]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr_drc.c
spapr_drc: abort if object_property_add_child() fails
[mirror_qemu.git] / hw / ppc / spapr_drc.c
1 /*
2 * QEMU SPAPR Dynamic Reconfiguration Connector Implementation
3 *
4 * Copyright IBM Corp. 2014
5 *
6 * Authors:
7 * Michael Roth <mdroth@linux.vnet.ibm.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
11 */
12
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "cpu.h"
16 #include "qemu/cutils.h"
17 #include "hw/ppc/spapr_drc.h"
18 #include "qom/object.h"
19 #include "hw/qdev.h"
20 #include "qapi/visitor.h"
21 #include "qemu/error-report.h"
22 #include "hw/ppc/spapr.h" /* for RTAS return codes */
23 #include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */
24 #include "trace.h"
25
26 #define DRC_CONTAINER_PATH "/dr-connector"
27 #define DRC_INDEX_TYPE_SHIFT 28
28 #define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1)
29
30 sPAPRDRConnectorType spapr_drc_type(sPAPRDRConnector *drc)
31 {
32 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
33
34 return 1 << drck->typeshift;
35 }
36
37 uint32_t spapr_drc_index(sPAPRDRConnector *drc)
38 {
39 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
40
41 /* no set format for a drc index: it only needs to be globally
42 * unique. this is how we encode the DRC type on bare-metal
43 * however, so might as well do that here
44 */
45 return (drck->typeshift << DRC_INDEX_TYPE_SHIFT)
46 | (drc->id & DRC_INDEX_ID_MASK);
47 }
48
49 static uint32_t drc_isolate_physical(sPAPRDRConnector *drc)
50 {
51 switch (drc->state) {
52 case SPAPR_DRC_STATE_PHYSICAL_POWERON:
53 return RTAS_OUT_SUCCESS; /* Nothing to do */
54 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
55 break; /* see below */
56 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
57 return RTAS_OUT_PARAM_ERROR; /* not allowed */
58 default:
59 g_assert_not_reached();
60 }
61
62 drc->state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
63
64 if (drc->unplug_requested) {
65 uint32_t drc_index = spapr_drc_index(drc);
66 trace_spapr_drc_set_isolation_state_finalizing(drc_index);
67 spapr_drc_detach(drc);
68 }
69
70 return RTAS_OUT_SUCCESS;
71 }
72
73 static uint32_t drc_unisolate_physical(sPAPRDRConnector *drc)
74 {
75 switch (drc->state) {
76 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
77 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
78 return RTAS_OUT_SUCCESS; /* Nothing to do */
79 case SPAPR_DRC_STATE_PHYSICAL_POWERON:
80 break; /* see below */
81 default:
82 g_assert_not_reached();
83 }
84
85 /* cannot unisolate a non-existent resource, and, or resources
86 * which are in an 'UNUSABLE' allocation state. (PAPR 2.7,
87 * 13.5.3.5)
88 */
89 if (!drc->dev) {
90 return RTAS_OUT_NO_SUCH_INDICATOR;
91 }
92
93 drc->state = SPAPR_DRC_STATE_PHYSICAL_UNISOLATE;
94 drc->ccs_offset = drc->fdt_start_offset;
95 drc->ccs_depth = 0;
96
97 return RTAS_OUT_SUCCESS;
98 }
99
100 static uint32_t drc_isolate_logical(sPAPRDRConnector *drc)
101 {
102 switch (drc->state) {
103 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
104 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
105 return RTAS_OUT_SUCCESS; /* Nothing to do */
106 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
107 break; /* see below */
108 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
109 return RTAS_OUT_PARAM_ERROR; /* not allowed */
110 default:
111 g_assert_not_reached();
112 }
113
114 /*
115 * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't
116 * belong to a DIMM device that is marked for removal.
117 *
118 * Currently the guest userspace tool drmgr that drives the memory
119 * hotplug/unplug will just try to remove a set of 'removable' LMBs
120 * in response to a hot unplug request that is based on drc-count.
121 * If the LMB being removed doesn't belong to a DIMM device that is
122 * actually being unplugged, fail the isolation request here.
