]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr.c
PPC: spapr: Expose /hypervisor node in device tree
[mirror_qemu.git] / hw / ppc / spapr.c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
27 #include "sysemu/sysemu.h"
28 #include "hw/hw.h"
29 #include "hw/fw-path-provider.h"
30 #include "elf.h"
31 #include "net/net.h"
32 #include "sysemu/blockdev.h"
33 #include "sysemu/cpus.h"
34 #include "sysemu/kvm.h"
35 #include "kvm_ppc.h"
36 #include "mmu-hash64.h"
37 #include "qom/cpu.h"
38
39 #include "hw/boards.h"
40 #include "hw/ppc/ppc.h"
41 #include "hw/loader.h"
42
43 #include "hw/ppc/spapr.h"
44 #include "hw/ppc/spapr_vio.h"
45 #include "hw/pci-host/spapr.h"
46 #include "hw/ppc/xics.h"
47 #include "hw/pci/msi.h"
48
49 #include "hw/pci/pci.h"
50 #include "hw/scsi/scsi.h"
51 #include "hw/virtio/virtio-scsi.h"
52
53 #include "exec/address-spaces.h"
54 #include "hw/usb.h"
55 #include "qemu/config-file.h"
56 #include "qemu/error-report.h"
57 #include "trace.h"
58
59 #include <libfdt.h>
60
61 /* SLOF memory layout:
62 *
63 * SLOF raw image loaded at 0, copies its romfs right below the flat
64 * device-tree, then position SLOF itself 31M below that
65 *
66 * So we set FW_OVERHEAD to 40MB which should account for all of that
67 * and more
68 *
69 * We load our kernel at 4M, leaving space for SLOF initial image
70 */
71 #define FDT_MAX_SIZE 0x40000
72 #define RTAS_MAX_SIZE 0x10000
73 #define FW_MAX_SIZE 0x400000
74 #define FW_FILE_NAME "slof.bin"
75 #define FW_OVERHEAD 0x2800000
76 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
77
78 #define MIN_RMA_SLOF 128UL
79
80 #define TIMEBASE_FREQ 512000000ULL
81
82 #define MAX_CPUS 256
83 #define XICS_IRQS 1024
84
85 #define PHANDLE_XICP 0x00001111
86
87 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
88
89 #define TYPE_SPAPR_MACHINE "spapr-machine"
90
91 sPAPREnvironment *spapr;
92
93 int spapr_allocate_irq(int hint, bool lsi)
94 {
95 int irq;
96
97 if (hint) {
98 irq = hint;
99 if (hint >= spapr->next_irq) {
100 spapr->next_irq = hint + 1;
101 }
102 /* FIXME: we should probably check for collisions somehow */
103 } else {
104 irq = spapr->next_irq++;
105 }
106
107 /* Configure irq type */
108 if (!xics_get_qirq(spapr->icp, irq)) {
109 return 0;
110 }
111
112 xics_set_irq_type(spapr->icp, irq, lsi);
113
114 return irq;
115 }
116
117 /*
118 * Allocate block of consequtive IRQs, returns a number of the first.
119 * If msi==true, aligns the first IRQ number to num.
120 */
121 int spapr_allocate_irq_block(int num, bool lsi, bool msi)
122 {
123 int first = -1;
124 int i, hint = 0;
125
126 /*
127 * MSIMesage::data is used for storing VIRQ so
128 * it has to be aligned to num to support multiple
129 * MSI vectors. MSI-X is not affected by this.
130 * The hint is used for the first IRQ, the rest should
131 * be allocated continuously.
132 */
133 if (msi) {
134 assert((num == 1) || (num == 2) || (num == 4) ||
135 (num == 8) || (num == 16) || (num == 32));
136 hint = (spapr->next_irq + num - 1) & ~(num - 1);
137 }
138
139 for (i = 0; i < num; ++i) {
140 int irq;
141
142 irq = spapr_allocate_irq(hint, lsi);
143 if (!irq) {
144 return -1;
145 }
146
147 if (0 == i) {
148 first = irq;
149 hint = 0;
150 }
151
152 /* If the above doesn't create a consecutive block then that's
153 * an internal bug */
154 assert(irq == (first + i));
155 }
156
157 return first;
158 }
159
160 static XICSState *try_create_xics(const char *type, int nr_servers,
161 int nr_irqs)
162 {
163 DeviceState *dev;
164
165 dev = qdev_create(NULL, type);
166 qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
167 qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
168 if (qdev_init(dev) < 0) {
169 return NULL;
170 }
171
172 return XICS_COMMON(dev);
173 }
174
175 static XICSState *xics_system_init(int nr_servers, int nr_irqs)
176 {
177 XICSState *icp = NULL;
178
179 if (kvm_enabled()) {
180 QemuOpts *machine_opts = qemu_get_machine_opts();
181 bool irqchip_allowed = qemu_opt_get_bool(machine_opts,
182 "kernel_irqchip", true);
183 bool irqchip_required = qemu_opt_get_bool(machine_opts,
184 "kernel_irqchip", false);
185 if (irqchip_allowed) {
186 icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs);
187 }
188
189 if (irqchip_required && !icp) {
190 perror("Failed to create in-kernel XICS\n");
191 abort();
192 }
193 }
194
195 if (!icp) {
196 icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs);
197 }
198
199 if (!icp) {
200 perror("Failed to create XICS\n");
201 abort();
202 }
203
204 return icp;
205 }
206
207 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
208 int smt_threads)
209 {
210 int i, ret = 0;
211 uint32_t servers_prop[smt_threads];
212 uint32_t gservers_prop[smt_threads * 2];
213 int index = ppc_get_vcpu_dt_id(cpu);
214
215 if (cpu->cpu_version) {
216 ret = fdt_setprop(fdt, offset, "cpu-version",
217 &cpu->cpu_version, sizeof(cpu->cpu_version));
218 if (ret < 0) {
219 return ret;
220 }
221 }
222
223 /* Build interrupt servers and gservers properties */
224 for (i = 0; i < smt_threads; i++) {
225 servers_prop[i] = cpu_to_be32(index + i);
226 /* Hack, direct the group queues back to cpu 0 */
227 gservers_prop[i*2] = cpu_to_be32(index + i);
228 gservers_prop[i*2 + 1] = 0;
229 }
230 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
231 servers_prop, sizeof(servers_prop));
232 if (ret < 0) {
233 return ret;
234 }
235 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
236 gservers_prop, sizeof(gservers_prop));
237
238 return ret;
239 }
240
241 static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr)
242 {
