]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr_hcall.c
ppc/pnv: add PHB4 helpers for user created pnv-phb
[mirror_qemu.git] / hw / ppc / spapr_hcall.c
1 #include "qemu/osdep.h"
2 #include "qemu/cutils.h"
3 #include "qapi/error.h"
4 #include "sysemu/hw_accel.h"
5 #include "sysemu/runstate.h"
6 #include "qemu/log.h"
7 #include "qemu/main-loop.h"
8 #include "qemu/module.h"
9 #include "qemu/error-report.h"
10 #include "exec/exec-all.h"
11 #include "helper_regs.h"
12 #include "hw/ppc/ppc.h"
13 #include "hw/ppc/spapr.h"
14 #include "hw/ppc/spapr_cpu_core.h"
15 #include "mmu-hash64.h"
16 #include "cpu-models.h"
17 #include "trace.h"
18 #include "kvm_ppc.h"
19 #include "hw/ppc/fdt.h"
20 #include "hw/ppc/spapr_ovec.h"
21 #include "hw/ppc/spapr_numa.h"
22 #include "mmu-book3s-v3.h"
23 #include "hw/mem/memory-device.h"
24
25 bool is_ram_address(SpaprMachineState *spapr, hwaddr addr)
26 {
27 MachineState *machine = MACHINE(spapr);
28 DeviceMemoryState *dms = machine->device_memory;
29
30 if (addr < machine->ram_size) {
31 return true;
32 }
33 if ((addr >= dms->base)
34 && ((addr - dms->base) < memory_region_size(&dms->mr))) {
35 return true;
36 }
37
38 return false;
39 }
40
41 /* Convert a return code from the KVM ioctl()s implementing resize HPT
42 * into a PAPR hypercall return code */
43 static target_ulong resize_hpt_convert_rc(int ret)
44 {
45 if (ret >= 100000) {
46 return H_LONG_BUSY_ORDER_100_SEC;
47 } else if (ret >= 10000) {
48 return H_LONG_BUSY_ORDER_10_SEC;
49 } else if (ret >= 1000) {
50 return H_LONG_BUSY_ORDER_1_SEC;
51 } else if (ret >= 100) {
52 return H_LONG_BUSY_ORDER_100_MSEC;
53 } else if (ret >= 10) {
54 return H_LONG_BUSY_ORDER_10_MSEC;
55 } else if (ret > 0) {
56 return H_LONG_BUSY_ORDER_1_MSEC;
57 }
58
59 switch (ret) {
60 case 0:
61 return H_SUCCESS;
62 case -EPERM:
63 return H_AUTHORITY;
64 case -EINVAL:
65 return H_PARAMETER;
66 case -ENXIO:
67 return H_CLOSED;
68 case -ENOSPC:
69 return H_PTEG_FULL;
70 case -EBUSY:
71 return H_BUSY;
72 case -ENOMEM:
73 return H_NO_MEM;
74 default:
75 return H_HARDWARE;
76 }
77 }
78
79 static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu,
80 SpaprMachineState *spapr,
81 target_ulong opcode,
82 target_ulong *args)
83 {
84 target_ulong flags = args[0];
85 int shift = args[1];
86 uint64_t current_ram_size;
87 int rc;
88
89 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
90 return H_AUTHORITY;
91 }
92
93 if (!spapr->htab_shift) {
94 /* Radix guest, no HPT */
95 return H_NOT_AVAILABLE;
96 }
97
98 trace_spapr_h_resize_hpt_prepare(flags, shift);
99
100 if (flags != 0) {
101 return H_PARAMETER;
102 }
103
104 if (shift && ((shift < 18) || (shift > 46))) {
105 return H_PARAMETER;
106 }
107
108 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
109
110 /* We only allow the guest to allocate an HPT one order above what
111 * we'd normally give them (to stop a small guest claiming a huge
112 * chunk of resources in the HPT */
113 if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) {
114 return H_RESOURCE;
115 }
116
117 rc = kvmppc_resize_hpt_prepare(cpu, flags, shift);
118 if (rc != -ENOSYS) {
119 return resize_hpt_convert_rc(rc);
120 }
121
122 if (kvm_enabled()) {
123 return H_HARDWARE;
124 }
125
126 return softmmu_resize_hpt_prepare(cpu, spapr, shift);
127 }
128
129 static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data)
130 {
131 int ret;
132
133 cpu_synchronize_state(cs);
134
135 ret = kvmppc_put_books_sregs(POWERPC_CPU(cs));
136 if (ret < 0) {
137 error_report("failed to push sregs to KVM: %s", strerror(-ret));
138 exit(1);
139 }
140 }
141
142 void push_sregs_to_kvm_pr(SpaprMachineState *spapr)
143 {
144 CPUState *cs;
145
146 /*
147 * This is a hack for the benefit of KVM PR - it abuses the SDR1
148 * slot in kvm_sregs to communicate the userspace address of the
149 * HPT
150 */
151 if (!kvm_enabled() || !spapr->htab) {
152 return;
153 }
154
155 CPU_FOREACH(cs) {
156 run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL);
157 }
158 }
159
160 static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu,
161 SpaprMachineState *spapr,
162 target_ulong opcode,
163 target_ulong *args)
164 {
165 target_ulong flags = args[0];
166 target_ulong shift = args[1];
167 int rc;
168
169 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
170 return H_AUTHORITY;
171 }
172
173 if (!spapr->htab_shift) {
174 /* Radix guest, no HPT */
175 return H_NOT_AVAILABLE;
176 }
177
178 trace_spapr_h_resize_hpt_commit(flags, shift);
179
180 rc = kvmppc_resize_hpt_commit(cpu, flags, shift);
181 if (rc != -ENOSYS) {
182 rc = resize_hpt_convert_rc(rc);
183 if (rc == H_SUCCESS) {
184 /* Need to set the new htab_shift in the machine state */
185 spapr->htab_shift = shift;
186 }
187 return rc;
188 }
189
190 if (kvm_enabled()) {
191 return H_HARDWARE;
192 }
193
194 return softmmu_resize_hpt_commit(cpu, spapr, flags, shift);
195 }
196
197
198
199 static target_ulong h_set_sprg0(PowerPCCPU *cpu, SpaprMachineState *spapr,
200 target_ulong opcode, target_ulong *args)
201 {
202 cpu_synchronize_state(CPU(cpu));
203 cpu->env.spr[SPR_SPRG0] = args[0];
204
205 return H_SUCCESS;
206 }
207
208 static target_ulong h_set_dabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
209 target_ulong opcode, target_ulong *args)
210 {
211 if (!ppc_has_spr(cpu, SPR_DABR)) {
212 return H_HARDWARE; /* DABR register not available */
213 }
214 cpu_synchronize_state(CPU(cpu));
215
216 if (ppc_has_spr(cpu, SPR_DABRX)) {
217 cpu->env.spr[SPR_DABRX] = 0x3; /* Use Problem and Privileged state */
218 } else if (!(args[0] & 0x4)) { /* Breakpoint Translation set? */
219 return H_RESERVED_DABR;
220 }
221
222 cpu->env.spr[SPR_DABR] = args[0];
223 return H_SUCCESS;
224 }
225
226 static target_ulong h_set_xdabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
227 target_ulong opcode, target_ulong *args)
228 {
229 target_ulong dabrx = args[1];
230
231 if (!ppc_has_spr(cpu, SPR_DABR) || !ppc_has_spr(cpu, SPR_DABRX)) {
232 return H_HARDWARE;
233 }
234
235 if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
236 || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
237 return H_PARAMETER;
238 }
239
240 cpu_synchronize_state(CPU(cpu));
241 cpu->env.spr[SPR_DABRX] = dabrx;
242 cpu->env.spr[SPR_DABR] = args[0];
243
244 return H_SUCCESS;
245 }
246
247 static target_ulong h_page_init(PowerPCCPU *cpu, SpaprMachineState *spapr,
248 target_ulong opcode, target_ulong *args)
249 {
250 target_ulong flags = args[0];
251 hwaddr dst = args[1];
252 hwaddr src = args[2];
253 hwaddr len = TARGET_PAGE_SIZE;
254 uint8_t *pdst, *psrc;
255 target_long ret = H_SUCCESS;
256
257 if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
258 | H_COPY_PAGE | H_ZERO_PAGE)) {
259 qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
260 flags);
261 return H_PARAMETER;
262 }
263
264 /* Map-in destination */
265 if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
266 return H_PARAMETER;
267 }
268 pdst = cpu_physical_memory_map(dst, &len, true);
269 if (!pdst || len != TARGET_PAGE_SIZE) {
270 return H_PARAMETER;
271 }
272
273 if (flags & H_COPY_PAGE) {
274 /* Map-in source, copy to destination, and unmap source again */
275 if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
276 ret = H_PARAMETER;
277 goto unmap_out;
278 }
279 psrc = cpu_physical_memory_map(src, &len, false);