123 */
124 if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB
125 && !drc->unplug_requested) {
126 return RTAS_OUT_HW_ERROR;
127 }
128
129 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
130
131 /* if we're awaiting release, but still in an unconfigured state,
132 * it's likely the guest is still in the process of configuring
133 * the device and is transitioning the devices to an ISOLATED
134 * state as a part of that process. so we only complete the
135 * removal when this transition happens for a device in a
136 * configured state, as suggested by the state diagram from PAPR+
137 * 2.7, 13.4
138 */
139 if (drc->unplug_requested) {
140 uint32_t drc_index = spapr_drc_index(drc);
141 trace_spapr_drc_set_isolation_state_finalizing(drc_index);
142 spapr_drc_detach(drc);
143 }
144 return RTAS_OUT_SUCCESS;
145 }
146
147 static uint32_t drc_unisolate_logical(sPAPRDRConnector *drc)
148 {
149 switch (drc->state) {
150 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
151 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
152 return RTAS_OUT_SUCCESS; /* Nothing to do */
153 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
154 break; /* see below */
155 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
156 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
157 default:
158 g_assert_not_reached();
159 }
160
161 /* Move to AVAILABLE state should have ensured device was present */
162 g_assert(drc->dev);
163
164 drc->state = SPAPR_DRC_STATE_LOGICAL_UNISOLATE;
165 drc->ccs_offset = drc->fdt_start_offset;
166 drc->ccs_depth = 0;
167
168 return RTAS_OUT_SUCCESS;
169 }
170
171 static uint32_t drc_set_usable(sPAPRDRConnector *drc)
172 {
173 switch (drc->state) {
174 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
175 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
176 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
177 return RTAS_OUT_SUCCESS; /* Nothing to do */
178 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
179 break; /* see below */
180 default:
181 g_assert_not_reached();
182 }
183
184 /* if there's no resource/device associated with the DRC, there's
185 * no way for us to put it in an allocation state consistent with
186 * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should
187 * result in an RTAS return code of -3 / "no such indicator"
188 */
189 if (!drc->dev) {
190 return RTAS_OUT_NO_SUCH_INDICATOR;
191 }
192 if (drc->unplug_requested) {
193 /* Don't allow the guest to move a device away from UNUSABLE
194 * state when we want to unplug it */
195 return RTAS_OUT_NO_SUCH_INDICATOR;
196 }
197
198 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
199
200 return RTAS_OUT_SUCCESS;
201 }
202
203 static uint32_t drc_set_unusable(sPAPRDRConnector *drc)
204 {
205 switch (drc->state) {
206 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
207 return RTAS_OUT_SUCCESS; /* Nothing to do */
208 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
209 break; /* see below */
210 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
211 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
212 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
213 default:
214 g_assert_not_reached();
215 }
216
217 drc->state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
218 if (drc->unplug_requested) {
219 uint32_t drc_index = spapr_drc_index(drc);
220 trace_spapr_drc_set_allocation_state_finalizing(drc_index);
221 spapr_drc_detach(drc);
222 }
223
224 return RTAS_OUT_SUCCESS;
225 }
226
227 static const char *spapr_drc_name(sPAPRDRConnector *drc)
228 {
229 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
230
231 /* human-readable name for a DRC to encode into the DT
232 * description. this is mainly only used within a guest in place
233 * of the unique DRC index.
234 *
235 * in the case of VIO/PCI devices, it corresponds to a "location
236 * code" that maps a logical device/function (DRC index) to a
237 * physical (or virtual in the case of VIO) location in the system
238 * by chaining together the "location label" for each
239 * encapsulating component.
240 *
241 * since this is more to do with diagnosing physical hardware
242 * issues than guest compatibility, we choose location codes/DRC
243 * names that adhere to the documented format, but avoid encoding
244 * the entire topology information into the label/code, instead
245 * just using the location codes based on the labels for the
246 * endpoints (VIO/PCI adaptor connectors), which is basically just
247 * "C" followed by an integer ID.
248 *
249 * DRC names as documented by PAPR+ v2.7, 13.5.2.4
250 * location codes as documented by PAPR+ v2.7, 12.3.1.5
251 */
252 return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id);
253 }
254
255 /*
256 * dr-entity-sense sensor value
257 * returned via get-sensor-state RTAS calls
258 * as expected by state diagram in PAPR+ 2.7, 13.4
259 * based on the current allocation/indicator/power states
260 * for the DR connector.
261 */
262 static sPAPRDREntitySense physical_entity_sense(sPAPRDRConnector *drc)
263 {
264 /* this assumes all PCI devices are assigned to a 'live insertion'
265 * power domain, where QEMU manages power state automatically as
266 * opposed to the guest. present, non-PCI resources are unaffected
267 * by power state.
