if (!spapr->htab) {
1099 error_setg_errno(errp, errno,
1100 "Could not allocate HPT of order %d", shift);
1101 return;
1102 }
1103
1104 memset(spapr->htab, 0, size);
1105 spapr->htab_shift = shift;
1106
1107 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1108 DIRTY_HPTE(HPTE(spapr->htab, i));
1109 }
1110 }
1111 }
1112
1113 static int find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1114 {
1115 bool matched = false;
1116
1117 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1118 matched = true;
1119 }
1120
1121 if (!matched) {
1122 error_report("Device %s is not supported by this machine yet.",
1123 qdev_fw_name(DEVICE(sbdev)));
1124 exit(1);
1125 }
1126
1127 return 0;
1128 }
1129
1130 static void ppc_spapr_reset(void)
1131 {
1132 MachineState *machine = MACHINE(qdev_get_machine());
1133 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1134 PowerPCCPU *first_ppc_cpu;
1135 uint32_t rtas_limit;
1136
1137 /* Check for unknown sysbus devices */
1138 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1139
1140 /* Allocate and/or reset the hash page table */
1141 spapr_reallocate_hpt(spapr,
1142 spapr_hpt_shift_for_ramsize(machine->maxram_size),
1143 &error_fatal);
1144
1145 /* Update the RMA size if necessary */
1146 if (spapr->vrma_adjust) {
1147 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1148 spapr->htab_shift);
1149 }
1150
1151 qemu_devices_reset();
1152
1153 /*
1154 * We place the device tree and RTAS just below either the top of the RMA,
1155 * or just below 2GB, whichever is lowere, so that it can be
1156 * processed with 32-bit real mode code if necessary
1157 */
1158 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1159 spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1160 spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
1161
1162 /* Load the fdt */
1163 spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
1164 spapr->rtas_size);
1165
1166 /* Copy RTAS over */
1167 cpu_physical_memory_write(spapr->rtas_addr, spapr->rtas_blob,
1168 spapr->rtas_size);
1169
1170 /* Set up the entry state */
1171 first_ppc_cpu = POWERPC_CPU(first_cpu);
1172 first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
1173 first_ppc_cpu->env.gpr[5] = 0;
1174 first_cpu->halted = 0;
1175 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1176
1177 }
1178
1179 static void spapr_create_nvram(sPAPRMachineState *spapr)
1180 {
1181 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1182 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1183
1184 if (dinfo) {
1185 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1186 &error_fatal);
1187 }
1188
1189 qdev_init_nofail(dev);
1190
1191 spapr->nvram = (struct sPAPRNVRAM *)dev;
1192 }
1193
1194 static void spapr_rtc_create(sPAPRMachineState *spapr)
1195 {
1196 DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);
1197
1198 qdev_init_nofail(dev);
1199 spapr->rtc = dev;
1200
1201 object_property_add_alias(qdev_get_machine(), "rtc-time",
1202 OBJECT(spapr->rtc), "date", NULL);
1203 }
1204
1205 /* Returns whether we want to use VGA or not */
1206 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1207 {
1208 switch (vga_interface_type) {
1209 case VGA_NONE:
1210 return false;
1211 case VGA_DEVICE:
1212 return true;
1213 case VGA_STD:
1214 case VGA_VIRTIO:
1215 return pci_vga_init(pci_bus) != NULL;
1216 default:
1217 error_setg(errp,
1218 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1219 return false;
1220 }
1221 }
1222
1223 static int spapr_post_load(void *opaque, int version_id)
1224 {
1225 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1226 int err = 0;
1227
1228 /* In earlier versions, there was no separate qdev for the PAPR
1229 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1230 * So when migrating from those versions, poke the incoming offset
1231 * value into the RTC device */
1232 if (version_id < 3) {
1233 err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
1234 }
1235
1236 return err;
1237 }
1238
1239 static bool version_before_3(void *opaque, int version_id)
1240 {
1241 return version_id < 3;
1242 }
1243
1244 static const VMStateDescription vmstate_spapr = {
1245 .name = "spapr",
1246 .version_id = 3,
1247 .minimum_version_id = 1,
1248 .post_load = spapr_post_load,
1249 .fields = (VMStateField[]) {
1250 /* used to be @next_irq */
1251 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1252
1253 /* RTC offset */
1254 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1255
1256 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1257 VMSTATE_END_OF_LIST()
1258 },
1259 };
1260
1261 static int htab_save_setup(QEMUFile *f, void *opaque)
1262 {
1263 sPAPRMachineState *spapr = opaque;
1264
1265 /* "Iteration" header */
1266 qemu_put_be32(f, spapr->htab_shift);
1267
1268 if (spapr->htab) {
1269 spapr->htab_save_index = 0;
1270 spapr->htab_first_pass = true;
1271 } else {
1272 assert(kvm_enabled());
1273 }
1274
1275
1276 return 0;
1277 }
1278
1279 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1280 int64_t max_ns)
1281 {
1282 bool has_timeout = max_ns != -1;
1283 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1284 int index = spapr->htab_save_index;
1285 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1286
1287 assert(spapr->htab_first_pass);
1288
1289 do {
1290 int chunkstart;
1291
1292 /* Consume invalid HPTEs */
1293 while ((index < htabslots)
1294 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1295 index++;
1296 CLEAN_HPTE(HPTE(spapr->htab, index));
1297 }
1298
1299 /* Consume valid HPTEs */
1300 chunkstart = index;
1301 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1302 && HPTE_VALID(HPTE(spapr->htab, index))) {
