]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr.c
Merge remote-tracking branch 'remotes/aperard/tags/pull-xen-20190204' into staging
[mirror_qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/numa.h"
32 #include "hw/hw.h"
33 #include "qemu/log.h"
34 #include "hw/fw-path-provider.h"
35 #include "elf.h"
36 #include "net/net.h"
37 #include "sysemu/device_tree.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/hw_accel.h"
40 #include "kvm_ppc.h"
41 #include "migration/misc.h"
42 #include "migration/global_state.h"
43 #include "migration/register.h"
44 #include "mmu-hash64.h"
45 #include "mmu-book3s-v3.h"
46 #include "cpu-models.h"
47 #include "qom/cpu.h"
48
49 #include "hw/boards.h"
50 #include "hw/ppc/ppc.h"
51 #include "hw/loader.h"
52
53 #include "hw/ppc/fdt.h"
54 #include "hw/ppc/spapr.h"
55 #include "hw/ppc/spapr_vio.h"
56 #include "hw/pci-host/spapr.h"
57 #include "hw/pci/msi.h"
58
59 #include "hw/pci/pci.h"
60 #include "hw/scsi/scsi.h"
61 #include "hw/virtio/virtio-scsi.h"
62 #include "hw/virtio/vhost-scsi-common.h"
63
64 #include "exec/address-spaces.h"
65 #include "exec/ram_addr.h"
66 #include "hw/usb.h"
67 #include "qemu/config-file.h"
68 #include "qemu/error-report.h"
69 #include "trace.h"
70 #include "hw/nmi.h"
71 #include "hw/intc/intc.h"
72
73 #include "qemu/cutils.h"
74 #include "hw/ppc/spapr_cpu_core.h"
75 #include "hw/mem/memory-device.h"
76
77 #include <libfdt.h>
78
79 /* SLOF memory layout:
80 *
81 * SLOF raw image loaded at 0, copies its romfs right below the flat
82 * device-tree, then position SLOF itself 31M below that
83 *
84 * So we set FW_OVERHEAD to 40MB which should account for all of that
85 * and more
86 *
87 * We load our kernel at 4M, leaving space for SLOF initial image
88 */
89 #define FDT_MAX_SIZE 0x100000
90 #define RTAS_MAX_SIZE 0x10000
91 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
92 #define FW_MAX_SIZE 0x400000
93 #define FW_FILE_NAME "slof.bin"
94 #define FW_OVERHEAD 0x2800000
95 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
96
97 #define MIN_RMA_SLOF 128UL
98
99 #define PHANDLE_XICP 0x00001111
100
101 /* These two functions implement the VCPU id numbering: one to compute them
102 * all and one to identify thread 0 of a VCORE. Any change to the first one
103 * is likely to have an impact on the second one, so let's keep them close.
104 */
105 static int spapr_vcpu_id(sPAPRMachineState *spapr, int cpu_index)
106 {
107 assert(spapr->vsmt);
108 return
109 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
110 }
111 static bool spapr_is_thread0_in_vcore(sPAPRMachineState *spapr,
112 PowerPCCPU *cpu)
113 {
114 assert(spapr->vsmt);
115 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
116 }
117
118 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
119 {
120 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
121 * and newer QEMUs don't even have them. In both cases, we don't want
122 * to send anything on the wire.
123 */
124 return false;
125 }
126
127 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
128 .name = "icp/server",
129 .version_id = 1,
130 .minimum_version_id = 1,
131 .needed = pre_2_10_vmstate_dummy_icp_needed,
132 .fields = (VMStateField[]) {
133 VMSTATE_UNUSED(4), /* uint32_t xirr */
134 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
135 VMSTATE_UNUSED(1), /* uint8_t mfrr */
136 VMSTATE_END_OF_LIST()
137 },
138 };
139
140 static void pre_2_10_vmstate_register_dummy_icp(int i)
141 {
142 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
143 (void *)(uintptr_t) i);
144 }
145
146 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
147 {
148 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
149 (void *)(uintptr_t) i);
150 }
151
152 int spapr_max_server_number(sPAPRMachineState *spapr)
153 {
154 assert(spapr->vsmt);
155 return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads);
156 }
157
158 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
159 int smt_threads)
160 {
161 int i, ret = 0;
162 uint32_t servers_prop[smt_threads];
163 uint32_t gservers_prop[smt_threads * 2];
164 int index = spapr_get_vcpu_id(cpu);
165
166 if (cpu->compat_pvr) {
167 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
168 if (ret < 0) {
169 return ret;
170 }
171 }
172
173 /* Build interrupt servers and gservers properties */
174 for (i = 0; i < smt_threads; i++) {
175 servers_prop[i] = cpu_to_be32(index + i);
176 /* Hack, direct the group queues back to cpu 0 */
177 gservers_prop[i*2] = cpu_to_be32(index + i);
178 gservers_prop[i*2 + 1] = 0;
179 }
180 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
181 servers_prop, sizeof(servers_prop));
182 if (ret < 0) {
183 return ret;
184 }
185 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
186 gservers_prop, sizeof(gservers_prop));
187
188 return ret;
189 }
190
191 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
192 {
193 int index = spapr_get_vcpu_id(cpu);
194 uint32_t associativity[] = {cpu_to_be32(0x5),
195 cpu_to_be32(0x0),
196 cpu_to_be32(0x0),
197 cpu_to_be32(0x0),
198 cpu_to_be32(cpu->node_id),
199 cpu_to_be32(index)};
200
201 /* Advertise NUMA via ibm,associativity */
202 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
203 sizeof(associativity));
204 }
205
206 /* Populate the "ibm,pa-features" property */
207 static void spapr_populate_pa_features(sPAPRMachineState *spapr,
208 PowerPCCPU *cpu,
209 void *fdt, int offset,
210 bool legacy_guest)
211 {
212 uint8_t pa_features_206[] = { 6, 0,
213 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
214 uint8_t pa_features_207[] = { 24, 0,
215 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
216 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
217 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
218 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
219 uint8_t pa_features_300[] = { 66, 0,
220 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
221 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
222 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
223 /* 6: DS207 */
224 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
225 /* 16: Vector */
226 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
227 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
228 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
229 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
230 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
231 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
232 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
233 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
234 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
235 /* 42: PM, 44: PC RA, 46: SC vec'd */
236 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
237 /* 48: SIMD, 50: QP BFP, 52: String */
238 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
239 /* 54: DecFP, 56: DecI, 58: SHA */
240 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
241 /* 60: NM atomic, 62: RNG */
242 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
243 };
244 uint8_t *pa_features = NULL;
245 size_t pa_size;
246
247 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
248 pa_features = pa_features_206;
249 pa_size = sizeof(pa_features_206);
250 }
251 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
252 pa_features = pa_features_207;
253 pa_size = sizeof(pa_features_207);
254 }
255 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
256 pa_features = pa_features_300;
257 pa_size = sizeof(pa_features_300);
258 }
259 if (!pa_features) {
260 return;
261 }
262
263 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
264 /*
265 * Note: we keep CI large pages off by default because a 64K capable
266 * guest provisioned with large pages might otherwise try to map a qemu
267 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
268 * even if that qemu runs on a 4k host.
269 * We dd this bit back here if we are confident this is not an issue
270 */
271 pa_features[3] |= 0x20;
272 }
273 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
274 pa_features[24] |= 0x80; /* Transactional memory support */
275 }
276 if (legacy_guest && pa_size > 40) {
277 /* Workaround for broken kernels that attempt (guest) radix
278 * mode when they can't handle it, if they see the radix bit set
279 * in pa-features. So hide it from them. */
280 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
281 }
282
283 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
284 }
285
286 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
287 {
288 int ret = 0, offset, cpus_offset;
289 CPUState *cs;
290 char cpu_model[32];
291 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
292
293 CPU_FOREACH(cs) {
294 PowerPCCPU *cpu = POWERPC_CPU(cs);
295 DeviceClass *dc = DEVICE_GET_CLASS(cs);
296 int index = spapr_get_vcpu_id(cpu);
297 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
298
299 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
300 continue;
301 }
302
303 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
304
305 cpus_offset = fdt_path_offset(fdt, "/cpus");
306 if (cpus_offset < 0) {
307 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
308 if (cpus_offset < 0) {
309 return cpus_offset;
310 }
311 }
312 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
313 if (offset < 0) {
314 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
315 if (offset < 0) {
316 return offset;
317 }
318 }
319
320 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
321 pft_size_prop, sizeof(pft_size_prop));
322 if (ret < 0) {
323 return ret;
324 }
325
326 if (nb_numa_nodes > 1) {
327 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
328 if (ret < 0) {
329 return ret;
330 }
331 }
332
333 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
334 if (ret < 0) {
335 return ret;
336 }
337
338 spapr_populate_pa_features(spapr, cpu, fdt, offset,
339 spapr->cas_legacy_guest_workaround);
340 }
341 return ret;
342 }
343
344 static hwaddr spapr_node0_size(MachineState *machine)
345 {
346 if (nb_numa_nodes) {
347 int i;
348 for (i = 0; i < nb_numa_nodes; ++i) {
349 if (numa_info[i].node_mem) {
350 return MIN(pow2floor(numa_info[i].node_mem),
351 machine->ram_size);
352 }
353 }
354 }
355 return machine->ram_size;
356 }
357
358 static void add_str(GString *s, const gchar *s1)
359 {
360 g_string_append_len(s, s1, strlen(s1) + 1);
361 }
362
363 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
364 hwaddr size)
365 {
366 uint32_t associativity[] = {
367 cpu_to_be32(0x4), /* length */
368 cpu_to_be32(0x0), cpu_to_be32(0x0),
369 cpu_to_be32(0x0), cpu_to_be32(nodeid)
370 };
371 char mem_name[32];
372 uint64_t mem_reg_property[2];
373 int off;
374
375 mem_reg_property[0] = cpu_to_be64(start);
376 mem_reg_property[1] = cpu_to_be64(size);
377
378 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
379 off = fdt_add_subnode(fdt, 0, mem_name);
380 _FDT(off);
381 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
382 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
383 sizeof(mem_reg_property))));
384 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
385 sizeof(associativity))));
386 return off;
387 }
388
389 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
390 {
391 MachineState *machine = MACHINE(spapr);
392 hwaddr mem_start, node_size;
393 int i, nb_nodes = nb_numa_nodes;
394 NodeInfo *nodes = numa_info;
395 NodeInfo ramnode;
396
397 /* No NUMA nodes, assume there is just one node with whole RAM */
398 if (!nb_numa_nodes) {
399 nb_nodes = 1;
400 ramnode.node_mem = machine->ram_size;
401 nodes = &ramnode;
402 }
403
404 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
405 if (!nodes[i].node_mem) {
406 continue;
407 }
408 if (mem_start >= machine->ram_size) {
409 node_size = 0;
410 } else {
411 node_size = nodes[i].node_mem;
412 if (node_size > machine->ram_size - mem_start) {
413 node_size = machine->ram_size - mem_start;
414 }
415 }
416 if (!mem_start) {
417 /* spapr_machine_init() checks for rma_size <= node0_size
418 * already */
419 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
420 mem_start += spapr->rma_size;
421 node_size -= spapr->rma_size;
422 }
423 for ( ; node_size; ) {
424 hwaddr sizetmp = pow2floor(node_size);
425
426 /* mem_start != 0 here */
427 if (ctzl(mem_start) < ctzl(sizetmp)) {
428 sizetmp = 1ULL << ctzl(mem_start);
429 }
430
431 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
432 node_size -= sizetmp;
433 mem_start += sizetmp;
434 }
435 }
436
437 return 0;
438 }
439
440 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
441 sPAPRMachineState *spapr)
442 {
443 PowerPCCPU *cpu = POWERPC_CPU(cs);
444 CPUPPCState *env = &cpu->env;
445 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
446 int index = spapr_get_vcpu_id(cpu);
447 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
448 0xffffffff, 0xffffffff};
449 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
450 : SPAPR_TIMEBASE_FREQ;
451 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
452 uint32_t page_sizes_prop[64];
453 size_t page_sizes_prop_size;
454 uint32_t vcpus_per_socket = smp_threads * smp_cores;
455 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
456 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
457 sPAPRDRConnector *drc;
458 int drc_index;
459 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
460 int i;
461
462 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
463 if (drc) {
464 drc_index = spapr_drc_index(drc);
465 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
466 }
467
468 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
469 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
470
471 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
472 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
473 env->dcache_line_size)));
474 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
475 env->dcache_line_size)));
476 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
477 env->icache_line_size)));
478 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
479 env->icache_line_size)));
480
481 if (pcc->l1_dcache_size) {
482 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
483 pcc->l1_dcache_size)));
484 } else {
485 warn_report("Unknown L1 dcache size for cpu");
486 }
487 if (pcc->l1_icache_size) {
488 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
489 pcc->l1_icache_size)));
490 } else {
491 warn_report("Unknown L1 icache size for cpu");
492 }
493
494 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
495 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
496 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
497 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
498 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
499 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
500
501 if (env->spr_cb[SPR_PURR].oea_read) {
502 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
503 }
504
505 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
506 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
507 segs, sizeof(segs))));
508 }
509
510 /* Advertise VSX (vector extensions) if available
511 * 1 == VMX / Altivec available
512 * 2 == VSX available
513 *
514 * Only CPUs for which we create core types in spapr_cpu_core.c
515 * are possible, and all of those have VMX */
516 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
517 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
518 } else {
519 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
520 }
521
522 /* Advertise DFP (Decimal Floating Point) if available
523 * 0 / no property == no DFP
524 * 1 == DFP available */
525 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
526 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
527 }
528
529 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
530 sizeof(page_sizes_prop));
531 if (page_sizes_prop_size) {
532 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
533 page_sizes_prop, page_sizes_prop_size)));
534 }
535
536 spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
537
538 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
539 cs->cpu_index / vcpus_per_socket)));
540
541 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
542 pft_size_prop, sizeof(pft_size_prop))));
543
544 if (nb_numa_nodes > 1) {
545 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
546 }
547
548 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
549
550 if (pcc->radix_page_info) {
551 for (i = 0; i < pcc->radix_page_info->count; i++) {
552 radix_AP_encodings[i] =
553 cpu_to_be32(pcc->radix_page_info->entries[i]);
554 }
555 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
556 radix_AP_encodings,
557 pcc->radix_page_info->count *
558 sizeof(radix_AP_encodings[0]))));
559 }
560 }
561
562 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
563 {
564 CPUState **rev;
565 CPUState *cs;
566 int n_cpus;
567 int cpus_offset;
568 char *nodename;
569 int i;
570
571 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
572 _FDT(cpus_offset);
573 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
574 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
575
576 /*
577 * We walk the CPUs in reverse order to ensure that CPU DT nodes
578 * created by fdt_add_subnode() end up in the right order in FDT
579 * for the guest kernel the enumerate the CPUs correctly.