268 */
269 return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT
270 : SPAPR_DR_ENTITY_SENSE_EMPTY;
271 }
272
273 static sPAPRDREntitySense logical_entity_sense(sPAPRDRConnector *drc)
274 {
275 switch (drc->state) {
276 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
277 return SPAPR_DR_ENTITY_SENSE_UNUSABLE;
278 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
279 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
280 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
281 g_assert(drc->dev);
282 return SPAPR_DR_ENTITY_SENSE_PRESENT;
283 default:
284 g_assert_not_reached();
285 }
286 }
287
288 static void prop_get_index(Object *obj, Visitor *v, const char *name,
289 void *opaque, Error **errp)
290 {
291 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj);
292 uint32_t value = spapr_drc_index(drc);
293 visit_type_uint32(v, name, &value, errp);
294 }
295
296 static void prop_get_fdt(Object *obj, Visitor *v, const char *name,
297 void *opaque, Error **errp)
298 {
299 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj);
300 QNull *null = NULL;
301 Error *err = NULL;
302 int fdt_offset_next, fdt_offset, fdt_depth;
303 void *fdt;
304
305 if (!drc->fdt) {
306 visit_type_null(v, NULL, &null, errp);
307 QDECREF(null);
308 return;
309 }
310
311 fdt = drc->fdt;
312 fdt_offset = drc->fdt_start_offset;
313 fdt_depth = 0;
314
315 do {
316 const char *name = NULL;
317 const struct fdt_property *prop = NULL;
318 int prop_len = 0, name_len = 0;
319 uint32_t tag;
320
321 tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next);
322 switch (tag) {
323 case FDT_BEGIN_NODE:
324 fdt_depth++;
325 name = fdt_get_name(fdt, fdt_offset, &name_len);
326 visit_start_struct(v, name, NULL, 0, &err);
327 if (err) {
328 error_propagate(errp, err);
329 return;
330 }
331 break;
332 case FDT_END_NODE:
333 /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */
334 g_assert(fdt_depth > 0);
335 visit_check_struct(v, &err);
336 visit_end_struct(v, NULL);
337 if (err) {
338 error_propagate(errp, err);
339 return;
340 }
341 fdt_depth--;
342 break;
343 case FDT_PROP: {
344 int i;
345 prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len);
346 name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff));
347 visit_start_list(v, name, NULL, 0, &err);
348 if (err) {
349 error_propagate(errp, err);
350 return;
351 }
352 for (i = 0; i < prop_len; i++) {
353 visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i], &err);
354 if (err) {
355 error_propagate(errp, err);
356 return;
357 }
358 }
359 visit_check_list(v, &err);
360 visit_end_list(v, NULL);
361 if (err) {
362 error_propagate(errp, err);
363 return;
364 }
365 break;
366 }
367 default:
368 error_setg(&error_abort, "device FDT in unexpected state: %d", tag);
369 }
370 fdt_offset = fdt_offset_next;
371 } while (fdt_depth != 0);
372 }
373
374 void spapr_drc_attach(sPAPRDRConnector *drc, DeviceState *d, void *fdt,
375 int fdt_start_offset, Error **errp)
376 {
377 trace_spapr_drc_attach(spapr_drc_index(drc));
378
379 if (drc->dev) {
380 error_setg(errp, "an attached device is still awaiting release");
381 return;
382 }
383 g_assert((drc->state == SPAPR_DRC_STATE_LOGICAL_UNUSABLE)
384 || (drc->state == SPAPR_DRC_STATE_PHYSICAL_POWERON));
385 g_assert(fdt);
386
387 drc->dev = d;
388 drc->fdt = fdt;
389 drc->fdt_start_offset = fdt_start_offset;
390
391 object_property_add_link(OBJECT(drc), "device",
392 object_get_typename(OBJECT(drc->dev)),
393 (Object **)(&drc->dev),
394 NULL, 0, NULL);
395 }
396
397 static void spapr_drc_release(sPAPRDRConnector *drc)
398 {
399 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
400
401 drck->release(drc->dev);
402
403 drc->unplug_requested = false;
404 g_free(drc->fdt);
405 drc->fdt = NULL;
406 drc->fdt_start_offset = 0;
407 object_property_del(OBJECT(drc), "device", &error_abort);
408 drc->dev = NULL;
409 }
410
411 void spapr_drc_detach(sPAPRDRConnector *drc)
412 {
413 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
414
415 trace_spapr_drc_detach(spapr_drc_index(drc));
416
417 g_assert(drc->dev);
418
419 drc->unplug_requested = true;
420
421 if (drc->state != drck->empty_state) {
422 trace_spapr_drc_awaiting_quiesce(spapr_drc_index(drc));
423 return;
424 }
425
426 spapr_drc_release(drc);
427 }
428
429 void spapr_drc_reset(sPAPRDRConnector *drc)
430 {
431 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
432
433 trace_spapr_drc_reset(spapr_drc_index(drc));
434
435 /* immediately upon reset we can safely assume DRCs whose devices
436 * are pending removal can be safely removed.
