]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr_pci.c
Merge remote-tracking branch 'remotes/bonzini-gitlab/tags/for-upstream' into staging
[mirror_qemu.git] / hw / ppc / spapr_pci.c
1 /*
2 * QEMU sPAPR PCI host originated from Uninorth PCI host
3 *
4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5 * Copyright (C) 2011 David Gibson, IBM Corporation.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
24 */
25
26 #include "qemu/osdep.h"
27 #include "qapi/error.h"
28 #include "cpu.h"
29 #include "hw/irq.h"
30 #include "hw/sysbus.h"
31 #include "migration/vmstate.h"
32 #include "hw/pci/pci.h"
33 #include "hw/pci/msi.h"
34 #include "hw/pci/msix.h"
35 #include "hw/pci/pci_host.h"
36 #include "hw/ppc/spapr.h"
37 #include "hw/pci-host/spapr.h"
38 #include "exec/address-spaces.h"
39 #include "exec/ram_addr.h"
40 #include <libfdt.h>
41 #include "trace.h"
42 #include "qemu/error-report.h"
43 #include "qemu/module.h"
44 #include "qapi/qmp/qerror.h"
45 #include "hw/ppc/fdt.h"
46 #include "hw/pci/pci_bridge.h"
47 #include "hw/pci/pci_bus.h"
48 #include "hw/pci/pci_ids.h"
49 #include "hw/ppc/spapr_drc.h"
50 #include "hw/qdev-properties.h"
51 #include "sysemu/device_tree.h"
52 #include "sysemu/kvm.h"
53 #include "sysemu/hostmem.h"
54 #include "sysemu/numa.h"
55 #include "hw/ppc/spapr_numa.h"
56 #include "qemu/log.h"
57
58 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
59 #define RTAS_QUERY_FN 0
60 #define RTAS_CHANGE_FN 1
61 #define RTAS_RESET_FN 2
62 #define RTAS_CHANGE_MSI_FN 3
63 #define RTAS_CHANGE_MSIX_FN 4
64
65 /* Interrupt types to return on RTAS_CHANGE_* */
66 #define RTAS_TYPE_MSI 1
67 #define RTAS_TYPE_MSIX 2
68
69 SpaprPhbState *spapr_pci_find_phb(SpaprMachineState *spapr, uint64_t buid)
70 {
71 SpaprPhbState *sphb;
72
73 QLIST_FOREACH(sphb, &spapr->phbs, list) {
74 if (sphb->buid != buid) {
75 continue;
76 }
77 return sphb;
78 }
79
80 return NULL;
81 }
82
83 PCIDevice *spapr_pci_find_dev(SpaprMachineState *spapr, uint64_t buid,
84 uint32_t config_addr)
85 {
86 SpaprPhbState *sphb = spapr_pci_find_phb(spapr, buid);
87 PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
88 int bus_num = (config_addr >> 16) & 0xFF;
89 int devfn = (config_addr >> 8) & 0xFF;
90
91 if (!phb) {
92 return NULL;
93 }
94
95 return pci_find_device(phb->bus, bus_num, devfn);
96 }
97
98 static uint32_t rtas_pci_cfgaddr(uint32_t arg)
99 {
100 /* This handles the encoding of extended config space addresses */
101 return ((arg >> 20) & 0xf00) | (arg & 0xff);
102 }
103
104 static void finish_read_pci_config(SpaprMachineState *spapr, uint64_t buid,
105 uint32_t addr, uint32_t size,
106 target_ulong rets)
107 {
108 PCIDevice *pci_dev;
109 uint32_t val;
110
111 if ((size != 1) && (size != 2) && (size != 4)) {
112 /* access must be 1, 2 or 4 bytes */
113 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
114 return;
115 }
116
117 pci_dev = spapr_pci_find_dev(spapr, buid, addr);
118 addr = rtas_pci_cfgaddr(addr);
119
120 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
121 /* Access must be to a valid device, within bounds and
122 * naturally aligned */
123 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
124 return;
125 }
126
127 val = pci_host_config_read_common(pci_dev, addr,
