]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr_pci.c
ppc: Clean up includes
[mirror_qemu.git] / hw / ppc / spapr_pci.c
1 /*
2 * QEMU sPAPR PCI host originated from Uninorth PCI host
3 *
4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5 * Copyright (C) 2011 David Gibson, IBM Corporation.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
24 */
25 #include "qemu/osdep.h"
26 #include "hw/hw.h"
27 #include "hw/sysbus.h"
28 #include "hw/pci/pci.h"
29 #include "hw/pci/msi.h"
30 #include "hw/pci/msix.h"
31 #include "hw/pci/pci_host.h"
32 #include "hw/ppc/spapr.h"
33 #include "hw/pci-host/spapr.h"
34 #include "exec/address-spaces.h"
35 #include <libfdt.h>
36 #include "trace.h"
37 #include "qemu/error-report.h"
38 #include "qapi/qmp/qerror.h"
39
40 #include "hw/pci/pci_bridge.h"
41 #include "hw/pci/pci_bus.h"
42 #include "hw/ppc/spapr_drc.h"
43 #include "sysemu/device_tree.h"
44
45 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
46 #define RTAS_QUERY_FN 0
47 #define RTAS_CHANGE_FN 1
48 #define RTAS_RESET_FN 2
49 #define RTAS_CHANGE_MSI_FN 3
50 #define RTAS_CHANGE_MSIX_FN 4
51
52 /* Interrupt types to return on RTAS_CHANGE_* */
53 #define RTAS_TYPE_MSI 1
54 #define RTAS_TYPE_MSIX 2
55
56 #define FDT_NAME_MAX 128
57
58 #define _FDT(exp) \
59 do { \
60 int ret = (exp); \
61 if (ret < 0) { \
62 return ret; \
63 } \
64 } while (0)
65
66 sPAPRPHBState *spapr_pci_find_phb(sPAPRMachineState *spapr, uint64_t buid)
67 {
68 sPAPRPHBState *sphb;
69
70 QLIST_FOREACH(sphb, &spapr->phbs, list) {
71 if (sphb->buid != buid) {
72 continue;
73 }
74 return sphb;
75 }
76
77 return NULL;
78 }
79
80 PCIDevice *spapr_pci_find_dev(sPAPRMachineState *spapr, uint64_t buid,
81 uint32_t config_addr)
82 {
83 sPAPRPHBState *sphb = spapr_pci_find_phb(spapr, buid);
84 PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
85 int bus_num = (config_addr >> 16) & 0xFF;
86 int devfn = (config_addr >> 8) & 0xFF;
87
88 if (!phb) {
89 return NULL;
90 }
91
92 return pci_find_device(phb->bus, bus_num, devfn);
93 }
94
95 static uint32_t rtas_pci_cfgaddr(uint32_t arg)
96 {
97 /* This handles the encoding of extended config space addresses */
98 return ((arg >> 20) & 0xf00) | (arg & 0xff);
99 }
100
101 static void finish_read_pci_config(sPAPRMachineState *spapr, uint64_t buid,
102 uint32_t addr, uint32_t size,
103 target_ulong rets)
104 {
105 PCIDevice *pci_dev;
106 uint32_t val;
107
108 if ((size != 1) && (size != 2) && (size != 4)) {
109 /* access must be 1, 2 or 4 bytes */
110 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
111 return;
112 }
113
114 pci_dev = spapr_pci_find_dev(spapr, buid, addr);
115 addr = rtas_pci_cfgaddr(addr);
116
117 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
118 /* Access must be to a valid device, within bounds and
119 * naturally aligned */
120 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
121 return;
122 }
123
124 val = pci_host_config_read_common(pci_dev, addr,
125 pci_config_size(pci_dev), size);
126
127 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
128 rtas_st(rets, 1, val);
129 }
130
131 static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
132 uint32_t token, uint32_t nargs,
133 target_ulong args,
134 uint32_t nret, target_ulong rets)
135 {
136 uint64_t buid;
137 uint32_t size, addr;
138
139 if ((nargs != 4) || (nret != 2)) {
140 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
141 return;
142 }
143
144 buid = rtas_ldq(args, 1);
145 size = rtas_ld(args, 3);
146 addr = rtas_ld(args, 0);
147
148 finish_read_pci_config(spapr, buid, addr, size, rets);
149 }
150
151 static void rtas_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
152 uint32_t token, uint32_t nargs,
153 target_ulong args,
154 uint32_t nret, target_ulong rets)
155 {
156 uint32_t size, addr;
157
158 if ((nargs != 2) || (nret != 2)) {
159 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
160 return;
161 }
162
163 size = rtas_ld(args, 1);
164 addr = rtas_ld(args, 0);
165
166 finish_read_pci_config(spapr, 0, addr, size, rets);
167 }
168
169 static void finish_write_pci_config(sPAPRMachineState *spapr, uint64_t buid,
170 uint32_t addr, uint32_t size,
171 uint32_t val, target_ulong rets)
172 {
173 PCIDevice *pci_dev;
174
175 if ((size != 1) && (size != 2) && (size != 4)) {
176 /* access must be 1, 2 or 4 bytes */
177 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
178 return;
179 }
180
181 pci_dev = spapr_pci_find_dev(spapr, buid, addr);
182 addr = rtas_pci_cfgaddr(addr);
183
184 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
185 /* Access must be to a valid device, within bounds and
186 * naturally aligned */
187 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
188 return;
189 }
190
191 pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
192 val, size);
193
194 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
195 }
196
197 static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
198 uint32_t token, uint32_t nargs,
199 target_ulong args,
200 uint32_t nret, target_ulong rets)
201 {
202 uint64_t buid;
203 uint32_t val, size, addr;
204
205 if ((nargs != 5) || (nret != 1)) {
206 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
207 return;
208 }
209
210 buid = rtas_ldq(args, 1);
211 val = rtas_ld(args, 4);
212 size = rtas_ld(args, 3);
213 addr = rtas_ld(args, 0);
214
215 finish_write_pci_config(spapr, buid, addr, size, val, rets);
216 }
217
218 static void rtas_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
219 uint32_t token, uint32_t nargs,
220 target_ulong args,
221 uint32_t nret, target_ulong rets)
222 {
223 uint32_t val, size, addr;
224
225 if ((nargs != 3) || (nret != 1)) {
226 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
227 return;
228 }
229
230
231 val = rtas_ld(args, 2);
232 size = rtas_ld(args, 1);
233 addr = rtas_ld(args, 0);
234
235 finish_write_pci_config(spapr, 0, addr, size, val, rets);
236 }
237
238 /*
239 * Set MSI/MSIX message data.
240 * This is required for msi_notify()/msix_notify() which
241 * will write at the addresses via spapr_msi_write().
242 *
243 * If hwaddr == 0, all entries will have .data == first_irq i.e.
244 * table will be reset.
