]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr_hcall.c
virtio: fix reachable assertion due to stale value of cached region size
[mirror_qemu.git] / hw / ppc / spapr_hcall.c
1 #include "qemu/osdep.h"
2 #include "qemu/cutils.h"
3 #include "qapi/error.h"
4 #include "sysemu/hw_accel.h"
5 #include "sysemu/runstate.h"
6 #include "qemu/log.h"
7 #include "qemu/main-loop.h"
8 #include "qemu/module.h"
9 #include "qemu/error-report.h"
10 #include "exec/exec-all.h"
11 #include "helper_regs.h"
12 #include "hw/ppc/ppc.h"
13 #include "hw/ppc/spapr.h"
14 #include "hw/ppc/spapr_cpu_core.h"
15 #include "mmu-hash64.h"
16 #include "cpu-models.h"
17 #include "trace.h"
18 #include "kvm_ppc.h"
19 #include "hw/ppc/fdt.h"
20 #include "hw/ppc/spapr_ovec.h"
21 #include "hw/ppc/spapr_numa.h"
22 #include "mmu-book3s-v3.h"
23 #include "hw/mem/memory-device.h"
24
25 bool is_ram_address(SpaprMachineState *spapr, hwaddr addr)
26 {
27 MachineState *machine = MACHINE(spapr);
28 DeviceMemoryState *dms = machine->device_memory;
29
30 if (addr < machine->ram_size) {
31 return true;
32 }
33 if ((addr >= dms->base)
34 && ((addr - dms->base) < memory_region_size(&dms->mr))) {
35 return true;
36 }
37
38 return false;
39 }
40
41 /* Convert a return code from the KVM ioctl()s implementing resize HPT
42 * into a PAPR hypercall return code */
43 static target_ulong resize_hpt_convert_rc(int ret)
44 {
45 if (ret >= 100000) {
46 return H_LONG_BUSY_ORDER_100_SEC;
47 } else if (ret >= 10000) {
48 return H_LONG_BUSY_ORDER_10_SEC;
49 } else if (ret >= 1000) {
50 return H_LONG_BUSY_ORDER_1_SEC;
51 } else if (ret >= 100) {
52 return H_LONG_BUSY_ORDER_100_MSEC;
53 } else if (ret >= 10) {
54 return H_LONG_BUSY_ORDER_10_MSEC;
55 } else if (ret > 0) {
56 return H_LONG_BUSY_ORDER_1_MSEC;
57 }
58
59 switch (ret) {
60 case 0:
61 return H_SUCCESS;
62 case -EPERM:
63 return H_AUTHORITY;
64 case -EINVAL:
65 return H_PARAMETER;
66 case -ENXIO:
67 return H_CLOSED;
68 case -ENOSPC:
69 return H_PTEG_FULL;
70 case -EBUSY:
71 return H_BUSY;
72 case -ENOMEM:
73 return H_NO_MEM;
74 default:
75 return H_HARDWARE;
76 }
77 }
78
79 static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu,
80 SpaprMachineState *spapr,
81 target_ulong opcode,
82 target_ulong *args)
83 {
84 target_ulong flags = args[0];
85 int shift = args[1];
86 uint64_t current_ram_size;
87 int rc;
88
89 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
90 return H_AUTHORITY;
91 }
92
93 if (!spapr->htab_shift) {
94 /* Radix guest, no HPT */
95 return H_NOT_AVAILABLE;
96 }
97
98 trace_spapr_h_resize_hpt_prepare(flags, shift);
99
100 if (flags != 0) {
101 return H_PARAMETER;
102 }
103
104 if (shift && ((shift < 18) || (shift > 46))) {
105 return H_PARAMETER;
106 }
107
108 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
109
110 /* We only allow the guest to allocate an HPT one order above what
111 * we'd normally give them (to stop a small guest claiming a huge
112 * chunk of resources in the HPT */
113 if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) {
114 return H_RESOURCE;
115 }
116
117 rc = kvmppc_resize_hpt_prepare(cpu, flags, shift);
118 if (rc != -ENOSYS) {
119 return resize_hpt_convert_rc(rc);
120 }
121
122 if (kvm_enabled()) {
123 return H_HARDWARE;
124 }
125
126 return softmmu_resize_hpt_prepare(cpu, spapr, shift);
127 }
128
129 static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data)
130 {
131 int ret;
132
133 cpu_synchronize_state(cs);
134
135 ret = kvmppc_put_books_sregs(POWERPC_CPU(cs));
136 if (ret < 0) {
137 error_report("failed to push sregs to KVM: %s", strerror(-ret));
138 exit(1);
139 }
140 }
141
142 void push_sregs_to_kvm_pr(SpaprMachineState *spapr)
143 {
144 CPUState *cs;
145
146 /*
147 * This is a hack for the benefit of KVM PR - it abuses the SDR1
148 * slot in kvm_sregs to communicate the userspace address of the
149 * HPT
150 */
151 if (!kvm_enabled() || !spapr->htab) {
152 return;
153 }
154
155 CPU_FOREACH(cs) {
156 run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL);
157 }
158 }
159
160 static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu,
161 SpaprMachineState *spapr,
162 target_ulong opcode,
163 target_ulong *args)
164 {
165 target_ulong flags = args[0];
166 target_ulong shift = args[1];
167 int rc;
168
169 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
170 return H_AUTHORITY;
171 }
172
173 if (!spapr->htab_shift) {
174 /* Radix guest, no HPT */
175 return H_NOT_AVAILABLE;
176 }
177
178 trace_spapr_h_resize_hpt_commit(flags, shift);
179
180 rc = kvmppc_resize_hpt_commit(cpu, flags, shift);
181 if (rc != -ENOSYS) {
182 rc = resize_hpt_convert_rc(rc);
183 if (rc == H_SUCCESS) {
184 /* Need to set the new htab_shift in the machine state */
185 spapr->htab_shift = shift;
186 }
187 return rc;
188 }
189
190 if (kvm_enabled()) {
191 return H_HARDWARE;
192 }
193
194 return softmmu_resize_hpt_commit(cpu, spapr, flags, shift);
195 }
196
197
198
199 static target_ulong h_set_sprg0(PowerPCCPU *cpu, SpaprMachineState *spapr,
200 target_ulong opcode, target_ulong *args)
201 {
202 cpu_synchronize_state(CPU(cpu));
203 cpu->env.spr[SPR_SPRG0] = args[0];
204
205 return H_SUCCESS;
206 }
207
208 static target_ulong h_set_dabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
209 target_ulong opcode, target_ulong *args)
210 {
211 if (!ppc_has_spr(cpu, SPR_DABR)) {
212 return H_HARDWARE; /* DABR register not available */
213 }
214 cpu_synchronize_state(CPU(cpu));
215
216 if (ppc_has_spr(cpu, SPR_DABRX)) {
217 cpu->env.spr[SPR_DABRX] = 0x3; /* Use Problem and Privileged state */
218 } else if (!(args[0] & 0x4)) { /* Breakpoint Translation set? */
219 return H_RESERVED_DABR;
220 }
221
222 cpu->env.spr[SPR_DABR] = args[0];
223 return H_SUCCESS;
224 }
225
226 static target_ulong h_set_xdabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
227 target_ulong opcode, target_ulong *args)
228 {
229 target_ulong dabrx = args[1];
230
231 if (!ppc_has_spr(cpu, SPR_DABR) || !ppc_has_spr(cpu, SPR_DABRX)) {
232 return H_HARDWARE;
233 }
234
235 if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
236 || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
237 return H_PARAMETER;
238 }
239
240 cpu_synchronize_state(CPU(cpu));
241 cpu->env.spr[SPR_DABRX] = dabrx;
242 cpu->env.spr[SPR_DABR] = args[0];
243
244 return H_SUCCESS;
245 }
246
247 static target_ulong h_page_init(PowerPCCPU *cpu, SpaprMachineState *spapr,
248 target_ulong opcode, target_ulong *args)
249 {
250 target_ulong flags = args[0];
251 hwaddr dst = args[1];
252 hwaddr src = args[2];
253 hwaddr len = TARGET_PAGE_SIZE;
254 uint8_t *pdst, *psrc;
255 target_long ret = H_SUCCESS;
256
257 if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
258 | H_COPY_PAGE | H_ZERO_PAGE)) {
259 qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
260 flags);
261 return H_PARAMETER;
262 }
263
264 /* Map-in destination */
265 if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
266 return H_PARAMETER;
267 }
268 pdst = cpu_physical_memory_map(dst, &len, true);
269 if (!pdst || len != TARGET_PAGE_SIZE) {
270 return H_PARAMETER;
271 }
272
273 if (flags & H_COPY_PAGE) {
274 /* Map-in source, copy to destination, and unmap source again */
275 if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
276 ret = H_PARAMETER;
277 goto unmap_out;
278 }
279 psrc = cpu_physical_memory_map(src, &len, false);
280 if (!psrc || len != TARGET_PAGE_SIZE) {
