]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr.c
ppc/xics: remove the XICSState classes
[mirror_qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/numa.h"
31 #include "hw/hw.h"
32 #include "qemu/log.h"
33 #include "hw/fw-path-provider.h"
34 #include "elf.h"
35 #include "net/net.h"
36 #include "sysemu/device_tree.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/hw_accel.h"
40 #include "kvm_ppc.h"
41 #include "migration/migration.h"
42 #include "mmu-hash64.h"
43 #include "qom/cpu.h"
44
45 #include "hw/boards.h"
46 #include "hw/ppc/ppc.h"
47 #include "hw/loader.h"
48
49 #include "hw/ppc/fdt.h"
50 #include "hw/ppc/spapr.h"
51 #include "hw/ppc/spapr_vio.h"
52 #include "hw/pci-host/spapr.h"
53 #include "hw/ppc/xics.h"
54 #include "hw/pci/msi.h"
55
56 #include "hw/pci/pci.h"
57 #include "hw/scsi/scsi.h"
58 #include "hw/virtio/virtio-scsi.h"
59
60 #include "exec/address-spaces.h"
61 #include "hw/usb.h"
62 #include "qemu/config-file.h"
63 #include "qemu/error-report.h"
64 #include "trace.h"
65 #include "hw/nmi.h"
66
67 #include "hw/compat.h"
68 #include "qemu/cutils.h"
69 #include "hw/ppc/spapr_cpu_core.h"
70 #include "qmp-commands.h"
71
72 #include <libfdt.h>
73
74 /* SLOF memory layout:
75 *
76 * SLOF raw image loaded at 0, copies its romfs right below the flat
77 * device-tree, then position SLOF itself 31M below that
78 *
79 * So we set FW_OVERHEAD to 40MB which should account for all of that
80 * and more
81 *
82 * We load our kernel at 4M, leaving space for SLOF initial image
83 */
84 #define FDT_MAX_SIZE 0x100000
85 #define RTAS_MAX_SIZE 0x10000
86 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
87 #define FW_MAX_SIZE 0x400000
88 #define FW_FILE_NAME "slof.bin"
89 #define FW_OVERHEAD 0x2800000
90 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
91
92 #define MIN_RMA_SLOF 128UL
93
94 #define PHANDLE_XICP 0x00001111
95
96 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
97
98 static int try_create_xics(sPAPRMachineState *spapr, const char *type_ics,
99 const char *type_icp, int nr_servers,
100 int nr_irqs, Error **errp)
101 {
102 XICSFabric *xi = XICS_FABRIC(spapr);
103 Error *err = NULL, *local_err = NULL;
104 ICSState *ics = NULL;
105 int i;
106
107 ics = ICS_SIMPLE(object_new(type_ics));
108 qdev_set_parent_bus(DEVICE(ics), sysbus_get_default());
109 object_property_add_child(OBJECT(spapr), "ics", OBJECT(ics), NULL);
110 object_property_set_int(OBJECT(ics), nr_irqs, "nr-irqs", &err);
111 object_property_add_const_link(OBJECT(ics), "xics", OBJECT(xi), NULL);
112 object_property_set_bool(OBJECT(ics), true, "realized", &local_err);
113 error_propagate(&err, local_err);
114 if (err) {
115 goto error;
116 }
117
118 spapr->icps = g_malloc0(nr_servers * sizeof(ICPState));
119 spapr->nr_servers = nr_servers;
120
121 for (i = 0; i < nr_servers; i++) {
122 ICPState *icp = &spapr->icps[i];
123
124 object_initialize(icp, sizeof(*icp), type_icp);
125 qdev_set_parent_bus(DEVICE(icp), sysbus_get_default());
126 object_property_add_child(OBJECT(spapr), "icp[*]", OBJECT(icp), NULL);
127 object_property_add_const_link(OBJECT(icp), "xics", OBJECT(xi), NULL);
128 object_property_set_bool(OBJECT(icp), true, "realized", &err);
129 if (err) {
130 goto error;
131 }
132 object_unref(OBJECT(icp));
133 }
134
135 spapr->ics = ics;
136 return 0;
137
138 error:
139 error_propagate(errp, err);
140 if (ics) {
141 object_unparent(OBJECT(ics));
142 }
143 return -1;
144 }
145
146 static int xics_system_init(MachineState *machine,
147 int nr_servers, int nr_irqs, Error **errp)
148 {
149 int rc = -1;
150
151 if (kvm_enabled()) {
152 Error *err = NULL;
153
154 if (machine_kernel_irqchip_allowed(machine) &&
155 !xics_kvm_init(SPAPR_MACHINE(machine), errp)) {
156 rc = try_create_xics(SPAPR_MACHINE(machine), TYPE_ICS_KVM,
157 TYPE_KVM_ICP, nr_servers, nr_irqs, &err);
158 }
159 if (machine_kernel_irqchip_required(machine) && rc < 0) {
160 error_reportf_err(err,
161 "kernel_irqchip requested but unavailable: ");
162 } else {
163 error_free(err);
164 }
165 }
166
167 if (rc < 0) {
168 xics_spapr_init(SPAPR_MACHINE(machine), errp);
169 rc = try_create_xics(SPAPR_MACHINE(machine), TYPE_ICS_SIMPLE,
170 TYPE_ICP, nr_servers, nr_irqs, errp);
171 }
172
173 return rc;
174 }
175
176 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
177 int smt_threads)
178 {
179 int i, ret = 0;
180 uint32_t servers_prop[smt_threads];
181 uint32_t gservers_prop[smt_threads * 2];
182 int index = ppc_get_vcpu_dt_id(cpu);
183
184 if (cpu->compat_pvr) {
185 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
186 if (ret < 0) {
187 return ret;
188 }
189 }
190
191 /* Build interrupt servers and gservers properties */
192 for (i = 0; i < smt_threads; i++) {
193 servers_prop[i] = cpu_to_be32(index + i);
194 /* Hack, direct the group queues back to cpu 0 */
195 gservers_prop[i*2] = cpu_to_be32(index + i);
196 gservers_prop[i*2 + 1] = 0;
197 }
198 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
199 servers_prop, sizeof(servers_prop));
200 if (ret < 0) {
201 return ret;
202 }
203 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
204 gservers_prop, sizeof(gservers_prop));
205
206 return ret;
207 }
208
209 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
210 {
211 int ret = 0;
212 PowerPCCPU *cpu = POWERPC_CPU(cs);
213 int index = ppc_get_vcpu_dt_id(cpu);
214 uint32_t associativity[] = {cpu_to_be32(0x5),
215 cpu_to_be32(0x0),
216 cpu_to_be32(0x0),
217 cpu_to_be32(0x0),
218 cpu_to_be32(cs->numa_node),
219 cpu_to_be32(index)};
220
221 /* Advertise NUMA via ibm,associativity */
222 if (nb_numa_nodes > 1) {
223 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
224 sizeof(associativity));
225 }
226
227 return ret;
228 }
229
230 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
231 {
232 int ret = 0, offset, cpus_offset;
233 CPUState *cs;
234 char cpu_model[32];
235 int smt = kvmppc_smt_threads();
236 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
237
238 CPU_FOREACH(cs) {
239 PowerPCCPU *cpu = POWERPC_CPU(cs);
240 DeviceClass *dc = DEVICE_GET_CLASS(cs);
241 int index = ppc_get_vcpu_dt_id(cpu);
242 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
243
244 if ((index % smt) != 0) {
245 continue;
246 }
247
248 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
249
250 cpus_offset = fdt_path_offset(fdt, "/cpus");
251 if (cpus_offset < 0) {
252 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
253 "cpus");
254 if (cpus_offset < 0) {
255 return cpus_offset;
256 }
257 }
258 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
259 if (offset < 0) {
260 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
261 if (offset < 0) {
262 return offset;
263 }
264 }
265
266 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
267 pft_size_prop, sizeof(pft_size_prop));
268 if (ret < 0) {
269 return ret;
270 }
271
272 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
273 if (ret < 0) {
274 return ret;
275 }
276
277 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
278 if (ret < 0) {
279 return ret;
280 }
281 }
282 return ret;
283 }
284
285 static hwaddr spapr_node0_size(void)
286 {
287 MachineState *machine = MACHINE(qdev_get_machine());
288
289 if (nb_numa_nodes) {
290 int i;
291 for (i = 0; i < nb_numa_nodes; ++i) {
292 if (numa_info[i].node_mem) {
293 return MIN(pow2floor(numa_info[i].node_mem),
294 machine->ram_size);
295 }
296 }
297 }
298 return machine->ram_size;
299 }
300
301 static void add_str(GString *s, const gchar *s1)
302 {
303 g_string_append_len(s, s1, strlen(s1) + 1);
304 }
305
306 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
307 hwaddr size)
308 {
309 uint32_t associativity[] = {
310 cpu_to_be32(0x4), /* length */
311 cpu_to_be32(0x0), cpu_to_be32(0x0),
312 cpu_to_be32(0x0), cpu_to_be32(nodeid)
313 };
314 char mem_name[32];
315 uint64_t mem_reg_property[2];
316 int off;
317
318 mem_reg_property[0] = cpu_to_be64(start);
319 mem_reg_property[1] = cpu_to_be64(size);
320
321 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
322 off = fdt_add_subnode(fdt, 0, mem_name);
323 _FDT(off);
324 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
325 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
326 sizeof(mem_reg_property))));
327 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
328 sizeof(associativity))));
329 return off;
330 }
331
332 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
333 {
334 MachineState *machine = MACHINE(spapr);
335 hwaddr mem_start, node_size;
336 int i, nb_nodes = nb_numa_nodes;
337 NodeInfo *nodes = numa_info;
338 NodeInfo ramnode;
339
340 /* No NUMA nodes, assume there is just one node with whole RAM */
341 if (!nb_numa_nodes) {
342 nb_nodes = 1;
343 ramnode.node_mem = machine->ram_size;
344 nodes = &ramnode;
345 }
346
347 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
348 if (!nodes[i].node_mem) {
349 continue;
350 }
351 if (mem_start >= machine->ram_size) {
352 node_size = 0;
353 } else {
354 node_size = nodes[i].node_mem;
355 if (node_size > machine->ram_size - mem_start) {
356 node_size = machine->ram_size - mem_start;
357 }
358 }
359 if (!mem_start) {
360 /* ppc_spapr_init() checks for rma_size <= node0_size already */
361 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
362 mem_start += spapr->rma_size;
363 node_size -= spapr->rma_size;
364 }
365 for ( ; node_size; ) {
366 hwaddr sizetmp = pow2floor(node_size);
367
368 /* mem_start != 0 here */
369 if (ctzl(mem_start) < ctzl(sizetmp)) {
370 sizetmp = 1ULL << ctzl(mem_start);
371 }
372
373 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
374 node_size -= sizetmp;
375 mem_start += sizetmp;
376 }
377 }
378
379 return 0;
380 }
381
382 /* Populate the "ibm,pa-features" property */
383 static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset)
384 {
385 uint8_t pa_features_206[] = { 6, 0,
386 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
387 uint8_t pa_features_207[] = { 24, 0,
388 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
389 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
390 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
391 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
392 uint8_t *pa_features;
393 size_t pa_size;
394
395 switch (env->mmu_model) {
396 case POWERPC_MMU_2_06:
397 case POWERPC_MMU_2_06a:
398 pa_features = pa_features_206;
399 pa_size = sizeof(pa_features_206);
400 break;
401 case POWERPC_MMU_2_07:
402 case POWERPC_MMU_2_07a:
403 pa_features = pa_features_207;
404 pa_size = sizeof(pa_features_207);
405 break;
406 default:
407 return;
408 }
409
410 if (env->ci_large_pages) {
411 /*
412 * Note: we keep CI large pages off by default because a 64K capable
413 * guest provisioned with large pages might otherwise try to map a qemu
414 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
415 * even if that qemu runs on a 4k host.