580 *
581 * The CPU list cannot be traversed in reverse order, so we need
582 * to do extra work.
583 */
584 n_cpus = 0;
585 rev = NULL;
586 CPU_FOREACH(cs) {
587 rev = g_renew(CPUState *, rev, n_cpus + 1);
588 rev[n_cpus++] = cs;
589 }
590
591 for (i = n_cpus - 1; i >= 0; i--) {
592 CPUState *cs = rev[i];
593 PowerPCCPU *cpu = POWERPC_CPU(cs);
594 int index = spapr_get_vcpu_id(cpu);
595 DeviceClass *dc = DEVICE_GET_CLASS(cs);
596 int offset;
597
598 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
599 continue;
600 }
601
602 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
603 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
604 g_free(nodename);
605 _FDT(offset);
606 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
607 }
608
609 g_free(rev);
610 }
611
612 static int spapr_rng_populate_dt(void *fdt)
613 {
614 int node;
615 int ret;
616
617 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
618 if (node <= 0) {
619 return -1;
620 }
621 ret = fdt_setprop_string(fdt, node, "device_type",
622 "ibm,platform-facilities");
623 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
624 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
625
626 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
627 if (node <= 0) {
628 return -1;
629 }
630 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
631
632 return ret ? -1 : 0;
633 }
634
635 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
636 {
637 MemoryDeviceInfoList *info;
638
639 for (info = list; info; info = info->next) {
640 MemoryDeviceInfo *value = info->value;
641
642 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
643 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
644
645 if (addr >= pcdimm_info->addr &&
646 addr < (pcdimm_info->addr + pcdimm_info->size)) {
647 return pcdimm_info->node;
648 }
649 }
650 }
651
652 return -1;
653 }
654
655 struct sPAPRDrconfCellV2 {
656 uint32_t seq_lmbs;
657 uint64_t base_addr;
658 uint32_t drc_index;
659 uint32_t aa_index;
660 uint32_t flags;
661 } QEMU_PACKED;
662
663 typedef struct DrconfCellQueue {
664 struct sPAPRDrconfCellV2 cell;
665 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
666 } DrconfCellQueue;
667
668 static DrconfCellQueue *
669 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
670 uint32_t drc_index, uint32_t aa_index,
671 uint32_t flags)
672 {
673 DrconfCellQueue *elem;
674
675 elem = g_malloc0(sizeof(*elem));
676 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
677 elem->cell.base_addr = cpu_to_be64(base_addr);
678 elem->cell.drc_index = cpu_to_be32(drc_index);
679 elem->cell.aa_index = cpu_to_be32(aa_index);
680 elem->cell.flags = cpu_to_be32(flags);
681
682 return elem;
683 }
684
685 /* ibm,dynamic-memory-v2 */
686 static int spapr_populate_drmem_v2(sPAPRMachineState *spapr, void *fdt,
687 int offset, MemoryDeviceInfoList *dimms)
688 {
689 MachineState *machine = MACHINE(spapr);
690 uint8_t *int_buf, *cur_index, buf_len;
691 int ret;
692 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
693 uint64_t addr, cur_addr, size;
694 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
695 uint64_t mem_end = machine->device_memory->base +
696 memory_region_size(&machine->device_memory->mr);
697 uint32_t node, nr_entries = 0;
698 sPAPRDRConnector *drc;
699 DrconfCellQueue *elem, *next;
700 MemoryDeviceInfoList *info;
701 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
702 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
703
704 /* Entry to cover RAM and the gap area */
705 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
706 SPAPR_LMB_FLAGS_RESERVED |
707 SPAPR_LMB_FLAGS_DRC_INVALID);
708 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
709 nr_entries++;
710
711 cur_addr = machine->device_memory->base;
712 for (info = dimms; info; info = info->next) {
713 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
714
715 addr = di->addr;
716 size = di->size;
717 node = di->node;
718
719 /* Entry for hot-pluggable area */
720 if (cur_addr < addr) {
721 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
722 g_assert(drc);
723 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
724 cur_addr, spapr_drc_index(drc), -1, 0);
725 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
726 nr_entries++;
727 }
728
729 /* Entry for DIMM */
730 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
731 g_assert(drc);
732 elem = spapr_get_drconf_cell(size / lmb_size, addr,
733 spapr_drc_index(drc), node,
734 SPAPR_LMB_FLAGS_ASSIGNED);
735 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
736 nr_entries++;
737 cur_addr = addr + size;
738 }
739
740 /* Entry for remaining hotpluggable area */
741 if (cur_addr < mem_end) {
742 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
743 g_assert(drc);
744 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
745 cur_addr, spapr_drc_index(drc), -1, 0);
746 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
747 nr_entries++;
748 }
749
750 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
751 int_buf = cur_index = g_malloc0(buf_len);
752 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
753 cur_index += sizeof(nr_entries);
754
755 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
756 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
757 cur_index += sizeof(elem->cell);
758 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
759 g_free(elem);
760 }
761
762 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
763 g_free(int_buf);
764 if (ret < 0) {
765 return -1;
766 }
767 return 0;
768 }
769
770 /* ibm,dynamic-memory */
771 static int spapr_populate_drmem_v1(sPAPRMachineState *spapr, void *fdt,
772 int offset, MemoryDeviceInfoList *dimms)
773 {
774 MachineState *machine = MACHINE(spapr);
775 int i, ret;
776 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
777 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
778 uint32_t nr_lmbs = (machine->device_memory->base +
779 memory_region_size(&machine->device_memory->mr)) /
780 lmb_size;
781 uint32_t *int_buf, *cur_index, buf_len;
782
783 /*
784 * Allocate enough buffer size to fit in ibm,dynamic-memory
785 */
786 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
787 cur_index = int_buf = g_malloc0(buf_len);
788 int_buf[0] = cpu_to_be32(nr_lmbs);
789 cur_index++;
790 for (i = 0; i < nr_lmbs; i++) {
791 uint64_t addr = i * lmb_size;
792 uint32_t *dynamic_memory = cur_index;
793
794 if (i >= device_lmb_start) {
795 sPAPRDRConnector *drc;
796
797 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
798 g_assert(drc);
799
800 dynamic_memory[0] = cpu_to_be32(addr >> 32);
801 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
802 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
803 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
804 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
805 if (memory_region_present(get_system_memory(), addr)) {
806 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
807 } else {
808 dynamic_memory[5] = cpu_to_be32(0);
809 }
810 } else {
811 /*
812 * LMB information for RMA, boot time RAM and gap b/n RAM and
813 * device memory region -- all these are marked as reserved
814 * and as having no valid DRC.
815 */
816 dynamic_memory[0] = cpu_to_be32(addr >> 32);
817 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
818 dynamic_memory[2] = cpu_to_be32(0);
819 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
820 dynamic_memory[4] = cpu_to_be32(-1);
821 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
822 SPAPR_LMB_FLAGS_DRC_INVALID);
823 }
824
825 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
826 }
827 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
828 g_free(int_buf);
829 if (ret < 0) {
830 return -1;
831 }
832 return 0;
833 }
834
835 /*
836 * Adds ibm,dynamic-reconfiguration-memory node.
837 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
838 * of this device tree node.
839 */
840 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
841 {
842 MachineState *machine = MACHINE(spapr);
843 int ret, i, offset;
844 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
845 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
846 uint32_t *int_buf, *cur_index, buf_len;
847 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
848 MemoryDeviceInfoList *dimms = NULL;
849
850 /*
851 * Don't create the node if there is no device memory
852 */
853 if (machine->ram_size == machine->maxram_size) {
854 return 0;
855 }
856
857 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
858
859 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
860 sizeof(prop_lmb_size));
861 if (ret < 0) {
862 return ret;
863 }
864
865 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
866 if (ret < 0) {
867 return ret;
868 }
869
870 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
871 if (ret < 0) {
872 return ret;
873 }
874
875 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
876 dimms = qmp_memory_device_list();
877 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
878 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
879 } else {
880 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
881 }
882 qapi_free_MemoryDeviceInfoList(dimms);
883
884 if (ret < 0) {
885 return ret;
886 }
887
888 /* ibm,associativity-lookup-arrays */
889 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
890 cur_index = int_buf = g_malloc0(buf_len);
891 int_buf[0] = cpu_to_be32(nr_nodes);
892 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
893 cur_index += 2;
894 for (i = 0; i < nr_nodes; i++) {
895 uint32_t associativity[] = {
896 cpu_to_be32(0x0),
897 cpu_to_be32(0x0),
898 cpu_to_be32(0x0),
899 cpu_to_be32(i)
900 };
901 memcpy(cur_index, associativity, sizeof(associativity));
902 cur_index += 4;
903 }
904 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
905 (cur_index - int_buf) * sizeof(uint32_t));
906 g_free(int_buf);
907
908 return ret;
909 }
910
911 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
912 sPAPROptionVector *ov5_updates)
913 {
914 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
915 int ret = 0, offset;
916
917 /* Generate ibm,dynamic-reconfiguration-memory node if required */
918 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
919 g_assert(smc->dr_lmb_enabled);
920 ret = spapr_populate_drconf_memory(spapr, fdt);
921 if (ret) {
922 goto out;
923 }
924 }
925
926 offset = fdt_path_offset(fdt, "/chosen");
927 if (offset < 0) {
928 offset = fdt_add_subnode(fdt, 0, "chosen");
929 if (offset < 0) {
930 return offset;
931 }
932 }
933 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
934 "ibm,architecture-vec-5");
935
936 out:
937 return ret;
938 }
939
940 static bool spapr_hotplugged_dev_before_cas(void)
941 {
942 Object *drc_container, *obj;
943 ObjectProperty *prop;
944 ObjectPropertyIterator iter;
945
946 drc_container = container_get(object_get_root(), "/dr-connector");
947 object_property_iter_init(&iter, drc_container);
948 while ((prop = object_property_iter_next(&iter))) {
949 if (!strstart(prop->type, "link<", NULL)) {
950 continue;
951 }
952 obj = object_property_get_link(drc_container, prop->name, NULL);
953 if (spapr_drc_needed(obj)) {
954 return true;
955 }
956 }
957 return false;
958 }
959
960 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
961 target_ulong addr, target_ulong size,
962 sPAPROptionVector *ov5_updates)
963 {
964 void *fdt, *fdt_skel;
965 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
966
967 if (spapr_hotplugged_dev_before_cas()) {
968 return 1;
969 }
970
971 if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
972 error_report("SLOF provided an unexpected CAS buffer size "
973 TARGET_FMT_lu " (min: %zu, max: %u)",
974 size, sizeof(hdr), FW_MAX_SIZE);
975 exit(EXIT_FAILURE);
976 }
977
978 size -= sizeof(hdr);
979
980 /* Create skeleton */
981 fdt_skel = g_malloc0(size);
982 _FDT((fdt_create(fdt_skel, size)));
983 _FDT((fdt_finish_reservemap(fdt_skel)));
984 _FDT((fdt_begin_node(fdt_skel, "")));
985 _FDT((fdt_end_node(fdt_skel)));
986 _FDT((fdt_finish(fdt_skel)));
987 fdt = g_malloc0(size);
988 _FDT((fdt_open_into(fdt_skel, fdt, size)));
989 g_free(fdt_skel);
990
991 /* Fixup cpu nodes */
992 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
993
994 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
995 return -1;
996 }
997
998 /* Pack resulting tree */
999 _FDT((fdt_pack(fdt)));
1000
1001 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1002 trace_spapr_cas_failed(size);
1003 return -1;
1004 }
1005
1006 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1007 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1008 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1009 g_free(fdt);
1010
1011 return 0;
1012 }
1013
1014 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
1015 {
1016 int rtas;
1017 GString *hypertas = g_string_sized_new(256);
1018 GString *qemu_hypertas = g_string_sized_new(256);
1019 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1020 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1021 memory_region_size(&MACHINE(spapr)->device_memory->mr);
1022 uint32_t lrdr_capacity[] = {
1023 cpu_to_be32(max_device_addr >> 32),
1024 cpu_to_be32(max_device_addr & 0xffffffff),
1025 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1026 cpu_to_be32(max_cpus / smp_threads),
1027 };
1028 uint32_t maxdomains[] = {
1029 cpu_to_be32(4),
1030 cpu_to_be32(0),
1031 cpu_to_be32(0),
1032 cpu_to_be32(0),
1033 cpu_to_be32(nb_numa_nodes ? nb_numa_nodes : 1),
1034 };
1035
1036 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1037
1038 /* hypertas */
1039 add_str(hypertas, "hcall-pft");
1040 add_str(hypertas, "hcall-term");
1041 add_str(hypertas, "hcall-dabr");
1042 add_str(hypertas, "hcall-interrupt");
1043 add_str(hypertas, "hcall-tce");
1044 add_str(hypertas, "hcall-vio");
1045 add_str(hypertas, "hcall-splpar");
1046 add_str(hypertas, "hcall-bulk");
1047 add_str(hypertas, "hcall-set-mode");
1048 add_str(hypertas, "hcall-sprg0");
1049 add_str(hypertas, "hcall-copy");
1050 add_str(hypertas, "hcall-debug");
1051 add_str(hypertas, "hcall-vphn");
1052 add_str(qemu_hypertas, "hcall-memop1");
1053
1054 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1055 add_str(hypertas, "hcall-multi-tce");
1056 }
1057
1058 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1059 add_str(hypertas, "hcall-hpt-resize");
1060 }
1061
1062 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1063 hypertas->str, hypertas->len));
1064 g_string_free(hypertas, TRUE);
1065 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1066 qemu_hypertas->str, qemu_hypertas->len));
1067 g_string_free(qemu_hypertas, TRUE);
1068
1069 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1070 refpoints, sizeof(refpoints)));
1071
1072 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1073 maxdomains, sizeof(maxdomains)));
1074
1075 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1076 RTAS_ERROR_LOG_MAX));
1077 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1078 RTAS_EVENT_SCAN_RATE));
1079
1080 g_assert(msi_nonbroken);
1081 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1082
1083 /*
1084 * According to PAPR, rtas ibm,os-term does not guarantee a return
1085 * back to the guest cpu.
1086 *
1087 * While an additional ibm,extended-os-term property indicates
1088 * that rtas call return will always occur. Set this property.