280 if (!psrc || len != TARGET_PAGE_SIZE) {
281 ret = H_PARAMETER;
282 goto unmap_out;
283 }
284 memcpy(pdst, psrc, len);
285 cpu_physical_memory_unmap(psrc, len, 0, len);
286 } else if (flags & H_ZERO_PAGE) {
287 memset(pdst, 0, len); /* Just clear the destination page */
288 }
289
290 if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
291 kvmppc_dcbst_range(cpu, pdst, len);
292 }
293 if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
294 if (kvm_enabled()) {
295 kvmppc_icbi_range(cpu, pdst, len);
296 } else {
297 tb_flush(CPU(cpu));
298 }
299 }
300
301 unmap_out:
302 cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
303 return ret;
304 }
305
306 #define FLAGS_REGISTER_VPA 0x0000200000000000ULL
307 #define FLAGS_REGISTER_DTL 0x0000400000000000ULL
308 #define FLAGS_REGISTER_SLBSHADOW 0x0000600000000000ULL
309 #define FLAGS_DEREGISTER_VPA 0x0000a00000000000ULL
310 #define FLAGS_DEREGISTER_DTL 0x0000c00000000000ULL
311 #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
312
313 static target_ulong register_vpa(PowerPCCPU *cpu, target_ulong vpa)
314 {
315 CPUState *cs = CPU(cpu);
316 CPUPPCState *env = &cpu->env;
317 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
318 uint16_t size;
319 uint8_t tmp;
320
321 if (vpa == 0) {
322 hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
323 return H_HARDWARE;
324 }
325
326 if (vpa % env->dcache_line_size) {
327 return H_PARAMETER;
328 }
329 /* FIXME: bounds check the address */
330
331 size = lduw_be_phys(cs->as, vpa + 0x4);
332
333 if (size < VPA_MIN_SIZE) {
334 return H_PARAMETER;
335 }
336
337 /* VPA is not allowed to cross a page boundary */
338 if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
339 return H_PARAMETER;
340 }
341
342 spapr_cpu->vpa_addr = vpa;
343
344 tmp = ldub_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET);
345 tmp |= VPA_SHARED_PROC_VAL;
346 stb_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
347
348 return H_SUCCESS;
349 }
350
351 static target_ulong deregister_vpa(PowerPCCPU *cpu, target_ulong vpa)
352 {
353 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
354
355 if (spapr_cpu->slb_shadow_addr) {
356 return H_RESOURCE;
357 }
358
359 if (spapr_cpu->dtl_addr) {
360 return H_RESOURCE;
361 }
362
363 spapr_cpu->vpa_addr = 0;
364 return H_SUCCESS;
365 }
366
367 static target_ulong register_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
368 {
369 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
370 uint32_t size;
371
372 if (addr == 0) {
373 hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
374 return H_HARDWARE;
375 }
376
377 size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
378 if (size < 0x8) {
379 return H_PARAMETER;
380 }
381
382 if ((addr / 4096) != ((addr + size - 1) / 4096)) {
383 return H_PARAMETER;
384 }
385
386 if (!spapr_cpu->vpa_addr) {
387 return H_RESOURCE;
388 }
389
390 spapr_cpu->slb_shadow_addr = addr;
391 spapr_cpu->slb_shadow_size = size;
392
393 return H_SUCCESS;
394 }
395
396 static target_ulong deregister_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
397 {
398 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
399
400 spapr_cpu->slb_shadow_addr = 0;
401 spapr_cpu->slb_shadow_size = 0;
402 return H_SUCCESS;
403 }
404
405 static target_ulong register_dtl(PowerPCCPU *cpu, target_ulong addr)
406 {
407 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
408 uint32_t size;
409
410 if (addr == 0) {
411 hcall_dprintf("Can't cope with DTL at logical 0\n");
412 return H_HARDWARE;
413 }
414
415 size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
416
417 if (size < 48) {
418 return H_PARAMETER;
419 }
420
421 if (!spapr_cpu->vpa_addr) {
422 return H_RESOURCE;
423 }
424
425 spapr_cpu->dtl_addr = addr;
426 spapr_cpu->dtl_size = size;
427
428 return H_SUCCESS;
429 }
430
431 static target_ulong deregister_dtl(PowerPCCPU *cpu, target_ulong addr)
432 {
433 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
434
435 spapr_cpu->dtl_addr = 0;
436 spapr_cpu->dtl_size = 0;
437
438 return H_SUCCESS;
439 }
440
441 static target_ulong h_register_vpa(PowerPCCPU *cpu, SpaprMachineState *spapr,
442 target_ulong opcode, target_ulong *args)
443 {
444 target_ulong flags = args[0];
445 target_ulong procno = args[1];
446 target_ulong vpa = args[2];
447 target_ulong ret = H_PARAMETER;
448 PowerPCCPU *tcpu;
449
450 tcpu = spapr_find_cpu(procno);
451 if (!tcpu) {
452 return H_PARAMETER;
453 }
454
455 switch (flags) {
456 case FLAGS_REGISTER_VPA:
457 ret = register_vpa(tcpu, vpa);
458 break;
459
460 case FLAGS_DEREGISTER_VPA:
461 ret = deregister_vpa(tcpu, vpa);
462 break;
463
464 case FLAGS_REGISTER_SLBSHADOW:
465 ret = register_slb_shadow(tcpu, vpa);
466 break;
467
468 case FLAGS_DEREGISTER_SLBSHADOW:
469 ret = deregister_slb_shadow(tcpu, vpa);
470 break;
471
472 case FLAGS_REGISTER_DTL:
473 ret = register_dtl(tcpu, vpa);
474 break;
475
476 case FLAGS_DEREGISTER_DTL:
477 ret = deregister_dtl(tcpu, vpa);
478 break;
479 }
480
481 return ret;
482 }
483
484 static target_ulong h_cede(PowerPCCPU *cpu, SpaprMachineState *spapr,
485 target_ulong opcode, target_ulong *args)
486 {
487 CPUPPCState *env = &cpu->env;
488 CPUState *cs = CPU(cpu);
489 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
490
491 env->msr |= (1ULL << MSR_EE);
492 hreg_compute_hflags(env);
493
494 if (spapr_cpu->prod) {
495 spapr_cpu->prod = false;
496 return H_SUCCESS;
497 }
498
499 if (!cpu_has_work(cs)) {
500 cs->halted = 1;
501 cs->exception_index = EXCP_HLT;
502 cs->exit_request = 1;
503 }
504
505 return H_SUCCESS;
506 }
507
508 /*
509 * Confer to self, aka join. Cede could use the same pattern as well, if
510 * EXCP_HLT can be changed to ECXP_HALTED.
511 */
512 static target_ulong h_confer_self(PowerPCCPU *cpu)
513 {
514 CPUState *cs = CPU(cpu);
515 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
516
517 if (spapr_cpu->prod) {
518 spapr_cpu->prod = false;
519 return H_SUCCESS;
520 }
521 cs->halted = 1;
522 cs->exception_index = EXCP_HALTED;
523 cs->exit_request = 1;
524
525 return H_SUCCESS;
526 }
527
528 static target_ulong h_join(PowerPCCPU *cpu, SpaprMachineState *spapr,
529 target_ulong opcode, target_ulong *args)
530 {
531 CPUPPCState *env = &cpu->env;
532 CPUState *cs;
533 bool last_unjoined = true;
534
535 if (env->msr & (1ULL << MSR_EE)) {
536 return H_BAD_MODE;
537 }
538
539 /*
540 * Must not join the last CPU running. Interestingly, no such restriction
541 * for H_CONFER-to-self, but that is probably not intended to be used
542 * when H_JOIN is available.
543 */
544 CPU_FOREACH(cs) {
545 PowerPCCPU *c = POWERPC_CPU(cs);
546 CPUPPCState *e = &c->env;
547 if (c == cpu) {
548 continue;
549 }
550
551 /* Don't have a way to indicate joined, so use halted && MSR[EE]=0 */
552 if (!cs->halted || (e->msr & (1ULL << MSR_EE))) {
553 last_unjoined = false;
554 break;
555 }
556 }
557 if (last_unjoined) {
558 return H_CONTINUE;
559 }
560
561 return h_confer_self(cpu);
562 }
563
564 static target_ulong h_confer(PowerPCCPU *cpu, SpaprMachineState *spapr,
565 target_ulong opcode, target_ulong *args)
566 {
567 target_long target = args[0];
568 uint32_t dispatch = args[1];
569 CPUState *cs = CPU(cpu);
570 SpaprCpuState *spapr_cpu;
571
572 /*
573 * -1 means confer to all other CPUs without dispatch counter check,
574 * otherwise it's a targeted confer.
