]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr.c
spapr: add uuid/host details to device tree
[mirror_qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
27 #include "sysemu/sysemu.h"
28 #include "hw/hw.h"
29 #include "hw/fw-path-provider.h"
30 #include "elf.h"
31 #include "net/net.h"
32 #include "sysemu/blockdev.h"
33 #include "sysemu/cpus.h"
34 #include "sysemu/kvm.h"
35 #include "kvm_ppc.h"
36 #include "mmu-hash64.h"
37 #include "qom/cpu.h"
38
39 #include "hw/boards.h"
40 #include "hw/ppc/ppc.h"
41 #include "hw/loader.h"
42
43 #include "hw/ppc/spapr.h"
44 #include "hw/ppc/spapr_vio.h"
45 #include "hw/pci-host/spapr.h"
46 #include "hw/ppc/xics.h"
47 #include "hw/pci/msi.h"
48
49 #include "hw/pci/pci.h"
50 #include "hw/scsi/scsi.h"
51 #include "hw/virtio/virtio-scsi.h"
52
53 #include "exec/address-spaces.h"
54 #include "hw/usb.h"
55 #include "qemu/config-file.h"
56 #include "qemu/error-report.h"
57 #include "trace.h"
58 #include "hw/nmi.h"
59
60 #include <libfdt.h>
61
62 /* SLOF memory layout:
63 *
64 * SLOF raw image loaded at 0, copies its romfs right below the flat
65 * device-tree, then position SLOF itself 31M below that
66 *
67 * So we set FW_OVERHEAD to 40MB which should account for all of that
68 * and more
69 *
70 * We load our kernel at 4M, leaving space for SLOF initial image
71 */
72 #define FDT_MAX_SIZE 0x40000
73 #define RTAS_MAX_SIZE 0x10000
74 #define FW_MAX_SIZE 0x400000
75 #define FW_FILE_NAME "slof.bin"
76 #define FW_OVERHEAD 0x2800000
77 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
78
79 #define MIN_RMA_SLOF 128UL
80
81 #define TIMEBASE_FREQ 512000000ULL
82
83 #define MAX_CPUS 256
84
85 #define PHANDLE_XICP 0x00001111
86
87 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
88
89 typedef struct sPAPRMachineState sPAPRMachineState;
90
91 #define TYPE_SPAPR_MACHINE "spapr-machine"
92 #define SPAPR_MACHINE(obj) \
93 OBJECT_CHECK(sPAPRMachineState, (obj), TYPE_SPAPR_MACHINE)
94
95 /**
96 * sPAPRMachineState:
97 */
98 struct sPAPRMachineState {
99 /*< private >*/
100 MachineState parent_obj;
101
102 /*< public >*/
103 char *kvm_type;
104 };
105
106 sPAPREnvironment *spapr;
107
108 static XICSState *try_create_xics(const char *type, int nr_servers,
109 int nr_irqs)
110 {
111 DeviceState *dev;
112
113 dev = qdev_create(NULL, type);
114 qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
115 qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
116 if (qdev_init(dev) < 0) {
117 return NULL;
118 }
119
120 return XICS_COMMON(dev);
121 }
122
123 static XICSState *xics_system_init(int nr_servers, int nr_irqs)
124 {
125 XICSState *icp = NULL;
126
127 if (kvm_enabled()) {
128 QemuOpts *machine_opts = qemu_get_machine_opts();
129 bool irqchip_allowed = qemu_opt_get_bool(machine_opts,
130 "kernel_irqchip", true);
131 bool irqchip_required = qemu_opt_get_bool(machine_opts,
132 "kernel_irqchip", false);
133 if (irqchip_allowed) {
134 icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs);
135 }
136
137 if (irqchip_required && !icp) {
138 perror("Failed to create in-kernel XICS\n");
139 abort();
140 }
141 }
142
143 if (!icp) {
144 icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs);
145 }
146
147 if (!icp) {
148 perror("Failed to create XICS\n");
149 abort();
150 }
151
152 return icp;
153 }
154
155 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
156 int smt_threads)
157 {
158 int i, ret = 0;
159 uint32_t servers_prop[smt_threads];
160 uint32_t gservers_prop[smt_threads * 2];
161 int index = ppc_get_vcpu_dt_id(cpu);
162
163 if (cpu->cpu_version) {
164 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
165 if (ret < 0) {
166 return ret;
167 }
168 }
169
170 /* Build interrupt servers and gservers properties */
171 for (i = 0; i < smt_threads; i++) {
172 servers_prop[i] = cpu_to_be32(index + i);
173 /* Hack, direct the group queues back to cpu 0 */
174 gservers_prop[i*2] = cpu_to_be32(index + i);
175 gservers_prop[i*2 + 1] = 0;
176 }
177 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
178 servers_prop, sizeof(servers_prop));
179 if (ret < 0) {
180 return ret;
181 }
182 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
183 gservers_prop, sizeof(gservers_prop));
184
185 return ret;
186 }
187
188 static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr)
189 {
190 int ret = 0, offset, cpus_offset;
191 CPUState *cs;
192 char cpu_model[32];
193 int smt = kvmppc_smt_threads();
194 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
195
196 CPU_FOREACH(cs) {
197 PowerPCCPU *cpu = POWERPC_CPU(cs);
198 DeviceClass *dc = DEVICE_GET_CLASS(cs);
199 int index = ppc_get_vcpu_dt_id(cpu);
200 uint32_t associativity[] = {cpu_to_be32(0x5),
201 cpu_to_be32(0x0),
202 cpu_to_be32(0x0),
203 cpu_to_be32(0x0),
204 cpu_to_be32(cs->numa_node),
205 cpu_to_be32(index)};
206
207 if ((index % smt) != 0) {
208 continue;
209 }
210
211 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
212
213 cpus_offset = fdt_path_offset(fdt, "/cpus");
214 if (cpus_offset < 0) {
215 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
216 "cpus");
217 if (cpus_offset < 0) {
218 return cpus_offset;
219 }
220 }
221 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
222 if (offset < 0) {
223 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
224 if (offset < 0) {
225 return offset;
226 }
227 }
228
229 if (nb_numa_nodes > 1) {
230 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
231 sizeof(associativity));
232 if (ret < 0) {
233 return ret;
234 }
235 }
236
237 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
238 pft_size_prop, sizeof(pft_size_prop));
239 if (ret < 0) {
240 return ret;
241 }
242
243 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
244 ppc_get_compat_smt_threads(cpu));
245 if (ret < 0) {
246 return ret;
247 }
248 }
249 return ret;
250 }
251
252
253 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
254 size_t maxsize)
255 {
256 size_t maxcells = maxsize / sizeof(uint32_t);
257 int i, j, count;
258 uint32_t *p = prop;
259
260 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
261 struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
262
263 if (!sps->page_shift) {
264 break;
265 }
266 for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