243 int ret = 0, offset, cpus_offset;
244 CPUState *cs;
245 char cpu_model[32];
246 int smt = kvmppc_smt_threads();
247 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
248
249 CPU_FOREACH(cs) {
250 PowerPCCPU *cpu = POWERPC_CPU(cs);
251 DeviceClass *dc = DEVICE_GET_CLASS(cs);
252 int index = ppc_get_vcpu_dt_id(cpu);
253 uint32_t associativity[] = {cpu_to_be32(0x5),
254 cpu_to_be32(0x0),
255 cpu_to_be32(0x0),
256 cpu_to_be32(0x0),
257 cpu_to_be32(cs->numa_node),
258 cpu_to_be32(index)};
259
260 if ((index % smt) != 0) {
261 continue;
262 }
263
264 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
265
266 cpus_offset = fdt_path_offset(fdt, "/cpus");
267 if (cpus_offset < 0) {
268 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
269 "cpus");
270 if (cpus_offset < 0) {
271 return cpus_offset;
272 }
273 }
274 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
275 if (offset < 0) {
276 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
277 if (offset < 0) {
278 return offset;
279 }
280 }
281
282 if (nb_numa_nodes > 1) {
283 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
284 sizeof(associativity));
285 if (ret < 0) {
286 return ret;
287 }
288 }
289
290 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
291 pft_size_prop, sizeof(pft_size_prop));
292 if (ret < 0) {
293 return ret;
294 }
295
296 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
297 ppc_get_compat_smt_threads(cpu));
298 if (ret < 0) {
299 return ret;
300 }
301 }
302 return ret;
303 }
304
305
306 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
307 size_t maxsize)
308 {
309 size_t maxcells = maxsize / sizeof(uint32_t);
310 int i, j, count;
311 uint32_t *p = prop;
312
313 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
314 struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
315
316 if (!sps->page_shift) {
317 break;
318 }
319 for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
320 if (sps->enc[count].page_shift == 0) {
321 break;
322 }
323 }
324 if ((p - prop) >= (maxcells - 3 - count * 2)) {
325 break;
326 }
327 *(p++) = cpu_to_be32(sps->page_shift);
328 *(p++) = cpu_to_be32(sps->slb_enc);
329 *(p++) = cpu_to_be32(count);
330 for (j = 0; j < count; j++) {
331 *(p++) = cpu_to_be32(sps->enc[j].page_shift);
332 *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
333 }
334 }
335
336 return (p - prop) * sizeof(uint32_t);
337 }
338
339 #define _FDT(exp) \
340 do { \
341 int ret = (exp); \
342 if (ret < 0) { \
343 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
344 #exp, fdt_strerror(ret)); \
345 exit(1); \
346 } \
347 } while (0)
348
349 static void add_str(GString *s, const gchar *s1)
350 {
351 g_string_append_len(s, s1, strlen(s1) + 1);
352 }
353
354 static void *spapr_create_fdt_skel(hwaddr initrd_base,
355 hwaddr initrd_size,
356 hwaddr kernel_size,
357 bool little_endian,
358 const char *boot_device,
359 const char *kernel_cmdline,
360 uint32_t epow_irq)
361 {
362 void *fdt;
363 CPUState *cs;
364 uint32_t start_prop = cpu_to_be32(initrd_base);
365 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
366 GString *hypertas = g_string_sized_new(256);
367 GString *qemu_hypertas = g_string_sized_new(256);
368 uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
369 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
370 int smt = kvmppc_smt_threads();
371 unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
372 QemuOpts *opts = qemu_opts_find(qemu_find_opts("smp-opts"), NULL);
373 unsigned sockets = opts ? qemu_opt_get_number(opts, "sockets", 0) : 0;
374 uint32_t cpus_per_socket = sockets ? (smp_cpus / sockets) : 1;
375
376 add_str(hypertas, "hcall-pft");
377 add_str(hypertas, "hcall-term");
378 add_str(hypertas, "hcall-dabr");
379 add_str(hypertas, "hcall-interrupt");
380 add_str(hypertas, "hcall-tce");
381 add_str(hypertas, "hcall-vio");
382 add_str(hypertas, "hcall-splpar");
383 add_str(hypertas, "hcall-bulk");
384 add_str(hypertas, "hcall-set-mode");
385 add_str(qemu_hypertas, "hcall-memop1");
386
387 fdt = g_malloc0(FDT_MAX_SIZE);
388 _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
389
390 if (kernel_size) {
391 _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
392 }
393 if (initrd_size) {
394 _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
395 }
396 _FDT((fdt_finish_reservemap(fdt)));
397
398 /* Root node */
399 _FDT((fdt_begin_node(fdt, "")));
400 _FDT((fdt_property_string(fdt, "device_type", "chrp")));
401 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
402 _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
403
404 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
405 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
406
407 /* /chosen */
408 _FDT((fdt_begin_node(fdt, "chosen")));
409
410 /* Set Form1_affinity */
411 _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
412
413 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
414 _FDT((fdt_property(fdt, "linux,initrd-start",
415 &start_prop, sizeof(start_prop))));
416 _FDT((fdt_property(fdt, "linux,initrd-end",
417 &end_prop, sizeof(end_prop))));
418 if (kernel_size) {
419 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
420 cpu_to_be64(kernel_size) };
421
422 _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
423 if (little_endian) {
424 _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
425 }
426 }
427 if (boot_device) {
428 _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
429 }
430 _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
431 _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
432 _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