437 */
438 if (drc->unplug_requested) {
439 spapr_drc_release(drc);
440 }
441
442 if (drc->dev) {
443 /* A device present at reset is ready to go, same as coldplugged */
444 drc->state = drck->ready_state;
445 } else {
446 drc->state = drck->empty_state;
447 }
448
449 drc->ccs_offset = -1;
450 drc->ccs_depth = -1;
451 }
452
453 static void drc_reset(void *opaque)
454 {
455 spapr_drc_reset(SPAPR_DR_CONNECTOR(opaque));
456 }
457
458 static bool spapr_drc_needed(void *opaque)
459 {
460 sPAPRDRConnector *drc = (sPAPRDRConnector *)opaque;
461 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
462 sPAPRDREntitySense value = drck->dr_entity_sense(drc);
463
464 /* If no dev is plugged in there is no need to migrate the DRC state */
465 if (value != SPAPR_DR_ENTITY_SENSE_PRESENT) {
466 return false;
467 }
468
469 /*
470 * We need to migrate the state if it's not equal to the expected
471 * long-term state, which is the same as the coldplugged initial
472 * state */
473 return (drc->state != drck->ready_state);
474 }
475
476 static const VMStateDescription vmstate_spapr_drc = {
477 .name = "spapr_drc",
478 .version_id = 1,
479 .minimum_version_id = 1,
480 .needed = spapr_drc_needed,
481 .fields = (VMStateField []) {
482 VMSTATE_UINT32(state, sPAPRDRConnector),
483 VMSTATE_END_OF_LIST()
484 }
485 };
486
487 static void realize(DeviceState *d, Error **errp)
488 {
489 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(d);
490 Object *root_container;
491 char link_name[256];
492 gchar *child_name;
493 Error *err = NULL;
494
495 trace_spapr_drc_realize(spapr_drc_index(drc));
496 /* NOTE: we do this as part of realize/unrealize due to the fact
497 * that the guest will communicate with the DRC via RTAS calls
498 * referencing the global DRC index. By unlinking the DRC
499 * from DRC_CONTAINER_PATH/<drc_index> we effectively make it
500 * inaccessible by the guest, since lookups rely on this path
501 * existing in the composition tree
502 */
503 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
504 snprintf(link_name, sizeof(link_name), "%x", spapr_drc_index(drc));
505 child_name = object_get_canonical_path_component(OBJECT(drc));
506 trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name);
507 object_property_add_alias(root_container, link_name,
508 drc->owner, child_name, &err);
509 g_free(child_name);
510 if (err) {
511 error_propagate(errp, err);
512 return;
513 }
514 vmstate_register(DEVICE(drc), spapr_drc_index(drc), &vmstate_spapr_drc,
515 drc);
516 qemu_register_reset(drc_reset, drc);
517 trace_spapr_drc_realize_complete(spapr_drc_index(drc));
518 }
519
520 static void unrealize(DeviceState *d, Error **errp)
521 {
522 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(d);
523 Object *root_container;
524 char name[256];
525
526 trace_spapr_drc_unrealize(spapr_drc_index(drc));
527 qemu_unregister_reset(drc_reset, drc);
528 vmstate_unregister(DEVICE(drc), &vmstate_spapr_drc, drc);
529 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
530 snprintf(name, sizeof(name), "%x", spapr_drc_index(drc));
531 object_property_del(root_container, name, errp);
532 }
533
534 sPAPRDRConnector *spapr_dr_connector_new(Object *owner, const char *type,
535 uint32_t id)
536 {
537 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(object_new(type));
538 char *prop_name;
539
540 drc->id = id;
541 drc->owner = owner;
542 prop_name = g_strdup_printf("dr-connector[%"PRIu32"]",
543 spapr_drc_index(drc));
544 object_property_add_child(owner, prop_name, OBJECT(drc), &error_abort);
545 object_property_set_bool(OBJECT(drc), true, "realized", NULL);
546 g_free(prop_name);
547
548 return drc;
549 }
550
551 static void spapr_dr_connector_instance_init(Object *obj)
552 {
553 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj);
554 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
555
556 object_property_add_uint32_ptr(obj, "id", &drc->id, NULL);
557 object_property_add(obj, "index", "uint32", prop_get_index,
558 NULL, NULL, NULL, NULL);
559 object_property_add(obj, "fdt", "struct", prop_get_fdt,
560 NULL, NULL, NULL, NULL);
561 drc->state = drck->empty_state;
562 }
563
564 static void spapr_dr_connector_class_init(ObjectClass *k, void *data)
565 {
566 DeviceClass *dk = DEVICE_CLASS(k);
567
568 dk->realize = realize;
569 dk->unrealize = unrealize;
570 /*
571 * Reason: it crashes FIXME find and document the real reason
572 */
573 dk->user_creatable = false;
574 }
575
576 static bool drc_physical_needed(void *opaque)
577 {
578 sPAPRDRCPhysical *drcp = (sPAPRDRCPhysical *)opaque;
579 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(drcp);
580
581 if ((drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_ACTIVE))
582 || (!drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_INACTIVE))) {
583 return false;
584 }
585 return true;
586 }
587
588 static const VMStateDescription vmstate_spapr_drc_physical = {
589 .name = "spapr_drc/physical",
590 .version_id = 1,
591 .minimum_version_id = 1,
592 .needed = drc_physical_needed,
593 .fields = (VMStateField []) {
594 VMSTATE_UINT32(dr_indicator, sPAPRDRCPhysical),
595 VMSTATE_END_OF_LIST()
596 }
597 };
598
599 static void drc_physical_reset(void *opaque)
600 {
601 sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(opaque);
602 sPAPRDRCPhysical *drcp = SPAPR_DRC_PHYSICAL(drc);
603
604 if (drc->dev) {
605 drcp->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE;
606 } else {