416 * We dd this bit back here if we are confident this is not an issue
417 */
418 pa_features[3] |= 0x20;
419 }
420 if (kvmppc_has_cap_htm() && pa_size > 24) {
421 pa_features[24] |= 0x80; /* Transactional memory support */
422 }
423
424 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
425 }
426
427 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
428 sPAPRMachineState *spapr)
429 {
430 PowerPCCPU *cpu = POWERPC_CPU(cs);
431 CPUPPCState *env = &cpu->env;
432 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
433 int index = ppc_get_vcpu_dt_id(cpu);
434 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
435 0xffffffff, 0xffffffff};
436 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
437 : SPAPR_TIMEBASE_FREQ;
438 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
439 uint32_t page_sizes_prop[64];
440 size_t page_sizes_prop_size;
441 uint32_t vcpus_per_socket = smp_threads * smp_cores;
442 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
443 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
444 sPAPRDRConnector *drc;
445 sPAPRDRConnectorClass *drck;
446 int drc_index;
447
448 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index);
449 if (drc) {
450 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
451 drc_index = drck->get_index(drc);
452 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
453 }
454
455 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
456 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
457
458 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
459 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
460 env->dcache_line_size)));
461 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
462 env->dcache_line_size)));
463 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
464 env->icache_line_size)));
465 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
466 env->icache_line_size)));
467
468 if (pcc->l1_dcache_size) {
469 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
470 pcc->l1_dcache_size)));
471 } else {
472 error_report("Warning: Unknown L1 dcache size for cpu");
473 }
474 if (pcc->l1_icache_size) {
475 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
476 pcc->l1_icache_size)));
477 } else {
478 error_report("Warning: Unknown L1 icache size for cpu");
479 }
480
481 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
482 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
483 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
484 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
485 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
486 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
487
488 if (env->spr_cb[SPR_PURR].oea_read) {
489 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
490 }
491
492 if (env->mmu_model & POWERPC_MMU_1TSEG) {
493 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
494 segs, sizeof(segs))));
495 }
496
497 /* Advertise VMX/VSX (vector extensions) if available
498 * 0 / no property == no vector extensions
499 * 1 == VMX / Altivec available
500 * 2 == VSX available */
501 if (env->insns_flags & PPC_ALTIVEC) {
502 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
503
504 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
505 }
506
507 /* Advertise DFP (Decimal Floating Point) if available
508 * 0 / no property == no DFP
509 * 1 == DFP available */
510 if (env->insns_flags2 & PPC2_DFP) {
511 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
512 }
513
514 page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
515 sizeof(page_sizes_prop));
516 if (page_sizes_prop_size) {
517 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
518 page_sizes_prop, page_sizes_prop_size)));
519 }
520
521 spapr_populate_pa_features(env, fdt, offset);
522
523 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
524 cs->cpu_index / vcpus_per_socket)));
525
526 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
527 pft_size_prop, sizeof(pft_size_prop))));
528
529 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));
530
531 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
532 }
533
534 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
535 {
536 CPUState *cs;
537 int cpus_offset;
538 char *nodename;
539 int smt = kvmppc_smt_threads();
540
541 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
542 _FDT(cpus_offset);
543 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
544 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
545
546 /*
547 * We walk the CPUs in reverse order to ensure that CPU DT nodes
548 * created by fdt_add_subnode() end up in the right order in FDT
549 * for the guest kernel the enumerate the CPUs correctly.
550 */
551 CPU_FOREACH_REVERSE(cs) {
552 PowerPCCPU *cpu = POWERPC_CPU(cs);
553 int index = ppc_get_vcpu_dt_id(cpu);
554 DeviceClass *dc = DEVICE_GET_CLASS(cs);
555 int offset;
556
557 if ((index % smt) != 0) {
558 continue;
559 }
560
561 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
562 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
563 g_free(nodename);
564 _FDT(offset);
565 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
566 }
567
568 }
569
570 /*
571 * Adds ibm,dynamic-reconfiguration-memory node.
572 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
573 * of this device tree node.
574 */
575 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
576 {
577 MachineState *machine = MACHINE(spapr);
578 int ret, i, offset;
579 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
580 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
581 uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
582 uint32_t nr_lmbs = (spapr->hotplug_memory.base +
583 memory_region_size(&spapr->hotplug_memory.mr)) /
584 lmb_size;
585 uint32_t *int_buf, *cur_index, buf_len;
586 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
587
588 /*
589 * Don't create the node if there is no hotpluggable memory
590 */
591 if (machine->ram_size == machine->maxram_size) {
592 return 0;
593 }
594
595 /*
596 * Allocate enough buffer size to fit in ibm,dynamic-memory
597 * or ibm,associativity-lookup-arrays
598 */
599 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
600 * sizeof(uint32_t);
601 cur_index = int_buf = g_malloc0(buf_len);
602
603 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
604
605 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
606 sizeof(prop_lmb_size));
607 if (ret < 0) {
608 goto out;
609 }
610
611 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
612 if (ret < 0) {
613 goto out;
614 }
615
616 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
617 if (ret < 0) {
618 goto out;
619 }
620
621 /* ibm,dynamic-memory */
622 int_buf[0] = cpu_to_be32(nr_lmbs);
623 cur_index++;
624 for (i = 0; i < nr_lmbs; i++) {
625 uint64_t addr = i * lmb_size;
626 uint32_t *dynamic_memory = cur_index;
627
628 if (i >= hotplug_lmb_start) {
629 sPAPRDRConnector *drc;
630 sPAPRDRConnectorClass *drck;
631
632 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, i);
633 g_assert(drc);
634 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
635
636 dynamic_memory[0] = cpu_to_be32(addr >> 32);
637 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
638 dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
639 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
640 dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
641 if (memory_region_present(get_system_memory(), addr)) {
642 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
643 } else {
644 dynamic_memory[5] = cpu_to_be32(0);
645 }
646 } else {
647 /*
648 * LMB information for RMA, boot time RAM and gap b/n RAM and
649 * hotplug memory region -- all these are marked as reserved
650 * and as having no valid DRC.
651 */
652 dynamic_memory[0] = cpu_to_be32(addr >> 32);
653 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
654 dynamic_memory[2] = cpu_to_be32(0);
655 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
656 dynamic_memory[4] = cpu_to_be32(-1);
657 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
658 SPAPR_LMB_FLAGS_DRC_INVALID);
659 }
660
661 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
662 }
663 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
664 if (ret < 0) {
665 goto out;
666 }
667
668 /* ibm,associativity-lookup-arrays */
669 cur_index = int_buf;
670 int_buf[0] = cpu_to_be32(nr_nodes);
671 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
672 cur_index += 2;
673 for (i = 0; i < nr_nodes; i++) {
674 uint32_t associativity[] = {
675 cpu_to_be32(0x0),
676 cpu_to_be32(0x0),
677 cpu_to_be32(0x0),
678 cpu_to_be32(i)
679 };
680 memcpy(cur_index, associativity, sizeof(associativity));
681 cur_index += 4;
682 }
683 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
684 (cur_index - int_buf) * sizeof(uint32_t));
685 out:
686 g_free(int_buf);
687 return ret;
688 }
689
690 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
691 sPAPROptionVector *ov5_updates)
692 {
693 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
694 int ret = 0, offset;
695
696 /* Generate ibm,dynamic-reconfiguration-memory node if required */
697 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
698 g_assert(smc->dr_lmb_enabled);
699 ret = spapr_populate_drconf_memory(spapr, fdt);
700 if (ret) {
701 goto out;
702 }
703 }
704
705 offset = fdt_path_offset(fdt, "/chosen");
706 if (offset < 0) {
707 offset = fdt_add_subnode(fdt, 0, "chosen");
708 if (offset < 0) {
709 return offset;
710 }
711 }
712 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
713 "ibm,architecture-vec-5");
714
715 out:
716 return ret;
717 }
718
719 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
720 target_ulong addr, target_ulong size,
721 sPAPROptionVector *ov5_updates)
722 {
723 void *fdt, *fdt_skel;
724 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
725
726 size -= sizeof(hdr);
727
728 /* Create sceleton */
729 fdt_skel = g_malloc0(size);
730 _FDT((fdt_create(fdt_skel, size)));
731 _FDT((fdt_begin_node(fdt_skel, "")));
732 _FDT((fdt_end_node(fdt_skel)));
733 _FDT((fdt_finish(fdt_skel)));
734 fdt = g_malloc0(size);
735 _FDT((fdt_open_into(fdt_skel, fdt, size)));
736 g_free(fdt_skel);
737
738 /* Fixup cpu nodes */
739 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
740
741 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
742 return -1;
743 }
744
745 /* Pack resulting tree */
746 _FDT((fdt_pack(fdt)));
747
748 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
749 trace_spapr_cas_failed(size);
750 return -1;
751 }
752
753 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
754 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
755 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
756 g_free(fdt);
757
758 return 0;
759 }
760
761 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
762 {
763 int rtas;
764 GString *hypertas = g_string_sized_new(256);
765 GString *qemu_hypertas = g_string_sized_new(256);
766 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
767 uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
768 memory_region_size(&spapr->hotplug_memory.mr);
769 uint32_t lrdr_capacity[] = {
770 cpu_to_be32(max_hotplug_addr >> 32),
771 cpu_to_be32(max_hotplug_addr & 0xffffffff),
772 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
773 cpu_to_be32(max_cpus / smp_threads),
774 };
775
776 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
777
778 /* hypertas */
779 add_str(hypertas, "hcall-pft");
780 add_str(hypertas, "hcall-term");
781 add_str(hypertas, "hcall-dabr");
782 add_str(hypertas, "hcall-interrupt");
783 add_str(hypertas, "hcall-tce");
784 add_str(hypertas, "hcall-vio");
785 add_str(hypertas, "hcall-splpar");
786 add_str(hypertas, "hcall-bulk");
787 add_str(hypertas, "hcall-set-mode");
788 add_str(hypertas, "hcall-sprg0");
789 add_str(hypertas, "hcall-copy");
790 add_str(hypertas, "hcall-debug");
791 add_str(qemu_hypertas, "hcall-memop1");
792
793 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
794 add_str(hypertas, "hcall-multi-tce");
795 }
796 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
797 hypertas->str, hypertas->len));
798 g_string_free(hypertas, TRUE);
799 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
800 qemu_hypertas->str, qemu_hypertas->len));
801 g_string_free(qemu_hypertas, TRUE);
802
803 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
804 refpoints, sizeof(refpoints)));
805
806 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
807 RTAS_ERROR_LOG_MAX));
808 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
809 RTAS_EVENT_SCAN_RATE));
810
811 if (msi_nonbroken) {
812 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
813 }
814
815 /*
816 * According to PAPR, rtas ibm,os-term does not guarantee a return
817 * back to the guest cpu.
818 *
819 * While an additional ibm,extended-os-term property indicates
820 * that rtas call return will always occur. Set this property.
821 */
822 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
823
824 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
825 lrdr_capacity, sizeof(lrdr_capacity)));
826
827 spapr_dt_rtas_tokens(fdt, rtas);
828 }
829
830 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
831 {
832 MachineState *machine = MACHINE(spapr);
833 int chosen;
834 const char *boot_device = machine->boot_order;
835 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
836 size_t cb = 0;
837 char *bootlist = get_boot_devices_list(&cb, true);
838
839 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
840
841 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
842 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
843 spapr->initrd_base));
844 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
845 spapr->initrd_base + spapr->initrd_size));
846
847 if (spapr->kernel_size) {
848 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
849 cpu_to_be64(spapr->kernel_size) };
850
851 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
852 &kprop, sizeof(kprop)));
853 if (spapr->kernel_le) {
854 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
855 }
856 }
857 if (boot_menu) {
858 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
859 }
860 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
861 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
862 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
863
864 if (cb && bootlist) {
865 int i;
866
867 for (i = 0; i < cb; i++) {
868 if (bootlist[i] == '\n') {
869 bootlist[i] = ' ';
870 }
871 }
872 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
873 }
874
875 if (boot_device && strlen(boot_device)) {
876 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
877 }
878
879 if (!spapr->has_graphics && stdout_path) {
880 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
881 }
882
883 g_free(stdout_path);
884 g_free(bootlist);
885 }
886
887 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
888 {
889 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
890 * KVM to work under pHyp with some guest co-operation */
891 int hypervisor;
892 uint8_t hypercall[16];
893
894 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
895 /* indicate KVM hypercall interface */
896 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
897 if (kvmppc_has_cap_fixup_hcalls()) {
898 /*
899 * Older KVM versions with older guest kernels were broken
900 * with the magic page, don't allow the guest to map it.