1303 index++;
1304 CLEAN_HPTE(HPTE(spapr->htab, index));
1305 }
1306
1307 if (index > chunkstart) {
1308 int n_valid = index - chunkstart;
1309
1310 qemu_put_be32(f, chunkstart);
1311 qemu_put_be16(f, n_valid);
1312 qemu_put_be16(f, 0);
1313 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1314 HASH_PTE_SIZE_64 * n_valid);
1315
1316 if (has_timeout &&
1317 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1318 break;
1319 }
1320 }
1321 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1322
1323 if (index >= htabslots) {
1324 assert(index == htabslots);
1325 index = 0;
1326 spapr->htab_first_pass = false;
1327 }
1328 spapr->htab_save_index = index;
1329 }
1330
1331 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1332 int64_t max_ns)
1333 {
1334 bool final = max_ns < 0;
1335 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1336 int examined = 0, sent = 0;
1337 int index = spapr->htab_save_index;
1338 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1339
1340 assert(!spapr->htab_first_pass);
1341
1342 do {
1343 int chunkstart, invalidstart;
1344
1345 /* Consume non-dirty HPTEs */
1346 while ((index < htabslots)
1347 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1348 index++;
1349 examined++;
1350 }
1351
1352 chunkstart = index;
1353 /* Consume valid dirty HPTEs */
1354 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1355 && HPTE_DIRTY(HPTE(spapr->htab, index))
1356 && HPTE_VALID(HPTE(spapr->htab, index))) {
1357 CLEAN_HPTE(HPTE(spapr->htab, index));
1358 index++;
1359 examined++;
1360 }
1361
1362 invalidstart = index;
1363 /* Consume invalid dirty HPTEs */
1364 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1365 && HPTE_DIRTY(HPTE(spapr->htab, index))
1366 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1367 CLEAN_HPTE(HPTE(spapr->htab, index));
1368 index++;
1369 examined++;
1370 }
1371
1372 if (index > chunkstart) {
1373 int n_valid = invalidstart - chunkstart;
1374 int n_invalid = index - invalidstart;
1375
1376 qemu_put_be32(f, chunkstart);
1377 qemu_put_be16(f, n_valid);
1378 qemu_put_be16(f, n_invalid);
1379 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1380 HASH_PTE_SIZE_64 * n_valid);
1381 sent += index - chunkstart;
1382
1383 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1384 break;
1385 }
1386 }
1387
1388 if (examined >= htabslots) {
1389 break;
1390 }
1391
1392 if (index >= htabslots) {
1393 assert(index == htabslots);
1394 index = 0;
1395 }
1396 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1397
1398 if (index >= htabslots) {
1399 assert(index == htabslots);
1400 index = 0;
1401 }
1402
1403 spapr->htab_save_index = index;
1404
1405 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1406 }
1407
1408 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1409 #define MAX_KVM_BUF_SIZE 2048
1410
1411 static int htab_save_iterate(QEMUFile *f, void *opaque)
1412 {
1413 sPAPRMachineState *spapr = opaque;
1414 int fd;
1415 int rc = 0;
1416
1417 /* Iteration header */
1418 qemu_put_be32(f, 0);
1419
1420 if (!spapr->htab) {
1421 assert(kvm_enabled());
1422
1423 fd = get_htab_fd(spapr);
1424 if (fd < 0) {
1425 return fd;
1426 }
1427
1428 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1429 if (rc < 0) {
1430 return rc;
1431 }
1432 } else if (spapr->htab_first_pass) {
1433 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1434 } else {
1435 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1436 }
1437
1438 /* End marker */
1439 qemu_put_be32(f, 0);
1440 qemu_put_be16(f, 0);
1441 qemu_put_be16(f, 0);
1442
1443 return rc;
1444 }
1445
1446 static int htab_save_complete(QEMUFile *f, void *opaque)
1447 {
1448 sPAPRMachineState *spapr = opaque;
1449 int fd;
1450
1451 /* Iteration header */
1452 qemu_put_be32(f, 0);
1453
1454 if (!spapr->htab) {
1455 int rc;
1456
1457 assert(kvm_enabled());
1458
1459 fd = get_htab_fd(spapr);
1460 if (fd < 0) {
1461 return fd;
1462 }
1463
1464 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1465 if (rc < 0) {
1466 return rc;
1467 }
1468 } else {
1469 if (spapr->htab_first_pass) {
1470 htab_save_first_pass(f, spapr, -1);
1471 }
1472 htab_save_later_pass(f, spapr, -1);
1473 }
1474
1475 /* End marker */
1476 qemu_put_be32(f, 0);
1477 qemu_put_be16(f, 0);
1478 qemu_put_be16(f, 0);
1479
1480 return 0;
1481 }
1482
1483 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1484 {
1485 sPAPRMachineState *spapr = opaque;
1486 uint32_t section_hdr;
1487 int fd = -1;
1488
1489 if (version_id < 1 || version_id > 1) {
1490 error_report("htab_load() bad version");
1491 return -EINVAL;
1492 }
1493
1494 section_hdr = qemu_get_be32(f);
1495
1496 if (section_hdr) {
1497 Error *local_err = NULL;
1498
1499 /* First section gives the htab size */
1500 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1501 if (local_err) {
1502 error_report_err(local_err);
1503 return -EINVAL;
1504 }
1505 return 0;
1506 }
1507
1508 if (!spapr->htab) {
1509 assert(kvm_enabled());
1510
1511 fd = kvmppc_get_htab_fd(true);
1512 if (fd < 0) {
1513 error_report("Unable to open fd to restore KVM hash table: %s",
1514 strerror(errno));
1515 }
1516 }
1517
1518 while (true) {
1519 uint32_t index;
1520 uint16_t n_valid, n_invalid;
1521
1522 index = qemu_get_be32(f);
1523 n_valid = qemu_get_be16(f);
1524 n_invalid = qemu_get_be16(f);
1525
1526 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1527 /* End of Stream */
1528 break;
1529 }
1530
1531 if ((index + n_valid + n_invalid) >
1532 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1533 /* Bad index in stream */
1534 error_report(
1535 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1536 index, n_valid, n_invalid, spapr->htab_shift);