433
434 _FDT((fdt_end_node(fdt)));
435
436 /* cpus */
437 _FDT((fdt_begin_node(fdt, "cpus")));
438
439 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
440 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
441
442 CPU_FOREACH(cs) {
443 PowerPCCPU *cpu = POWERPC_CPU(cs);
444 CPUPPCState *env = &cpu->env;
445 DeviceClass *dc = DEVICE_GET_CLASS(cs);
446 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
447 int index = ppc_get_vcpu_dt_id(cpu);
448 char *nodename;
449 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
450 0xffffffff, 0xffffffff};
451 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
452 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
453 uint32_t page_sizes_prop[64];
454 size_t page_sizes_prop_size;
455
456 if ((index % smt) != 0) {
457 continue;
458 }
459
460 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
461
462 _FDT((fdt_begin_node(fdt, nodename)));
463
464 g_free(nodename);
465
466 _FDT((fdt_property_cell(fdt, "reg", index)));
467 _FDT((fdt_property_string(fdt, "device_type", "cpu")));
468
469 _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
470 _FDT((fdt_property_cell(fdt, "d-cache-block-size",
471 env->dcache_line_size)));
472 _FDT((fdt_property_cell(fdt, "d-cache-line-size",
473 env->dcache_line_size)));
474 _FDT((fdt_property_cell(fdt, "i-cache-block-size",
475 env->icache_line_size)));
476 _FDT((fdt_property_cell(fdt, "i-cache-line-size",
477 env->icache_line_size)));
478
479 if (pcc->l1_dcache_size) {
480 _FDT((fdt_property_cell(fdt, "d-cache-size", pcc->l1_dcache_size)));
481 } else {
482 fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
483 }
484 if (pcc->l1_icache_size) {
485 _FDT((fdt_property_cell(fdt, "i-cache-size", pcc->l1_icache_size)));
486 } else {
487 fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
488 }
489
490 _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
491 _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
492 _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
493 _FDT((fdt_property_string(fdt, "status", "okay")));
494 _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
495
496 if (env->spr_cb[SPR_PURR].oea_read) {
497 _FDT((fdt_property(fdt, "ibm,purr", NULL, 0)));
498 }
499
500 if (env->mmu_model & POWERPC_MMU_1TSEG) {
501 _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
502 segs, sizeof(segs))));
503 }
504
505 /* Advertise VMX/VSX (vector extensions) if available
506 * 0 / no property == no vector extensions
507 * 1 == VMX / Altivec available
508 * 2 == VSX available */
509 if (env->insns_flags & PPC_ALTIVEC) {
510 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
511
512 _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
513 }
514
515 /* Advertise DFP (Decimal Floating Point) if available
516 * 0 / no property == no DFP
517 * 1 == DFP available */
518 if (env->insns_flags2 & PPC2_DFP) {
519 _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
520 }
521
522 page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
523 sizeof(page_sizes_prop));
524 if (page_sizes_prop_size) {
525 _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
526 page_sizes_prop, page_sizes_prop_size)));
527 }
528
529 _FDT((fdt_property_cell(fdt, "ibm,chip-id",
530 cs->cpu_index / cpus_per_socket)));
531
532 _FDT((fdt_end_node(fdt)));
533 }
534
535 _FDT((fdt_end_node(fdt)));
536
537 /* RTAS */
538 _FDT((fdt_begin_node(fdt, "rtas")));
539
540 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
541 add_str(hypertas, "hcall-multi-tce");
542 }
543 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
544 hypertas->len)));
545 g_string_free(hypertas, TRUE);
546 _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
547 qemu_hypertas->len)));
548 g_string_free(qemu_hypertas, TRUE);
549
550 _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
551 refpoints, sizeof(refpoints))));
552
553 _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
554
555 _FDT((fdt_end_node(fdt)));
556
557 /* interrupt controller */
558 _FDT((fdt_begin_node(fdt, "interrupt-controller")));
559
560 _FDT((fdt_property_string(fdt, "device_type",
561 "PowerPC-External-Interrupt-Presentation")));
562 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
563 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
564 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
565 interrupt_server_ranges_prop,
566 sizeof(interrupt_server_ranges_prop))));
567 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
568 _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
569 _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
570
571 _FDT((fdt_end_node(fdt)));
572
573 /* vdevice */
574 _FDT((fdt_begin_node(fdt, "vdevice")));
575
576 _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
577 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
578 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
579 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
580 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
581 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
582
583 _FDT((fdt_end_node(fdt)));
584
585 /* event-sources */
586 spapr_events_fdt_skel(fdt, epow_irq);
587
588 /* /hypervisor node */
589 if (kvm_enabled()) {
590 uint8_t hypercall[16];
591
592 /* indicate KVM hypercall interface */
593 _FDT((fdt_begin_node(fdt, "hypervisor")));
594 _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
595 if (kvmppc_has_cap_fixup_hcalls()) {
596 /*
597 * Older KVM versions with older guest kernels were broken with the
598 * magic page, don't allow the guest to map it.