901 */
902 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
903 sizeof(hypercall))) {
904 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
905 hypercall, sizeof(hypercall)));
906 }
907 }
908 }
909
910 static void *spapr_build_fdt(sPAPRMachineState *spapr,
911 hwaddr rtas_addr,
912 hwaddr rtas_size)
913 {
914 MachineState *machine = MACHINE(qdev_get_machine());
915 MachineClass *mc = MACHINE_GET_CLASS(machine);
916 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
917 int ret;
918 void *fdt;
919 sPAPRPHBState *phb;
920 char *buf;
921
922 fdt = g_malloc0(FDT_MAX_SIZE);
923 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
924
925 /* Root node */
926 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
927 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
928 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
929
930 /*
931 * Add info to guest to indentify which host is it being run on
932 * and what is the uuid of the guest
933 */
934 if (kvmppc_get_host_model(&buf)) {
935 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
936 g_free(buf);
937 }
938 if (kvmppc_get_host_serial(&buf)) {
939 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
940 g_free(buf);
941 }
942
943 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
944
945 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
946 if (qemu_uuid_set) {
947 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
948 }
949 g_free(buf);
950
951 if (qemu_get_vm_name()) {
952 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
953 qemu_get_vm_name()));
954 }
955
956 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
957 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
958
959 /* /interrupt controller */
960 spapr_dt_xics(spapr->nr_servers, fdt, PHANDLE_XICP);
961
962 ret = spapr_populate_memory(spapr, fdt);
963 if (ret < 0) {
964 error_report("couldn't setup memory nodes in fdt");
965 exit(1);
966 }
967
968 /* /vdevice */
969 spapr_dt_vdevice(spapr->vio_bus, fdt);
970
971 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
972 ret = spapr_rng_populate_dt(fdt);
973 if (ret < 0) {
974 error_report("could not set up rng device in the fdt");
975 exit(1);
976 }
977 }
978
979 QLIST_FOREACH(phb, &spapr->phbs, list) {
980 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
981 if (ret < 0) {
982 error_report("couldn't setup PCI devices in fdt");
983 exit(1);
984 }
985 }
986
987 /* cpus */
988 spapr_populate_cpus_dt_node(fdt, spapr);
989
990 if (smc->dr_lmb_enabled) {
991 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
992 }
993
994 if (mc->has_hotpluggable_cpus) {
995 int offset = fdt_path_offset(fdt, "/cpus");
996 ret = spapr_drc_populate_dt(fdt, offset, NULL,
997 SPAPR_DR_CONNECTOR_TYPE_CPU);
998 if (ret < 0) {
999 error_report("Couldn't set up CPU DR device tree properties");
1000 exit(1);
1001 }
1002 }
1003
1004 /* /event-sources */
1005 spapr_dt_events(spapr, fdt);
1006
1007 /* /rtas */
1008 spapr_dt_rtas(spapr, fdt);
1009
1010 /* /chosen */
1011 spapr_dt_chosen(spapr, fdt);
1012
1013 /* /hypervisor */
1014 if (kvm_enabled()) {
1015 spapr_dt_hypervisor(spapr, fdt);
1016 }
1017
1018 /* Build memory reserve map */
1019 if (spapr->kernel_size) {
1020 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1021 }
1022 if (spapr->initrd_size) {
1023 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1024 }
1025
1026 /* ibm,client-architecture-support updates */
1027 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1028 if (ret < 0) {
1029 error_report("couldn't setup CAS properties fdt");
1030 exit(1);
1031 }
1032
1033 return fdt;
1034 }
1035
1036 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1037 {
1038 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1039 }
1040
1041 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1042 PowerPCCPU *cpu)
1043 {
1044 CPUPPCState *env = &cpu->env;
1045
1046 /* The TCG path should also be holding the BQL at this point */
1047 g_assert(qemu_mutex_iothread_locked());
1048
1049 if (msr_pr) {
1050 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1051 env->gpr[3] = H_PRIVILEGE;
1052 } else {
1053 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1054 }
1055 }
1056
1057 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1058 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1059 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1060 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1061 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1062
1063 /*
1064 * Get the fd to access the kernel htab, re-opening it if necessary
1065 */
1066 static int get_htab_fd(sPAPRMachineState *spapr)
1067 {
1068 if (spapr->htab_fd >= 0) {
1069 return spapr->htab_fd;
1070 }
1071
1072 spapr->htab_fd = kvmppc_get_htab_fd(false);
1073 if (spapr->htab_fd < 0) {
1074 error_report("Unable to open fd for reading hash table from KVM: %s",
1075 strerror(errno));
1076 }
1077
1078 return spapr->htab_fd;
1079 }
1080
1081 static void close_htab_fd(sPAPRMachineState *spapr)
1082 {
1083 if (spapr->htab_fd >= 0) {
1084 close(spapr->htab_fd);
1085 }
1086 spapr->htab_fd = -1;
1087 }
1088
1089 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1090 {
1091 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1092
1093 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1094 }
1095
1096 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1097 hwaddr ptex, int n)
1098 {
1099 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1100 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1101
1102 if (!spapr->htab) {
1103 /*
1104 * HTAB is controlled by KVM. Fetch into temporary buffer
1105 */
1106 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1107 kvmppc_read_hptes(hptes, ptex, n);
1108 return hptes;
1109 }
1110
1111 /*
1112 * HTAB is controlled by QEMU. Just point to the internally
1113 * accessible PTEG.
1114 */
1115 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1116 }
1117
1118 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1119 const ppc_hash_pte64_t *hptes,
1120 hwaddr ptex, int n)
1121 {
1122 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1123
1124 if (!spapr->htab) {
1125 g_free((void *)hptes);
1126 }
1127
1128 /* Nothing to do for qemu managed HPT */
1129 }
1130
1131 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1132 uint64_t pte0, uint64_t pte1)
1133 {
1134 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1135 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1136
1137 if (!spapr->htab) {
1138 kvmppc_write_hpte(ptex, pte0, pte1);
1139 } else {
1140 stq_p(spapr->htab + offset, pte0);
1141 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1142 }
1143 }
1144
1145 static int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1146 {
1147 int shift;
1148
1149 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1150 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1151 * that's much more than is needed for Linux guests */
1152 shift = ctz64(pow2ceil(ramsize)) - 7;
1153 shift = MAX(shift, 18); /* Minimum architected size */
1154 shift = MIN(shift, 46); /* Maximum architected size */
1155 return shift;
1156 }
1157
1158 static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1159 Error **errp)
1160 {
1161 long rc;
1162
1163 /* Clean up any HPT info from a previous boot */
1164 g_free(spapr->htab);
1165 spapr->htab = NULL;
1166 spapr->htab_shift = 0;
1167 close_htab_fd(spapr);
1168
1169 rc = kvmppc_reset_htab(shift);
1170 if (rc < 0) {
1171 /* kernel-side HPT needed, but couldn't allocate one */
1172 error_setg_errno(errp, errno,
1173 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1174 shift);
1175 /* This is almost certainly fatal, but if the caller really
1176 * wants to carry on with shift == 0, it's welcome to try */
1177 } else if (rc > 0) {
1178 /* kernel-side HPT allocated */
1179 if (rc != shift) {
1180 error_setg(errp,
1181 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1182 shift, rc);
1183 }
1184
1185 spapr->htab_shift = shift;
1186 spapr->htab = NULL;
1187 } else {
1188 /* kernel-side HPT not needed, allocate in userspace instead */
1189 size_t size = 1ULL << shift;
1190 int i;
1191
1192 spapr->htab = qemu_memalign(size, size);
1193 if (!spapr->htab) {
1194 error_setg_errno(errp, errno,
1195 "Could not allocate HPT of order %d", shift);
1196 return;
1197 }
1198
1199 memset(spapr->htab, 0, size);
1200 spapr->htab_shift = shift;
1201
1202 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1203 DIRTY_HPTE(HPTE(spapr->htab, i));
1204 }
1205 }
1206 }
1207
1208 static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1209 {
1210 bool matched = false;
1211
1212 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1213 matched = true;
1214 }
1215
1216 if (!matched) {
1217 error_report("Device %s is not supported by this machine yet.",
1218 qdev_fw_name(DEVICE(sbdev)));
1219 exit(1);
1220 }
1221 }
1222
1223 static void ppc_spapr_reset(void)
1224 {
1225 MachineState *machine = MACHINE(qdev_get_machine());
1226 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1227 PowerPCCPU *first_ppc_cpu;
1228 uint32_t rtas_limit;
1229 hwaddr rtas_addr, fdt_addr;
1230 void *fdt;
1231 int rc;
1232
1233 /* Check for unknown sysbus devices */
1234 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1235
1236 /* Allocate and/or reset the hash page table */
1237 spapr_reallocate_hpt(spapr,
1238 spapr_hpt_shift_for_ramsize(machine->maxram_size),
1239 &error_fatal);
1240
1241 /* Update the RMA size if necessary */
1242 if (spapr->vrma_adjust) {
1243 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1244 spapr->htab_shift);
1245 }
1246
1247 qemu_devices_reset();
1248
1249 /*
1250 * We place the device tree and RTAS just below either the top of the RMA,
1251 * or just below 2GB, whichever is lowere, so that it can be
1252 * processed with 32-bit real mode code if necessary
1253 */
1254 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1255 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1256 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1257
1258 /* if this reset wasn't generated by CAS, we should reset our
1259 * negotiated options and start from scratch */
1260 if (!spapr->cas_reboot) {
1261 spapr_ovec_cleanup(spapr->ov5_cas);
1262 spapr->ov5_cas = spapr_ovec_new();
1263 }
1264
1265 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1266
1267 spapr_load_rtas(spapr, fdt, rtas_addr);
1268
1269 rc = fdt_pack(fdt);
1270
1271 /* Should only fail if we've built a corrupted tree */
1272 assert(rc == 0);
1273
1274 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1275 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1276 fdt_totalsize(fdt), FDT_MAX_SIZE);
1277 exit(1);
1278 }
1279
1280 /* Load the fdt */
1281 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1282 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1283 g_free(fdt);
1284
1285 /* Set up the entry state */
1286 first_ppc_cpu = POWERPC_CPU(first_cpu);
1287 first_ppc_cpu->env.gpr[3] = fdt_addr;
1288 first_ppc_cpu->env.gpr[5] = 0;
1289 first_cpu->halted = 0;
1290 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1291
1292 spapr->cas_reboot = false;
1293 }
1294
1295 static void spapr_create_nvram(sPAPRMachineState *spapr)
1296 {
1297 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1298 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1299
1300 if (dinfo) {
1301 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1302 &error_fatal);
1303 }
1304
1305 qdev_init_nofail(dev);
1306
1307 spapr->nvram = (struct sPAPRNVRAM *)dev;
1308 }
1309
1310 static void spapr_rtc_create(sPAPRMachineState *spapr)
1311 {
1312 DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);
1313
1314 qdev_init_nofail(dev);
1315 spapr->rtc = dev;
1316
1317 object_property_add_alias(qdev_get_machine(), "rtc-time",
1318 OBJECT(spapr->rtc), "date", NULL);
1319 }
1320
1321 /* Returns whether we want to use VGA or not */
1322 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1323 {
1324 switch (vga_interface_type) {
1325 case VGA_NONE:
1326 return false;
1327 case VGA_DEVICE:
1328 return true;
1329 case VGA_STD:
1330 case VGA_VIRTIO:
1331 return pci_vga_init(pci_bus) != NULL;
1332 default:
1333 error_setg(errp,
1334 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1335 return false;
1336 }
1337 }
1338
1339 static int spapr_post_load(void *opaque, int version_id)
1340 {
1341 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1342 int err = 0;
1343
1344 /* In earlier versions, there was no separate qdev for the PAPR
1345 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1346 * So when migrating from those versions, poke the incoming offset
1347 * value into the RTC device */
1348 if (version_id < 3) {
1349 err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
1350 }
1351
1352 return err;
1353 }
1354
1355 static bool version_before_3(void *opaque, int version_id)
1356 {
1357 return version_id < 3;
1358 }
1359
1360 static bool spapr_ov5_cas_needed(void *opaque)
1361 {
1362 sPAPRMachineState *spapr = opaque;
1363 sPAPROptionVector *ov5_mask = spapr_ovec_new();
1364 sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1365 sPAPROptionVector *ov5_removed = spapr_ovec_new();
1366 bool cas_needed;
1367
1368 /* Prior to the introduction of sPAPROptionVector, we had two option
1369 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1370 * Both of these options encode machine topology into the device-tree
1371 * in such a way that the now-booted OS should still be able to interact
1372 * appropriately with QEMU regardless of what options were actually
1373 * negotiatied on the source side.