1089 */
1090 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1091
1092 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1093 lrdr_capacity, sizeof(lrdr_capacity)));
1094
1095 spapr_dt_rtas_tokens(fdt, rtas);
1096 }
1097
1098 /*
1099 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1100 * and the XIVE features that the guest may request and thus the valid
1101 * values for bytes 23..26 of option vector 5:
1102 */
1103 static void spapr_dt_ov5_platform_support(sPAPRMachineState *spapr, void *fdt,
1104 int chosen)
1105 {
1106 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1107
1108 char val[2 * 4] = {
1109 23, spapr->irq->ov5, /* Xive mode. */
1110 24, 0x00, /* Hash/Radix, filled in below. */
1111 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1112 26, 0x40, /* Radix options: GTSE == yes. */
1113 };
1114
1115 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1116 first_ppc_cpu->compat_pvr)) {
1117 /*
1118 * If we're in a pre POWER9 compat mode then the guest should
1119 * do hash and use the legacy interrupt mode
1120 */
1121 val[1] = 0x00; /* XICS */
1122 val[3] = 0x00; /* Hash */
1123 } else if (kvm_enabled()) {
1124 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1125 val[3] = 0x80; /* OV5_MMU_BOTH */
1126 } else if (kvmppc_has_cap_mmu_radix()) {
1127 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1128 } else {
1129 val[3] = 0x00; /* Hash */
1130 }
1131 } else {
1132 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1133 val[3] = 0xC0;
1134 }
1135 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1136 val, sizeof(val)));
1137 }
1138
1139 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
1140 {
1141 MachineState *machine = MACHINE(spapr);
1142 int chosen;
1143 const char *boot_device = machine->boot_order;
1144 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1145 size_t cb = 0;
1146 char *bootlist = get_boot_devices_list(&cb);
1147
1148 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1149
1150 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1151 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1152 spapr->initrd_base));
1153 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1154 spapr->initrd_base + spapr->initrd_size));
1155
1156 if (spapr->kernel_size) {
1157 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1158 cpu_to_be64(spapr->kernel_size) };
1159
1160 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1161 &kprop, sizeof(kprop)));
1162 if (spapr->kernel_le) {
1163 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1164 }
1165 }
1166 if (boot_menu) {
1167 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1168 }
1169 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1170 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1171 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1172
1173 if (cb && bootlist) {
1174 int i;
1175
1176 for (i = 0; i < cb; i++) {
1177 if (bootlist[i] == '\n') {
1178 bootlist[i] = ' ';
1179 }
1180 }
1181 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1182 }
1183
1184 if (boot_device && strlen(boot_device)) {
1185 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1186 }
1187
1188 if (!spapr->has_graphics && stdout_path) {
1189 /*
1190 * "linux,stdout-path" and "stdout" properties are deprecated by linux
1191 * kernel. New platforms should only use the "stdout-path" property. Set
1192 * the new property and continue using older property to remain
1193 * compatible with the existing firmware.
1194 */
1195 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1196 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1197 }
1198
1199 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1200
1201 g_free(stdout_path);
1202 g_free(bootlist);
1203 }
1204
1205 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1206 {
1207 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1208 * KVM to work under pHyp with some guest co-operation */
1209 int hypervisor;
1210 uint8_t hypercall[16];
1211
1212 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1213 /* indicate KVM hypercall interface */
1214 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1215 if (kvmppc_has_cap_fixup_hcalls()) {
1216 /*
1217 * Older KVM versions with older guest kernels were broken
1218 * with the magic page, don't allow the guest to map it.
1219 */
1220 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1221 sizeof(hypercall))) {
1222 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1223 hypercall, sizeof(hypercall)));
1224 }
1225 }
1226 }
1227
1228 static void *spapr_build_fdt(sPAPRMachineState *spapr)
1229 {
1230 MachineState *machine = MACHINE(spapr);
1231 MachineClass *mc = MACHINE_GET_CLASS(machine);
1232 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1233 int ret;
1234 void *fdt;
1235 sPAPRPHBState *phb;
1236 char *buf;
1237
1238 fdt = g_malloc0(FDT_MAX_SIZE);
1239 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1240
1241 /* Root node */
1242 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1243 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1244 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1245
1246 /*
1247 * Add info to guest to indentify which host is it being run on
1248 * and what is the uuid of the guest
1249 */
1250 if (kvmppc_get_host_model(&buf)) {
1251 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1252 g_free(buf);
1253 }
1254 if (kvmppc_get_host_serial(&buf)) {
1255 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1256 g_free(buf);
1257 }
1258
1259 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1260
1261 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1262 if (qemu_uuid_set) {
1263 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1264 }
1265 g_free(buf);
1266
1267 if (qemu_get_vm_name()) {
1268 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1269 qemu_get_vm_name()));
1270 }
1271
1272 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1273 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1274
1275 /* /interrupt controller */
1276 spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt,
1277 PHANDLE_XICP);
1278
1279 ret = spapr_populate_memory(spapr, fdt);
1280 if (ret < 0) {
1281 error_report("couldn't setup memory nodes in fdt");
1282 exit(1);
1283 }
1284
1285 /* /vdevice */
1286 spapr_dt_vdevice(spapr->vio_bus, fdt);
1287
1288 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1289 ret = spapr_rng_populate_dt(fdt);
1290 if (ret < 0) {
1291 error_report("could not set up rng device in the fdt");
1292 exit(1);
1293 }
1294 }
1295
1296 QLIST_FOREACH(phb, &spapr->phbs, list) {
1297 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt,
1298 spapr->irq->nr_msis);
1299 if (ret < 0) {
1300 error_report("couldn't setup PCI devices in fdt");
1301 exit(1);
1302 }
1303 }
1304
1305 /* cpus */
1306 spapr_populate_cpus_dt_node(fdt, spapr);
1307
1308 if (smc->dr_lmb_enabled) {
1309 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1310 }
1311
1312 if (mc->has_hotpluggable_cpus) {
1313 int offset = fdt_path_offset(fdt, "/cpus");
1314 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1315 SPAPR_DR_CONNECTOR_TYPE_CPU);
1316 if (ret < 0) {
1317 error_report("Couldn't set up CPU DR device tree properties");
1318 exit(1);
1319 }
1320 }
1321
1322 /* /event-sources */
1323 spapr_dt_events(spapr, fdt);
1324
1325 /* /rtas */
1326 spapr_dt_rtas(spapr, fdt);
1327
1328 /* /chosen */
1329 spapr_dt_chosen(spapr, fdt);
1330
1331 /* /hypervisor */
1332 if (kvm_enabled()) {
1333 spapr_dt_hypervisor(spapr, fdt);
1334 }
1335
1336 /* Build memory reserve map */
1337 if (spapr->kernel_size) {
1338 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1339 }
1340 if (spapr->initrd_size) {
1341 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1342 }
1343
1344 /* ibm,client-architecture-support updates */
1345 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1346 if (ret < 0) {
1347 error_report("couldn't setup CAS properties fdt");
1348 exit(1);
1349 }
1350
1351 return fdt;
1352 }
1353
1354 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1355 {
1356 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1357 }
1358
1359 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1360 PowerPCCPU *cpu)
1361 {
1362 CPUPPCState *env = &cpu->env;
1363
1364 /* The TCG path should also be holding the BQL at this point */
1365 g_assert(qemu_mutex_iothread_locked());
1366
1367 if (msr_pr) {
1368 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1369 env->gpr[3] = H_PRIVILEGE;
1370 } else {
1371 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1372 }
1373 }
1374
1375 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1376 {
1377 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1378
1379 return spapr->patb_entry;
1380 }
1381
1382 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1383 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1384 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1385 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1386 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1387
1388 /*
1389 * Get the fd to access the kernel htab, re-opening it if necessary
1390 */
1391 static int get_htab_fd(sPAPRMachineState *spapr)
1392 {
1393 Error *local_err = NULL;
1394
1395 if (spapr->htab_fd >= 0) {
1396 return spapr->htab_fd;
1397 }
1398
1399 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1400 if (spapr->htab_fd < 0) {
1401 error_report_err(local_err);
1402 }
1403
1404 return spapr->htab_fd;
1405 }
1406
1407 void close_htab_fd(sPAPRMachineState *spapr)
1408 {
1409 if (spapr->htab_fd >= 0) {
1410 close(spapr->htab_fd);
1411 }
1412 spapr->htab_fd = -1;
1413 }
1414
1415 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1416 {
1417 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1418
1419 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1420 }
1421
1422 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1423 {
1424 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1425
1426 assert(kvm_enabled());
1427
1428 if (!spapr->htab) {
1429 return 0;
1430 }
1431
1432 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1433 }
1434
1435 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1436 hwaddr ptex, int n)
1437 {
1438 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1439 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1440
1441 if (!spapr->htab) {
1442 /*
1443 * HTAB is controlled by KVM. Fetch into temporary buffer
1444 */
1445 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1446 kvmppc_read_hptes(hptes, ptex, n);
1447 return hptes;
1448 }
1449
1450 /*
1451 * HTAB is controlled by QEMU. Just point to the internally
1452 * accessible PTEG.
1453 */
1454 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1455 }
1456
1457 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1458 const ppc_hash_pte64_t *hptes,
1459 hwaddr ptex, int n)
1460 {
1461 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1462
1463 if (!spapr->htab) {
1464 g_free((void *)hptes);
1465 }
1466
1467 /* Nothing to do for qemu managed HPT */
1468 }
1469
1470 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1471 uint64_t pte0, uint64_t pte1)
1472 {
1473 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1474 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1475
1476 if (!spapr->htab) {
1477 kvmppc_write_hpte(ptex, pte0, pte1);
1478 } else {
1479 stq_p(spapr->htab + offset, pte0);
1480 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1481 }
1482 }
1483
1484 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1485 {
1486 int shift;
1487
1488 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1489 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1490 * that's much more than is needed for Linux guests */
1491 shift = ctz64(pow2ceil(ramsize)) - 7;
1492 shift = MAX(shift, 18); /* Minimum architected size */
1493 shift = MIN(shift, 46); /* Maximum architected size */
1494 return shift;
1495 }
1496
1497 void spapr_free_hpt(sPAPRMachineState *spapr)
1498 {
1499 g_free(spapr->htab);
1500 spapr->htab = NULL;
1501 spapr->htab_shift = 0;
1502 close_htab_fd(spapr);
1503 }
1504
1505 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1506 Error **errp)
1507 {
1508 long rc;
1509
1510 /* Clean up any HPT info from a previous boot */
1511 spapr_free_hpt(spapr);
1512
1513 rc = kvmppc_reset_htab(shift);
1514 if (rc < 0) {
1515 /* kernel-side HPT needed, but couldn't allocate one */
1516 error_setg_errno(errp, errno,
1517 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1518 shift);
1519 /* This is almost certainly fatal, but if the caller really
1520 * wants to carry on with shift == 0, it's welcome to try */
1521 } else if (rc > 0) {
1522 /* kernel-side HPT allocated */
1523 if (rc != shift) {
1524 error_setg(errp,
1525 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1526 shift, rc);
1527 }
1528
1529 spapr->htab_shift = shift;
1530 spapr->htab = NULL;
1531 } else {
1532 /* kernel-side HPT not needed, allocate in userspace instead */
1533 size_t size = 1ULL << shift;
1534 int i;
1535
1536 spapr->htab = qemu_memalign(size, size);
1537 if (!spapr->htab) {
1538 error_setg_errno(errp, errno,
1539 "Could not allocate HPT of order %d", shift);
1540 return;
1541 }
1542
1543 memset(spapr->htab, 0, size);
1544 spapr->htab_shift = shift;
1545
1546 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1547 DIRTY_HPTE(HPTE(spapr->htab, i));
1548 }
1549 }
1550 /* We're setting up a hash table, so that means we're not radix */
1551 spapr->patb_entry = 0;
1552 }
1553
1554 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1555 {
1556 int hpt_shift;
1557
1558 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1559 || (spapr->cas_reboot
1560 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1561 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1562 } else {
1563 uint64_t current_ram_size;
1564
1565 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1566 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1567 }
1568 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1569
1570 if (spapr->vrma_adjust) {
1571 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1572 spapr->htab_shift);
1573 }
1574 }
1575
1576 static int spapr_reset_drcs(Object *child, void *opaque)
1577 {
1578 sPAPRDRConnector *drc =
1579 (sPAPRDRConnector *) object_dynamic_cast(child,
1580 TYPE_SPAPR_DR_CONNECTOR);
1581
1582 if (drc) {
1583 spapr_drc_reset(drc);
1584 }
1585
1586 return 0;
1587 }
1588
1589 static void spapr_machine_reset(void)
1590 {
1591 MachineState *machine = MACHINE(qdev_get_machine());
1592 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1593 PowerPCCPU *first_ppc_cpu;
1594 uint32_t rtas_limit;
1595 hwaddr rtas_addr, fdt_addr;
1596 void *fdt;
1597 int rc;
1598
1599 spapr_caps_apply(spapr);
1600
1601 first_ppc_cpu = POWERPC_CPU(first_cpu);
1602 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1603 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1604 spapr->max_compat_pvr)) {
1605 /* If using KVM with radix mode available, VCPUs can be started
1606 * without a HPT because KVM will start them in radix mode.
1607 * Set the GR bit in PATB so that we know there is no HPT. */
1608 spapr->patb_entry = PATBE1_GR;
1609 } else {
1610 spapr_setup_hpt_and_vrma(spapr);
1611 }
1612
1613 /* if this reset wasn't generated by CAS, we should reset our
1614 * negotiated options and start from scratch */
1615 if (!spapr->cas_reboot) {
1616 spapr_ovec_cleanup(spapr->ov5_cas);
1617 spapr->ov5_cas = spapr_ovec_new();
1618
1619 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1620 }
1621
1622 if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
1623 spapr_irq_msi_reset(spapr);
1624 }
1625
1626 qemu_devices_reset();
1627
1628 /*
1629 * This is fixing some of the default configuration of the XIVE
1630 * devices. To be called after the reset of the machine devices.
1631 */
1632 spapr_irq_reset(spapr, &error_fatal);
1633
1634 /* DRC reset may cause a device to be unplugged. This will cause troubles
1635 * if this device is used by another device (eg, a running vhost backend
1636 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1637 * situations, we reset DRCs after all devices have been reset.