607 drcp->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE;
608 }
609 }
610
611 static void realize_physical(DeviceState *d, Error **errp)
612 {
613 sPAPRDRCPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
614 Error *local_err = NULL;
615
616 realize(d, &local_err);
617 if (local_err) {
618 error_propagate(errp, local_err);
619 return;
620 }
621
622 vmstate_register(DEVICE(drcp), spapr_drc_index(SPAPR_DR_CONNECTOR(drcp)),
623 &vmstate_spapr_drc_physical, drcp);
624 qemu_register_reset(drc_physical_reset, drcp);
625 }
626
627 static void spapr_drc_physical_class_init(ObjectClass *k, void *data)
628 {
629 DeviceClass *dk = DEVICE_CLASS(k);
630 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
631
632 dk->realize = realize_physical;
633 drck->dr_entity_sense = physical_entity_sense;
634 drck->isolate = drc_isolate_physical;
635 drck->unisolate = drc_unisolate_physical;
636 drck->ready_state = SPAPR_DRC_STATE_PHYSICAL_CONFIGURED;
637 drck->empty_state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
638 }
639
640 static void spapr_drc_logical_class_init(ObjectClass *k, void *data)
641 {
642 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
643
644 drck->dr_entity_sense = logical_entity_sense;
645 drck->isolate = drc_isolate_logical;
646 drck->unisolate = drc_unisolate_logical;
647 drck->ready_state = SPAPR_DRC_STATE_LOGICAL_CONFIGURED;
648 drck->empty_state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
649 }
650
651 static void spapr_drc_cpu_class_init(ObjectClass *k, void *data)
652 {
653 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
654
655 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU;
656 drck->typename = "CPU";
657 drck->drc_name_prefix = "CPU ";
658 drck->release = spapr_core_release;
659 }
660
661 static void spapr_drc_pci_class_init(ObjectClass *k, void *data)
662 {
663 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
664
665 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI;
666 drck->typename = "28";
667 drck->drc_name_prefix = "C";
668 drck->release = spapr_phb_remove_pci_device_cb;
669 }
670
671 static void spapr_drc_lmb_class_init(ObjectClass *k, void *data)
672 {
673 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
674
675 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB;
676 drck->typename = "MEM";
677 drck->drc_name_prefix = "LMB ";
678 drck->release = spapr_lmb_release;
679 }
680
681 static const TypeInfo spapr_dr_connector_info = {
682 .name = TYPE_SPAPR_DR_CONNECTOR,
683 .parent = TYPE_DEVICE,
684 .instance_size = sizeof(sPAPRDRConnector),
685 .instance_init = spapr_dr_connector_instance_init,
686 .class_size = sizeof(sPAPRDRConnectorClass),
687 .class_init = spapr_dr_connector_class_init,
688 .abstract = true,
689 };
690
691 static const TypeInfo spapr_drc_physical_info = {
692 .name = TYPE_SPAPR_DRC_PHYSICAL,
693 .parent = TYPE_SPAPR_DR_CONNECTOR,
694 .instance_size = sizeof(sPAPRDRCPhysical),
695 .class_init = spapr_drc_physical_class_init,
696 .abstract = true,
697 };
698
699 static const TypeInfo spapr_drc_logical_info = {
700 .name = TYPE_SPAPR_DRC_LOGICAL,
701 .parent = TYPE_SPAPR_DR_CONNECTOR,
702 .class_init = spapr_drc_logical_class_init,
703 .abstract = true,
704 };
705
706 static const TypeInfo spapr_drc_cpu_info = {
707 .name = TYPE_SPAPR_DRC_CPU,
708 .parent = TYPE_SPAPR_DRC_LOGICAL,
709 .class_init = spapr_drc_cpu_class_init,
710 };
711
712 static const TypeInfo spapr_drc_pci_info = {
713 .name = TYPE_SPAPR_DRC_PCI,
714 .parent = TYPE_SPAPR_DRC_PHYSICAL,
715 .class_init = spapr_drc_pci_class_init,
716 };
717
718 static const TypeInfo spapr_drc_lmb_info = {
719 .name = TYPE_SPAPR_DRC_LMB,
720 .parent = TYPE_SPAPR_DRC_LOGICAL,
721 .class_init = spapr_drc_lmb_class_init,
722 };
723
724 /* helper functions for external users */
725
726 sPAPRDRConnector *spapr_drc_by_index(uint32_t index)
727 {
728 Object *obj;
729 char name[256];
730
731 snprintf(name, sizeof(name), "%s/%x", DRC_CONTAINER_PATH, index);
732 obj = object_resolve_path(name, NULL);
733
734 return !obj ? NULL : SPAPR_DR_CONNECTOR(obj);
735 }
736
737 sPAPRDRConnector *spapr_drc_by_id(const char *type, uint32_t id)
738 {
739 sPAPRDRConnectorClass *drck
740 = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type));
741
742 return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT
743 | (id & DRC_INDEX_ID_MASK));
744 }
745
746 /**
747 * spapr_drc_populate_dt
748 *
749 * @fdt: libfdt device tree
750 * @path: path in the DT to generate properties
751 * @owner: parent Object/DeviceState for which to generate DRC
752 * descriptions for
753 * @drc_type_mask: mask of sPAPRDRConnectorType values corresponding
754 * to the types of DRCs to generate entries for
755 *
756 * generate OF properties to describe DRC topology/indices to guests
757 *
758 * as documented in PAPR+ v2.1, 13.5.2
759 */
760 int spapr_drc_populate_dt(void *fdt, int fdt_offset, Object *owner,
761 uint32_t drc_type_mask)
762 {
763 Object *root_container;
764 ObjectProperty *prop;
765 ObjectPropertyIterator iter;
766 uint32_t drc_count = 0;
767 GArray *drc_indexes, *drc_power_domains;
768 GString *drc_names, *drc_types;
769 int ret;
770
771 /* the first entry of each properties is a 32-bit integer encoding
772 * the number of elements in the array. we won't know this until
773 * we complete the iteration through all the matching DRCs, but
774 * reserve the space now and set the offsets accordingly so we
775 * can fill them in later.
