]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr_pci.c
8e10fc6857ff3f94d2f1f3db745932b9b8c0eaeb
[mirror_qemu.git] / hw / ppc / spapr_pci.c
1 /*
2 * QEMU sPAPR PCI host originated from Uninorth PCI host
3 *
4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5 * Copyright (C) 2011 David Gibson, IBM Corporation.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
24 */
25 #include "qemu/osdep.h"
26 #include "qapi/error.h"
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "hw/hw.h"
30 #include "hw/sysbus.h"
31 #include "hw/pci/pci.h"
32 #include "hw/pci/msi.h"
33 #include "hw/pci/msix.h"
34 #include "hw/pci/pci_host.h"
35 #include "hw/ppc/spapr.h"
36 #include "hw/pci-host/spapr.h"
37 #include "exec/address-spaces.h"
38 #include "exec/ram_addr.h"
39 #include <libfdt.h>
40 #include "trace.h"
41 #include "qemu/error-report.h"
42 #include "qapi/qmp/qerror.h"
43 #include "hw/ppc/fdt.h"
44 #include "hw/pci/pci_bridge.h"
45 #include "hw/pci/pci_bus.h"
46 #include "hw/pci/pci_ids.h"
47 #include "hw/ppc/spapr_drc.h"
48 #include "sysemu/device_tree.h"
49 #include "sysemu/kvm.h"
50 #include "sysemu/hostmem.h"
51 #include "sysemu/numa.h"
52
53 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
54 #define RTAS_QUERY_FN 0
55 #define RTAS_CHANGE_FN 1
56 #define RTAS_RESET_FN 2
57 #define RTAS_CHANGE_MSI_FN 3
58 #define RTAS_CHANGE_MSIX_FN 4
59
60 /* Interrupt types to return on RTAS_CHANGE_* */
61 #define RTAS_TYPE_MSI 1
62 #define RTAS_TYPE_MSIX 2
63
64 SpaprPhbState *spapr_pci_find_phb(SpaprMachineState *spapr, uint64_t buid)
65 {
66 SpaprPhbState *sphb;
67
68 QLIST_FOREACH(sphb, &spapr->phbs, list) {
69 if (sphb->buid != buid) {
70 continue;
71 }
72 return sphb;
73 }
74
75 return NULL;
76 }
77
78 PCIDevice *spapr_pci_find_dev(SpaprMachineState *spapr, uint64_t buid,
79 uint32_t config_addr)
80 {
81 SpaprPhbState *sphb = spapr_pci_find_phb(spapr, buid);
82 PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
83 int bus_num = (config_addr >> 16) & 0xFF;
84 int devfn = (config_addr >> 8) & 0xFF;
85
86 if (!phb) {
87 return NULL;
88 }
89
90 return pci_find_device(phb->bus, bus_num, devfn);
91 }
92
93 static uint32_t rtas_pci_cfgaddr(uint32_t arg)
94 {
95 /* This handles the encoding of extended config space addresses */
96 return ((arg >> 20) & 0xf00) | (arg & 0xff);
97 }
98
99 static void finish_read_pci_config(SpaprMachineState *spapr, uint64_t buid,
100 uint32_t addr, uint32_t size,
101 target_ulong rets)
102 {
103 PCIDevice *pci_dev;
104 uint32_t val;
105
106 if ((size != 1) && (size != 2) && (size != 4)) {
107 /* access must be 1, 2 or 4 bytes */
108 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
109 return;
110 }
111
112 pci_dev = spapr_pci_find_dev(spapr, buid, addr);
113 addr = rtas_pci_cfgaddr(addr);
114
115 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
116 /* Access must be to a valid device, within bounds and
117 * naturally aligned */
118 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
119 return;
120 }
121
122 val = pci_host_config_read_common(pci_dev, addr,
123 pci_config_size(pci_dev), size);
124
125 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
126 rtas_st(rets, 1, val);
127 }
128
129 static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr,
130 uint32_t token, uint32_t nargs,
131 target_ulong args,
132 uint32_t nret, target_ulong rets)
133 {
134 uint64_t buid;
135 uint32_t size, addr;
136
137 if ((nargs != 4) || (nret != 2)) {
138 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
139 return;
140 }
141
142 buid = rtas_ldq(args, 1);
143 size = rtas_ld(args, 3);
144 addr = rtas_ld(args, 0);
145
146 finish_read_pci_config(spapr, buid, addr, size, rets);
147 }
148
149 static void rtas_read_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr,
150 uint32_t token, uint32_t nargs,
151 target_ulong args,
152 uint32_t nret, target_ulong rets)
153 {
154 uint32_t size, addr;
155
156 if ((nargs != 2) || (nret != 2)) {
157 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
158 return;
159 }
160
161 size = rtas_ld(args, 1);
162 addr = rtas_ld(args, 0);
163
164 finish_read_pci_config(spapr, 0, addr, size, rets);
165 }
166
167 static void finish_write_pci_config(SpaprMachineState *spapr, uint64_t buid,
168 uint32_t addr, uint32_t size,
169 uint32_t val, target_ulong rets)
170 {
171 PCIDevice *pci_dev;
172
173 if ((size != 1) && (size != 2) && (size != 4)) {
174 /* access must be 1, 2 or 4 bytes */
175 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
176 return;
177 }
178
179 pci_dev = spapr_pci_find_dev(spapr, buid, addr);
180 addr = rtas_pci_cfgaddr(addr);
181
182 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
183 /* Access must be to a valid device, within bounds and
184 * naturally aligned */
185 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
186 return;
187 }
188
189 pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
190 val, size);
191
192 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
193 }
194
195 static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr,
196 uint32_t token, uint32_t nargs,
197 target_ulong args,
198 uint32_t nret, target_ulong rets)
199 {
200 uint64_t buid;
201 uint32_t val, size, addr;
202
203 if ((nargs != 5) || (nret != 1)) {
204 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
205 return;
206 }
207
208 buid = rtas_ldq(args, 1);
209 val = rtas_ld(args, 4);
210 size = rtas_ld(args, 3);
211 addr = rtas_ld(args, 0);
212
213 finish_write_pci_config(spapr, buid, addr, size, val, rets);
214 }
215
216 static void rtas_write_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr,
217 uint32_t token, uint32_t nargs,
218 target_ulong args,
219 uint32_t nret, target_ulong rets)
220 {
221 uint32_t val, size, addr;
222
223 if ((nargs != 3) || (nret != 1)) {
224 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
225 return;
226 }
227
228
229 val = rtas_ld(args, 2);
230 size = rtas_ld(args, 1);
231 addr = rtas_ld(args, 0);
232
233 finish_write_pci_config(spapr, 0, addr, size, val, rets);
234 }
235
236 /*
237 * Set MSI/MSIX message data.
238 * This is required for msi_notify()/msix_notify() which
239 * will write at the addresses via spapr_msi_write().
240 *
241 * If hwaddr == 0, all entries will have .data == first_irq i.e.
242 * table will be reset.
243 */
244 static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix,
245 unsigned first_irq, unsigned req_num)
246 {
247 unsigned i;
248 MSIMessage msg = { .address = addr, .data = first_irq };
249
250 if (!msix) {
251 msi_set_message(pdev, msg);
252 trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
253 return;
254 }
255
256 for (i = 0; i < req_num; ++i) {
257 msix_set_message(pdev, i, msg);
258 trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
259 if (addr) {
260 ++msg.data;
261 }
262 }
263 }
264
265 static void rtas_ibm_change_msi(PowerPCCPU *cpu, SpaprMachineState *spapr,
266 uint32_t token, uint32_t nargs,
267 target_ulong args, uint32_t nret,
268 target_ulong rets)
269 {
270 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
271 uint32_t config_addr = rtas_ld(args, 0);
272 uint64_t buid = rtas_ldq(args, 1);
273 unsigned int func = rtas_ld(args, 3);
274 unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
275 unsigned int seq_num = rtas_ld(args, 5);
276 unsigned int ret_intr_type;
277 unsigned int irq, max_irqs = 0;
278 SpaprPhbState *phb = NULL;
279 PCIDevice *pdev = NULL;
280 spapr_pci_msi *msi;
281 int *config_addr_key;
282 Error *err = NULL;
283 int i;
284
285 /* Fins SpaprPhbState */
286 phb = spapr_pci_find_phb(spapr, buid);
287 if (phb) {
288 pdev = spapr_pci_find_dev(spapr, buid, config_addr);
289 }
290 if (!phb || !pdev) {
291 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
292 return;
293 }
294
295 switch (func) {
296 case RTAS_CHANGE_FN:
297 if (msi_present(pdev)) {
298 ret_intr_type = RTAS_TYPE_MSI;
299 } else if (msix_present(pdev)) {
300 ret_intr_type = RTAS_TYPE_MSIX;
301 } else {
302 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
303 return;
304 }
305 break;
306 case RTAS_CHANGE_MSI_FN:
307 if (msi_present(pdev)) {
308 ret_intr_type = RTAS_TYPE_MSI;
309 } else {
310 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
311 return;
312 }
313 break;
314 case RTAS_CHANGE_MSIX_FN:
315 if (msix_present(pdev)) {
316 ret_intr_type = RTAS_TYPE_MSIX;
317 } else {
318 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
319 return;
320 }
321 break;
322 default:
323 error_report("rtas_ibm_change_msi(%u) is not implemented", func);
324 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
325 return;
326 }
327
328 msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
329
330 /* Releasing MSIs */
331 if (!req_num) {
332 if (!msi) {
333 trace_spapr_pci_msi("Releasing wrong config", config_addr);
334 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
335 return;
336 }
337
338 if (!smc->legacy_irq_allocation) {
339 spapr_irq_msi_free(spapr, msi->first_irq, msi->num);
340 }
341 spapr_irq_free(spapr, msi->first_irq, msi->num);
342 if (msi_present(pdev)) {
343 spapr_msi_setmsg(pdev, 0, false, 0, 0);
344 }
345 if (msix_present(pdev)) {
346 spapr_msi_setmsg(pdev, 0, true, 0, 0);
347 }
348 g_hash_table_remove(phb->msi, &config_addr);
349
350 trace_spapr_pci_msi("Released MSIs", config_addr);
351 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
352 rtas_st(rets, 1, 0);
353 return;
354 }
355
356 /* Enabling MSI */
357
358 /* Check if the device supports as many IRQs as requested */
359 if (ret_intr_type == RTAS_TYPE_MSI) {
360 max_irqs = msi_nr_vectors_allocated(pdev);
361 } else if (ret_intr_type == RTAS_TYPE_MSIX) {
362 max_irqs = pdev->msix_entries_nr;
363 }
364 if (!max_irqs) {
365 error_report("Requested interrupt type %d is not enabled for device %x",