281 ret = H_PARAMETER;
282 goto unmap_out;
283 }
284 memcpy(pdst, psrc, len);
285 cpu_physical_memory_unmap(psrc, len, 0, len);
286 } else if (flags & H_ZERO_PAGE) {
287 memset(pdst, 0, len); /* Just clear the destination page */
288 }
289
290 if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
291 kvmppc_dcbst_range(cpu, pdst, len);
292 }
293 if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
294 if (kvm_enabled()) {
295 kvmppc_icbi_range(cpu, pdst, len);
296 } else {
297 tb_flush(CPU(cpu));
298 }
299 }
300
301 unmap_out:
302 cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
303 return ret;
304 }
305
306 #define FLAGS_REGISTER_VPA 0x0000200000000000ULL
307 #define FLAGS_REGISTER_DTL 0x0000400000000000ULL
308 #define FLAGS_REGISTER_SLBSHADOW 0x0000600000000000ULL
309 #define FLAGS_DEREGISTER_VPA 0x0000a00000000000ULL
310 #define FLAGS_DEREGISTER_DTL 0x0000c00000000000ULL
311 #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
312
313 static target_ulong register_vpa(PowerPCCPU *cpu, target_ulong vpa)
314 {
315 CPUState *cs = CPU(cpu);
316 CPUPPCState *env = &cpu->env;
317 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
318 uint16_t size;
319 uint8_t tmp;
320
321 if (vpa == 0) {
322 hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
323 return H_HARDWARE;
324 }
325
326 if (vpa % env->dcache_line_size) {
327 return H_PARAMETER;
328 }
329 /* FIXME: bounds check the address */
330
331 size = lduw_be_phys(cs->as, vpa + 0x4);
332
333 if (size < VPA_MIN_SIZE) {
334 return H_PARAMETER;
335 }
336
337 /* VPA is not allowed to cross a page boundary */
338 if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
339 return H_PARAMETER;
340 }
341
342 spapr_cpu->vpa_addr = vpa;
343
344 tmp = ldub_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET);
345 tmp |= VPA_SHARED_PROC_VAL;
346 stb_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
347
348 return H_SUCCESS;
349 }
350
351 static target_ulong deregister_vpa(PowerPCCPU *cpu, target_ulong vpa)
352 {
353 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
354
355 if (spapr_cpu->slb_shadow_addr) {
356 return H_RESOURCE;
357 }
358
359 if (spapr_cpu->dtl_addr) {
360 return H_RESOURCE;
361 }
362
363 spapr_cpu->vpa_addr = 0;
364 return H_SUCCESS;
365 }
366
367 static target_ulong register_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
368 {
369 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
370 uint32_t size;
371
372 if (addr == 0) {
373 hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
374 return H_HARDWARE;
375 }
376
377 size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
378 if (size < 0x8) {
379 return H_PARAMETER;
380 }
381
382 if ((addr / 4096) != ((addr + size - 1) / 4096)) {
383 return H_PARAMETER;
384 }
385
386 if (!spapr_cpu->vpa_addr) {
387 return H_RESOURCE;
388 }
389
390 spapr_cpu->slb_shadow_addr = addr;
391 spapr_cpu->slb_shadow_size = size;
392
393 return H_SUCCESS;
394 }
395
396 static target_ulong deregister_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
397 {
398 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
399
400 spapr_cpu->slb_shadow_addr = 0;
401 spapr_cpu->slb_shadow_size = 0;
402 return H_SUCCESS;
403 }
404
405 static target_ulong register_dtl(PowerPCCPU *cpu, target_ulong addr)
406 {
407 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
408 uint32_t size;
409
410 if (addr == 0) {
411 hcall_dprintf("Can't cope with DTL at logical 0\n");
412 return H_HARDWARE;
413 }
414
415 size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
416
417 if (size < 48) {
418 return H_PARAMETER;
419 }
420
421 if (!spapr_cpu->vpa_addr) {
422 return H_RESOURCE;
423 }
424
425 spapr_cpu->dtl_addr = addr;
426 spapr_cpu->dtl_size = size;
427
428 return H_SUCCESS;
429 }
430
431 static target_ulong deregister_dtl(PowerPCCPU *cpu, target_ulong addr)
432 {
433 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
434
435 spapr_cpu->dtl_addr = 0;
436 spapr_cpu->dtl_size = 0;
437
438 return H_SUCCESS;
439 }
440
441 static target_ulong h_register_vpa(PowerPCCPU *cpu, SpaprMachineState *spapr,
442 target_ulong opcode, target_ulong *args)
443 {
444 target_ulong flags = args[0];
445 target_ulong procno = args[1];
446 target_ulong vpa = args[2];
447 target_ulong ret = H_PARAMETER;
448 PowerPCCPU *tcpu;
449
450 tcpu = spapr_find_cpu(procno);
451 if (!tcpu) {
452 return H_PARAMETER;
453 }
454
455 switch (flags) {
456 case FLAGS_REGISTER_VPA:
457 ret = register_vpa(tcpu, vpa);
458 break;
459
460 case FLAGS_DEREGISTER_VPA:
461 ret = deregister_vpa(tcpu, vpa);
462 break;
463
464 case FLAGS_REGISTER_SLBSHADOW:
465 ret = register_slb_shadow(tcpu, vpa);
466 break;
467
468 case FLAGS_DEREGISTER_SLBSHADOW:
469 ret = deregister_slb_shadow(tcpu, vpa);
470 break;
471
472 case FLAGS_REGISTER_DTL:
473 ret = register_dtl(tcpu, vpa);
474 break;
475
476 case FLAGS_DEREGISTER_DTL:
477 ret = deregister_dtl(tcpu, vpa);
478 break;
479 }
480
481 return ret;
482 }
483
484 static target_ulong h_cede(PowerPCCPU *cpu, SpaprMachineState *spapr,
485 target_ulong opcode, target_ulong *args)
486 {
487 CPUPPCState *env = &cpu->env;
488 CPUState *cs = CPU(cpu);
489 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
490
491 env->msr |= (1ULL << MSR_EE);
492 hreg_compute_hflags(env);
493 ppc_maybe_interrupt(env);
494
495 if (spapr_cpu->prod) {
496 spapr_cpu->prod = false;
497 return H_SUCCESS;
498 }
499
500 if (!cpu_has_work(cs)) {
501 cs->halted = 1;
502 cs->exception_index = EXCP_HLT;
503 cs->exit_request = 1;
504 ppc_maybe_interrupt(env);
505 }
506
507 return H_SUCCESS;
508 }
509
510 /*
511 * Confer to self, aka join. Cede could use the same pattern as well, if
512 * EXCP_HLT can be changed to ECXP_HALTED.
513 */
514 static target_ulong h_confer_self(PowerPCCPU *cpu)
515 {
516 CPUState *cs = CPU(cpu);
517 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
518
519 if (spapr_cpu->prod) {
520 spapr_cpu->prod = false;
521 return H_SUCCESS;
522 }
523 cs->halted = 1;
524 cs->exception_index = EXCP_HALTED;
525 cs->exit_request = 1;
526 ppc_maybe_interrupt(&cpu->env);
527
528 return H_SUCCESS;
529 }
530
531 static target_ulong h_join(PowerPCCPU *cpu, SpaprMachineState *spapr,
532 target_ulong opcode, target_ulong *args)
533 {
534 CPUPPCState *env = &cpu->env;
535 CPUState *cs;
536 bool last_unjoined = true;
537
538 if (env->msr & (1ULL << MSR_EE)) {
539 return H_BAD_MODE;
540 }
541
542 /*
543 * Must not join the last CPU running. Interestingly, no such restriction
544 * for H_CONFER-to-self, but that is probably not intended to be used
545 * when H_JOIN is available.
546 */
547 CPU_FOREACH(cs) {
548 PowerPCCPU *c = POWERPC_CPU(cs);
549 CPUPPCState *e = &c->env;
550 if (c == cpu) {
551 continue;
552 }
553
554 /* Don't have a way to indicate joined, so use halted && MSR[EE]=0 */
555 if (!cs->halted || (e->msr & (1ULL << MSR_EE))) {
556 last_unjoined = false;
557 break;
558 }
559 }
560 if (last_unjoined) {
561 return H_CONTINUE;
562 }
563
564 return h_confer_self(cpu);
565 }
566
567 static target_ulong h_confer(PowerPCCPU *cpu, SpaprMachineState *spapr,
568 target_ulong opcode, target_ulong *args)
569 {
570 target_long target = args[0];
571 uint32_t dispatch = args[1];
572 CPUState *cs = CPU(cpu);
573 SpaprCpuState *spapr_cpu;
574
575 /*
576 * -1 means confer to all other CPUs without dispatch counter check,
577 * otherwise it's a targeted confer.