575 */
576 if (target != -1) {
577 PowerPCCPU *target_cpu = spapr_find_cpu(target);
578 uint32_t target_dispatch;
579
580 if (!target_cpu) {
581 return H_PARAMETER;
582 }
583
584 /*
585 * target == self is a special case, we wait until prodded, without
586 * dispatch counter check.
587 */
588 if (cpu == target_cpu) {
589 return h_confer_self(cpu);
590 }
591
592 spapr_cpu = spapr_cpu_state(target_cpu);
593 if (!spapr_cpu->vpa_addr || ((dispatch & 1) == 0)) {
594 return H_SUCCESS;
595 }
596
597 target_dispatch = ldl_be_phys(cs->as,
598 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
599 if (target_dispatch != dispatch) {
600 return H_SUCCESS;
601 }
602
603 /*
604 * The targeted confer does not do anything special beyond yielding
605 * the current vCPU, but even this should be better than nothing.
606 * At least for single-threaded tcg, it gives the target a chance to
607 * run before we run again. Multi-threaded tcg does not really do
608 * anything with EXCP_YIELD yet.
609 */
610 }
611
612 cs->exception_index = EXCP_YIELD;
613 cs->exit_request = 1;
614 cpu_loop_exit(cs);
615
616 return H_SUCCESS;
617 }
618
619 static target_ulong h_prod(PowerPCCPU *cpu, SpaprMachineState *spapr,
620 target_ulong opcode, target_ulong *args)
621 {
622 target_long target = args[0];
623 PowerPCCPU *tcpu;
624 CPUState *cs;
625 SpaprCpuState *spapr_cpu;
626
627 tcpu = spapr_find_cpu(target);
628 cs = CPU(tcpu);
629 if (!cs) {
630 return H_PARAMETER;
631 }
632
633 spapr_cpu = spapr_cpu_state(tcpu);
634 spapr_cpu->prod = true;
635 cs->halted = 0;
636 qemu_cpu_kick(cs);
637
638 return H_SUCCESS;
639 }
640
641 static target_ulong h_rtas(PowerPCCPU *cpu, SpaprMachineState *spapr,
642 target_ulong opcode, target_ulong *args)
643 {
644 target_ulong rtas_r3 = args[0];
645 uint32_t token = rtas_ld(rtas_r3, 0);
646 uint32_t nargs = rtas_ld(rtas_r3, 1);
647 uint32_t nret = rtas_ld(rtas_r3, 2);
648
649 return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
650 nret, rtas_r3 + 12 + 4*nargs);
651 }
652
653 static target_ulong h_logical_load(PowerPCCPU *cpu, SpaprMachineState *spapr,
654 target_ulong opcode, target_ulong *args)
655 {
656 CPUState *cs = CPU(cpu);
657 target_ulong size = args[0];
658 target_ulong addr = args[1];
659
660 switch (size) {
661 case 1:
662 args[0] = ldub_phys(cs->as, addr);
663 return H_SUCCESS;
664 case 2:
665 args[0] = lduw_phys(cs->as, addr);
666 return H_SUCCESS;
667 case 4:
668 args[0] = ldl_phys(cs->as, addr);
669 return H_SUCCESS;
670 case 8:
671 args[0] = ldq_phys(cs->as, addr);
672 return H_SUCCESS;
673 }
674 return H_PARAMETER;
675 }
676
677 static target_ulong h_logical_store(PowerPCCPU *cpu, SpaprMachineState *spapr,
678 target_ulong opcode, target_ulong *args)
679 {
680 CPUState *cs = CPU(cpu);
681
682 target_ulong size = args[0];
683 target_ulong addr = args[1];
684 target_ulong val = args[2];
685
686 switch (size) {
687 case 1:
688 stb_phys(cs->as, addr, val);
689 return H_SUCCESS;
690 case 2:
691 stw_phys(cs->as, addr, val);
692 return H_SUCCESS;
693 case 4:
694 stl_phys(cs->as, addr, val);
695 return H_SUCCESS;
696 case 8:
697 stq_phys(cs->as, addr, val);
698 return H_SUCCESS;
699 }
700 return H_PARAMETER;
701 }
702
703 static target_ulong h_logical_memop(PowerPCCPU *cpu, SpaprMachineState *spapr,
704 target_ulong opcode, target_ulong *args)
705 {
706 CPUState *cs = CPU(cpu);
707
708 target_ulong dst = args[0]; /* Destination address */
709 target_ulong src = args[1]; /* Source address */
710 target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
711 target_ulong count = args[3]; /* Element count */
712 target_ulong op = args[4]; /* 0 = copy, 1 = invert */
713 uint64_t tmp;
714 unsigned int mask = (1 << esize) - 1;
715 int step = 1 << esize;
716
717 if (count > 0x80000000) {
718 return H_PARAMETER;
719 }
720
721 if ((dst & mask) || (src & mask) || (op > 1)) {
722 return H_PARAMETER;
723 }
724
725 if (dst >= src && dst < (src + (count << esize))) {
726 dst = dst + ((count - 1) << esize);
727 src = src + ((count - 1) << esize);
728 step = -step;
729 }
730
731 while (count--) {
732 switch (esize) {
733 case 0:
734 tmp = ldub_phys(cs->as, src);
735 break;
736 case 1:
737 tmp = lduw_phys(cs->as, src);
738 break;
739 case 2:
740 tmp = ldl_phys(cs->as, src);
741 break;
742 case 3:
743 tmp = ldq_phys(cs->as, src);
744 break;
745 default:
746 return H_PARAMETER;
747 }
748 if (op == 1) {
749 tmp = ~tmp;
750 }
751 switch (esize) {
752 case 0:
753 stb_phys(cs->as, dst, tmp);
754 break;
755 case 1:
756 stw_phys(cs->as, dst, tmp);
757 break;
758 case 2:
759 stl_phys(cs->as, dst, tmp);
760 break;
761 case 3:
762 stq_phys(cs->as, dst, tmp);
763 break;
764 }
765 dst = dst + step;
766 src = src + step;
767 }
768
769 return H_SUCCESS;
770 }
771
772 static target_ulong h_logical_icbi(PowerPCCPU *cpu, SpaprMachineState *spapr,
773 target_ulong opcode, target_ulong *args)
774 {
775 /* Nothing to do on emulation, KVM will trap this in the kernel */
776 return H_SUCCESS;
777 }
778
779 static target_ulong h_logical_dcbf(PowerPCCPU *cpu, SpaprMachineState *spapr,
780 target_ulong opcode, target_ulong *args)
781 {
782 /* Nothing to do on emulation, KVM will trap this in the kernel */
783 return H_SUCCESS;
784 }
785
786 static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
787 SpaprMachineState *spapr,
788 target_ulong mflags,
789 target_ulong value1,
790 target_ulong value2)
791 {
792 if (value1) {
793 return H_P3;
794 }
795 if (value2) {
796 return H_P4;
797 }
798
799 switch (mflags) {
800 case H_SET_MODE_ENDIAN_BIG:
801 spapr_set_all_lpcrs(0, LPCR_ILE);
802 spapr_pci_switch_vga(spapr, true);
803 return H_SUCCESS;
804
805 case H_SET_MODE_ENDIAN_LITTLE:
806 spapr_set_all_lpcrs(LPCR_ILE, LPCR_ILE);
807 spapr_pci_switch_vga(spapr, false);
808 return H_SUCCESS;
809 }
810
811 return H_UNSUPPORTED_FLAG;
812 }
813
814 static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
815 target_ulong mflags,
816 target_ulong value1,
817 target_ulong value2)
818 {
819 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
820
821 if (!(pcc->insns_flags2 & PPC2_ISA207S)) {
822 return H_P2;
823 }
824 if (value1) {
825 return H_P3;
826 }
827 if (value2) {
828 return H_P4;
829 }
830
831 if (mflags == 1) {
832 /* AIL=1 is reserved in POWER8/POWER9/POWER10 */
833 return H_UNSUPPORTED_FLAG;
834 }
835
836 if (mflags == 2 && (pcc->insns_flags2 & PPC2_ISA310)) {
837 /* AIL=2 is reserved in POWER10 (ISA v3.1) */
838 return H_UNSUPPORTED_FLAG;
839 }
840
841 spapr_set_all_lpcrs(mflags << LPCR_AIL_SHIFT, LPCR_AIL);
842
843 return H_SUCCESS;
844 }
845
846 static target_ulong h_set_mode(PowerPCCPU *cpu, SpaprMachineState *spapr,
847 target_ulong opcode, target_ulong *args)
848 {
849 target_ulong resource = args[1];
850 target_ulong ret = H_P2;
851
852 switch (resource) {
853 case H_SET_MODE_RESOURCE_LE:
854 ret = h_set_mode_resource_le(cpu, spapr, args[0], args[2], args[3]);
855 break;
856 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
857 ret = h_set_mode_resource_addr_trans_mode(cpu, args[0],
858 args[2], args[3]);
859 break;
860 }
861
862 return ret;
863 }
864
865 static target_ulong h_clean_slb(PowerPCCPU *cpu, SpaprMachineState *spapr,
866 target_ulong opcode, target_ulong *args)
867 {
868 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
869 opcode, " (H_CLEAN_SLB)");
870 return H_FUNCTION;
871 }
872
873 static target_ulong h_invalidate_pid(PowerPCCPU *cpu, SpaprMachineState *spapr,
874 target_ulong opcode, target_ulong *args)