267 if (sps->enc[count].page_shift == 0) {
268 break;
269 }
270 }
271 if ((p - prop) >= (maxcells - 3 - count * 2)) {
272 break;
273 }
274 *(p++) = cpu_to_be32(sps->page_shift);
275 *(p++) = cpu_to_be32(sps->slb_enc);
276 *(p++) = cpu_to_be32(count);
277 for (j = 0; j < count; j++) {
278 *(p++) = cpu_to_be32(sps->enc[j].page_shift);
279 *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
280 }
281 }
282
283 return (p - prop) * sizeof(uint32_t);
284 }
285
286 #define _FDT(exp) \
287 do { \
288 int ret = (exp); \
289 if (ret < 0) { \
290 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
291 #exp, fdt_strerror(ret)); \
292 exit(1); \
293 } \
294 } while (0)
295
296 static void add_str(GString *s, const gchar *s1)
297 {
298 g_string_append_len(s, s1, strlen(s1) + 1);
299 }
300
301 static void *spapr_create_fdt_skel(hwaddr initrd_base,
302 hwaddr initrd_size,
303 hwaddr kernel_size,
304 bool little_endian,
305 const char *boot_device,
306 const char *kernel_cmdline,
307 uint32_t epow_irq)
308 {
309 void *fdt;
310 CPUState *cs;
311 uint32_t start_prop = cpu_to_be32(initrd_base);
312 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
313 GString *hypertas = g_string_sized_new(256);
314 GString *qemu_hypertas = g_string_sized_new(256);
315 uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
316 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
317 int smt = kvmppc_smt_threads();
318 unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
319 QemuOpts *opts = qemu_opts_find(qemu_find_opts("smp-opts"), NULL);
320 unsigned sockets = opts ? qemu_opt_get_number(opts, "sockets", 0) : 0;
321 uint32_t cpus_per_socket = sockets ? (smp_cpus / sockets) : 1;
322 char *buf;
323
324 add_str(hypertas, "hcall-pft");
325 add_str(hypertas, "hcall-term");
326 add_str(hypertas, "hcall-dabr");
327 add_str(hypertas, "hcall-interrupt");
328 add_str(hypertas, "hcall-tce");
329 add_str(hypertas, "hcall-vio");
330 add_str(hypertas, "hcall-splpar");
331 add_str(hypertas, "hcall-bulk");
332 add_str(hypertas, "hcall-set-mode");
333 add_str(qemu_hypertas, "hcall-memop1");
334
335 fdt = g_malloc0(FDT_MAX_SIZE);
336 _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
337
338 if (kernel_size) {
339 _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
340 }
341 if (initrd_size) {
342 _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
343 }
344 _FDT((fdt_finish_reservemap(fdt)));
345
346 /* Root node */
347 _FDT((fdt_begin_node(fdt, "")));
348 _FDT((fdt_property_string(fdt, "device_type", "chrp")));
349 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
350 _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
351
352 if (kvm_enabled()) {
353 _FDT((fdt_property_string(fdt, "hypervisor", "kvm")));
354 }
355
356 /*
357 * Add info to guest to indentify which host is it being run on
358 * and what is the uuid of the guest
359 */
360 if (kvmppc_get_host_model(&buf)) {
361 _FDT((fdt_property_string(fdt, "host-model", buf)));
362 g_free(buf);
363 }
364 if (kvmppc_get_host_serial(&buf)) {
365 _FDT((fdt_property_string(fdt, "host-serial", buf)));
366 g_free(buf);
367 }
368
369 buf = g_strdup_printf(UUID_FMT, qemu_uuid[0], qemu_uuid[1],
370 qemu_uuid[2], qemu_uuid[3], qemu_uuid[4],
371 qemu_uuid[5], qemu_uuid[6], qemu_uuid[7],
372 qemu_uuid[8], qemu_uuid[9], qemu_uuid[10],
373 qemu_uuid[11], qemu_uuid[12], qemu_uuid[13],
374 qemu_uuid[14], qemu_uuid[15]);
375
376 _FDT((fdt_property_string(fdt, "vm,uuid", buf)));
377 g_free(buf);
378
379 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
380 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
381
382 /* /chosen */
383 _FDT((fdt_begin_node(fdt, "chosen")));
384
385 /* Set Form1_affinity */
386 _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
387
388 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
389 _FDT((fdt_property(fdt, "linux,initrd-start",
390 &start_prop, sizeof(start_prop))));
391 _FDT((fdt_property(fdt, "linux,initrd-end",
392 &end_prop, sizeof(end_prop))));
393 if (kernel_size) {
394 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
395 cpu_to_be64(kernel_size) };
396
397 _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
398 if (little_endian) {
399 _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
400 }
401 }
402 if (boot_device) {
403 _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
404 }
405 if (boot_menu) {
406 _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu)));
407 }
408 _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
409 _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
410 _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
411
412 _FDT((fdt_end_node(fdt)));
413
414 /* cpus */
415 _FDT((fdt_begin_node(fdt, "cpus")));
416
417 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
418 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
419
420 CPU_FOREACH(cs) {
421 PowerPCCPU *cpu = POWERPC_CPU(cs);
422 CPUPPCState *env = &cpu->env;
423 DeviceClass *dc = DEVICE_GET_CLASS(cs);
424 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
425 int index = ppc_get_vcpu_dt_id(cpu);
426 char *nodename;
427 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
428 0xffffffff, 0xffffffff};
429 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
430 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
431 uint32_t page_sizes_prop[64];
432 size_t page_sizes_prop_size;
433
434 if ((index % smt) != 0) {
435 continue;
436 }
437
438 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
439
440 _FDT((fdt_begin_node(fdt, nodename)));
441
442 g_free(nodename);
443
444 _FDT((fdt_property_cell(fdt, "reg", index)));
445 _FDT((fdt_property_string(fdt, "device_type", "cpu")));
446
447 _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
448 _FDT((fdt_property_cell(fdt, "d-cache-block-size",
449 env->dcache_line_size)));
450 _FDT((fdt_property_cell(fdt, "d-cache-line-size",
451 env->dcache_line_size)));
452 _FDT((fdt_property_cell(fdt, "i-cache-block-size",
453 env->icache_line_size)));
454 _FDT((fdt_property_cell(fdt, "i-cache-line-size",
455 env->icache_line_size)));
456
457 if (pcc->l1_dcache_size) {
458 _FDT((fdt_property_cell(fdt, "d-cache-size", pcc->l1_dcache_size)));
459 } else {
460 fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