1537 return -EINVAL;
1538 }
1539
1540 if (spapr->htab) {
1541 if (n_valid) {
1542 qemu_get_buffer(f, HPTE(spapr->htab, index),
1543 HASH_PTE_SIZE_64 * n_valid);
1544 }
1545 if (n_invalid) {
1546 memset(HPTE(spapr->htab, index + n_valid), 0,
1547 HASH_PTE_SIZE_64 * n_invalid);
1548 }
1549 } else {
1550 int rc;
1551
1552 assert(fd >= 0);
1553
1554 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1555 if (rc < 0) {
1556 return rc;
1557 }
1558 }
1559 }
1560
1561 if (!spapr->htab) {
1562 assert(fd >= 0);
1563 close(fd);
1564 }
1565
1566 return 0;
1567 }
1568
1569 static void htab_cleanup(void *opaque)
1570 {
1571 sPAPRMachineState *spapr = opaque;
1572
1573 close_htab_fd(spapr);
1574 }
1575
1576 static SaveVMHandlers savevm_htab_handlers = {
1577 .save_live_setup = htab_save_setup,
1578 .save_live_iterate = htab_save_iterate,
1579 .save_live_complete_precopy = htab_save_complete,
1580 .cleanup = htab_cleanup,
1581 .load_state = htab_load,
1582 };
1583
1584 static void spapr_boot_set(void *opaque, const char *boot_device,
1585 Error **errp)
1586 {
1587 MachineState *machine = MACHINE(qdev_get_machine());
1588 machine->boot_order = g_strdup(boot_device);
1589 }
1590
1591 /*
1592 * Reset routine for LMB DR devices.
1593 *
1594 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1595 * routine. Reset for PCI DR devices will be handled by PHB reset routine
1596 * when it walks all its children devices. LMB devices reset occurs
1597 * as part of spapr_ppc_reset().
1598 */
1599 static void spapr_drc_reset(void *opaque)
1600 {
1601 sPAPRDRConnector *drc = opaque;
1602 DeviceState *d = DEVICE(drc);
1603
1604 if (d) {
1605 device_reset(d);
1606 }
1607 }
1608
1609 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1610 {
1611 MachineState *machine = MACHINE(spapr);
1612 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
1613 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
1614 int i;
1615
1616 for (i = 0; i < nr_lmbs; i++) {
1617 sPAPRDRConnector *drc;
1618 uint64_t addr;
1619
1620 addr = i * lmb_size + spapr->hotplug_memory.base;
1621 drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
1622 addr/lmb_size);
1623 qemu_register_reset(spapr_drc_reset, drc);
1624 }
1625 }
1626
1627 /*
1628 * If RAM size, maxmem size and individual node mem sizes aren't aligned
1629 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1630 * since we can't support such unaligned sizes with DRCONF_MEMORY.
1631 */
1632 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
1633 {
1634 int i;
1635
1636 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1637 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
1638 " is not aligned to %llu MiB",
1639 machine->ram_size,
1640 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1641 return;
1642 }
1643
1644 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1645 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
1646 " is not aligned to %llu MiB",
1647 machine->ram_size,
1648 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1649 return;
1650 }
1651
1652 for (i = 0; i < nb_numa_nodes; i++) {
1653 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
1654 error_setg(errp,
1655 "Node %d memory size 0x%" PRIx64
1656 " is not aligned to %llu MiB",
1657 i, numa_info[i].node_mem,
1658 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1659 return;
1660 }
1661 }
1662 }
1663
1664 /* pSeries LPAR / sPAPR hardware init */
1665 static void ppc_spapr_init(MachineState *machine)
1666 {
1667 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1668 MachineClass *mc = MACHINE_GET_CLASS(machine);
1669 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1670 const char *kernel_filename = machine->kernel_filename;
1671 const char *kernel_cmdline = machine->kernel_cmdline;
1672 const char *initrd_filename = machine->initrd_filename;
1673 PCIHostState *phb;
1674 int i;
1675 MemoryRegion *sysmem = get_system_memory();
1676 MemoryRegion *ram = g_new(MemoryRegion, 1);
1677 MemoryRegion *rma_region;
1678 void *rma = NULL;
1679 hwaddr rma_alloc_size;
1680 hwaddr node0_size = spapr_node0_size();
1681 uint32_t initrd_base = 0;
1682 long kernel_size = 0, initrd_size = 0;
1683 long load_limit, fw_size;
1684 bool kernel_le = false;
1685 char *filename;
1686 int smt = kvmppc_smt_threads();
1687 int spapr_cores = smp_cpus / smp_threads;
1688 int spapr_max_cores = max_cpus / smp_threads;
1689
1690 if (mc->query_hotpluggable_cpus) {
1691 if (smp_cpus % smp_threads) {
1692 error_report("smp_cpus (%u) must be multiple of threads (%u)",
1693 smp_cpus, smp_threads);
1694 exit(1);
1695 }
1696 if (max_cpus % smp_threads) {
1697 error_report("max_cpus (%u) must be multiple of threads (%u)",
1698 max_cpus, smp_threads);
1699 exit(1);
1700 }
1701 }
1702
1703 msi_nonbroken = true;
1704
1705 QLIST_INIT(&spapr->phbs);
1706
1707 cpu_ppc_hypercall = emulate_spapr_hypercall;
1708
1709 /* Allocate RMA if necessary */
1710 rma_alloc_size = kvmppc_alloc_rma(&rma);
1711
1712 if (rma_alloc_size == -1) {
1713 error_report("Unable to create RMA");
1714 exit(1);
1715 }
1716
1717 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1718 spapr->rma_size = rma_alloc_size;
1719 } else {
1720 spapr->rma_size = node0_size;
1721
1722 /* With KVM, we don't actually know whether KVM supports an
1723 * unbounded RMA (PR KVM) or is limited by the hash table size
1724 * (HV KVM using VRMA), so we always assume the latter
1725 *
1726 * In that case, we also limit the initial allocations for RTAS
1727 * etc... to 256M since we have no way to know what the VRMA size
1728 * is going to be as it depends on the size of the hash table
1729 * isn't determined yet.