776 */
777 drc_indexes = g_array_new(false, true, sizeof(uint32_t));
778 drc_indexes = g_array_set_size(drc_indexes, 1);
779 drc_power_domains = g_array_new(false, true, sizeof(uint32_t));
780 drc_power_domains = g_array_set_size(drc_power_domains, 1);
781 drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
782 drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
783
784 /* aliases for all DRConnector objects will be rooted in QOM
785 * composition tree at DRC_CONTAINER_PATH
786 */
787 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
788
789 object_property_iter_init(&iter, root_container);
790 while ((prop = object_property_iter_next(&iter))) {
791 Object *obj;
792 sPAPRDRConnector *drc;
793 sPAPRDRConnectorClass *drck;
794 uint32_t drc_index, drc_power_domain;
795
796 if (!strstart(prop->type, "link<", NULL)) {
797 continue;
798 }
799
800 obj = object_property_get_link(root_container, prop->name, NULL);
801 drc = SPAPR_DR_CONNECTOR(obj);
802 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
803
804 if (owner && (drc->owner != owner)) {
805 continue;
806 }
807
808 if ((spapr_drc_type(drc) & drc_type_mask) == 0) {
809 continue;
810 }
811
812 drc_count++;
813
814 /* ibm,drc-indexes */
815 drc_index = cpu_to_be32(spapr_drc_index(drc));
816 g_array_append_val(drc_indexes, drc_index);
817
818 /* ibm,drc-power-domains */
819 drc_power_domain = cpu_to_be32(-1);
820 g_array_append_val(drc_power_domains, drc_power_domain);
821
822 /* ibm,drc-names */
823 drc_names = g_string_append(drc_names, spapr_drc_name(drc));
824 drc_names = g_string_insert_len(drc_names, -1, "\0", 1);
825
826 /* ibm,drc-types */
827 drc_types = g_string_append(drc_types, drck->typename);
828 drc_types = g_string_insert_len(drc_types, -1, "\0", 1);
829 }
830
831 /* now write the drc count into the space we reserved at the
832 * beginning of the arrays previously
833 */
834 *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count);
835 *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count);
836 *(uint32_t *)drc_names->str = cpu_to_be32(drc_count);
837 *(uint32_t *)drc_types->str = cpu_to_be32(drc_count);
838
839 ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-indexes",
840 drc_indexes->data,
841 drc_indexes->len * sizeof(uint32_t));
842 if (ret) {
843 error_report("Couldn't create ibm,drc-indexes property");
844 goto out;
845 }
846
847 ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-power-domains",
848 drc_power_domains->data,
849 drc_power_domains->len * sizeof(uint32_t));
850 if (ret) {
851 error_report("Couldn't finalize ibm,drc-power-domains property");
852 goto out;
853 }
854
855 ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-names",
856 drc_names->str, drc_names->len);
857 if (ret) {
858 error_report("Couldn't finalize ibm,drc-names property");
859 goto out;
860 }
861
862 ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-types",
863 drc_types->str, drc_types->len);
864 if (ret) {
865 error_report("Couldn't finalize ibm,drc-types property");
866 goto out;
867 }
868
869 out:
870 g_array_free(drc_indexes, true);
871 g_array_free(drc_power_domains, true);
872 g_string_free(drc_names, true);
873 g_string_free(drc_types, true);
874
875 return ret;
876 }
877
878 /*
879 * RTAS calls
880 */
881
882 static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state)
883 {
884 sPAPRDRConnector *drc = spapr_drc_by_index(idx);
885 sPAPRDRConnectorClass *drck;
886
887 if (!drc) {
888 return RTAS_OUT_NO_SUCH_INDICATOR;
889 }
890
891 trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state);
892
893 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