578 */
579 if (target != -1) {
580 PowerPCCPU *target_cpu = spapr_find_cpu(target);
581 uint32_t target_dispatch;
582
583 if (!target_cpu) {
584 return H_PARAMETER;
585 }
586
587 /*
588 * target == self is a special case, we wait until prodded, without
589 * dispatch counter check.
590 */
591 if (cpu == target_cpu) {
592 return h_confer_self(cpu);
593 }
594
595 spapr_cpu = spapr_cpu_state(target_cpu);
596 if (!spapr_cpu->vpa_addr || ((dispatch & 1) == 0)) {
597 return H_SUCCESS;
598 }
599
600 target_dispatch = ldl_be_phys(cs->as,
601 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
602 if (target_dispatch != dispatch) {
603 return H_SUCCESS;
604 }
605
606 /*
607 * The targeted confer does not do anything special beyond yielding
608 * the current vCPU, but even this should be better than nothing.
609 * At least for single-threaded tcg, it gives the target a chance to
610 * run before we run again. Multi-threaded tcg does not really do
611 * anything with EXCP_YIELD yet.
612 */
613 }
614
615 cs->exception_index = EXCP_YIELD;
616 cs->exit_request = 1;
617 cpu_loop_exit(cs);
618
619 return H_SUCCESS;
620 }
621
622 static target_ulong h_prod(PowerPCCPU *cpu, SpaprMachineState *spapr,
623 target_ulong opcode, target_ulong *args)
624 {
625 target_long target = args[0];
626 PowerPCCPU *tcpu;
627 CPUState *cs;
628 SpaprCpuState *spapr_cpu;
629
630 tcpu = spapr_find_cpu(target);
631 cs = CPU(tcpu);
632 if (!cs) {
633 return H_PARAMETER;
634 }
635
636 spapr_cpu = spapr_cpu_state(tcpu);
637 spapr_cpu->prod = true;
638 cs->halted = 0;
639 ppc_maybe_interrupt(&cpu->env);
640 qemu_cpu_kick(cs);
641
642 return H_SUCCESS;
643 }
644
645 static target_ulong h_rtas(PowerPCCPU *cpu, SpaprMachineState *spapr,
646 target_ulong opcode, target_ulong *args)
647 {
648 target_ulong rtas_r3 = args[0];
649 uint32_t token = rtas_ld(rtas_r3, 0);
650 uint32_t nargs = rtas_ld(rtas_r3, 1);
651 uint32_t nret = rtas_ld(rtas_r3, 2);
652
653 return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
654 nret, rtas_r3 + 12 + 4*nargs);
655 }
656
657 static target_ulong h_logical_load(PowerPCCPU *cpu, SpaprMachineState *spapr,
658 target_ulong opcode, target_ulong *args)
659 {
660 CPUState *cs = CPU(cpu);
661 target_ulong size = args[0];
662 target_ulong addr = args[1];
663
664 switch (size) {
665 case 1:
666 args[0] = ldub_phys(cs->as, addr);
667 return H_SUCCESS;
668 case 2:
669 args[0] = lduw_phys(cs->as, addr);
670 return H_SUCCESS;
671 case 4:
672 args[0] = ldl_phys(cs->as, addr);
673 return H_SUCCESS;
674 case 8:
675 args[0] = ldq_phys(cs->as, addr);
676 return H_SUCCESS;
677 }
678 return H_PARAMETER;
679 }
680
681 static target_ulong h_logical_store(PowerPCCPU *cpu, SpaprMachineState *spapr,
682 target_ulong opcode, target_ulong *args)
683 {
684 CPUState *cs = CPU(cpu);
685
686 target_ulong size = args[0];
687 target_ulong addr = args[1];
688 target_ulong val = args[2];
689
690 switch (size) {
691 case 1:
692 stb_phys(cs->as, addr, val);
693 return H_SUCCESS;
694 case 2:
695 stw_phys(cs->as, addr, val);
696 return H_SUCCESS;
697 case 4:
698 stl_phys(cs->as, addr, val);
699 return H_SUCCESS;
700 case 8:
701 stq_phys(cs->as, addr, val);
702 return H_SUCCESS;
703 }
704 return H_PARAMETER;
705 }
706
707 static target_ulong h_logical_memop(PowerPCCPU *cpu, SpaprMachineState *spapr,
708 target_ulong opcode, target_ulong *args)
709 {
710 CPUState *cs = CPU(cpu);
711
712 target_ulong dst = args[0]; /* Destination address */
713 target_ulong src = args[1]; /* Source address */
714 target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
715 target_ulong count = args[3]; /* Element count */
716 target_ulong op = args[4]; /* 0 = copy, 1 = invert */
717 uint64_t tmp;
718 unsigned int mask = (1 << esize) - 1;
719 int step = 1 << esize;
720
721 if (count > 0x80000000) {
722 return H_PARAMETER;
723 }
724
725 if ((dst & mask) || (src & mask) || (op > 1)) {
726 return H_PARAMETER;
727 }
728
729 if (dst >= src && dst < (src + (count << esize))) {
730 dst = dst + ((count - 1) << esize);
731 src = src + ((count - 1) << esize);
732 step = -step;
733 }
734
735 while (count--) {
736 switch (esize) {
737 case 0:
738 tmp = ldub_phys(cs->as, src);
739 break;
740 case 1:
741 tmp = lduw_phys(cs->as, src);
742 break;
743 case 2:
744 tmp = ldl_phys(cs->as, src);
745 break;
746 case 3:
747 tmp = ldq_phys(cs->as, src);
748 break;
749 default:
750 return H_PARAMETER;
751 }
752 if (op == 1) {
753 tmp = ~tmp;
754 }
755 switch (esize) {
756 case 0:
757 stb_phys(cs->as, dst, tmp);
758 break;
759 case 1:
760 stw_phys(cs->as, dst, tmp);
761 break;
762 case 2:
763 stl_phys(cs->as, dst, tmp);
764 break;
765 case 3:
766 stq_phys(cs->as, dst, tmp);
767 break;
768 }
769 dst = dst + step;
770 src = src + step;
771 }
772
773 return H_SUCCESS;
774 }
775
776 static target_ulong h_logical_icbi(PowerPCCPU *cpu, SpaprMachineState *spapr,
777 target_ulong opcode, target_ulong *args)
778 {
779 /* Nothing to do on emulation, KVM will trap this in the kernel */
780 return H_SUCCESS;
781 }
782
783 static target_ulong h_logical_dcbf(PowerPCCPU *cpu, SpaprMachineState *spapr,
784 target_ulong opcode, target_ulong *args)
785 {
786 /* Nothing to do on emulation, KVM will trap this in the kernel */
787 return H_SUCCESS;
788 }
789
790 static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
791 SpaprMachineState *spapr,
792 target_ulong mflags,
793 target_ulong value1,
794 target_ulong value2)
795 {
796 if (value1) {
797 return H_P3;
798 }
799 if (value2) {
800 return H_P4;
801 }
802
803 switch (mflags) {
804 case H_SET_MODE_ENDIAN_BIG:
805 spapr_set_all_lpcrs(0, LPCR_ILE);
806 spapr_pci_switch_vga(spapr, true);
807 return H_SUCCESS;
808
809 case H_SET_MODE_ENDIAN_LITTLE:
810 spapr_set_all_lpcrs(LPCR_ILE, LPCR_ILE);
811 spapr_pci_switch_vga(spapr, false);
812 return H_SUCCESS;
813 }
814
815 return H_UNSUPPORTED_FLAG;
816 }
817
818 static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
819 target_ulong mflags,
820 target_ulong value1,
821 target_ulong value2)
822 {
823 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
824
825 if (!(pcc->insns_flags2 & PPC2_ISA207S)) {
826 return H_P2;
827 }
828 if (value1) {
829 return H_P3;
830 }
831 if (value2) {
832 return H_P4;
833 }
834
835 if (mflags == 1) {
836 /* AIL=1 is reserved in POWER8/POWER9/POWER10 */
837 return H_UNSUPPORTED_FLAG;
838 }
839
840 if (mflags == 2 && (pcc->insns_flags2 & PPC2_ISA310)) {
841 /* AIL=2 is reserved in POWER10 (ISA v3.1) */
842 return H_UNSUPPORTED_FLAG;
843 }
844
845 spapr_set_all_lpcrs(mflags << LPCR_AIL_SHIFT, LPCR_AIL);
846
847 return H_SUCCESS;
848 }
849
850 static target_ulong h_set_mode(PowerPCCPU *cpu, SpaprMachineState *spapr,
851 target_ulong opcode, target_ulong *args)
852 {
853 target_ulong resource = args[1];
854 target_ulong ret = H_P2;
855
856 switch (resource) {
857 case H_SET_MODE_RESOURCE_LE:
858 ret = h_set_mode_resource_le(cpu, spapr, args[0], args[2], args[3]);
859 break;
860 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
861 ret = h_set_mode_resource_addr_trans_mode(cpu, args[0],
862 args[2], args[3]);
863 break;
864 }
865
866 return ret;
867 }
868
869 static target_ulong h_clean_slb(PowerPCCPU *cpu, SpaprMachineState *spapr,
870 target_ulong opcode, target_ulong *args)
871 {
872 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
873 opcode, " (H_CLEAN_SLB)");
874 return H_FUNCTION;
875 }
876
877 static target_ulong h_invalidate_pid(PowerPCCPU *cpu, SpaprMachineState *spapr,