461 }
462 if (pcc->l1_icache_size) {
463 _FDT((fdt_property_cell(fdt, "i-cache-size", pcc->l1_icache_size)));
464 } else {
465 fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
466 }
467
468 _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
469 _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
470 _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
471 _FDT((fdt_property_string(fdt, "status", "okay")));
472 _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
473
474 if (env->spr_cb[SPR_PURR].oea_read) {
475 _FDT((fdt_property(fdt, "ibm,purr", NULL, 0)));
476 }
477
478 if (env->mmu_model & POWERPC_MMU_1TSEG) {
479 _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
480 segs, sizeof(segs))));
481 }
482
483 /* Advertise VMX/VSX (vector extensions) if available
484 * 0 / no property == no vector extensions
485 * 1 == VMX / Altivec available
486 * 2 == VSX available */
487 if (env->insns_flags & PPC_ALTIVEC) {
488 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
489
490 _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
491 }
492
493 /* Advertise DFP (Decimal Floating Point) if available
494 * 0 / no property == no DFP
495 * 1 == DFP available */
496 if (env->insns_flags2 & PPC2_DFP) {
497 _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
498 }
499
500 page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
501 sizeof(page_sizes_prop));
502 if (page_sizes_prop_size) {
503 _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
504 page_sizes_prop, page_sizes_prop_size)));
505 }
506
507 _FDT((fdt_property_cell(fdt, "ibm,chip-id",
508 cs->cpu_index / cpus_per_socket)));
509
510 _FDT((fdt_end_node(fdt)));
511 }
512
513 _FDT((fdt_end_node(fdt)));
514
515 /* RTAS */
516 _FDT((fdt_begin_node(fdt, "rtas")));
517
518 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
519 add_str(hypertas, "hcall-multi-tce");
520 }
521 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
522 hypertas->len)));
523 g_string_free(hypertas, TRUE);
524 _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
525 qemu_hypertas->len)));
526 g_string_free(qemu_hypertas, TRUE);
527
528 _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
529 refpoints, sizeof(refpoints))));
530
531 _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
532
533 /*
534 * According to PAPR, rtas ibm,os-term, does not gaurantee a return
535 * back to the guest cpu.
536 *
537 * While an additional ibm,extended-os-term property indicates that
538 * rtas call return will always occur. Set this property.
539 */
540 _FDT((fdt_property(fdt, "ibm,extended-os-term", NULL, 0)));
541
542 _FDT((fdt_end_node(fdt)));
543
544 /* interrupt controller */
545 _FDT((fdt_begin_node(fdt, "interrupt-controller")));
546
547 _FDT((fdt_property_string(fdt, "device_type",
548 "PowerPC-External-Interrupt-Presentation")));
549 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
550 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
551 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
552 interrupt_server_ranges_prop,
553 sizeof(interrupt_server_ranges_prop))));
554 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
555 _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
556 _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
557
558 _FDT((fdt_end_node(fdt)));
559
560 /* vdevice */
561 _FDT((fdt_begin_node(fdt, "vdevice")));
562
563 _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
564 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
565 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
566 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
567 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
568 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
569
570 _FDT((fdt_end_node(fdt)));
571
572 /* event-sources */
573 spapr_events_fdt_skel(fdt, epow_irq);
574
575 /* /hypervisor node */
576 if (kvm_enabled()) {
577 uint8_t hypercall[16];
578
579 /* indicate KVM hypercall interface */
580 _FDT((fdt_begin_node(fdt, "hypervisor")));
581 _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
582 if (kvmppc_has_cap_fixup_hcalls()) {
583 /*
584 * Older KVM versions with older guest kernels were broken with the
585 * magic page, don't allow the guest to map it.
586 */
587 kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
588 sizeof(hypercall));
589 _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
590 sizeof(hypercall))));
591 }
592 _FDT((fdt_end_node(fdt)));
593 }
594
595 _FDT((fdt_end_node(fdt))); /* close root node */
596 _FDT((fdt_finish(fdt)));
597
598 return fdt;
599 }
600
601 int spapr_h_cas_compose_response(target_ulong addr, target_ulong size)
602 {
603 void *fdt, *fdt_skel;
604 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
605
606 size -= sizeof(hdr);
607
608 /* Create sceleton */
609 fdt_skel = g_malloc0(size);
610 _FDT((fdt_create(fdt_skel, size)));
611 _FDT((fdt_begin_node(fdt_skel, "")));
612 _FDT((fdt_end_node(fdt_skel)));
613 _FDT((fdt_finish(fdt_skel)));
614 fdt = g_malloc0(size);
615 _FDT((fdt_open_into(fdt_skel, fdt, size)));
616 g_free(fdt_skel);
617
618 /* Fix skeleton up */
619 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
620
621 /* Pack resulting tree */
622 _FDT((fdt_pack(fdt)));
623
624 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
625 trace_spapr_cas_failed(size);
626 return -1;
627 }
628
629 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
630 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
631 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
632 g_free(fdt);
633
634 return 0;
635 }
636
637 static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt)
638 {
639 uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
640 cpu_to_be32(0x0), cpu_to_be32(0x0),
641 cpu_to_be32(0x0)};
642 char mem_name[32];
643 hwaddr node0_size, mem_start, node_size;
644 uint64_t mem_reg_property[2];
645 int i, off;
646
647 /* memory node(s) */
648 if (nb_numa_nodes > 1 && numa_info[0].node_mem < ram_size) {
649 node0_size = numa_info[0].node_mem;
650 } else {
651 node0_size = ram_size;
652 }
653
654 /* RMA */
655 mem_reg_property[0] = 0;
656 mem_reg_property[1] = cpu_to_be64(spapr->rma_size);
657 off = fdt_add_subnode(fdt, 0, "memory@0");