894
895 switch (state) {
896 case SPAPR_DR_ISOLATION_STATE_ISOLATED:
897 return drck->isolate(drc);
898
899 case SPAPR_DR_ISOLATION_STATE_UNISOLATED:
900 return drck->unisolate(drc);
901
902 default:
903 return RTAS_OUT_PARAM_ERROR;
904 }
905 }
906
907 static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state)
908 {
909 sPAPRDRConnector *drc = spapr_drc_by_index(idx);
910
911 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) {
912 return RTAS_OUT_NO_SUCH_INDICATOR;
913 }
914
915 trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state);
916
917 switch (state) {
918 case SPAPR_DR_ALLOCATION_STATE_USABLE:
919 return drc_set_usable(drc);
920
921 case SPAPR_DR_ALLOCATION_STATE_UNUSABLE:
922 return drc_set_unusable(drc);
923
924 default:
925 return RTAS_OUT_PARAM_ERROR;
926 }
927 }
928
929 static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state)
930 {
931 sPAPRDRConnector *drc = spapr_drc_by_index(idx);
932
933 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_PHYSICAL)) {
934 return RTAS_OUT_NO_SUCH_INDICATOR;
935 }
936 if ((state != SPAPR_DR_INDICATOR_INACTIVE)
937 && (state != SPAPR_DR_INDICATOR_ACTIVE)
938 && (state != SPAPR_DR_INDICATOR_IDENTIFY)
939 && (state != SPAPR_DR_INDICATOR_ACTION)) {
940 return RTAS_OUT_PARAM_ERROR; /* bad state parameter */
941 }
942
943 trace_spapr_drc_set_dr_indicator(idx, state);
944 SPAPR_DRC_PHYSICAL(drc)->dr_indicator = state;
945 return RTAS_OUT_SUCCESS;
946 }
947
948 static void rtas_set_indicator(PowerPCCPU *cpu, sPAPRMachineState *spapr,
949 uint32_t token,
950 uint32_t nargs, target_ulong args,
951 uint32_t nret, target_ulong rets)
952 {
953 uint32_t type, idx, state;
954 uint32_t ret = RTAS_OUT_SUCCESS;
955
956 if (nargs != 3 || nret != 1) {
957 ret = RTAS_OUT_PARAM_ERROR;
958 goto out;
959 }
960
961 type = rtas_ld(args, 0);
962 idx = rtas_ld(args, 1);
963 state = rtas_ld(args, 2);
964
965 switch (type) {
966 case RTAS_SENSOR_TYPE_ISOLATION_STATE:
967 ret = rtas_set_isolation_state(idx, state);
968 break;
969 case RTAS_SENSOR_TYPE_DR:
970 ret = rtas_set_dr_indicator(idx, state);
971 break;
972 case RTAS_SENSOR_TYPE_ALLOCATION_STATE:
973 ret = rtas_set_allocation_state(idx, state);
974 break;
975 default:
976 ret = RTAS_OUT_NOT_SUPPORTED;
977 }
978
979 out:
980 rtas_st(rets, 0, ret);
981 }
982
983 static void rtas_get_sensor_state(PowerPCCPU *cpu, sPAPRMachineState *spapr,
984 uint32_t token, uint32_t nargs,
985 target_ulong args, uint32_t nret,
986 target_ulong rets)
987 {
988 uint32_t sensor_type;
989 uint32_t sensor_index;
990 uint32_t sensor_state = 0;
991 sPAPRDRConnector *drc;
992 sPAPRDRConnectorClass *drck;
993 uint32_t ret = RTAS_OUT_SUCCESS;
994
995 if (nargs != 2 || nret != 2) {
996 ret = RTAS_OUT_PARAM_ERROR;
997 goto out;
998 }
999
1000 sensor_type = rtas_ld(args, 0);
1001 sensor_index = rtas_ld(args, 1);
1002
1003 if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) {
1004 /* currently only DR-related sensors are implemented */
1005 trace_spapr_rtas_get_sensor_state_not_supported(sensor_index,
1006 sensor_type);
1007 ret = RTAS_OUT_NOT_SUPPORTED;
1008 goto out;
1009 }
1010
1011 drc = spapr_drc_by_index(sensor_index);
1012 if (!drc) {
1013 trace_spapr_rtas_get_sensor_state_invalid(sensor_index);
1014 ret = RTAS_OUT_PARAM_ERROR;
1015 goto out;
1016 }
1017 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1018 sensor_state = drck->dr_entity_sense(drc);
1019
1020 out:
1021 rtas_st(rets, 0, ret);
1022 rtas_st(rets, 1, sensor_state);
1023 }
1024
1025 /* configure-connector work area offsets, int32_t units for field
1026 * indexes, bytes for field offset/len values.