1638 */
1639 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1640
1641 spapr_clear_pending_events(spapr);
1642
1643 /*
1644 * We place the device tree and RTAS just below either the top of the RMA,
1645 * or just below 2GB, whichever is lower, so that it can be
1646 * processed with 32-bit real mode code if necessary
1647 */
1648 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1649 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1650 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1651
1652 fdt = spapr_build_fdt(spapr);
1653
1654 spapr_load_rtas(spapr, fdt, rtas_addr);
1655
1656 rc = fdt_pack(fdt);
1657
1658 /* Should only fail if we've built a corrupted tree */
1659 assert(rc == 0);
1660
1661 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1662 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1663 fdt_totalsize(fdt), FDT_MAX_SIZE);
1664 exit(1);
1665 }
1666
1667 /* Load the fdt */
1668 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1669 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1670 g_free(spapr->fdt_blob);
1671 spapr->fdt_size = fdt_totalsize(fdt);
1672 spapr->fdt_initial_size = spapr->fdt_size;
1673 spapr->fdt_blob = fdt;
1674
1675 /* Set up the entry state */
1676 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1677 first_ppc_cpu->env.gpr[5] = 0;
1678
1679 spapr->cas_reboot = false;
1680 }
1681
1682 static void spapr_create_nvram(sPAPRMachineState *spapr)
1683 {
1684 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1685 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1686
1687 if (dinfo) {
1688 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1689 &error_fatal);
1690 }
1691
1692 qdev_init_nofail(dev);
1693
1694 spapr->nvram = (struct sPAPRNVRAM *)dev;
1695 }
1696
1697 static void spapr_rtc_create(sPAPRMachineState *spapr)
1698 {
1699 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1700 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1701 &error_fatal);
1702 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1703 &error_fatal);
1704 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1705 "date", &error_fatal);
1706 }
1707
1708 /* Returns whether we want to use VGA or not */
1709 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1710 {
1711 switch (vga_interface_type) {
1712 case VGA_NONE:
1713 return false;
1714 case VGA_DEVICE:
1715 return true;
1716 case VGA_STD:
1717 case VGA_VIRTIO:
1718 case VGA_CIRRUS:
1719 return pci_vga_init(pci_bus) != NULL;
1720 default:
1721 error_setg(errp,
1722 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1723 return false;
1724 }
1725 }
1726
1727 static int spapr_pre_load(void *opaque)
1728 {
1729 int rc;
1730
1731 rc = spapr_caps_pre_load(opaque);
1732 if (rc) {
1733 return rc;
1734 }
1735
1736 return 0;
1737 }
1738
1739 static int spapr_post_load(void *opaque, int version_id)
1740 {
1741 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1742 int err = 0;
1743
1744 err = spapr_caps_post_migration(spapr);
1745 if (err) {
1746 return err;
1747 }
1748
1749 /*
1750 * In earlier versions, there was no separate qdev for the PAPR
1751 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1752 * So when migrating from those versions, poke the incoming offset
1753 * value into the RTC device
1754 */
1755 if (version_id < 3) {
1756 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1757 if (err) {
1758 return err;
1759 }
1760 }
1761
1762 if (kvm_enabled() && spapr->patb_entry) {
1763 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1764 bool radix = !!(spapr->patb_entry & PATBE1_GR);
1765 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1766
1767 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1768 if (err) {
1769 error_report("Process table config unsupported by the host");
1770 return -EINVAL;
1771 }
1772 }
1773
1774 err = spapr_irq_post_load(spapr, version_id);
1775 if (err) {
1776 return err;
1777 }
1778
1779 return err;
1780 }
1781
1782 static int spapr_pre_save(void *opaque)
1783 {
1784 int rc;
1785
1786 rc = spapr_caps_pre_save(opaque);
1787 if (rc) {
1788 return rc;
1789 }
1790
1791 return 0;
1792 }
1793
1794 static bool version_before_3(void *opaque, int version_id)
1795 {
1796 return version_id < 3;
1797 }
1798
1799 static bool spapr_pending_events_needed(void *opaque)
1800 {
1801 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1802 return !QTAILQ_EMPTY(&spapr->pending_events);
1803 }
1804
1805 static const VMStateDescription vmstate_spapr_event_entry = {
1806 .name = "spapr_event_log_entry",
1807 .version_id = 1,
1808 .minimum_version_id = 1,
1809 .fields = (VMStateField[]) {
1810 VMSTATE_UINT32(summary, sPAPREventLogEntry),
1811 VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
1812 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
1813 NULL, extended_length),
1814 VMSTATE_END_OF_LIST()
1815 },
1816 };
1817
1818 static const VMStateDescription vmstate_spapr_pending_events = {
1819 .name = "spapr_pending_events",
1820 .version_id = 1,
1821 .minimum_version_id = 1,
1822 .needed = spapr_pending_events_needed,
1823 .fields = (VMStateField[]) {
1824 VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
1825 vmstate_spapr_event_entry, sPAPREventLogEntry, next),
1826 VMSTATE_END_OF_LIST()
1827 },
1828 };
1829
1830 static bool spapr_ov5_cas_needed(void *opaque)
1831 {
1832 sPAPRMachineState *spapr = opaque;
1833 sPAPROptionVector *ov5_mask = spapr_ovec_new();
1834 sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1835 sPAPROptionVector *ov5_removed = spapr_ovec_new();
1836 bool cas_needed;
1837
1838 /* Prior to the introduction of sPAPROptionVector, we had two option
1839 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1840 * Both of these options encode machine topology into the device-tree
1841 * in such a way that the now-booted OS should still be able to interact
1842 * appropriately with QEMU regardless of what options were actually
1843 * negotiatied on the source side.
1844 *
1845 * As such, we can avoid migrating the CAS-negotiated options if these
1846 * are the only options available on the current machine/platform.
1847 * Since these are the only options available for pseries-2.7 and
1848 * earlier, this allows us to maintain old->new/new->old migration
1849 * compatibility.
1850 *
1851 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1852 * via default pseries-2.8 machines and explicit command-line parameters.
1853 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1854 * of the actual CAS-negotiated values to continue working properly. For
1855 * example, availability of memory unplug depends on knowing whether
1856 * OV5_HP_EVT was negotiated via CAS.
1857 *
1858 * Thus, for any cases where the set of available CAS-negotiatable
1859 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1860 * include the CAS-negotiated options in the migration stream, unless
1861 * if they affect boot time behaviour only.
1862 */
1863 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1864 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1865 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1866
1867 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1868 * the mask itself since in the future it's possible "legacy" bits may be
1869 * removed via machine options, which could generate a false positive
1870 * that breaks migration.
1871 */
1872 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1873 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1874
1875 spapr_ovec_cleanup(ov5_mask);
1876 spapr_ovec_cleanup(ov5_legacy);
1877 spapr_ovec_cleanup(ov5_removed);
1878
1879 return cas_needed;
1880 }
1881
1882 static const VMStateDescription vmstate_spapr_ov5_cas = {
1883 .name = "spapr_option_vector_ov5_cas",
1884 .version_id = 1,
1885 .minimum_version_id = 1,
1886 .needed = spapr_ov5_cas_needed,
1887 .fields = (VMStateField[]) {
1888 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1889 vmstate_spapr_ovec, sPAPROptionVector),
1890 VMSTATE_END_OF_LIST()
1891 },
1892 };
1893
1894 static bool spapr_patb_entry_needed(void *opaque)
1895 {
1896 sPAPRMachineState *spapr = opaque;
1897
1898 return !!spapr->patb_entry;
1899 }
1900
1901 static const VMStateDescription vmstate_spapr_patb_entry = {
1902 .name = "spapr_patb_entry",
1903 .version_id = 1,
1904 .minimum_version_id = 1,
1905 .needed = spapr_patb_entry_needed,
1906 .fields = (VMStateField[]) {
1907 VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1908 VMSTATE_END_OF_LIST()
1909 },
1910 };
1911
1912 static bool spapr_irq_map_needed(void *opaque)
1913 {
1914 sPAPRMachineState *spapr = opaque;
1915
1916 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1917 }
1918
1919 static const VMStateDescription vmstate_spapr_irq_map = {
1920 .name = "spapr_irq_map",
1921 .version_id = 1,
1922 .minimum_version_id = 1,
1923 .needed = spapr_irq_map_needed,
1924 .fields = (VMStateField[]) {
1925 VMSTATE_BITMAP(irq_map, sPAPRMachineState, 0, irq_map_nr),
1926 VMSTATE_END_OF_LIST()
1927 },
1928 };
1929
1930 static bool spapr_dtb_needed(void *opaque)
1931 {
1932 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1933
1934 return smc->update_dt_enabled;
1935 }
1936
1937 static int spapr_dtb_pre_load(void *opaque)
1938 {
1939 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1940
1941 g_free(spapr->fdt_blob);
1942 spapr->fdt_blob = NULL;
1943 spapr->fdt_size = 0;
1944
1945 return 0;
1946 }
1947
1948 static const VMStateDescription vmstate_spapr_dtb = {
1949 .name = "spapr_dtb",
1950 .version_id = 1,
1951 .minimum_version_id = 1,
1952 .needed = spapr_dtb_needed,
1953 .pre_load = spapr_dtb_pre_load,
1954 .fields = (VMStateField[]) {
1955 VMSTATE_UINT32(fdt_initial_size, sPAPRMachineState),
1956 VMSTATE_UINT32(fdt_size, sPAPRMachineState),
1957 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, sPAPRMachineState, 0, NULL,
1958 fdt_size),
1959 VMSTATE_END_OF_LIST()
1960 },
1961 };
1962
1963 static const VMStateDescription vmstate_spapr = {
1964 .name = "spapr",
1965 .version_id = 3,
1966 .minimum_version_id = 1,
1967 .pre_load = spapr_pre_load,
1968 .post_load = spapr_post_load,
1969 .pre_save = spapr_pre_save,
1970 .fields = (VMStateField[]) {
1971 /* used to be @next_irq */
1972 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1973
1974 /* RTC offset */
1975 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1976
1977 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1978 VMSTATE_END_OF_LIST()
1979 },
1980 .subsections = (const VMStateDescription*[]) {
1981 &vmstate_spapr_ov5_cas,
1982 &vmstate_spapr_patb_entry,
1983 &vmstate_spapr_pending_events,
1984 &vmstate_spapr_cap_htm,
1985 &vmstate_spapr_cap_vsx,
1986 &vmstate_spapr_cap_dfp,
1987 &vmstate_spapr_cap_cfpc,
1988 &vmstate_spapr_cap_sbbc,
1989 &vmstate_spapr_cap_ibs,
1990 &vmstate_spapr_irq_map,
1991 &vmstate_spapr_cap_nested_kvm_hv,
1992 &vmstate_spapr_dtb,
1993 NULL
1994 }
1995 };
1996
1997 static int htab_save_setup(QEMUFile *f, void *opaque)
1998 {
1999 sPAPRMachineState *spapr = opaque;
2000
2001 /* "Iteration" header */
2002 if (!spapr->htab_shift) {
2003 qemu_put_be32(f, -1);
2004 } else {
2005 qemu_put_be32(f, spapr->htab_shift);
2006 }
2007
2008 if (spapr->htab) {
2009 spapr->htab_save_index = 0;
2010 spapr->htab_first_pass = true;
2011 } else {
2012 if (spapr->htab_shift) {
2013 assert(kvm_enabled());
2014 }
2015 }
2016
2017
2018 return 0;
2019 }
2020
2021 static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr,
2022 int chunkstart, int n_valid, int n_invalid)
2023 {
2024 qemu_put_be32(f, chunkstart);
2025 qemu_put_be16(f, n_valid);
2026 qemu_put_be16(f, n_invalid);
2027 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2028 HASH_PTE_SIZE_64 * n_valid);
2029 }
2030
2031 static void htab_save_end_marker(QEMUFile *f)
2032 {
2033 qemu_put_be32(f, 0);
2034 qemu_put_be16(f, 0);
2035 qemu_put_be16(f, 0);
2036 }
2037
2038 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
2039 int64_t max_ns)
2040 {
2041 bool has_timeout = max_ns != -1;
2042 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2043 int index = spapr->htab_save_index;
2044 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2045
2046 assert(spapr->htab_first_pass);
2047
2048 do {
2049 int chunkstart;
2050
2051 /* Consume invalid HPTEs */
2052 while ((index < htabslots)
2053 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2054 CLEAN_HPTE(HPTE(spapr->htab, index));
2055 index++;
2056 }
2057
2058 /* Consume valid HPTEs */
2059 chunkstart = index;
2060 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2061 && HPTE_VALID(HPTE(spapr->htab, index))) {
2062 CLEAN_HPTE(HPTE(spapr->htab, index));
2063 index++;
2064 }
2065
2066 if (index > chunkstart) {
2067 int n_valid = index - chunkstart;
2068
2069 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2070
2071 if (has_timeout &&
2072 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2073 break;
2074 }
2075 }
2076 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2077
2078 if (index >= htabslots) {
2079 assert(index == htabslots);
2080 index = 0;
2081 spapr->htab_first_pass = false;
2082 }
2083 spapr->htab_save_index = index;
2084 }
2085
2086 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
2087 int64_t max_ns)
2088 {
2089 bool final = max_ns < 0;
2090 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2091 int examined = 0, sent = 0;
2092 int index = spapr->htab_save_index;
2093 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2094
2095 assert(!spapr->htab_first_pass);
2096
2097 do {
2098 int chunkstart, invalidstart;
2099
2100 /* Consume non-dirty HPTEs */
2101 while ((index < htabslots)
2102 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2103 index++;
2104 examined++;
2105 }
2106
2107 chunkstart = index;
2108 /* Consume valid dirty HPTEs */
2109 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2110 && HPTE_DIRTY(HPTE(spapr->htab, index))
2111 && HPTE_VALID(HPTE(spapr->htab, index))) {
2112 CLEAN_HPTE(HPTE(spapr->htab, index));
2113 index++;
2114 examined++;
2115 }
2116
2117 invalidstart = index;
2118 /* Consume invalid dirty HPTEs */
2119 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2120 && HPTE_DIRTY(HPTE(spapr->htab, index))
2121 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2122 CLEAN_HPTE(HPTE(spapr->htab, index));
2123 index++;
2124 examined++;
2125 }
2126
2127 if (index > chunkstart) {
2128 int n_valid = invalidstart - chunkstart;
2129 int n_invalid = index - invalidstart;
2130
2131 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2132 sent += index - chunkstart;
2133
2134 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2135 break;
2136 }
2137 }
2138
2139 if (examined >= htabslots) {
2140 break;
2141 }
2142
2143 if (index >= htabslots) {
2144 assert(index == htabslots);
2145 index = 0;
2146 }
2147 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2148
2149 if (index >= htabslots) {
2150 assert(index == htabslots);
2151 index = 0;
2152 }
2153
2154 spapr->htab_save_index = index;
2155
2156 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2157 }
2158
2159 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2160 #define MAX_KVM_BUF_SIZE 2048
2161
2162 static int htab_save_iterate(QEMUFile *f, void *opaque)
2163 {
2164 sPAPRMachineState *spapr = opaque;
2165 int fd;
2166 int rc = 0;
2167
2168 /* Iteration header */
2169 if (!spapr->htab_shift) {
2170 qemu_put_be32(f, -1);
2171 return 1;
2172 } else {
2173 qemu_put_be32(f, 0);
2174 }
2175
2176 if (!spapr->htab) {
2177 assert(kvm_enabled());
2178
2179 fd = get_htab_fd(spapr);
2180 if (fd < 0) {
2181 return fd;
2182 }
2183
2184 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2185 if (rc < 0) {
2186 return rc;
2187 }
2188 } else if (spapr->htab_first_pass) {
2189 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2190 } else {
2191 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2192 }
2193
2194 htab_save_end_marker(f);
2195
2196 return rc;