245 */
246 static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix,
247 unsigned first_irq, unsigned req_num)
248 {
249 unsigned i;
250 MSIMessage msg = { .address = addr, .data = first_irq };
251
252 if (!msix) {
253 msi_set_message(pdev, msg);
254 trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
255 return;
256 }
257
258 for (i = 0; i < req_num; ++i) {
259 msix_set_message(pdev, i, msg);
260 trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
261 if (addr) {
262 ++msg.data;
263 }
264 }
265 }
266
267 static void rtas_ibm_change_msi(PowerPCCPU *cpu, sPAPRMachineState *spapr,
268 uint32_t token, uint32_t nargs,
269 target_ulong args, uint32_t nret,
270 target_ulong rets)
271 {
272 uint32_t config_addr = rtas_ld(args, 0);
273 uint64_t buid = rtas_ldq(args, 1);
274 unsigned int func = rtas_ld(args, 3);
275 unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
276 unsigned int seq_num = rtas_ld(args, 5);
277 unsigned int ret_intr_type;
278 unsigned int irq, max_irqs = 0, num = 0;
279 sPAPRPHBState *phb = NULL;
280 PCIDevice *pdev = NULL;
281 spapr_pci_msi *msi;
282 int *config_addr_key;
283
284 switch (func) {
285 case RTAS_CHANGE_MSI_FN:
286 case RTAS_CHANGE_FN:
287 ret_intr_type = RTAS_TYPE_MSI;
288 break;
289 case RTAS_CHANGE_MSIX_FN:
290 ret_intr_type = RTAS_TYPE_MSIX;
291 break;
292 default:
293 error_report("rtas_ibm_change_msi(%u) is not implemented", func);
294 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
295 return;
296 }
297
298 /* Fins sPAPRPHBState */
299 phb = spapr_pci_find_phb(spapr, buid);
300 if (phb) {
301 pdev = spapr_pci_find_dev(spapr, buid, config_addr);
302 }
303 if (!phb || !pdev) {
304 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
305 return;
306 }
307
308 /* Releasing MSIs */
309 if (!req_num) {
310 msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
311 if (!msi) {
312 trace_spapr_pci_msi("Releasing wrong config", config_addr);
313 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
314 return;
315 }
316
317 xics_free(spapr->icp, msi->first_irq, msi->num);
318 if (msi_present(pdev)) {
319 spapr_msi_setmsg(pdev, 0, false, 0, num);
320 }
321 if (msix_present(pdev)) {
322 spapr_msi_setmsg(pdev, 0, true, 0, num);
323 }
324 g_hash_table_remove(phb->msi, &config_addr);
325
326 trace_spapr_pci_msi("Released MSIs", config_addr);
327 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
328 rtas_st(rets, 1, 0);
329 return;
330 }
331
332 /* Enabling MSI */
333
334 /* Check if the device supports as many IRQs as requested */
335 if (ret_intr_type == RTAS_TYPE_MSI) {
336 max_irqs = msi_nr_vectors_allocated(pdev);
337 } else if (ret_intr_type == RTAS_TYPE_MSIX) {
338 max_irqs = pdev->msix_entries_nr;
339 }
340 if (!max_irqs) {
341 error_report("Requested interrupt type %d is not enabled for device %x",
342 ret_intr_type, config_addr);
343 rtas_st(rets, 0, -1); /* Hardware error */
344 return;
345 }
346 /* Correct the number if the guest asked for too many */
347 if (req_num > max_irqs) {
348 trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs);
349 req_num = max_irqs;
350 irq = 0; /* to avoid misleading trace */
351 goto out;
352 }
353
354 /* Allocate MSIs */
355 irq = xics_alloc_block(spapr->icp, 0, req_num, false,
356 ret_intr_type == RTAS_TYPE_MSI);
357 if (!irq) {
358 error_report("Cannot allocate MSIs for device %x", config_addr);
359 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
360 return;
361 }
362
363 /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
364 spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX,
365 irq, req_num);
366
367 /* Add MSI device to cache */
368 msi = g_new(spapr_pci_msi, 1);
369 msi->first_irq = irq;
370 msi->num = req_num;
371 config_addr_key = g_new(int, 1);
372 *config_addr_key = config_addr;
373 g_hash_table_insert(phb->msi, config_addr_key, msi);
374
375 out:
376 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
377 rtas_st(rets, 1, req_num);
378 rtas_st(rets, 2, ++seq_num);
379 if (nret > 3) {
380 rtas_st(rets, 3, ret_intr_type);
381 }
382
383 trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq);
384 }
385
386 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu,
387 sPAPRMachineState *spapr,
388 uint32_t token,
389 uint32_t nargs,
390 target_ulong args,
391 uint32_t nret,
392 target_ulong rets)
393 {
394 uint32_t config_addr = rtas_ld(args, 0);
395 uint64_t buid = rtas_ldq(args, 1);
396 unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
397 sPAPRPHBState *phb = NULL;
398 PCIDevice *pdev = NULL;
399 spapr_pci_msi *msi;
400
401 /* Find sPAPRPHBState */
402 phb = spapr_pci_find_phb(spapr, buid);
403 if (phb) {
404 pdev = spapr_pci_find_dev(spapr, buid, config_addr);
405 }
406 if (!phb || !pdev) {
407 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
408 return;
409 }
410
411 /* Find device descriptor and start IRQ */
412 msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
413 if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) {
414 trace_spapr_pci_msi("Failed to return vector", config_addr);
415 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
416 return;
417 }
418 intr_src_num = msi->first_irq + ioa_intr_num;
419 trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
420 intr_src_num);
421
422 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
423 rtas_st(rets, 1, intr_src_num);
424 rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
425 }
426
427 static void rtas_ibm_set_eeh_option(PowerPCCPU *cpu,
428 sPAPRMachineState *spapr,
429 uint32_t token, uint32_t nargs,
430 target_ulong args, uint32_t nret,
431 target_ulong rets)
432 {
433 sPAPRPHBState *sphb;
434 sPAPRPHBClass *spc;
435 uint32_t addr, option;
436 uint64_t buid;
437 int ret;
438
439 if ((nargs != 4) || (nret != 1)) {
440 goto param_error_exit;
441 }
442
443 buid = rtas_ldq(args, 1);
444 addr = rtas_ld(args, 0);
445 option = rtas_ld(args, 3);
446
447 sphb = spapr_pci_find_phb(spapr, buid);
448 if (!sphb) {
449 goto param_error_exit;
450 }
451
452 spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
453 if (!spc->eeh_set_option) {
454 goto param_error_exit;
455 }
456
457 ret = spc->eeh_set_option(sphb, addr, option);
458 rtas_st(rets, 0, ret);
459 return;
460
461 param_error_exit:
462 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
463 }
464
465 static void rtas_ibm_get_config_addr_info2(PowerPCCPU *cpu,
466 sPAPRMachineState *spapr,
467 uint32_t token, uint32_t nargs,
468 target_ulong args, uint32_t nret,
469 target_ulong rets)
470 {
471 sPAPRPHBState *sphb;
472 sPAPRPHBClass *spc;
473 PCIDevice *pdev;
474 uint32_t addr, option;
475 uint64_t buid;
476
477 if ((nargs != 4) || (nret != 2)) {
478 goto param_error_exit;
479 }
480
481 buid = rtas_ldq(args, 1);
482 sphb = spapr_pci_find_phb(spapr, buid);
483 if (!sphb) {
484 goto param_error_exit;
485 }
486
487 spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
488 if (!spc->eeh_set_option) {
489 goto param_error_exit;
490 }
491
492 /*
493 * We always have PE address of form "00BB0001". "BB"
494 * represents the bus number of PE's primary bus.