1374 *
1375 * As such, we can avoid migrating the CAS-negotiated options if these
1376 * are the only options available on the current machine/platform.
1377 * Since these are the only options available for pseries-2.7 and
1378 * earlier, this allows us to maintain old->new/new->old migration
1379 * compatibility.
1380 *
1381 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1382 * via default pseries-2.8 machines and explicit command-line parameters.
1383 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1384 * of the actual CAS-negotiated values to continue working properly. For
1385 * example, availability of memory unplug depends on knowing whether
1386 * OV5_HP_EVT was negotiated via CAS.
1387 *
1388 * Thus, for any cases where the set of available CAS-negotiatable
1389 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1390 * include the CAS-negotiated options in the migration stream.
1391 */
1392 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1393 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1394
1395 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1396 * the mask itself since in the future it's possible "legacy" bits may be
1397 * removed via machine options, which could generate a false positive
1398 * that breaks migration.
1399 */
1400 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1401 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1402
1403 spapr_ovec_cleanup(ov5_mask);
1404 spapr_ovec_cleanup(ov5_legacy);
1405 spapr_ovec_cleanup(ov5_removed);
1406
1407 return cas_needed;
1408 }
1409
1410 static const VMStateDescription vmstate_spapr_ov5_cas = {
1411 .name = "spapr_option_vector_ov5_cas",
1412 .version_id = 1,
1413 .minimum_version_id = 1,
1414 .needed = spapr_ov5_cas_needed,
1415 .fields = (VMStateField[]) {
1416 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1417 vmstate_spapr_ovec, sPAPROptionVector),
1418 VMSTATE_END_OF_LIST()
1419 },
1420 };
1421
1422 static const VMStateDescription vmstate_spapr = {
1423 .name = "spapr",
1424 .version_id = 3,
1425 .minimum_version_id = 1,
1426 .post_load = spapr_post_load,
1427 .fields = (VMStateField[]) {
1428 /* used to be @next_irq */
1429 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1430
1431 /* RTC offset */
1432 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1433
1434 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1435 VMSTATE_END_OF_LIST()
1436 },
1437 .subsections = (const VMStateDescription*[]) {
1438 &vmstate_spapr_ov5_cas,
1439 NULL
1440 }
1441 };
1442
1443 static int htab_save_setup(QEMUFile *f, void *opaque)
1444 {
1445 sPAPRMachineState *spapr = opaque;
1446
1447 /* "Iteration" header */
1448 qemu_put_be32(f, spapr->htab_shift);
1449
1450 if (spapr->htab) {
1451 spapr->htab_save_index = 0;
1452 spapr->htab_first_pass = true;
1453 } else {
1454 assert(kvm_enabled());
1455 }
1456
1457
1458 return 0;
1459 }
1460
1461 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1462 int64_t max_ns)
1463 {
1464 bool has_timeout = max_ns != -1;
1465 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1466 int index = spapr->htab_save_index;
1467 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1468
1469 assert(spapr->htab_first_pass);
1470
1471 do {
1472 int chunkstart;
1473
1474 /* Consume invalid HPTEs */
1475 while ((index < htabslots)
1476 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1477 index++;
1478 CLEAN_HPTE(HPTE(spapr->htab, index));
1479 }
1480
1481 /* Consume valid HPTEs */
1482 chunkstart = index;
1483 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1484 && HPTE_VALID(HPTE(spapr->htab, index))) {
1485 index++;
1486 CLEAN_HPTE(HPTE(spapr->htab, index));
1487 }
1488
1489 if (index > chunkstart) {
1490 int n_valid = index - chunkstart;
1491
1492 qemu_put_be32(f, chunkstart);
1493 qemu_put_be16(f, n_valid);
1494 qemu_put_be16(f, 0);
1495 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1496 HASH_PTE_SIZE_64 * n_valid);
1497
1498 if (has_timeout &&
1499 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1500 break;
1501 }
1502 }
1503 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1504
1505 if (index >= htabslots) {
1506 assert(index == htabslots);
1507 index = 0;
1508 spapr->htab_first_pass = false;
1509 }
1510 spapr->htab_save_index = index;
1511 }
1512
1513 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1514 int64_t max_ns)
1515 {
1516 bool final = max_ns < 0;
1517 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1518 int examined = 0, sent = 0;
1519 int index = spapr->htab_save_index;
1520 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1521
1522 assert(!spapr->htab_first_pass);
1523
1524 do {
1525 int chunkstart, invalidstart;
1526
1527 /* Consume non-dirty HPTEs */
1528 while ((index < htabslots)
1529 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1530 index++;
1531 examined++;
1532 }
1533
1534 chunkstart = index;
1535 /* Consume valid dirty HPTEs */
1536 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1537 && HPTE_DIRTY(HPTE(spapr->htab, index))
1538 && HPTE_VALID(HPTE(spapr->htab, index))) {
1539 CLEAN_HPTE(HPTE(spapr->htab, index));
1540 index++;
1541 examined++;
1542 }
1543
1544 invalidstart = index;
1545 /* Consume invalid dirty HPTEs */
1546 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1547 && HPTE_DIRTY(HPTE(spapr->htab, index))
1548 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1549 CLEAN_HPTE(HPTE(spapr->htab, index));
1550 index++;
1551 examined++;
1552 }
1553
1554 if (index > chunkstart) {
1555 int n_valid = invalidstart - chunkstart;
1556 int n_invalid = index - invalidstart;
1557
1558 qemu_put_be32(f, chunkstart);
1559 qemu_put_be16(f, n_valid);
1560 qemu_put_be16(f, n_invalid);
1561 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1562 HASH_PTE_SIZE_64 * n_valid);
1563 sent += index - chunkstart;
1564
1565 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1566 break;
1567 }
1568 }
1569
1570 if (examined >= htabslots) {
1571 break;
1572 }
1573
1574 if (index >= htabslots) {
1575 assert(index == htabslots);
1576 index = 0;
1577 }
1578 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1579
1580 if (index >= htabslots) {
1581 assert(index == htabslots);
1582 index = 0;
1583 }
1584
1585 spapr->htab_save_index = index;
1586
1587 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1588 }
1589
1590 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1591 #define MAX_KVM_BUF_SIZE 2048
1592
1593 static int htab_save_iterate(QEMUFile *f, void *opaque)
1594 {
1595 sPAPRMachineState *spapr = opaque;
1596 int fd;
1597 int rc = 0;
1598
1599 /* Iteration header */
1600 qemu_put_be32(f, 0);
1601
1602 if (!spapr->htab) {
1603 assert(kvm_enabled());
1604
1605 fd = get_htab_fd(spapr);
1606 if (fd < 0) {
1607 return fd;
1608 }
1609
1610 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1611 if (rc < 0) {
1612 return rc;
1613 }
1614 } else if (spapr->htab_first_pass) {
1615 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1616 } else {
1617 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1618 }
1619
1620 /* End marker */
1621 qemu_put_be32(f, 0);
1622 qemu_put_be16(f, 0);
1623 qemu_put_be16(f, 0);
1624
1625 return rc;
1626 }
1627
1628 static int htab_save_complete(QEMUFile *f, void *opaque)
1629 {
1630 sPAPRMachineState *spapr = opaque;
1631 int fd;
1632
1633 /* Iteration header */
1634 qemu_put_be32(f, 0);
1635
1636 if (!spapr->htab) {
1637 int rc;
1638
1639 assert(kvm_enabled());
1640
1641 fd = get_htab_fd(spapr);
1642 if (fd < 0) {
1643 return fd;
1644 }
1645
1646 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1647 if (rc < 0) {
1648 return rc;
1649 }
1650 } else {
1651 if (spapr->htab_first_pass) {
1652 htab_save_first_pass(f, spapr, -1);
1653 }
1654 htab_save_later_pass(f, spapr, -1);
1655 }
1656
1657 /* End marker */
1658 qemu_put_be32(f, 0);
1659 qemu_put_be16(f, 0);
1660 qemu_put_be16(f, 0);
1661
1662 return 0;
1663 }
1664
1665 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1666 {
1667 sPAPRMachineState *spapr = opaque;
1668 uint32_t section_hdr;
1669 int fd = -1;
1670
1671 if (version_id < 1 || version_id > 1) {
1672 error_report("htab_load() bad version");
1673 return -EINVAL;
1674 }
1675
1676 section_hdr = qemu_get_be32(f);
1677
1678 if (section_hdr) {
1679 Error *local_err = NULL;
1680
1681 /* First section gives the htab size */
1682 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1683 if (local_err) {
1684 error_report_err(local_err);
1685 return -EINVAL;
1686 }
1687 return 0;
1688 }
1689
1690 if (!spapr->htab) {
1691 assert(kvm_enabled());
1692
1693 fd = kvmppc_get_htab_fd(true);
1694 if (fd < 0) {
1695 error_report("Unable to open fd to restore KVM hash table: %s",
1696 strerror(errno));
1697 }
1698 }
1699
1700 while (true) {
1701 uint32_t index;
1702 uint16_t n_valid, n_invalid;
1703
1704 index = qemu_get_be32(f);
1705 n_valid = qemu_get_be16(f);
1706 n_invalid = qemu_get_be16(f);
1707
1708 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1709 /* End of Stream */
1710 break;
1711 }
1712
1713 if ((index + n_valid + n_invalid) >
1714 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1715 /* Bad index in stream */
1716 error_report(
1717 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1718 index, n_valid, n_invalid, spapr->htab_shift);
1719 return -EINVAL;
1720 }
1721
1722 if (spapr->htab) {
1723 if (n_valid) {
1724 qemu_get_buffer(f, HPTE(spapr->htab, index),
1725 HASH_PTE_SIZE_64 * n_valid);
1726 }
1727 if (n_invalid) {
1728 memset(HPTE(spapr->htab, index + n_valid), 0,
1729 HASH_PTE_SIZE_64 * n_invalid);
1730 }
1731 } else {
1732 int rc;
1733
1734 assert(fd >= 0);
1735
1736 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1737 if (rc < 0) {
1738 return rc;
1739 }
1740 }
1741 }
1742
1743 if (!spapr->htab) {
1744 assert(fd >= 0);
1745 close(fd);
1746 }
1747
1748 return 0;
1749 }
1750
1751 static void htab_cleanup(void *opaque)
1752 {
1753 sPAPRMachineState *spapr = opaque;
1754
1755 close_htab_fd(spapr);
1756 }
1757
1758 static SaveVMHandlers savevm_htab_handlers = {
1759 .save_live_setup = htab_save_setup,
1760 .save_live_iterate = htab_save_iterate,
1761 .save_live_complete_precopy = htab_save_complete,
1762 .cleanup = htab_cleanup,
1763 .load_state = htab_load,
1764 };
1765
1766 static void spapr_boot_set(void *opaque, const char *boot_device,
1767 Error **errp)
1768 {
1769 MachineState *machine = MACHINE(qdev_get_machine());
1770 machine->boot_order = g_strdup(boot_device);
1771 }
1772
1773 /*
1774 * Reset routine for LMB DR devices.