875 {
876 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
877 opcode, " (H_INVALIDATE_PID)");
878 return H_FUNCTION;
879 }
880
881 static void spapr_check_setup_free_hpt(SpaprMachineState *spapr,
882 uint64_t patbe_old, uint64_t patbe_new)
883 {
884 /*
885 * We have 4 Options:
886 * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
887 * HASH->RADIX : Free HPT
888 * RADIX->HASH : Allocate HPT
889 * NOTHING->HASH : Allocate HPT
890 * Note: NOTHING implies the case where we said the guest could choose
891 * later and so assumed radix and now it's called H_REG_PROC_TBL
892 */
893
894 if ((patbe_old & PATE1_GR) == (patbe_new & PATE1_GR)) {
895 /* We assume RADIX, so this catches all the "Do Nothing" cases */
896 } else if (!(patbe_old & PATE1_GR)) {
897 /* HASH->RADIX : Free HPT */
898 spapr_free_hpt(spapr);
899 } else if (!(patbe_new & PATE1_GR)) {
900 /* RADIX->HASH || NOTHING->HASH : Allocate HPT */
901 spapr_setup_hpt(spapr);
902 }
903 return;
904 }
905
906 #define FLAGS_MASK 0x01FULL
907 #define FLAG_MODIFY 0x10
908 #define FLAG_REGISTER 0x08
909 #define FLAG_RADIX 0x04
910 #define FLAG_HASH_PROC_TBL 0x02
911 #define FLAG_GTSE 0x01
912
913 static target_ulong h_register_process_table(PowerPCCPU *cpu,
914 SpaprMachineState *spapr,
915 target_ulong opcode,
916 target_ulong *args)
917 {
918 target_ulong flags = args[0];
919 target_ulong proc_tbl = args[1];
920 target_ulong page_size = args[2];
921 target_ulong table_size = args[3];
922 target_ulong update_lpcr = 0;
923 target_ulong table_byte_size;
924 uint64_t cproc;
925
926 if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */
927 return H_PARAMETER;
928 }
929 if (flags & FLAG_MODIFY) {
930 if (flags & FLAG_REGISTER) {
931 /* Check process table alignment */
932 table_byte_size = 1ULL << (table_size + 12);
933 if (proc_tbl & (table_byte_size - 1)) {
934 qemu_log_mask(LOG_GUEST_ERROR,
935 "%s: process table not properly aligned: proc_tbl 0x"
936 TARGET_FMT_lx" proc_tbl_size 0x"TARGET_FMT_lx"\n",
937 __func__, proc_tbl, table_byte_size);
938 }
939 if (flags & FLAG_RADIX) { /* Register new RADIX process table */
940 if (proc_tbl & 0xfff || proc_tbl >> 60) {
941 return H_P2;
942 } else if (page_size) {
943 return H_P3;
944 } else if (table_size > 24) {
945 return H_P4;
946 }
947 cproc = PATE1_GR | proc_tbl | table_size;
948 } else { /* Register new HPT process table */
949 if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */
950 /* TODO - Not Supported */
951 /* Technically caused by flag bits => H_PARAMETER */
952 return H_PARAMETER;
953 } else { /* Hash with SLB */
954 if (proc_tbl >> 38) {
955 return H_P2;
956 } else if (page_size & ~0x7) {
957 return H_P3;
958 } else if (table_size > 24) {
959 return H_P4;
960 }
961 }
962 cproc = (proc_tbl << 25) | page_size << 5 | table_size;
963 }
964
965 } else { /* Deregister current process table */
966 /*
967 * Set to benign value: (current GR) | 0. This allows
968 * deregistration in KVM to succeed even if the radix bit
969 * in flags doesn't match the radix bit in the old PATE.
970 */
971 cproc = spapr->patb_entry & PATE1_GR;
972 }
973 } else { /* Maintain current registration */
974 if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATE1_GR)) {
975 /* Technically caused by flag bits => H_PARAMETER */
976 return H_PARAMETER; /* Existing Process Table Mismatch */
977 }
978 cproc = spapr->patb_entry;
979 }
980
981 /* Check if we need to setup OR free the hpt */
982 spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc);
983
984 spapr->patb_entry = cproc; /* Save new process table */
985
986 /* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */
987 if (flags & FLAG_RADIX) /* Radix must use process tables, also set HR */
988 update_lpcr |= (LPCR_UPRT | LPCR_HR);
989 else if (flags & FLAG_HASH_PROC_TBL) /* Hash with process tables */
990 update_lpcr |= LPCR_UPRT;
991 if (flags & FLAG_GTSE) /* Guest translation shootdown enable */
992 update_lpcr |= LPCR_GTSE;
993
994 spapr_set_all_lpcrs(update_lpcr, LPCR_UPRT | LPCR_HR | LPCR_GTSE);
995
996 if (kvm_enabled()) {
997 return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX,
998 flags & FLAG_GTSE, cproc);
999 }
1000 return H_SUCCESS;
1001 }
1002
1003 #define H_SIGNAL_SYS_RESET_ALL -1
1004 #define H_SIGNAL_SYS_RESET_ALLBUTSELF -2
1005
1006 static target_ulong h_signal_sys_reset(PowerPCCPU *cpu,
1007 SpaprMachineState *spapr,
1008 target_ulong opcode, target_ulong *args)
1009 {
1010 target_long target = args[0];
1011 CPUState *cs;
1012
1013 if (target < 0) {
1014 /* Broadcast */
1015 if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1016 return H_PARAMETER;
1017 }
1018
1019 CPU_FOREACH(cs) {
1020 PowerPCCPU *c = POWERPC_CPU(cs);
1021
1022 if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1023 if (c == cpu) {
1024 continue;
1025 }
1026 }
1027 run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1028 }
1029 return H_SUCCESS;
1030
1031 } else {
1032 /* Unicast */
1033 cs = CPU(spapr_find_cpu(target));
1034 if (cs) {
1035 run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1036 return H_SUCCESS;
1037 }
1038 return H_PARAMETER;
1039 }
1040 }
1041
1042 /* Returns either a logical PVR or zero if none was found */
1043 static uint32_t cas_check_pvr(PowerPCCPU *cpu, uint32_t max_compat,
1044 target_ulong *addr, bool *raw_mode_supported)
1045 {
1046 bool explicit_match = false; /* Matched the CPU's real PVR */
1047 uint32_t best_compat = 0;
1048 int i;
1049
1050 /*
1051 * We scan the supplied table of PVRs looking for two things
1052 * 1. Is our real CPU PVR in the list?
1053 * 2. What's the "best" listed logical PVR
1054 */
1055 for (i = 0; i < 512; ++i) {
1056 uint32_t pvr, pvr_mask;
1057
1058 pvr_mask = ldl_be_phys(&address_space_memory, *addr);
1059 pvr = ldl_be_phys(&address_space_memory, *addr + 4);
1060 *addr += 8;
1061
1062 if (~pvr_mask & pvr) {
1063 break; /* Terminator record */
1064 }
1065
1066 if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) {
1067 explicit_match = true;
1068 } else {
1069 if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) {
1070 best_compat = pvr;
1071 }
1072 }
1073 }
1074
1075 *raw_mode_supported = explicit_match;
1076
1077 /* Parsing finished */
1078 trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat);
1079
1080 return best_compat;
1081 }
1082
1083 static
1084 target_ulong do_client_architecture_support(PowerPCCPU *cpu,
1085 SpaprMachineState *spapr,
1086 target_ulong vec,
1087 target_ulong fdt_bufsize)
1088 {
1089 target_ulong ov_table; /* Working address in data buffer */
1090 uint32_t cas_pvr;
1091 SpaprOptionVector *ov1_guest, *ov5_guest;
1092 bool guest_radix;
1093 bool raw_mode_supported = false;
1094 bool guest_xive;
1095 CPUState *cs;
1096 void *fdt;
1097 uint32_t max_compat = spapr->max_compat_pvr;
1098
1099 /* CAS is supposed to be called early when only the boot vCPU is active. */
1100 CPU_FOREACH(cs) {
1101 if (cs == CPU(cpu)) {
1102 continue;
1103 }
1104 if (!cs->halted) {
1105 warn_report("guest has multiple active vCPUs at CAS, which is not allowed");
1106 return H_MULTI_THREADS_ACTIVE;
1107 }
1108 }
1109
1110 cas_pvr = cas_check_pvr(cpu, max_compat, &vec, &raw_mode_supported);
1111 if (!cas_pvr && (!raw_mode_supported || max_compat)) {
1112 /*
1113 * We couldn't find a suitable compatibility mode, and either
1114 * the guest doesn't support "raw" mode for this CPU, or "raw"
1115 * mode is disabled because a maximum compat mode is set.