658 _FDT(off);
659 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
660 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
661 sizeof(mem_reg_property))));
662 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
663 sizeof(associativity))));
664
665 /* RAM: Node 0 */
666 if (node0_size > spapr->rma_size) {
667 mem_reg_property[0] = cpu_to_be64(spapr->rma_size);
668 mem_reg_property[1] = cpu_to_be64(node0_size - spapr->rma_size);
669
670 sprintf(mem_name, "memory@" TARGET_FMT_lx, spapr->rma_size);
671 off = fdt_add_subnode(fdt, 0, mem_name);
672 _FDT(off);
673 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
674 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
675 sizeof(mem_reg_property))));
676 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
677 sizeof(associativity))));
678 }
679
680 /* RAM: Node 1 and beyond */
681 mem_start = node0_size;
682 for (i = 1; i < nb_numa_nodes; i++) {
683 mem_reg_property[0] = cpu_to_be64(mem_start);
684 if (mem_start >= ram_size) {
685 node_size = 0;
686 } else {
687 node_size = numa_info[i].node_mem;
688 if (node_size > ram_size - mem_start) {
689 node_size = ram_size - mem_start;
690 }
691 }
692 mem_reg_property[1] = cpu_to_be64(node_size);
693 associativity[3] = associativity[4] = cpu_to_be32(i);
694 sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start);
695 off = fdt_add_subnode(fdt, 0, mem_name);
696 _FDT(off);
697 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
698 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
699 sizeof(mem_reg_property))));
700 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
701 sizeof(associativity))));
702 mem_start += node_size;
703 }
704
705 return 0;
706 }
707
708 static void spapr_finalize_fdt(sPAPREnvironment *spapr,
709 hwaddr fdt_addr,
710 hwaddr rtas_addr,
711 hwaddr rtas_size)
712 {
713 int ret, i;
714 size_t cb = 0;
715 char *bootlist;
716 void *fdt;
717 sPAPRPHBState *phb;
718
719 fdt = g_malloc(FDT_MAX_SIZE);
720
721 /* open out the base tree into a temp buffer for the final tweaks */
722 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
723
724 ret = spapr_populate_memory(spapr, fdt);
725 if (ret < 0) {
726 fprintf(stderr, "couldn't setup memory nodes in fdt\n");
727 exit(1);
728 }
729
730 ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
731 if (ret < 0) {
732 fprintf(stderr, "couldn't setup vio devices in fdt\n");
733 exit(1);
734 }
735
736 QLIST_FOREACH(phb, &spapr->phbs, list) {
737 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
738 }
739
740 if (ret < 0) {
741 fprintf(stderr, "couldn't setup PCI devices in fdt\n");
742 exit(1);
743 }
744
745 /* RTAS */
746 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
747 if (ret < 0) {
748 fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
749 }
750
751 /* Advertise NUMA via ibm,associativity */
752 ret = spapr_fixup_cpu_dt(fdt, spapr);
753 if (ret < 0) {
754 fprintf(stderr, "Couldn't finalize CPU device tree properties\n");
755 }
756
757 bootlist = get_boot_devices_list(&cb, true);
758 if (cb && bootlist) {
759 int offset = fdt_path_offset(fdt, "/chosen");
760 if (offset < 0) {
761 exit(1);
762 }
763 for (i = 0; i < cb; i++) {
764 if (bootlist[i] == '\n') {
765 bootlist[i] = ' ';
766 }
767
768 }
769 ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
770 }
771
772 if (!spapr->has_graphics) {
773 spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
774 }
775
776 _FDT((fdt_pack(fdt)));
777
778 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
779 hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
780 fdt_totalsize(fdt), FDT_MAX_SIZE);
781 exit(1);
782 }
783
784 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
785
786 g_free(fdt);
787 }
788
789 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
790 {
791 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
792 }
793
794 static void emulate_spapr_hypercall(PowerPCCPU *cpu)
795 {
796 CPUPPCState *env = &cpu->env;
797
798 if (msr_pr) {
799 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
800 env->gpr[3] = H_PRIVILEGE;
801 } else {
802 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
803 }
804 }
805
806 static void spapr_reset_htab(sPAPREnvironment *spapr)
807 {
808 long shift;
809
810 /* allocate hash page table. For now we always make this 16mb,
811 * later we should probably make it scale to the size of guest
812 * RAM */
813
814 shift = kvmppc_reset_htab(spapr->htab_shift);
815
816 if (shift > 0) {
817 /* Kernel handles htab, we don't need to allocate one */
818 spapr->htab_shift = shift;
819 kvmppc_kern_htab = true;
820 } else {
821 if (!spapr->htab) {
822 /* Allocate an htab if we don't yet have one */
823 spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
824 }
825
826 /* And clear it */
827 memset(spapr->htab, 0, HTAB_SIZE(spapr));
828 }
829
830 /* Update the RMA size if necessary */
831 if (spapr->vrma_adjust) {
832 hwaddr node0_size = (nb_numa_nodes > 1) ?
833 numa_info[0].node_mem : ram_size;
834 spapr->rma_size = kvmppc_rma_size(node0_size, spapr->htab_shift);
835 }
836 }
837
838 static void ppc_spapr_reset(void)
839 {
840 PowerPCCPU *first_ppc_cpu;
841
842 /* Reset the hash table & recalc the RMA */
843 spapr_reset_htab(spapr);
844
845 qemu_devices_reset();
846
847 /* Load the fdt */
848 spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
849 spapr->rtas_size);
850
851 /* Set up the entry state */
852 first_ppc_cpu = POWERPC_CPU(first_cpu);
853 first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
854 first_ppc_cpu->env.gpr[5] = 0;
855 first_cpu->halted = 0;
856 first_ppc_cpu->env.nip = spapr->entry_point;
857
858 }
859
860 static void spapr_cpu_reset(void *opaque)
861 {
862 PowerPCCPU *cpu = opaque;
863 CPUState *cs = CPU(cpu);
864 CPUPPCState *env = &cpu->env;
865
866 cpu_reset(cs);
867
868 /* All CPUs start halted. CPU0 is unhalted from the machine level
869 * reset code and the rest are explicitly started up by the guest
870 * using an RTAS call */
871 cs->halted = 1;
872
873 env->spr[SPR_HIOR] = 0;
874
875 env->external_htab = (uint8_t *)spapr->htab;
876 if (kvm_enabled() && !env->external_htab) {
877 /*
878 * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte*
879 * functions do the right thing.