366 ret_intr_type, config_addr);
367 rtas_st(rets, 0, -1); /* Hardware error */
368 return;
369 }
370 /* Correct the number if the guest asked for too many */
371 if (req_num > max_irqs) {
372 trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs);
373 req_num = max_irqs;
374 irq = 0; /* to avoid misleading trace */
375 goto out;
376 }
377
378 /* Allocate MSIs */
379 if (smc->legacy_irq_allocation) {
380 irq = spapr_irq_find(spapr, req_num, ret_intr_type == RTAS_TYPE_MSI,
381 &err);
382 } else {
383 irq = spapr_irq_msi_alloc(spapr, req_num,
384 ret_intr_type == RTAS_TYPE_MSI, &err);
385 }
386 if (err) {
387 error_reportf_err(err, "Can't allocate MSIs for device %x: ",
388 config_addr);
389 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
390 return;
391 }
392
393 for (i = 0; i < req_num; i++) {
394 spapr_irq_claim(spapr, irq + i, false, &err);
395 if (err) {
396 if (i) {
397 spapr_irq_free(spapr, irq, i);
398 }
399 if (!smc->legacy_irq_allocation) {
400 spapr_irq_msi_free(spapr, irq, req_num);
401 }
402 error_reportf_err(err, "Can't allocate MSIs for device %x: ",
403 config_addr);
404 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
405 return;
406 }
407 }
408
409 /* Release previous MSIs */
410 if (msi) {
411 if (!smc->legacy_irq_allocation) {
412 spapr_irq_msi_free(spapr, msi->first_irq, msi->num);
413 }
414 spapr_irq_free(spapr, msi->first_irq, msi->num);
415 g_hash_table_remove(phb->msi, &config_addr);
416 }
417
418 /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
419 spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX,
420 irq, req_num);
421
422 /* Add MSI device to cache */
423 msi = g_new(spapr_pci_msi, 1);
424 msi->first_irq = irq;
425 msi->num = req_num;
426 config_addr_key = g_new(int, 1);
427 *config_addr_key = config_addr;
428 g_hash_table_insert(phb->msi, config_addr_key, msi);
429
430 out:
431 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
432 rtas_st(rets, 1, req_num);
433 rtas_st(rets, 2, ++seq_num);
434 if (nret > 3) {
435 rtas_st(rets, 3, ret_intr_type);
436 }
437
438 trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq);
439 }
440
441 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu,
442 SpaprMachineState *spapr,
443 uint32_t token,
444 uint32_t nargs,
445 target_ulong args,
446 uint32_t nret,
447 target_ulong rets)
448 {
449 uint32_t config_addr = rtas_ld(args, 0);
450 uint64_t buid = rtas_ldq(args, 1);
451 unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
452 SpaprPhbState *phb = NULL;
453 PCIDevice *pdev = NULL;
454 spapr_pci_msi *msi;
455
456 /* Find SpaprPhbState */
457 phb = spapr_pci_find_phb(spapr, buid);
458 if (phb) {
459 pdev = spapr_pci_find_dev(spapr, buid, config_addr);
460 }
461 if (!phb || !pdev) {
462 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
463 return;
464 }
465
466 /* Find device descriptor and start IRQ */
467 msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
468 if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) {
469 trace_spapr_pci_msi("Failed to return vector", config_addr);
470 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
471 return;
472 }
473 intr_src_num = msi->first_irq + ioa_intr_num;
474 trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
475 intr_src_num);
476
477 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
478 rtas_st(rets, 1, intr_src_num);
479 rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
480 }
481
482 static void rtas_ibm_set_eeh_option(PowerPCCPU *cpu,
483 SpaprMachineState *spapr,
484 uint32_t token, uint32_t nargs,
485 target_ulong args, uint32_t nret,
486 target_ulong rets)
487 {
488 SpaprPhbState *sphb;
489 uint32_t addr, option;
490 uint64_t buid;
491 int ret;
492
493 if ((nargs != 4) || (nret != 1)) {
494 goto param_error_exit;
495 }
496
497 buid = rtas_ldq(args, 1);
498 addr = rtas_ld(args, 0);
499 option = rtas_ld(args, 3);
500
501 sphb = spapr_pci_find_phb(spapr, buid);
502 if (!sphb) {
503 goto param_error_exit;
504 }
505
506 if (!spapr_phb_eeh_available(sphb)) {
507 goto param_error_exit;
508 }
509
510 ret = spapr_phb_vfio_eeh_set_option(sphb, addr, option);
511 rtas_st(rets, 0, ret);
512 return;
513
514 param_error_exit:
515 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
516 }
517
518 static void rtas_ibm_get_config_addr_info2(PowerPCCPU *cpu,
519 SpaprMachineState *spapr,
520 uint32_t token, uint32_t nargs,
521 target_ulong args, uint32_t nret,
522 target_ulong rets)
523 {
524 SpaprPhbState *sphb;
525 PCIDevice *pdev;
526 uint32_t addr, option;
527 uint64_t buid;
528
529 if ((nargs != 4) || (nret != 2)) {
530 goto param_error_exit;
531 }
532
533 buid = rtas_ldq(args, 1);
534 sphb = spapr_pci_find_phb(spapr, buid);
535 if (!sphb) {
536 goto param_error_exit;
537 }
538
539 if (!spapr_phb_eeh_available(sphb)) {
540 goto param_error_exit;
541 }
542
543 /*
544 * We always have PE address of form "00BB0001". "BB"
545 * represents the bus number of PE's primary bus.
546 */
547 option = rtas_ld(args, 3);
548 switch (option) {
549 case RTAS_GET_PE_ADDR:
550 addr = rtas_ld(args, 0);
551 pdev = spapr_pci_find_dev(spapr, buid, addr);
552 if (!pdev) {
553 goto param_error_exit;
554 }
555
556 rtas_st(rets, 1, (pci_bus_num(pci_get_bus(pdev)) << 16) + 1);
557 break;
558 case RTAS_GET_PE_MODE:
559 rtas_st(rets, 1, RTAS_PE_MODE_SHARED);
560 break;
561 default:
562 goto param_error_exit;
563 }
564
565 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
566 return;
567
568 param_error_exit:
569 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
570 }
571
572 static void rtas_ibm_read_slot_reset_state2(PowerPCCPU *cpu,
573 SpaprMachineState *spapr,
574 uint32_t token, uint32_t nargs,
575 target_ulong args, uint32_t nret,
576 target_ulong rets)
577 {
578 SpaprPhbState *sphb;
579 uint64_t buid;
580 int state, ret;
581
582 if ((nargs != 3) || (nret != 4 && nret != 5)) {
583 goto param_error_exit;
584 }
585
586 buid = rtas_ldq(args, 1);
587 sphb = spapr_pci_find_phb(spapr, buid);
588 if (!sphb) {
589 goto param_error_exit;
590 }
591
592 if (!spapr_phb_eeh_available(sphb)) {
593 goto param_error_exit;
594 }
595
596 ret = spapr_phb_vfio_eeh_get_state(sphb, &state);
597 rtas_st(rets, 0, ret);
598 if (ret != RTAS_OUT_SUCCESS) {
599 return;
600 }
601
602 rtas_st(rets, 1, state);
603 rtas_st(rets, 2, RTAS_EEH_SUPPORT);
604 rtas_st(rets, 3, RTAS_EEH_PE_UNAVAIL_INFO);
605 if (nret >= 5) {
606 rtas_st(rets, 4, RTAS_EEH_PE_RECOVER_INFO);
607 }
608 return;
609
610 param_error_exit:
611 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
612 }
613
614 static void rtas_ibm_set_slot_reset(PowerPCCPU *cpu,
615 SpaprMachineState *spapr,
616 uint32_t token, uint32_t nargs,
617 target_ulong args, uint32_t nret,
618 target_ulong rets)
619 {
620 SpaprPhbState *sphb;
621 uint32_t option;
622 uint64_t buid;
623 int ret;
624
625 if ((nargs != 4) || (nret != 1)) {
626 goto param_error_exit;
627 }
628
629 buid = rtas_ldq(args, 1);
630 option = rtas_ld(args, 3);
631 sphb = spapr_pci_find_phb(spapr, buid);
632 if (!sphb) {
633 goto param_error_exit;
634 }
635
636 if (!spapr_phb_eeh_available(sphb)) {
637 goto param_error_exit;
638 }
639
640 ret = spapr_phb_vfio_eeh_reset(sphb, option);
641 rtas_st(rets, 0, ret);
642 return;
643
644 param_error_exit:
645 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
646 }
647
648 static void rtas_ibm_configure_pe(PowerPCCPU *cpu,
649 SpaprMachineState *spapr,
650 uint32_t token, uint32_t nargs,
651 target_ulong args, uint32_t nret,
652 target_ulong rets)
653 {
654 SpaprPhbState *sphb;
655 uint64_t buid;
656 int ret;
657
658 if ((nargs != 3) || (nret != 1)) {
659 goto param_error_exit;
660 }
661
662 buid = rtas_ldq(args, 1);
663 sphb = spapr_pci_find_phb(spapr, buid);
664 if (!sphb) {
665 goto param_error_exit;
666 }
667
668 if (!spapr_phb_eeh_available(sphb)) {
669 goto param_error_exit;
670 }
671
672 ret = spapr_phb_vfio_eeh_configure(sphb);
673 rtas_st(rets, 0, ret);
674 return;
675
676 param_error_exit:
677 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
678 }
679
680 /* To support it later */
681 static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu,
682 SpaprMachineState *spapr,
683 uint32_t token, uint32_t nargs,
684 target_ulong args, uint32_t nret,
685 target_ulong rets)
686 {
687 SpaprPhbState *sphb;
688 int option;
689 uint64_t buid;
690
691 if ((nargs != 8) || (nret != 1)) {
692 goto param_error_exit;
693 }
694
695 buid = rtas_ldq(args, 1);
696 sphb = spapr_pci_find_phb(spapr, buid);
697 if (!sphb) {
698 goto param_error_exit;
699 }
700
701 if (!spapr_phb_eeh_available(sphb)) {
702 goto param_error_exit;
703 }
704
705 option = rtas_ld(args, 7);
706 switch (option) {
707 case RTAS_SLOT_TEMP_ERR_LOG:
708 case RTAS_SLOT_PERM_ERR_LOG:
709 break;
710 default:
711 goto param_error_exit;
712 }
713
714 /* We don't have error log yet */
715 rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND);
716 return;
717
718 param_error_exit:
719 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
720 }
721
722 static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
723 {
724 /*
725 * Here we use the number returned by pci_swizzle_map_irq_fn to find a
726 * corresponding qemu_irq.
727 */
728 SpaprPhbState *phb = opaque;
729
730 trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq);
731 qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level);
732 }
733
734 static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin)
735 {
736 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque);
737 PCIINTxRoute route;
738
739 route.mode = PCI_INTX_ENABLED;
740 route.irq = sphb->lsi_table[pin].irq;
741
742 return route;
743 }
744
745 /*
746 * MSI/MSIX memory region implementation.
747 * The handler handles both MSI and MSIX.
748 * The vector number is encoded in least bits in data.