1116 */
1117 error_report("Couldn't negotiate a suitable PVR during CAS");
1118 return H_HARDWARE;
1119 }
1120
1121 /* Update CPUs */
1122 if (cpu->compat_pvr != cas_pvr) {
1123 Error *local_err = NULL;
1124
1125 if (ppc_set_compat_all(cas_pvr, &local_err) < 0) {
1126 /* We fail to set compat mode (likely because running with KVM PR),
1127 * but maybe we can fallback to raw mode if the guest supports it.
1128 */
1129 if (!raw_mode_supported) {
1130 error_report_err(local_err);
1131 return H_HARDWARE;
1132 }
1133 error_free(local_err);
1134 }
1135 }
1136
1137 /* For the future use: here @ov_table points to the first option vector */
1138 ov_table = vec;
1139
1140 ov1_guest = spapr_ovec_parse_vector(ov_table, 1);
1141 if (!ov1_guest) {
1142 warn_report("guest didn't provide option vector 1");
1143 return H_PARAMETER;
1144 }
1145 ov5_guest = spapr_ovec_parse_vector(ov_table, 5);
1146 if (!ov5_guest) {
1147 spapr_ovec_cleanup(ov1_guest);
1148 warn_report("guest didn't provide option vector 5");
1149 return H_PARAMETER;
1150 }
1151 if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) {
1152 error_report("guest requested hash and radix MMU, which is invalid.");
1153 exit(EXIT_FAILURE);
1154 }
1155 if (spapr_ovec_test(ov5_guest, OV5_XIVE_BOTH)) {
1156 error_report("guest requested an invalid interrupt mode");
1157 exit(EXIT_FAILURE);
1158 }
1159
1160 guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300);
1161
1162 guest_xive = spapr_ovec_test(ov5_guest, OV5_XIVE_EXPLOIT);
1163
1164 /*
1165 * HPT resizing is a bit of a special case, because when enabled
1166 * we assume an HPT guest will support it until it says it
1167 * doesn't, instead of assuming it won't support it until it says
1168 * it does. Strictly speaking that approach could break for
1169 * guests which don't make a CAS call, but those are so old we
1170 * don't care about them. Without that assumption we'd have to
1171 * make at least a temporary allocation of an HPT sized for max
1172 * memory, which could be impossibly difficult under KVM HV if
1173 * maxram is large.
1174 */
1175 if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) {
1176 int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1177
1178 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) {
1179 error_report(
1180 "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required");
1181 exit(1);
1182 }
1183
1184 if (spapr->htab_shift < maxshift) {
1185 /* Guest doesn't know about HPT resizing, so we
1186 * pre-emptively resize for the maximum permitted RAM. At
1187 * the point this is called, nothing should have been
1188 * entered into the existing HPT */
1189 spapr_reallocate_hpt(spapr, maxshift, &error_fatal);
1190 push_sregs_to_kvm_pr(spapr);
1191 }
1192 }
1193
1194 /* NOTE: there are actually a number of ov5 bits where input from the
1195 * guest is always zero, and the platform/QEMU enables them independently
1196 * of guest input. To model these properly we'd want some sort of mask,
1197 * but since they only currently apply to memory migration as defined
1198 * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
1199 * to worry about this for now.
1200 */
1201
1202 /* full range of negotiated ov5 capabilities */
1203 spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest);
1204 spapr_ovec_cleanup(ov5_guest);
1205
1206 spapr_check_mmu_mode(guest_radix);
1207
1208 spapr->cas_pre_isa3_guest = !spapr_ovec_test(ov1_guest, OV1_PPC_3_00);
1209 spapr_ovec_cleanup(ov1_guest);
1210
1211 /*
1212 * Check for NUMA affinity conditions now that we know which NUMA
1213 * affinity the guest will use.
1214 */
1215 spapr_numa_associativity_check(spapr);
1216
1217 /*
1218 * Ensure the guest asks for an interrupt mode we support;
1219 * otherwise terminate the boot.
1220 */
1221 if (guest_xive) {
1222 if (!spapr->irq->xive) {
1223 error_report(
1224 "Guest requested unavailable interrupt mode (XIVE), try the ic-mode=xive or ic-mode=dual machine property");
1225 exit(EXIT_FAILURE);
1226 }
1227 } else {
1228 if (!spapr->irq->xics) {
1229 error_report(
1230 "Guest requested unavailable interrupt mode (XICS), either don't set the ic-mode machine property or try ic-mode=xics or ic-mode=dual");
1231 exit(EXIT_FAILURE);
1232 }
1233 }
1234
1235 spapr_irq_update_active_intc(spapr);
1236
1237 /*
1238 * Process all pending hot-plug/unplug requests now. An updated full
1239 * rendered FDT will be returned to the guest.
1240 */
1241 spapr_drc_reset_all(spapr);
1242 spapr_clear_pending_hotplug_events(spapr);
1243
1244 /*
1245 * If spapr_machine_reset() did not set up a HPT but one is necessary
1246 * (because the guest isn't going to use radix) then set it up here.
1247 */
1248 if ((spapr->patb_entry & PATE1_GR) && !guest_radix) {
1249 /* legacy hash or new hash: */
1250 spapr_setup_hpt(spapr);
1251 }
1252
1253 fdt = spapr_build_fdt(spapr, spapr->vof != NULL, fdt_bufsize);
1254 g_free(spapr->fdt_blob);
1255 spapr->fdt_size = fdt_totalsize(fdt);
1256 spapr->fdt_initial_size = spapr->fdt_size;
1257 spapr->fdt_blob = fdt;
1258
1259 return H_SUCCESS;
1260 }
1261
1262 static target_ulong h_client_architecture_support(PowerPCCPU *cpu,
1263 SpaprMachineState *spapr,
1264 target_ulong opcode,
1265 target_ulong *args)
1266 {
1267 target_ulong vec = ppc64_phys_to_real(args[0]);
1268 target_ulong fdt_buf = args[1];
1269 target_ulong fdt_bufsize = args[2];
1270 target_ulong ret;
1271 SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
1272
1273 if (fdt_bufsize < sizeof(hdr)) {
1274 error_report("SLOF provided insufficient CAS buffer "
1275 TARGET_FMT_lu " (min: %zu)", fdt_bufsize, sizeof(hdr));
1276 exit(EXIT_FAILURE);
1277 }
1278
1279 fdt_bufsize -= sizeof(hdr);
1280
1281 ret = do_client_architecture_support(cpu, spapr, vec, fdt_bufsize);
1282 if (ret == H_SUCCESS) {
1283 _FDT((fdt_pack(spapr->fdt_blob)));
1284 spapr->fdt_size = fdt_totalsize(spapr->fdt_blob);
1285 spapr->fdt_initial_size = spapr->fdt_size;
1286
1287 cpu_physical_memory_write(fdt_buf, &hdr, sizeof(hdr));
1288 cpu_physical_memory_write(fdt_buf + sizeof(hdr), spapr->fdt_blob,
1289 spapr->fdt_size);
1290 trace_spapr_cas_continue(spapr->fdt_size + sizeof(hdr));
1291 }
1292
1293 return ret;
1294 }
1295
1296 target_ulong spapr_vof_client_architecture_support(MachineState *ms,
1297 CPUState *cs,
1298 target_ulong ovec_addr)
1299 {
1300 SpaprMachineState *spapr = SPAPR_MACHINE(ms);
1301
1302 target_ulong ret = do_client_architecture_support(POWERPC_CPU(cs), spapr,
1303 ovec_addr, FDT_MAX_SIZE);
1304
1305 /*
1306 * This adds stdout and generates phandles for boottime and CAS FDTs.