599 */
600 kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
601 sizeof(hypercall));
602 _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
603 sizeof(hypercall))));
604 }
605 _FDT((fdt_end_node(fdt)));
606 }
607
608 _FDT((fdt_end_node(fdt))); /* close root node */
609 _FDT((fdt_finish(fdt)));
610
611 return fdt;
612 }
613
614 int spapr_h_cas_compose_response(target_ulong addr, target_ulong size)
615 {
616 void *fdt, *fdt_skel;
617 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
618
619 size -= sizeof(hdr);
620
621 /* Create sceleton */
622 fdt_skel = g_malloc0(size);
623 _FDT((fdt_create(fdt_skel, size)));
624 _FDT((fdt_begin_node(fdt_skel, "")));
625 _FDT((fdt_end_node(fdt_skel)));
626 _FDT((fdt_finish(fdt_skel)));
627 fdt = g_malloc0(size);
628 _FDT((fdt_open_into(fdt_skel, fdt, size)));
629 g_free(fdt_skel);
630
631 /* Fix skeleton up */
632 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
633
634 /* Pack resulting tree */
635 _FDT((fdt_pack(fdt)));
636
637 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
638 trace_spapr_cas_failed(size);
639 return -1;
640 }
641
642 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
643 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
644 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
645 g_free(fdt);
646
647 return 0;
648 }
649
650 static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt)
651 {
652 uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
653 cpu_to_be32(0x0), cpu_to_be32(0x0),
654 cpu_to_be32(0x0)};
655 char mem_name[32];
656 hwaddr node0_size, mem_start, node_size;
657 uint64_t mem_reg_property[2];
658 int i, off;
659
660 /* memory node(s) */
661 if (nb_numa_nodes > 1 && node_mem[0] < ram_size) {
662 node0_size = node_mem[0];
663 } else {
664 node0_size = ram_size;
665 }
666
667 /* RMA */
668 mem_reg_property[0] = 0;
669 mem_reg_property[1] = cpu_to_be64(spapr->rma_size);
670 off = fdt_add_subnode(fdt, 0, "memory@0");
671 _FDT(off);
672 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
673 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
674 sizeof(mem_reg_property))));
675 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
676 sizeof(associativity))));
677
678 /* RAM: Node 0 */
679 if (node0_size > spapr->rma_size) {
680 mem_reg_property[0] = cpu_to_be64(spapr->rma_size);
681 mem_reg_property[1] = cpu_to_be64(node0_size - spapr->rma_size);
682
683 sprintf(mem_name, "memory@" TARGET_FMT_lx, spapr->rma_size);
684 off = fdt_add_subnode(fdt, 0, mem_name);
685 _FDT(off);
686 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
687 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
688 sizeof(mem_reg_property))));
689 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
690 sizeof(associativity))));
691 }
692
693 /* RAM: Node 1 and beyond */
694 mem_start = node0_size;
695 for (i = 1; i < nb_numa_nodes; i++) {
696 mem_reg_property[0] = cpu_to_be64(mem_start);
697 if (mem_start >= ram_size) {
698 node_size = 0;
699 } else {
700 node_size = node_mem[i];
701 if (node_size > ram_size - mem_start) {
702 node_size = ram_size - mem_start;
703 }
704 }
705 mem_reg_property[1] = cpu_to_be64(node_size);
706 associativity[3] = associativity[4] = cpu_to_be32(i);
707 sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start);
708 off = fdt_add_subnode(fdt, 0, mem_name);
709 _FDT(off);
710 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
711 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
712 sizeof(mem_reg_property))));
713 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
714 sizeof(associativity))));
715 mem_start += node_size;
716 }
717
718 return 0;
719 }
720
721 static void spapr_finalize_fdt(sPAPREnvironment *spapr,
722 hwaddr fdt_addr,
723 hwaddr rtas_addr,
724 hwaddr rtas_size)
725 {
726 int ret, i;
727 size_t cb = 0;
728 char *bootlist;
729 void *fdt;
730 sPAPRPHBState *phb;
731
732 fdt = g_malloc(FDT_MAX_SIZE);
733
734 /* open out the base tree into a temp buffer for the final tweaks */
735 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
736
737 ret = spapr_populate_memory(spapr, fdt);
738 if (ret < 0) {
739 fprintf(stderr, "couldn't setup memory nodes in fdt\n");
740 exit(1);
741 }
742
743 ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
744 if (ret < 0) {
745 fprintf(stderr, "couldn't setup vio devices in fdt\n");
746 exit(1);
747 }
748
749 QLIST_FOREACH(phb, &spapr->phbs, list) {
750 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
751 }
752
753 if (ret < 0) {
754 fprintf(stderr, "couldn't setup PCI devices in fdt\n");
755 exit(1);
756 }
757
758 /* RTAS */
759 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
760 if (ret < 0) {
761 fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
762 }
763
764 /* Advertise NUMA via ibm,associativity */
765 ret = spapr_fixup_cpu_dt(fdt, spapr);
766 if (ret < 0) {
767 fprintf(stderr, "Couldn't finalize CPU device tree properties\n");
768 }
769
770 bootlist = get_boot_devices_list(&cb, true);
771 if (cb && bootlist) {
772 int offset = fdt_path_offset(fdt, "/chosen");
773 if (offset < 0) {
774 exit(1);
775 }
776 for (i = 0; i < cb; i++) {
777 if (bootlist[i] == '\n') {
778 bootlist[i] = ' ';
779 }
780
781 }
782 ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
783 }
784
785 if (!spapr->has_graphics) {
786 spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
787 }
788
789 _FDT((fdt_pack(fdt)));
790
791 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
792 hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
793 fdt_totalsize(fdt), FDT_MAX_SIZE);
794 exit(1);
795 }
796
797 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
798
799 g_free(fdt);
800 }
801
802 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
803 {
804 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
805 }
806
807 static void emulate_spapr_hypercall(PowerPCCPU *cpu)
808 {
809 CPUPPCState *env = &cpu->env;
810
811 if (msr_pr) {
812 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
813 env->gpr[3] = H_PRIVILEGE;
814 } else {
815 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
816 }
817 }
818
819 static void spapr_reset_htab(sPAPREnvironment *spapr)
820 {
821 long shift;
822
823 /* allocate hash page table. For now we always make this 16mb,
824 * later we should probably make it scale to the size of guest
825 * RAM */
826
827 shift = kvmppc_reset_htab(spapr->htab_shift);
828
829 if (shift > 0) {
830 /* Kernel handles htab, we don't need to allocate one */
831 spapr->htab_shift = shift;
832 kvmppc_kern_htab = true;
833 } else {
834 if (!spapr->htab) {
835 /* Allocate an htab if we don't yet have one */
836 spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
837 }
838
839 /* And clear it */
840 memset(spapr->htab, 0, HTAB_SIZE(spapr));
841 }
842
843 /* Update the RMA size if necessary */
844 if (spapr->vrma_adjust) {
845 hwaddr node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
846 spapr->rma_size = kvmppc_rma_size(node0_size, spapr->htab_shift);
847 }
848 }
849
850 static void ppc_spapr_reset(void)
851 {
852 PowerPCCPU *first_ppc_cpu;
853
854 /* Reset the hash table & recalc the RMA */
855 spapr_reset_htab(spapr);
856
857 qemu_devices_reset();
858
859 /* Load the fdt */
860 spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
861 spapr->rtas_size);
862
863 /* Set up the entry state */
864 first_ppc_cpu = POWERPC_CPU(first_cpu);
865 first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
866 first_ppc_cpu->env.gpr[5] = 0;
867 first_cpu->halted = 0;
868 first_ppc_cpu->env.nip = spapr->entry_point;
869
870 }
871
872 static void spapr_cpu_reset(void *opaque)
873 {
874 PowerPCCPU *cpu = opaque;
875 CPUState *cs = CPU(cpu);
876 CPUPPCState *env = &cpu->env;
877
878 cpu_reset(cs);
879
880 /* All CPUs start halted. CPU0 is unhalted from the machine level
881 * reset code and the rest are explicitly started up by the guest
882 * using an RTAS call */
883 cs->halted = 1;
884
885 env->spr[SPR_HIOR] = 0;
886
887 env->external_htab = (uint8_t *)spapr->htab;
888 if (kvm_enabled() && !env->external_htab) {
889 /*
890 * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte*
891 * functions do the right thing.