749 */
750 static void spapr_msi_write(void *opaque, hwaddr addr,
751 uint64_t data, unsigned size)
752 {
753 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
754 uint32_t irq = data;
755
756 trace_spapr_pci_msi_write(addr, data, irq);
757
758 qemu_irq_pulse(spapr_qirq(spapr, irq));
759 }
760
761 static const MemoryRegionOps spapr_msi_ops = {
762 /* There is no .read as the read result is undefined by PCI spec */
763 .read = NULL,
764 .write = spapr_msi_write,
765 .endianness = DEVICE_LITTLE_ENDIAN
766 };
767
768 /*
769 * PHB PCI device
770 */
771 static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn)
772 {
773 SpaprPhbState *phb = opaque;
774
775 return &phb->iommu_as;
776 }
777
778 static char *spapr_phb_vfio_get_loc_code(SpaprPhbState *sphb, PCIDevice *pdev)
779 {
780 char *path = NULL, *buf = NULL, *host = NULL;
781
782 /* Get the PCI VFIO host id */
783 host = object_property_get_str(OBJECT(pdev), "host", NULL);
784 if (!host) {
785 goto err_out;
786 }
787
788 /* Construct the path of the file that will give us the DT location */
789 path = g_strdup_printf("/sys/bus/pci/devices/%s/devspec", host);
790 g_free(host);
791 if (!g_file_get_contents(path, &buf, NULL, NULL)) {
792 goto err_out;
793 }
794 g_free(path);
795
796 /* Construct and read from host device tree the loc-code */
797 path = g_strdup_printf("/proc/device-tree%s/ibm,loc-code", buf);
798 g_free(buf);
799 if (!g_file_get_contents(path, &buf, NULL, NULL)) {
800 goto err_out;
801 }
802 return buf;
803
804 err_out:
805 g_free(path);
806 return NULL;
807 }
808
809 static char *spapr_phb_get_loc_code(SpaprPhbState *sphb, PCIDevice *pdev)
810 {
811 char *buf;
812 const char *devtype = "qemu";
813 uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
814
815 if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) {
816 buf = spapr_phb_vfio_get_loc_code(sphb, pdev);
817 if (buf) {
818 return buf;
819 }
820 devtype = "vfio";
821 }
822 /*
823 * For emulated devices and VFIO-failure case, make up
824 * the loc-code.
825 */
826 buf = g_strdup_printf("%s_%s:%04x:%02x:%02x.%x",
827 devtype, pdev->name, sphb->index, busnr,
828 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
829 return buf;
830 }
831
832 /* Macros to operate with address in OF binding to PCI */
833 #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p))
834 #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */
835 #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */
836 #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */
837 #define b_ss(x) b_x((x), 24, 2) /* the space code */
838 #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */
839 #define b_ddddd(x) b_x((x), 11, 5) /* device number */
840 #define b_fff(x) b_x((x), 8, 3) /* function number */
841 #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */
842
843 /* for 'reg'/'assigned-addresses' OF properties */
844 #define RESOURCE_CELLS_SIZE 2
845 #define RESOURCE_CELLS_ADDRESS 3
846
847 typedef struct ResourceFields {
848 uint32_t phys_hi;
849 uint32_t phys_mid;
850 uint32_t phys_lo;
851 uint32_t size_hi;
852 uint32_t size_lo;
853 } QEMU_PACKED ResourceFields;
854
855 typedef struct ResourceProps {
856 ResourceFields reg[8];
857 ResourceFields assigned[7];
858 uint32_t reg_len;
859 uint32_t assigned_len;
860 } ResourceProps;
861
862 /* fill in the 'reg'/'assigned-resources' OF properties for
863 * a PCI device. 'reg' describes resource requirements for a
864 * device's IO/MEM regions, 'assigned-addresses' describes the
865 * actual resource assignments.
866 *
867 * the properties are arrays of ('phys-addr', 'size') pairs describing
868 * the addressable regions of the PCI device, where 'phys-addr' is a
869 * RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to
870 * (phys.hi, phys.mid, phys.lo), and 'size' is a
871 * RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo).
872 *
873 * phys.hi = 0xYYXXXXZZ, where:
874 * 0xYY = npt000ss
875 * ||| |
876 * ||| +-- space code
877 * ||| |
878 * ||| + 00 if configuration space
879 * ||| + 01 if IO region,
880 * ||| + 10 if 32-bit MEM region
881 * ||| + 11 if 64-bit MEM region
882 * |||
883 * ||+------ for non-relocatable IO: 1 if aliased
884 * || for relocatable IO: 1 if below 64KB
885 * || for MEM: 1 if below 1MB
886 * |+------- 1 if region is prefetchable
887 * +-------- 1 if region is non-relocatable
888 * 0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function
889 * bits respectively
890 * 0xZZ = rrrrrrrr, the register number of the BAR corresponding
891 * to the region
892 *
893 * phys.mid and phys.lo correspond respectively to the hi/lo portions
894 * of the actual address of the region.
895 *
896 * how the phys-addr/size values are used differ slightly between
897 * 'reg' and 'assigned-addresses' properties. namely, 'reg' has
898 * an additional description for the config space region of the
899 * device, and in the case of QEMU has n=0 and phys.mid=phys.lo=0
900 * to describe the region as relocatable, with an address-mapping
901 * that corresponds directly to the PHB's address space for the
902 * resource. 'assigned-addresses' always has n=1 set with an absolute
903 * address assigned for the resource. in general, 'assigned-addresses'
904 * won't be populated, since addresses for PCI devices are generally
905 * unmapped initially and left to the guest to assign.
906 *
907 * note also that addresses defined in these properties are, at least
908 * for PAPR guests, relative to the PHBs IO/MEM windows, and
909 * correspond directly to the addresses in the BARs.
910 *
911 * in accordance with PCI Bus Binding to Open Firmware,
912 * IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7,
913 * Appendix C.
914 */
915 static void populate_resource_props(PCIDevice *d, ResourceProps *rp)
916 {
917 int bus_num = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d))));
918 uint32_t dev_id = (b_bbbbbbbb(bus_num) |
919 b_ddddd(PCI_SLOT(d->devfn)) |
920 b_fff(PCI_FUNC(d->devfn)));
921 ResourceFields *reg, *assigned;
922 int i, reg_idx = 0, assigned_idx = 0;
923
924 /* config space region */
925 reg = &rp->reg[reg_idx++];
926 reg->phys_hi = cpu_to_be32(dev_id);
927 reg->phys_mid = 0;
928 reg->phys_lo = 0;
929 reg->size_hi = 0;
930 reg->size_lo = 0;
931
932 for (i = 0; i < PCI_NUM_REGIONS; i++) {
933 if (!d->io_regions[i].size) {
934 continue;
935 }
936
937 reg = &rp->reg[reg_idx++];
938
939 reg->phys_hi = cpu_to_be32(dev_id | b_rrrrrrrr(pci_bar(d, i)));
940 if (d->io_regions[i].type & PCI_BASE_ADDRESS_SPACE_IO) {
941 reg->phys_hi |= cpu_to_be32(b_ss(1));
942 } else if (d->io_regions[i].type & PCI_BASE_ADDRESS_MEM_TYPE_64) {
943 reg->phys_hi |= cpu_to_be32(b_ss(3));
944 } else {
945 reg->phys_hi |= cpu_to_be32(b_ss(2));
946 }
947 reg->phys_mid = 0;
948 reg->phys_lo = 0;
949 reg->size_hi = cpu_to_be32(d->io_regions[i].size >> 32);
950 reg->size_lo = cpu_to_be32(d->io_regions[i].size);
951
952 if (d->io_regions[i].addr == PCI_BAR_UNMAPPED) {
953 continue;
954 }
955
956 assigned = &rp->assigned[assigned_idx++];
957 assigned->phys_hi = cpu_to_be32(be32_to_cpu(reg->phys_hi) | b_n(1));
958 assigned->phys_mid = cpu_to_be32(d->io_regions[i].addr >> 32);
959 assigned->phys_lo = cpu_to_be32(d->io_regions[i].addr);
960 assigned->size_hi = reg->size_hi;
961 assigned->size_lo = reg->size_lo;
962 }
963
964 rp->reg_len = reg_idx * sizeof(ResourceFields);
965 rp->assigned_len = assigned_idx * sizeof(ResourceFields);
966 }
967
968 typedef struct PCIClass PCIClass;
969 typedef struct PCISubClass PCISubClass;
970 typedef struct PCIIFace PCIIFace;
971
972 struct PCIIFace {
973 int iface;
974 const char *name;
975 };
976
977 struct PCISubClass {
978 int subclass;
979 const char *name;
980 const PCIIFace *iface;
981 };
982
983 struct PCIClass {
984 const char *name;
985 const PCISubClass *subc;
986 };
987
988 static const PCISubClass undef_subclass[] = {
989 { PCI_CLASS_NOT_DEFINED_VGA, "display", NULL },
990 { 0xFF, NULL, NULL },
991 };
992
993 static const PCISubClass mass_subclass[] = {
994 { PCI_CLASS_STORAGE_SCSI, "scsi", NULL },
995 { PCI_CLASS_STORAGE_IDE, "ide", NULL },
996 { PCI_CLASS_STORAGE_FLOPPY, "fdc", NULL },
997 { PCI_CLASS_STORAGE_IPI, "ipi", NULL },
998 { PCI_CLASS_STORAGE_RAID, "raid", NULL },
999 { PCI_CLASS_STORAGE_ATA, "ata", NULL },
1000 { PCI_CLASS_STORAGE_SATA, "sata", NULL },
1001 { PCI_CLASS_STORAGE_SAS, "sas", NULL },