495 */
496 option = rtas_ld(args, 3);
497 switch (option) {
498 case RTAS_GET_PE_ADDR:
499 addr = rtas_ld(args, 0);
500 pdev = spapr_pci_find_dev(spapr, buid, addr);
501 if (!pdev) {
502 goto param_error_exit;
503 }
504
505 rtas_st(rets, 1, (pci_bus_num(pdev->bus) << 16) + 1);
506 break;
507 case RTAS_GET_PE_MODE:
508 rtas_st(rets, 1, RTAS_PE_MODE_SHARED);
509 break;
510 default:
511 goto param_error_exit;
512 }
513
514 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
515 return;
516
517 param_error_exit:
518 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
519 }
520
521 static void rtas_ibm_read_slot_reset_state2(PowerPCCPU *cpu,
522 sPAPRMachineState *spapr,
523 uint32_t token, uint32_t nargs,
524 target_ulong args, uint32_t nret,
525 target_ulong rets)
526 {
527 sPAPRPHBState *sphb;
528 sPAPRPHBClass *spc;
529 uint64_t buid;
530 int state, ret;
531
532 if ((nargs != 3) || (nret != 4 && nret != 5)) {
533 goto param_error_exit;
534 }
535
536 buid = rtas_ldq(args, 1);
537 sphb = spapr_pci_find_phb(spapr, buid);
538 if (!sphb) {
539 goto param_error_exit;
540 }
541
542 spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
543 if (!spc->eeh_get_state) {
544 goto param_error_exit;
545 }
546
547 ret = spc->eeh_get_state(sphb, &state);
548 rtas_st(rets, 0, ret);
549 if (ret != RTAS_OUT_SUCCESS) {
550 return;
551 }
552
553 rtas_st(rets, 1, state);
554 rtas_st(rets, 2, RTAS_EEH_SUPPORT);
555 rtas_st(rets, 3, RTAS_EEH_PE_UNAVAIL_INFO);
556 if (nret >= 5) {
557 rtas_st(rets, 4, RTAS_EEH_PE_RECOVER_INFO);
558 }
559 return;
560
561 param_error_exit:
562 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
563 }
564
565 static void rtas_ibm_set_slot_reset(PowerPCCPU *cpu,
566 sPAPRMachineState *spapr,
567 uint32_t token, uint32_t nargs,
568 target_ulong args, uint32_t nret,
569 target_ulong rets)
570 {
571 sPAPRPHBState *sphb;
572 sPAPRPHBClass *spc;
573 uint32_t option;
574 uint64_t buid;
575 int ret;
576
577 if ((nargs != 4) || (nret != 1)) {
578 goto param_error_exit;
579 }
580
581 buid = rtas_ldq(args, 1);
582 option = rtas_ld(args, 3);
583 sphb = spapr_pci_find_phb(spapr, buid);
584 if (!sphb) {
585 goto param_error_exit;
586 }
587
588 spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
589 if (!spc->eeh_reset) {
590 goto param_error_exit;
591 }
592
593 ret = spc->eeh_reset(sphb, option);
594 rtas_st(rets, 0, ret);
595 return;
596
597 param_error_exit:
598 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
599 }
600
601 static void rtas_ibm_configure_pe(PowerPCCPU *cpu,
602 sPAPRMachineState *spapr,
603 uint32_t token, uint32_t nargs,
604 target_ulong args, uint32_t nret,
605 target_ulong rets)
606 {
607 sPAPRPHBState *sphb;
608 sPAPRPHBClass *spc;
609 uint64_t buid;
610 int ret;
611
612 if ((nargs != 3) || (nret != 1)) {
613 goto param_error_exit;
614 }
615
616 buid = rtas_ldq(args, 1);
617 sphb = spapr_pci_find_phb(spapr, buid);
618 if (!sphb) {
619 goto param_error_exit;
620 }
621
622 spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
623 if (!spc->eeh_configure) {
624 goto param_error_exit;
625 }
626
627 ret = spc->eeh_configure(sphb);
628 rtas_st(rets, 0, ret);
629 return;
630
631 param_error_exit:
632 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
633 }
634
635 /* To support it later */
636 static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu,
637 sPAPRMachineState *spapr,
638 uint32_t token, uint32_t nargs,
639 target_ulong args, uint32_t nret,
640 target_ulong rets)
641 {
642 sPAPRPHBState *sphb;
643 sPAPRPHBClass *spc;
644 int option;
645 uint64_t buid;
646
647 if ((nargs != 8) || (nret != 1)) {
648 goto param_error_exit;
649 }
650
651 buid = rtas_ldq(args, 1);
652 sphb = spapr_pci_find_phb(spapr, buid);
653 if (!sphb) {
654 goto param_error_exit;
655 }
656
657 spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
658 if (!spc->eeh_set_option) {
659 goto param_error_exit;
660 }
661
662 option = rtas_ld(args, 7);
663 switch (option) {
664 case RTAS_SLOT_TEMP_ERR_LOG:
665 case RTAS_SLOT_PERM_ERR_LOG:
666 break;
667 default:
668 goto param_error_exit;
669 }
670
671 /* We don't have error log yet */
672 rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND);
673 return;
674
675 param_error_exit:
676 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
677 }
678
679 static int pci_spapr_swizzle(int slot, int pin)
680 {
681 return (slot + pin) % PCI_NUM_PINS;
682 }
683
684 static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
685 {
686 /*
687 * Here we need to convert pci_dev + irq_num to some unique value
688 * which is less than number of IRQs on the specific bus (4). We
689 * use standard PCI swizzling, that is (slot number + pin number)
690 * % 4.
691 */
692 return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
693 }
694
695 static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
696 {
697 /*
698 * Here we use the number returned by pci_spapr_map_irq to find a
699 * corresponding qemu_irq.
700 */
701 sPAPRPHBState *phb = opaque;
702
703 trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq);
704 qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level);
705 }
706
707 static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin)
708 {
709 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque);
710 PCIINTxRoute route;
711
712 route.mode = PCI_INTX_ENABLED;
713 route.irq = sphb->lsi_table[pin].irq;
714
715 return route;
716 }
717
718 /*
719 * MSI/MSIX memory region implementation.
720 * The handler handles both MSI and MSIX.
721 * For MSI-X, the vector number is encoded as a part of the address,
722 * data is set to 0.
723 * For MSI, the vector number is encoded in least bits in data.
724 */
725 static void spapr_msi_write(void *opaque, hwaddr addr,
726 uint64_t data, unsigned size)
727 {
728 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
729 uint32_t irq = data;
730
731 trace_spapr_pci_msi_write(addr, data, irq);
732
733 qemu_irq_pulse(xics_get_qirq(spapr->icp, irq));
734 }
735
736 static const MemoryRegionOps spapr_msi_ops = {
737 /* There is no .read as the read result is undefined by PCI spec */
738 .read = NULL,
739 .write = spapr_msi_write,
740 .endianness = DEVICE_LITTLE_ENDIAN
741 };
742
743 /*
744 * PHB PCI device
745 */
746 static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn)
747 {
748 sPAPRPHBState *phb = opaque;
749
750 return &phb->iommu_as;
751 }
752
753 static char *spapr_phb_vfio_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev)
754 {
755 char *path = NULL, *buf = NULL, *host = NULL;
756
757 /* Get the PCI VFIO host id */
758 host = object_property_get_str(OBJECT(pdev), "host", NULL);
759 if (!host) {
760 goto err_out;
761 }
762
763 /* Construct the path of the file that will give us the DT location */
764 path = g_strdup_printf("/sys/bus/pci/devices/%s/devspec", host);
765 g_free(host);
766 if (!path || !g_file_get_contents(path, &buf, NULL, NULL)) {
767 goto err_out;
768 }
769 g_free(path);
770
771 /* Construct and read from host device tree the loc-code */
772 path = g_strdup_printf("/proc/device-tree%s/ibm,loc-code", buf);
773 g_free(buf);
774 if (!path || !g_file_get_contents(path, &buf, NULL, NULL)) {
775 goto err_out;
776 }
777 return buf;
778
779 err_out:
780 g_free(path);
781 return NULL;
782 }
783
784 static char *spapr_phb_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev)
785 {
786 char *buf;
787 const char *devtype = "qemu";
788 uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
789
790 if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) {
791 buf = spapr_phb_vfio_get_loc_code(sphb, pdev);
792 if (buf) {
793 return buf;
794 }
795 devtype = "vfio";
796 }
797 /*
798 * For emulated devices and VFIO-failure case, make up
799 * the loc-code.
800 */
801 buf = g_strdup_printf("%s_%s:%04x:%02x:%02x.%x",
802 devtype, pdev->name, sphb->index, busnr,
803 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
804 return buf;
805 }
806
807 /* Macros to operate with address in OF binding to PCI */
808 #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p))
809 #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */
810 #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */
811 #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */
812 #define b_ss(x) b_x((x), 24, 2) /* the space code */
813 #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */
814 #define b_ddddd(x) b_x((x), 11, 5) /* device number */
815 #define b_fff(x) b_x((x), 8, 3) /* function number */
816 #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */
817
818 /* for 'reg'/'assigned-addresses' OF properties */
819 #define RESOURCE_CELLS_SIZE 2
820 #define RESOURCE_CELLS_ADDRESS 3
821
822 typedef struct ResourceFields {
823 uint32_t phys_hi;
824 uint32_t phys_mid;
825 uint32_t phys_lo;
826 uint32_t size_hi;
827 uint32_t size_lo;
828 } QEMU_PACKED ResourceFields;
829
830 typedef struct ResourceProps {
831 ResourceFields reg[8];
832 ResourceFields assigned[7];
833 uint32_t reg_len;
834 uint32_t assigned_len;
835 } ResourceProps;
836
837 /* fill in the 'reg'/'assigned-resources' OF properties for
838 * a PCI device. 'reg' describes resource requirements for a
839 * device's IO/MEM regions, 'assigned-addresses' describes the
840 * actual resource assignments.