878 target_ulong opcode, target_ulong *args)
879 {
880 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
881 opcode, " (H_INVALIDATE_PID)");
882 return H_FUNCTION;
883 }
884
885 static void spapr_check_setup_free_hpt(SpaprMachineState *spapr,
886 uint64_t patbe_old, uint64_t patbe_new)
887 {
888 /*
889 * We have 4 Options:
890 * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
891 * HASH->RADIX : Free HPT
892 * RADIX->HASH : Allocate HPT
893 * NOTHING->HASH : Allocate HPT
894 * Note: NOTHING implies the case where we said the guest could choose
895 * later and so assumed radix and now it's called H_REG_PROC_TBL
896 */
897
898 if ((patbe_old & PATE1_GR) == (patbe_new & PATE1_GR)) {
899 /* We assume RADIX, so this catches all the "Do Nothing" cases */
900 } else if (!(patbe_old & PATE1_GR)) {
901 /* HASH->RADIX : Free HPT */
902 spapr_free_hpt(spapr);
903 } else if (!(patbe_new & PATE1_GR)) {
904 /* RADIX->HASH || NOTHING->HASH : Allocate HPT */
905 spapr_setup_hpt(spapr);
906 }
907 return;
908 }
909
910 #define FLAGS_MASK 0x01FULL
911 #define FLAG_MODIFY 0x10
912 #define FLAG_REGISTER 0x08
913 #define FLAG_RADIX 0x04
914 #define FLAG_HASH_PROC_TBL 0x02
915 #define FLAG_GTSE 0x01
916
917 static target_ulong h_register_process_table(PowerPCCPU *cpu,
918 SpaprMachineState *spapr,
919 target_ulong opcode,
920 target_ulong *args)
921 {
922 target_ulong flags = args[0];
923 target_ulong proc_tbl = args[1];
924 target_ulong page_size = args[2];
925 target_ulong table_size = args[3];
926 target_ulong update_lpcr = 0;
927 target_ulong table_byte_size;
928 uint64_t cproc;
929
930 if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */
931 return H_PARAMETER;
932 }
933 if (flags & FLAG_MODIFY) {
934 if (flags & FLAG_REGISTER) {
935 /* Check process table alignment */
936 table_byte_size = 1ULL << (table_size + 12);
937 if (proc_tbl & (table_byte_size - 1)) {
938 qemu_log_mask(LOG_GUEST_ERROR,
939 "%s: process table not properly aligned: proc_tbl 0x"
940 TARGET_FMT_lx" proc_tbl_size 0x"TARGET_FMT_lx"\n",
941 __func__, proc_tbl, table_byte_size);
942 }
943 if (flags & FLAG_RADIX) { /* Register new RADIX process table */
944 if (proc_tbl & 0xfff || proc_tbl >> 60) {
945 return H_P2;
946 } else if (page_size) {
947 return H_P3;
948 } else if (table_size > 24) {
949 return H_P4;
950 }
951 cproc = PATE1_GR | proc_tbl | table_size;
952 } else { /* Register new HPT process table */
953 if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */
954 /* TODO - Not Supported */
955 /* Technically caused by flag bits => H_PARAMETER */
956 return H_PARAMETER;
957 } else { /* Hash with SLB */
958 if (proc_tbl >> 38) {
959 return H_P2;
960 } else if (page_size & ~0x7) {
961 return H_P3;
962 } else if (table_size > 24) {
963 return H_P4;
964 }
965 }
966 cproc = (proc_tbl << 25) | page_size << 5 | table_size;
967 }
968
969 } else { /* Deregister current process table */
970 /*
971 * Set to benign value: (current GR) | 0. This allows
972 * deregistration in KVM to succeed even if the radix bit
973 * in flags doesn't match the radix bit in the old PATE.
974 */
975 cproc = spapr->patb_entry & PATE1_GR;
976 }
977 } else { /* Maintain current registration */
978 if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATE1_GR)) {
979 /* Technically caused by flag bits => H_PARAMETER */
980 return H_PARAMETER; /* Existing Process Table Mismatch */
981 }
982 cproc = spapr->patb_entry;
983 }
984
985 /* Check if we need to setup OR free the hpt */
986 spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc);
987
988 spapr->patb_entry = cproc; /* Save new process table */
989
990 /* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */
991 if (flags & FLAG_RADIX) /* Radix must use process tables, also set HR */
992 update_lpcr |= (LPCR_UPRT | LPCR_HR);
993 else if (flags & FLAG_HASH_PROC_TBL) /* Hash with process tables */
994 update_lpcr |= LPCR_UPRT;
995 if (flags & FLAG_GTSE) /* Guest translation shootdown enable */
996 update_lpcr |= LPCR_GTSE;
997
998 spapr_set_all_lpcrs(update_lpcr, LPCR_UPRT | LPCR_HR | LPCR_GTSE);
999
1000 if (kvm_enabled()) {
1001 return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX,
1002 flags & FLAG_GTSE, cproc);
1003 }
1004 return H_SUCCESS;
1005 }
1006
1007 #define H_SIGNAL_SYS_RESET_ALL -1
1008 #define H_SIGNAL_SYS_RESET_ALLBUTSELF -2
1009
1010 static target_ulong h_signal_sys_reset(PowerPCCPU *cpu,
1011 SpaprMachineState *spapr,
1012 target_ulong opcode, target_ulong *args)
1013 {
1014 target_long target = args[0];
1015 CPUState *cs;
1016
1017 if (target < 0) {
1018 /* Broadcast */
1019 if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1020 return H_PARAMETER;
1021 }
1022
1023 CPU_FOREACH(cs) {
1024 PowerPCCPU *c = POWERPC_CPU(cs);
1025
1026 if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1027 if (c == cpu) {
1028 continue;
1029 }
1030 }
1031 run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1032 }
1033 return H_SUCCESS;
1034
1035 } else {
1036 /* Unicast */
1037 cs = CPU(spapr_find_cpu(target));
1038 if (cs) {
1039 run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1040 return H_SUCCESS;
1041 }
1042 return H_PARAMETER;
1043 }
1044 }
1045
1046 /* Returns either a logical PVR or zero if none was found */
1047 static uint32_t cas_check_pvr(PowerPCCPU *cpu, uint32_t max_compat,
1048 target_ulong *addr, bool *raw_mode_supported)
1049 {
1050 bool explicit_match = false; /* Matched the CPU's real PVR */
1051 uint32_t best_compat = 0;
1052 int i;
1053
1054 /*
1055 * We scan the supplied table of PVRs looking for two things
1056 * 1. Is our real CPU PVR in the list?
1057 * 2. What's the "best" listed logical PVR
1058 */
1059 for (i = 0; i < 512; ++i) {
1060 uint32_t pvr, pvr_mask;
1061
1062 pvr_mask = ldl_be_phys(&address_space_memory, *addr);
1063 pvr = ldl_be_phys(&address_space_memory, *addr + 4);
1064 *addr += 8;
1065
1066 if (~pvr_mask & pvr) {
1067 break; /* Terminator record */
1068 }
1069
1070 if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) {
1071 explicit_match = true;
1072 } else {
1073 if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) {
1074 best_compat = pvr;
1075 }
1076 }
1077 }
1078
1079 *raw_mode_supported = explicit_match;
1080
1081 /* Parsing finished */
1082 trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat);
1083
1084 return best_compat;
1085 }
1086
1087 static
1088 target_ulong do_client_architecture_support(PowerPCCPU *cpu,
1089 SpaprMachineState *spapr,
1090 target_ulong vec,
1091 target_ulong fdt_bufsize)
1092 {
1093 target_ulong ov_table; /* Working address in data buffer */
1094 uint32_t cas_pvr;
1095 SpaprOptionVector *ov1_guest, *ov5_guest;
1096 bool guest_radix;
1097 bool raw_mode_supported = false;
1098 bool guest_xive;
1099 CPUState *cs;
1100 void *fdt;
1101 uint32_t max_compat = spapr->max_compat_pvr;
1102
1103 /* CAS is supposed to be called early when only the boot vCPU is active. */
1104 CPU_FOREACH(cs) {
1105 if (cs == CPU(cpu)) {
1106 continue;
1107 }
1108 if (!cs->halted) {
1109 warn_report("guest has multiple active vCPUs at CAS, which is not allowed");
1110 return H_MULTI_THREADS_ACTIVE;
1111 }
1112 }
1113
1114 cas_pvr = cas_check_pvr(cpu, max_compat, &vec, &raw_mode_supported);
1115 if (!cas_pvr && (!raw_mode_supported || max_compat)) {
1116 /*
1117 * We couldn't find a suitable compatibility mode, and either
1118 * the guest doesn't support "raw" mode for this CPU, or "raw"
1119 * mode is disabled because a maximum compat mode is set.