1002 { 0xFF, NULL, NULL },
1003 };
1004
1005 static const PCISubClass net_subclass[] = {
1006 { PCI_CLASS_NETWORK_ETHERNET, "ethernet", NULL },
1007 { PCI_CLASS_NETWORK_TOKEN_RING, "token-ring", NULL },
1008 { PCI_CLASS_NETWORK_FDDI, "fddi", NULL },
1009 { PCI_CLASS_NETWORK_ATM, "atm", NULL },
1010 { PCI_CLASS_NETWORK_ISDN, "isdn", NULL },
1011 { PCI_CLASS_NETWORK_WORLDFIP, "worldfip", NULL },
1012 { PCI_CLASS_NETWORK_PICMG214, "picmg", NULL },
1013 { 0xFF, NULL, NULL },
1014 };
1015
1016 static const PCISubClass displ_subclass[] = {
1017 { PCI_CLASS_DISPLAY_VGA, "vga", NULL },
1018 { PCI_CLASS_DISPLAY_XGA, "xga", NULL },
1019 { PCI_CLASS_DISPLAY_3D, "3d-controller", NULL },
1020 { 0xFF, NULL, NULL },
1021 };
1022
1023 static const PCISubClass media_subclass[] = {
1024 { PCI_CLASS_MULTIMEDIA_VIDEO, "video", NULL },
1025 { PCI_CLASS_MULTIMEDIA_AUDIO, "sound", NULL },
1026 { PCI_CLASS_MULTIMEDIA_PHONE, "telephony", NULL },
1027 { 0xFF, NULL, NULL },
1028 };
1029
1030 static const PCISubClass mem_subclass[] = {
1031 { PCI_CLASS_MEMORY_RAM, "memory", NULL },
1032 { PCI_CLASS_MEMORY_FLASH, "flash", NULL },
1033 { 0xFF, NULL, NULL },
1034 };
1035
1036 static const PCISubClass bridg_subclass[] = {
1037 { PCI_CLASS_BRIDGE_HOST, "host", NULL },
1038 { PCI_CLASS_BRIDGE_ISA, "isa", NULL },
1039 { PCI_CLASS_BRIDGE_EISA, "eisa", NULL },
1040 { PCI_CLASS_BRIDGE_MC, "mca", NULL },
1041 { PCI_CLASS_BRIDGE_PCI, "pci", NULL },
1042 { PCI_CLASS_BRIDGE_PCMCIA, "pcmcia", NULL },
1043 { PCI_CLASS_BRIDGE_NUBUS, "nubus", NULL },
1044 { PCI_CLASS_BRIDGE_CARDBUS, "cardbus", NULL },
1045 { PCI_CLASS_BRIDGE_RACEWAY, "raceway", NULL },
1046 { PCI_CLASS_BRIDGE_PCI_SEMITP, "semi-transparent-pci", NULL },
1047 { PCI_CLASS_BRIDGE_IB_PCI, "infiniband", NULL },
1048 { 0xFF, NULL, NULL },
1049 };
1050
1051 static const PCISubClass comm_subclass[] = {
1052 { PCI_CLASS_COMMUNICATION_SERIAL, "serial", NULL },
1053 { PCI_CLASS_COMMUNICATION_PARALLEL, "parallel", NULL },
1054 { PCI_CLASS_COMMUNICATION_MULTISERIAL, "multiport-serial", NULL },
1055 { PCI_CLASS_COMMUNICATION_MODEM, "modem", NULL },
1056 { PCI_CLASS_COMMUNICATION_GPIB, "gpib", NULL },
1057 { PCI_CLASS_COMMUNICATION_SC, "smart-card", NULL },
1058 { 0xFF, NULL, NULL, },
1059 };
1060
1061 static const PCIIFace pic_iface[] = {
1062 { PCI_CLASS_SYSTEM_PIC_IOAPIC, "io-apic" },
1063 { PCI_CLASS_SYSTEM_PIC_IOXAPIC, "io-xapic" },
1064 { 0xFF, NULL },
1065 };
1066
1067 static const PCISubClass sys_subclass[] = {
1068 { PCI_CLASS_SYSTEM_PIC, "interrupt-controller", pic_iface },
1069 { PCI_CLASS_SYSTEM_DMA, "dma-controller", NULL },
1070 { PCI_CLASS_SYSTEM_TIMER, "timer", NULL },
1071 { PCI_CLASS_SYSTEM_RTC, "rtc", NULL },
1072 { PCI_CLASS_SYSTEM_PCI_HOTPLUG, "hot-plug-controller", NULL },
1073 { PCI_CLASS_SYSTEM_SDHCI, "sd-host-controller", NULL },
1074 { 0xFF, NULL, NULL },
1075 };
1076
1077 static const PCISubClass inp_subclass[] = {
1078 { PCI_CLASS_INPUT_KEYBOARD, "keyboard", NULL },
1079 { PCI_CLASS_INPUT_PEN, "pen", NULL },
1080 { PCI_CLASS_INPUT_MOUSE, "mouse", NULL },
1081 { PCI_CLASS_INPUT_SCANNER, "scanner", NULL },
1082 { PCI_CLASS_INPUT_GAMEPORT, "gameport", NULL },
1083 { 0xFF, NULL, NULL },
1084 };
1085
1086 static const PCISubClass dock_subclass[] = {
1087 { PCI_CLASS_DOCKING_GENERIC, "dock", NULL },
1088 { 0xFF, NULL, NULL },
1089 };
1090
1091 static const PCISubClass cpu_subclass[] = {
1092 { PCI_CLASS_PROCESSOR_PENTIUM, "pentium", NULL },
1093 { PCI_CLASS_PROCESSOR_POWERPC, "powerpc", NULL },
1094 { PCI_CLASS_PROCESSOR_MIPS, "mips", NULL },
1095 { PCI_CLASS_PROCESSOR_CO, "co-processor", NULL },
1096 { 0xFF, NULL, NULL },
1097 };
1098
1099 static const PCIIFace usb_iface[] = {
1100 { PCI_CLASS_SERIAL_USB_UHCI, "usb-uhci" },
1101 { PCI_CLASS_SERIAL_USB_OHCI, "usb-ohci", },
1102 { PCI_CLASS_SERIAL_USB_EHCI, "usb-ehci" },
1103 { PCI_CLASS_SERIAL_USB_XHCI, "usb-xhci" },
1104 { PCI_CLASS_SERIAL_USB_UNKNOWN, "usb-unknown" },
1105 { PCI_CLASS_SERIAL_USB_DEVICE, "usb-device" },
1106 { 0xFF, NULL },
1107 };
1108
1109 static const PCISubClass ser_subclass[] = {
1110 { PCI_CLASS_SERIAL_FIREWIRE, "firewire", NULL },
1111 { PCI_CLASS_SERIAL_ACCESS, "access-bus", NULL },
1112 { PCI_CLASS_SERIAL_SSA, "ssa", NULL },
1113 { PCI_CLASS_SERIAL_USB, "usb", usb_iface },
1114 { PCI_CLASS_SERIAL_FIBER, "fibre-channel", NULL },
1115 { PCI_CLASS_SERIAL_SMBUS, "smb", NULL },
1116 { PCI_CLASS_SERIAL_IB, "infiniband", NULL },
1117 { PCI_CLASS_SERIAL_IPMI, "ipmi", NULL },
1118 { PCI_CLASS_SERIAL_SERCOS, "sercos", NULL },
1119 { PCI_CLASS_SERIAL_CANBUS, "canbus", NULL },
1120 { 0xFF, NULL, NULL },
1121 };
1122
1123 static const PCISubClass wrl_subclass[] = {
1124 { PCI_CLASS_WIRELESS_IRDA, "irda", NULL },
1125 { PCI_CLASS_WIRELESS_CIR, "consumer-ir", NULL },
1126 { PCI_CLASS_WIRELESS_RF_CONTROLLER, "rf-controller", NULL },
1127 { PCI_CLASS_WIRELESS_BLUETOOTH, "bluetooth", NULL },
1128 { PCI_CLASS_WIRELESS_BROADBAND, "broadband", NULL },
1129 { 0xFF, NULL, NULL },
1130 };
1131
1132 static const PCISubClass sat_subclass[] = {
1133 { PCI_CLASS_SATELLITE_TV, "satellite-tv", NULL },
1134 { PCI_CLASS_SATELLITE_AUDIO, "satellite-audio", NULL },
1135 { PCI_CLASS_SATELLITE_VOICE, "satellite-voice", NULL },
1136 { PCI_CLASS_SATELLITE_DATA, "satellite-data", NULL },
1137 { 0xFF, NULL, NULL },
1138 };
1139
1140 static const PCISubClass crypt_subclass[] = {
1141 { PCI_CLASS_CRYPT_NETWORK, "network-encryption", NULL },
1142 { PCI_CLASS_CRYPT_ENTERTAINMENT,
1143 "entertainment-encryption", NULL },
1144 { 0xFF, NULL, NULL },
1145 };
1146
1147 static const PCISubClass spc_subclass[] = {
1148 { PCI_CLASS_SP_DPIO, "dpio", NULL },
1149 { PCI_CLASS_SP_PERF, "counter", NULL },
1150 { PCI_CLASS_SP_SYNCH, "measurement", NULL },
1151 { PCI_CLASS_SP_MANAGEMENT, "management-card", NULL },
1152 { 0xFF, NULL, NULL },
1153 };
1154
1155 static const PCIClass pci_classes[] = {
1156 { "legacy-device", undef_subclass },
1157 { "mass-storage", mass_subclass },
1158 { "network", net_subclass },
1159 { "display", displ_subclass, },
1160 { "multimedia-device", media_subclass },
1161 { "memory-controller", mem_subclass },
1162 { "unknown-bridge", bridg_subclass },
1163 { "communication-controller", comm_subclass},
1164 { "system-peripheral", sys_subclass },
1165 { "input-controller", inp_subclass },
1166 { "docking-station", dock_subclass },
1167 { "cpu", cpu_subclass },
1168 { "serial-bus", ser_subclass },
1169 { "wireless-controller", wrl_subclass },
1170 { "intelligent-io", NULL },
1171 { "satellite-device", sat_subclass },
1172 { "encryption", crypt_subclass },
1173 { "data-processing-controller", spc_subclass },
1174 };
1175
1176 static const char *dt_name_from_class(uint8_t class, uint8_t subclass,
1177 uint8_t iface)
1178 {
1179 const PCIClass *pclass;
1180 const PCISubClass *psubclass;
1181 const PCIIFace *piface;
1182 const char *name;
1183
1184 if (class >= ARRAY_SIZE(pci_classes)) {
1185 return "pci";
1186 }
1187
1188 pclass = pci_classes + class;
1189 name = pclass->name;
1190
1191 if (pclass->subc == NULL) {
1192 return name;
1193 }
1194
1195 psubclass = pclass->subc;
1196 while ((psubclass->subclass & 0xff) != 0xff) {
1197 if ((psubclass->subclass & 0xff) == subclass) {
1198 name = psubclass->name;
1199 break;
1200 }
1201 psubclass++;
1202 }
1203
1204 piface = psubclass->iface;
1205 if (piface == NULL) {
1206 return name;
1207 }
1208 while ((piface->iface & 0xff) != 0xff) {
1209 if ((piface->iface & 0xff) == iface) {
1210 name = piface->name;
1211 break;
1212 }
1213 piface++;
1214 }
1215
1216 return name;
1217 }
1218
1219 static uint32_t spapr_phb_get_pci_drc_index(SpaprPhbState *phb,
1220 PCIDevice *pdev);
1221
1222 /* create OF node for pci device and required OF DT properties */
1223 static int spapr_dt_pci_device(SpaprPhbState *sphb, PCIDevice *dev,
1224 void *fdt, int parent_offset)
1225 {
1226 int offset;
1227 const gchar *basename;
1228 gchar *nodename;
1229 int slot = PCI_SLOT(dev->devfn);
1230 int func = PCI_FUNC(dev->devfn);
1231 ResourceProps rp;
1232 uint32_t drc_index = spapr_phb_get_pci_drc_index(sphb, dev);
1233 uint32_t header_type = pci_default_read_config(dev, PCI_HEADER_TYPE, 1);
1234 bool is_bridge = (header_type == PCI_HEADER_TYPE_BRIDGE);
1235 uint32_t vendor_id = pci_default_read_config(dev, PCI_VENDOR_ID, 2);
1236 uint32_t device_id = pci_default_read_config(dev, PCI_DEVICE_ID, 2);