1775 *
1776 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1777 * routine. Reset for PCI DR devices will be handled by PHB reset routine
1778 * when it walks all its children devices. LMB devices reset occurs
1779 * as part of spapr_ppc_reset().
1780 */
1781 static void spapr_drc_reset(void *opaque)
1782 {
1783 sPAPRDRConnector *drc = opaque;
1784 DeviceState *d = DEVICE(drc);
1785
1786 if (d) {
1787 device_reset(d);
1788 }
1789 }
1790
1791 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1792 {
1793 MachineState *machine = MACHINE(spapr);
1794 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
1795 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
1796 int i;
1797
1798 for (i = 0; i < nr_lmbs; i++) {
1799 sPAPRDRConnector *drc;
1800 uint64_t addr;
1801
1802 addr = i * lmb_size + spapr->hotplug_memory.base;
1803 drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
1804 addr/lmb_size);
1805 qemu_register_reset(spapr_drc_reset, drc);
1806 }
1807 }
1808
1809 /*
1810 * If RAM size, maxmem size and individual node mem sizes aren't aligned
1811 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1812 * since we can't support such unaligned sizes with DRCONF_MEMORY.
1813 */
1814 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
1815 {
1816 int i;
1817
1818 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1819 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
1820 " is not aligned to %llu MiB",
1821 machine->ram_size,
1822 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1823 return;
1824 }
1825
1826 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1827 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
1828 " is not aligned to %llu MiB",
1829 machine->ram_size,
1830 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1831 return;
1832 }
1833
1834 for (i = 0; i < nb_numa_nodes; i++) {
1835 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
1836 error_setg(errp,
1837 "Node %d memory size 0x%" PRIx64
1838 " is not aligned to %llu MiB",
1839 i, numa_info[i].node_mem,
1840 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1841 return;
1842 }
1843 }
1844 }
1845
1846 /* find cpu slot in machine->possible_cpus by core_id */
1847 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
1848 {
1849 int index = id / smp_threads;
1850
1851 if (index >= ms->possible_cpus->len) {
1852 return NULL;
1853 }
1854 if (idx) {
1855 *idx = index;
1856 }
1857 return &ms->possible_cpus->cpus[index];
1858 }
1859
1860 static void spapr_init_cpus(sPAPRMachineState *spapr)
1861 {
1862 MachineState *machine = MACHINE(spapr);
1863 MachineClass *mc = MACHINE_GET_CLASS(machine);
1864 char *type = spapr_get_cpu_core_type(machine->cpu_model);
1865 int smt = kvmppc_smt_threads();
1866 const CPUArchIdList *possible_cpus;
1867 int boot_cores_nr = smp_cpus / smp_threads;
1868 int i;
1869
1870 if (!type) {
1871 error_report("Unable to find sPAPR CPU Core definition");
1872 exit(1);
1873 }
1874
1875 possible_cpus = mc->possible_cpu_arch_ids(machine);
1876 if (mc->has_hotpluggable_cpus) {
1877 if (smp_cpus % smp_threads) {
1878 error_report("smp_cpus (%u) must be multiple of threads (%u)",
1879 smp_cpus, smp_threads);
1880 exit(1);
1881 }
1882 if (max_cpus % smp_threads) {
1883 error_report("max_cpus (%u) must be multiple of threads (%u)",
1884 max_cpus, smp_threads);
1885 exit(1);
1886 }
1887 } else {
1888 if (max_cpus != smp_cpus) {
1889 error_report("This machine version does not support CPU hotplug");
1890 exit(1);
1891 }
1892 boot_cores_nr = possible_cpus->len;
1893 }
1894
1895 for (i = 0; i < possible_cpus->len; i++) {
1896 int core_id = i * smp_threads;
1897
1898 if (mc->has_hotpluggable_cpus) {
1899 sPAPRDRConnector *drc =
1900 spapr_dr_connector_new(OBJECT(spapr),
1901 SPAPR_DR_CONNECTOR_TYPE_CPU,
1902 (core_id / smp_threads) * smt);
1903
1904 qemu_register_reset(spapr_drc_reset, drc);
1905 }
1906
1907 if (i < boot_cores_nr) {
1908 Object *core = object_new(type);
1909 int nr_threads = smp_threads;
1910
1911 /* Handle the partially filled core for older machine types */
1912 if ((i + 1) * smp_threads >= smp_cpus) {
1913 nr_threads = smp_cpus - i * smp_threads;
1914 }
1915
1916 object_property_set_int(core, nr_threads, "nr-threads",
1917 &error_fatal);
1918 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
1919 &error_fatal);
1920 object_property_set_bool(core, true, "realized", &error_fatal);
1921 }
1922 }
1923 g_free(type);
1924 }
1925
1926 /* pSeries LPAR / sPAPR hardware init */
1927 static void ppc_spapr_init(MachineState *machine)
1928 {
1929 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1930 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1931 const char *kernel_filename = machine->kernel_filename;
1932 const char *initrd_filename = machine->initrd_filename;
1933 PCIHostState *phb;
1934 int i;
1935 MemoryRegion *sysmem = get_system_memory();
1936 MemoryRegion *ram = g_new(MemoryRegion, 1);
1937 MemoryRegion *rma_region;
1938 void *rma = NULL;
1939 hwaddr rma_alloc_size;
1940 hwaddr node0_size = spapr_node0_size();
1941 long load_limit, fw_size;
1942 char *filename;
1943 int smt = kvmppc_smt_threads();
1944
1945 msi_nonbroken = true;
1946
1947 QLIST_INIT(&spapr->phbs);
1948
1949 /* Allocate RMA if necessary */
1950 rma_alloc_size = kvmppc_alloc_rma(&rma);
1951
1952 if (rma_alloc_size == -1) {
1953 error_report("Unable to create RMA");
1954 exit(1);
1955 }
1956
1957 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1958 spapr->rma_size = rma_alloc_size;
1959 } else {
1960 spapr->rma_size = node0_size;
1961
1962 /* With KVM, we don't actually know whether KVM supports an
1963 * unbounded RMA (PR KVM) or is limited by the hash table size
1964 * (HV KVM using VRMA), so we always assume the latter
1965 *
1966 * In that case, we also limit the initial allocations for RTAS
1967 * etc... to 256M since we have no way to know what the VRMA size
1968 * is going to be as it depends on the size of the hash table
1969 * isn't determined yet.
1970 */
1971 if (kvm_enabled()) {
1972 spapr->vrma_adjust = 1;
1973 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1974 }
1975
1976 /* Actually we don't support unbounded RMA anymore since we
1977 * added proper emulation of HV mode. The max we can get is
1978 * 16G which also happens to be what we configure for PAPR
1979 * mode so make sure we don't do anything bigger than that
1980 */
1981 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
1982 }
1983
1984 if (spapr->rma_size > node0_size) {
1985 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
1986 spapr->rma_size);
1987 exit(1);
1988 }
1989
1990 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
1991 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
1992
1993 /* Set up Interrupt Controller before we create the VCPUs */
1994 xics_system_init(machine, DIV_ROUND_UP(max_cpus * smt, smp_threads),
1995 XICS_IRQS_SPAPR, &error_fatal);
1996
1997 /* Set up containers for ibm,client-set-architecture negotiated options */
1998 spapr->ov5 = spapr_ovec_new();
1999 spapr->ov5_cas = spapr_ovec_new();
2000
2001 if (smc->dr_lmb_enabled) {
2002 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2003 spapr_validate_node_memory(machine, &error_fatal);
2004 }
2005
2006 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2007
2008 /* advertise support for dedicated HP event source to guests */
2009 if (spapr->use_hotplug_event_source) {
2010 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2011 }
2012
2013 /* init CPUs */
2014 if (machine->cpu_model == NULL) {
2015 machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu;
2016 }
2017
2018 ppc_cpu_parse_features(machine->cpu_model);
2019
2020 spapr_init_cpus(spapr);
2021
2022 if (kvm_enabled()) {
2023 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2024 kvmppc_enable_logical_ci_hcalls();
2025 kvmppc_enable_set_mode_hcall();
2026
2027 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2028 kvmppc_enable_clear_ref_mod_hcalls();
2029 }
2030
2031 /* allocate RAM */
2032 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2033 machine->ram_size);
2034 memory_region_add_subregion(sysmem, 0, ram);
2035
2036 if (rma_alloc_size && rma) {
2037 rma_region = g_new(MemoryRegion, 1);
2038 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
2039 rma_alloc_size, rma);
2040 vmstate_register_ram_global(rma_region);
2041 memory_region_add_subregion(sysmem, 0, rma_region);
2042 }
2043
2044 /* initialize hotplug memory address space */
2045 if (machine->ram_size < machine->maxram_size) {
2046 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
2047 /*
2048 * Limit the number of hotpluggable memory slots to half the number
2049 * slots that KVM supports, leaving the other half for PCI and other
2050 * devices. However ensure that number of slots doesn't drop below 32.