2197 }
2198
2199 static int htab_save_complete(QEMUFile *f, void *opaque)
2200 {
2201 sPAPRMachineState *spapr = opaque;
2202 int fd;
2203
2204 /* Iteration header */
2205 if (!spapr->htab_shift) {
2206 qemu_put_be32(f, -1);
2207 return 0;
2208 } else {
2209 qemu_put_be32(f, 0);
2210 }
2211
2212 if (!spapr->htab) {
2213 int rc;
2214
2215 assert(kvm_enabled());
2216
2217 fd = get_htab_fd(spapr);
2218 if (fd < 0) {
2219 return fd;
2220 }
2221
2222 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2223 if (rc < 0) {
2224 return rc;
2225 }
2226 } else {
2227 if (spapr->htab_first_pass) {
2228 htab_save_first_pass(f, spapr, -1);
2229 }
2230 htab_save_later_pass(f, spapr, -1);
2231 }
2232
2233 /* End marker */
2234 htab_save_end_marker(f);
2235
2236 return 0;
2237 }
2238
2239 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2240 {
2241 sPAPRMachineState *spapr = opaque;
2242 uint32_t section_hdr;
2243 int fd = -1;
2244 Error *local_err = NULL;
2245
2246 if (version_id < 1 || version_id > 1) {
2247 error_report("htab_load() bad version");
2248 return -EINVAL;
2249 }
2250
2251 section_hdr = qemu_get_be32(f);
2252
2253 if (section_hdr == -1) {
2254 spapr_free_hpt(spapr);
2255 return 0;
2256 }
2257
2258 if (section_hdr) {
2259 /* First section gives the htab size */
2260 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2261 if (local_err) {
2262 error_report_err(local_err);
2263 return -EINVAL;
2264 }
2265 return 0;
2266 }
2267
2268 if (!spapr->htab) {
2269 assert(kvm_enabled());
2270
2271 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2272 if (fd < 0) {
2273 error_report_err(local_err);
2274 return fd;
2275 }
2276 }
2277
2278 while (true) {
2279 uint32_t index;
2280 uint16_t n_valid, n_invalid;
2281
2282 index = qemu_get_be32(f);
2283 n_valid = qemu_get_be16(f);
2284 n_invalid = qemu_get_be16(f);
2285
2286 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2287 /* End of Stream */
2288 break;
2289 }
2290
2291 if ((index + n_valid + n_invalid) >
2292 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2293 /* Bad index in stream */
2294 error_report(
2295 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2296 index, n_valid, n_invalid, spapr->htab_shift);
2297 return -EINVAL;
2298 }
2299
2300 if (spapr->htab) {
2301 if (n_valid) {
2302 qemu_get_buffer(f, HPTE(spapr->htab, index),
2303 HASH_PTE_SIZE_64 * n_valid);
2304 }
2305 if (n_invalid) {
2306 memset(HPTE(spapr->htab, index + n_valid), 0,
2307 HASH_PTE_SIZE_64 * n_invalid);
2308 }
2309 } else {
2310 int rc;
2311
2312 assert(fd >= 0);
2313
2314 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2315 if (rc < 0) {
2316 return rc;
2317 }
2318 }
2319 }
2320
2321 if (!spapr->htab) {
2322 assert(fd >= 0);
2323 close(fd);
2324 }
2325
2326 return 0;
2327 }
2328
2329 static void htab_save_cleanup(void *opaque)
2330 {
2331 sPAPRMachineState *spapr = opaque;
2332
2333 close_htab_fd(spapr);
2334 }
2335
2336 static SaveVMHandlers savevm_htab_handlers = {
2337 .save_setup = htab_save_setup,
2338 .save_live_iterate = htab_save_iterate,
2339 .save_live_complete_precopy = htab_save_complete,
2340 .save_cleanup = htab_save_cleanup,
2341 .load_state = htab_load,
2342 };
2343
2344 static void spapr_boot_set(void *opaque, const char *boot_device,
2345 Error **errp)
2346 {
2347 MachineState *machine = MACHINE(opaque);
2348 machine->boot_order = g_strdup(boot_device);
2349 }
2350
2351 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
2352 {
2353 MachineState *machine = MACHINE(spapr);
2354 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2355 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2356 int i;
2357
2358 for (i = 0; i < nr_lmbs; i++) {
2359 uint64_t addr;
2360
2361 addr = i * lmb_size + machine->device_memory->base;
2362 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2363 addr / lmb_size);
2364 }
2365 }
2366
2367 /*
2368 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2369 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2370 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2371 */
2372 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2373 {
2374 int i;
2375
2376 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2377 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2378 " is not aligned to %" PRIu64 " MiB",
2379 machine->ram_size,
2380 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2381 return;
2382 }
2383
2384 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2385 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2386 " is not aligned to %" PRIu64 " MiB",
2387 machine->ram_size,
2388 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2389 return;
2390 }
2391
2392 for (i = 0; i < nb_numa_nodes; i++) {
2393 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2394 error_setg(errp,
2395 "Node %d memory size 0x%" PRIx64
2396 " is not aligned to %" PRIu64 " MiB",
2397 i, numa_info[i].node_mem,
2398 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2399 return;
2400 }
2401 }
2402 }
2403
2404 /* find cpu slot in machine->possible_cpus by core_id */
2405 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2406 {
2407 int index = id / smp_threads;
2408
2409 if (index >= ms->possible_cpus->len) {
2410 return NULL;
2411 }
2412 if (idx) {
2413 *idx = index;
2414 }
2415 return &ms->possible_cpus->cpus[index];
2416 }
2417
2418 static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp)
2419 {
2420 Error *local_err = NULL;
2421 bool vsmt_user = !!spapr->vsmt;
2422 int kvm_smt = kvmppc_smt_threads();
2423 int ret;
2424
2425 if (!kvm_enabled() && (smp_threads > 1)) {
2426 error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2427 "on a pseries machine");
2428 goto out;
2429 }
2430 if (!is_power_of_2(smp_threads)) {
2431 error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2432 "machine because it must be a power of 2", smp_threads);
2433 goto out;
2434 }
2435
2436 /* Detemine the VSMT mode to use: */
2437 if (vsmt_user) {
2438 if (spapr->vsmt < smp_threads) {
2439 error_setg(&local_err, "Cannot support VSMT mode %d"
2440 " because it must be >= threads/core (%d)",
2441 spapr->vsmt, smp_threads);
2442 goto out;
2443 }
2444 /* In this case, spapr->vsmt has been set by the command line */
2445 } else {
2446 /*
2447 * Default VSMT value is tricky, because we need it to be as
2448 * consistent as possible (for migration), but this requires
2449 * changing it for at least some existing cases. We pick 8 as
2450 * the value that we'd get with KVM on POWER8, the
2451 * overwhelmingly common case in production systems.
2452 */
2453 spapr->vsmt = MAX(8, smp_threads);
2454 }
2455
2456 /* KVM: If necessary, set the SMT mode: */
2457 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2458 ret = kvmppc_set_smt_threads(spapr->vsmt);
2459 if (ret) {
2460 /* Looks like KVM isn't able to change VSMT mode */
2461 error_setg(&local_err,
2462 "Failed to set KVM's VSMT mode to %d (errno %d)",
2463 spapr->vsmt, ret);
2464 /* We can live with that if the default one is big enough
2465 * for the number of threads, and a submultiple of the one
2466 * we want. In this case we'll waste some vcpu ids, but
2467 * behaviour will be correct */
2468 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2469 warn_report_err(local_err);
2470 local_err = NULL;
2471 goto out;
2472 } else {
2473 if (!vsmt_user) {
2474 error_append_hint(&local_err,
2475 "On PPC, a VM with %d threads/core"
2476 " on a host with %d threads/core"
2477 " requires the use of VSMT mode %d.\n",
2478 smp_threads, kvm_smt, spapr->vsmt);
2479 }
2480 kvmppc_hint_smt_possible(&local_err);
2481 goto out;
2482 }
2483 }
2484 }
2485 /* else TCG: nothing to do currently */
2486 out:
2487 error_propagate(errp, local_err);
2488 }
2489
2490 static void spapr_init_cpus(sPAPRMachineState *spapr)
2491 {
2492 MachineState *machine = MACHINE(spapr);
2493 MachineClass *mc = MACHINE_GET_CLASS(machine);
2494 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2495 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2496 const CPUArchIdList *possible_cpus;
2497 int boot_cores_nr = smp_cpus / smp_threads;
2498 int i;
2499
2500 possible_cpus = mc->possible_cpu_arch_ids(machine);
2501 if (mc->has_hotpluggable_cpus) {
2502 if (smp_cpus % smp_threads) {
2503 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2504 smp_cpus, smp_threads);
2505 exit(1);
2506 }
2507 if (max_cpus % smp_threads) {
2508 error_report("max_cpus (%u) must be multiple of threads (%u)",
2509 max_cpus, smp_threads);
2510 exit(1);
2511 }
2512 } else {
2513 if (max_cpus != smp_cpus) {
2514 error_report("This machine version does not support CPU hotplug");
2515 exit(1);
2516 }
2517 boot_cores_nr = possible_cpus->len;
2518 }
2519
2520 if (smc->pre_2_10_has_unused_icps) {
2521 int i;
2522
2523 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2524 /* Dummy entries get deregistered when real ICPState objects
2525 * are registered during CPU core hotplug.
2526 */
2527 pre_2_10_vmstate_register_dummy_icp(i);
2528 }
2529 }
2530
2531 for (i = 0; i < possible_cpus->len; i++) {
2532 int core_id = i * smp_threads;
2533
2534 if (mc->has_hotpluggable_cpus) {
2535 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2536 spapr_vcpu_id(spapr, core_id));
2537 }
2538
2539 if (i < boot_cores_nr) {
2540 Object *core = object_new(type);
2541 int nr_threads = smp_threads;
2542
2543 /* Handle the partially filled core for older machine types */
2544 if ((i + 1) * smp_threads >= smp_cpus) {
2545 nr_threads = smp_cpus - i * smp_threads;
2546 }
2547
2548 object_property_set_int(core, nr_threads, "nr-threads",
2549 &error_fatal);
2550 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2551 &error_fatal);
2552 object_property_set_bool(core, true, "realized", &error_fatal);
2553
2554 object_unref(core);
2555 }
2556 }
2557 }
2558
2559 static PCIHostState *spapr_create_default_phb(void)
2560 {
2561 DeviceState *dev;
2562
2563 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2564 qdev_prop_set_uint32(dev, "index", 0);
2565 qdev_init_nofail(dev);
2566
2567 return PCI_HOST_BRIDGE(dev);
2568 }
2569
2570 /* pSeries LPAR / sPAPR hardware init */
2571 static void spapr_machine_init(MachineState *machine)
2572 {
2573 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2574 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2575 const char *kernel_filename = machine->kernel_filename;
2576 const char *initrd_filename = machine->initrd_filename;
2577 PCIHostState *phb;
2578 int i;
2579 MemoryRegion *sysmem = get_system_memory();
2580 MemoryRegion *ram = g_new(MemoryRegion, 1);
2581 hwaddr node0_size = spapr_node0_size(machine);
2582 long load_limit, fw_size;
2583 char *filename;
2584 Error *resize_hpt_err = NULL;
2585
2586 msi_nonbroken = true;
2587
2588 QLIST_INIT(&spapr->phbs);
2589 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2590
2591 /* Determine capabilities to run with */
2592 spapr_caps_init(spapr);
2593
2594 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2595 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2596 /*
2597 * If the user explicitly requested a mode we should either
2598 * supply it, or fail completely (which we do below). But if
2599 * it's not set explicitly, we reset our mode to something
2600 * that works
2601 */
2602 if (resize_hpt_err) {
2603 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2604 error_free(resize_hpt_err);
2605 resize_hpt_err = NULL;
2606 } else {
2607 spapr->resize_hpt = smc->resize_hpt_default;
2608 }
2609 }
2610
2611 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2612
2613 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2614 /*
2615 * User requested HPT resize, but this host can't supply it. Bail out
2616 */
2617 error_report_err(resize_hpt_err);
2618 exit(1);
2619 }
2620
2621 spapr->rma_size = node0_size;
2622
2623 /* With KVM, we don't actually know whether KVM supports an
2624 * unbounded RMA (PR KVM) or is limited by the hash table size
2625 * (HV KVM using VRMA), so we always assume the latter
2626 *
2627 * In that case, we also limit the initial allocations for RTAS
2628 * etc... to 256M since we have no way to know what the VRMA size
2629 * is going to be as it depends on the size of the hash table
2630 * which isn't determined yet.
2631 */
2632 if (kvm_enabled()) {
2633 spapr->vrma_adjust = 1;
2634 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2635 }
2636
2637 /* Actually we don't support unbounded RMA anymore since we added
2638 * proper emulation of HV mode. The max we can get is 16G which
2639 * also happens to be what we configure for PAPR mode so make sure
2640 * we don't do anything bigger than that
2641 */
2642 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2643
2644 if (spapr->rma_size > node0_size) {
2645 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2646 spapr->rma_size);
2647 exit(1);
2648 }
2649
2650 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2651 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2652
2653 /*
2654 * VSMT must be set in order to be able to compute VCPU ids, ie to
2655 * call spapr_max_server_number() or spapr_vcpu_id().
2656 */
2657 spapr_set_vsmt_mode(spapr, &error_fatal);
2658
2659 /* Set up Interrupt Controller before we create the VCPUs */
2660 spapr_irq_init(spapr, &error_fatal);
2661
2662 /* Set up containers for ibm,client-architecture-support negotiated options
2663 */
2664 spapr->ov5 = spapr_ovec_new();
2665 spapr->ov5_cas = spapr_ovec_new();
2666
2667 if (smc->dr_lmb_enabled) {
2668 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2669 spapr_validate_node_memory(machine, &error_fatal);
2670 }
2671
2672 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2673
2674 /* advertise support for dedicated HP event source to guests */
2675 if (spapr->use_hotplug_event_source) {
2676 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2677 }
2678
2679 /* advertise support for HPT resizing */
2680 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2681 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2682 }
2683
2684 /* advertise support for ibm,dyamic-memory-v2 */
2685 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2686
2687 /* advertise XIVE on POWER9 machines */
2688 if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) {
2689 if (ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00,
2690 0, spapr->max_compat_pvr)) {
2691 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2692 } else if (spapr->irq->ov5 & SPAPR_OV5_XIVE_EXPLOIT) {
2693 error_report("XIVE-only machines require a POWER9 CPU");
2694 exit(1);
2695 }
2696 }
2697
2698 /* init CPUs */
2699 spapr_init_cpus(spapr);
2700
2701 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2702 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2703 spapr->max_compat_pvr)) {
2704 /* KVM and TCG always allow GTSE with radix... */
2705 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2706 }
2707 /* ... but not with hash (currently). */
2708
2709 if (kvm_enabled()) {
2710 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2711 kvmppc_enable_logical_ci_hcalls();
2712 kvmppc_enable_set_mode_hcall();
2713
2714 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2715 kvmppc_enable_clear_ref_mod_hcalls();
2716 }
2717
2718 /* allocate RAM */
2719 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2720 machine->ram_size);
2721 memory_region_add_subregion(sysmem, 0, ram);
2722
2723 /* always allocate the device memory information */
2724 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2725
2726 /* initialize hotplug memory address space */
2727 if (machine->ram_size < machine->maxram_size) {
2728 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2729 /*
2730 * Limit the number of hotpluggable memory slots to half the number
2731 * slots that KVM supports, leaving the other half for PCI and other
2732 * devices. However ensure that number of slots doesn't drop below 32.