892 */
893 env->external_htab = (void *)1;
894 }
895 env->htab_base = -1;
896 /*
897 * htab_mask is the mask used to normalize hash value to PTEG index.
898 * htab_shift is log2 of hash table size.
899 * We have 8 hpte per group, and each hpte is 16 bytes.
900 * ie have 128 bytes per hpte entry.
901 */
902 env->htab_mask = (1ULL << ((spapr)->htab_shift - 7)) - 1;
903 env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
904 (spapr->htab_shift - 18);
905 }
906
907 static void spapr_create_nvram(sPAPREnvironment *spapr)
908 {
909 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
910 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
911
912 if (dinfo) {
913 qdev_prop_set_drive_nofail(dev, "drive", dinfo->bdrv);
914 }
915
916 qdev_init_nofail(dev);
917
918 spapr->nvram = (struct sPAPRNVRAM *)dev;
919 }
920
921 /* Returns whether we want to use VGA or not */
922 static int spapr_vga_init(PCIBus *pci_bus)
923 {
924 switch (vga_interface_type) {
925 case VGA_NONE:
926 return false;
927 case VGA_DEVICE:
928 return true;
929 case VGA_STD:
930 return pci_vga_init(pci_bus) != NULL;
931 default:
932 fprintf(stderr, "This vga model is not supported,"
933 "currently it only supports -vga std\n");
934 exit(0);
935 }
936 }
937
938 static const VMStateDescription vmstate_spapr = {
939 .name = "spapr",
940 .version_id = 2,
941 .minimum_version_id = 1,
942 .fields = (VMStateField[]) {
943 VMSTATE_UINT32(next_irq, sPAPREnvironment),
944
945 /* RTC offset */
946 VMSTATE_UINT64(rtc_offset, sPAPREnvironment),
947 VMSTATE_PPC_TIMEBASE_V(tb, sPAPREnvironment, 2),
948 VMSTATE_END_OF_LIST()
949 },
950 };
951
952 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
953 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
954 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
955 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
956
957 static int htab_save_setup(QEMUFile *f, void *opaque)
958 {
959 sPAPREnvironment *spapr = opaque;
960
961 /* "Iteration" header */
962 qemu_put_be32(f, spapr->htab_shift);
963
964 if (spapr->htab) {
965 spapr->htab_save_index = 0;
966 spapr->htab_first_pass = true;
967 } else {
968 assert(kvm_enabled());
969
970 spapr->htab_fd = kvmppc_get_htab_fd(false);
971 if (spapr->htab_fd < 0) {
972 fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
973 strerror(errno));
974 return -1;
975 }
976 }
977
978
979 return 0;
980 }
981
982 static void htab_save_first_pass(QEMUFile *f, sPAPREnvironment *spapr,
983 int64_t max_ns)
984 {
985 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
986 int index = spapr->htab_save_index;
987 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
988
989 assert(spapr->htab_first_pass);
990
991 do {
992 int chunkstart;
993
994 /* Consume invalid HPTEs */
995 while ((index < htabslots)
996 && !HPTE_VALID(HPTE(spapr->htab, index))) {
997 index++;
998 CLEAN_HPTE(HPTE(spapr->htab, index));
999 }
1000
1001 /* Consume valid HPTEs */
1002 chunkstart = index;
1003 while ((index < htabslots)
1004 && HPTE_VALID(HPTE(spapr->htab, index))) {
1005 index++;
1006 CLEAN_HPTE(HPTE(spapr->htab, index));
1007 }
1008
1009 if (index > chunkstart) {
1010 int n_valid = index - chunkstart;
1011
1012 qemu_put_be32(f, chunkstart);
1013 qemu_put_be16(f, n_valid);
1014 qemu_put_be16(f, 0);
1015 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1016 HASH_PTE_SIZE_64 * n_valid);
1017
1018 if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1019 break;
1020 }
1021 }
1022 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1023
1024 if (index >= htabslots) {
1025 assert(index == htabslots);
1026 index = 0;
1027 spapr->htab_first_pass = false;
1028 }
1029 spapr->htab_save_index = index;
1030 }
1031
1032 static int htab_save_later_pass(QEMUFile *f, sPAPREnvironment *spapr,
1033 int64_t max_ns)
1034 {
1035 bool final = max_ns < 0;
1036 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1037 int examined = 0, sent = 0;
1038 int index = spapr->htab_save_index;
1039 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1040
1041 assert(!spapr->htab_first_pass);
1042
1043 do {
1044 int chunkstart, invalidstart;
1045
1046 /* Consume non-dirty HPTEs */
1047 while ((index < htabslots)
1048 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1049 index++;
1050 examined++;
1051 }
1052
1053 chunkstart = index;
1054 /* Consume valid dirty HPTEs */
1055 while ((index < htabslots)
1056 && HPTE_DIRTY(HPTE(spapr->htab, index))
1057 && HPTE_VALID(HPTE(spapr->htab, index))) {
1058 CLEAN_HPTE(HPTE(spapr->htab, index));
1059 index++;
1060 examined++;
1061 }
1062
1063 invalidstart = index;
1064 /* Consume invalid dirty HPTEs */
1065 while ((index < htabslots)
1066 && HPTE_DIRTY(HPTE(spapr->htab, index))
1067 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1068 CLEAN_HPTE(HPTE(spapr->htab, index));
1069 index++;
1070 examined++;
1071 }
1072
1073 if (index > chunkstart) {
1074 int n_valid = invalidstart - chunkstart;
1075 int n_invalid = index - invalidstart;
1076
1077 qemu_put_be32(f, chunkstart);
1078 qemu_put_be16(f, n_valid);
1079 qemu_put_be16(f, n_invalid);
1080 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1081 HASH_PTE_SIZE_64 * n_valid);
1082 sent += index - chunkstart;
1083
1084 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1085 break;
1086 }
1087 }
1088
1089 if (examined >= htabslots) {
1090 break;
1091 }
1092
1093 if (index >= htabslots) {
1094 assert(index == htabslots);
1095 index = 0;
1096 }
1097 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1098
1099 if (index >= htabslots) {