841 *
842 * the properties are arrays of ('phys-addr', 'size') pairs describing
843 * the addressable regions of the PCI device, where 'phys-addr' is a
844 * RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to
845 * (phys.hi, phys.mid, phys.lo), and 'size' is a
846 * RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo).
847 *
848 * phys.hi = 0xYYXXXXZZ, where:
849 * 0xYY = npt000ss
850 * ||| |
851 * ||| +-- space code
852 * ||| |
853 * ||| + 00 if configuration space
854 * ||| + 01 if IO region,
855 * ||| + 10 if 32-bit MEM region
856 * ||| + 11 if 64-bit MEM region
857 * |||
858 * ||+------ for non-relocatable IO: 1 if aliased
859 * || for relocatable IO: 1 if below 64KB
860 * || for MEM: 1 if below 1MB
861 * |+------- 1 if region is prefetchable
862 * +-------- 1 if region is non-relocatable
863 * 0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function
864 * bits respectively
865 * 0xZZ = rrrrrrrr, the register number of the BAR corresponding
866 * to the region
867 *
868 * phys.mid and phys.lo correspond respectively to the hi/lo portions
869 * of the actual address of the region.
870 *
871 * how the phys-addr/size values are used differ slightly between
872 * 'reg' and 'assigned-addresses' properties. namely, 'reg' has
873 * an additional description for the config space region of the
874 * device, and in the case of QEMU has n=0 and phys.mid=phys.lo=0
875 * to describe the region as relocatable, with an address-mapping
876 * that corresponds directly to the PHB's address space for the
877 * resource. 'assigned-addresses' always has n=1 set with an absolute
878 * address assigned for the resource. in general, 'assigned-addresses'
879 * won't be populated, since addresses for PCI devices are generally
880 * unmapped initially and left to the guest to assign.
881 *
882 * note also that addresses defined in these properties are, at least
883 * for PAPR guests, relative to the PHBs IO/MEM windows, and
884 * correspond directly to the addresses in the BARs.
885 *
886 * in accordance with PCI Bus Binding to Open Firmware,
887 * IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7,
888 * Appendix C.
889 */
890 static void populate_resource_props(PCIDevice *d, ResourceProps *rp)
891 {
892 int bus_num = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d))));
893 uint32_t dev_id = (b_bbbbbbbb(bus_num) |
894 b_ddddd(PCI_SLOT(d->devfn)) |
895 b_fff(PCI_FUNC(d->devfn)));
896 ResourceFields *reg, *assigned;
897 int i, reg_idx = 0, assigned_idx = 0;
898
899 /* config space region */
900 reg = &rp->reg[reg_idx++];
901 reg->phys_hi = cpu_to_be32(dev_id);
902 reg->phys_mid = 0;
903 reg->phys_lo = 0;
904 reg->size_hi = 0;
905 reg->size_lo = 0;
906
907 for (i = 0; i < PCI_NUM_REGIONS; i++) {
908 if (!d->io_regions[i].size) {
909 continue;
910 }
911
912 reg = &rp->reg[reg_idx++];
913
914 reg->phys_hi = cpu_to_be32(dev_id | b_rrrrrrrr(pci_bar(d, i)));
915 if (d->io_regions[i].type & PCI_BASE_ADDRESS_SPACE_IO) {
916 reg->phys_hi |= cpu_to_be32(b_ss(1));
917 } else if (d->io_regions[i].type & PCI_BASE_ADDRESS_MEM_TYPE_64) {
918 reg->phys_hi |= cpu_to_be32(b_ss(3));
919 } else {
920 reg->phys_hi |= cpu_to_be32(b_ss(2));
921 }
922 reg->phys_mid = 0;
923 reg->phys_lo = 0;
924 reg->size_hi = cpu_to_be32(d->io_regions[i].size >> 32);
925 reg->size_lo = cpu_to_be32(d->io_regions[i].size);
926
927 if (d->io_regions[i].addr == PCI_BAR_UNMAPPED) {
928 continue;
929 }
930
931 assigned = &rp->assigned[assigned_idx++];
932 assigned->phys_hi = cpu_to_be32(reg->phys_hi | b_n(1));
933 assigned->phys_mid = cpu_to_be32(d->io_regions[i].addr >> 32);
934 assigned->phys_lo = cpu_to_be32(d->io_regions[i].addr);
935 assigned->size_hi = reg->size_hi;
936 assigned->size_lo = reg->size_lo;
937 }
938
939 rp->reg_len = reg_idx * sizeof(ResourceFields);
940 rp->assigned_len = assigned_idx * sizeof(ResourceFields);
941 }
942
943 static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb,
944 PCIDevice *pdev);
945
946 static int spapr_populate_pci_child_dt(PCIDevice *dev, void *fdt, int offset,
947 sPAPRPHBState *sphb)
948 {
949 ResourceProps rp;
950 bool is_bridge = false;
951 int pci_status, err;
952 char *buf = NULL;
953 uint32_t drc_index = spapr_phb_get_pci_drc_index(sphb, dev);
954 uint32_t max_msi, max_msix;
955
956 if (pci_default_read_config(dev, PCI_HEADER_TYPE, 1) ==
957 PCI_HEADER_TYPE_BRIDGE) {
958 is_bridge = true;
959 }
960
961 /* in accordance with PAPR+ v2.7 13.6.3, Table 181 */
962 _FDT(fdt_setprop_cell(fdt, offset, "vendor-id",
963 pci_default_read_config(dev, PCI_VENDOR_ID, 2)));
964 _FDT(fdt_setprop_cell(fdt, offset, "device-id",
965 pci_default_read_config(dev, PCI_DEVICE_ID, 2)));
966 _FDT(fdt_setprop_cell(fdt, offset, "revision-id",
967 pci_default_read_config(dev, PCI_REVISION_ID, 1)));
968 _FDT(fdt_setprop_cell(fdt, offset, "class-code",
969 pci_default_read_config(dev, PCI_CLASS_PROG, 3)));
970 if (pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)) {
971 _FDT(fdt_setprop_cell(fdt, offset, "interrupts",
972 pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)));
973 }
974
975 if (!is_bridge) {
976 _FDT(fdt_setprop_cell(fdt, offset, "min-grant",
977 pci_default_read_config(dev, PCI_MIN_GNT, 1)));
978 _FDT(fdt_setprop_cell(fdt, offset, "max-latency",
979 pci_default_read_config(dev, PCI_MAX_LAT, 1)));
980 }
981
982 if (pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)) {
983 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-id",
984 pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)));
985 }
986
987 if (pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)) {
988 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-vendor-id",
989 pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)));
990 }
991
992 _FDT(fdt_setprop_cell(fdt, offset, "cache-line-size",
993 pci_default_read_config(dev, PCI_CACHE_LINE_SIZE, 1)));
994
995 /* the following fdt cells are masked off the pci status register */
996 pci_status = pci_default_read_config(dev, PCI_STATUS, 2);
997 _FDT(fdt_setprop_cell(fdt, offset, "devsel-speed",
998 PCI_STATUS_DEVSEL_MASK & pci_status));
999
1000 if (pci_status & PCI_STATUS_FAST_BACK) {
1001 _FDT(fdt_setprop(fdt, offset, "fast-back-to-back", NULL, 0));
1002 }
1003 if (pci_status & PCI_STATUS_66MHZ) {
1004 _FDT(fdt_setprop(fdt, offset, "66mhz-capable", NULL, 0));
1005 }
1006 if (pci_status & PCI_STATUS_UDF) {
1007 _FDT(fdt_setprop(fdt, offset, "udf-supported", NULL, 0));
1008 }
1009
1010 /* NOTE: this is normally generated by firmware via path/unit name,
1011 * but in our case we must set it manually since it does not get
1012 * processed by OF beforehand
1013 */
1014 _FDT(fdt_setprop_string(fdt, offset, "name", "pci"));