2051 */
2052 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2053 SPAPR_MAX_RAM_SLOTS;
2054
2055 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2056 max_memslots = SPAPR_MAX_RAM_SLOTS;
2057 }
2058 if (machine->ram_slots > max_memslots) {
2059 error_report("Specified number of memory slots %"
2060 PRIu64" exceeds max supported %d",
2061 machine->ram_slots, max_memslots);
2062 exit(1);
2063 }
2064
2065 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
2066 SPAPR_HOTPLUG_MEM_ALIGN);
2067 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
2068 "hotplug-memory", hotplug_mem_size);
2069 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
2070 &spapr->hotplug_memory.mr);
2071 }
2072
2073 if (smc->dr_lmb_enabled) {
2074 spapr_create_lmb_dr_connectors(spapr);
2075 }
2076
2077 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2078 if (!filename) {
2079 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2080 exit(1);
2081 }
2082 spapr->rtas_size = get_image_size(filename);
2083 if (spapr->rtas_size < 0) {
2084 error_report("Could not get size of LPAR rtas '%s'", filename);
2085 exit(1);
2086 }
2087 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2088 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2089 error_report("Could not load LPAR rtas '%s'", filename);
2090 exit(1);
2091 }
2092 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2093 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2094 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2095 exit(1);
2096 }
2097 g_free(filename);
2098
2099 /* Set up RTAS event infrastructure */
2100 spapr_events_init(spapr);
2101
2102 /* Set up the RTC RTAS interfaces */
2103 spapr_rtc_create(spapr);
2104
2105 /* Set up VIO bus */
2106 spapr->vio_bus = spapr_vio_bus_init();
2107
2108 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
2109 if (serial_hds[i]) {
2110 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
2111 }
2112 }
2113
2114 /* We always have at least the nvram device on VIO */
2115 spapr_create_nvram(spapr);
2116
2117 /* Set up PCI */
2118 spapr_pci_rtas_init();
2119
2120 phb = spapr_create_phb(spapr, 0);
2121
2122 for (i = 0; i < nb_nics; i++) {
2123 NICInfo *nd = &nd_table[i];
2124
2125 if (!nd->model) {
2126 nd->model = g_strdup("ibmveth");
2127 }
2128
2129 if (strcmp(nd->model, "ibmveth") == 0) {
2130 spapr_vlan_create(spapr->vio_bus, nd);
2131 } else {
2132 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2133 }
2134 }
2135
2136 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2137 spapr_vscsi_create(spapr->vio_bus);
2138 }
2139
2140 /* Graphics */
2141 if (spapr_vga_init(phb->bus, &error_fatal)) {
2142 spapr->has_graphics = true;
2143 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2144 }
2145
2146 if (machine->usb) {
2147 if (smc->use_ohci_by_default) {
2148 pci_create_simple(phb->bus, -1, "pci-ohci");
2149 } else {
2150 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2151 }
2152
2153 if (spapr->has_graphics) {
2154 USBBus *usb_bus = usb_bus_find(-1);
2155
2156 usb_create_simple(usb_bus, "usb-kbd");
2157 usb_create_simple(usb_bus, "usb-mouse");
2158 }
2159 }
2160
2161 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
2162 error_report(
2163 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2164 MIN_RMA_SLOF);
2165 exit(1);
2166 }
2167
2168 if (kernel_filename) {
2169 uint64_t lowaddr = 0;
2170
2171 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2172 NULL, NULL, &lowaddr, NULL, 1,
2173 PPC_ELF_MACHINE, 0, 0);
2174 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2175 spapr->kernel_size = load_elf(kernel_filename,
2176 translate_kernel_address, NULL, NULL,
2177 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2178 0, 0);
2179 spapr->kernel_le = spapr->kernel_size > 0;
2180 }
2181 if (spapr->kernel_size < 0) {
2182 error_report("error loading %s: %s", kernel_filename,
2183 load_elf_strerror(spapr->kernel_size));
2184 exit(1);
2185 }
2186
2187 /* load initrd */
2188 if (initrd_filename) {
2189 /* Try to locate the initrd in the gap between the kernel
2190 * and the firmware. Add a bit of space just in case
2191 */
2192 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2193 + 0x1ffff) & ~0xffff;
2194 spapr->initrd_size = load_image_targphys(initrd_filename,
2195 spapr->initrd_base,
2196 load_limit
2197 - spapr->initrd_base);
2198 if (spapr->initrd_size < 0) {
2199 error_report("could not load initial ram disk '%s'",
2200 initrd_filename);
2201 exit(1);
2202 }
2203 }
2204 }
2205
2206 if (bios_name == NULL) {
2207 bios_name = FW_FILE_NAME;
2208 }
2209 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2210 if (!filename) {
2211 error_report("Could not find LPAR firmware '%s'", bios_name);
2212 exit(1);
2213 }
2214 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2215 if (fw_size <= 0) {
2216 error_report("Could not load LPAR firmware '%s'", filename);
2217 exit(1);
2218 }
2219 g_free(filename);
2220
2221 /* FIXME: Should register things through the MachineState's qdev
2222 * interface, this is a legacy from the sPAPREnvironment structure
2223 * which predated MachineState but had a similar function */
2224 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2225 register_savevm_live(NULL, "spapr/htab", -1, 1,
2226 &savevm_htab_handlers, spapr);
2227
2228 /* used by RTAS */
2229 QTAILQ_INIT(&spapr->ccs_list);
2230 qemu_register_reset(spapr_ccs_reset_hook, spapr);
2231
2232 qemu_register_boot_set(spapr_boot_set, spapr);
2233
2234 /* to stop and start vmclock */
2235 if (kvm_enabled()) {
2236 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2237 &spapr->tb);
2238 }
2239 }
2240
2241 static int spapr_kvm_type(const char *vm_type)
2242 {
2243 if (!vm_type) {
2244 return 0;
2245 }
2246
2247 if (!strcmp(vm_type, "HV")) {
2248 return 1;
2249 }
2250
2251 if (!strcmp(vm_type, "PR")) {
2252 return 2;
2253 }
2254
2255 error_report("Unknown kvm-type specified '%s'", vm_type);
2256 exit(1);
2257 }
2258
2259 /*
2260 * Implementation of an interface to adjust firmware path
2261 * for the bootindex property handling.
2262 */
2263 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2264 DeviceState *dev)
2265 {
2266 #define CAST(type, obj, name) \
2267 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2268 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2269 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2270
2271 if (d) {
2272 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2273 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2274 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2275
2276 if (spapr) {
2277 /*
2278 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2279 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2280 * in the top 16 bits of the 64-bit LUN
2281 */
2282 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2283 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2284 (uint64_t)id << 48);
2285 } else if (virtio) {
2286 /*
2287 * We use SRP luns of the form 01000000 | (target << 8) | lun
2288 * in the top 32 bits of the 64-bit LUN
2289 * Note: the quote above is from SLOF and it is wrong,
2290 * the actual binding is:
2291 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2292 */
2293 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2294 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2295 (uint64_t)id << 32);
2296 } else if (usb) {
2297 /*
2298 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2299 * in the top 32 bits of the 64-bit LUN
2300 */
2301 unsigned usb_port = atoi(usb->port->path);
2302 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2303 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2304 (uint64_t)id << 32);
2305 }
2306 }
2307
2308 /*
2309 * SLOF probes the USB devices, and if it recognizes that the device is a
2310 * storage device, it changes its name to "storage" instead of "usb-host",
2311 * and additionally adds a child node for the SCSI LUN, so the correct
2312 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2313 */
2314 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2315 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2316 if (usb_host_dev_is_scsi_storage(usbdev)) {
2317 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2318 }
2319 }
2320
2321 if (phb) {
2322 /* Replace "pci" with "pci@800000020000000" */
2323 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2324 }
2325
2326 return NULL;
2327 }
2328
2329 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2330 {
2331 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2332
2333 return g_strdup(spapr->kvm_type);
2334 }
2335
2336 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2337 {
2338 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2339
2340 g_free(spapr->kvm_type);
2341 spapr->kvm_type = g_strdup(value);
2342 }
2343
2344 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2345 {
2346 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2347
2348 return spapr->use_hotplug_event_source;
2349 }
2350
2351 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2352 Error **errp)
2353 {
2354 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2355
2356 spapr->use_hotplug_event_source = value;
2357 }
2358
2359 static void spapr_machine_initfn(Object *obj)
2360 {
2361 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2362
2363 spapr->htab_fd = -1;
2364 spapr->use_hotplug_event_source = true;
2365 object_property_add_str(obj, "kvm-type",
2366 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2367 object_property_set_description(obj, "kvm-type",
2368 "Specifies the KVM virtualization mode (HV, PR)",
2369 NULL);
2370 object_property_add_bool(obj, "modern-hotplug-events",
2371 spapr_get_modern_hotplug_events,
2372 spapr_set_modern_hotplug_events,
2373 NULL);
2374 object_property_set_description(obj, "modern-hotplug-events",
2375 "Use dedicated hotplug event mechanism in"
2376 " place of standard EPOW events when possible"
2377 " (required for memory hot-unplug support)",
2378 NULL);
2379 }
2380
2381 static void spapr_machine_finalizefn(Object *obj)
2382 {
2383 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2384
2385 g_free(spapr->kvm_type);
2386 }
2387
2388 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
2389 {
2390 cpu_synchronize_state(cs);
2391 ppc_cpu_do_system_reset(cs);
2392 }
2393
2394 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2395 {
2396 CPUState *cs;
2397
2398 CPU_FOREACH(cs) {
2399 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
2400 }
2401 }
2402
2403 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2404 uint32_t node, bool dedicated_hp_event_source,
2405 Error **errp)
2406 {
2407 sPAPRDRConnector *drc;
2408 sPAPRDRConnectorClass *drck;
2409 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2410 int i, fdt_offset, fdt_size;
2411 void *fdt;
2412 uint64_t addr = addr_start;
2413
2414 for (i = 0; i < nr_lmbs; i++) {
2415 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2416 addr/SPAPR_MEMORY_BLOCK_SIZE);
2417 g_assert(drc);
2418
2419 fdt = create_device_tree(&fdt_size);
2420 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2421 SPAPR_MEMORY_BLOCK_SIZE);
2422
2423 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2424 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
2425 addr += SPAPR_MEMORY_BLOCK_SIZE;
2426 if (!dev->hotplugged) {
2427 /* guests expect coldplugged LMBs to be pre-allocated */
2428 drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE);
2429 drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED);
2430 }
2431 }
2432 /* send hotplug notification to the
2433 * guest only in case of hotplugged memory
2434 */
2435 if (dev->hotplugged) {
2436 if (dedicated_hp_event_source) {
2437 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2438 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2439 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2440 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2441 nr_lmbs,
2442 drck->get_index(drc));
2443 } else {
2444 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
2445 nr_lmbs);
2446 }
2447 }
2448 }
2449
2450 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2451 uint32_t node, Error **errp)
2452 {
2453 Error *local_err = NULL;
2454 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2455 PCDIMMDevice *dimm = PC_DIMM(dev);
2456 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2457 MemoryRegion *mr = ddc->get_memory_region(dimm);
2458 uint64_t align = memory_region_get_alignment(mr);
2459 uint64_t size = memory_region_size(mr);
2460 uint64_t addr;
2461 char *mem_dev;
2462
2463 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2464 error_setg(&local_err, "Hotplugged memory size must be a multiple of "
2465 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
2466 goto out;
2467 }
2468
2469 mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
2470 if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
2471 error_setg(&local_err, "Memory backend has bad page size. "
2472 "Use 'memory-backend-file' with correct mem-path.");
2473 goto out;
2474 }
2475
2476 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2477 if (local_err) {
2478 goto out;
2479 }
2480
2481 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2482 if (local_err) {
2483 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2484 goto out;
2485 }
2486
2487 spapr_add_lmbs(dev, addr, size, node,
2488 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
2489 &error_abort);
2490
2491 out:
2492 error_propagate(errp, local_err);
2493 }
2494
2495 typedef struct sPAPRDIMMState {
2496 uint32_t nr_lmbs;
2497 } sPAPRDIMMState;
2498
2499 static void spapr_lmb_release(DeviceState *dev, void *opaque)
2500 {
2501 sPAPRDIMMState *ds = (sPAPRDIMMState *)opaque;
2502 HotplugHandler *hotplug_ctrl;
2503
2504 if (--ds->nr_lmbs) {
2505 return;
2506 }
2507
2508 g_free(ds);
2509
2510 /*
2511 * Now that all the LMBs have been removed by the guest, call the
2512 * pc-dimm unplug handler to cleanup up the pc-dimm device.