1100 assert(index == htabslots);
1101 index = 0;
1102 }
1103
1104 spapr->htab_save_index = index;
1105
1106 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1107 }
1108
1109 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1110 #define MAX_KVM_BUF_SIZE 2048
1111
1112 static int htab_save_iterate(QEMUFile *f, void *opaque)
1113 {
1114 sPAPREnvironment *spapr = opaque;
1115 int rc = 0;
1116
1117 /* Iteration header */
1118 qemu_put_be32(f, 0);
1119
1120 if (!spapr->htab) {
1121 assert(kvm_enabled());
1122
1123 rc = kvmppc_save_htab(f, spapr->htab_fd,
1124 MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1125 if (rc < 0) {
1126 return rc;
1127 }
1128 } else if (spapr->htab_first_pass) {
1129 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1130 } else {
1131 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1132 }
1133
1134 /* End marker */
1135 qemu_put_be32(f, 0);
1136 qemu_put_be16(f, 0);
1137 qemu_put_be16(f, 0);
1138
1139 return rc;
1140 }
1141
1142 static int htab_save_complete(QEMUFile *f, void *opaque)
1143 {
1144 sPAPREnvironment *spapr = opaque;
1145
1146 /* Iteration header */
1147 qemu_put_be32(f, 0);
1148
1149 if (!spapr->htab) {
1150 int rc;
1151
1152 assert(kvm_enabled());
1153
1154 rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1);
1155 if (rc < 0) {
1156 return rc;
1157 }
1158 close(spapr->htab_fd);
1159 spapr->htab_fd = -1;
1160 } else {
1161 htab_save_later_pass(f, spapr, -1);
1162 }
1163
1164 /* End marker */
1165 qemu_put_be32(f, 0);
1166 qemu_put_be16(f, 0);
1167 qemu_put_be16(f, 0);
1168
1169 return 0;
1170 }
1171
1172 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1173 {
1174 sPAPREnvironment *spapr = opaque;
1175 uint32_t section_hdr;
1176 int fd = -1;
1177
1178 if (version_id < 1 || version_id > 1) {
1179 fprintf(stderr, "htab_load() bad version\n");
1180 return -EINVAL;
1181 }
1182
1183 section_hdr = qemu_get_be32(f);
1184
1185 if (section_hdr) {
1186 /* First section, just the hash shift */
1187 if (spapr->htab_shift != section_hdr) {
1188 return -EINVAL;
1189 }
1190 return 0;
1191 }
1192
1193 if (!spapr->htab) {
1194 assert(kvm_enabled());
1195
1196 fd = kvmppc_get_htab_fd(true);
1197 if (fd < 0) {
1198 fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n",
1199 strerror(errno));
1200 }
1201 }
1202
1203 while (true) {
1204 uint32_t index;
1205 uint16_t n_valid, n_invalid;
1206
1207 index = qemu_get_be32(f);
1208 n_valid = qemu_get_be16(f);
1209 n_invalid = qemu_get_be16(f);
1210
1211 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1212 /* End of Stream */
1213 break;
1214 }
1215
1216 if ((index + n_valid + n_invalid) >
1217 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1218 /* Bad index in stream */
1219 fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) "
1220 "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid,
1221 spapr->htab_shift);
1222 return -EINVAL;
1223 }
1224
1225 if (spapr->htab) {
1226 if (n_valid) {
1227 qemu_get_buffer(f, HPTE(spapr->htab, index),
1228 HASH_PTE_SIZE_64 * n_valid);
1229 }
1230 if (n_invalid) {
1231 memset(HPTE(spapr->htab, index + n_valid), 0,
1232 HASH_PTE_SIZE_64 * n_invalid);
1233 }
1234 } else {
1235 int rc;
1236
1237 assert(fd >= 0);
1238
1239 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1240 if (rc < 0) {
1241 return rc;
1242 }
1243 }
1244 }
1245
1246 if (!spapr->htab) {
1247 assert(fd >= 0);
1248 close(fd);
1249 }
1250
1251 return 0;
1252 }
1253
1254 static SaveVMHandlers savevm_htab_handlers = {
1255 .save_live_setup = htab_save_setup,
1256 .save_live_iterate = htab_save_iterate,
1257 .save_live_complete = htab_save_complete,
1258 .load_state = htab_load,
1259 };
1260
1261 /* pSeries LPAR / sPAPR hardware init */
1262 static void ppc_spapr_init(MachineState *machine)
1263 {
1264 ram_addr_t ram_size = machine->ram_size;
1265 const char *cpu_model = machine->cpu_model;
1266 const char *kernel_filename = machine->kernel_filename;
1267 const char *kernel_cmdline = machine->kernel_cmdline;
1268 const char *initrd_filename = machine->initrd_filename;
1269 const char *boot_device = machine->boot_order;
1270 PowerPCCPU *cpu;
1271 CPUPPCState *env;
1272 PCIHostState *phb;
1273 int i;
1274 MemoryRegion *sysmem = get_system_memory();
1275 MemoryRegion *ram = g_new(MemoryRegion, 1);
1276 hwaddr rma_alloc_size;
1277 hwaddr node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
1278 uint32_t initrd_base = 0;
1279 long kernel_size = 0, initrd_size = 0;
1280 long load_limit, rtas_limit, fw_size;
1281 bool kernel_le = false;
1282 char *filename;
1283
1284 msi_supported = true;
1285
1286 spapr = g_malloc0(sizeof(*spapr));
1287 QLIST_INIT(&spapr->phbs);
1288
1289 cpu_ppc_hypercall = emulate_spapr_hypercall;
1290
1291 /* Allocate RMA if necessary */
1292 rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem);
1293
1294 if (rma_alloc_size == -1) {
1295 hw_error("qemu: Unable to create RMA\n");
1296 exit(1);
1297 }
1298
1299 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1300 spapr->rma_size = rma_alloc_size;
1301 } else {
1302 spapr->rma_size = node0_size;
1303
1304 /* With KVM, we don't actually know whether KVM supports an
1305 * unbounded RMA (PR KVM) or is limited by the hash table size
1306 * (HV KVM using VRMA), so we always assume the latter
1307 *
1308 * In that case, we also limit the initial allocations for RTAS
1309 * etc... to 256M since we have no way to know what the VRMA size
1310 * is going to be as it depends on the size of the hash table
1311 * isn't determined yet.