1015 buf = spapr_phb_get_loc_code(sphb, dev);
1016 if (!buf) {
1017 error_report("Failed setting the ibm,loc-code");
1018 return -1;
1019 }
1020
1021 err = fdt_setprop_string(fdt, offset, "ibm,loc-code", buf);
1022 g_free(buf);
1023 if (err < 0) {
1024 return err;
1025 }
1026
1027 if (drc_index) {
1028 _FDT(fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index));
1029 }
1030
1031 _FDT(fdt_setprop_cell(fdt, offset, "#address-cells",
1032 RESOURCE_CELLS_ADDRESS));
1033 _FDT(fdt_setprop_cell(fdt, offset, "#size-cells",
1034 RESOURCE_CELLS_SIZE));
1035
1036 max_msi = msi_nr_vectors_allocated(dev);
1037 if (max_msi) {
1038 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi", max_msi));
1039 }
1040 max_msix = dev->msix_entries_nr;
1041 if (max_msix) {
1042 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi-x", max_msix));
1043 }
1044
1045 populate_resource_props(dev, &rp);
1046 _FDT(fdt_setprop(fdt, offset, "reg", (uint8_t *)rp.reg, rp.reg_len));
1047 _FDT(fdt_setprop(fdt, offset, "assigned-addresses",
1048 (uint8_t *)rp.assigned, rp.assigned_len));
1049
1050 return 0;
1051 }
1052
1053 /* create OF node for pci device and required OF DT properties */
1054 static int spapr_create_pci_child_dt(sPAPRPHBState *phb, PCIDevice *dev,
1055 void *fdt, int node_offset)
1056 {
1057 int offset, ret;
1058 int slot = PCI_SLOT(dev->devfn);
1059 int func = PCI_FUNC(dev->devfn);
1060 char nodename[FDT_NAME_MAX];
1061
1062 if (func != 0) {
1063 snprintf(nodename, FDT_NAME_MAX, "pci@%x,%x", slot, func);
1064 } else {
1065 snprintf(nodename, FDT_NAME_MAX, "pci@%x", slot);
1066 }
1067 offset = fdt_add_subnode(fdt, node_offset, nodename);
1068 ret = spapr_populate_pci_child_dt(dev, fdt, offset, phb);
1069
1070 g_assert(!ret);
1071 if (ret) {
1072 return 0;
1073 }
1074 return offset;
1075 }
1076
1077 static void spapr_phb_add_pci_device(sPAPRDRConnector *drc,
1078 sPAPRPHBState *phb,
1079 PCIDevice *pdev,
1080 Error **errp)
1081 {
1082 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1083 DeviceState *dev = DEVICE(pdev);
1084 void *fdt = NULL;
1085 int fdt_start_offset = 0, fdt_size;
1086
1087 if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) {
1088 sPAPRTCETable *tcet = spapr_tce_find_by_liobn(phb->dma_liobn);
1089
1090 spapr_tce_set_need_vfio(tcet, true);
1091 }
1092
1093 if (dev->hotplugged) {
1094 fdt = create_device_tree(&fdt_size);
1095 fdt_start_offset = spapr_create_pci_child_dt(phb, pdev, fdt, 0);
1096 if (!fdt_start_offset) {
1097 error_setg(errp, "Failed to create pci child device tree node");
1098 goto out;
1099 }
1100 }
1101
1102 drck->attach(drc, DEVICE(pdev),
1103 fdt, fdt_start_offset, !dev->hotplugged, errp);
1104 out:
1105 if (*errp) {
1106 g_free(fdt);
1107 }
1108 }
1109
1110 static void spapr_phb_remove_pci_device_cb(DeviceState *dev, void *opaque)
1111 {
1112 /* some version guests do not wait for completion of a device
1113 * cleanup (generally done asynchronously by the kernel) before
1114 * signaling to QEMU that the device is safe, but instead sleep
1115 * for some 'safe' period of time. unfortunately on a busy host
1116 * this sleep isn't guaranteed to be long enough, resulting in
1117 * bad things like IRQ lines being left asserted during final
1118 * device removal. to deal with this we call reset just prior
1119 * to finalizing the device, which will put the device back into
1120 * an 'idle' state, as the device cleanup code expects.
1121 */
1122 pci_device_reset(PCI_DEVICE(dev));
1123 object_unparent(OBJECT(dev));
1124 }
1125
1126 static void spapr_phb_remove_pci_device(sPAPRDRConnector *drc,
1127 sPAPRPHBState *phb,
1128 PCIDevice *pdev,
1129 Error **errp)
1130 {
1131 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1132
1133 drck->detach(drc, DEVICE(pdev), spapr_phb_remove_pci_device_cb, phb, errp);
1134 }
1135
1136 static sPAPRDRConnector *spapr_phb_get_pci_drc(sPAPRPHBState *phb,
1137 PCIDevice *pdev)
1138 {
1139 uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
1140 return spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_PCI,
1141 (phb->index << 16) |
1142 (busnr << 8) |
1143 pdev->devfn);
1144 }
1145
1146 static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb,
1147 PCIDevice *pdev)
1148 {
1149 sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1150 sPAPRDRConnectorClass *drck;
1151
1152 if (!drc) {
1153 return 0;
1154 }
1155
1156 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1157 return drck->get_index(drc);
1158 }
1159
1160 static void spapr_phb_hot_plug_child(HotplugHandler *plug_handler,
1161 DeviceState *plugged_dev, Error **errp)
1162 {
1163 sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1164 PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1165 sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1166 Error *local_err = NULL;
1167
1168 /* if DR is disabled we don't need to do anything in the case of
1169 * hotplug or coldplug callbacks
1170 */
1171 if (!phb->dr_enabled) {
1172 /* if this is a hotplug operation initiated by the user
1173 * we need to let them know it's not enabled
1174 */
1175 if (plugged_dev->hotplugged) {
1176 error_setg(errp, QERR_BUS_NO_HOTPLUG,
1177 object_get_typename(OBJECT(phb)));
1178 }
1179 return;
1180 }
1181
1182 g_assert(drc);
1183
1184 spapr_phb_add_pci_device(drc, phb, pdev, &local_err);
1185 if (local_err) {
1186 error_propagate(errp, local_err);
1187 return;
1188 }
1189 if (plugged_dev->hotplugged) {
1190 spapr_hotplug_req_add_by_index(drc);
1191 }
1192 }
1193
1194 static void spapr_phb_hot_unplug_child(HotplugHandler *plug_handler,
1195 DeviceState *plugged_dev, Error **errp)
1196 {
1197 sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1198 PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1199 sPAPRDRConnectorClass *drck;
1200 sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1201 Error *local_err = NULL;
1202
1203 if (!phb->dr_enabled) {
1204 error_setg(errp, QERR_BUS_NO_HOTPLUG,
1205 object_get_typename(OBJECT(phb)));
1206 return;
1207 }
1208
1209 g_assert(drc);
1210
1211 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1212 if (!drck->release_pending(drc)) {
1213 spapr_phb_remove_pci_device(drc, phb, pdev, &local_err);
1214 if (local_err) {
1215 error_propagate(errp, local_err);
1216 return;
1217 }
1218 spapr_hotplug_req_remove_by_index(drc);
1219 }
1220 }
1221
1222 static void spapr_phb_realize(DeviceState *dev, Error **errp)
1223 {
1224 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1225 SysBusDevice *s = SYS_BUS_DEVICE(dev);
1226 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
1227 PCIHostState *phb = PCI_HOST_BRIDGE(s);
1228 sPAPRPHBClass *info = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(s);
1229 char *namebuf;
1230 int i;
1231 PCIBus *bus;