1237 uint32_t revision_id = pci_default_read_config(dev, PCI_REVISION_ID, 1);
1238 uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3);
1239 uint32_t irq_pin = pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1);
1240 uint32_t subsystem_id = pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2);
1241 uint32_t subsystem_vendor_id =
1242 pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2);
1243 uint32_t cache_line_size =
1244 pci_default_read_config(dev, PCI_CACHE_LINE_SIZE, 1);
1245 uint32_t pci_status = pci_default_read_config(dev, PCI_STATUS, 2);
1246 gchar *loc_code;
1247
1248 basename = dt_name_from_class((ccode >> 16) & 0xff, (ccode >> 8) & 0xff,
1249 ccode & 0xff);
1250
1251 if (func != 0) {
1252 nodename = g_strdup_printf("%s@%x,%x", basename, slot, func);
1253 } else {
1254 nodename = g_strdup_printf("%s@%x", basename, slot);
1255 }
1256
1257 _FDT(offset = fdt_add_subnode(fdt, parent_offset, nodename));
1258
1259 g_free(nodename);
1260
1261 /* in accordance with PAPR+ v2.7 13.6.3, Table 181 */
1262 _FDT(fdt_setprop_cell(fdt, offset, "vendor-id", vendor_id));
1263 _FDT(fdt_setprop_cell(fdt, offset, "device-id", device_id));
1264 _FDT(fdt_setprop_cell(fdt, offset, "revision-id", revision_id));
1265
1266 _FDT(fdt_setprop_cell(fdt, offset, "class-code", ccode));
1267 if (irq_pin) {
1268 _FDT(fdt_setprop_cell(fdt, offset, "interrupts", irq_pin));
1269 }
1270
1271 if (!is_bridge) {
1272 uint32_t min_grant = pci_default_read_config(dev, PCI_MIN_GNT, 1);
1273 uint32_t max_latency = pci_default_read_config(dev, PCI_MAX_LAT, 1);
1274 _FDT(fdt_setprop_cell(fdt, offset, "min-grant", min_grant));
1275 _FDT(fdt_setprop_cell(fdt, offset, "max-latency", max_latency));
1276 }
1277
1278 if (subsystem_id) {
1279 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-id", subsystem_id));
1280 }
1281
1282 if (subsystem_vendor_id) {
1283 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-vendor-id",
1284 subsystem_vendor_id));
1285 }
1286
1287 _FDT(fdt_setprop_cell(fdt, offset, "cache-line-size", cache_line_size));
1288
1289
1290 /* the following fdt cells are masked off the pci status register */
1291 _FDT(fdt_setprop_cell(fdt, offset, "devsel-speed",
1292 PCI_STATUS_DEVSEL_MASK & pci_status));
1293
1294 if (pci_status & PCI_STATUS_FAST_BACK) {
1295 _FDT(fdt_setprop(fdt, offset, "fast-back-to-back", NULL, 0));
1296 }
1297 if (pci_status & PCI_STATUS_66MHZ) {
1298 _FDT(fdt_setprop(fdt, offset, "66mhz-capable", NULL, 0));
1299 }
1300 if (pci_status & PCI_STATUS_UDF) {
1301 _FDT(fdt_setprop(fdt, offset, "udf-supported", NULL, 0));
1302 }
1303
1304 loc_code = spapr_phb_get_loc_code(sphb, dev);
1305 _FDT(fdt_setprop_string(fdt, offset, "ibm,loc-code", loc_code));
1306 g_free(loc_code);
1307
1308 if (drc_index) {
1309 _FDT(fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index));
1310 }
1311
1312 _FDT(fdt_setprop_cell(fdt, offset, "#address-cells",
1313 RESOURCE_CELLS_ADDRESS));
1314 _FDT(fdt_setprop_cell(fdt, offset, "#size-cells",
1315 RESOURCE_CELLS_SIZE));
1316
1317 if (msi_present(dev)) {
1318 uint32_t max_msi = msi_nr_vectors_allocated(dev);
1319 if (max_msi) {
1320 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi", max_msi));
1321 }
1322 }
1323 if (msix_present(dev)) {
1324 uint32_t max_msix = dev->msix_entries_nr;
1325 if (max_msix) {
1326 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi-x", max_msix));
1327 }
1328 }
1329
1330 populate_resource_props(dev, &rp);
1331 _FDT(fdt_setprop(fdt, offset, "reg", (uint8_t *)rp.reg, rp.reg_len));
1332 _FDT(fdt_setprop(fdt, offset, "assigned-addresses",
1333 (uint8_t *)rp.assigned, rp.assigned_len));
1334
1335 if (sphb->pcie_ecs && pci_is_express(dev)) {
1336 _FDT(fdt_setprop_cell(fdt, offset, "ibm,pci-config-space-type", 0x1));
1337 }
1338
1339 spapr_phb_nvgpu_populate_pcidev_dt(dev, fdt, offset, sphb);
1340
1341 return offset;
1342 }
1343
1344 /* Callback to be called during DRC release. */
1345 void spapr_phb_remove_pci_device_cb(DeviceState *dev)
1346 {
1347 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
1348
1349 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
1350 object_unparent(OBJECT(dev));
1351 }
1352
1353 static SpaprDrc *spapr_phb_get_pci_func_drc(SpaprPhbState *phb,
1354 uint32_t busnr,
1355 int32_t devfn)
1356 {
1357 return spapr_drc_by_id(TYPE_SPAPR_DRC_PCI,
1358 (phb->index << 16) | (busnr << 8) | devfn);
1359 }
1360
1361 static SpaprDrc *spapr_phb_get_pci_drc(SpaprPhbState *phb,
1362 PCIDevice *pdev)
1363 {
1364 uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
1365 return spapr_phb_get_pci_func_drc(phb, busnr, pdev->devfn);
1366 }
1367
1368 static uint32_t spapr_phb_get_pci_drc_index(SpaprPhbState *phb,
1369 PCIDevice *pdev)
1370 {
1371 SpaprDrc *drc = spapr_phb_get_pci_drc(phb, pdev);
1372
1373 if (!drc) {
1374 return 0;
1375 }
1376
1377 return spapr_drc_index(drc);
1378 }
1379
1380 int spapr_pci_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
1381 void *fdt, int *fdt_start_offset, Error **errp)
1382 {
1383 HotplugHandler *plug_handler = qdev_get_hotplug_handler(drc->dev);
1384 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(plug_handler);
1385 PCIDevice *pdev = PCI_DEVICE(drc->dev);
1386
1387 *fdt_start_offset = spapr_dt_pci_device(sphb, pdev, fdt, 0);
1388 return 0;
1389 }
1390
1391 static void spapr_pci_plug(HotplugHandler *plug_handler,
1392 DeviceState *plugged_dev, Error **errp)
1393 {
1394 SpaprPhbState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1395 PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1396 SpaprDrc *drc = spapr_phb_get_pci_drc(phb, pdev);
1397 Error *local_err = NULL;
1398 PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)));
1399 uint32_t slotnr = PCI_SLOT(pdev->devfn);
1400
1401 /* if DR is disabled we don't need to do anything in the case of
1402 * hotplug or coldplug callbacks
1403 */
1404 if (!phb->dr_enabled) {
1405 /* if this is a hotplug operation initiated by the user
1406 * we need to let them know it's not enabled
1407 */
1408 if (plugged_dev->hotplugged) {
1409 error_setg(&local_err, QERR_BUS_NO_HOTPLUG,
1410 object_get_typename(OBJECT(phb)));
1411 }
1412 goto out;
1413 }
1414
1415 g_assert(drc);
1416
1417 /* Following the QEMU convention used for PCIe multifunction
1418 * hotplug, we do not allow functions to be hotplugged to a
1419 * slot that already has function 0 present
1420 */
1421 if (plugged_dev->hotplugged && bus->devices[PCI_DEVFN(slotnr, 0)] &&
1422 PCI_FUNC(pdev->devfn) != 0) {
1423 error_setg(&local_err, "PCI: slot %d function 0 already ocuppied by %s,"
1424 " additional functions can no longer be exposed to guest.",
1425 slotnr, bus->devices[PCI_DEVFN(slotnr, 0)]->name);
1426 goto out;
1427 }
1428
1429 spapr_drc_attach(drc, DEVICE(pdev), &local_err);
1430 if (local_err) {
1431 goto out;
1432 }
1433
1434 /* If this is function 0, signal hotplug for all the device functions.
1435 * Otherwise defer sending the hotplug event.
1436 */
1437 if (!spapr_drc_hotplugged(plugged_dev)) {
1438 spapr_drc_reset(drc);
1439 } else if (PCI_FUNC(pdev->devfn) == 0) {
1440 int i;
1441
1442 for (i = 0; i < 8; i++) {
1443 SpaprDrc *func_drc;
1444 SpaprDrcClass *func_drck;
1445 SpaprDREntitySense state;
1446
1447 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1448 PCI_DEVFN(slotnr, i));
1449 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1450 state = func_drck->dr_entity_sense(func_drc);
1451
1452 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1453 spapr_hotplug_req_add_by_index(func_drc);
1454 }
1455 }
1456 }
1457
1458 out:
1459 error_propagate(errp, local_err);
1460 }
1461
1462 static void spapr_pci_unplug(HotplugHandler *plug_handler,
1463 DeviceState *plugged_dev, Error **errp)
1464 {
1465 /* some version guests do not wait for completion of a device
1466 * cleanup (generally done asynchronously by the kernel) before
1467 * signaling to QEMU that the device is safe, but instead sleep
1468 * for some 'safe' period of time. unfortunately on a busy host
1469 * this sleep isn't guaranteed to be long enough, resulting in
1470 * bad things like IRQ lines being left asserted during final
1471 * device removal. to deal with this we call reset just prior
1472 * to finalizing the device, which will put the device back into
1473 * an 'idle' state, as the device cleanup code expects.