128 pci_config_size(pci_dev), size);
129
130 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
131 rtas_st(rets, 1, val);
132 }
133
134 static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr,
135 uint32_t token, uint32_t nargs,
136 target_ulong args,
137 uint32_t nret, target_ulong rets)
138 {
139 uint64_t buid;
140 uint32_t size, addr;
141
142 if ((nargs != 4) || (nret != 2)) {
143 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
144 return;
145 }
146
147 buid = rtas_ldq(args, 1);
148 size = rtas_ld(args, 3);
149 addr = rtas_ld(args, 0);
150
151 finish_read_pci_config(spapr, buid, addr, size, rets);
152 }
153
154 static void rtas_read_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr,
155 uint32_t token, uint32_t nargs,
156 target_ulong args,
157 uint32_t nret, target_ulong rets)
158 {
159 uint32_t size, addr;
160
161 if ((nargs != 2) || (nret != 2)) {
162 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
163 return;
164 }
165
166 size = rtas_ld(args, 1);
167 addr = rtas_ld(args, 0);
168
169 finish_read_pci_config(spapr, 0, addr, size, rets);
170 }
171
172 static void finish_write_pci_config(SpaprMachineState *spapr, uint64_t buid,
173 uint32_t addr, uint32_t size,
174 uint32_t val, target_ulong rets)
175 {
176 PCIDevice *pci_dev;
177
178 if ((size != 1) && (size != 2) && (size != 4)) {
179 /* access must be 1, 2 or 4 bytes */
180 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
181 return;
182 }
183
184 pci_dev = spapr_pci_find_dev(spapr, buid, addr);
185 addr = rtas_pci_cfgaddr(addr);
186
187 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
188 /* Access must be to a valid device, within bounds and
189 * naturally aligned */
190 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
191 return;
192 }
193
194 pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
195 val, size);
196
197 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
198 }
199
200 static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr,
201 uint32_t token, uint32_t nargs,
202 target_ulong args,
203 uint32_t nret, target_ulong rets)
204 {
205 uint64_t buid;
206 uint32_t val, size, addr;
207
208 if ((nargs != 5) || (nret != 1)) {
209 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
210 return;
211 }
212
213 buid = rtas_ldq(args, 1);
214 val = rtas_ld(args, 4);
215 size = rtas_ld(args, 3);
216 addr = rtas_ld(args, 0);
217
218 finish_write_pci_config(spapr, buid, addr, size, val, rets);
219 }
220
221 static void rtas_write_pci_config(PowerPCCPU *cpu, SpaprMachineState *spapr,
222 uint32_t token, uint32_t nargs,
223 target_ulong args,
224 uint32_t nret, target_ulong rets)
225 {
226 uint32_t val, size, addr;
227
228 if ((nargs != 3) || (nret != 1)) {
229 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
230 return;
231 }
232
233
234 val = rtas_ld(args, 2);
235 size = rtas_ld(args, 1);
236 addr = rtas_ld(args, 0);
237
238 finish_write_pci_config(spapr, 0, addr, size, val, rets);
239 }
240
241 /*
242 * Set MSI/MSIX message data.
243 * This is required for msi_notify()/msix_notify() which
244 * will write at the addresses via spapr_msi_write().
245 *
246 * If hwaddr == 0, all entries will have .data == first_irq i.e.
247 * table will be reset.