1307 * It is alright to update the FDT here as do_client_architecture_support()
1308 * does not pack it.
1309 */
1310 spapr_vof_client_dt_finalize(spapr, spapr->fdt_blob);
1311
1312 return ret;
1313 }
1314
1315 static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu,
1316 SpaprMachineState *spapr,
1317 target_ulong opcode,
1318 target_ulong *args)
1319 {
1320 uint64_t characteristics = H_CPU_CHAR_HON_BRANCH_HINTS &
1321 ~H_CPU_CHAR_THR_RECONF_TRIG;
1322 uint64_t behaviour = H_CPU_BEHAV_FAVOUR_SECURITY;
1323 uint8_t safe_cache = spapr_get_cap(spapr, SPAPR_CAP_CFPC);
1324 uint8_t safe_bounds_check = spapr_get_cap(spapr, SPAPR_CAP_SBBC);
1325 uint8_t safe_indirect_branch = spapr_get_cap(spapr, SPAPR_CAP_IBS);
1326 uint8_t count_cache_flush_assist = spapr_get_cap(spapr,
1327 SPAPR_CAP_CCF_ASSIST);
1328
1329 switch (safe_cache) {
1330 case SPAPR_CAP_WORKAROUND:
1331 characteristics |= H_CPU_CHAR_L1D_FLUSH_ORI30;
1332 characteristics |= H_CPU_CHAR_L1D_FLUSH_TRIG2;
1333 characteristics |= H_CPU_CHAR_L1D_THREAD_PRIV;
1334 behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1335 break;
1336 case SPAPR_CAP_FIXED:
1337 behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_ENTRY;
1338 behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_UACCESS;
1339 break;
1340 default: /* broken */
1341 assert(safe_cache == SPAPR_CAP_BROKEN);
1342 behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1343 break;
1344 }
1345
1346 switch (safe_bounds_check) {
1347 case SPAPR_CAP_WORKAROUND:
1348 characteristics |= H_CPU_CHAR_SPEC_BAR_ORI31;
1349 behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1350 break;
1351 case SPAPR_CAP_FIXED:
1352 break;
1353 default: /* broken */
1354 assert(safe_bounds_check == SPAPR_CAP_BROKEN);
1355 behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1356 break;
1357 }
1358
1359 switch (safe_indirect_branch) {
1360 case SPAPR_CAP_FIXED_NA:
1361 break;
1362 case SPAPR_CAP_FIXED_CCD:
1363 characteristics |= H_CPU_CHAR_CACHE_COUNT_DIS;
1364 break;
1365 case SPAPR_CAP_FIXED_IBS:
1366 characteristics |= H_CPU_CHAR_BCCTRL_SERIALISED;
1367 break;
1368 case SPAPR_CAP_WORKAROUND:
1369 behaviour |= H_CPU_BEHAV_FLUSH_COUNT_CACHE;
1370 if (count_cache_flush_assist) {
1371 characteristics |= H_CPU_CHAR_BCCTR_FLUSH_ASSIST;
1372 }
1373 break;
1374 default: /* broken */
1375 assert(safe_indirect_branch == SPAPR_CAP_BROKEN);
1376 break;
1377 }
1378
1379 args[0] = characteristics;
1380 args[1] = behaviour;
1381 return H_SUCCESS;
1382 }
1383
1384 static target_ulong h_update_dt(PowerPCCPU *cpu, SpaprMachineState *spapr,
1385 target_ulong opcode, target_ulong *args)
1386 {
1387 target_ulong dt = ppc64_phys_to_real(args[0]);
1388 struct fdt_header hdr = { 0 };
1389 unsigned cb;
1390 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
1391 void *fdt;
1392
1393 cpu_physical_memory_read(dt, &hdr, sizeof(hdr));
1394 cb = fdt32_to_cpu(hdr.totalsize);
1395
1396 if (!smc->update_dt_enabled) {
1397 return H_SUCCESS;
1398 }
1399
1400 /* Check that the fdt did not grow out of proportion */
1401 if (cb > spapr->fdt_initial_size * 2) {
1402 trace_spapr_update_dt_failed_size(spapr->fdt_initial_size, cb,
1403 fdt32_to_cpu(hdr.magic));
1404 return H_PARAMETER;
1405 }
1406
1407 fdt = g_malloc0(cb);
1408 cpu_physical_memory_read(dt, fdt, cb);
1409
1410 /* Check the fdt consistency */
1411 if (fdt_check_full(fdt, cb)) {
1412 trace_spapr_update_dt_failed_check(spapr->fdt_initial_size, cb,
1413 fdt32_to_cpu(hdr.magic));
1414 return H_PARAMETER;
1415 }
1416
1417 g_free(spapr->fdt_blob);
1418 spapr->fdt_size = cb;
1419 spapr->fdt_blob = fdt;
1420 trace_spapr_update_dt(cb);
1421
1422 return H_SUCCESS;
1423 }
1424
1425 static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
1426 static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
1427 static spapr_hcall_fn svm_hypercall_table[(SVM_HCALL_MAX - SVM_HCALL_BASE) / 4 + 1];
1428
1429 void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
1430 {
1431 spapr_hcall_fn *slot;
1432
1433 if (opcode <= MAX_HCALL_OPCODE) {
1434 assert((opcode & 0x3) == 0);
1435
1436 slot = &papr_hypercall_table[opcode / 4];
1437 } else if (opcode >= SVM_HCALL_BASE && opcode <= SVM_HCALL_MAX) {
1438 /* we only have SVM-related hcall numbers assigned in multiples of 4 */
1439 assert((opcode & 0x3) == 0);
1440
1441 slot = &svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
1442 } else {
1443 assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
1444
1445 slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1446 }
1447
1448 assert(!(*slot));
1449 *slot = fn;
1450 }
1451
1452 target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
1453 target_ulong *args)
1454 {
1455 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1456
1457 if ((opcode <= MAX_HCALL_OPCODE)
1458 && ((opcode & 0x3) == 0)) {
1459 spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
1460
1461 if (fn) {
1462 return fn(cpu, spapr, opcode, args);
1463 }
1464 } else if ((opcode >= SVM_HCALL_BASE) &&
1465 (opcode <= SVM_HCALL_MAX)) {
1466 spapr_hcall_fn fn = svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
1467
1468 if (fn) {
1469 return fn(cpu, spapr, opcode, args);
1470 }
1471 } else if ((opcode >= KVMPPC_HCALL_BASE) &&
1472 (opcode <= KVMPPC_HCALL_MAX)) {
1473 spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1474
1475 if (fn) {
1476 return fn(cpu, spapr, opcode, args);
1477 }
1478 }
1479
1480 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
1481 opcode);
1482 return H_FUNCTION;
1483 }
1484
1485 #ifdef CONFIG_TCG
1486 #define PRTS_MASK 0x1f
1487
1488 static target_ulong h_set_ptbl(PowerPCCPU *cpu,
1489 SpaprMachineState *spapr,
1490 target_ulong opcode,
1491 target_ulong *args)
1492 {
1493 target_ulong ptcr = args[0];
1494
1495 if (!spapr_get_cap(spapr, SPAPR_CAP_NESTED_KVM_HV)) {
1496 return H_FUNCTION;
1497 }
1498
1499 if ((ptcr & PRTS_MASK) + 12 - 4 > 12) {
1500 return H_PARAMETER;
1501 }
1502
1503 spapr->nested_ptcr = ptcr; /* Save new partition table */
1504
1505 return H_SUCCESS;
1506 }
1507
1508 static target_ulong h_tlb_invalidate(PowerPCCPU *cpu,
1509 SpaprMachineState *spapr,
1510 target_ulong opcode,
1511 target_ulong *args)
1512 {
1513 /*
1514 * The spapr virtual hypervisor nested HV implementation retains no L2
1515 * translation state except for TLB. And the TLB is always invalidated
1516 * across L1<->L2 transitions, so nothing is required here.
1517 */
1518
1519 return H_SUCCESS;
1520 }
1521
1522 static target_ulong h_copy_tofrom_guest(PowerPCCPU *cpu,
1523 SpaprMachineState *spapr,
1524 target_ulong opcode,
1525 target_ulong *args)
1526 {
1527 /*
1528 * This HCALL is not required, L1 KVM will take a slow path and walk the
1529 * page tables manually to do the data copy.
1530 */
1531 return H_FUNCTION;
1532 }
1533
1534 /*
1535 * When this handler returns, the environment is switched to the L2 guest
1536 * and TCG begins running that. spapr_exit_nested() performs the switch from
1537 * L2 back to L1 and returns from the H_ENTER_NESTED hcall.