880 */
881 env->external_htab = (void *)1;
882 }
883 env->htab_base = -1;
884 /*
885 * htab_mask is the mask used to normalize hash value to PTEG index.
886 * htab_shift is log2 of hash table size.
887 * We have 8 hpte per group, and each hpte is 16 bytes.
888 * ie have 128 bytes per hpte entry.
889 */
890 env->htab_mask = (1ULL << ((spapr)->htab_shift - 7)) - 1;
891 env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
892 (spapr->htab_shift - 18);
893 }
894
895 static void spapr_create_nvram(sPAPREnvironment *spapr)
896 {
897 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
898 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
899
900 if (dinfo) {
901 qdev_prop_set_drive_nofail(dev, "drive", dinfo->bdrv);
902 }
903
904 qdev_init_nofail(dev);
905
906 spapr->nvram = (struct sPAPRNVRAM *)dev;
907 }
908
909 /* Returns whether we want to use VGA or not */
910 static int spapr_vga_init(PCIBus *pci_bus)
911 {
912 switch (vga_interface_type) {
913 case VGA_NONE:
914 return false;
915 case VGA_DEVICE:
916 return true;
917 case VGA_STD:
918 return pci_vga_init(pci_bus) != NULL;
919 default:
920 fprintf(stderr, "This vga model is not supported,"
921 "currently it only supports -vga std\n");
922 exit(0);
923 }
924 }
925
926 static const VMStateDescription vmstate_spapr = {
927 .name = "spapr",
928 .version_id = 2,
929 .minimum_version_id = 1,
930 .fields = (VMStateField[]) {
931 VMSTATE_UNUSED(4), /* used to be @next_irq */
932
933 /* RTC offset */
934 VMSTATE_UINT64(rtc_offset, sPAPREnvironment),
935 VMSTATE_PPC_TIMEBASE_V(tb, sPAPREnvironment, 2),
936 VMSTATE_END_OF_LIST()
937 },
938 };
939
940 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
941 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
942 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
943 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
944
945 static int htab_save_setup(QEMUFile *f, void *opaque)
946 {
947 sPAPREnvironment *spapr = opaque;
948
949 /* "Iteration" header */
950 qemu_put_be32(f, spapr->htab_shift);
951
952 if (spapr->htab) {
953 spapr->htab_save_index = 0;
954 spapr->htab_first_pass = true;
955 } else {
956 assert(kvm_enabled());
957
958 spapr->htab_fd = kvmppc_get_htab_fd(false);
959 if (spapr->htab_fd < 0) {
960 fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
961 strerror(errno));
962 return -1;
963 }
964 }
965
966
967 return 0;
968 }
969
970 static void htab_save_first_pass(QEMUFile *f, sPAPREnvironment *spapr,
971 int64_t max_ns)
972 {
973 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
974 int index = spapr->htab_save_index;
975 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
976
977 assert(spapr->htab_first_pass);
978
979 do {
980 int chunkstart;
981
982 /* Consume invalid HPTEs */
983 while ((index < htabslots)
984 && !HPTE_VALID(HPTE(spapr->htab, index))) {
985 index++;
986 CLEAN_HPTE(HPTE(spapr->htab, index));
987 }
988
989 /* Consume valid HPTEs */
990 chunkstart = index;
991 while ((index < htabslots)
992 && HPTE_VALID(HPTE(spapr->htab, index))) {
993 index++;
994 CLEAN_HPTE(HPTE(spapr->htab, index));
995 }
996
997 if (index > chunkstart) {
998 int n_valid = index - chunkstart;
999
1000 qemu_put_be32(f, chunkstart);
1001 qemu_put_be16(f, n_valid);
1002 qemu_put_be16(f, 0);
1003 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1004 HASH_PTE_SIZE_64 * n_valid);
1005
1006 if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1007 break;
1008 }
1009 }
1010 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1011
1012 if (index >= htabslots) {
1013 assert(index == htabslots);
1014 index = 0;
1015 spapr->htab_first_pass = false;
1016 }
1017 spapr->htab_save_index = index;
1018 }
1019
1020 static int htab_save_later_pass(QEMUFile *f, sPAPREnvironment *spapr,
1021 int64_t max_ns)
1022 {
1023 bool final = max_ns < 0;
1024 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1025 int examined = 0, sent = 0;
1026 int index = spapr->htab_save_index;
1027 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1028
1029 assert(!spapr->htab_first_pass);
1030
1031 do {
1032 int chunkstart, invalidstart;
1033
1034 /* Consume non-dirty HPTEs */
1035 while ((index < htabslots)
1036 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1037 index++;
1038 examined++;
1039 }
1040
1041 chunkstart = index;
1042 /* Consume valid dirty HPTEs */
1043 while ((index < htabslots)
1044 && HPTE_DIRTY(HPTE(spapr->htab, index))
1045 && HPTE_VALID(HPTE(spapr->htab, index))) {
1046 CLEAN_HPTE(HPTE(spapr->htab, index));
1047 index++;
1048 examined++;
1049 }
1050
1051 invalidstart = index;
1052 /* Consume invalid dirty HPTEs */
1053 while ((index < htabslots)
1054 && HPTE_DIRTY(HPTE(spapr->htab, index))
1055 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1056 CLEAN_HPTE(HPTE(spapr->htab, index));
1057 index++;
1058 examined++;
1059 }
1060
1061 if (index > chunkstart) {
1062 int n_valid = invalidstart - chunkstart;
1063 int n_invalid = index - invalidstart;
1064
1065 qemu_put_be32(f, chunkstart);
1066 qemu_put_be16(f, n_valid);
1067 qemu_put_be16(f, n_invalid);
1068 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1069 HASH_PTE_SIZE_64 * n_valid);
1070 sent += index - chunkstart;
1071
1072 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1073 break;
1074 }
1075 }
1076
1077 if (examined >= htabslots) {
1078 break;
1079 }
1080
1081 if (index >= htabslots) {
1082 assert(index == htabslots);
1083 index = 0;
1084 }
1085 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1086
1087 if (index >= htabslots) {
1088 assert(index == htabslots);