248 */
249 static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix,
250 unsigned first_irq, unsigned req_num)
251 {
252 unsigned i;
253 MSIMessage msg = { .address = addr, .data = first_irq };
254
255 if (!msix) {
256 msi_set_message(pdev, msg);
257 trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
258 return;
259 }
260
261 for (i = 0; i < req_num; ++i) {
262 msix_set_message(pdev, i, msg);
263 trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
264 if (addr) {
265 ++msg.data;
266 }
267 }
268 }
269
270 static void rtas_ibm_change_msi(PowerPCCPU *cpu, SpaprMachineState *spapr,
271 uint32_t token, uint32_t nargs,
272 target_ulong args, uint32_t nret,
273 target_ulong rets)
274 {
275 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
276 uint32_t config_addr = rtas_ld(args, 0);
277 uint64_t buid = rtas_ldq(args, 1);
278 unsigned int func = rtas_ld(args, 3);
279 unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
280 unsigned int seq_num = rtas_ld(args, 5);
281 unsigned int ret_intr_type;
282 unsigned int irq, max_irqs = 0;
283 SpaprPhbState *phb = NULL;
284 PCIDevice *pdev = NULL;
285 SpaprPciMsi *msi;
286 int *config_addr_key;
287 Error *err = NULL;
288 int i;
289
290 /* Fins SpaprPhbState */
291 phb = spapr_pci_find_phb(spapr, buid);
292 if (phb) {
293 pdev = spapr_pci_find_dev(spapr, buid, config_addr);
294 }
295 if (!phb || !pdev) {
296 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
297 return;
298 }
299
300 switch (func) {
301 case RTAS_CHANGE_FN:
302 if (msi_present(pdev)) {
303 ret_intr_type = RTAS_TYPE_MSI;
304 } else if (msix_present(pdev)) {
305 ret_intr_type = RTAS_TYPE_MSIX;
306 } else {
307 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
308 return;
309 }
310 break;
311 case RTAS_CHANGE_MSI_FN:
312 if (msi_present(pdev)) {
313 ret_intr_type = RTAS_TYPE_MSI;
314 } else {
315 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
316 return;
317 }
318 break;
319 case RTAS_CHANGE_MSIX_FN:
320 if (msix_present(pdev)) {
321 ret_intr_type = RTAS_TYPE_MSIX;
322 } else {
323 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
324 return;
325 }
326 break;
327 default:
328 error_report("rtas_ibm_change_msi(%u) is not implemented", func);
329 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
330 return;
331 }
332
333 msi = (SpaprPciMsi *) g_hash_table_lookup(phb->msi, &config_addr);
334
335 /* Releasing MSIs */
336 if (!req_num) {
337 if (!msi) {
338 trace_spapr_pci_msi("Releasing wrong config", config_addr);
339 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
340 return;
341 }
342
343 if (msi_present(pdev)) {
344 spapr_msi_setmsg(pdev, 0, false, 0, 0);
345 }
346 if (msix_present(pdev)) {
347 spapr_msi_setmsg(pdev, 0, true, 0, 0);
348 }
349 g_hash_table_remove(phb->msi, &config_addr);
350
351 trace_spapr_pci_msi("Released MSIs", config_addr);
352 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
353 rtas_st(rets, 1, 0);
354 return;
355 }
356
357 /* Enabling MSI */
358
359 /* Check if the device supports as many IRQs as requested */
360 if (ret_intr_type == RTAS_TYPE_MSI) {
361 max_irqs = msi_nr_vectors_allocated(pdev);
362 } else if (ret_intr_type == RTAS_TYPE_MSIX) {
363 max_irqs = pdev->msix_entries_nr;
364 }
365 if (!max_irqs) {
366 error_report("Requested interrupt type %d is not enabled for device %x",
367 ret_intr_type, config_addr);
368 rtas_st(rets, 0, -1); /* Hardware error */
369 return;
370 }
371 /* Correct the number if the guest asked for too many */
372 if (req_num > max_irqs) {
373 trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs);
374 req_num = max_irqs;
375 irq = 0; /* to avoid misleading trace */
376 goto out;
377 }
378
379 /* Allocate MSIs */
380 if (smc->legacy_irq_allocation) {
381 irq = spapr_irq_find(spapr, req_num, ret_intr_type == RTAS_TYPE_MSI,
382 &err);
383 } else {
384 irq = spapr_irq_msi_alloc(spapr, req_num,
385 ret_intr_type == RTAS_TYPE_MSI, &err);
386 }
387 if (err) {
388 error_reportf_err(err, "Can't allocate MSIs for device %x: ",
389 config_addr);
390 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