1538 */
1539 static target_ulong h_enter_nested(PowerPCCPU *cpu,
1540 SpaprMachineState *spapr,
1541 target_ulong opcode,
1542 target_ulong *args)
1543 {
1544 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
1545 CPUState *cs = CPU(cpu);
1546 CPUPPCState *env = &cpu->env;
1547 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1548 target_ulong hv_ptr = args[0];
1549 target_ulong regs_ptr = args[1];
1550 target_ulong hdec, now = cpu_ppc_load_tbl(env);
1551 target_ulong lpcr, lpcr_mask;
1552 struct kvmppc_hv_guest_state *hvstate;
1553 struct kvmppc_hv_guest_state hv_state;
1554 struct kvmppc_pt_regs *regs;
1555 hwaddr len;
1556 uint64_t cr;
1557 int i;
1558
1559 if (spapr->nested_ptcr == 0) {
1560 return H_NOT_AVAILABLE;
1561 }
1562
1563 len = sizeof(*hvstate);
1564 hvstate = address_space_map(CPU(cpu)->as, hv_ptr, &len, false,
1565 MEMTXATTRS_UNSPECIFIED);
1566 if (len != sizeof(*hvstate)) {
1567 address_space_unmap(CPU(cpu)->as, hvstate, len, 0, false);
1568 return H_PARAMETER;
1569 }
1570
1571 memcpy(&hv_state, hvstate, len);
1572
1573 address_space_unmap(CPU(cpu)->as, hvstate, len, len, false);
1574
1575 /*
1576 * We accept versions 1 and 2. Version 2 fields are unused because TCG
1577 * does not implement DAWR*.
1578 */
1579 if (hv_state.version > HV_GUEST_STATE_VERSION) {
1580 return H_PARAMETER;
1581 }
1582
1583 spapr_cpu->nested_host_state = g_try_new(CPUPPCState, 1);
1584 if (!spapr_cpu->nested_host_state) {
1585 return H_NO_MEM;
1586 }
1587
1588 memcpy(spapr_cpu->nested_host_state, env, sizeof(CPUPPCState));
1589
1590 len = sizeof(*regs);
1591 regs = address_space_map(CPU(cpu)->as, regs_ptr, &len, false,
1592 MEMTXATTRS_UNSPECIFIED);
1593 if (!regs || len != sizeof(*regs)) {
1594 address_space_unmap(CPU(cpu)->as, regs, len, 0, false);
1595 g_free(spapr_cpu->nested_host_state);
1596 return H_P2;
1597 }
1598
1599 len = sizeof(env->gpr);
1600 assert(len == sizeof(regs->gpr));
1601 memcpy(env->gpr, regs->gpr, len);
1602
1603 env->lr = regs->link;
1604 env->ctr = regs->ctr;
1605 cpu_write_xer(env, regs->xer);
1606
1607 cr = regs->ccr;
1608 for (i = 7; i >= 0; i--) {
1609 env->crf[i] = cr & 15;
1610 cr >>= 4;
1611 }
1612
1613 env->msr = regs->msr;
1614 env->nip = regs->nip;
1615
1616 address_space_unmap(CPU(cpu)->as, regs, len, len, false);
1617
1618 env->cfar = hv_state.cfar;
1619
1620 assert(env->spr[SPR_LPIDR] == 0);
1621 env->spr[SPR_LPIDR] = hv_state.lpid;
1622
1623 lpcr_mask = LPCR_DPFD | LPCR_ILE | LPCR_AIL | LPCR_LD | LPCR_MER;
1624 lpcr = (env->spr[SPR_LPCR] & ~lpcr_mask) | (hv_state.lpcr & lpcr_mask);
1625 lpcr |= LPCR_HR | LPCR_UPRT | LPCR_GTSE | LPCR_HVICE | LPCR_HDICE;
1626 lpcr &= ~LPCR_LPES0;
1627 env->spr[SPR_LPCR] = lpcr & pcc->lpcr_mask;
1628
1629 env->spr[SPR_PCR] = hv_state.pcr;
1630 /* hv_state.amor is not used */
1631 env->spr[SPR_DPDES] = hv_state.dpdes;
1632 env->spr[SPR_HFSCR] = hv_state.hfscr;
1633 hdec = hv_state.hdec_expiry - now;
1634 spapr_cpu->nested_tb_offset = hv_state.tb_offset;
1635 /* TCG does not implement DAWR*, CIABR, PURR, SPURR, IC, VTB, HEIR SPRs*/
1636 env->spr[SPR_SRR0] = hv_state.srr0;
1637 env->spr[SPR_SRR1] = hv_state.srr1;
1638 env->spr[SPR_SPRG0] = hv_state.sprg[0];
1639 env->spr[SPR_SPRG1] = hv_state.sprg[1];
1640 env->spr[SPR_SPRG2] = hv_state.sprg[2];
1641 env->spr[SPR_SPRG3] = hv_state.sprg[3];
1642 env->spr[SPR_BOOKS_PID] = hv_state.pidr;
1643 env->spr[SPR_PPR] = hv_state.ppr;
1644
1645 cpu_ppc_hdecr_init(env);
1646 cpu_ppc_store_hdecr(env, hdec);
1647
1648 /*
1649 * The hv_state.vcpu_token is not needed. It is used by the KVM
1650 * implementation to remember which L2 vCPU last ran on which physical
1651 * CPU so as to invalidate process scope translations if it is moved
1652 * between physical CPUs. For now TLBs are always flushed on L1<->L2
1653 * transitions so this is not a problem.
1654 *
1655 * Could validate that the same vcpu_token does not attempt to run on
1656 * different L1 vCPUs at the same time, but that would be a L1 KVM bug
1657 * and it's not obviously worth a new data structure to do it.
1658 */
1659
1660 env->tb_env->tb_offset += spapr_cpu->nested_tb_offset;
1661 spapr_cpu->in_nested = true;
1662
1663 hreg_compute_hflags(env);
1664 tlb_flush(cs);
1665 env->reserve_addr = -1; /* Reset the reservation */
1666
1667 /*
1668 * The spapr hcall helper sets env->gpr[3] to the return value, but at
1669 * this point the L1 is not returning from the hcall but rather we
1670 * start running the L2, so r3 must not be clobbered, so return env->gpr[3]
1671 * to leave it unchanged.