2733 */
2734 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2735 SPAPR_MAX_RAM_SLOTS;
2736
2737 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2738 max_memslots = SPAPR_MAX_RAM_SLOTS;
2739 }
2740 if (machine->ram_slots > max_memslots) {
2741 error_report("Specified number of memory slots %"
2742 PRIu64" exceeds max supported %d",
2743 machine->ram_slots, max_memslots);
2744 exit(1);
2745 }
2746
2747 machine->device_memory->base = ROUND_UP(machine->ram_size,
2748 SPAPR_DEVICE_MEM_ALIGN);
2749 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2750 "device-memory", device_mem_size);
2751 memory_region_add_subregion(sysmem, machine->device_memory->base,
2752 &machine->device_memory->mr);
2753 }
2754
2755 if (smc->dr_lmb_enabled) {
2756 spapr_create_lmb_dr_connectors(spapr);
2757 }
2758
2759 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2760 if (!filename) {
2761 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2762 exit(1);
2763 }
2764 spapr->rtas_size = get_image_size(filename);
2765 if (spapr->rtas_size < 0) {
2766 error_report("Could not get size of LPAR rtas '%s'", filename);
2767 exit(1);
2768 }
2769 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2770 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2771 error_report("Could not load LPAR rtas '%s'", filename);
2772 exit(1);
2773 }
2774 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2775 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2776 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2777 exit(1);
2778 }
2779 g_free(filename);
2780
2781 /* Set up RTAS event infrastructure */
2782 spapr_events_init(spapr);
2783
2784 /* Set up the RTC RTAS interfaces */
2785 spapr_rtc_create(spapr);
2786
2787 /* Set up VIO bus */
2788 spapr->vio_bus = spapr_vio_bus_init();
2789
2790 for (i = 0; i < serial_max_hds(); i++) {
2791 if (serial_hd(i)) {
2792 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2793 }
2794 }
2795
2796 /* We always have at least the nvram device on VIO */
2797 spapr_create_nvram(spapr);
2798
2799 /* Set up PCI */
2800 spapr_pci_rtas_init();
2801
2802 phb = spapr_create_default_phb();
2803
2804 for (i = 0; i < nb_nics; i++) {
2805 NICInfo *nd = &nd_table[i];
2806
2807 if (!nd->model) {
2808 nd->model = g_strdup("spapr-vlan");
2809 }
2810
2811 if (g_str_equal(nd->model, "spapr-vlan") ||
2812 g_str_equal(nd->model, "ibmveth")) {
2813 spapr_vlan_create(spapr->vio_bus, nd);
2814 } else {
2815 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2816 }
2817 }
2818
2819 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2820 spapr_vscsi_create(spapr->vio_bus);
2821 }
2822
2823 /* Graphics */
2824 if (spapr_vga_init(phb->bus, &error_fatal)) {
2825 spapr->has_graphics = true;
2826 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2827 }
2828
2829 if (machine->usb) {
2830 if (smc->use_ohci_by_default) {
2831 pci_create_simple(phb->bus, -1, "pci-ohci");
2832 } else {
2833 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2834 }
2835
2836 if (spapr->has_graphics) {
2837 USBBus *usb_bus = usb_bus_find(-1);
2838
2839 usb_create_simple(usb_bus, "usb-kbd");
2840 usb_create_simple(usb_bus, "usb-mouse");
2841 }
2842 }
2843
2844 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
2845 error_report(
2846 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2847 MIN_RMA_SLOF);
2848 exit(1);
2849 }
2850
2851 if (kernel_filename) {
2852 uint64_t lowaddr = 0;
2853
2854 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2855 NULL, NULL, &lowaddr, NULL, 1,
2856 PPC_ELF_MACHINE, 0, 0);
2857 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2858 spapr->kernel_size = load_elf(kernel_filename,
2859 translate_kernel_address, NULL, NULL,
2860 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2861 0, 0);
2862 spapr->kernel_le = spapr->kernel_size > 0;
2863 }
2864 if (spapr->kernel_size < 0) {
2865 error_report("error loading %s: %s", kernel_filename,
2866 load_elf_strerror(spapr->kernel_size));
2867 exit(1);
2868 }
2869
2870 /* load initrd */
2871 if (initrd_filename) {
2872 /* Try to locate the initrd in the gap between the kernel
2873 * and the firmware. Add a bit of space just in case
2874 */
2875 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2876 + 0x1ffff) & ~0xffff;
2877 spapr->initrd_size = load_image_targphys(initrd_filename,
2878 spapr->initrd_base,
2879 load_limit
2880 - spapr->initrd_base);
2881 if (spapr->initrd_size < 0) {
2882 error_report("could not load initial ram disk '%s'",
2883 initrd_filename);
2884 exit(1);
2885 }
2886 }
2887 }
2888
2889 if (bios_name == NULL) {
2890 bios_name = FW_FILE_NAME;
2891 }
2892 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2893 if (!filename) {
2894 error_report("Could not find LPAR firmware '%s'", bios_name);
2895 exit(1);
2896 }
2897 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2898 if (fw_size <= 0) {
2899 error_report("Could not load LPAR firmware '%s'", filename);
2900 exit(1);
2901 }
2902 g_free(filename);
2903
2904 /* FIXME: Should register things through the MachineState's qdev
2905 * interface, this is a legacy from the sPAPREnvironment structure
2906 * which predated MachineState but had a similar function */
2907 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2908 register_savevm_live(NULL, "spapr/htab", -1, 1,
2909 &savevm_htab_handlers, spapr);
2910
2911 qemu_register_boot_set(spapr_boot_set, spapr);
2912
2913 if (kvm_enabled()) {
2914 /* to stop and start vmclock */
2915 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2916 &spapr->tb);
2917
2918 kvmppc_spapr_enable_inkernel_multitce();
2919 }
2920 }
2921
2922 static int spapr_kvm_type(const char *vm_type)
2923 {
2924 if (!vm_type) {
2925 return 0;
2926 }
2927
2928 if (!strcmp(vm_type, "HV")) {
2929 return 1;
2930 }
2931
2932 if (!strcmp(vm_type, "PR")) {
2933 return 2;
2934 }
2935
2936 error_report("Unknown kvm-type specified '%s'", vm_type);
2937 exit(1);
2938 }
2939
2940 /*
2941 * Implementation of an interface to adjust firmware path
2942 * for the bootindex property handling.
2943 */
2944 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2945 DeviceState *dev)
2946 {
2947 #define CAST(type, obj, name) \
2948 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2949 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2950 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2951 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
2952
2953 if (d) {
2954 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2955 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2956 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2957
2958 if (spapr) {
2959 /*
2960 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2961 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
2962 * 0x8000 | (target << 8) | (bus << 5) | lun
2963 * (see the "Logical unit addressing format" table in SAM5)
2964 */
2965 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
2966 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2967 (uint64_t)id << 48);
2968 } else if (virtio) {
2969 /*
2970 * We use SRP luns of the form 01000000 | (target << 8) | lun
2971 * in the top 32 bits of the 64-bit LUN
2972 * Note: the quote above is from SLOF and it is wrong,
2973 * the actual binding is:
2974 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2975 */
2976 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2977 if (d->lun >= 256) {
2978 /* Use the LUN "flat space addressing method" */
2979 id |= 0x4000;
2980 }
2981 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2982 (uint64_t)id << 32);
2983 } else if (usb) {
2984 /*
2985 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2986 * in the top 32 bits of the 64-bit LUN
2987 */
2988 unsigned usb_port = atoi(usb->port->path);
2989 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2990 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2991 (uint64_t)id << 32);
2992 }
2993 }
2994
2995 /*
2996 * SLOF probes the USB devices, and if it recognizes that the device is a
2997 * storage device, it changes its name to "storage" instead of "usb-host",
2998 * and additionally adds a child node for the SCSI LUN, so the correct
2999 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3000 */
3001 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3002 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3003 if (usb_host_dev_is_scsi_storage(usbdev)) {
3004 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3005 }
3006 }
3007
3008 if (phb) {
3009 /* Replace "pci" with "pci@800000020000000" */
3010 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3011 }
3012
3013 if (vsc) {
3014 /* Same logic as virtio above */
3015 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3016 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3017 }
3018
3019 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3020 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3021 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3022 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3023 }
3024
3025 return NULL;
3026 }
3027
3028 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3029 {
3030 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3031
3032 return g_strdup(spapr->kvm_type);
3033 }
3034
3035 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3036 {
3037 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3038
3039 g_free(spapr->kvm_type);
3040 spapr->kvm_type = g_strdup(value);
3041 }
3042
3043 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3044 {
3045 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3046
3047 return spapr->use_hotplug_event_source;
3048 }
3049
3050 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3051 Error **errp)
3052 {
3053 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3054
3055 spapr->use_hotplug_event_source = value;
3056 }
3057
3058 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3059 {
3060 return true;
3061 }
3062
3063 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3064 {
3065 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3066
3067 switch (spapr->resize_hpt) {
3068 case SPAPR_RESIZE_HPT_DEFAULT:
3069 return g_strdup("default");
3070 case SPAPR_RESIZE_HPT_DISABLED:
3071 return g_strdup("disabled");
3072 case SPAPR_RESIZE_HPT_ENABLED:
3073 return g_strdup("enabled");
3074 case SPAPR_RESIZE_HPT_REQUIRED:
3075 return g_strdup("required");
3076 }
3077 g_assert_not_reached();
3078 }
3079
3080 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3081 {
3082 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3083
3084 if (strcmp(value, "default") == 0) {
3085 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3086 } else if (strcmp(value, "disabled") == 0) {
3087 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3088 } else if (strcmp(value, "enabled") == 0) {
3089 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3090 } else if (strcmp(value, "required") == 0) {
3091 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3092 } else {
3093 error_setg(errp, "Bad value for \"resize-hpt\" property");
3094 }
3095 }
3096
3097 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3098 void *opaque, Error **errp)
3099 {
3100 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3101 }
3102
3103 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3104 void *opaque, Error **errp)
3105 {
3106 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3107 }
3108
3109 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3110 {
3111 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3112
3113 if (spapr->irq == &spapr_irq_xics_legacy) {
3114 return g_strdup("legacy");
3115 } else if (spapr->irq == &spapr_irq_xics) {
3116 return g_strdup("xics");
3117 } else if (spapr->irq == &spapr_irq_xive) {
3118 return g_strdup("xive");
3119 } else if (spapr->irq == &spapr_irq_dual) {
3120 return g_strdup("dual");
3121 }
3122 g_assert_not_reached();
3123 }
3124
3125 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3126 {
3127 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3128
3129 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3130 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3131 return;
3132 }
3133
3134 /* The legacy IRQ backend can not be set */
3135 if (strcmp(value, "xics") == 0) {
3136 spapr->irq = &spapr_irq_xics;
3137 } else if (strcmp(value, "xive") == 0) {
3138 spapr->irq = &spapr_irq_xive;
3139 } else if (strcmp(value, "dual") == 0) {
3140 spapr->irq = &spapr_irq_dual;
3141 } else {
3142 error_setg(errp, "Bad value for \"ic-mode\" property");
3143 }
3144 }
3145
3146 static void spapr_instance_init(Object *obj)
3147 {
3148 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3149 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3150
3151 spapr->htab_fd = -1;
3152 spapr->use_hotplug_event_source = true;
3153 object_property_add_str(obj, "kvm-type",
3154 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3155 object_property_set_description(obj, "kvm-type",
3156 "Specifies the KVM virtualization mode (HV, PR)",
3157 NULL);
3158 object_property_add_bool(obj, "modern-hotplug-events",
3159 spapr_get_modern_hotplug_events,
3160 spapr_set_modern_hotplug_events,
3161 NULL);
3162 object_property_set_description(obj, "modern-hotplug-events",
3163 "Use dedicated hotplug event mechanism in"
3164 " place of standard EPOW events when possible"
3165 " (required for memory hot-unplug support)",
3166 NULL);
3167 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3168 "Maximum permitted CPU compatibility mode",
3169 &error_fatal);
3170
3171 object_property_add_str(obj, "resize-hpt",
3172 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3173 object_property_set_description(obj, "resize-hpt",
3174 "Resizing of the Hash Page Table (enabled, disabled, required)",
3175 NULL);
3176 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3177 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3178 object_property_set_description(obj, "vsmt",
3179 "Virtual SMT: KVM behaves as if this were"
3180 " the host's SMT mode", &error_abort);
3181 object_property_add_bool(obj, "vfio-no-msix-emulation",
3182 spapr_get_msix_emulation, NULL, NULL);
3183
3184 /* The machine class defines the default interrupt controller mode */
3185 spapr->irq = smc->irq;
3186 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3187 spapr_set_ic_mode, NULL);
3188 object_property_set_description(obj, "ic-mode",
3189 "Specifies the interrupt controller mode (xics, xive, dual)",
3190 NULL);
3191 }
3192
3193 static void spapr_machine_finalizefn(Object *obj)
3194 {
3195 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3196
3197 g_free(spapr->kvm_type);
3198 }
3199
3200 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3201 {
3202 cpu_synchronize_state(cs);
3203 ppc_cpu_do_system_reset(cs);
3204 }
3205
3206 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3207 {
3208 CPUState *cs;
3209
3210 CPU_FOREACH(cs) {
3211 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3212 }
3213 }
3214
3215 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3216 uint32_t node, bool dedicated_hp_event_source,
3217 Error **errp)
3218 {
3219 sPAPRDRConnector *drc;
3220 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3221 int i, fdt_offset, fdt_size;
3222 void *fdt;
3223 uint64_t addr = addr_start;
3224 bool hotplugged = spapr_drc_hotplugged(dev);
3225 Error *local_err = NULL;
3226
3227 for (i = 0; i < nr_lmbs; i++) {
3228 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3229 addr / SPAPR_MEMORY_BLOCK_SIZE);
3230 g_assert(drc);
3231
3232 fdt = create_device_tree(&fdt_size);
3233 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
3234 SPAPR_MEMORY_BLOCK_SIZE);
3235
3236 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3237 if (local_err) {
3238 while (addr > addr_start) {
3239 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3240 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3241 addr / SPAPR_MEMORY_BLOCK_SIZE);
3242 spapr_drc_detach(drc);
3243 }
3244 g_free(fdt);
3245 error_propagate(errp, local_err);
3246 return;
3247 }
3248 if (!hotplugged) {
3249 spapr_drc_reset(drc);
3250 }
3251 addr += SPAPR_MEMORY_BLOCK_SIZE;
3252 }
3253 /* send hotplug notification to the
3254 * guest only in case of hotplugged memory
3255 */
3256 if (hotplugged) {
3257 if (dedicated_hp_event_source) {
3258 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3259 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3260 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3261 nr_lmbs,
3262 spapr_drc_index(drc));
3263 } else {
3264 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3265 nr_lmbs);
3266 }
3267 }
3268 }
3269
3270 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3271 Error **errp)
3272 {
3273 Error *local_err = NULL;
3274 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3275 PCDIMMDevice *dimm = PC_DIMM(dev);
3276 uint64_t size, addr;
3277 uint32_t node;
3278
3279 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3280
3281 pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3282 if (local_err) {
3283 goto out;
3284 }
3285
3286 addr = object_property_get_uint(OBJECT(dimm),
3287 PC_DIMM_ADDR_PROP, &local_err);
3288 if (local_err) {
3289 goto out_unplug;
3290 }
3291
3292 node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP,
3293 &error_abort);
3294 spapr_add_lmbs(dev, addr, size, node,
3295 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3296 &local_err);
3297 if (local_err) {
3298 goto out_unplug;
3299 }
3300
3301 return;
3302
3303 out_unplug:
3304 pc_dimm_unplug(dimm, MACHINE(ms));
3305 out:
3306 error_propagate(errp, local_err);
3307 }
3308
3309 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3310 Error **errp)
3311 {
3312 const sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3313 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3314 PCDIMMDevice *dimm = PC_DIMM(dev);
3315 Error *local_err = NULL;
3316 uint64_t size;
3317 Object *memdev;
3318 hwaddr pagesize;
3319
3320 if (!smc->dr_lmb_enabled) {
3321 error_setg(errp, "Memory hotplug not supported for this machine");
3322 return;
3323 }
3324
3325 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3326 if (local_err) {
3327 error_propagate(errp, local_err);
3328 return;
3329 }
3330
3331 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3332 error_setg(errp, "Hotplugged memory size must be a multiple of "
3333 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3334 return;
3335 }
3336
3337 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3338 &error_abort);
3339 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3340 spapr_check_pagesize(spapr, pagesize, &local_err);
3341 if (local_err) {
3342 error_propagate(errp, local_err);
3343 return;
3344 }
3345
3346 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3347 }
3348
3349 struct sPAPRDIMMState {
3350 PCDIMMDevice *dimm;
3351 uint32_t nr_lmbs;
3352 QTAILQ_ENTRY(sPAPRDIMMState) next;
3353 };
3354
3355 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
3356 PCDIMMDevice *dimm)
3357 {
3358 sPAPRDIMMState *dimm_state = NULL;
3359
3360 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3361 if (dimm_state->dimm == dimm) {
3362 break;
3363 }
3364 }
3365 return dimm_state;
3366 }
3367
3368 static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
3369 uint32_t nr_lmbs,
3370 PCDIMMDevice *dimm)
3371 {
3372 sPAPRDIMMState *ds = NULL;
3373
3374 /*
3375 * If this request is for a DIMM whose removal had failed earlier
3376 * (due to guest's refusal to remove the LMBs), we would have this
3377 * dimm already in the pending_dimm_unplugs list. In that
3378 * case don't add again.