1120 */
1121 error_report("Couldn't negotiate a suitable PVR during CAS");
1122 return H_HARDWARE;
1123 }
1124
1125 /* Update CPUs */
1126 if (cpu->compat_pvr != cas_pvr) {
1127 Error *local_err = NULL;
1128
1129 if (ppc_set_compat_all(cas_pvr, &local_err) < 0) {
1130 /* We fail to set compat mode (likely because running with KVM PR),
1131 * but maybe we can fallback to raw mode if the guest supports it.
1132 */
1133 if (!raw_mode_supported) {
1134 error_report_err(local_err);
1135 return H_HARDWARE;
1136 }
1137 error_free(local_err);
1138 }
1139 }
1140
1141 /* For the future use: here @ov_table points to the first option vector */
1142 ov_table = vec;
1143
1144 ov1_guest = spapr_ovec_parse_vector(ov_table, 1);
1145 if (!ov1_guest) {
1146 warn_report("guest didn't provide option vector 1");
1147 return H_PARAMETER;
1148 }
1149 ov5_guest = spapr_ovec_parse_vector(ov_table, 5);
1150 if (!ov5_guest) {
1151 spapr_ovec_cleanup(ov1_guest);
1152 warn_report("guest didn't provide option vector 5");
1153 return H_PARAMETER;
1154 }
1155 if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) {
1156 error_report("guest requested hash and radix MMU, which is invalid.");
1157 exit(EXIT_FAILURE);
1158 }
1159 if (spapr_ovec_test(ov5_guest, OV5_XIVE_BOTH)) {
1160 error_report("guest requested an invalid interrupt mode");
1161 exit(EXIT_FAILURE);
1162 }
1163
1164 guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300);
1165
1166 guest_xive = spapr_ovec_test(ov5_guest, OV5_XIVE_EXPLOIT);
1167
1168 /*
1169 * HPT resizing is a bit of a special case, because when enabled
1170 * we assume an HPT guest will support it until it says it
1171 * doesn't, instead of assuming it won't support it until it says
1172 * it does. Strictly speaking that approach could break for
1173 * guests which don't make a CAS call, but those are so old we
1174 * don't care about them. Without that assumption we'd have to
1175 * make at least a temporary allocation of an HPT sized for max
1176 * memory, which could be impossibly difficult under KVM HV if
1177 * maxram is large.
1178 */
1179 if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) {
1180 int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1181
1182 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) {
1183 error_report(
1184 "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required");
1185 exit(1);
1186 }
1187
1188 if (spapr->htab_shift < maxshift) {
1189 /* Guest doesn't know about HPT resizing, so we
1190 * pre-emptively resize for the maximum permitted RAM. At
1191 * the point this is called, nothing should have been
1192 * entered into the existing HPT */
1193 spapr_reallocate_hpt(spapr, maxshift, &error_fatal);
1194 push_sregs_to_kvm_pr(spapr);
1195 }
1196 }
1197
1198 /* NOTE: there are actually a number of ov5 bits where input from the
1199 * guest is always zero, and the platform/QEMU enables them independently
1200 * of guest input. To model these properly we'd want some sort of mask,
1201 * but since they only currently apply to memory migration as defined
1202 * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
1203 * to worry about this for now.
1204 */
1205
1206 /* full range of negotiated ov5 capabilities */
1207 spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest);
1208 spapr_ovec_cleanup(ov5_guest);
1209
1210 spapr_check_mmu_mode(guest_radix);
1211
1212 spapr->cas_pre_isa3_guest = !spapr_ovec_test(ov1_guest, OV1_PPC_3_00);
1213 spapr_ovec_cleanup(ov1_guest);
1214
1215 /*
1216 * Check for NUMA affinity conditions now that we know which NUMA
1217 * affinity the guest will use.
1218 */
1219 spapr_numa_associativity_check(spapr);
1220
1221 /*
1222 * Ensure the guest asks for an interrupt mode we support;
1223 * otherwise terminate the boot.
1224 */
1225 if (guest_xive) {
1226 if (!spapr->irq->xive) {
1227 error_report(
1228 "Guest requested unavailable interrupt mode (XIVE), try the ic-mode=xive or ic-mode=dual machine property");
1229 exit(EXIT_FAILURE);
1230 }
1231 } else {
1232 if (!spapr->irq->xics) {
1233 error_report(
1234 "Guest requested unavailable interrupt mode (XICS), either don't set the ic-mode machine property or try ic-mode=xics or ic-mode=dual");
1235 exit(EXIT_FAILURE);
1236 }
1237 }
1238
1239 spapr_irq_update_active_intc(spapr);
1240
1241 /*
1242 * Process all pending hot-plug/unplug requests now. An updated full
1243 * rendered FDT will be returned to the guest.
1244 */
1245 spapr_drc_reset_all(spapr);
1246 spapr_clear_pending_hotplug_events(spapr);
1247
1248 /*
1249 * If spapr_machine_reset() did not set up a HPT but one is necessary
1250 * (because the guest isn't going to use radix) then set it up here.
1251 */
1252 if ((spapr->patb_entry & PATE1_GR) && !guest_radix) {
1253 /* legacy hash or new hash: */
1254 spapr_setup_hpt(spapr);
1255 }
1256
1257 fdt = spapr_build_fdt(spapr, spapr->vof != NULL, fdt_bufsize);
1258 g_free(spapr->fdt_blob);
1259 spapr->fdt_size = fdt_totalsize(fdt);
1260 spapr->fdt_initial_size = spapr->fdt_size;
1261 spapr->fdt_blob = fdt;
1262
1263 /*
1264 * Set the machine->fdt pointer again since we just freed
1265 * it above (by freeing spapr->fdt_blob). We set this
1266 * pointer to enable support for the 'dumpdtb' QMP/HMP
1267 * command.
1268 */
1269 MACHINE(spapr)->fdt = fdt;
1270
1271 return H_SUCCESS;
1272 }
1273
1274 static target_ulong h_client_architecture_support(PowerPCCPU *cpu,
1275 SpaprMachineState *spapr,
1276 target_ulong opcode,
1277 target_ulong *args)
1278 {
1279 target_ulong vec = ppc64_phys_to_real(args[0]);
1280 target_ulong fdt_buf = args[1];
1281 target_ulong fdt_bufsize = args[2];
1282 target_ulong ret;
1283 SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
1284
1285 if (fdt_bufsize < sizeof(hdr)) {
1286 error_report("SLOF provided insufficient CAS buffer "
1287 TARGET_FMT_lu " (min: %zu)", fdt_bufsize, sizeof(hdr));
1288 exit(EXIT_FAILURE);
1289 }
1290
1291 fdt_bufsize -= sizeof(hdr);
1292
1293 ret = do_client_architecture_support(cpu, spapr, vec, fdt_bufsize);
1294 if (ret == H_SUCCESS) {
1295 _FDT((fdt_pack(spapr->fdt_blob)));
1296 spapr->fdt_size = fdt_totalsize(spapr->fdt_blob);
1297 spapr->fdt_initial_size = spapr->fdt_size;
1298
1299 cpu_physical_memory_write(fdt_buf, &hdr, sizeof(hdr));
1300 cpu_physical_memory_write(fdt_buf + sizeof(hdr), spapr->fdt_blob,
1301 spapr->fdt_size);
1302 trace_spapr_cas_continue(spapr->fdt_size + sizeof(hdr));
1303 }
1304
1305 return ret;
1306 }
1307
1308 target_ulong spapr_vof_client_architecture_support(MachineState *ms,
1309 CPUState *cs,
1310 target_ulong ovec_addr)
1311 {
1312 SpaprMachineState *spapr = SPAPR_MACHINE(ms);
1313
1314 target_ulong ret = do_client_architecture_support(POWERPC_CPU(cs), spapr,
1315 ovec_addr, FDT_MAX_SIZE);
1316
1317 /*
1318 * This adds stdout and generates phandles for boottime and CAS FDTs.