1730 */
1731 if (kvm_enabled()) {
1732 spapr->vrma_adjust = 1;
1733 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1734 }
1735
1736 /* Actually we don't support unbounded RMA anymore since we
1737 * added proper emulation of HV mode. The max we can get is
1738 * 16G which also happens to be what we configure for PAPR
1739 * mode so make sure we don't do anything bigger than that
1740 */
1741 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
1742 }
1743
1744 if (spapr->rma_size > node0_size) {
1745 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
1746 spapr->rma_size);
1747 exit(1);
1748 }
1749
1750 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
1751 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
1752
1753 /* Set up Interrupt Controller before we create the VCPUs */
1754 spapr->xics = xics_system_init(machine,
1755 DIV_ROUND_UP(max_cpus * smt, smp_threads),
1756 XICS_IRQS_SPAPR, &error_fatal);
1757
1758 if (smc->dr_lmb_enabled) {
1759 spapr_validate_node_memory(machine, &error_fatal);
1760 }
1761
1762 /* init CPUs */
1763 if (machine->cpu_model == NULL) {
1764 machine->cpu_model = kvm_enabled() ? "host" : "POWER7";
1765 }
1766
1767 ppc_cpu_parse_features(machine->cpu_model);
1768
1769 if (mc->query_hotpluggable_cpus) {
1770 char *type = spapr_get_cpu_core_type(machine->cpu_model);
1771
1772 if (type == NULL) {
1773 error_report("Unable to find sPAPR CPU Core definition");
1774 exit(1);
1775 }
1776
1777 spapr->cores = g_new0(Object *, spapr_max_cores);
1778 for (i = 0; i < spapr_max_cores; i++) {
1779 int core_id = i * smp_threads;
1780 sPAPRDRConnector *drc =
1781 spapr_dr_connector_new(OBJECT(spapr),
1782 SPAPR_DR_CONNECTOR_TYPE_CPU,
1783 (core_id / smp_threads) * smt);
1784
1785 qemu_register_reset(spapr_drc_reset, drc);
1786
1787 if (i < spapr_cores) {
1788 Object *core = object_new(type);
1789 object_property_set_int(core, smp_threads, "nr-threads",
1790 &error_fatal);
1791 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
1792 &error_fatal);
1793 object_property_set_bool(core, true, "realized", &error_fatal);
1794 }
1795 }
1796 g_free(type);
1797 } else {
1798 for (i = 0; i < smp_cpus; i++) {
1799 PowerPCCPU *cpu = cpu_ppc_init(machine->cpu_model);
1800 if (cpu == NULL) {
1801 error_report("Unable to find PowerPC CPU definition");
1802 exit(1);
1803 }
1804 spapr_cpu_init(spapr, cpu, &error_fatal);
1805 }
1806 }
1807
1808 if (kvm_enabled()) {
1809 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
1810 kvmppc_enable_logical_ci_hcalls();
1811 kvmppc_enable_set_mode_hcall();
1812
1813 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
1814 kvmppc_enable_clear_ref_mod_hcalls();
1815 }
1816
1817 /* allocate RAM */
1818 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
1819 machine->ram_size);
1820 memory_region_add_subregion(sysmem, 0, ram);
1821
1822 if (rma_alloc_size && rma) {
1823 rma_region = g_new(MemoryRegion, 1);
1824 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
1825 rma_alloc_size, rma);
1826 vmstate_register_ram_global(rma_region);
1827 memory_region_add_subregion(sysmem, 0, rma_region);
1828 }
1829
1830 /* initialize hotplug memory address space */
1831 if (machine->ram_size < machine->maxram_size) {
1832 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
1833 /*
1834 * Limit the number of hotpluggable memory slots to half the number
1835 * slots that KVM supports, leaving the other half for PCI and other
1836 * devices. However ensure that number of slots doesn't drop below 32.