1089 index = 0;
1090 }
1091
1092 spapr->htab_save_index = index;
1093
1094 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1095 }
1096
1097 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1098 #define MAX_KVM_BUF_SIZE 2048
1099
1100 static int htab_save_iterate(QEMUFile *f, void *opaque)
1101 {
1102 sPAPREnvironment *spapr = opaque;
1103 int rc = 0;
1104
1105 /* Iteration header */
1106 qemu_put_be32(f, 0);
1107
1108 if (!spapr->htab) {
1109 assert(kvm_enabled());
1110
1111 rc = kvmppc_save_htab(f, spapr->htab_fd,
1112 MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1113 if (rc < 0) {
1114 return rc;
1115 }
1116 } else if (spapr->htab_first_pass) {
1117 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1118 } else {
1119 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1120 }
1121
1122 /* End marker */
1123 qemu_put_be32(f, 0);
1124 qemu_put_be16(f, 0);
1125 qemu_put_be16(f, 0);
1126
1127 return rc;
1128 }
1129
1130 static int htab_save_complete(QEMUFile *f, void *opaque)
1131 {
1132 sPAPREnvironment *spapr = opaque;
1133
1134 /* Iteration header */
1135 qemu_put_be32(f, 0);
1136
1137 if (!spapr->htab) {
1138 int rc;
1139
1140 assert(kvm_enabled());
1141
1142 rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1);
1143 if (rc < 0) {
1144 return rc;
1145 }
1146 close(spapr->htab_fd);
1147 spapr->htab_fd = -1;
1148 } else {
1149 htab_save_later_pass(f, spapr, -1);
1150 }
1151
1152 /* End marker */
1153 qemu_put_be32(f, 0);
1154 qemu_put_be16(f, 0);
1155 qemu_put_be16(f, 0);
1156
1157 return 0;
1158 }
1159
1160 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1161 {
1162 sPAPREnvironment *spapr = opaque;
1163 uint32_t section_hdr;
1164 int fd = -1;
1165
1166 if (version_id < 1 || version_id > 1) {
1167 fprintf(stderr, "htab_load() bad version\n");
1168 return -EINVAL;
1169 }
1170
1171 section_hdr = qemu_get_be32(f);
1172
1173 if (section_hdr) {
1174 /* First section, just the hash shift */
1175 if (spapr->htab_shift != section_hdr) {
1176 return -EINVAL;
1177 }
1178 return 0;
1179 }
1180
1181 if (!spapr->htab) {
1182 assert(kvm_enabled());
1183
1184 fd = kvmppc_get_htab_fd(true);
1185 if (fd < 0) {
1186 fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n",
1187 strerror(errno));
1188 }
1189 }
1190
1191 while (true) {
1192 uint32_t index;
1193 uint16_t n_valid, n_invalid;
1194
1195 index = qemu_get_be32(f);
1196 n_valid = qemu_get_be16(f);
1197 n_invalid = qemu_get_be16(f);
1198
1199 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1200 /* End of Stream */
1201 break;
1202 }
1203
1204 if ((index + n_valid + n_invalid) >
1205 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1206 /* Bad index in stream */
1207 fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) "
1208 "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid,
1209 spapr->htab_shift);
1210 return -EINVAL;
1211 }
1212
1213 if (spapr->htab) {
1214 if (n_valid) {
1215 qemu_get_buffer(f, HPTE(spapr->htab, index),
1216 HASH_PTE_SIZE_64 * n_valid);
1217 }
1218 if (n_invalid) {
1219 memset(HPTE(spapr->htab, index + n_valid), 0,
1220 HASH_PTE_SIZE_64 * n_invalid);
1221 }
1222 } else {
1223 int rc;
1224
1225 assert(fd >= 0);
1226
1227 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1228 if (rc < 0) {
1229 return rc;
1230 }
1231 }
1232 }
1233
1234 if (!spapr->htab) {
1235 assert(fd >= 0);
1236 close(fd);
1237 }
1238
1239 return 0;
1240 }
1241
1242 static SaveVMHandlers savevm_htab_handlers = {
1243 .save_live_setup = htab_save_setup,
1244 .save_live_iterate = htab_save_iterate,
1245 .save_live_complete = htab_save_complete,
1246 .load_state = htab_load,
1247 };
1248
1249 /* pSeries LPAR / sPAPR hardware init */
1250 static void ppc_spapr_init(MachineState *machine)
1251 {
1252 ram_addr_t ram_size = machine->ram_size;
1253 const char *cpu_model = machine->cpu_model;
1254 const char *kernel_filename = machine->kernel_filename;
1255 const char *kernel_cmdline = machine->kernel_cmdline;
1256 const char *initrd_filename = machine->initrd_filename;
1257 const char *boot_device = machine->boot_order;
1258 PowerPCCPU *cpu;
1259 CPUPPCState *env;
1260 PCIHostState *phb;
1261 int i;
1262 MemoryRegion *sysmem = get_system_memory();
1263 MemoryRegion *ram = g_new(MemoryRegion, 1);
1264 MemoryRegion *rma_region;
1265 void *rma = NULL;
1266 hwaddr rma_alloc_size;
1267 hwaddr node0_size = (nb_numa_nodes > 1) ? numa_info[0].node_mem : ram_size;
1268 uint32_t initrd_base = 0;
1269 long kernel_size = 0, initrd_size = 0;
1270 long load_limit, rtas_limit, fw_size;
1271 bool kernel_le = false;
1272 char *filename;
1273
1274 msi_supported = true;
1275
1276 spapr = g_malloc0(sizeof(*spapr));
1277 QLIST_INIT(&spapr->phbs);
1278
1279 cpu_ppc_hypercall = emulate_spapr_hypercall;
1280
1281 /* Allocate RMA if necessary */
1282 rma_alloc_size = kvmppc_alloc_rma(&rma);
1283
1284 if (rma_alloc_size == -1) {
1285 hw_error("qemu: Unable to create RMA\n");
1286 exit(1);
1287 }
1288
1289 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1290 spapr->rma_size = rma_alloc_size;
1291 } else {
1292 spapr->rma_size = node0_size;
1293
1294 /* With KVM, we don't actually know whether KVM supports an
1295 * unbounded RMA (PR KVM) or is limited by the hash table size
1296 * (HV KVM using VRMA), so we always assume the latter
1297 *
1298 * In that case, we also limit the initial allocations for RTAS
1299 * etc... to 256M since we have no way to know what the VRMA size
1300 * is going to be as it depends on the size of the hash table
1301 * isn't determined yet.