1319 * It is alright to update the FDT here as do_client_architecture_support()
1320 * does not pack it.
1321 */
1322 spapr_vof_client_dt_finalize(spapr, spapr->fdt_blob);
1323
1324 return ret;
1325 }
1326
1327 static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu,
1328 SpaprMachineState *spapr,
1329 target_ulong opcode,
1330 target_ulong *args)
1331 {
1332 uint64_t characteristics = H_CPU_CHAR_HON_BRANCH_HINTS &
1333 ~H_CPU_CHAR_THR_RECONF_TRIG;
1334 uint64_t behaviour = H_CPU_BEHAV_FAVOUR_SECURITY;
1335 uint8_t safe_cache = spapr_get_cap(spapr, SPAPR_CAP_CFPC);
1336 uint8_t safe_bounds_check = spapr_get_cap(spapr, SPAPR_CAP_SBBC);
1337 uint8_t safe_indirect_branch = spapr_get_cap(spapr, SPAPR_CAP_IBS);
1338 uint8_t count_cache_flush_assist = spapr_get_cap(spapr,
1339 SPAPR_CAP_CCF_ASSIST);
1340
1341 switch (safe_cache) {
1342 case SPAPR_CAP_WORKAROUND:
1343 characteristics |= H_CPU_CHAR_L1D_FLUSH_ORI30;
1344 characteristics |= H_CPU_CHAR_L1D_FLUSH_TRIG2;
1345 characteristics |= H_CPU_CHAR_L1D_THREAD_PRIV;
1346 behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1347 break;
1348 case SPAPR_CAP_FIXED:
1349 behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_ENTRY;
1350 behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_UACCESS;
1351 break;
1352 default: /* broken */
1353 assert(safe_cache == SPAPR_CAP_BROKEN);
1354 behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1355 break;
1356 }
1357
1358 switch (safe_bounds_check) {
1359 case SPAPR_CAP_WORKAROUND:
1360 characteristics |= H_CPU_CHAR_SPEC_BAR_ORI31;
1361 behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1362 break;
1363 case SPAPR_CAP_FIXED:
1364 break;
1365 default: /* broken */
1366 assert(safe_bounds_check == SPAPR_CAP_BROKEN);
1367 behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1368 break;
1369 }
1370
1371 switch (safe_indirect_branch) {
1372 case SPAPR_CAP_FIXED_NA:
1373 break;
1374 case SPAPR_CAP_FIXED_CCD:
1375 characteristics |= H_CPU_CHAR_CACHE_COUNT_DIS;
1376 break;
1377 case SPAPR_CAP_FIXED_IBS:
1378 characteristics |= H_CPU_CHAR_BCCTRL_SERIALISED;
1379 break;
1380 case SPAPR_CAP_WORKAROUND:
1381 behaviour |= H_CPU_BEHAV_FLUSH_COUNT_CACHE;
1382 if (count_cache_flush_assist) {
1383 characteristics |= H_CPU_CHAR_BCCTR_FLUSH_ASSIST;
1384 }
1385 break;
1386 default: /* broken */
1387 assert(safe_indirect_branch == SPAPR_CAP_BROKEN);
1388 break;
1389 }
1390
1391 args[0] = characteristics;
1392 args[1] = behaviour;
1393 return H_SUCCESS;
1394 }
1395
1396 static target_ulong h_update_dt(PowerPCCPU *cpu, SpaprMachineState *spapr,
1397 target_ulong opcode, target_ulong *args)
1398 {
1399 target_ulong dt = ppc64_phys_to_real(args[0]);
1400 struct fdt_header hdr = { 0 };
1401 unsigned cb;
1402 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
1403 void *fdt;
1404
1405 cpu_physical_memory_read(dt, &hdr, sizeof(hdr));
1406 cb = fdt32_to_cpu(hdr.totalsize);
1407
1408 if (!smc->update_dt_enabled) {
1409 return H_SUCCESS;
1410 }
1411
1412 /* Check that the fdt did not grow out of proportion */
1413 if (cb > spapr->fdt_initial_size * 2) {
1414 trace_spapr_update_dt_failed_size(spapr->fdt_initial_size, cb,
1415 fdt32_to_cpu(hdr.magic));
1416 return H_PARAMETER;
1417 }
1418
1419 fdt = g_malloc0(cb);
1420 cpu_physical_memory_read(dt, fdt, cb);
1421
1422 /* Check the fdt consistency */
1423 if (fdt_check_full(fdt, cb)) {
1424 trace_spapr_update_dt_failed_check(spapr->fdt_initial_size, cb,
1425 fdt32_to_cpu(hdr.magic));
1426 return H_PARAMETER;
1427 }
1428
1429 g_free(spapr->fdt_blob);
1430 spapr->fdt_size = cb;
1431 spapr->fdt_blob = fdt;
1432 trace_spapr_update_dt(cb);
1433
1434 return H_SUCCESS;
1435 }
1436
1437 static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
1438 static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
1439 static spapr_hcall_fn svm_hypercall_table[(SVM_HCALL_MAX - SVM_HCALL_BASE) / 4 + 1];
1440
1441 void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
1442 {
1443 spapr_hcall_fn *slot;
1444
1445 if (opcode <= MAX_HCALL_OPCODE) {
1446 assert((opcode & 0x3) == 0);
1447
1448 slot = &papr_hypercall_table[opcode / 4];
1449 } else if (opcode >= SVM_HCALL_BASE && opcode <= SVM_HCALL_MAX) {
1450 /* we only have SVM-related hcall numbers assigned in multiples of 4 */
1451 assert((opcode & 0x3) == 0);
1452
1453 slot = &svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
1454 } else {
1455 assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
1456
1457 slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1458 }
1459
1460 assert(!(*slot));
1461 *slot = fn;
1462 }
1463
1464 target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
1465 target_ulong *args)
1466 {
1467 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1468
1469 if ((opcode <= MAX_HCALL_OPCODE)
1470 && ((opcode & 0x3) == 0)) {
1471 spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
1472
1473 if (fn) {
1474 return fn(cpu, spapr, opcode, args);
1475 }
1476 } else if ((opcode >= SVM_HCALL_BASE) &&
1477 (opcode <= SVM_HCALL_MAX)) {
1478 spapr_hcall_fn fn = svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
1479
1480 if (fn) {
1481 return fn(cpu, spapr, opcode, args);
1482 }
1483 } else if ((opcode >= KVMPPC_HCALL_BASE) &&
1484 (opcode <= KVMPPC_HCALL_MAX)) {
1485 spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1486
1487 if (fn) {
1488 return fn(cpu, spapr, opcode, args);
1489 }
1490 }
1491
1492 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
1493 opcode);
1494 return H_FUNCTION;
1495 }
1496
1497 #ifdef CONFIG_TCG
1498 #define PRTS_MASK 0x1f
1499
1500 static target_ulong h_set_ptbl(PowerPCCPU *cpu,
1501 SpaprMachineState *spapr,
1502 target_ulong opcode,
1503 target_ulong *args)
1504 {
1505 target_ulong ptcr = args[0];
1506
1507 if (!spapr_get_cap(spapr, SPAPR_CAP_NESTED_KVM_HV)) {
1508 return H_FUNCTION;
1509 }
1510
1511 if ((ptcr & PRTS_MASK) + 12 - 4 > 12) {
1512 return H_PARAMETER;
1513 }
1514
1515 spapr->nested_ptcr = ptcr; /* Save new partition table */
1516
1517 return H_SUCCESS;
1518 }
1519
1520 static target_ulong h_tlb_invalidate(PowerPCCPU *cpu,
1521 SpaprMachineState *spapr,
1522 target_ulong opcode,
1523 target_ulong *args)
1524 {
1525 /*
1526 * The spapr virtual hypervisor nested HV implementation retains no L2
1527 * translation state except for TLB. And the TLB is always invalidated
1528 * across L1<->L2 transitions, so nothing is required here.
1529 */
1530
1531 return H_SUCCESS;
1532 }
1533
1534 static target_ulong h_copy_tofrom_guest(PowerPCCPU *cpu,
1535 SpaprMachineState *spapr,
1536 target_ulong opcode,
1537 target_ulong *args)
1538 {
1539 /*
1540 * This HCALL is not required, L1 KVM will take a slow path and walk the
1541 * page tables manually to do the data copy.
1542 */
1543 return H_FUNCTION;
1544 }
1545
1546 /*
1547 * When this handler returns, the environment is switched to the L2 guest
1548 * and TCG begins running that. spapr_exit_nested() performs the switch from
1549 * L2 back to L1 and returns from the H_ENTER_NESTED hcall.