1837 */
1838 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
1839 SPAPR_MAX_RAM_SLOTS;
1840
1841 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
1842 max_memslots = SPAPR_MAX_RAM_SLOTS;
1843 }
1844 if (machine->ram_slots > max_memslots) {
1845 error_report("Specified number of memory slots %"
1846 PRIu64" exceeds max supported %d",
1847 machine->ram_slots, max_memslots);
1848 exit(1);
1849 }
1850
1851 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
1852 SPAPR_HOTPLUG_MEM_ALIGN);
1853 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
1854 "hotplug-memory", hotplug_mem_size);
1855 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
1856 &spapr->hotplug_memory.mr);
1857 }
1858
1859 if (smc->dr_lmb_enabled) {
1860 spapr_create_lmb_dr_connectors(spapr);
1861 }
1862
1863 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1864 if (!filename) {
1865 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
1866 exit(1);
1867 }
1868 spapr->rtas_size = get_image_size(filename);
1869 if (spapr->rtas_size < 0) {
1870 error_report("Could not get size of LPAR rtas '%s'", filename);
1871 exit(1);
1872 }
1873 spapr->rtas_blob = g_malloc(spapr->rtas_size);
1874 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
1875 error_report("Could not load LPAR rtas '%s'", filename);
1876 exit(1);
1877 }
1878 if (spapr->rtas_size > RTAS_MAX_SIZE) {
1879 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
1880 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
1881 exit(1);
1882 }
1883 g_free(filename);
1884
1885 /* Set up EPOW events infrastructure */
1886 spapr_events_init(spapr);
1887
1888 /* Set up the RTC RTAS interfaces */
1889 spapr_rtc_create(spapr);
1890
1891 /* Set up VIO bus */
1892 spapr->vio_bus = spapr_vio_bus_init();
1893
1894 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1895 if (serial_hds[i]) {
1896 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1897 }
1898 }
1899
1900 /* We always have at least the nvram device on VIO */
1901 spapr_create_nvram(spapr);
1902
1903 /* Set up PCI */
1904 spapr_pci_rtas_init();
1905
1906 phb = spapr_create_phb(spapr, 0);
1907
1908 for (i = 0; i < nb_nics; i++) {
1909 NICInfo *nd = &nd_table[i];
1910
1911 if (!nd->model) {
1912 nd->model = g_strdup("ibmveth");
1913 }
1914
1915 if (strcmp(nd->model, "ibmveth") == 0) {
1916 spapr_vlan_create(spapr->vio_bus, nd);
1917 } else {
1918 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1919 }
1920 }
1921
1922 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1923 spapr_vscsi_create(spapr->vio_bus);
1924 }
1925
1926 /* Graphics */
1927 if (spapr_vga_init(phb->bus, &error_fatal)) {
1928 spapr->has_graphics = true;
1929 machine->usb |= defaults_enabled() && !machine->usb_disabled;
1930 }
1931
1932 if (machine->usb) {
1933 if (smc->use_ohci_by_default) {
1934 pci_create_simple(phb->bus, -1, "pci-ohci");
1935 } else {
1936 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
1937 }
1938
1939 if (spapr->has_graphics) {
1940 USBBus *usb_bus = usb_bus_find(-1);
1941
1942 usb_create_simple(usb_bus, "usb-kbd");
1943 usb_create_simple(usb_bus, "usb-mouse");
1944 }
1945 }
1946
1947 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1948 error_report(
1949 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
1950 MIN_RMA_SLOF);
1951 exit(1);
1952 }
1953
1954 if (kernel_filename) {
1955 uint64_t lowaddr = 0;
1956
1957 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
1958 NULL, &lowaddr, NULL, 1, PPC_ELF_MACHINE,
1959 0, 0);
1960 if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1961 kernel_size = load_elf(kernel_filename,
1962 translate_kernel_address, NULL,
1963 NULL, &lowaddr, NULL, 0, PPC_ELF_MACHINE,
1964 0, 0);
1965 kernel_le = kernel_size > 0;
1966 }
1967 if (kernel_size < 0) {
1968 error_report("error loading %s: %s",
1969 kernel_filename, load_elf_strerror(kernel_size));
1970 exit(1);
1971 }
1972
1973 /* load initrd */
1974 if (initrd_filename) {
1975 /* Try to locate the initrd in the gap between the kernel
1976 * and the firmware. Add a bit of space just in case
1977 */
1978 initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1979 initrd_size = load_image_targphys(initrd_filename, initrd_base,
1980 load_limit - initrd_base);
1981 if (initrd_size < 0) {
1982 error_report("could not load initial ram disk '%s'",
1983 initrd_filename);
1984 exit(1);
1985 }
1986 } else {
1987 initrd_base = 0;
1988 initrd_size = 0;
1989 }
1990 }
1991
1992 if (bios_name == NULL) {
1993 bios_name = FW_FILE_NAME;
1994 }
1995 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1996 if (!filename) {
1997 error_report("Could not find LPAR firmware '%s'", bios_name);
1998 exit(1);
1999 }
2000 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2001 if (fw_size <= 0) {
2002 error_report("Could not load LPAR firmware '%s'", filename);
2003 exit(1);
2004 }
2005 g_free(filename);
2006
2007 /* FIXME: Should register things through the MachineState's qdev
2008 * interface, this is a legacy from the sPAPREnvironment structure
2009 * which predated MachineState but had a similar function */
2010 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2011 register_savevm_live(NULL, "spapr/htab", -1, 1,
2012 &savevm_htab_handlers, spapr);
2013
2014 /* Prepare the device tree */
2015 spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
2016 kernel_size, kernel_le,
2017 kernel_cmdline,
2018 spapr->check_exception_irq);
2019 assert(spapr->fdt_skel != NULL);
2020
2021 /* used by RTAS */
2022 QTAILQ_INIT(&spapr->ccs_list);
2023 qemu_register_reset(spapr_ccs_reset_hook, spapr);
2024
2025 qemu_register_boot_set(spapr_boot_set, spapr);
2026 }
2027
2028 static int spapr_kvm_type(const char *vm_type)
2029 {
2030 if (!vm_type) {
2031 return 0;
2032 }
2033
2034 if (!strcmp(vm_type, "HV")) {
2035 return 1;
2036 }
2037
2038 if (!strcmp(vm_type, "PR")) {
2039 return 2;
2040 }
2041
2042 error_report("Unknown kvm-type specified '%s'", vm_type);
2043 exit(1);
2044 }
2045
2046 /*
2047 * Implementation of an interface to adjust firmware path
2048 * for the bootindex property handling.