2513 */
2514 hotplug_ctrl = qdev_get_hotplug_handler(dev);
2515 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
2516 }
2517
2518 static void spapr_del_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2519 Error **errp)
2520 {
2521 sPAPRDRConnector *drc;
2522 sPAPRDRConnectorClass *drck;
2523 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
2524 int i;
2525 sPAPRDIMMState *ds = g_malloc0(sizeof(sPAPRDIMMState));
2526 uint64_t addr = addr_start;
2527
2528 ds->nr_lmbs = nr_lmbs;
2529 for (i = 0; i < nr_lmbs; i++) {
2530 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2531 addr / SPAPR_MEMORY_BLOCK_SIZE);
2532 g_assert(drc);
2533
2534 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2535 drck->detach(drc, dev, spapr_lmb_release, ds, errp);
2536 addr += SPAPR_MEMORY_BLOCK_SIZE;
2537 }
2538
2539 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2540 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2541 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2542 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2543 nr_lmbs,
2544 drck->get_index(drc));
2545 }
2546
2547 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
2548 Error **errp)
2549 {
2550 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2551 PCDIMMDevice *dimm = PC_DIMM(dev);
2552 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2553 MemoryRegion *mr = ddc->get_memory_region(dimm);
2554
2555 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2556 object_unparent(OBJECT(dev));
2557 }
2558
2559 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
2560 DeviceState *dev, Error **errp)
2561 {
2562 Error *local_err = NULL;
2563 PCDIMMDevice *dimm = PC_DIMM(dev);
2564 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2565 MemoryRegion *mr = ddc->get_memory_region(dimm);
2566 uint64_t size = memory_region_size(mr);
2567 uint64_t addr;
2568
2569 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2570 if (local_err) {
2571 goto out;
2572 }
2573
2574 spapr_del_lmbs(dev, addr, size, &error_abort);
2575 out:
2576 error_propagate(errp, local_err);
2577 }
2578
2579 void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
2580 sPAPRMachineState *spapr)
2581 {
2582 PowerPCCPU *cpu = POWERPC_CPU(cs);
2583 DeviceClass *dc = DEVICE_GET_CLASS(cs);
2584 int id = ppc_get_vcpu_dt_id(cpu);
2585 void *fdt;
2586 int offset, fdt_size;
2587 char *nodename;
2588
2589 fdt = create_device_tree(&fdt_size);
2590 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
2591 offset = fdt_add_subnode(fdt, 0, nodename);
2592
2593 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
2594 g_free(nodename);
2595
2596 *fdt_offset = offset;
2597 return fdt;
2598 }
2599
2600 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
2601 Error **errp)
2602 {
2603 MachineState *ms = MACHINE(qdev_get_machine());
2604 CPUCore *cc = CPU_CORE(dev);
2605 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
2606
2607 core_slot->cpu = NULL;
2608 object_unparent(OBJECT(dev));
2609 }
2610
2611 static void spapr_core_release(DeviceState *dev, void *opaque)
2612 {
2613 HotplugHandler *hotplug_ctrl;
2614
2615 hotplug_ctrl = qdev_get_hotplug_handler(dev);
2616 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
2617 }
2618
2619 static
2620 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
2621 Error **errp)
2622 {
2623 int index;
2624 sPAPRDRConnector *drc;
2625 sPAPRDRConnectorClass *drck;
2626 Error *local_err = NULL;
2627 CPUCore *cc = CPU_CORE(dev);
2628 int smt = kvmppc_smt_threads();
2629
2630 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
2631 error_setg(errp, "Unable to find CPU core with core-id: %d",
2632 cc->core_id);
2633 return;
2634 }
2635 if (index == 0) {
2636 error_setg(errp, "Boot CPU core may not be unplugged");
2637 return;
2638 }
2639
2640 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index * smt);
2641 g_assert(drc);
2642
2643 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2644 drck->detach(drc, dev, spapr_core_release, NULL, &local_err);
2645 if (local_err) {
2646 error_propagate(errp, local_err);
2647 return;
2648 }
2649
2650 spapr_hotplug_req_remove_by_index(drc);
2651 }
2652
2653 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2654 Error **errp)
2655 {
2656 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
2657 MachineClass *mc = MACHINE_GET_CLASS(spapr);
2658 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
2659 CPUCore *cc = CPU_CORE(dev);
2660 CPUState *cs = CPU(core->threads);
2661 sPAPRDRConnector *drc;
2662 Error *local_err = NULL;
2663 void *fdt = NULL;
2664 int fdt_offset = 0;
2665 int smt = kvmppc_smt_threads();
2666 CPUArchId *core_slot;
2667 int index;
2668
2669 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
2670 if (!core_slot) {
2671 error_setg(errp, "Unable to find CPU core with core-id: %d",
2672 cc->core_id);
2673 return;
2674 }
2675 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index * smt);
2676
2677 g_assert(drc || !mc->has_hotpluggable_cpus);
2678
2679 /*
2680 * Setup CPU DT entries only for hotplugged CPUs. For boot time or
2681 * coldplugged CPUs DT entries are setup in spapr_build_fdt().
2682 */
2683 if (dev->hotplugged) {
2684 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
2685 }
2686
2687 if (drc) {
2688 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2689 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, &local_err);
2690 if (local_err) {
2691 g_free(fdt);
2692 error_propagate(errp, local_err);
2693 return;
2694 }
2695 }
2696
2697 if (dev->hotplugged) {
2698 /*
2699 * Send hotplug notification interrupt to the guest only in case
2700 * of hotplugged CPUs.
2701 */
2702 spapr_hotplug_req_add_by_index(drc);
2703 } else {
2704 /*
2705 * Set the right DRC states for cold plugged CPU.
2706 */
2707 if (drc) {
2708 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2709 drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE);
2710 drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED);
2711 }
2712 }
2713 core_slot->cpu = OBJECT(dev);
2714 }
2715
2716 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2717 Error **errp)
2718 {
2719 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
2720 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
2721 Error *local_err = NULL;
2722 CPUCore *cc = CPU_CORE(dev);
2723 char *base_core_type = spapr_get_cpu_core_type(machine->cpu_model);
2724 const char *type = object_get_typename(OBJECT(dev));
2725 CPUArchId *core_slot;
2726 int index;
2727
2728 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
2729 error_setg(&local_err, "CPU hotplug not supported for this machine");
2730 goto out;
2731 }
2732
2733 if (strcmp(base_core_type, type)) {
2734 error_setg(&local_err, "CPU core type should be %s", base_core_type);
2735 goto out;
2736 }
2737
2738 if (cc->core_id % smp_threads) {
2739 error_setg(&local_err, "invalid core id %d", cc->core_id);
2740 goto out;
2741 }
2742
2743 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
2744 if (!core_slot) {
2745 error_setg(&local_err, "core id %d out of range", cc->core_id);
2746 goto out;
2747 }
2748
2749 if (core_slot->cpu) {
2750 error_setg(&local_err, "core %d already populated", cc->core_id);
2751 goto out;
2752 }
2753
2754 out:
2755 g_free(base_core_type);
2756 error_propagate(errp, local_err);
2757 }
2758
2759 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
2760 DeviceState *dev, Error **errp)
2761 {
2762 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2763
2764 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2765 int node;
2766
2767 if (!smc->dr_lmb_enabled) {
2768 error_setg(errp, "Memory hotplug not supported for this machine");
2769 return;
2770 }
2771 node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
2772 if (*errp) {
2773 return;
2774 }
2775 if (node < 0 || node >= MAX_NODES) {
2776 error_setg(errp, "Invaild node %d", node);
2777 return;
2778 }
2779
2780 /*
2781 * Currently PowerPC kernel doesn't allow hot-adding memory to
2782 * memory-less node, but instead will silently add the memory
2783 * to the first node that has some memory. This causes two
2784 * unexpected behaviours for the user.
2785 *
2786 * - Memory gets hotplugged to a different node than what the user
2787 * specified.
2788 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2789 * to memory-less node, a reboot will set things accordingly
2790 * and the previously hotplugged memory now ends in the right node.
2791 * This appears as if some memory moved from one node to another.
2792 *
2793 * So until kernel starts supporting memory hotplug to memory-less
2794 * nodes, just prevent such attempts upfront in QEMU.
2795 */
2796 if (nb_numa_nodes && !numa_info[node].node_mem) {
2797 error_setg(errp, "Can't hotplug memory to memory-less node %d",
2798 node);
2799 return;
2800 }
2801
2802 spapr_memory_plug(hotplug_dev, dev, node, errp);
2803 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2804 spapr_core_plug(hotplug_dev, dev, errp);
2805 }
2806 }
2807
2808 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
2809 DeviceState *dev, Error **errp)
2810 {
2811 sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
2812 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
2813
2814 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2815 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
2816 spapr_memory_unplug(hotplug_dev, dev, errp);
2817 } else {
2818 error_setg(errp, "Memory hot unplug not supported for this guest");
2819 }
2820 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2821 if (!mc->has_hotpluggable_cpus) {
2822 error_setg(errp, "CPU hot unplug not supported on this machine");
2823 return;
2824 }
2825 spapr_core_unplug(hotplug_dev, dev, errp);
2826 }
2827 }
2828
2829 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
2830 DeviceState *dev, Error **errp)
2831 {
2832 sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
2833 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
2834
2835 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2836 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
2837 spapr_memory_unplug_request(hotplug_dev, dev, errp);
2838 } else {
2839 /* NOTE: this means there is a window after guest reset, prior to
2840 * CAS negotiation, where unplug requests will fail due to the
2841 * capability not being detected yet. This is a bit different than
2842 * the case with PCI unplug, where the events will be queued and
2843 * eventually handled by the guest after boot
2844 */
2845 error_setg(errp, "Memory hot unplug not supported for this guest");
2846 }
2847 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2848 if (!mc->has_hotpluggable_cpus) {
2849 error_setg(errp, "CPU hot unplug not supported on this machine");
2850 return;
2851 }
2852 spapr_core_unplug_request(hotplug_dev, dev, errp);
2853 }
2854 }
2855
2856 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
2857 DeviceState *dev, Error **errp)
2858 {
2859 if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2860 spapr_core_pre_plug(hotplug_dev, dev, errp);
2861 }
2862 }
2863
2864 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
2865 DeviceState *dev)
2866 {
2867 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2868 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2869 return HOTPLUG_HANDLER(machine);
2870 }
2871 return NULL;
2872 }
2873
2874 static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index)
2875 {
2876 /* Allocate to NUMA nodes on a "socket" basis (not that concept of
2877 * socket means much for the paravirtualized PAPR platform) */
2878 return cpu_index / smp_threads / smp_cores;
2879 }
2880
2881 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
2882 {
2883 int i;
2884 int spapr_max_cores = max_cpus / smp_threads;
2885 MachineClass *mc = MACHINE_GET_CLASS(machine);
2886
2887 if (!mc->has_hotpluggable_cpus) {
2888 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
2889 }
2890 if (machine->possible_cpus) {
2891 assert(machine->possible_cpus->len == spapr_max_cores);
2892 return machine->possible_cpus;
2893 }
2894
2895 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2896 sizeof(CPUArchId) * spapr_max_cores);
2897 machine->possible_cpus->len = spapr_max_cores;
2898 for (i = 0; i < machine->possible_cpus->len; i++) {
2899 int core_id = i * smp_threads;
2900
2901 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
2902 machine->possible_cpus->cpus[i].arch_id = core_id;
2903 machine->possible_cpus->cpus[i].props.has_core_id = true;
2904 machine->possible_cpus->cpus[i].props.core_id = core_id;
2905 /* TODO: add 'has_node/node' here to describe
2906 to which node core belongs */
2907 }
2908 return machine->possible_cpus;
2909 }
2910
2911 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
2912 uint64_t *buid, hwaddr *pio,
2913 hwaddr *mmio32, hwaddr *mmio64,
2914 unsigned n_dma, uint32_t *liobns, Error **errp)
2915 {
2916 /*
2917 * New-style PHB window placement.
2918 *
2919 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
2920 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
2921 * windows.
2922 *
2923 * Some guest kernels can't work with MMIO windows above 1<<46
2924 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
2925 *
2926 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
2927 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
2928 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
2929 * 1TiB 64-bit MMIO windows for each PHB.