391 return;
392 }
393
394 for (i = 0; i < req_num; i++) {
395 spapr_irq_claim(spapr, irq + i, false, &err);
396 if (err) {
397 if (i) {
398 spapr_irq_free(spapr, irq, i);
399 }
400 if (!smc->legacy_irq_allocation) {
401 spapr_irq_msi_free(spapr, irq, req_num);
402 }
403 error_reportf_err(err, "Can't allocate MSIs for device %x: ",
404 config_addr);
405 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
406 return;
407 }
408 }
409
410 /* Release previous MSIs */
411 if (msi) {
412 g_hash_table_remove(phb->msi, &config_addr);
413 }
414
415 /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
416 spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX,
417 irq, req_num);
418
419 /* Add MSI device to cache */
420 msi = g_new(SpaprPciMsi, 1);
421 msi->first_irq = irq;
422 msi->num = req_num;
423 config_addr_key = g_new(int, 1);
424 *config_addr_key = config_addr;
425 g_hash_table_insert(phb->msi, config_addr_key, msi);
426
427 out:
428 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
429 rtas_st(rets, 1, req_num);
430 rtas_st(rets, 2, ++seq_num);
431 if (nret > 3) {
432 rtas_st(rets, 3, ret_intr_type);
433 }
434
435 trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq);
436 }
437
438 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu,
439 SpaprMachineState *spapr,
440 uint32_t token,
441 uint32_t nargs,
442 target_ulong args,
443 uint32_t nret,
444 target_ulong rets)
445 {
446 uint32_t config_addr = rtas_ld(args, 0);
447 uint64_t buid = rtas_ldq(args, 1);
448 unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
449 SpaprPhbState *phb = NULL;
450 PCIDevice *pdev = NULL;
451 SpaprPciMsi *msi;
452
453 /* Find SpaprPhbState */
454 phb = spapr_pci_find_phb(spapr, buid);
455 if (phb) {
456 pdev = spapr_pci_find_dev(spapr, buid, config_addr);
457 }
458 if (!phb || !pdev) {
459 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
460 return;
461 }
462
463 /* Find device descriptor and start IRQ */
464 msi = (SpaprPciMsi *) g_hash_table_lookup(phb->msi, &config_addr);
465 if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) {
466 trace_spapr_pci_msi("Failed to return vector", config_addr);
467 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
468 return;
469 }
470 intr_src_num = msi->first_irq + ioa_intr_num;
471 trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
472 intr_src_num);
473
474 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
475 rtas_st(rets, 1, intr_src_num);
476 rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
477 }
478
479 static void rtas_ibm_set_eeh_option(PowerPCCPU *cpu,
480 SpaprMachineState *spapr,
481 uint32_t token, uint32_t nargs,
482 target_ulong args, uint32_t nret,
483 target_ulong rets)
484 {
485 SpaprPhbState *sphb;
486 uint32_t addr, option;
487 uint64_t buid;
488 int ret;
489
490 if ((nargs != 4) || (nret != 1)) {
491 goto param_error_exit;
492 }
493
494 buid = rtas_ldq(args, 1);
495 addr = rtas_ld(args, 0);
496 option = rtas_ld(args, 3);
497
498 sphb = spapr_pci_find_phb(spapr, buid);
499 if (!sphb) {
500 goto param_error_exit;
501 }
502
503 if (!spapr_phb_eeh_available(sphb)) {
504 goto param_error_exit;
505 }
506
507 ret = spapr_phb_vfio_eeh_set_option(sphb, addr, option);
508 rtas_st(rets, 0, ret);
509 return;
510
511 param_error_exit:
512 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
513 }
514
515 static void rtas_ibm_get_config_addr_info2(PowerPCCPU *cpu,
516 SpaprMachineState *spapr,
517 uint32_t token, uint32_t nargs,
518 target_ulong args, uint32_t nret,
519 target_ulong rets)
520 {
521 SpaprPhbState *sphb;
522 PCIDevice *pdev;
523 uint32_t addr, option;
524 uint64_t buid;
525
526 if ((nargs != 4) || (nret != 2)) {
527 goto param_error_exit;
528 }
529
530 buid = rtas_ldq(args, 1);
531 sphb = spapr_pci_find_phb(spapr, buid);
532 if (!sphb) {
533 goto param_error_exit;
534 }
535
536 if (!spapr_phb_eeh_available(sphb)) {
537 goto param_error_exit;
538 }
539
540 /*
541 * We always have PE address of form "00BB0001". "BB"
542 * represents the bus number of PE's primary bus.