1550 */
1551 static target_ulong h_enter_nested(PowerPCCPU *cpu,
1552 SpaprMachineState *spapr,
1553 target_ulong opcode,
1554 target_ulong *args)
1555 {
1556 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
1557 CPUState *cs = CPU(cpu);
1558 CPUPPCState *env = &cpu->env;
1559 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1560 target_ulong hv_ptr = args[0];
1561 target_ulong regs_ptr = args[1];
1562 target_ulong hdec, now = cpu_ppc_load_tbl(env);
1563 target_ulong lpcr, lpcr_mask;
1564 struct kvmppc_hv_guest_state *hvstate;
1565 struct kvmppc_hv_guest_state hv_state;
1566 struct kvmppc_pt_regs *regs;
1567 hwaddr len;
1568 uint64_t cr;
1569 int i;
1570
1571 if (spapr->nested_ptcr == 0) {
1572 return H_NOT_AVAILABLE;
1573 }
1574
1575 len = sizeof(*hvstate);
1576 hvstate = address_space_map(CPU(cpu)->as, hv_ptr, &len, false,
1577 MEMTXATTRS_UNSPECIFIED);
1578 if (len != sizeof(*hvstate)) {
1579 address_space_unmap(CPU(cpu)->as, hvstate, len, 0, false);
1580 return H_PARAMETER;
1581 }
1582
1583 memcpy(&hv_state, hvstate, len);
1584
1585 address_space_unmap(CPU(cpu)->as, hvstate, len, len, false);
1586
1587 /*
1588 * We accept versions 1 and 2. Version 2 fields are unused because TCG
1589 * does not implement DAWR*.
1590 */
1591 if (hv_state.version > HV_GUEST_STATE_VERSION) {
1592 return H_PARAMETER;
1593 }
1594
1595 spapr_cpu->nested_host_state = g_try_new(CPUPPCState, 1);
1596 if (!spapr_cpu->nested_host_state) {
1597 return H_NO_MEM;
1598 }
1599
1600 memcpy(spapr_cpu->nested_host_state, env, sizeof(CPUPPCState));
1601
1602 len = sizeof(*regs);
1603 regs = address_space_map(CPU(cpu)->as, regs_ptr, &len, false,
1604 MEMTXATTRS_UNSPECIFIED);
1605 if (!regs || len != sizeof(*regs)) {
1606 address_space_unmap(CPU(cpu)->as, regs, len, 0, false);
1607 g_free(spapr_cpu->nested_host_state);
1608 return H_P2;
1609 }
1610
1611 len = sizeof(env->gpr);
1612 assert(len == sizeof(regs->gpr));
1613 memcpy(env->gpr, regs->gpr, len);
1614
1615 env->lr = regs->link;
1616 env->ctr = regs->ctr;
1617 cpu_write_xer(env, regs->xer);
1618
1619 cr = regs->ccr;
1620 for (i = 7; i >= 0; i--) {
1621 env->crf[i] = cr & 15;
1622 cr >>= 4;
1623 }
1624
1625 env->msr = regs->msr;
1626 env->nip = regs->nip;
1627
1628 address_space_unmap(CPU(cpu)->as, regs, len, len, false);
1629
1630 env->cfar = hv_state.cfar;
1631
1632 assert(env->spr[SPR_LPIDR] == 0);
1633 env->spr[SPR_LPIDR] = hv_state.lpid;
1634
1635 lpcr_mask = LPCR_DPFD | LPCR_ILE | LPCR_AIL | LPCR_LD | LPCR_MER;
1636 lpcr = (env->spr[SPR_LPCR] & ~lpcr_mask) | (hv_state.lpcr & lpcr_mask);
1637 lpcr |= LPCR_HR | LPCR_UPRT | LPCR_GTSE | LPCR_HVICE | LPCR_HDICE;
1638 lpcr &= ~LPCR_LPES0;
1639 env->spr[SPR_LPCR] = lpcr & pcc->lpcr_mask;
1640
1641 env->spr[SPR_PCR] = hv_state.pcr;
1642 /* hv_state.amor is not used */
1643 env->spr[SPR_DPDES] = hv_state.dpdes;
1644 env->spr[SPR_HFSCR] = hv_state.hfscr;
1645 hdec = hv_state.hdec_expiry - now;
1646 spapr_cpu->nested_tb_offset = hv_state.tb_offset;
1647 /* TCG does not implement DAWR*, CIABR, PURR, SPURR, IC, VTB, HEIR SPRs*/
1648 env->spr[SPR_SRR0] = hv_state.srr0;
1649 env->spr[SPR_SRR1] = hv_state.srr1;
1650 env->spr[SPR_SPRG0] = hv_state.sprg[0];
1651 env->spr[SPR_SPRG1] = hv_state.sprg[1];
1652 env->spr[SPR_SPRG2] = hv_state.sprg[2];
1653 env->spr[SPR_SPRG3] = hv_state.sprg[3];
1654 env->spr[SPR_BOOKS_PID] = hv_state.pidr;
1655 env->spr[SPR_PPR] = hv_state.ppr;
1656
1657 cpu_ppc_hdecr_init(env);
1658 cpu_ppc_store_hdecr(env, hdec);
1659
1660 /*
1661 * The hv_state.vcpu_token is not needed. It is used by the KVM
1662 * implementation to remember which L2 vCPU last ran on which physical
1663 * CPU so as to invalidate process scope translations if it is moved
1664 * between physical CPUs. For now TLBs are always flushed on L1<->L2
1665 * transitions so this is not a problem.
1666 *
1667 * Could validate that the same vcpu_token does not attempt to run on
1668 * different L1 vCPUs at the same time, but that would be a L1 KVM bug
1669 * and it's not obviously worth a new data structure to do it.
1670 */
1671
1672 env->tb_env->tb_offset += spapr_cpu->nested_tb_offset;
1673 spapr_cpu->in_nested = true;
1674
1675 hreg_compute_hflags(env);
1676 ppc_maybe_interrupt(env);
1677 tlb_flush(cs);
1678 env->reserve_addr = -1; /* Reset the reservation */
1679
1680 /*
1681 * The spapr hcall helper sets env->gpr[3] to the return value, but at
1682 * this point the L1 is not returning from the hcall but rather we
1683 * start running the L2, so r3 must not be clobbered, so return env->gpr[3]
1684 * to leave it unchanged.