1302 */
1303 if (kvm_enabled()) {
1304 spapr->vrma_adjust = 1;
1305 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1306 }
1307 }
1308
1309 if (spapr->rma_size > node0_size) {
1310 fprintf(stderr, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")\n",
1311 spapr->rma_size);
1312 exit(1);
1313 }
1314
1315 /* We place the device tree and RTAS just below either the top of the RMA,
1316 * or just below 2GB, whichever is lowere, so that it can be
1317 * processed with 32-bit real mode code if necessary */
1318 rtas_limit = MIN(spapr->rma_size, 0x80000000);
1319 spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1320 spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
1321 load_limit = spapr->fdt_addr - FW_OVERHEAD;
1322
1323 /* We aim for a hash table of size 1/128 the size of RAM. The
1324 * normal rule of thumb is 1/64 the size of RAM, but that's much
1325 * more than needed for the Linux guests we support. */
1326 spapr->htab_shift = 18; /* Minimum architected size */
1327 while (spapr->htab_shift <= 46) {
1328 if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) {
1329 break;
1330 }
1331 spapr->htab_shift++;
1332 }
1333
1334 /* Set up Interrupt Controller before we create the VCPUs */
1335 spapr->icp = xics_system_init(smp_cpus * kvmppc_smt_threads() / smp_threads,
1336 XICS_IRQS);
1337
1338 /* init CPUs */
1339 if (cpu_model == NULL) {
1340 cpu_model = kvm_enabled() ? "host" : "POWER7";
1341 }
1342 for (i = 0; i < smp_cpus; i++) {
1343 cpu = cpu_ppc_init(cpu_model);
1344 if (cpu == NULL) {
1345 fprintf(stderr, "Unable to find PowerPC CPU definition\n");
1346 exit(1);
1347 }
1348 env = &cpu->env;
1349
1350 /* Set time-base frequency to 512 MHz */
1351 cpu_ppc_tb_init(env, TIMEBASE_FREQ);
1352
1353 /* PAPR always has exception vectors in RAM not ROM. To ensure this,
1354 * MSR[IP] should never be set.
1355 */
1356 env->msr_mask &= ~(1 << 6);
1357
1358 /* Tell KVM that we're in PAPR mode */
1359 if (kvm_enabled()) {
1360 kvmppc_set_papr(cpu);
1361 }
1362
1363 if (cpu->max_compat) {
1364 if (ppc_set_compat(cpu, cpu->max_compat) < 0) {
1365 exit(1);
1366 }
1367 }
1368
1369 xics_cpu_setup(spapr->icp, cpu);
1370
1371 qemu_register_reset(spapr_cpu_reset, cpu);
1372 }
1373
1374 /* allocate RAM */
1375 spapr->ram_limit = ram_size;
1376 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
1377 spapr->ram_limit);
1378 memory_region_add_subregion(sysmem, 0, ram);
1379
1380 if (rma_alloc_size && rma) {
1381 rma_region = g_new(MemoryRegion, 1);
1382 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
1383 rma_alloc_size, rma);
1384 vmstate_register_ram_global(rma_region);
1385 memory_region_add_subregion(sysmem, 0, rma_region);
1386 }
1387
1388 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1389 spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
1390 rtas_limit - spapr->rtas_addr);
1391 if (spapr->rtas_size < 0) {
1392 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
1393 exit(1);
1394 }
1395 if (spapr->rtas_size > RTAS_MAX_SIZE) {
1396 hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
1397 spapr->rtas_size, RTAS_MAX_SIZE);
1398 exit(1);
1399 }
1400 g_free(filename);
1401
1402 /* Set up EPOW events infrastructure */
1403 spapr_events_init(spapr);
1404
1405 /* Set up VIO bus */
1406 spapr->vio_bus = spapr_vio_bus_init();
1407
1408 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1409 if (serial_hds[i]) {
1410 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1411 }
1412 }
1413
1414 /* We always have at least the nvram device on VIO */
1415 spapr_create_nvram(spapr);
1416
1417 /* Set up PCI */
1418 spapr_pci_msi_init(spapr, SPAPR_PCI_MSI_WINDOW);
1419 spapr_pci_rtas_init();
1420
1421 phb = spapr_create_phb(spapr, 0);
1422
1423 for (i = 0; i < nb_nics; i++) {
1424 NICInfo *nd = &nd_table[i];
1425
1426 if (!nd->model) {
1427 nd->model = g_strdup("ibmveth");
1428 }
1429
1430 if (strcmp(nd->model, "ibmveth") == 0) {
1431 spapr_vlan_create(spapr->vio_bus, nd);
1432 } else {
1433 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1434 }
1435 }
1436
1437 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1438 spapr_vscsi_create(spapr->vio_bus);
1439 }
1440
1441 /* Graphics */
1442 if (spapr_vga_init(phb->bus)) {
1443 spapr->has_graphics = true;
1444 }
1445
1446 if (usb_enabled(spapr->has_graphics)) {
1447 pci_create_simple(phb->bus, -1, "pci-ohci");
1448 if (spapr->has_graphics) {
1449 usbdevice_create("keyboard");
1450 usbdevice_create("mouse");
1451 }
1452 }
1453
1454 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1455 fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
1456 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
1457 exit(1);
1458 }
1459
1460 if (kernel_filename) {
1461 uint64_t lowaddr = 0;
1462
1463 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
1464 NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
1465 if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1466 kernel_size = load_elf(kernel_filename,
1467 translate_kernel_address, NULL,
1468 NULL, &lowaddr, NULL, 0, ELF_MACHINE, 0);
1469 kernel_le = kernel_size > 0;
1470 }
1471 if (kernel_size < 0) {
1472 fprintf(stderr, "qemu: error loading %s: %s\n",
1473 kernel_filename, load_elf_strerror(kernel_size));
1474 exit(1);
1475 }
1476
1477 /* load initrd */
1478 if (initrd_filename) {
1479 /* Try to locate the initrd in the gap between the kernel
1480 * and the firmware. Add a bit of space just in case
1481 */
1482 initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1483 initrd_size = load_image_targphys(initrd_filename, initrd_base,
1484 load_limit - initrd_base);
1485 if (initrd_size < 0) {
1486 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
1487 initrd_filename);
1488 exit(1);
1489 }
1490 } else {
1491 initrd_base = 0;
1492 initrd_size = 0;
1493 }
1494 }
1495
1496 if (bios_name == NULL) {
1497 bios_name = FW_FILE_NAME;
1498 }
1499 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1500 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
1501 if (fw_size < 0) {
1502 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
1503 exit(1);
1504 }
1505 g_free(filename);
1506
1507 spapr->entry_point = 0x100;
1508
1509 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
1510 register_savevm_live(NULL, "spapr/htab", -1, 1,
1511 &savevm_htab_handlers, spapr);
1512
1513 /* Prepare the device tree */
1514 spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
1515 kernel_size, kernel_le,
1516 boot_device, kernel_cmdline,
1517 spapr->epow_irq);
1518 assert(spapr->fdt_skel != NULL);
1519 }
1520
1521 static int spapr_kvm_type(const char *vm_type)
1522 {
1523 if (!vm_type) {
1524 return 0;
1525 }
1526
1527 if (!strcmp(vm_type, "HV")) {
1528 return 1;
1529 }
1530
1531 if (!strcmp(vm_type, "PR")) {
1532 return 2;
1533 }
1534
1535 error_report("Unknown kvm-type specified '%s'", vm_type);
1536 exit(1);
1537 }
1538
1539 /*
1540 * Implementation of an interface to adjust firmware patch
1541 * for the bootindex property handling.