1312 */
1313 if (kvm_enabled()) {
1314 spapr->vrma_adjust = 1;
1315 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1316 }
1317 }
1318
1319 if (spapr->rma_size > node0_size) {
1320 fprintf(stderr, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")\n",
1321 spapr->rma_size);
1322 exit(1);
1323 }
1324
1325 /* We place the device tree and RTAS just below either the top of the RMA,
1326 * or just below 2GB, whichever is lowere, so that it can be
1327 * processed with 32-bit real mode code if necessary */
1328 rtas_limit = MIN(spapr->rma_size, 0x80000000);
1329 spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1330 spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
1331 load_limit = spapr->fdt_addr - FW_OVERHEAD;
1332
1333 /* We aim for a hash table of size 1/128 the size of RAM. The
1334 * normal rule of thumb is 1/64 the size of RAM, but that's much
1335 * more than needed for the Linux guests we support. */
1336 spapr->htab_shift = 18; /* Minimum architected size */
1337 while (spapr->htab_shift <= 46) {
1338 if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) {
1339 break;
1340 }
1341 spapr->htab_shift++;
1342 }
1343
1344 /* Set up Interrupt Controller before we create the VCPUs */
1345 spapr->icp = xics_system_init(smp_cpus * kvmppc_smt_threads() / smp_threads,
1346 XICS_IRQS);
1347 spapr->next_irq = XICS_IRQ_BASE;
1348
1349 /* init CPUs */
1350 if (cpu_model == NULL) {
1351 cpu_model = kvm_enabled() ? "host" : "POWER7";
1352 }
1353 for (i = 0; i < smp_cpus; i++) {
1354 cpu = cpu_ppc_init(cpu_model);
1355 if (cpu == NULL) {
1356 fprintf(stderr, "Unable to find PowerPC CPU definition\n");
1357 exit(1);
1358 }
1359 env = &cpu->env;
1360
1361 /* Set time-base frequency to 512 MHz */
1362 cpu_ppc_tb_init(env, TIMEBASE_FREQ);
1363
1364 /* PAPR always has exception vectors in RAM not ROM. To ensure this,
1365 * MSR[IP] should never be set.
1366 */
1367 env->msr_mask &= ~(1 << 6);
1368
1369 /* Tell KVM that we're in PAPR mode */
1370 if (kvm_enabled()) {
1371 kvmppc_set_papr(cpu);
1372 }
1373
1374 if (cpu->max_compat) {
1375 if (ppc_set_compat(cpu, cpu->max_compat) < 0) {
1376 exit(1);
1377 }
1378 }
1379
1380 xics_cpu_setup(spapr->icp, cpu);
1381
1382 qemu_register_reset(spapr_cpu_reset, cpu);
1383 }
1384
1385 /* allocate RAM */
1386 spapr->ram_limit = ram_size;
1387 if (spapr->ram_limit > rma_alloc_size) {
1388 ram_addr_t nonrma_base = rma_alloc_size;
1389 ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size;
1390
1391 memory_region_init_ram(ram, NULL, "ppc_spapr.ram", nonrma_size);
1392 vmstate_register_ram_global(ram);
1393 memory_region_add_subregion(sysmem, nonrma_base, ram);
1394 }
1395
1396 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1397 spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
1398 rtas_limit - spapr->rtas_addr);
1399 if (spapr->rtas_size < 0) {
1400 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
1401 exit(1);
1402 }
1403 if (spapr->rtas_size > RTAS_MAX_SIZE) {
1404 hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
1405 spapr->rtas_size, RTAS_MAX_SIZE);
1406 exit(1);
1407 }
1408 g_free(filename);
1409
1410 /* Set up EPOW events infrastructure */
1411 spapr_events_init(spapr);
1412
1413 /* Set up VIO bus */
1414 spapr->vio_bus = spapr_vio_bus_init();
1415
1416 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1417 if (serial_hds[i]) {
1418 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1419 }
1420 }
1421
1422 /* We always have at least the nvram device on VIO */
1423 spapr_create_nvram(spapr);
1424
1425 /* Set up PCI */
1426 spapr_pci_msi_init(spapr, SPAPR_PCI_MSI_WINDOW);
1427 spapr_pci_rtas_init();
1428
1429 phb = spapr_create_phb(spapr, 0);
1430
1431 for (i = 0; i < nb_nics; i++) {
1432 NICInfo *nd = &nd_table[i];
1433
1434 if (!nd->model) {
1435 nd->model = g_strdup("ibmveth");
1436 }
1437
1438 if (strcmp(nd->model, "ibmveth") == 0) {
1439 spapr_vlan_create(spapr->vio_bus, nd);
1440 } else {
1441 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1442 }
1443 }
1444
1445 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1446 spapr_vscsi_create(spapr->vio_bus);
1447 }
1448
1449 /* Graphics */
1450 if (spapr_vga_init(phb->bus)) {
1451 spapr->has_graphics = true;
1452 }
1453
1454 if (usb_enabled(spapr->has_graphics)) {
1455 pci_create_simple(phb->bus, -1, "pci-ohci");
1456 if (spapr->has_graphics) {
1457 usbdevice_create("keyboard");
1458 usbdevice_create("mouse");
1459 }
1460 }
1461
1462 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1463 fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
1464 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
1465 exit(1);
1466 }
1467
1468 if (kernel_filename) {
1469 uint64_t lowaddr = 0;
1470
1471 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
1472 NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
1473 if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1474 kernel_size = load_elf(kernel_filename,