1474 */
1475 pci_device_reset(PCI_DEVICE(plugged_dev));
1476 object_property_set_bool(OBJECT(plugged_dev), false, "realized", NULL);
1477 }
1478
1479 static void spapr_pci_unplug_request(HotplugHandler *plug_handler,
1480 DeviceState *plugged_dev, Error **errp)
1481 {
1482 SpaprPhbState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1483 PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1484 SpaprDrc *drc = spapr_phb_get_pci_drc(phb, pdev);
1485
1486 if (!phb->dr_enabled) {
1487 error_setg(errp, QERR_BUS_NO_HOTPLUG,
1488 object_get_typename(OBJECT(phb)));
1489 return;
1490 }
1491
1492 g_assert(drc);
1493 g_assert(drc->dev == plugged_dev);
1494
1495 if (!spapr_drc_unplug_requested(drc)) {
1496 PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)));
1497 uint32_t slotnr = PCI_SLOT(pdev->devfn);
1498 SpaprDrc *func_drc;
1499 SpaprDrcClass *func_drck;
1500 SpaprDREntitySense state;
1501 int i;
1502
1503 /* ensure any other present functions are pending unplug */
1504 if (PCI_FUNC(pdev->devfn) == 0) {
1505 for (i = 1; i < 8; i++) {
1506 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1507 PCI_DEVFN(slotnr, i));
1508 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1509 state = func_drck->dr_entity_sense(func_drc);
1510 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT
1511 && !spapr_drc_unplug_requested(func_drc)) {
1512 error_setg(errp,
1513 "PCI: slot %d, function %d still present. "
1514 "Must unplug all non-0 functions first.",
1515 slotnr, i);
1516 return;
1517 }
1518 }
1519 }
1520
1521 spapr_drc_detach(drc);
1522
1523 /* if this isn't func 0, defer unplug event. otherwise signal removal
1524 * for all present functions
1525 */
1526 if (PCI_FUNC(pdev->devfn) == 0) {
1527 for (i = 7; i >= 0; i--) {
1528 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1529 PCI_DEVFN(slotnr, i));
1530 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1531 state = func_drck->dr_entity_sense(func_drc);
1532 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1533 spapr_hotplug_req_remove_by_index(func_drc);
1534 }
1535 }
1536 }
1537 }
1538 }
1539
1540 static void spapr_phb_finalizefn(Object *obj)
1541 {
1542 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(obj);
1543
1544 g_free(sphb->dtbusname);
1545 sphb->dtbusname = NULL;
1546 }
1547
1548 static void spapr_phb_unrealize(DeviceState *dev, Error **errp)
1549 {
1550 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1551 SysBusDevice *s = SYS_BUS_DEVICE(dev);
1552 PCIHostState *phb = PCI_HOST_BRIDGE(s);
1553 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(phb);
1554 SpaprTceTable *tcet;
1555 int i;
1556 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
1557
1558 spapr_phb_nvgpu_free(sphb);
1559
1560 if (sphb->msi) {
1561 g_hash_table_unref(sphb->msi);
1562 sphb->msi = NULL;
1563 }
1564
1565 /*
1566 * Remove IO/MMIO subregions and aliases, rest should get cleaned
1567 * via PHB's unrealize->object_finalize
1568 */
1569 for (i = windows_supported - 1; i >= 0; i--) {
1570 tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[i]);
1571 if (tcet) {
1572 memory_region_del_subregion(&sphb->iommu_root,
1573 spapr_tce_get_iommu(tcet));
1574 }
1575 }
1576
1577 if (sphb->dr_enabled) {
1578 for (i = PCI_SLOT_MAX * 8 - 1; i >= 0; i--) {
1579 SpaprDrc *drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PCI,
1580 (sphb->index << 16) | i);
1581
1582 if (drc) {
1583 object_unparent(OBJECT(drc));
1584 }
1585 }
1586 }
1587
1588 for (i = PCI_NUM_PINS - 1; i >= 0; i--) {
1589 if (sphb->lsi_table[i].irq) {
1590 spapr_irq_free(spapr, sphb->lsi_table[i].irq, 1);
1591 sphb->lsi_table[i].irq = 0;
1592 }
1593 }
1594
1595 QLIST_REMOVE(sphb, list);
1596
1597 memory_region_del_subregion(&sphb->iommu_root, &sphb->msiwindow);
1598
1599 address_space_destroy(&sphb->iommu_as);
1600
1601 qbus_set_hotplug_handler(BUS(phb->bus), NULL, &error_abort);
1602 pci_unregister_root_bus(phb->bus);
1603
1604 memory_region_del_subregion(get_system_memory(), &sphb->iowindow);
1605 if (sphb->mem64_win_pciaddr != (hwaddr)-1) {
1606 memory_region_del_subregion(get_system_memory(), &sphb->mem64window);
1607 }
1608 memory_region_del_subregion(get_system_memory(), &sphb->mem32window);
1609 }
1610
1611 static void spapr_phb_realize(DeviceState *dev, Error **errp)
1612 {
1613 /* We don't use SPAPR_MACHINE() in order to exit gracefully if the user
1614 * tries to add a sPAPR PHB to a non-pseries machine.
1615 */
1616 SpaprMachineState *spapr =
1617 (SpaprMachineState *) object_dynamic_cast(qdev_get_machine(),
1618 TYPE_SPAPR_MACHINE);
1619 SpaprMachineClass *smc = spapr ? SPAPR_MACHINE_GET_CLASS(spapr) : NULL;
1620 SysBusDevice *s = SYS_BUS_DEVICE(dev);
1621 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
1622 PCIHostState *phb = PCI_HOST_BRIDGE(s);
1623 char *namebuf;
1624 int i;
1625 PCIBus *bus;
1626 uint64_t msi_window_size = 4096;
1627 SpaprTceTable *tcet;
1628 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
1629
1630 if (!spapr) {
1631 error_setg(errp, TYPE_SPAPR_PCI_HOST_BRIDGE " needs a pseries machine");
1632 return;
1633 }
1634
1635 assert(sphb->index != (uint32_t)-1); /* checked in spapr_phb_pre_plug() */
1636
1637 if (sphb->mem64_win_size != 0) {
1638 if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) {
1639 error_setg(errp, "32-bit memory window of size 0x%"HWADDR_PRIx
1640 " (max 2 GiB)", sphb->mem_win_size);
1641 return;
1642 }
1643
1644 /* 64-bit window defaults to identity mapping */
1645 sphb->mem64_win_pciaddr = sphb->mem64_win_addr;
1646 } else if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) {
1647 /*
1648 * For compatibility with old configuration, if no 64-bit MMIO
1649 * window is specified, but the ordinary (32-bit) memory
1650 * window is specified as > 2GiB, we treat it as a 2GiB 32-bit
1651 * window, with a 64-bit MMIO window following on immediately
1652 * afterwards
1653 */
1654 sphb->mem64_win_size = sphb->mem_win_size - SPAPR_PCI_MEM32_WIN_SIZE;
1655 sphb->mem64_win_addr = sphb->mem_win_addr + SPAPR_PCI_MEM32_WIN_SIZE;
1656 sphb->mem64_win_pciaddr =
1657 SPAPR_PCI_MEM_WIN_BUS_OFFSET + SPAPR_PCI_MEM32_WIN_SIZE;
1658 sphb->mem_win_size = SPAPR_PCI_MEM32_WIN_SIZE;
1659 }
1660
1661 if (spapr_pci_find_phb(spapr, sphb->buid)) {
1662 SpaprPhbState *s;
1663
1664 error_setg(errp, "PCI host bridges must have unique indexes");
1665 error_append_hint(errp, "The following indexes are already in use:");
1666 QLIST_FOREACH(s, &spapr->phbs, list) {
1667 error_append_hint(errp, " %d", s->index);
1668 }
1669 error_append_hint(errp, "\nTry another value for the index property\n");
1670 return;
1671 }
1672
1673 if (sphb->numa_node != -1 &&
1674 (sphb->numa_node >= MAX_NODES || !numa_info[sphb->numa_node].present)) {
1675 error_setg(errp, "Invalid NUMA node ID for PCI host bridge");
1676 return;
1677 }
1678
1679 sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
1680
1681 /* Initialize memory regions */
1682 namebuf = g_strdup_printf("%s.mmio", sphb->dtbusname);
1683 memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX);
1684 g_free(namebuf);
1685
1686 namebuf = g_strdup_printf("%s.mmio32-alias", sphb->dtbusname);
1687 memory_region_init_alias(&sphb->mem32window, OBJECT(sphb),
1688 namebuf, &sphb->memspace,
1689 SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
1690 g_free(namebuf);
1691 memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
1692 &sphb->mem32window);
1693
1694 if (sphb->mem64_win_size != 0) {
1695 namebuf = g_strdup_printf("%s.mmio64-alias", sphb->dtbusname);
1696 memory_region_init_alias(&sphb->mem64window, OBJECT(sphb),
1697 namebuf, &sphb->memspace,
1698 sphb->mem64_win_pciaddr, sphb->mem64_win_size);
1699 g_free(namebuf);
1700
1701 memory_region_add_subregion(get_system_memory(),
1702 sphb->mem64_win_addr,
1703 &sphb->mem64window);
1704 }
1705
1706 /* Initialize IO regions */
1707 namebuf = g_strdup_printf("%s.io", sphb->dtbusname);
1708 memory_region_init(&sphb->iospace, OBJECT(sphb),
1709 namebuf, SPAPR_PCI_IO_WIN_SIZE);
1710 g_free(namebuf);
1711
1712 namebuf = g_strdup_printf("%s.io-alias", sphb->dtbusname);
1713 memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf,
1714 &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE);
1715 g_free(namebuf);
1716 memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
1717 &sphb->iowindow);
1718
1719 bus = pci_register_root_bus(dev, NULL,
1720 pci_spapr_set_irq, pci_swizzle_map_irq_fn, sphb,
1721 &sphb->memspace, &sphb->iospace,
1722 PCI_DEVFN(0, 0), PCI_NUM_PINS,
1723 TYPE_PCI_BUS);
1724
1725 /*
1726 * Despite resembling a vanilla PCI bus in most ways, the PAPR
1727 * para-virtualized PCI bus *does* permit PCI-E extended config
1728 * space access
1729 */
1730 if (sphb->pcie_ecs) {
1731 bus->flags |= PCI_BUS_EXTENDED_CONFIG_SPACE;
1732 }
1733 phb->bus = bus;
1734 qbus_set_hotplug_handler(BUS(phb->bus), OBJECT(sphb), NULL);
1735
1736 /*
1737 * Initialize PHB address space.
1738 * By default there will be at least one subregion for default
1739 * 32bit DMA window.
1740 * Later the guest might want to create another DMA window
1741 * which will become another memory subregion.
1742 */
1743 namebuf = g_strdup_printf("%s.iommu-root", sphb->dtbusname);
1744 memory_region_init(&sphb->iommu_root, OBJECT(sphb),
1745 namebuf, UINT64_MAX);
1746 g_free(namebuf);
1747 address_space_init(&sphb->iommu_as, &sphb->iommu_root,
1748 sphb->dtbusname);
1749
1750 /*
1751 * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
1752 * we need to allocate some memory to catch those writes coming
1753 * from msi_notify()/msix_notify().
1754 * As MSIMessage:addr is going to be the same and MSIMessage:data
1755 * is going to be a VIRQ number, 4 bytes of the MSI MR will only
1756 * be used.
1757 *
1758 * For KVM we want to ensure that this memory is a full page so that
1759 * our memory slot is of page size granularity.
1760 */
1761 #ifdef CONFIG_KVM
1762 if (kvm_enabled()) {
1763 msi_window_size = getpagesize();
1764 }
1765 #endif
1766
1767 memory_region_init_io(&sphb->msiwindow, OBJECT(sphb), &spapr_msi_ops, spapr,
1768 "msi", msi_window_size);
1769 memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW,
1770 &sphb->msiwindow);
1771
1772 pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb);
1773
1774 pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq);
1775
1776 QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
1777
1778 /* Initialize the LSI table */
1779 for (i = 0; i < PCI_NUM_PINS; i++) {
1780 uint32_t irq = SPAPR_IRQ_PCI_LSI + sphb->index * PCI_NUM_PINS + i;
1781 Error *local_err = NULL;
1782
1783 if (smc->legacy_irq_allocation) {
1784 irq = spapr_irq_findone(spapr, &local_err);
1785 if (local_err) {
1786 error_propagate_prepend(errp, local_err,
1787 "can't allocate LSIs: ");
1788 /*
1789 * Older machines will never support PHB hotplug, ie, this is an
1790 * init only path and QEMU will terminate. No need to rollback.