1232 uint64_t msi_window_size = 4096;
1233
1234 if (sphb->index != (uint32_t)-1) {
1235 hwaddr windows_base;
1236
1237 if ((sphb->buid != (uint64_t)-1) || (sphb->dma_liobn != (uint32_t)-1)
1238 || (sphb->mem_win_addr != (hwaddr)-1)
1239 || (sphb->io_win_addr != (hwaddr)-1)) {
1240 error_setg(errp, "Either \"index\" or other parameters must"
1241 " be specified for PAPR PHB, not both");
1242 return;
1243 }
1244
1245 if (sphb->index > SPAPR_PCI_MAX_INDEX) {
1246 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
1247 SPAPR_PCI_MAX_INDEX);
1248 return;
1249 }
1250
1251 sphb->buid = SPAPR_PCI_BASE_BUID + sphb->index;
1252 sphb->dma_liobn = SPAPR_PCI_LIOBN(sphb->index, 0);
1253
1254 windows_base = SPAPR_PCI_WINDOW_BASE
1255 + sphb->index * SPAPR_PCI_WINDOW_SPACING;
1256 sphb->mem_win_addr = windows_base + SPAPR_PCI_MMIO_WIN_OFF;
1257 sphb->io_win_addr = windows_base + SPAPR_PCI_IO_WIN_OFF;
1258 }
1259
1260 if (sphb->buid == (uint64_t)-1) {
1261 error_setg(errp, "BUID not specified for PHB");
1262 return;
1263 }
1264
1265 if (sphb->dma_liobn == (uint32_t)-1) {
1266 error_setg(errp, "LIOBN not specified for PHB");
1267 return;
1268 }
1269
1270 if (sphb->mem_win_addr == (hwaddr)-1) {
1271 error_setg(errp, "Memory window address not specified for PHB");
1272 return;
1273 }
1274
1275 if (sphb->io_win_addr == (hwaddr)-1) {
1276 error_setg(errp, "IO window address not specified for PHB");
1277 return;
1278 }
1279
1280 if (spapr_pci_find_phb(spapr, sphb->buid)) {
1281 error_setg(errp, "PCI host bridges must have unique BUIDs");
1282 return;
1283 }
1284
1285 sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
1286
1287 namebuf = alloca(strlen(sphb->dtbusname) + 32);
1288
1289 /* Initialize memory regions */
1290 sprintf(namebuf, "%s.mmio", sphb->dtbusname);
1291 memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX);
1292
1293 sprintf(namebuf, "%s.mmio-alias", sphb->dtbusname);
1294 memory_region_init_alias(&sphb->memwindow, OBJECT(sphb),
1295 namebuf, &sphb->memspace,
1296 SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
1297 memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
1298 &sphb->memwindow);
1299
1300 /* Initialize IO regions */
1301 sprintf(namebuf, "%s.io", sphb->dtbusname);
1302 memory_region_init(&sphb->iospace, OBJECT(sphb),
1303 namebuf, SPAPR_PCI_IO_WIN_SIZE);
1304
1305 sprintf(namebuf, "%s.io-alias", sphb->dtbusname);
1306 memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf,
1307 &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE);
1308 memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
1309 &sphb->iowindow);
1310
1311 bus = pci_register_bus(dev, NULL,
1312 pci_spapr_set_irq, pci_spapr_map_irq, sphb,
1313 &sphb->memspace, &sphb->iospace,
1314 PCI_DEVFN(0, 0), PCI_NUM_PINS, TYPE_PCI_BUS);
1315 phb->bus = bus;
1316 qbus_set_hotplug_handler(BUS(phb->bus), DEVICE(sphb), NULL);
1317
1318 /*
1319 * Initialize PHB address space.
1320 * By default there will be at least one subregion for default
1321 * 32bit DMA window.
1322 * Later the guest might want to create another DMA window
1323 * which will become another memory subregion.
1324 */
1325 sprintf(namebuf, "%s.iommu-root", sphb->dtbusname);
1326
1327 memory_region_init(&sphb->iommu_root, OBJECT(sphb),
1328 namebuf, UINT64_MAX);
1329 address_space_init(&sphb->iommu_as, &sphb->iommu_root,
1330 sphb->dtbusname);
1331
1332 /*
1333 * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
1334 * we need to allocate some memory to catch those writes coming
1335 * from msi_notify()/msix_notify().
1336 * As MSIMessage:addr is going to be the same and MSIMessage:data
1337 * is going to be a VIRQ number, 4 bytes of the MSI MR will only
1338 * be used.
1339 *
1340 * For KVM we want to ensure that this memory is a full page so that
1341 * our memory slot is of page size granularity.
1342 */
1343 #ifdef CONFIG_KVM
1344 if (kvm_enabled()) {
1345 msi_window_size = getpagesize();
1346 }
1347 #endif
1348
1349 memory_region_init_io(&sphb->msiwindow, NULL, &spapr_msi_ops, spapr,
1350 "msi", msi_window_size);
1351 memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW,
1352 &sphb->msiwindow);
1353
1354 pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb);
1355
1356 pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq);
1357
1358 QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
1359
1360 /* Initialize the LSI table */
1361 for (i = 0; i < PCI_NUM_PINS; i++) {
1362 uint32_t irq;
1363
1364 irq = xics_alloc_block(spapr->icp, 0, 1, true, false);
1365 if (!irq) {
1366 error_setg(errp, "spapr_allocate_lsi failed");
1367 return;
1368 }
1369
1370 sphb->lsi_table[i].irq = irq;
1371 }
1372
1373 /* allocate connectors for child PCI devices */
1374 if (sphb->dr_enabled) {
1375 for (i = 0; i < PCI_SLOT_MAX * 8; i++) {
1376 spapr_dr_connector_new(OBJECT(phb),
1377 SPAPR_DR_CONNECTOR_TYPE_PCI,
1378 (sphb->index << 16) | i);
1379 }
1380 }
1381
1382 if (!info->finish_realize) {
1383 error_setg(errp, "finish_realize not defined");
1384 return;
1385 }
1386
1387 info->finish_realize(sphb, errp);
1388
1389 sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free, g_free);
1390 }
1391
1392 static void spapr_phb_finish_realize(sPAPRPHBState *sphb, Error **errp)
1393 {
1394 sPAPRTCETable *tcet;
1395 uint32_t nb_table;
1396
1397 nb_table = sphb->dma_win_size >> SPAPR_TCE_PAGE_SHIFT;
1398 tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn,
1399 0, SPAPR_TCE_PAGE_SHIFT, nb_table, false);
1400 if (!tcet) {
1401 error_setg(errp, "Unable to create TCE table for %s",
1402 sphb->dtbusname);
1403 return ;
1404 }
1405
1406 /* Register default 32bit DMA window */
1407 memory_region_add_subregion(&sphb->iommu_root, sphb->dma_win_addr,
1408 spapr_tce_get_iommu(tcet));
1409 }
1410
1411 static int spapr_phb_children_reset(Object *child, void *opaque)
1412 {
1413 DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE);
1414
1415 if (dev) {
1416 device_reset(dev);
1417 }
1418
1419 return 0;
1420 }
1421
1422 static void spapr_phb_reset(DeviceState *qdev)
1423 {
1424 /* Reset the IOMMU state */
1425 object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL);
1426 }
1427
1428 static Property spapr_phb_properties[] = {
1429 DEFINE_PROP_UINT32("index", sPAPRPHBState, index, -1),
1430 DEFINE_PROP_UINT64("buid", sPAPRPHBState, buid, -1),
1431 DEFINE_PROP_UINT32("liobn", sPAPRPHBState, dma_liobn, -1),
1432 DEFINE_PROP_UINT64("mem_win_addr", sPAPRPHBState, mem_win_addr, -1),
1433 DEFINE_PROP_UINT64("mem_win_size", sPAPRPHBState, mem_win_size,
1434 SPAPR_PCI_MMIO_WIN_SIZE),
1435 DEFINE_PROP_UINT64("io_win_addr", sPAPRPHBState, io_win_addr, -1),
1436 DEFINE_PROP_UINT64("io_win_size", sPAPRPHBState, io_win_size,
1437 SPAPR_PCI_IO_WIN_SIZE),