543 */
544 option = rtas_ld(args, 3);
545 switch (option) {
546 case RTAS_GET_PE_ADDR:
547 addr = rtas_ld(args, 0);
548 pdev = spapr_pci_find_dev(spapr, buid, addr);
549 if (!pdev) {
550 goto param_error_exit;
551 }
552
553 rtas_st(rets, 1, (pci_bus_num(pci_get_bus(pdev)) << 16) + 1);
554 break;
555 case RTAS_GET_PE_MODE:
556 rtas_st(rets, 1, RTAS_PE_MODE_SHARED);
557 break;
558 default:
559 goto param_error_exit;
560 }
561
562 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
563 return;
564
565 param_error_exit:
566 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
567 }
568
569 static void rtas_ibm_read_slot_reset_state2(PowerPCCPU *cpu,
570 SpaprMachineState *spapr,
571 uint32_t token, uint32_t nargs,
572 target_ulong args, uint32_t nret,
573 target_ulong rets)
574 {
575 SpaprPhbState *sphb;
576 uint64_t buid;
577 int state, ret;
578
579 if ((nargs != 3) || (nret != 4 && nret != 5)) {
580 goto param_error_exit;
581 }
582
583 buid = rtas_ldq(args, 1);
584 sphb = spapr_pci_find_phb(spapr, buid);
585 if (!sphb) {
586 goto param_error_exit;
587 }
588
589 if (!spapr_phb_eeh_available(sphb)) {
590 goto param_error_exit;
591 }
592
593 ret = spapr_phb_vfio_eeh_get_state(sphb, &state);
594 rtas_st(rets, 0, ret);
595 if (ret != RTAS_OUT_SUCCESS) {
596 return;
597 }
598
599 rtas_st(rets, 1, state);
600 rtas_st(rets, 2, RTAS_EEH_SUPPORT);
601 rtas_st(rets, 3, RTAS_EEH_PE_UNAVAIL_INFO);
602 if (nret >= 5) {
603 rtas_st(rets, 4, RTAS_EEH_PE_RECOVER_INFO);
604 }
605 return;
606
607 param_error_exit:
608 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
609 }
610
611 static void rtas_ibm_set_slot_reset(PowerPCCPU *cpu,
612 SpaprMachineState *spapr,
613 uint32_t token, uint32_t nargs,
614 target_ulong args, uint32_t nret,
615 target_ulong rets)
616 {
617 SpaprPhbState *sphb;
618 uint32_t option;
619 uint64_t buid;
620 int ret;
621
622 if ((nargs != 4) || (nret != 1)) {
623 goto param_error_exit;
624 }
625
626 buid = rtas_ldq(args, 1);
627 option = rtas_ld(args, 3);
628 sphb = spapr_pci_find_phb(spapr, buid);
629 if (!sphb) {
630 goto param_error_exit;
631 }
632
633 if (!spapr_phb_eeh_available(sphb)) {
634 goto param_error_exit;
635 }
636
637 ret = spapr_phb_vfio_eeh_reset(sphb, option);
638 rtas_st(rets, 0, ret);
639 return;
640
641 param_error_exit:
642 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
643 }
644
645 static void rtas_ibm_configure_pe(PowerPCCPU *cpu,
646 SpaprMachineState *spapr,
647 uint32_t token, uint32_t nargs,
648 target_ulong args, uint32_t nret,
649 target_ulong rets)
650 {
651 SpaprPhbState *sphb;
652 uint64_t buid;
653 int ret;
654
655 if ((nargs != 3) || (nret != 1)) {
656 goto param_error_exit;
657 }
658
659 buid = rtas_ldq(args, 1);
660 sphb = spapr_pci_find_phb(spapr, buid);
661 if (!sphb) {
662 goto param_error_exit;
663 }
664
665 if (!spapr_phb_eeh_available(sphb)) {
666 goto param_error_exit;
667 }
668
669 ret = spapr_phb_vfio_eeh_configure(sphb);
670 rtas_st(rets, 0, ret);
671 return;
672
673 param_error_exit:
674 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
675 }
676
677 /* To support it later */
678 static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu,
679 SpaprMachineState *spapr,
680 uint32_t token, uint32_t nargs,
681 target_ulong args, uint32_t nret,
682 target_ulong rets)
683 {
684 SpaprPhbState *sphb;
685 int option;
686 uint64_t buid;
687
688 if ((nargs != 8) || (nret != 1)) {
689 goto param_error_exit;
690 }
691
692 buid = rtas_ldq(args, 1);
693 sphb = spapr_pci_find_phb(spapr, buid);
694 if (!sphb) {
695 goto param_error_exit;
696 }
697
698 if (!spapr_phb_eeh_available(sphb)) {
699 goto param_error_exit;
700 }
701
702 option = rtas_ld(args, 7);
703 switch (option) {
704 case RTAS_SLOT_TEMP_ERR_LOG:
705 case RTAS_SLOT_PERM_ERR_LOG:
706 break;
707 default:
708 goto param_error_exit;
709 }
710
711 /* We don't have error log yet */
712 rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND);
713 return;
714
715 param_error_exit:
716 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
717 }
718
719 static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
720 {
721 /*
722 * Here we use the number returned by pci_swizzle_map_irq_fn to find a
723 * corresponding qemu_irq.