1685 */
1686 return env->gpr[3];
1687 }
1688
1689 void spapr_exit_nested(PowerPCCPU *cpu, int excp)
1690 {
1691 CPUState *cs = CPU(cpu);
1692 CPUPPCState *env = &cpu->env;
1693 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1694 target_ulong r3_return = env->excp_vectors[excp]; /* hcall return value */
1695 target_ulong hv_ptr = spapr_cpu->nested_host_state->gpr[4];
1696 target_ulong regs_ptr = spapr_cpu->nested_host_state->gpr[5];
1697 struct kvmppc_hv_guest_state *hvstate;
1698 struct kvmppc_pt_regs *regs;
1699 hwaddr len;
1700 uint64_t cr;
1701 int i;
1702
1703 assert(spapr_cpu->in_nested);
1704
1705 cpu_ppc_hdecr_exit(env);
1706
1707 len = sizeof(*hvstate);
1708 hvstate = address_space_map(CPU(cpu)->as, hv_ptr, &len, true,
1709 MEMTXATTRS_UNSPECIFIED);
1710 if (len != sizeof(*hvstate)) {
1711 address_space_unmap(CPU(cpu)->as, hvstate, len, 0, true);
1712 r3_return = H_PARAMETER;
1713 goto out_restore_l1;
1714 }
1715
1716 hvstate->cfar = env->cfar;
1717 hvstate->lpcr = env->spr[SPR_LPCR];
1718 hvstate->pcr = env->spr[SPR_PCR];
1719 hvstate->dpdes = env->spr[SPR_DPDES];
1720 hvstate->hfscr = env->spr[SPR_HFSCR];
1721
1722 if (excp == POWERPC_EXCP_HDSI) {
1723 hvstate->hdar = env->spr[SPR_HDAR];
1724 hvstate->hdsisr = env->spr[SPR_HDSISR];
1725 hvstate->asdr = env->spr[SPR_ASDR];
1726 } else if (excp == POWERPC_EXCP_HISI) {
1727 hvstate->asdr = env->spr[SPR_ASDR];
1728 }
1729
1730 /* HEIR should be implemented for HV mode and saved here. */
1731 hvstate->srr0 = env->spr[SPR_SRR0];
1732 hvstate->srr1 = env->spr[SPR_SRR1];
1733 hvstate->sprg[0] = env->spr[SPR_SPRG0];
1734 hvstate->sprg[1] = env->spr[SPR_SPRG1];
1735 hvstate->sprg[2] = env->spr[SPR_SPRG2];
1736 hvstate->sprg[3] = env->spr[SPR_SPRG3];
1737 hvstate->pidr = env->spr[SPR_BOOKS_PID];
1738 hvstate->ppr = env->spr[SPR_PPR];
1739
1740 /* Is it okay to specify write length larger than actual data written? */
1741 address_space_unmap(CPU(cpu)->as, hvstate, len, len, true);
1742
1743 len = sizeof(*regs);
1744 regs = address_space_map(CPU(cpu)->as, regs_ptr, &len, true,
1745 MEMTXATTRS_UNSPECIFIED);
1746 if (!regs || len != sizeof(*regs)) {
1747 address_space_unmap(CPU(cpu)->as, regs, len, 0, true);
1748 r3_return = H_P2;
1749 goto out_restore_l1;
1750 }
1751
1752 len = sizeof(env->gpr);
1753 assert(len == sizeof(regs->gpr));
1754 memcpy(regs->gpr, env->gpr, len);
1755
1756 regs->link = env->lr;
1757 regs->ctr = env->ctr;
1758 regs->xer = cpu_read_xer(env);
1759
1760 cr = 0;
1761 for (i = 0; i < 8; i++) {
1762 cr |= (env->crf[i] & 15) << (4 * (7 - i));
1763 }
1764 regs->ccr = cr;
1765
1766 if (excp == POWERPC_EXCP_MCHECK ||
1767 excp == POWERPC_EXCP_RESET ||
1768 excp == POWERPC_EXCP_SYSCALL) {
1769 regs->nip = env->spr[SPR_SRR0];
1770 regs->msr = env->spr[SPR_SRR1] & env->msr_mask;
1771 } else {
1772 regs->nip = env->spr[SPR_HSRR0];
1773 regs->msr = env->spr[SPR_HSRR1] & env->msr_mask;
1774 }
1775
1776 /* Is it okay to specify write length larger than actual data written? */
1777 address_space_unmap(CPU(cpu)->as, regs, len, len, true);
1778
1779 out_restore_l1:
1780 memcpy(env->gpr, spapr_cpu->nested_host_state->gpr, sizeof(env->gpr));
1781 env->lr = spapr_cpu->nested_host_state->lr;
1782 env->ctr = spapr_cpu->nested_host_state->ctr;
1783 memcpy(env->crf, spapr_cpu->nested_host_state->crf, sizeof(env->crf));
1784 env->cfar = spapr_cpu->nested_host_state->cfar;
1785 env->xer = spapr_cpu->nested_host_state->xer;
1786 env->so = spapr_cpu->nested_host_state->so;
1787 env->ov = spapr_cpu->nested_host_state->ov;
1788 env->ov32 = spapr_cpu->nested_host_state->ov32;
1789 env->ca32 = spapr_cpu->nested_host_state->ca32;
1790 env->msr = spapr_cpu->nested_host_state->msr;
1791 env->nip = spapr_cpu->nested_host_state->nip;
1792
1793 assert(env->spr[SPR_LPIDR] != 0);
1794 env->spr[SPR_LPCR] = spapr_cpu->nested_host_state->spr[SPR_LPCR];
1795 env->spr[SPR_LPIDR] = spapr_cpu->nested_host_state->spr[SPR_LPIDR];
1796 env->spr[SPR_PCR] = spapr_cpu->nested_host_state->spr[SPR_PCR];
1797 env->spr[SPR_DPDES] = 0;
1798 env->spr[SPR_HFSCR] = spapr_cpu->nested_host_state->spr[SPR_HFSCR];
1799 env->spr[SPR_SRR0] = spapr_cpu->nested_host_state->spr[SPR_SRR0];
1800 env->spr[SPR_SRR1] = spapr_cpu->nested_host_state->spr[SPR_SRR1];
1801 env->spr[SPR_SPRG0] = spapr_cpu->nested_host_state->spr[SPR_SPRG0];
1802 env->spr[SPR_SPRG1] = spapr_cpu->nested_host_state->spr[SPR_SPRG1];
1803 env->spr[SPR_SPRG2] = spapr_cpu->nested_host_state->spr[SPR_SPRG2];
1804 env->spr[SPR_SPRG3] = spapr_cpu->nested_host_state->spr[SPR_SPRG3];
1805 env->spr[SPR_BOOKS_PID] = spapr_cpu->nested_host_state->spr[SPR_BOOKS_PID];
1806 env->spr[SPR_PPR] = spapr_cpu->nested_host_state->spr[SPR_PPR];
1807
1808 /*
1809 * Return the interrupt vector address from H_ENTER_NESTED to the L1
1810 * (or error code).
1811 */
1812 env->gpr[3] = r3_return;
1813
1814 env->tb_env->tb_offset -= spapr_cpu->nested_tb_offset;
1815 spapr_cpu->in_nested = false;
1816
1817 hreg_compute_hflags(env);
1818 ppc_maybe_interrupt(env);
1819 tlb_flush(cs);
1820 env->reserve_addr = -1; /* Reset the reservation */
1821
1822 g_free(spapr_cpu->nested_host_state);
1823 spapr_cpu->nested_host_state = NULL;
1824 }
1825
1826 static void hypercall_register_nested(void)
1827 {
1828 spapr_register_hypercall(KVMPPC_H_SET_PARTITION_TABLE, h_set_ptbl);
1829 spapr_register_hypercall(KVMPPC_H_ENTER_NESTED, h_enter_nested);
1830 spapr_register_hypercall(KVMPPC_H_TLB_INVALIDATE, h_tlb_invalidate);
1831 spapr_register_hypercall(KVMPPC_H_COPY_TOFROM_GUEST, h_copy_tofrom_guest);
1832 }
1833
1834 static void hypercall_register_softmmu(void)
1835 {
1836 /* DO NOTHING */
1837 }
1838 #else
1839 void spapr_exit_nested(PowerPCCPU *cpu, int excp)
1840 {
1841 g_assert_not_reached();
1842 }
1843
1844 static target_ulong h_softmmu(PowerPCCPU *cpu, SpaprMachineState *spapr,
1845 target_ulong opcode, target_ulong *args)
1846 {
1847 g_assert_not_reached();
1848 }
1849
1850 static void hypercall_register_nested(void)
1851 {
1852 /* DO NOTHING */
1853 }
1854
1855 static void hypercall_register_softmmu(void)
1856 {
1857 /* hcall-pft */
1858 spapr_register_hypercall(H_ENTER, h_softmmu);
1859 spapr_register_hypercall(H_REMOVE, h_softmmu);
1860 spapr_register_hypercall(H_PROTECT, h_softmmu);
1861 spapr_register_hypercall(H_READ, h_softmmu);
1862
1863 /* hcall-bulk */
1864 spapr_register_hypercall(H_BULK_REMOVE, h_softmmu);
1865 }
1866 #endif
1867
1868 static void hypercall_register_types(void)
1869 {
1870 hypercall_register_softmmu();
1871
1872 /* hcall-hpt-resize */
1873 spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare);
1874 spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit);
1875
1876 /* hcall-splpar */
1877 spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
1878 spapr_register_hypercall(H_CEDE, h_cede);
1879 spapr_register_hypercall(H_CONFER, h_confer);
1880 spapr_register_hypercall(H_PROD, h_prod);
1881
1882 /* hcall-join */
1883 spapr_register_hypercall(H_JOIN, h_join);
1884
1885 spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset);
1886
1887 /* processor register resource access h-calls */
1888 spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
1889 spapr_register_hypercall(H_SET_DABR, h_set_dabr);
1890 spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
1891 spapr_register_hypercall(H_PAGE_INIT, h_page_init);
1892 spapr_register_hypercall(H_SET_MODE, h_set_mode);
1893
1894 /* In Memory Table MMU h-calls */
1895 spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb);
1896 spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid);
1897 spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table);
1898
1899 /* hcall-get-cpu-characteristics */
1900 spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS,
1901 h_get_cpu_characteristics);
1902
1903 /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
1904 * here between the "CI" and the "CACHE" variants, they will use whatever
1905 * mapping attributes qemu is using. When using KVM, the kernel will
1906 * enforce the attributes more strongly
1907 */
1908 spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
1909 spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
1910 spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
1911 spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
1912 spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
1913 spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
1914 spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);
1915
1916 /* qemu/KVM-PPC specific hcalls */
1917 spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
1918
1919 /* ibm,client-architecture-support support */
1920 spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
1921
1922 spapr_register_hypercall(KVMPPC_H_UPDATE_DT, h_update_dt);
1923
1924 hypercall_register_nested();
1925 }
1926
1927 type_init(hypercall_register_types)