1027 *
1028 * as documented by PAPR+ v2.7, 13.5.3.5
1029 */
1030 #define CC_IDX_NODE_NAME_OFFSET 2
1031 #define CC_IDX_PROP_NAME_OFFSET 2
1032 #define CC_IDX_PROP_LEN 3
1033 #define CC_IDX_PROP_DATA_OFFSET 4
1034 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4)
1035 #define CC_WA_LEN 4096
1036
1037 static void configure_connector_st(target_ulong addr, target_ulong offset,
1038 const void *buf, size_t len)
1039 {
1040 cpu_physical_memory_write(ppc64_phys_to_real(addr + offset),
1041 buf, MIN(len, CC_WA_LEN - offset));
1042 }
1043
1044 static void rtas_ibm_configure_connector(PowerPCCPU *cpu,
1045 sPAPRMachineState *spapr,
1046 uint32_t token, uint32_t nargs,
1047 target_ulong args, uint32_t nret,
1048 target_ulong rets)
1049 {
1050 uint64_t wa_addr;
1051 uint64_t wa_offset;
1052 uint32_t drc_index;
1053 sPAPRDRConnector *drc;
1054 sPAPRDRConnectorClass *drck;
1055 sPAPRDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE;
1056 int rc;
1057
1058 if (nargs != 2 || nret != 1) {
1059 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
1060 return;
1061 }
1062
1063 wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0);
1064
1065 drc_index = rtas_ld(wa_addr, 0);
1066 drc = spapr_drc_by_index(drc_index);
1067 if (!drc) {
1068 trace_spapr_rtas_ibm_configure_connector_invalid(drc_index);
1069 rc = RTAS_OUT_PARAM_ERROR;
1070 goto out;
1071 }
1072
1073 if ((drc->state != SPAPR_DRC_STATE_LOGICAL_UNISOLATE)
1074 && (drc->state != SPAPR_DRC_STATE_PHYSICAL_UNISOLATE)) {
1075 /* Need to unisolate the device before configuring */
1076 rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE;
1077 goto out;
1078 }
1079
1080 g_assert(drc->fdt);
1081
1082 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1083
1084 do {
1085 uint32_t tag;
1086 const char *name;
1087 const struct fdt_property *prop;
1088 int fdt_offset_next, prop_len;
1089
1090 tag = fdt_next_tag(drc->fdt, drc->ccs_offset, &fdt_offset_next);
1091
1092 switch (tag) {
1093 case FDT_BEGIN_NODE:
1094 drc->ccs_depth++;
1095 name = fdt_get_name(drc->fdt, drc->ccs_offset, NULL);
1096
1097 /* provide the name of the next OF node */
1098 wa_offset = CC_VAL_DATA_OFFSET;
1099 rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset);
1100 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1101 resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD;
1102 break;
1103 case FDT_END_NODE:
1104 drc->ccs_depth--;
1105 if (drc->ccs_depth == 0) {
1106 uint32_t drc_index = spapr_drc_index(drc);
1107
1108 /* done sending the device tree, move to configured state */
1109 trace_spapr_drc_set_configured(drc_index);
1110 drc->state = drck->ready_state;
1111 drc->ccs_offset = -1;
1112 drc->ccs_depth = -1;
1113 resp = SPAPR_DR_CC_RESPONSE_SUCCESS;
1114 } else {
1115 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT;
1116 }
1117 break;
1118 case FDT_PROP:
1119 prop = fdt_get_property_by_offset(drc->fdt, drc->ccs_offset,
1120 &prop_len);
1121 name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff));
1122
1123 /* provide the name of the next OF property */
1124 wa_offset = CC_VAL_DATA_OFFSET;
1125 rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset);
1126 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1127
1128 /* provide the length and value of the OF property. data gets
1129 * placed immediately after NULL terminator of the OF property's
1130 * name string
1131 */
1132 wa_offset += strlen(name) + 1,
1133 rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len);
1134 rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset);
1135 configure_connector_st(wa_addr, wa_offset, prop->data, prop_len);
1136 resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY;
1137 break;
1138 case FDT_END:
1139 resp = SPAPR_DR_CC_RESPONSE_ERROR;
1140 default:
1141 /* keep seeking for an actionable tag */
1142 break;
1143 }
1144 if (drc->ccs_offset >= 0) {
1145 drc->ccs_offset = fdt_offset_next;
1146 }
1147 } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE);
1148
1149 rc = resp;
1150 out:
1151 rtas_st(rets, 0, rc);
1152 }
1153
1154 static void spapr_drc_register_types(void)
1155 {
1156 type_register_static(&spapr_dr_connector_info);
1157 type_register_static(&spapr_drc_physical_info);
1158 type_register_static(&spapr_drc_logical_info);
1159 type_register_static(&spapr_drc_cpu_info);
1160 type_register_static(&spapr_drc_pci_info);
1161 type_register_static(&spapr_drc_lmb_info);
1162
1163 spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator",
1164 rtas_set_indicator);
1165 spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state",
1166 rtas_get_sensor_state);
1167 spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector",
1168 rtas_ibm_configure_connector);
1169 }
1170 type_init(spapr_drc_register_types)