3379 */
3380 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3381 if (!ds) {
3382 ds = g_malloc0(sizeof(sPAPRDIMMState));
3383 ds->nr_lmbs = nr_lmbs;
3384 ds->dimm = dimm;
3385 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3386 }
3387 return ds;
3388 }
3389
3390 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
3391 sPAPRDIMMState *dimm_state)
3392 {
3393 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3394 g_free(dimm_state);
3395 }
3396
3397 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
3398 PCDIMMDevice *dimm)
3399 {
3400 sPAPRDRConnector *drc;
3401 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3402 &error_abort);
3403 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3404 uint32_t avail_lmbs = 0;
3405 uint64_t addr_start, addr;
3406 int i;
3407
3408 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3409 &error_abort);
3410
3411 addr = addr_start;
3412 for (i = 0; i < nr_lmbs; i++) {
3413 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3414 addr / SPAPR_MEMORY_BLOCK_SIZE);
3415 g_assert(drc);
3416 if (drc->dev) {
3417 avail_lmbs++;
3418 }
3419 addr += SPAPR_MEMORY_BLOCK_SIZE;
3420 }
3421
3422 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3423 }
3424
3425 /* Callback to be called during DRC release. */
3426 void spapr_lmb_release(DeviceState *dev)
3427 {
3428 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3429 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3430 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3431
3432 /* This information will get lost if a migration occurs
3433 * during the unplug process. In this case recover it. */
3434 if (ds == NULL) {
3435 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3436 g_assert(ds);
3437 /* The DRC being examined by the caller at least must be counted */
3438 g_assert(ds->nr_lmbs);
3439 }
3440
3441 if (--ds->nr_lmbs) {
3442 return;
3443 }
3444
3445 /*
3446 * Now that all the LMBs have been removed by the guest, call the
3447 * unplug handler chain. This can never fail.
3448 */
3449 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3450 }
3451
3452 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3453 {
3454 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3455 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3456
3457 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3458 object_unparent(OBJECT(dev));
3459 spapr_pending_dimm_unplugs_remove(spapr, ds);
3460 }
3461
3462 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3463 DeviceState *dev, Error **errp)
3464 {
3465 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3466 Error *local_err = NULL;
3467 PCDIMMDevice *dimm = PC_DIMM(dev);
3468 uint32_t nr_lmbs;
3469 uint64_t size, addr_start, addr;
3470 int i;
3471 sPAPRDRConnector *drc;
3472
3473 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3474 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3475
3476 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3477 &local_err);
3478 if (local_err) {
3479 goto out;
3480 }
3481
3482 /*
3483 * An existing pending dimm state for this DIMM means that there is an
3484 * unplug operation in progress, waiting for the spapr_lmb_release
3485 * callback to complete the job (BQL can't cover that far). In this case,
3486 * bail out to avoid detaching DRCs that were already released.
3487 */
3488 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3489 error_setg(&local_err,
3490 "Memory unplug already in progress for device %s",
3491 dev->id);
3492 goto out;
3493 }
3494
3495 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3496
3497 addr = addr_start;
3498 for (i = 0; i < nr_lmbs; i++) {
3499 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3500 addr / SPAPR_MEMORY_BLOCK_SIZE);
3501 g_assert(drc);
3502
3503 spapr_drc_detach(drc);
3504 addr += SPAPR_MEMORY_BLOCK_SIZE;
3505 }
3506
3507 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3508 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3509 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3510 nr_lmbs, spapr_drc_index(drc));
3511 out:
3512 error_propagate(errp, local_err);
3513 }
3514
3515 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
3516 sPAPRMachineState *spapr)
3517 {
3518 PowerPCCPU *cpu = POWERPC_CPU(cs);
3519 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3520 int id = spapr_get_vcpu_id(cpu);
3521 void *fdt;
3522 int offset, fdt_size;
3523 char *nodename;
3524
3525 fdt = create_device_tree(&fdt_size);
3526 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3527 offset = fdt_add_subnode(fdt, 0, nodename);
3528
3529 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3530 g_free(nodename);
3531
3532 *fdt_offset = offset;
3533 return fdt;
3534 }
3535
3536 /* Callback to be called during DRC release. */
3537 void spapr_core_release(DeviceState *dev)
3538 {
3539 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3540
3541 /* Call the unplug handler chain. This can never fail. */
3542 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3543 }
3544
3545 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3546 {
3547 MachineState *ms = MACHINE(hotplug_dev);
3548 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3549 CPUCore *cc = CPU_CORE(dev);
3550 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3551
3552 if (smc->pre_2_10_has_unused_icps) {
3553 sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3554 int i;
3555
3556 for (i = 0; i < cc->nr_threads; i++) {
3557 CPUState *cs = CPU(sc->threads[i]);
3558
3559 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3560 }
3561 }
3562
3563 assert(core_slot);
3564 core_slot->cpu = NULL;
3565 object_unparent(OBJECT(dev));
3566 }
3567
3568 static
3569 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3570 Error **errp)
3571 {
3572 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3573 int index;
3574 sPAPRDRConnector *drc;
3575 CPUCore *cc = CPU_CORE(dev);
3576
3577 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3578 error_setg(errp, "Unable to find CPU core with core-id: %d",
3579 cc->core_id);
3580 return;
3581 }
3582 if (index == 0) {
3583 error_setg(errp, "Boot CPU core may not be unplugged");
3584 return;
3585 }
3586
3587 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3588 spapr_vcpu_id(spapr, cc->core_id));
3589 g_assert(drc);
3590
3591 spapr_drc_detach(drc);
3592
3593 spapr_hotplug_req_remove_by_index(drc);
3594 }
3595
3596 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3597 Error **errp)
3598 {
3599 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3600 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3601 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3602 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3603 CPUCore *cc = CPU_CORE(dev);
3604 CPUState *cs = CPU(core->threads[0]);
3605 sPAPRDRConnector *drc;
3606 Error *local_err = NULL;
3607 CPUArchId *core_slot;
3608 int index;
3609 bool hotplugged = spapr_drc_hotplugged(dev);
3610
3611 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3612 if (!core_slot) {
3613 error_setg(errp, "Unable to find CPU core with core-id: %d",
3614 cc->core_id);
3615 return;
3616 }
3617 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3618 spapr_vcpu_id(spapr, cc->core_id));
3619
3620 g_assert(drc || !mc->has_hotpluggable_cpus);
3621
3622 if (drc) {
3623 void *fdt;
3624 int fdt_offset;
3625
3626 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
3627
3628 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3629 if (local_err) {
3630 g_free(fdt);
3631 error_propagate(errp, local_err);
3632 return;
3633 }
3634
3635 if (hotplugged) {
3636 /*
3637 * Send hotplug notification interrupt to the guest only
3638 * in case of hotplugged CPUs.
3639 */
3640 spapr_hotplug_req_add_by_index(drc);
3641 } else {
3642 spapr_drc_reset(drc);
3643 }
3644 }
3645
3646 core_slot->cpu = OBJECT(dev);
3647
3648 if (smc->pre_2_10_has_unused_icps) {
3649 int i;
3650
3651 for (i = 0; i < cc->nr_threads; i++) {
3652 cs = CPU(core->threads[i]);
3653 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3654 }
3655 }
3656 }
3657
3658 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3659 Error **errp)
3660 {
3661 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3662 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3663 Error *local_err = NULL;
3664 CPUCore *cc = CPU_CORE(dev);
3665 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3666 const char *type = object_get_typename(OBJECT(dev));
3667 CPUArchId *core_slot;
3668 int index;
3669
3670 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3671 error_setg(&local_err, "CPU hotplug not supported for this machine");
3672 goto out;
3673 }
3674
3675 if (strcmp(base_core_type, type)) {
3676 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3677 goto out;
3678 }
3679
3680 if (cc->core_id % smp_threads) {
3681 error_setg(&local_err, "invalid core id %d", cc->core_id);
3682 goto out;
3683 }
3684
3685 /*
3686 * In general we should have homogeneous threads-per-core, but old
3687 * (pre hotplug support) machine types allow the last core to have
3688 * reduced threads as a compatibility hack for when we allowed
3689 * total vcpus not a multiple of threads-per-core.
3690 */
3691 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3692 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3693 cc->nr_threads, smp_threads);
3694 goto out;
3695 }
3696
3697 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3698 if (!core_slot) {
3699 error_setg(&local_err, "core id %d out of range", cc->core_id);
3700 goto out;
3701 }
3702
3703 if (core_slot->cpu) {
3704 error_setg(&local_err, "core %d already populated", cc->core_id);
3705 goto out;
3706 }
3707
3708 numa_cpu_pre_plug(core_slot, dev, &local_err);
3709
3710 out:
3711 error_propagate(errp, local_err);
3712 }
3713
3714 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3715 DeviceState *dev, Error **errp)
3716 {
3717 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3718 spapr_memory_plug(hotplug_dev, dev, errp);
3719 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3720 spapr_core_plug(hotplug_dev, dev, errp);
3721 }
3722 }
3723
3724 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
3725 DeviceState *dev, Error **errp)
3726 {
3727 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3728 spapr_memory_unplug(hotplug_dev, dev);
3729 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3730 spapr_core_unplug(hotplug_dev, dev);
3731 }
3732 }
3733
3734 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3735 DeviceState *dev, Error **errp)
3736 {
3737 sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
3738 MachineClass *mc = MACHINE_GET_CLASS(sms);
3739
3740 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3741 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3742 spapr_memory_unplug_request(hotplug_dev, dev, errp);
3743 } else {
3744 /* NOTE: this means there is a window after guest reset, prior to
3745 * CAS negotiation, where unplug requests will fail due to the
3746 * capability not being detected yet. This is a bit different than
3747 * the case with PCI unplug, where the events will be queued and
3748 * eventually handled by the guest after boot
3749 */
3750 error_setg(errp, "Memory hot unplug not supported for this guest");
3751 }
3752 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3753 if (!mc->has_hotpluggable_cpus) {
3754 error_setg(errp, "CPU hot unplug not supported on this machine");
3755 return;
3756 }
3757 spapr_core_unplug_request(hotplug_dev, dev, errp);
3758 }
3759 }
3760
3761 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3762 DeviceState *dev, Error **errp)
3763 {
3764 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3765 spapr_memory_pre_plug(hotplug_dev, dev, errp);
3766 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3767 spapr_core_pre_plug(hotplug_dev, dev, errp);
3768 }
3769 }
3770
3771 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3772 DeviceState *dev)
3773 {
3774 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3775 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3776 return HOTPLUG_HANDLER(machine);
3777 }
3778 return NULL;
3779 }
3780
3781 static CpuInstanceProperties
3782 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3783 {
3784 CPUArchId *core_slot;
3785 MachineClass *mc = MACHINE_GET_CLASS(machine);
3786
3787 /* make sure possible_cpu are intialized */
3788 mc->possible_cpu_arch_ids(machine);
3789 /* get CPU core slot containing thread that matches cpu_index */
3790 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3791 assert(core_slot);
3792 return core_slot->props;
3793 }
3794
3795 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
3796 {
3797 return idx / smp_cores % nb_numa_nodes;
3798 }
3799
3800 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3801 {
3802 int i;
3803 const char *core_type;
3804 int spapr_max_cores = max_cpus / smp_threads;
3805 MachineClass *mc = MACHINE_GET_CLASS(machine);
3806
3807 if (!mc->has_hotpluggable_cpus) {
3808 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3809 }
3810 if (machine->possible_cpus) {
3811 assert(machine->possible_cpus->len == spapr_max_cores);
3812 return machine->possible_cpus;
3813 }
3814
3815 core_type = spapr_get_cpu_core_type(machine->cpu_type);
3816 if (!core_type) {
3817 error_report("Unable to find sPAPR CPU Core definition");
3818 exit(1);
3819 }
3820
3821 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3822 sizeof(CPUArchId) * spapr_max_cores);
3823 machine->possible_cpus->len = spapr_max_cores;
3824 for (i = 0; i < machine->possible_cpus->len; i++) {
3825 int core_id = i * smp_threads;
3826
3827 machine->possible_cpus->cpus[i].type = core_type;
3828 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3829 machine->possible_cpus->cpus[i].arch_id = core_id;
3830 machine->possible_cpus->cpus[i].props.has_core_id = true;
3831 machine->possible_cpus->cpus[i].props.core_id = core_id;
3832 }
3833 return machine->possible_cpus;
3834 }
3835
3836 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3837 uint64_t *buid, hwaddr *pio,
3838 hwaddr *mmio32, hwaddr *mmio64,
3839 unsigned n_dma, uint32_t *liobns, Error **errp)
3840 {
3841 /*
3842 * New-style PHB window placement.