1791 */
1792 return;
1793 }
1794 }
1795
1796 spapr_irq_claim(spapr, irq, true, &local_err);
1797 if (local_err) {
1798 error_propagate_prepend(errp, local_err, "can't allocate LSIs: ");
1799 goto unrealize;
1800 }
1801
1802 sphb->lsi_table[i].irq = irq;
1803 }
1804
1805 /* allocate connectors for child PCI devices */
1806 if (sphb->dr_enabled) {
1807 for (i = 0; i < PCI_SLOT_MAX * 8; i++) {
1808 spapr_dr_connector_new(OBJECT(phb), TYPE_SPAPR_DRC_PCI,
1809 (sphb->index << 16) | i);
1810 }
1811 }
1812
1813 /* DMA setup */
1814 for (i = 0; i < windows_supported; ++i) {
1815 tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn[i]);
1816 if (!tcet) {
1817 error_setg(errp, "Creating window#%d failed for %s",
1818 i, sphb->dtbusname);
1819 goto unrealize;
1820 }
1821 memory_region_add_subregion(&sphb->iommu_root, 0,
1822 spapr_tce_get_iommu(tcet));
1823 }
1824
1825 sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free, g_free);
1826 return;
1827
1828 unrealize:
1829 spapr_phb_unrealize(dev, NULL);
1830 }
1831
1832 static int spapr_phb_children_reset(Object *child, void *opaque)
1833 {
1834 DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE);
1835
1836 if (dev) {
1837 device_reset(dev);
1838 }
1839
1840 return 0;
1841 }
1842
1843 void spapr_phb_dma_reset(SpaprPhbState *sphb)
1844 {
1845 int i;
1846 SpaprTceTable *tcet;
1847
1848 for (i = 0; i < SPAPR_PCI_DMA_MAX_WINDOWS; ++i) {
1849 tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[i]);
1850
1851 if (tcet && tcet->nb_table) {
1852 spapr_tce_table_disable(tcet);
1853 }
1854 }
1855
1856 /* Register default 32bit DMA window */
1857 tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[0]);
1858 spapr_tce_table_enable(tcet, SPAPR_TCE_PAGE_SHIFT, sphb->dma_win_addr,
1859 sphb->dma_win_size >> SPAPR_TCE_PAGE_SHIFT);
1860 }
1861
1862 static void spapr_phb_reset(DeviceState *qdev)
1863 {
1864 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(qdev);
1865 Error *errp = NULL;
1866
1867 spapr_phb_dma_reset(sphb);
1868 spapr_phb_nvgpu_free(sphb);
1869 spapr_phb_nvgpu_setup(sphb, &errp);
1870 if (errp) {
1871 error_report_err(errp);
1872 }
1873
1874 /* Reset the IOMMU state */
1875 object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL);
1876
1877 if (spapr_phb_eeh_available(SPAPR_PCI_HOST_BRIDGE(qdev))) {
1878 spapr_phb_vfio_reset(qdev);
1879 }
1880 }
1881
1882 static Property spapr_phb_properties[] = {
1883 DEFINE_PROP_UINT32("index", SpaprPhbState, index, -1),
1884 DEFINE_PROP_UINT64("mem_win_size", SpaprPhbState, mem_win_size,
1885 SPAPR_PCI_MEM32_WIN_SIZE),
1886 DEFINE_PROP_UINT64("mem64_win_size", SpaprPhbState, mem64_win_size,
1887 SPAPR_PCI_MEM64_WIN_SIZE),
1888 DEFINE_PROP_UINT64("io_win_size", SpaprPhbState, io_win_size,
1889 SPAPR_PCI_IO_WIN_SIZE),
1890 DEFINE_PROP_BOOL("dynamic-reconfiguration", SpaprPhbState, dr_enabled,
1891 true),
1892 /* Default DMA window is 0..1GB */
1893 DEFINE_PROP_UINT64("dma_win_addr", SpaprPhbState, dma_win_addr, 0),
1894 DEFINE_PROP_UINT64("dma_win_size", SpaprPhbState, dma_win_size, 0x40000000),
1895 DEFINE_PROP_UINT64("dma64_win_addr", SpaprPhbState, dma64_win_addr,
1896 0x800000000000000ULL),
1897 DEFINE_PROP_BOOL("ddw", SpaprPhbState, ddw_enabled, true),
1898 DEFINE_PROP_UINT64("pgsz", SpaprPhbState, page_size_mask,
1899 (1ULL << 12) | (1ULL << 16)),
1900 DEFINE_PROP_UINT32("numa_node", SpaprPhbState, numa_node, -1),
1901 DEFINE_PROP_BOOL("pre-2.8-migration", SpaprPhbState,
1902 pre_2_8_migration, false),
1903 DEFINE_PROP_BOOL("pcie-extended-configuration-space", SpaprPhbState,
1904 pcie_ecs, true),
1905 DEFINE_PROP_UINT64("gpa", SpaprPhbState, nv2_gpa_win_addr, 0),
1906 DEFINE_PROP_UINT64("atsd", SpaprPhbState, nv2_atsd_win_addr, 0),
1907 DEFINE_PROP_END_OF_LIST(),
1908 };
1909
1910 static const VMStateDescription vmstate_spapr_pci_lsi = {
1911 .name = "spapr_pci/lsi",
1912 .version_id = 1,
1913 .minimum_version_id = 1,
1914 .fields = (VMStateField[]) {
1915 VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi, NULL),
1916
1917 VMSTATE_END_OF_LIST()
1918 },
1919 };
1920
1921 static const VMStateDescription vmstate_spapr_pci_msi = {
1922 .name = "spapr_pci/msi",
1923 .version_id = 1,
1924 .minimum_version_id = 1,
1925 .fields = (VMStateField []) {
1926 VMSTATE_UINT32(key, spapr_pci_msi_mig),
1927 VMSTATE_UINT32(value.first_irq, spapr_pci_msi_mig),
1928 VMSTATE_UINT32(value.num, spapr_pci_msi_mig),
1929 VMSTATE_END_OF_LIST()
1930 },
1931 };
1932
1933 static int spapr_pci_pre_save(void *opaque)
1934 {
1935 SpaprPhbState *sphb = opaque;
1936 GHashTableIter iter;
1937 gpointer key, value;
1938 int i;
1939
1940 if (sphb->pre_2_8_migration) {
1941 sphb->mig_liobn = sphb->dma_liobn[0];
1942 sphb->mig_mem_win_addr = sphb->mem_win_addr;
1943 sphb->mig_mem_win_size = sphb->mem_win_size;
1944 sphb->mig_io_win_addr = sphb->io_win_addr;
1945 sphb->mig_io_win_size = sphb->io_win_size;
1946
1947 if ((sphb->mem64_win_size != 0)
1948 && (sphb->mem64_win_addr
1949 == (sphb->mem_win_addr + sphb->mem_win_size))) {
1950 sphb->mig_mem_win_size += sphb->mem64_win_size;
1951 }
1952 }
1953
1954 g_free(sphb->msi_devs);
1955 sphb->msi_devs = NULL;
1956 sphb->msi_devs_num = g_hash_table_size(sphb->msi);
1957 if (!sphb->msi_devs_num) {
1958 return 0;
1959 }
1960 sphb->msi_devs = g_new(spapr_pci_msi_mig, sphb->msi_devs_num);
1961
1962 g_hash_table_iter_init(&iter, sphb->msi);
1963 for (i = 0; g_hash_table_iter_next(&iter, &key, &value); ++i) {
1964 sphb->msi_devs[i].key = *(uint32_t *) key;
1965 sphb->msi_devs[i].value = *(spapr_pci_msi *) value;
1966 }
1967
1968 return 0;
1969 }
1970
1971 static int spapr_pci_post_load(void *opaque, int version_id)
1972 {
1973 SpaprPhbState *sphb = opaque;
1974 gpointer key, value;
1975 int i;
1976
1977 for (i = 0; i < sphb->msi_devs_num; ++i) {
1978 key = g_memdup(&sphb->msi_devs[i].key,
1979 sizeof(sphb->msi_devs[i].key));
1980 value = g_memdup(&sphb->msi_devs[i].value,
1981 sizeof(sphb->msi_devs[i].value));
1982 g_hash_table_insert(sphb->msi, key, value);
1983 }
1984 g_free(sphb->msi_devs);
1985 sphb->msi_devs = NULL;
1986 sphb->msi_devs_num = 0;
1987
1988 return 0;
1989 }
1990
1991 static bool pre_2_8_migration(void *opaque, int version_id)
1992 {
1993 SpaprPhbState *sphb = opaque;
1994
1995 return sphb->pre_2_8_migration;
1996 }
1997
1998 static const VMStateDescription vmstate_spapr_pci = {
1999 .name = "spapr_pci",
2000 .version_id = 2,
2001 .minimum_version_id = 2,
2002 .pre_save = spapr_pci_pre_save,
2003 .post_load = spapr_pci_post_load,
2004 .fields = (VMStateField[]) {
2005 VMSTATE_UINT64_EQUAL(buid, SpaprPhbState, NULL),
2006 VMSTATE_UINT32_TEST(mig_liobn, SpaprPhbState, pre_2_8_migration),
2007 VMSTATE_UINT64_TEST(mig_mem_win_addr, SpaprPhbState, pre_2_8_migration),
2008 VMSTATE_UINT64_TEST(mig_mem_win_size, SpaprPhbState, pre_2_8_migration),
2009 VMSTATE_UINT64_TEST(mig_io_win_addr, SpaprPhbState, pre_2_8_migration),
2010 VMSTATE_UINT64_TEST(mig_io_win_size, SpaprPhbState, pre_2_8_migration),
2011 VMSTATE_STRUCT_ARRAY(lsi_table, SpaprPhbState, PCI_NUM_PINS, 0,
2012 vmstate_spapr_pci_lsi, struct spapr_pci_lsi),
2013 VMSTATE_INT32(msi_devs_num, SpaprPhbState),
2014 VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, SpaprPhbState, msi_devs_num, 0,
2015 vmstate_spapr_pci_msi, spapr_pci_msi_mig),
2016 VMSTATE_END_OF_LIST()
2017 },
2018 };
2019
2020 static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge,
2021 PCIBus *rootbus)
2022 {
2023 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge);
2024
2025 return sphb->dtbusname;
2026 }
2027
2028 static void spapr_phb_class_init(ObjectClass *klass, void *data)
2029 {
2030 PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
2031 DeviceClass *dc = DEVICE_CLASS(klass);
2032 HotplugHandlerClass *hp = HOTPLUG_HANDLER_CLASS(klass);
2033
2034 hc->root_bus_path = spapr_phb_root_bus_path;
2035 dc->realize = spapr_phb_realize;
2036 dc->unrealize = spapr_phb_unrealize;
2037 dc->props = spapr_phb_properties;
2038 dc->reset = spapr_phb_reset;
2039 dc->vmsd = &vmstate_spapr_pci;
2040 /* Supported by TYPE_SPAPR_MACHINE */
2041 dc->user_creatable = true;
2042 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
2043 hp->plug = spapr_pci_plug;
2044 hp->unplug = spapr_pci_unplug;
2045 hp->unplug_request = spapr_pci_unplug_request;
2046 }
2047
2048 static const TypeInfo spapr_phb_info = {
2049 .name = TYPE_SPAPR_PCI_HOST_BRIDGE,
2050 .parent = TYPE_PCI_HOST_BRIDGE,
2051 .instance_size = sizeof(SpaprPhbState),
2052 .instance_finalize = spapr_phb_finalizefn,
2053 .class_init = spapr_phb_class_init,
2054 .interfaces = (InterfaceInfo[]) {
2055 { TYPE_HOTPLUG_HANDLER },
2056 { }
2057 }
2058 };
2059
2060 typedef struct SpaprFdt {
2061 void *fdt;
2062 int node_off;
2063 SpaprPhbState *sphb;
2064 } SpaprFdt;
2065
2066 static void spapr_populate_pci_devices_dt(PCIBus *bus, PCIDevice *pdev,
2067 void *opaque)
2068 {
2069 PCIBus *sec_bus;
2070 SpaprFdt *p = opaque;
2071 int offset;
2072 SpaprFdt s_fdt;
2073
2074 offset = spapr_dt_pci_device(p->sphb, pdev, p->fdt, p->node_off);
2075 if (!offset) {
2076 error_report("Failed to create pci child device tree node");
2077 return;
2078 }
2079