1438 DEFINE_PROP_BOOL("dynamic-reconfiguration", sPAPRPHBState, dr_enabled,
1439 true),
1440 /* Default DMA window is 0..1GB */
1441 DEFINE_PROP_UINT64("dma_win_addr", sPAPRPHBState, dma_win_addr, 0),
1442 DEFINE_PROP_UINT64("dma_win_size", sPAPRPHBState, dma_win_size, 0x40000000),
1443 DEFINE_PROP_END_OF_LIST(),
1444 };
1445
1446 static const VMStateDescription vmstate_spapr_pci_lsi = {
1447 .name = "spapr_pci/lsi",
1448 .version_id = 1,
1449 .minimum_version_id = 1,
1450 .fields = (VMStateField[]) {
1451 VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi),
1452
1453 VMSTATE_END_OF_LIST()
1454 },
1455 };
1456
1457 static const VMStateDescription vmstate_spapr_pci_msi = {
1458 .name = "spapr_pci/msi",
1459 .version_id = 1,
1460 .minimum_version_id = 1,
1461 .fields = (VMStateField []) {
1462 VMSTATE_UINT32(key, spapr_pci_msi_mig),
1463 VMSTATE_UINT32(value.first_irq, spapr_pci_msi_mig),
1464 VMSTATE_UINT32(value.num, spapr_pci_msi_mig),
1465 VMSTATE_END_OF_LIST()
1466 },
1467 };
1468
1469 static void spapr_pci_pre_save(void *opaque)
1470 {
1471 sPAPRPHBState *sphb = opaque;
1472 GHashTableIter iter;
1473 gpointer key, value;
1474 int i;
1475
1476 g_free(sphb->msi_devs);
1477 sphb->msi_devs = NULL;
1478 sphb->msi_devs_num = g_hash_table_size(sphb->msi);
1479 if (!sphb->msi_devs_num) {
1480 return;
1481 }
1482 sphb->msi_devs = g_malloc(sphb->msi_devs_num * sizeof(spapr_pci_msi_mig));
1483
1484 g_hash_table_iter_init(&iter, sphb->msi);
1485 for (i = 0; g_hash_table_iter_next(&iter, &key, &value); ++i) {
1486 sphb->msi_devs[i].key = *(uint32_t *) key;
1487 sphb->msi_devs[i].value = *(spapr_pci_msi *) value;
1488 }
1489 }
1490
1491 static int spapr_pci_post_load(void *opaque, int version_id)
1492 {
1493 sPAPRPHBState *sphb = opaque;
1494 gpointer key, value;
1495 int i;
1496
1497 for (i = 0; i < sphb->msi_devs_num; ++i) {
1498 key = g_memdup(&sphb->msi_devs[i].key,
1499 sizeof(sphb->msi_devs[i].key));
1500 value = g_memdup(&sphb->msi_devs[i].value,
1501 sizeof(sphb->msi_devs[i].value));
1502 g_hash_table_insert(sphb->msi, key, value);
1503 }
1504 g_free(sphb->msi_devs);
1505 sphb->msi_devs = NULL;
1506 sphb->msi_devs_num = 0;
1507
1508 return 0;
1509 }
1510
1511 static const VMStateDescription vmstate_spapr_pci = {
1512 .name = "spapr_pci",
1513 .version_id = 2,
1514 .minimum_version_id = 2,
1515 .pre_save = spapr_pci_pre_save,
1516 .post_load = spapr_pci_post_load,
1517 .fields = (VMStateField[]) {
1518 VMSTATE_UINT64_EQUAL(buid, sPAPRPHBState),
1519 VMSTATE_UINT32_EQUAL(dma_liobn, sPAPRPHBState),
1520 VMSTATE_UINT64_EQUAL(mem_win_addr, sPAPRPHBState),
1521 VMSTATE_UINT64_EQUAL(mem_win_size, sPAPRPHBState),
1522 VMSTATE_UINT64_EQUAL(io_win_addr, sPAPRPHBState),
1523 VMSTATE_UINT64_EQUAL(io_win_size, sPAPRPHBState),
1524 VMSTATE_STRUCT_ARRAY(lsi_table, sPAPRPHBState, PCI_NUM_PINS, 0,
1525 vmstate_spapr_pci_lsi, struct spapr_pci_lsi),
1526 VMSTATE_INT32(msi_devs_num, sPAPRPHBState),
1527 VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, sPAPRPHBState, msi_devs_num, 0,
1528 vmstate_spapr_pci_msi, spapr_pci_msi_mig),
1529 VMSTATE_END_OF_LIST()
1530 },
1531 };
1532
1533 static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge,
1534 PCIBus *rootbus)
1535 {
1536 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge);
1537
1538 return sphb->dtbusname;
1539 }
1540
1541 static void spapr_phb_class_init(ObjectClass *klass, void *data)
1542 {
1543 PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
1544 DeviceClass *dc = DEVICE_CLASS(klass);
1545 sPAPRPHBClass *spc = SPAPR_PCI_HOST_BRIDGE_CLASS(klass);
1546 HotplugHandlerClass *hp = HOTPLUG_HANDLER_CLASS(klass);
1547
1548 hc->root_bus_path = spapr_phb_root_bus_path;
1549 dc->realize = spapr_phb_realize;
1550 dc->props = spapr_phb_properties;
1551 dc->reset = spapr_phb_reset;
1552 dc->vmsd = &vmstate_spapr_pci;
1553 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
1554 dc->cannot_instantiate_with_device_add_yet = false;
1555 spc->finish_realize = spapr_phb_finish_realize;
1556 hp->plug = spapr_phb_hot_plug_child;
1557 hp->unplug = spapr_phb_hot_unplug_child;
1558 }
1559
1560 static const TypeInfo spapr_phb_info = {
1561 .name = TYPE_SPAPR_PCI_HOST_BRIDGE,
1562 .parent = TYPE_PCI_HOST_BRIDGE,
1563 .instance_size = sizeof(sPAPRPHBState),
1564 .class_init = spapr_phb_class_init,
1565 .class_size = sizeof(sPAPRPHBClass),
1566 .interfaces = (InterfaceInfo[]) {
1567 { TYPE_HOTPLUG_HANDLER },
1568 { }
1569 }
1570 };
1571
1572 PCIHostState *spapr_create_phb(sPAPRMachineState *spapr, int index)
1573 {
1574 DeviceState *dev;
1575
1576 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
1577 qdev_prop_set_uint32(dev, "index", index);
1578 qdev_init_nofail(dev);
1579
1580 return PCI_HOST_BRIDGE(dev);
1581 }
1582
1583 typedef struct sPAPRFDT {
1584 void *fdt;
1585 int node_off;
1586 sPAPRPHBState *sphb;
1587 } sPAPRFDT;
1588
1589 static void spapr_populate_pci_devices_dt(PCIBus *bus, PCIDevice *pdev,
1590 void *opaque)
1591 {
1592 PCIBus *sec_bus;
1593 sPAPRFDT *p = opaque;
1594 int offset;
1595 sPAPRFDT s_fdt;
1596
1597 offset = spapr_create_pci_child_dt(p->sphb, pdev, p->fdt, p->node_off);
1598 if (!offset) {
1599 error_report("Failed to create pci child device tree node");
1600 return;
1601 }
1602
1603 if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
1604 PCI_HEADER_TYPE_BRIDGE)) {
1605 return;
1606 }
1607
1608 sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
1609 if (!sec_bus) {
1610 return;
1611 }
1612
1613 s_fdt.fdt = p->fdt;
1614 s_fdt.node_off = offset;
1615 s_fdt.sphb = p->sphb;
1616 pci_for_each_device(sec_bus, pci_bus_num(sec_bus),
1617 spapr_populate_pci_devices_dt,
1618 &s_fdt);
1619 }
1620
1621 static void spapr_phb_pci_enumerate_bridge(PCIBus *bus, PCIDevice *pdev,
1622 void *opaque)
1623 {
1624 unsigned int *bus_no = opaque;
1625 unsigned int primary = *bus_no;
1626 unsigned int subordinate = 0xff;
1627 PCIBus *sec_bus = NULL;
1628
1629 if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
1630 PCI_HEADER_TYPE_BRIDGE)) {
1631 return;
1632 }
1633
1634 (*bus_no)++;
1635 pci_default_write_config(pdev, PCI_PRIMARY_BUS, primary, 1);
1636 pci_default_write_config(pdev, PCI_SECONDARY_BUS, *bus_no, 1);
1637 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
1638
1639 sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
1640 if (!sec_bus) {
1641 return;
1642 }
1643
1644 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, subordinate, 1);
1645 pci_for_each_device(sec_bus, pci_bus_num(sec_bus),
1646 spapr_phb_pci_enumerate_bridge, bus_no);
1647 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
1648 }
1649
1650 static void spapr_phb_pci_enumerate(sPAPRPHBState *phb)
1651 {