1475 translate_kernel_address, NULL,
1476 NULL, &lowaddr, NULL, 0, ELF_MACHINE, 0);
1477 kernel_le = kernel_size > 0;
1478 }
1479 if (kernel_size < 0) {
1480 fprintf(stderr, "qemu: error loading %s: %s\n",
1481 kernel_filename, load_elf_strerror(kernel_size));
1482 exit(1);
1483 }
1484
1485 /* load initrd */
1486 if (initrd_filename) {
1487 /* Try to locate the initrd in the gap between the kernel
1488 * and the firmware. Add a bit of space just in case
1489 */
1490 initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1491 initrd_size = load_image_targphys(initrd_filename, initrd_base,
1492 load_limit - initrd_base);
1493 if (initrd_size < 0) {
1494 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
1495 initrd_filename);
1496 exit(1);
1497 }
1498 } else {
1499 initrd_base = 0;
1500 initrd_size = 0;
1501 }
1502 }
1503
1504 if (bios_name == NULL) {
1505 bios_name = FW_FILE_NAME;
1506 }
1507 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1508 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
1509 if (fw_size < 0) {
1510 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
1511 exit(1);
1512 }
1513 g_free(filename);
1514
1515 spapr->entry_point = 0x100;
1516
1517 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
1518 register_savevm_live(NULL, "spapr/htab", -1, 1,
1519 &savevm_htab_handlers, spapr);
1520
1521 /* Prepare the device tree */
1522 spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
1523 kernel_size, kernel_le,
1524 boot_device, kernel_cmdline,
1525 spapr->epow_irq);
1526 assert(spapr->fdt_skel != NULL);
1527 }
1528
1529 static int spapr_kvm_type(const char *vm_type)
1530 {
1531 if (!vm_type) {
1532 return 0;
1533 }
1534
1535 if (!strcmp(vm_type, "HV")) {
1536 return 1;
1537 }
1538
1539 if (!strcmp(vm_type, "PR")) {
1540 return 2;
1541 }
1542
1543 error_report("Unknown kvm-type specified '%s'", vm_type);
1544 exit(1);
1545 }
1546
1547 /*
1548 * Implementation of an interface to adjust firmware patch
1549 * for the bootindex property handling.
1550 */
1551 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
1552 DeviceState *dev)
1553 {
1554 #define CAST(type, obj, name) \
1555 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
1556 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
1557 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
1558
1559 if (d) {
1560 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
1561 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
1562 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
1563
1564 if (spapr) {
1565 /*
1566 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
1567 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
1568 * in the top 16 bits of the 64-bit LUN
1569 */
1570 unsigned id = 0x8000 | (d->id << 8) | d->lun;
1571 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1572 (uint64_t)id << 48);
1573 } else if (virtio) {
1574 /*
1575 * We use SRP luns of the form 01000000 | (target << 8) | lun
1576 * in the top 32 bits of the 64-bit LUN
1577 * Note: the quote above is from SLOF and it is wrong,
1578 * the actual binding is:
1579 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
1580 */
1581 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
1582 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1583 (uint64_t)id << 32);
1584 } else if (usb) {
1585 /*
1586 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
1587 * in the top 32 bits of the 64-bit LUN
1588 */
1589 unsigned usb_port = atoi(usb->port->path);
1590 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
1591 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1592 (uint64_t)id << 32);
1593 }
1594 }
1595
1596 if (phb) {
1597 /* Replace "pci" with "pci@800000020000000" */
1598 return g_strdup_printf("pci@%"PRIX64, phb->buid);
1599 }
1600
1601 return NULL;
1602 }
1603
1604 static void spapr_machine_class_init(ObjectClass *oc, void *data)
1605 {
1606 MachineClass *mc = MACHINE_CLASS(oc);
1607 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
1608
1609 mc->name = "pseries";
1610 mc->desc = "pSeries Logical Partition (PAPR compliant)";
1611 mc->is_default = 1;
1612 mc->init = ppc_spapr_init;
1613 mc->reset = ppc_spapr_reset;
1614 mc->block_default_type = IF_SCSI;
1615 mc->max_cpus = MAX_CPUS;
1616 mc->no_parallel = 1;
1617 mc->default_boot_order = NULL;
1618 mc->kvm_type = spapr_kvm_type;
1619
1620 fwc->get_dev_path = spapr_get_fw_dev_path;
1621 }
1622
1623 static const TypeInfo spapr_machine_info = {
1624 .name = TYPE_SPAPR_MACHINE,
1625 .parent = TYPE_MACHINE,
1626 .class_init = spapr_machine_class_init,
1627 .interfaces = (InterfaceInfo[]) {
1628 { TYPE_FW_PATH_PROVIDER },
1629 { }
1630 },
1631 };
1632
1633 static void spapr_machine_register_types(void)
1634 {
1635 type_register_static(&spapr_machine_info);
1636 }
1637
1638 type_init(spapr_machine_register_types)