1542 */
1543 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
1544 DeviceState *dev)
1545 {
1546 #define CAST(type, obj, name) \
1547 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
1548 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
1549 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
1550
1551 if (d) {
1552 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
1553 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
1554 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
1555
1556 if (spapr) {
1557 /*
1558 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
1559 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
1560 * in the top 16 bits of the 64-bit LUN
1561 */
1562 unsigned id = 0x8000 | (d->id << 8) | d->lun;
1563 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1564 (uint64_t)id << 48);
1565 } else if (virtio) {
1566 /*
1567 * We use SRP luns of the form 01000000 | (target << 8) | lun
1568 * in the top 32 bits of the 64-bit LUN
1569 * Note: the quote above is from SLOF and it is wrong,
1570 * the actual binding is:
1571 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
1572 */
1573 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
1574 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1575 (uint64_t)id << 32);
1576 } else if (usb) {
1577 /*
1578 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
1579 * in the top 32 bits of the 64-bit LUN
1580 */
1581 unsigned usb_port = atoi(usb->port->path);
1582 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
1583 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1584 (uint64_t)id << 32);
1585 }
1586 }
1587
1588 if (phb) {
1589 /* Replace "pci" with "pci@800000020000000" */
1590 return g_strdup_printf("pci@%"PRIX64, phb->buid);
1591 }
1592
1593 return NULL;
1594 }
1595
1596 static char *spapr_get_kvm_type(Object *obj, Error **errp)
1597 {
1598 sPAPRMachineState *sm = SPAPR_MACHINE(obj);
1599
1600 return g_strdup(sm->kvm_type);
1601 }
1602
1603 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
1604 {
1605 sPAPRMachineState *sm = SPAPR_MACHINE(obj);
1606
1607 g_free(sm->kvm_type);
1608 sm->kvm_type = g_strdup(value);
1609 }
1610
1611 static void spapr_machine_initfn(Object *obj)
1612 {
1613 object_property_add_str(obj, "kvm-type",
1614 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
1615 }
1616
1617 static void ppc_cpu_do_nmi_on_cpu(void *arg)
1618 {
1619 CPUState *cs = arg;
1620
1621 cpu_synchronize_state(cs);
1622 ppc_cpu_do_system_reset(cs);
1623 }
1624
1625 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
1626 {
1627 CPUState *cs;
1628
1629 CPU_FOREACH(cs) {
1630 async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, cs);
1631 }
1632 }
1633
1634 static void spapr_machine_class_init(ObjectClass *oc, void *data)
1635 {
1636 MachineClass *mc = MACHINE_CLASS(oc);
1637 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
1638 NMIClass *nc = NMI_CLASS(oc);
1639
1640 mc->name = "pseries";
1641 mc->desc = "pSeries Logical Partition (PAPR compliant)";
1642 mc->is_default = 1;
1643 mc->init = ppc_spapr_init;
1644 mc->reset = ppc_spapr_reset;
1645 mc->block_default_type = IF_SCSI;
1646 mc->max_cpus = MAX_CPUS;
1647 mc->no_parallel = 1;
1648 mc->default_boot_order = NULL;
1649 mc->kvm_type = spapr_kvm_type;
1650
1651 fwc->get_dev_path = spapr_get_fw_dev_path;
1652 nc->nmi_monitor_handler = spapr_nmi;
1653 }
1654
1655 static const TypeInfo spapr_machine_info = {
1656 .name = TYPE_SPAPR_MACHINE,
1657 .parent = TYPE_MACHINE,
1658 .instance_size = sizeof(sPAPRMachineState),
1659 .instance_init = spapr_machine_initfn,
1660 .class_init = spapr_machine_class_init,
1661 .interfaces = (InterfaceInfo[]) {
1662 { TYPE_FW_PATH_PROVIDER },
1663 { TYPE_NMI },
1664 { }
1665 },
1666 };
1667
1668 static void spapr_machine_2_1_class_init(ObjectClass *oc, void *data)
1669 {
1670 MachineClass *mc = MACHINE_CLASS(oc);
1671
1672 mc->name = "pseries-2.1";
1673 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.1";
1674 mc->is_default = 0;
1675 }
1676
1677 static const TypeInfo spapr_machine_2_1_info = {
1678 .name = TYPE_SPAPR_MACHINE "2.1",
1679 .parent = TYPE_SPAPR_MACHINE,
1680 .class_init = spapr_machine_2_1_class_init,
1681 };
1682
1683 static void spapr_machine_register_types(void)
1684 {
1685 type_register_static(&spapr_machine_info);
1686 type_register_static(&spapr_machine_2_1_info);
1687 }
1688
1689 type_init(spapr_machine_register_types)