2080 if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
2081 PCI_HEADER_TYPE_BRIDGE)) {
2082 return;
2083 }
2084
2085 sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
2086 if (!sec_bus) {
2087 return;
2088 }
2089
2090 s_fdt.fdt = p->fdt;
2091 s_fdt.node_off = offset;
2092 s_fdt.sphb = p->sphb;
2093 pci_for_each_device_reverse(sec_bus, pci_bus_num(sec_bus),
2094 spapr_populate_pci_devices_dt,
2095 &s_fdt);
2096 }
2097
2098 static void spapr_phb_pci_enumerate_bridge(PCIBus *bus, PCIDevice *pdev,
2099 void *opaque)
2100 {
2101 unsigned int *bus_no = opaque;
2102 PCIBus *sec_bus = NULL;
2103
2104 if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
2105 PCI_HEADER_TYPE_BRIDGE)) {
2106 return;
2107 }
2108
2109 (*bus_no)++;
2110 pci_default_write_config(pdev, PCI_PRIMARY_BUS, pci_dev_bus_num(pdev), 1);
2111 pci_default_write_config(pdev, PCI_SECONDARY_BUS, *bus_no, 1);
2112 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
2113
2114 sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
2115 if (!sec_bus) {
2116 return;
2117 }
2118
2119 pci_for_each_device(sec_bus, pci_bus_num(sec_bus),
2120 spapr_phb_pci_enumerate_bridge, bus_no);
2121 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
2122 }
2123
2124 static void spapr_phb_pci_enumerate(SpaprPhbState *phb)
2125 {
2126 PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
2127 unsigned int bus_no = 0;
2128
2129 pci_for_each_device(bus, pci_bus_num(bus),
2130 spapr_phb_pci_enumerate_bridge,
2131 &bus_no);
2132
2133 }
2134
2135 int spapr_populate_pci_dt(SpaprPhbState *phb, uint32_t intc_phandle, void *fdt,
2136 uint32_t nr_msis, int *node_offset)
2137 {
2138 int bus_off, i, j, ret;
2139 uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
2140 struct {
2141 uint32_t hi;
2142 uint64_t child;
2143 uint64_t parent;
2144 uint64_t size;
2145 } QEMU_PACKED ranges[] = {
2146 {
2147 cpu_to_be32(b_ss(1)), cpu_to_be64(0),
2148 cpu_to_be64(phb->io_win_addr),
2149 cpu_to_be64(memory_region_size(&phb->iospace)),
2150 },
2151 {
2152 cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
2153 cpu_to_be64(phb->mem_win_addr),
2154 cpu_to_be64(phb->mem_win_size),
2155 },
2156 {
2157 cpu_to_be32(b_ss(3)), cpu_to_be64(phb->mem64_win_pciaddr),
2158 cpu_to_be64(phb->mem64_win_addr),
2159 cpu_to_be64(phb->mem64_win_size),
2160 },
2161 };
2162 const unsigned sizeof_ranges =
2163 (phb->mem64_win_size ? 3 : 2) * sizeof(ranges[0]);
2164 uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
2165 uint32_t interrupt_map_mask[] = {
2166 cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
2167 uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
2168 uint32_t ddw_applicable[] = {
2169 cpu_to_be32(RTAS_IBM_QUERY_PE_DMA_WINDOW),
2170 cpu_to_be32(RTAS_IBM_CREATE_PE_DMA_WINDOW),
2171 cpu_to_be32(RTAS_IBM_REMOVE_PE_DMA_WINDOW)
2172 };
2173 uint32_t ddw_extensions[] = {
2174 cpu_to_be32(1),
2175 cpu_to_be32(RTAS_IBM_RESET_PE_DMA_WINDOW)
2176 };
2177 uint32_t associativity[] = {cpu_to_be32(0x4),
2178 cpu_to_be32(0x0),
2179 cpu_to_be32(0x0),
2180 cpu_to_be32(0x0),
2181 cpu_to_be32(phb->numa_node)};
2182 SpaprTceTable *tcet;
2183 PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
2184 SpaprFdt s_fdt;
2185 SpaprDrc *drc;
2186 Error *errp = NULL;
2187
2188 /* Start populating the FDT */
2189 _FDT(bus_off = fdt_add_subnode(fdt, 0, phb->dtbusname));
2190 if (node_offset) {
2191 *node_offset = bus_off;
2192 }
2193
2194 /* Write PHB properties */
2195 _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
2196 _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
2197 _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
2198 _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
2199 _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
2200 _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
2201 _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
2202 _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof_ranges));
2203 _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
2204 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
2205 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi", nr_msis));
2206
2207 /* Dynamic DMA window */
2208 if (phb->ddw_enabled) {
2209 _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-applicable", &ddw_applicable,
2210 sizeof(ddw_applicable)));
2211 _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-extensions",
2212 &ddw_extensions, sizeof(ddw_extensions)));
2213 }
2214
2215 /* Advertise NUMA via ibm,associativity */
2216 if (phb->numa_node != -1) {
2217 _FDT(fdt_setprop(fdt, bus_off, "ibm,associativity", associativity,
2218 sizeof(associativity)));
2219 }
2220
2221 /* Build the interrupt-map, this must matches what is done
2222 * in pci_swizzle_map_irq_fn
2223 */
2224 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
2225 &interrupt_map_mask, sizeof(interrupt_map_mask)));
2226 for (i = 0; i < PCI_SLOT_MAX; i++) {
2227 for (j = 0; j < PCI_NUM_PINS; j++) {
2228 uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
2229 int lsi_num = pci_swizzle(i, j);
2230
2231 irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
2232 irqmap[1] = 0;
2233 irqmap[2] = 0;
2234 irqmap[3] = cpu_to_be32(j+1);
2235 irqmap[4] = cpu_to_be32(intc_phandle);
2236 spapr_dt_irq(&irqmap[5], phb->lsi_table[lsi_num].irq, true);
2237 }
2238 }
2239 /* Write interrupt map */
2240 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
2241 sizeof(interrupt_map)));
2242
2243 tcet = spapr_tce_find_by_liobn(phb->dma_liobn[0]);
2244 if (!tcet) {
2245 return -1;
2246 }
2247 spapr_dma_dt(fdt, bus_off, "ibm,dma-window",
2248 tcet->liobn, tcet->bus_offset,
2249 tcet->nb_table << tcet->page_shift);
2250
2251 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, phb->index);
2252 if (drc) {
2253 uint32_t drc_index = cpu_to_be32(spapr_drc_index(drc));
2254
2255 _FDT(fdt_setprop(fdt, bus_off, "ibm,my-drc-index", &drc_index,
2256 sizeof(drc_index)));
2257 }
2258
2259 /* Walk the bridges and program the bus numbers*/
2260 spapr_phb_pci_enumerate(phb);
2261 _FDT(fdt_setprop_cell(fdt, bus_off, "qemu,phb-enumerated", 0x1));
2262
2263 /* Populate tree nodes with PCI devices attached */
2264 s_fdt.fdt = fdt;
2265 s_fdt.node_off = bus_off;
2266 s_fdt.sphb = phb;
2267 pci_for_each_device_reverse(bus, pci_bus_num(bus),
2268 spapr_populate_pci_devices_dt,
2269 &s_fdt);
2270
2271 ret = spapr_drc_populate_dt(fdt, bus_off, OBJECT(phb),
2272 SPAPR_DR_CONNECTOR_TYPE_PCI);
2273 if (ret) {
2274 return ret;
2275 }
2276
2277 spapr_phb_nvgpu_populate_dt(phb, fdt, bus_off, &errp);
2278 if (errp) {
2279 error_report_err(errp);
2280 }
2281 spapr_phb_nvgpu_ram_populate_dt(phb, fdt);
2282
2283 return 0;
2284 }
2285
2286 void spapr_pci_rtas_init(void)
2287 {
2288 spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config",
2289 rtas_read_pci_config);
2290 spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config",
2291 rtas_write_pci_config);
2292 spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config",
2293 rtas_ibm_read_pci_config);
2294 spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config",
2295 rtas_ibm_write_pci_config);
2296 if (msi_nonbroken) {
2297 spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER,
2298 "ibm,query-interrupt-source-number",
2299 rtas_ibm_query_interrupt_source_number);
2300 spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi",
2301 rtas_ibm_change_msi);
2302 }
2303
2304 spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION,
2305 "ibm,set-eeh-option",
2306 rtas_ibm_set_eeh_option);
2307 spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2,
2308 "ibm,get-config-addr-info2",
2309 rtas_ibm_get_config_addr_info2);
2310 spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2,
2311 "ibm,read-slot-reset-state2",
2312 rtas_ibm_read_slot_reset_state2);
2313 spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET,
2314 "ibm,set-slot-reset",
2315 rtas_ibm_set_slot_reset);
2316 spapr_rtas_register(RTAS_IBM_CONFIGURE_PE,
2317 "ibm,configure-pe",
2318 rtas_ibm_configure_pe);
2319 spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL,
2320 "ibm,slot-error-detail",
2321 rtas_ibm_slot_error_detail);
2322 }
2323
2324 static void spapr_pci_register_types(void)
2325 {
2326 type_register_static(&spapr_phb_info);
2327 }
2328
2329 type_init(spapr_pci_register_types)
2330
2331 static int spapr_switch_one_vga(DeviceState *dev, void *opaque)
2332 {
2333 bool be = *(bool *)opaque;
2334
2335 if (object_dynamic_cast(OBJECT(dev), "VGA")
2336 || object_dynamic_cast(OBJECT(dev), "secondary-vga")) {
2337 object_property_set_bool(OBJECT(dev), be, "big-endian-framebuffer",
2338 &error_abort);
2339 }
2340 return 0;
2341 }
2342
2343 void spapr_pci_switch_vga(bool big_endian)
2344 {
2345 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
2346 SpaprPhbState *sphb;
2347
2348 /*
2349 * For backward compatibility with existing guests, we switch
2350 * the endianness of the VGA controller when changing the guest
2351 * interrupt mode
2352 */
2353 QLIST_FOREACH(sphb, &spapr->phbs, list) {
2354 BusState *bus = &PCI_HOST_BRIDGE(sphb)->bus->qbus;
2355 qbus_walk_children(bus, spapr_switch_one_vga, NULL, NULL, NULL,
2356 &big_endian);
2357 }
2358 }