724 */
725 SpaprPhbState *phb = opaque;
726 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
727
728 trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq);
729 qemu_set_irq(spapr_qirq(spapr, phb->lsi_table[irq_num].irq), level);
730 }
731
732 static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin)
733 {
734 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque);
735 PCIINTxRoute route;
736
737 route.mode = PCI_INTX_ENABLED;
738 route.irq = sphb->lsi_table[pin].irq;
739
740 return route;
741 }
742
743 static uint64_t spapr_msi_read(void *opaque, hwaddr addr, unsigned size)
744 {
745 qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid access\n", __func__);
746 return 0;
747 }
748
749 /*
750 * MSI/MSIX memory region implementation.
751 * The handler handles both MSI and MSIX.
752 * The vector number is encoded in least bits in data.
753 */
754 static void spapr_msi_write(void *opaque, hwaddr addr,
755 uint64_t data, unsigned size)
756 {
757 SpaprMachineState *spapr = opaque;
758 uint32_t irq = data;
759
760 trace_spapr_pci_msi_write(addr, data, irq);
761
762 qemu_irq_pulse(spapr_qirq(spapr, irq));
763 }
764
765 static const MemoryRegionOps spapr_msi_ops = {
766 /*
767 * .read result is undefined by PCI spec.
768 * define .read method to avoid assert failure in memory_region_init_io
769 */
770 .read = spapr_msi_read,
771 .write = spapr_msi_write,
772 .endianness = DEVICE_LITTLE_ENDIAN
773 };
774
775 /*
776 * PHB PCI device
777 */
778 static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn)
779 {
780 SpaprPhbState *phb = opaque;
781
782 return &phb->iommu_as;
783 }
784
785 static char *spapr_phb_vfio_get_loc_code(SpaprPhbState *sphb, PCIDevice *pdev)
786 {
787 char *path = NULL, *buf = NULL, *host = NULL;
788
789 /* Get the PCI VFIO host id */
790 host = object_property_get_str(OBJECT(pdev), "host", NULL);
791 if (!host) {
792 goto err_out;
793 }
794
795 /* Construct the path of the file that will give us the DT location */
796 path = g_strdup_printf("/sys/bus/pci/devices/%s/devspec", host);
797 g_free(host);
798 if (!g_file_get_contents(path, &buf, NULL, NULL)) {
799 goto err_out;
800 }
801 g_free(path);
802
803 /* Construct and read from host device tree the loc-code */
804 path = g_strdup_printf("/proc/device-tree%s/ibm,loc-code", buf);
805 g_free(buf);
806 if (!g_file_get_contents(path, &buf, NULL, NULL)) {
807 goto err_out;
808 }
809 return buf;
810
811 err_out:
812 g_free(path);
813 return NULL;
814 }
815
816 static char *spapr_phb_get_loc_code(SpaprPhbState *sphb, PCIDevice *pdev)
817 {
818 char *buf;
819 const char *devtype = "qemu";
820 uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
821
822 if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) {
823 buf = spapr_phb_vfio_get_loc_code(sphb, pdev);
824 if (buf) {
825 return buf;
826 }
827 devtype = "vfio";
828 }
829 /*
830 * For emulated devices and VFIO-failure case, make up
831 * the loc-code.
832 */
833 buf = g_strdup_printf("%s_%s:%04x:%02x:%02x.%x",
834 devtype, pdev->name, sphb->index, busnr,
835 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
836 return buf;
837 }
838
839 /* Macros to operate with address in OF binding to PCI */
840 #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p))
841 #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */
842 #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */
843 #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */
844 #define b_ss(x) b_x((x), 24, 2) /* the space code */
845 #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */
846 #define b_ddddd(x) b_x((x), 11, 5) /* device number */
847 #define b_fff(x) b_x((x), 8, 3) /* function number */
848 #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */
849
850 /* for 'reg' OF properties */
851 #define RESOURCE_CELLS_SIZE 2
852 #define RESOURCE_CELLS_ADDRESS 3
853
854 typedef struct ResourceFields {
855 uint32_t phys_hi;
856 uint32_t phys_mid;
857 uint32_t phys_lo;
858 uint32_t size_hi;
859 uint32_t size_lo;
860 } QEMU_PACKED ResourceFields;
861
862 typedef struct ResourceProps {
863 ResourceFields reg[8];
864 uint32_t reg_len;
865 } ResourceProps;
866
867 /* fill in the 'reg' OF properties for
868 * a PCI device. 'reg' describes resource requirements for a
869 * device's IO/MEM regions.