3843 *
3844 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3845 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3846 * windows.
3847 *
3848 * Some guest kernels can't work with MMIO windows above 1<<46
3849 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3850 *
3851 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3852 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
3853 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
3854 * 1TiB 64-bit MMIO windows for each PHB.
3855 */
3856 const uint64_t base_buid = 0x800000020000000ULL;
3857 int i;
3858
3859 /* Sanity check natural alignments */
3860 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3861 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3862 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3863 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3864 /* Sanity check bounds */
3865 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3866 SPAPR_PCI_MEM32_WIN_SIZE);
3867 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3868 SPAPR_PCI_MEM64_WIN_SIZE);
3869
3870 if (index >= SPAPR_MAX_PHBS) {
3871 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3872 SPAPR_MAX_PHBS - 1);
3873 return;
3874 }
3875
3876 *buid = base_buid + index;
3877 for (i = 0; i < n_dma; ++i) {
3878 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3879 }
3880
3881 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3882 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3883 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3884 }
3885
3886 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3887 {
3888 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3889
3890 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3891 }
3892
3893 static void spapr_ics_resend(XICSFabric *dev)
3894 {
3895 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3896
3897 ics_resend(spapr->ics);
3898 }
3899
3900 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
3901 {
3902 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
3903
3904 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
3905 }
3906
3907 static void spapr_pic_print_info(InterruptStatsProvider *obj,
3908 Monitor *mon)
3909 {
3910 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3911
3912 spapr->irq->print_info(spapr, mon);
3913 }
3914
3915 int spapr_get_vcpu_id(PowerPCCPU *cpu)
3916 {
3917 return cpu->vcpu_id;
3918 }
3919
3920 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
3921 {
3922 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3923 int vcpu_id;
3924
3925 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
3926
3927 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
3928 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
3929 error_append_hint(errp, "Adjust the number of cpus to %d "
3930 "or try to raise the number of threads per core\n",
3931 vcpu_id * smp_threads / spapr->vsmt);
3932 return;
3933 }
3934
3935 cpu->vcpu_id = vcpu_id;
3936 }
3937
3938 PowerPCCPU *spapr_find_cpu(int vcpu_id)
3939 {
3940 CPUState *cs;
3941
3942 CPU_FOREACH(cs) {
3943 PowerPCCPU *cpu = POWERPC_CPU(cs);
3944
3945 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
3946 return cpu;
3947 }
3948 }
3949
3950 return NULL;
3951 }
3952
3953 static void spapr_machine_class_init(ObjectClass *oc, void *data)
3954 {
3955 MachineClass *mc = MACHINE_CLASS(oc);
3956 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3957 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3958 NMIClass *nc = NMI_CLASS(oc);
3959 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3960 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3961 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3962 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3963
3964 mc->desc = "pSeries Logical Partition (PAPR compliant)";
3965 mc->ignore_boot_device_suffixes = true;
3966
3967 /*
3968 * We set up the default / latest behaviour here. The class_init
3969 * functions for the specific versioned machine types can override
3970 * these details for backwards compatibility
3971 */
3972 mc->init = spapr_machine_init;
3973 mc->reset = spapr_machine_reset;
3974 mc->block_default_type = IF_SCSI;
3975 mc->max_cpus = 1024;
3976 mc->no_parallel = 1;
3977 mc->default_boot_order = "";
3978 mc->default_ram_size = 512 * MiB;
3979 mc->default_display = "std";
3980 mc->kvm_type = spapr_kvm_type;
3981 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
3982 mc->pci_allow_0_address = true;
3983 assert(!mc->get_hotplug_handler);
3984 mc->get_hotplug_handler = spapr_get_hotplug_handler;
3985 hc->pre_plug = spapr_machine_device_pre_plug;
3986 hc->plug = spapr_machine_device_plug;
3987 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
3988 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
3989 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3990 hc->unplug_request = spapr_machine_device_unplug_request;
3991 hc->unplug = spapr_machine_device_unplug;
3992
3993 smc->dr_lmb_enabled = true;
3994 smc->update_dt_enabled = true;
3995 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
3996 mc->has_hotpluggable_cpus = true;
3997 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
3998 fwc->get_dev_path = spapr_get_fw_dev_path;
3999 nc->nmi_monitor_handler = spapr_nmi;
4000 smc->phb_placement = spapr_phb_placement;
4001 vhc->hypercall = emulate_spapr_hypercall;
4002 vhc->hpt_mask = spapr_hpt_mask;
4003 vhc->map_hptes = spapr_map_hptes;
4004 vhc->unmap_hptes = spapr_unmap_hptes;
4005 vhc->store_hpte = spapr_store_hpte;
4006 vhc->get_patbe = spapr_get_patbe;
4007 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4008 xic->ics_get = spapr_ics_get;
4009 xic->ics_resend = spapr_ics_resend;
4010 xic->icp_get = spapr_icp_get;
4011 ispc->print_info = spapr_pic_print_info;
4012 /* Force NUMA node memory size to be a multiple of
4013 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4014 * in which LMBs are represented and hot-added
4015 */
4016 mc->numa_mem_align_shift = 28;
4017
4018 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4019 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4020 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4021 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4022 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4023 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4024 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4025 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4026 spapr_caps_add_properties(smc, &error_abort);
4027 smc->irq = &spapr_irq_xics;
4028 }
4029
4030 static const TypeInfo spapr_machine_info = {
4031 .name = TYPE_SPAPR_MACHINE,
4032 .parent = TYPE_MACHINE,
4033 .abstract = true,
4034 .instance_size = sizeof(sPAPRMachineState),
4035 .instance_init = spapr_instance_init,
4036 .instance_finalize = spapr_machine_finalizefn,
4037 .class_size = sizeof(sPAPRMachineClass),
4038 .class_init = spapr_machine_class_init,
4039 .interfaces = (InterfaceInfo[]) {
4040 { TYPE_FW_PATH_PROVIDER },
4041 { TYPE_NMI },
4042 { TYPE_HOTPLUG_HANDLER },
4043 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4044 { TYPE_XICS_FABRIC },
4045 { TYPE_INTERRUPT_STATS_PROVIDER },
4046 { }
4047 },
4048 };
4049
4050 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4051 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4052 void *data) \
4053 { \
4054 MachineClass *mc = MACHINE_CLASS(oc); \
4055 spapr_machine_##suffix##_class_options(mc); \
4056 if (latest) { \
4057 mc->alias = "pseries"; \
4058 mc->is_default = 1; \
4059 } \
4060 } \
4061 static const TypeInfo spapr_machine_##suffix##_info = { \
4062 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4063 .parent = TYPE_SPAPR_MACHINE, \
4064 .class_init = spapr_machine_##suffix##_class_init, \
4065 }; \
4066 static void spapr_machine_register_##suffix(void) \
4067 { \
4068 type_register(&spapr_machine_##suffix##_info); \
4069 } \
4070 type_init(spapr_machine_register_##suffix)
4071
4072 /*
4073 * pseries-4.0
4074 */
4075 static void spapr_machine_4_0_class_options(MachineClass *mc)
4076 {
4077 /* Defaults for the latest behaviour inherited from the base class */
4078 }
4079
4080 DEFINE_SPAPR_MACHINE(4_0, "4.0", true);
4081
4082 /*
4083 * pseries-3.1
4084 */
4085 static void spapr_machine_3_1_class_options(MachineClass *mc)
4086 {
4087 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4088
4089 spapr_machine_4_0_class_options(mc);
4090 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4091 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4092 smc->update_dt_enabled = false;
4093 }
4094
4095 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4096
4097 /*
4098 * pseries-3.0
4099 */
4100
4101 static void spapr_machine_3_0_class_options(MachineClass *mc)
4102 {
4103 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4104
4105 spapr_machine_3_1_class_options(mc);
4106 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4107
4108 smc->legacy_irq_allocation = true;
4109 smc->irq = &spapr_irq_xics_legacy;
4110 }
4111
4112 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4113
4114 /*
4115 * pseries-2.12
4116 */
4117 static void spapr_machine_2_12_class_options(MachineClass *mc)
4118 {
4119 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4120 static GlobalProperty compat[] = {
4121 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4122 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4123 };
4124
4125 spapr_machine_3_0_class_options(mc);
4126 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4127 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4128
4129 /* We depend on kvm_enabled() to choose a default value for the
4130 * hpt-max-page-size capability. Of course we can't do it here
4131 * because this is too early and the HW accelerator isn't initialzed
4132 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4133 */
4134 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4135 }
4136
4137 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4138
4139 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4140 {
4141 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4142
4143 spapr_machine_2_12_class_options(mc);
4144 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4145 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4146 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4147 }
4148
4149 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4150
4151 /*
4152 * pseries-2.11
4153 */
4154
4155 static void spapr_machine_2_11_class_options(MachineClass *mc)
4156 {
4157 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4158
4159 spapr_machine_2_12_class_options(mc);
4160 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4161 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4162 }
4163
4164 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4165
4166 /*
4167 * pseries-2.10
4168 */
4169
4170 static void spapr_machine_2_10_class_options(MachineClass *mc)
4171 {
4172 spapr_machine_2_11_class_options(mc);
4173 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4174 }
4175
4176 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4177
4178 /*
4179 * pseries-2.9
4180 */
4181
4182 static void spapr_machine_2_9_class_options(MachineClass *mc)
4183 {
4184 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4185 static GlobalProperty compat[] = {
4186 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4187 };
4188
4189 spapr_machine_2_10_class_options(mc);
4190 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4191 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4192 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4193 smc->pre_2_10_has_unused_icps = true;
4194 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4195 }
4196
4197 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4198
4199 /*
4200 * pseries-2.8
4201 */
4202
4203 static void spapr_machine_2_8_class_options(MachineClass *mc)
4204 {
4205 static GlobalProperty compat[] = {
4206 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4207 };
4208
4209 spapr_machine_2_9_class_options(mc);
4210 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4211 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4212 mc->numa_mem_align_shift = 23;
4213 }
4214
4215 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4216
4217 /*
4218 * pseries-2.7
4219 */
4220
4221 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
4222 uint64_t *buid, hwaddr *pio,
4223 hwaddr *mmio32, hwaddr *mmio64,
4224 unsigned n_dma, uint32_t *liobns, Error **errp)
4225 {
4226 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4227 const uint64_t base_buid = 0x800000020000000ULL;
4228 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4229 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4230 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4231 const uint32_t max_index = 255;
4232 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4233
4234 uint64_t ram_top = MACHINE(spapr)->ram_size;
4235 hwaddr phb0_base, phb_base;
4236 int i;
4237
4238 /* Do we have device memory? */
4239 if (MACHINE(spapr)->maxram_size > ram_top) {
4240 /* Can't just use maxram_size, because there may be an
4241 * alignment gap between normal and device memory regions
4242 */
4243 ram_top = MACHINE(spapr)->device_memory->base +
4244 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4245 }
4246
4247 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4248
4249 if (index > max_index) {
4250 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4251 max_index);
4252 return;
4253 }
4254
4255 *buid = base_buid + index;
4256 for (i = 0; i < n_dma; ++i) {
4257 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4258 }
4259
4260 phb_base = phb0_base + index * phb_spacing;
4261 *pio = phb_base + pio_offset;
4262 *mmio32 = phb_base + mmio_offset;
4263 /*
4264 * We don't set the 64-bit MMIO window, relying on the PHB's
4265 * fallback behaviour of automatically splitting a large "32-bit"
4266 * window into contiguous 32-bit and 64-bit windows
4267 */
4268 }
4269
4270 static void spapr_machine_2_7_class_options(MachineClass *mc)
4271 {
4272 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4273 static GlobalProperty compat[] = {
4274 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4275 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4276 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4277 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4278 };
4279
4280 spapr_machine_2_8_class_options(mc);
4281 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4282 mc->default_machine_opts = "modern-hotplug-events=off";
4283 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4284 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4285 smc->phb_placement = phb_placement_2_7;
4286 }
4287
4288 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4289
4290 /*
4291 * pseries-2.6
4292 */
4293
4294 static void spapr_machine_2_6_class_options(MachineClass *mc)
4295 {
4296 static GlobalProperty compat[] = {
4297 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4298 };
4299
4300 spapr_machine_2_7_class_options(mc);
4301 mc->has_hotpluggable_cpus = false;
4302 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4303 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4304 }
4305
4306 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4307
4308 /*
4309 * pseries-2.5
4310 */
4311
4312 static void spapr_machine_2_5_class_options(MachineClass *mc)
4313 {
4314 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4315 static GlobalProperty compat[] = {
4316 { "spapr-vlan", "use-rx-buffer-pools", "off" },
4317 };
4318
4319 spapr_machine_2_6_class_options(mc);
4320 smc->use_ohci_by_default = true;
4321 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4322 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4323 }
4324
4325 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4326
4327 /*
4328 * pseries-2.4
4329 */
4330
4331 static void spapr_machine_2_4_class_options(MachineClass *mc)
4332 {
4333 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4334
4335 spapr_machine_2_5_class_options(mc);
4336 smc->dr_lmb_enabled = false;
4337 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4338 }
4339
4340 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4341
4342 /*
4343 * pseries-2.3
4344 */
4345
4346 static void spapr_machine_2_3_class_options(MachineClass *mc)
4347 {
4348 static GlobalProperty compat[] = {
4349 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4350 };
4351 spapr_machine_2_4_class_options(mc);
4352 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4353 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4354 }
4355 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4356
4357 /*
4358 * pseries-2.2
4359 */
4360
4361 static void spapr_machine_2_2_class_options(MachineClass *mc)
4362 {
4363 static GlobalProperty compat[] = {
4364 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4365 };
4366
4367 spapr_machine_2_3_class_options(mc);
4368 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4369 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4370 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4371 }
4372 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4373
4374 /*
4375 * pseries-2.1
4376 */
4377
4378 static void spapr_machine_2_1_class_options(MachineClass *mc)
4379 {
4380 spapr_machine_2_2_class_options(mc);
4381 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4382 }
4383 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4384
4385 static void spapr_machine_register_types(void)
4386 {
4387 type_register_static(&spapr_machine_info);
4388 }
4389
4390 type_init(spapr_machine_register_types)