2049 */
2050 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2051 DeviceState *dev)
2052 {
2053 #define CAST(type, obj, name) \
2054 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2055 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2056 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2057
2058 if (d) {
2059 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2060 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2061 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2062
2063 if (spapr) {
2064 /*
2065 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2066 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2067 * in the top 16 bits of the 64-bit LUN
2068 */
2069 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2070 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2071 (uint64_t)id << 48);
2072 } else if (virtio) {
2073 /*
2074 * We use SRP luns of the form 01000000 | (target << 8) | lun
2075 * in the top 32 bits of the 64-bit LUN
2076 * Note: the quote above is from SLOF and it is wrong,
2077 * the actual binding is:
2078 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2079 */
2080 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2081 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2082 (uint64_t)id << 32);
2083 } else if (usb) {
2084 /*
2085 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2086 * in the top 32 bits of the 64-bit LUN
2087 */
2088 unsigned usb_port = atoi(usb->port->path);
2089 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2090 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2091 (uint64_t)id << 32);
2092 }
2093 }
2094
2095 if (phb) {
2096 /* Replace "pci" with "pci@800000020000000" */
2097 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2098 }
2099
2100 return NULL;
2101 }
2102
2103 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2104 {
2105 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2106
2107 return g_strdup(spapr->kvm_type);
2108 }
2109
2110 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2111 {
2112 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2113
2114 g_free(spapr->kvm_type);
2115 spapr->kvm_type = g_strdup(value);
2116 }
2117
2118 static void spapr_machine_initfn(Object *obj)
2119 {
2120 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2121
2122 spapr->htab_fd = -1;
2123 object_property_add_str(obj, "kvm-type",
2124 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2125 object_property_set_description(obj, "kvm-type",
2126 "Specifies the KVM virtualization mode (HV, PR)",
2127 NULL);
2128 }
2129
2130 static void spapr_machine_finalizefn(Object *obj)
2131 {
2132 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2133
2134 g_free(spapr->kvm_type);
2135 }
2136
2137 static void ppc_cpu_do_nmi_on_cpu(CPUState *cs, void *arg)
2138 {
2139 cpu_synchronize_state(cs);
2140 ppc_cpu_do_system_reset(cs);
2141 }
2142
2143 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2144 {
2145 CPUState *cs;
2146
2147 CPU_FOREACH(cs) {
2148 async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, NULL);
2149 }
2150 }
2151
2152 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr, uint64_t size,
2153 uint32_t node, Error **errp)
2154 {
2155 sPAPRDRConnector *drc;
2156 sPAPRDRConnectorClass *drck;
2157 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2158 int i, fdt_offset, fdt_size;
2159 void *fdt;
2160
2161 for (i = 0; i < nr_lmbs; i++) {
2162 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2163 addr/SPAPR_MEMORY_BLOCK_SIZE);
2164 g_assert(drc);
2165
2166 fdt = create_device_tree(&fdt_size);
2167 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2168 SPAPR_MEMORY_BLOCK_SIZE);
2169
2170 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2171 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
2172 addr += SPAPR_MEMORY_BLOCK_SIZE;
2173 }
2174 /* send hotplug notification to the
2175 * guest only in case of hotplugged memory
2176 */
2177 if (dev->hotplugged) {
2178 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, nr_lmbs);
2179 }
2180 }
2181
2182 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2183 uint32_t node, Error **errp)
2184 {
2185 Error *local_err = NULL;
2186 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2187 PCDIMMDevice *dimm = PC_DIMM(dev);
2188 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2189 MemoryRegion *mr = ddc->get_memory_region(dimm);
2190 uint64_t align = memory_region_get_alignment(mr);
2191 uint64_t size = memory_region_size(mr);
2192 uint64_t addr;
2193
2194 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2195 error_setg(&local_err, "Hotplugged memory size must be a multiple of "
2196 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
2197 goto out;
2198 }
2199
2200 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2201 if (local_err) {
2202 goto out;
2203 }
2204
2205 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2206 if (local_err) {
2207 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2208 goto out;
2209 }
2210
2211 spapr_add_lmbs(dev, addr, size, node, &error_abort);
2212
2213 out:
2214 error_propagate(errp, local_err);
2215 }
2216
2217 void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
2218 sPAPRMachineState *spapr)
2219 {
2220 PowerPCCPU *cpu = POWERPC_CPU(cs);
2221 DeviceClass *dc = DEVICE_GET_CLASS(cs);
2222 int id = ppc_get_vcpu_dt_id(cpu);
2223 void *fdt;
2224 int offset, fdt_size;
2225 char *nodename;
2226
2227 fdt = create_device_tree(&fdt_size);
2228 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
2229 offset = fdt_add_subnode(fdt, 0, nodename);
2230
2231 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
2232 g_free(nodename);
2233
2234 *fdt_offset = offset;
2235 return fdt;
2236 }
2237
2238 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
2239 DeviceState *dev, Error **errp)
2240 {
2241 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2242
2243 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2244 int node;
2245
2246 if (!smc->dr_lmb_enabled) {
2247 error_setg(errp, "Memory hotplug not supported for this machine");
2248 return;
2249 }
2250 node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
2251 if (*errp) {
2252 return;
2253 }
2254 if (node < 0 || node >= MAX_NODES) {
2255 error_setg(errp, "Invaild node %d", node);
2256 return;
2257 }
2258
2259 /*
2260 * Currently PowerPC kernel doesn't allow hot-adding memory to
2261 * memory-less node, but instead will silently add the memory
2262 * to the first node that has some memory. This causes two
2263 * unexpected behaviours for the user.