1652 PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
1653 unsigned int bus_no = 0;
1654
1655 pci_for_each_device(bus, pci_bus_num(bus),
1656 spapr_phb_pci_enumerate_bridge,
1657 &bus_no);
1658
1659 }
1660
1661 int spapr_populate_pci_dt(sPAPRPHBState *phb,
1662 uint32_t xics_phandle,
1663 void *fdt)
1664 {
1665 int bus_off, i, j, ret;
1666 char nodename[FDT_NAME_MAX];
1667 uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
1668 const uint64_t mmiosize = memory_region_size(&phb->memwindow);
1669 const uint64_t w32max = (1ULL << 32) - SPAPR_PCI_MEM_WIN_BUS_OFFSET;
1670 const uint64_t w32size = MIN(w32max, mmiosize);
1671 const uint64_t w64size = (mmiosize > w32size) ? (mmiosize - w32size) : 0;
1672 struct {
1673 uint32_t hi;
1674 uint64_t child;
1675 uint64_t parent;
1676 uint64_t size;
1677 } QEMU_PACKED ranges[] = {
1678 {
1679 cpu_to_be32(b_ss(1)), cpu_to_be64(0),
1680 cpu_to_be64(phb->io_win_addr),
1681 cpu_to_be64(memory_region_size(&phb->iospace)),
1682 },
1683 {
1684 cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
1685 cpu_to_be64(phb->mem_win_addr),
1686 cpu_to_be64(w32size),
1687 },
1688 {
1689 cpu_to_be32(b_ss(3)), cpu_to_be64(1ULL << 32),
1690 cpu_to_be64(phb->mem_win_addr + w32size),
1691 cpu_to_be64(w64size)
1692 },
1693 };
1694 const unsigned sizeof_ranges = (w64size ? 3 : 2) * sizeof(ranges[0]);
1695 uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
1696 uint32_t interrupt_map_mask[] = {
1697 cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
1698 uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
1699 sPAPRTCETable *tcet;
1700 PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
1701 sPAPRFDT s_fdt;
1702
1703 /* Start populating the FDT */
1704 snprintf(nodename, FDT_NAME_MAX, "pci@%" PRIx64, phb->buid);
1705 bus_off = fdt_add_subnode(fdt, 0, nodename);
1706 if (bus_off < 0) {
1707 return bus_off;
1708 }
1709
1710 /* Write PHB properties */
1711 _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
1712 _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
1713 _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
1714 _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
1715 _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
1716 _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
1717 _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
1718 _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof_ranges));
1719 _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
1720 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
1721 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi", XICS_IRQS));
1722
1723 /* Build the interrupt-map, this must matches what is done
1724 * in pci_spapr_map_irq
1725 */
1726 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
1727 &interrupt_map_mask, sizeof(interrupt_map_mask)));
1728 for (i = 0; i < PCI_SLOT_MAX; i++) {
1729 for (j = 0; j < PCI_NUM_PINS; j++) {
1730 uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
1731 int lsi_num = pci_spapr_swizzle(i, j);
1732
1733 irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
1734 irqmap[1] = 0;
1735 irqmap[2] = 0;
1736 irqmap[3] = cpu_to_be32(j+1);
1737 irqmap[4] = cpu_to_be32(xics_phandle);
1738 irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].irq);
1739 irqmap[6] = cpu_to_be32(0x8);
1740 }
1741 }
1742 /* Write interrupt map */
1743 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
1744 sizeof(interrupt_map)));
1745
1746 tcet = spapr_tce_find_by_liobn(SPAPR_PCI_LIOBN(phb->index, 0));
1747 spapr_dma_dt(fdt, bus_off, "ibm,dma-window",
1748 tcet->liobn, tcet->bus_offset,
1749 tcet->nb_table << tcet->page_shift);
1750
1751 /* Walk the bridges and program the bus numbers*/
1752 spapr_phb_pci_enumerate(phb);
1753 _FDT(fdt_setprop_cell(fdt, bus_off, "qemu,phb-enumerated", 0x1));
1754
1755 /* Populate tree nodes with PCI devices attached */
1756 s_fdt.fdt = fdt;
1757 s_fdt.node_off = bus_off;
1758 s_fdt.sphb = phb;
1759 pci_for_each_device(bus, pci_bus_num(bus),
1760 spapr_populate_pci_devices_dt,
1761 &s_fdt);
1762
1763 ret = spapr_drc_populate_dt(fdt, bus_off, OBJECT(phb),
1764 SPAPR_DR_CONNECTOR_TYPE_PCI);
1765 if (ret) {
1766 return ret;
1767 }
1768
1769 return 0;
1770 }
1771
1772 void spapr_pci_rtas_init(void)
1773 {
1774 spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config",
1775 rtas_read_pci_config);
1776 spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config",
1777 rtas_write_pci_config);
1778 spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config",
1779 rtas_ibm_read_pci_config);
1780 spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config",
1781 rtas_ibm_write_pci_config);
1782 if (msi_supported) {
1783 spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER,
1784 "ibm,query-interrupt-source-number",
1785 rtas_ibm_query_interrupt_source_number);
1786 spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi",
1787 rtas_ibm_change_msi);
1788 }
1789
1790 spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION,
1791 "ibm,set-eeh-option",
1792 rtas_ibm_set_eeh_option);
1793 spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2,
1794 "ibm,get-config-addr-info2",
1795 rtas_ibm_get_config_addr_info2);
1796 spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2,
1797 "ibm,read-slot-reset-state2",
1798 rtas_ibm_read_slot_reset_state2);
1799 spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET,
1800 "ibm,set-slot-reset",
1801 rtas_ibm_set_slot_reset);
1802 spapr_rtas_register(RTAS_IBM_CONFIGURE_PE,
1803 "ibm,configure-pe",
1804 rtas_ibm_configure_pe);
1805 spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL,
1806 "ibm,slot-error-detail",
1807 rtas_ibm_slot_error_detail);
1808 }
1809
1810 static void spapr_pci_register_types(void)
1811 {
1812 type_register_static(&spapr_phb_info);
1813 }
1814
1815 type_init(spapr_pci_register_types)
1816
1817 static int spapr_switch_one_vga(DeviceState *dev, void *opaque)
1818 {
1819 bool be = *(bool *)opaque;
1820
1821 if (object_dynamic_cast(OBJECT(dev), "VGA")
1822 || object_dynamic_cast(OBJECT(dev), "secondary-vga")) {
1823 object_property_set_bool(OBJECT(dev), be, "big-endian-framebuffer",
1824 &error_abort);
1825 }
1826 return 0;
1827 }
1828
1829 void spapr_pci_switch_vga(bool big_endian)
1830 {
1831 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1832 sPAPRPHBState *sphb;
1833
1834 /*
1835 * For backward compatibility with existing guests, we switch
1836 * the endianness of the VGA controller when changing the guest
1837 * interrupt mode
1838 */
1839 QLIST_FOREACH(sphb, &spapr->phbs, list) {
1840 BusState *bus = &PCI_HOST_BRIDGE(sphb)->bus->qbus;
1841 qbus_walk_children(bus, spapr_switch_one_vga, NULL, NULL, NULL,
1842 &big_endian);
1843 }
1844 }