1672 */
1673 return env->gpr[3];
1674 }
1675
1676 void spapr_exit_nested(PowerPCCPU *cpu, int excp)
1677 {
1678 CPUState *cs = CPU(cpu);
1679 CPUPPCState *env = &cpu->env;
1680 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1681 target_ulong r3_return = env->excp_vectors[excp]; /* hcall return value */
1682 target_ulong hv_ptr = spapr_cpu->nested_host_state->gpr[4];
1683 target_ulong regs_ptr = spapr_cpu->nested_host_state->gpr[5];
1684 struct kvmppc_hv_guest_state *hvstate;
1685 struct kvmppc_pt_regs *regs;
1686 hwaddr len;
1687 uint64_t cr;
1688 int i;
1689
1690 assert(spapr_cpu->in_nested);
1691
1692 cpu_ppc_hdecr_exit(env);
1693
1694 len = sizeof(*hvstate);
1695 hvstate = address_space_map(CPU(cpu)->as, hv_ptr, &len, true,
1696 MEMTXATTRS_UNSPECIFIED);
1697 if (len != sizeof(*hvstate)) {
1698 address_space_unmap(CPU(cpu)->as, hvstate, len, 0, true);
1699 r3_return = H_PARAMETER;
1700 goto out_restore_l1;
1701 }
1702
1703 hvstate->cfar = env->cfar;
1704 hvstate->lpcr = env->spr[SPR_LPCR];
1705 hvstate->pcr = env->spr[SPR_PCR];
1706 hvstate->dpdes = env->spr[SPR_DPDES];
1707 hvstate->hfscr = env->spr[SPR_HFSCR];
1708
1709 if (excp == POWERPC_EXCP_HDSI) {
1710 hvstate->hdar = env->spr[SPR_HDAR];
1711 hvstate->hdsisr = env->spr[SPR_HDSISR];
1712 hvstate->asdr = env->spr[SPR_ASDR];
1713 } else if (excp == POWERPC_EXCP_HISI) {
1714 hvstate->asdr = env->spr[SPR_ASDR];
1715 }
1716
1717 /* HEIR should be implemented for HV mode and saved here. */
1718 hvstate->srr0 = env->spr[SPR_SRR0];
1719 hvstate->srr1 = env->spr[SPR_SRR1];
1720 hvstate->sprg[0] = env->spr[SPR_SPRG0];
1721 hvstate->sprg[1] = env->spr[SPR_SPRG1];
1722 hvstate->sprg[2] = env->spr[SPR_SPRG2];
1723 hvstate->sprg[3] = env->spr[SPR_SPRG3];
1724 hvstate->pidr = env->spr[SPR_BOOKS_PID];
1725 hvstate->ppr = env->spr[SPR_PPR];
1726
1727 /* Is it okay to specify write length larger than actual data written? */
1728 address_space_unmap(CPU(cpu)->as, hvstate, len, len, true);
1729
1730 len = sizeof(*regs);
1731 regs = address_space_map(CPU(cpu)->as, regs_ptr, &len, true,
1732 MEMTXATTRS_UNSPECIFIED);
1733 if (!regs || len != sizeof(*regs)) {
1734 address_space_unmap(CPU(cpu)->as, regs, len, 0, true);
1735 r3_return = H_P2;
1736 goto out_restore_l1;
1737 }
1738
1739 len = sizeof(env->gpr);
1740 assert(len == sizeof(regs->gpr));
1741 memcpy(regs->gpr, env->gpr, len);
1742
1743 regs->link = env->lr;
1744 regs->ctr = env->ctr;
1745 regs->xer = cpu_read_xer(env);
1746
1747 cr = 0;
1748 for (i = 0; i < 8; i++) {
1749 cr |= (env->crf[i] & 15) << (4 * (7 - i));
1750 }
1751 regs->ccr = cr;
1752
1753 if (excp == POWERPC_EXCP_MCHECK ||
1754 excp == POWERPC_EXCP_RESET ||
1755 excp == POWERPC_EXCP_SYSCALL) {
1756 regs->nip = env->spr[SPR_SRR0];
1757 regs->msr = env->spr[SPR_SRR1] & env->msr_mask;
1758 } else {
1759 regs->nip = env->spr[SPR_HSRR0];
1760 regs->msr = env->spr[SPR_HSRR1] & env->msr_mask;
1761 }
1762
1763 /* Is it okay to specify write length larger than actual data written? */
1764 address_space_unmap(CPU(cpu)->as, regs, len, len, true);
1765
1766 out_restore_l1:
1767 memcpy(env->gpr, spapr_cpu->nested_host_state->gpr, sizeof(env->gpr));
1768 env->lr = spapr_cpu->nested_host_state->lr;
1769 env->ctr = spapr_cpu->nested_host_state->ctr;
1770 memcpy(env->crf, spapr_cpu->nested_host_state->crf, sizeof(env->crf));
1771 env->cfar = spapr_cpu->nested_host_state->cfar;
1772 env->xer = spapr_cpu->nested_host_state->xer;
1773 env->so = spapr_cpu->nested_host_state->so;
1774 env->ov = spapr_cpu->nested_host_state->ov;
1775 env->ov32 = spapr_cpu->nested_host_state->ov32;
1776 env->ca32 = spapr_cpu->nested_host_state->ca32;
1777 env->msr = spapr_cpu->nested_host_state->msr;
1778 env->nip = spapr_cpu->nested_host_state->nip;
1779
1780 assert(env->spr[SPR_LPIDR] != 0);
1781 env->spr[SPR_LPCR] = spapr_cpu->nested_host_state->spr[SPR_LPCR];
1782 env->spr[SPR_LPIDR] = spapr_cpu->nested_host_state->spr[SPR_LPIDR];
1783 env->spr[SPR_PCR] = spapr_cpu->nested_host_state->spr[SPR_PCR];
1784 env->spr[SPR_DPDES] = 0;
1785 env->spr[SPR_HFSCR] = spapr_cpu->nested_host_state->spr[SPR_HFSCR];
1786 env->spr[SPR_SRR0] = spapr_cpu->nested_host_state->spr[SPR_SRR0];
1787 env->spr[SPR_SRR1] = spapr_cpu->nested_host_state->spr[SPR_SRR1];
1788 env->spr[SPR_SPRG0] = spapr_cpu->nested_host_state->spr[SPR_SPRG0];
1789 env->spr[SPR_SPRG1] = spapr_cpu->nested_host_state->spr[SPR_SPRG1];
1790 env->spr[SPR_SPRG2] = spapr_cpu->nested_host_state->spr[SPR_SPRG2];
1791 env->spr[SPR_SPRG3] = spapr_cpu->nested_host_state->spr[SPR_SPRG3];
1792 env->spr[SPR_BOOKS_PID] = spapr_cpu->nested_host_state->spr[SPR_BOOKS_PID];
1793 env->spr[SPR_PPR] = spapr_cpu->nested_host_state->spr[SPR_PPR];
1794
1795 /*
1796 * Return the interrupt vector address from H_ENTER_NESTED to the L1
1797 * (or error code).
1798 */
1799 env->gpr[3] = r3_return;
1800
1801 env->tb_env->tb_offset -= spapr_cpu->nested_tb_offset;
1802 spapr_cpu->in_nested = false;
1803
1804 hreg_compute_hflags(env);
1805 tlb_flush(cs);
1806 env->reserve_addr = -1; /* Reset the reservation */
1807
1808 g_free(spapr_cpu->nested_host_state);
1809 spapr_cpu->nested_host_state = NULL;
1810 }
1811
1812 static void hypercall_register_nested(void)
1813 {
1814 spapr_register_hypercall(KVMPPC_H_SET_PARTITION_TABLE, h_set_ptbl);
1815 spapr_register_hypercall(KVMPPC_H_ENTER_NESTED, h_enter_nested);
1816 spapr_register_hypercall(KVMPPC_H_TLB_INVALIDATE, h_tlb_invalidate);
1817 spapr_register_hypercall(KVMPPC_H_COPY_TOFROM_GUEST, h_copy_tofrom_guest);
1818 }
1819
1820 static void hypercall_register_softmmu(void)
1821 {
1822 /* DO NOTHING */
1823 }
1824 #else
1825 void spapr_exit_nested(PowerPCCPU *cpu, int excp)
1826 {
1827 g_assert_not_reached();
1828 }
1829
1830 static target_ulong h_softmmu(PowerPCCPU *cpu, SpaprMachineState *spapr,
1831 target_ulong opcode, target_ulong *args)
1832 {
1833 g_assert_not_reached();
1834 }
1835
1836 static void hypercall_register_nested(void)
1837 {
1838 /* DO NOTHING */
1839 }
1840
1841 static void hypercall_register_softmmu(void)
1842 {
1843 /* hcall-pft */
1844 spapr_register_hypercall(H_ENTER, h_softmmu);
1845 spapr_register_hypercall(H_REMOVE, h_softmmu);
1846 spapr_register_hypercall(H_PROTECT, h_softmmu);
1847 spapr_register_hypercall(H_READ, h_softmmu);
1848
1849 /* hcall-bulk */
1850 spapr_register_hypercall(H_BULK_REMOVE, h_softmmu);
1851 }
1852 #endif
1853
1854 static void hypercall_register_types(void)
1855 {
1856 hypercall_register_softmmu();
1857
1858 /* hcall-hpt-resize */
1859 spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare);
1860 spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit);
1861
1862 /* hcall-splpar */
1863 spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
1864 spapr_register_hypercall(H_CEDE, h_cede);
1865 spapr_register_hypercall(H_CONFER, h_confer);
1866 spapr_register_hypercall(H_PROD, h_prod);
1867
1868 /* hcall-join */
1869 spapr_register_hypercall(H_JOIN, h_join);
1870
1871 spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset);
1872
1873 /* processor register resource access h-calls */
1874 spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
1875 spapr_register_hypercall(H_SET_DABR, h_set_dabr);
1876 spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
1877 spapr_register_hypercall(H_PAGE_INIT, h_page_init);
1878 spapr_register_hypercall(H_SET_MODE, h_set_mode);
1879
1880 /* In Memory Table MMU h-calls */
1881 spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb);
1882 spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid);
1883 spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table);
1884
1885 /* hcall-get-cpu-characteristics */
1886 spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS,
1887 h_get_cpu_characteristics);
1888
1889 /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
1890 * here between the "CI" and the "CACHE" variants, they will use whatever
1891 * mapping attributes qemu is using. When using KVM, the kernel will
1892 * enforce the attributes more strongly
1893 */
1894 spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
1895 spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
1896 spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
1897 spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
1898 spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
1899 spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
1900 spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);
1901
1902 /* qemu/KVM-PPC specific hcalls */
1903 spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
1904
1905 /* ibm,client-architecture-support support */
1906 spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
1907
1908 spapr_register_hypercall(KVMPPC_H_UPDATE_DT, h_update_dt);
1909
1910 hypercall_register_nested();
1911 }
1912
1913 type_init(hypercall_register_types)