2264 *
2265 * - Memory gets hotplugged to a different node than what the user
2266 * specified.
2267 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2268 * to memory-less node, a reboot will set things accordingly
2269 * and the previously hotplugged memory now ends in the right node.
2270 * This appears as if some memory moved from one node to another.
2271 *
2272 * So until kernel starts supporting memory hotplug to memory-less
2273 * nodes, just prevent such attempts upfront in QEMU.
2274 */
2275 if (nb_numa_nodes && !numa_info[node].node_mem) {
2276 error_setg(errp, "Can't hotplug memory to memory-less node %d",
2277 node);
2278 return;
2279 }
2280
2281 spapr_memory_plug(hotplug_dev, dev, node, errp);
2282 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2283 spapr_core_plug(hotplug_dev, dev, errp);
2284 }
2285 }
2286
2287 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
2288 DeviceState *dev, Error **errp)
2289 {
2290 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
2291
2292 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2293 error_setg(errp, "Memory hot unplug not supported by sPAPR");
2294 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2295 if (!mc->query_hotpluggable_cpus) {
2296 error_setg(errp, "CPU hot unplug not supported on this machine");
2297 return;
2298 }
2299 spapr_core_unplug(hotplug_dev, dev, errp);
2300 }
2301 }
2302
2303 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
2304 DeviceState *dev, Error **errp)
2305 {
2306 if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2307 spapr_core_pre_plug(hotplug_dev, dev, errp);
2308 }
2309 }
2310
2311 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
2312 DeviceState *dev)
2313 {
2314 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2315 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2316 return HOTPLUG_HANDLER(machine);
2317 }
2318 return NULL;
2319 }
2320
2321 static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index)
2322 {
2323 /* Allocate to NUMA nodes on a "socket" basis (not that concept of
2324 * socket means much for the paravirtualized PAPR platform) */
2325 return cpu_index / smp_threads / smp_cores;
2326 }
2327
2328 static HotpluggableCPUList *spapr_query_hotpluggable_cpus(MachineState *machine)
2329 {
2330 int i;
2331 HotpluggableCPUList *head = NULL;
2332 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2333 int spapr_max_cores = max_cpus / smp_threads;
2334
2335 for (i = 0; i < spapr_max_cores; i++) {
2336 HotpluggableCPUList *list_item = g_new0(typeof(*list_item), 1);
2337 HotpluggableCPU *cpu_item = g_new0(typeof(*cpu_item), 1);
2338 CpuInstanceProperties *cpu_props = g_new0(typeof(*cpu_props), 1);
2339
2340 cpu_item->type = spapr_get_cpu_core_type(machine->cpu_model);
2341 cpu_item->vcpus_count = smp_threads;
2342 cpu_props->has_core_id = true;
2343 cpu_props->core_id = i * smp_threads;
2344 /* TODO: add 'has_node/node' here to describe
2345 to which node core belongs */
2346
2347 cpu_item->props = cpu_props;
2348 if (spapr->cores[i]) {
2349 cpu_item->has_qom_path = true;
2350 cpu_item->qom_path = object_get_canonical_path(spapr->cores[i]);
2351 }
2352 list_item->value = cpu_item;
2353 list_item->next = head;
2354 head = list_item;
2355 }
2356 return head;
2357 }
2358
2359 static void spapr_machine_class_init(ObjectClass *oc, void *data)
2360 {
2361 MachineClass *mc = MACHINE_CLASS(oc);
2362 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
2363 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
2364 NMIClass *nc = NMI_CLASS(oc);
2365 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2366
2367 mc->desc = "pSeries Logical Partition (PAPR compliant)";
2368
2369 /*
2370 * We set up the default / latest behaviour here. The class_init
2371 * functions for the specific versioned machine types can override
2372 * these details for backwards compatibility
2373 */
2374 mc->init = ppc_spapr_init;
2375 mc->reset = ppc_spapr_reset;
2376 mc->block_default_type = IF_SCSI;
2377 mc->max_cpus = MAX_CPUMASK_BITS;
2378 mc->no_parallel = 1;
2379 mc->default_boot_order = "";
2380 mc->default_ram_size = 512 * M_BYTE;
2381 mc->kvm_type = spapr_kvm_type;
2382 mc->has_dynamic_sysbus = true;
2383 mc->pci_allow_0_address = true;
2384 mc->get_hotplug_handler = spapr_get_hotplug_handler;
2385 hc->pre_plug = spapr_machine_device_pre_plug;
2386 hc->plug = spapr_machine_device_plug;
2387 hc->unplug = spapr_machine_device_unplug;
2388 mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id;
2389
2390 smc->dr_lmb_enabled = true;
2391 mc->query_hotpluggable_cpus = spapr_query_hotpluggable_cpus;
2392 fwc->get_dev_path = spapr_get_fw_dev_path;
2393 nc->nmi_monitor_handler = spapr_nmi;
2394 }
2395
2396 static const TypeInfo spapr_machine_info = {
2397 .name = TYPE_SPAPR_MACHINE,
2398 .parent = TYPE_MACHINE,
2399 .abstract = true,
2400 .instance_size = sizeof(sPAPRMachineState),
2401 .instance_init = spapr_machine_initfn,
2402 .instance_finalize = spapr_machine_finalizefn,
2403 .class_size = sizeof(sPAPRMachineClass),
2404 .class_init = spapr_machine_class_init,
2405 .interfaces = (InterfaceInfo[]) {
2406 { TYPE_FW_PATH_PROVIDER },
2407 { TYPE_NMI },
2408 { TYPE_HOTPLUG_HANDLER },
2409 { }
2410 },
2411 };