2930 */
2931 const uint64_t base_buid = 0x800000020000000ULL;
2932 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
2933 SPAPR_PCI_MEM64_WIN_SIZE - 1)
2934 int i;
2935
2936 /* Sanity check natural alignments */
2937 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
2938 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
2939 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
2940 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
2941 /* Sanity check bounds */
2942 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
2943 SPAPR_PCI_MEM32_WIN_SIZE);
2944 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
2945 SPAPR_PCI_MEM64_WIN_SIZE);
2946
2947 if (index >= SPAPR_MAX_PHBS) {
2948 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
2949 SPAPR_MAX_PHBS - 1);
2950 return;
2951 }
2952
2953 *buid = base_buid + index;
2954 for (i = 0; i < n_dma; ++i) {
2955 liobns[i] = SPAPR_PCI_LIOBN(index, i);
2956 }
2957
2958 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
2959 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
2960 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
2961 }
2962
2963 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
2964 {
2965 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
2966
2967 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
2968 }
2969
2970 static void spapr_ics_resend(XICSFabric *dev)
2971 {
2972 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
2973
2974 ics_resend(spapr->ics);
2975 }
2976
2977 static ICPState *spapr_icp_get(XICSFabric *xi, int server)
2978 {
2979 sPAPRMachineState *spapr = SPAPR_MACHINE(xi);
2980
2981 return (server < spapr->nr_servers) ? &spapr->icps[server] : NULL;
2982 }
2983
2984 static void spapr_icp_resend(XICSFabric *xi)
2985 {
2986 sPAPRMachineState *spapr = SPAPR_MACHINE(xi);
2987 int i;
2988
2989 for (i = 0; i < spapr->nr_servers; i++) {
2990 icp_resend(&spapr->icps[i]);
2991 }
2992 }
2993
2994 static void spapr_machine_class_init(ObjectClass *oc, void *data)
2995 {
2996 MachineClass *mc = MACHINE_CLASS(oc);
2997 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
2998 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
2999 NMIClass *nc = NMI_CLASS(oc);
3000 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3001 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3002 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3003
3004 mc->desc = "pSeries Logical Partition (PAPR compliant)";
3005
3006 /*
3007 * We set up the default / latest behaviour here. The class_init
3008 * functions for the specific versioned machine types can override
3009 * these details for backwards compatibility
3010 */
3011 mc->init = ppc_spapr_init;
3012 mc->reset = ppc_spapr_reset;
3013 mc->block_default_type = IF_SCSI;
3014 mc->max_cpus = 1024;
3015 mc->no_parallel = 1;
3016 mc->default_boot_order = "";
3017 mc->default_ram_size = 512 * M_BYTE;
3018 mc->kvm_type = spapr_kvm_type;
3019 mc->has_dynamic_sysbus = true;
3020 mc->pci_allow_0_address = true;
3021 mc->get_hotplug_handler = spapr_get_hotplug_handler;
3022 hc->pre_plug = spapr_machine_device_pre_plug;
3023 hc->plug = spapr_machine_device_plug;
3024 hc->unplug = spapr_machine_device_unplug;
3025 mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id;
3026 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3027 hc->unplug_request = spapr_machine_device_unplug_request;
3028
3029 smc->dr_lmb_enabled = true;
3030 smc->tcg_default_cpu = "POWER8";
3031 mc->has_hotpluggable_cpus = true;
3032 fwc->get_dev_path = spapr_get_fw_dev_path;
3033 nc->nmi_monitor_handler = spapr_nmi;
3034 smc->phb_placement = spapr_phb_placement;
3035 vhc->hypercall = emulate_spapr_hypercall;
3036 vhc->hpt_mask = spapr_hpt_mask;
3037 vhc->map_hptes = spapr_map_hptes;
3038 vhc->unmap_hptes = spapr_unmap_hptes;
3039 vhc->store_hpte = spapr_store_hpte;
3040 xic->ics_get = spapr_ics_get;
3041 xic->ics_resend = spapr_ics_resend;
3042 xic->icp_get = spapr_icp_get;
3043 xic->icp_resend = spapr_icp_resend;
3044 }
3045
3046 static const TypeInfo spapr_machine_info = {
3047 .name = TYPE_SPAPR_MACHINE,
3048 .parent = TYPE_MACHINE,
3049 .abstract = true,
3050 .instance_size = sizeof(sPAPRMachineState),
3051 .instance_init = spapr_machine_initfn,
3052 .instance_finalize = spapr_machine_finalizefn,
3053 .class_size = sizeof(sPAPRMachineClass),
3054 .class_init = spapr_machine_class_init,
3055 .interfaces = (InterfaceInfo[]) {
3056 { TYPE_FW_PATH_PROVIDER },
3057 { TYPE_NMI },
3058 { TYPE_HOTPLUG_HANDLER },
3059 { TYPE_PPC_VIRTUAL_HYPERVISOR },
3060 { TYPE_XICS_FABRIC },
3061 { }
3062 },
3063 };
3064
3065 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
3066 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3067 void *data) \
3068 { \
3069 MachineClass *mc = MACHINE_CLASS(oc); \
3070 spapr_machine_##suffix##_class_options(mc); \
3071 if (latest) { \
3072 mc->alias = "pseries"; \
3073 mc->is_default = 1; \
3074 } \
3075 } \
3076 static void spapr_machine_##suffix##_instance_init(Object *obj) \
3077 { \
3078 MachineState *machine = MACHINE(obj); \
3079 spapr_machine_##suffix##_instance_options(machine); \
3080 } \
3081 static const TypeInfo spapr_machine_##suffix##_info = { \
3082 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
3083 .parent = TYPE_SPAPR_MACHINE, \
3084 .class_init = spapr_machine_##suffix##_class_init, \
3085 .instance_init = spapr_machine_##suffix##_instance_init, \
3086 }; \
3087 static void spapr_machine_register_##suffix(void) \
3088 { \
3089 type_register(&spapr_machine_##suffix##_info); \
3090 } \
3091 type_init(spapr_machine_register_##suffix)
3092
3093 /*
3094 * pseries-2.9
3095 */
3096 static void spapr_machine_2_9_instance_options(MachineState *machine)
3097 {
3098 }
3099
3100 static void spapr_machine_2_9_class_options(MachineClass *mc)
3101 {
3102 /* Defaults for the latest behaviour inherited from the base class */
3103 }
3104
3105 DEFINE_SPAPR_MACHINE(2_9, "2.9", true);
3106
3107 /*
3108 * pseries-2.8
3109 */
3110 #define SPAPR_COMPAT_2_8 \
3111 HW_COMPAT_2_8
3112
3113 static void spapr_machine_2_8_instance_options(MachineState *machine)
3114 {
3115 spapr_machine_2_9_instance_options(machine);
3116 }
3117
3118 static void spapr_machine_2_8_class_options(MachineClass *mc)
3119 {
3120 spapr_machine_2_9_class_options(mc);
3121 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
3122 }
3123
3124 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
3125
3126 /*
3127 * pseries-2.7
3128 */
3129 #define SPAPR_COMPAT_2_7 \
3130 HW_COMPAT_2_7 \
3131 { \
3132 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3133 .property = "mem_win_size", \
3134 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
3135 }, \
3136 { \
3137 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3138 .property = "mem64_win_size", \
3139 .value = "0", \
3140 }, \
3141 { \
3142 .driver = TYPE_POWERPC_CPU, \
3143 .property = "pre-2.8-migration", \
3144 .value = "on", \
3145 }, \
3146 { \
3147 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3148 .property = "pre-2.8-migration", \
3149 .value = "on", \
3150 },
3151
3152 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
3153 uint64_t *buid, hwaddr *pio,
3154 hwaddr *mmio32, hwaddr *mmio64,
3155 unsigned n_dma, uint32_t *liobns, Error **errp)
3156 {
3157 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
3158 const uint64_t base_buid = 0x800000020000000ULL;
3159 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
3160 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
3161 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
3162 const uint32_t max_index = 255;
3163 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
3164
3165 uint64_t ram_top = MACHINE(spapr)->ram_size;
3166 hwaddr phb0_base, phb_base;
3167 int i;
3168
3169 /* Do we have hotpluggable memory? */
3170 if (MACHINE(spapr)->maxram_size > ram_top) {
3171 /* Can't just use maxram_size, because there may be an
3172 * alignment gap between normal and hotpluggable memory
3173 * regions */
3174 ram_top = spapr->hotplug_memory.base +
3175 memory_region_size(&spapr->hotplug_memory.mr);
3176 }
3177
3178 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
3179
3180 if (index > max_index) {
3181 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
3182 max_index);
3183 return;
3184 }
3185
3186 *buid = base_buid + index;
3187 for (i = 0; i < n_dma; ++i) {
3188 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3189 }
3190
3191 phb_base = phb0_base + index * phb_spacing;
3192 *pio = phb_base + pio_offset;
3193 *mmio32 = phb_base + mmio_offset;
3194 /*
3195 * We don't set the 64-bit MMIO window, relying on the PHB's
3196 * fallback behaviour of automatically splitting a large "32-bit"
3197 * window into contiguous 32-bit and 64-bit windows
3198 */
3199 }
3200
3201 static void spapr_machine_2_7_instance_options(MachineState *machine)
3202 {
3203 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
3204
3205 spapr_machine_2_8_instance_options(machine);
3206 spapr->use_hotplug_event_source = false;
3207 }
3208
3209 static void spapr_machine_2_7_class_options(MachineClass *mc)
3210 {
3211 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3212
3213 spapr_machine_2_8_class_options(mc);
3214 smc->tcg_default_cpu = "POWER7";
3215 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
3216 smc->phb_placement = phb_placement_2_7;
3217 }
3218
3219 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
3220
3221 /*
3222 * pseries-2.6
3223 */
3224 #define SPAPR_COMPAT_2_6 \
3225 HW_COMPAT_2_6 \
3226 { \
3227 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3228 .property = "ddw",\
3229 .value = stringify(off),\
3230 },
3231
3232 static void spapr_machine_2_6_instance_options(MachineState *machine)
3233 {
3234 spapr_machine_2_7_instance_options(machine);
3235 }
3236
3237 static void spapr_machine_2_6_class_options(MachineClass *mc)
3238 {
3239 spapr_machine_2_7_class_options(mc);
3240 mc->has_hotpluggable_cpus = false;
3241 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
3242 }
3243
3244 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
3245
3246 /*
3247 * pseries-2.5
3248 */
3249 #define SPAPR_COMPAT_2_5 \
3250 HW_COMPAT_2_5 \
3251 { \
3252 .driver = "spapr-vlan", \
3253 .property = "use-rx-buffer-pools", \
3254 .value = "off", \
3255 },
3256
3257 static void spapr_machine_2_5_instance_options(MachineState *machine)
3258 {
3259 spapr_machine_2_6_instance_options(machine);
3260 }
3261
3262 static void spapr_machine_2_5_class_options(MachineClass *mc)
3263 {
3264 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3265
3266 spapr_machine_2_6_class_options(mc);
3267 smc->use_ohci_by_default = true;
3268 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
3269 }
3270
3271 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
3272
3273 /*
3274 * pseries-2.4
3275 */
3276 #define SPAPR_COMPAT_2_4 \
3277 HW_COMPAT_2_4
3278
3279 static void spapr_machine_2_4_instance_options(MachineState *machine)
3280 {
3281 spapr_machine_2_5_instance_options(machine);
3282 }
3283
3284 static void spapr_machine_2_4_class_options(MachineClass *mc)
3285 {
3286 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3287
3288 spapr_machine_2_5_class_options(mc);
3289 smc->dr_lmb_enabled = false;
3290 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
3291 }
3292
3293 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
3294
3295 /*
3296 * pseries-2.3
3297 */
3298 #define SPAPR_COMPAT_2_3 \
3299 HW_COMPAT_2_3 \
3300 {\
3301 .driver = "spapr-pci-host-bridge",\
3302 .property = "dynamic-reconfiguration",\
3303 .value = "off",\
3304 },
3305
3306 static void spapr_machine_2_3_instance_options(MachineState *machine)
3307 {
3308 spapr_machine_2_4_instance_options(machine);
3309 savevm_skip_section_footers();
3310 global_state_set_optional();
3311 savevm_skip_configuration();
3312 }
3313
3314 static void spapr_machine_2_3_class_options(MachineClass *mc)
3315 {
3316 spapr_machine_2_4_class_options(mc);
3317 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
3318 }
3319 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
3320
3321 /*
3322 * pseries-2.2
3323 */
3324
3325 #define SPAPR_COMPAT_2_2 \
3326 HW_COMPAT_2_2 \
3327 {\
3328 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3329 .property = "mem_win_size",\
3330 .value = "0x20000000",\
3331 },
3332
3333 static void spapr_machine_2_2_instance_options(MachineState *machine)
3334 {
3335 spapr_machine_2_3_instance_options(machine);
3336 machine->suppress_vmdesc = true;
3337 }
3338
3339 static void spapr_machine_2_2_class_options(MachineClass *mc)
3340 {
3341 spapr_machine_2_3_class_options(mc);
3342 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
3343 }
3344 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
3345
3346 /*
3347 * pseries-2.1
3348 */
3349 #define SPAPR_COMPAT_2_1 \
3350 HW_COMPAT_2_1
3351
3352 static void spapr_machine_2_1_instance_options(MachineState *machine)
3353 {
3354 spapr_machine_2_2_instance_options(machine);
3355 }
3356
3357 static void spapr_machine_2_1_class_options(MachineClass *mc)
3358 {
3359 spapr_machine_2_2_class_options(mc);
3360 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
3361 }
3362 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
3363
3364 static void spapr_machine_register_types(void)
3365 {
3366 type_register_static(&spapr_machine_info);
3367 }
3368
3369 type_init(spapr_machine_register_types)