2412
2413 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
2414 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
2415 void *data) \
2416 { \
2417 MachineClass *mc = MACHINE_CLASS(oc); \
2418 spapr_machine_##suffix##_class_options(mc); \
2419 if (latest) { \
2420 mc->alias = "pseries"; \
2421 mc->is_default = 1; \
2422 } \
2423 } \
2424 static void spapr_machine_##suffix##_instance_init(Object *obj) \
2425 { \
2426 MachineState *machine = MACHINE(obj); \
2427 spapr_machine_##suffix##_instance_options(machine); \
2428 } \
2429 static const TypeInfo spapr_machine_##suffix##_info = { \
2430 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
2431 .parent = TYPE_SPAPR_MACHINE, \
2432 .class_init = spapr_machine_##suffix##_class_init, \
2433 .instance_init = spapr_machine_##suffix##_instance_init, \
2434 }; \
2435 static void spapr_machine_register_##suffix(void) \
2436 { \
2437 type_register(&spapr_machine_##suffix##_info); \
2438 } \
2439 type_init(spapr_machine_register_##suffix)
2440
2441 /*
2442 * pseries-2.7
2443 */
2444 static void spapr_machine_2_7_instance_options(MachineState *machine)
2445 {
2446 }
2447
2448 static void spapr_machine_2_7_class_options(MachineClass *mc)
2449 {
2450 /* Defaults for the latest behaviour inherited from the base class */
2451 }
2452
2453 DEFINE_SPAPR_MACHINE(2_7, "2.7", true);
2454
2455 /*
2456 * pseries-2.6
2457 */
2458 #define SPAPR_COMPAT_2_6 \
2459 HW_COMPAT_2_6 \
2460 { \
2461 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
2462 .property = "ddw",\
2463 .value = stringify(off),\
2464 },
2465
2466 static void spapr_machine_2_6_instance_options(MachineState *machine)
2467 {
2468 }
2469
2470 static void spapr_machine_2_6_class_options(MachineClass *mc)
2471 {
2472 spapr_machine_2_7_class_options(mc);
2473 mc->query_hotpluggable_cpus = NULL;
2474 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
2475 }
2476
2477 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
2478
2479 /*
2480 * pseries-2.5
2481 */
2482 #define SPAPR_COMPAT_2_5 \
2483 HW_COMPAT_2_5 \
2484 { \
2485 .driver = "spapr-vlan", \
2486 .property = "use-rx-buffer-pools", \
2487 .value = "off", \
2488 },
2489
2490 static void spapr_machine_2_5_instance_options(MachineState *machine)
2491 {
2492 }
2493
2494 static void spapr_machine_2_5_class_options(MachineClass *mc)
2495 {
2496 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2497
2498 spapr_machine_2_6_class_options(mc);
2499 smc->use_ohci_by_default = true;
2500 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
2501 }
2502
2503 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
2504
2505 /*
2506 * pseries-2.4
2507 */
2508 #define SPAPR_COMPAT_2_4 \
2509 HW_COMPAT_2_4
2510
2511 static void spapr_machine_2_4_instance_options(MachineState *machine)
2512 {
2513 spapr_machine_2_5_instance_options(machine);
2514 }
2515
2516 static void spapr_machine_2_4_class_options(MachineClass *mc)
2517 {
2518 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2519
2520 spapr_machine_2_5_class_options(mc);
2521 smc->dr_lmb_enabled = false;
2522 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
2523 }
2524
2525 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
2526
2527 /*
2528 * pseries-2.3
2529 */
2530 #define SPAPR_COMPAT_2_3 \
2531 HW_COMPAT_2_3 \
2532 {\
2533 .driver = "spapr-pci-host-bridge",\
2534 .property = "dynamic-reconfiguration",\
2535 .value = "off",\
2536 },
2537
2538 static void spapr_machine_2_3_instance_options(MachineState *machine)
2539 {
2540 spapr_machine_2_4_instance_options(machine);
2541 savevm_skip_section_footers();
2542 global_state_set_optional();
2543 savevm_skip_configuration();
2544 }
2545
2546 static void spapr_machine_2_3_class_options(MachineClass *mc)
2547 {
2548 spapr_machine_2_4_class_options(mc);
2549 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
2550 }
2551 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
2552
2553 /*
2554 * pseries-2.2
2555 */
2556
2557 #define SPAPR_COMPAT_2_2 \
2558 HW_COMPAT_2_2 \
2559 {\
2560 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
2561 .property = "mem_win_size",\
2562 .value = "0x20000000",\
2563 },
2564
2565 static void spapr_machine_2_2_instance_options(MachineState *machine)
2566 {
2567 spapr_machine_2_3_instance_options(machine);
2568 machine->suppress_vmdesc = true;
2569 }
2570
2571 static void spapr_machine_2_2_class_options(MachineClass *mc)
2572 {
2573 spapr_machine_2_3_class_options(mc);
2574 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
2575 }
2576 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
2577
2578 /*
2579 * pseries-2.1
2580 */
2581 #define SPAPR_COMPAT_2_1 \
2582 HW_COMPAT_2_1
2583
2584 static void spapr_machine_2_1_instance_options(MachineState *machine)
2585 {
2586 spapr_machine_2_2_instance_options(machine);
2587 }
2588
2589 static void spapr_machine_2_1_class_options(MachineClass *mc)
2590 {
2591 spapr_machine_2_2_class_options(mc);
2592 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
2593 }
2594 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
2595
2596 static void spapr_machine_register_types(void)
2597 {
2598 type_register_static(&spapr_machine_info);
2599 }
2600
2601 type_init(spapr_machine_register_types)