870 *
871 * the property is an array of ('phys-addr', 'size') pairs describing
872 * the addressable regions of the PCI device, where 'phys-addr' is a
873 * RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to
874 * (phys.hi, phys.mid, phys.lo), and 'size' is a
875 * RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo).
876 *
877 * phys.hi = 0xYYXXXXZZ, where:
878 * 0xYY = npt000ss
879 * ||| |
880 * ||| +-- space code
881 * ||| |
882 * ||| + 00 if configuration space
883 * ||| + 01 if IO region,
884 * ||| + 10 if 32-bit MEM region
885 * ||| + 11 if 64-bit MEM region
886 * |||
887 * ||+------ for non-relocatable IO: 1 if aliased
888 * || for relocatable IO: 1 if below 64KB
889 * || for MEM: 1 if below 1MB
890 * |+------- 1 if region is prefetchable
891 * +-------- 1 if region is non-relocatable
892 * 0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function
893 * bits respectively
894 * 0xZZ = rrrrrrrr, the register number of the BAR corresponding
895 * to the region
896 *
897 * phys.mid and phys.lo correspond respectively to the hi/lo portions
898 * of the actual address of the region.
899 *
900 * note also that addresses defined in this property are, at least
901 * for PAPR guests, relative to the PHBs IO/MEM windows, and
902 * correspond directly to the addresses in the BARs.
903 *
904 * in accordance with PCI Bus Binding to Open Firmware,
905 * IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7,
906 * Appendix C.
907 */
908 static void populate_resource_props(PCIDevice *d, ResourceProps *rp)
909 {
910 int bus_num = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d))));
911 uint32_t dev_id = (b_bbbbbbbb(bus_num) |
912 b_ddddd(PCI_SLOT(d->devfn)) |
913 b_fff(PCI_FUNC(d->devfn)));
914 ResourceFields *reg;
915 int i, reg_idx = 0;
916
917 /* config space region */
918 reg = &rp->reg[reg_idx++];
919 reg->phys_hi = cpu_to_be32(dev_id);
920 reg->phys_mid = 0;
921 reg->phys_lo = 0;
922 reg->size_hi = 0;
923 reg->size_lo = 0;
924
925 for (i = 0; i < PCI_NUM_REGIONS; i++) {
926 if (!d->io_regions[i].size) {
927 continue;
928 }
929
930 reg = &rp->reg[reg_idx++];
931
932 reg->phys_hi = cpu_to_be32(dev_id | b_rrrrrrrr(pci_bar(d, i)));
933 if (d->io_regions[i].type & PCI_BASE_ADDRESS_SPACE_IO) {
934 reg->phys_hi |= cpu_to_be32(b_ss(1));
935 } else if (d->io_regions[i].type & PCI_BASE_ADDRESS_MEM_TYPE_64) {
936 reg->phys_hi |= cpu_to_be32(b_ss(3));
937 } else {
938 reg->phys_hi |= cpu_to_be32(b_ss(2));
939 }
940 reg->phys_mid = 0;
941 reg->phys_lo = 0;
942 reg->size_hi = cpu_to_be32(d->io_regions[i].size >> 32);
943 reg->size_lo = cpu_to_be32(d->io_regions[i].size);
944 }
945
946 rp->reg_len = reg_idx * sizeof(ResourceFields);
947 }
948
949 typedef struct PCIClass PCIClass;
950 typedef struct PCISubClass PCISubClass;
951 typedef struct PCIIFace PCIIFace;
952
953 struct PCIIFace {
954 int iface;
955 const char *name;
956 };
957
958 struct PCISubClass {
959 int subclass;
960 const char *name;
961 const PCIIFace *iface;
962 };
963
964 struct PCIClass {
965 const char *name;
966 const PCISubClass *subc;
967 };
968
969 static const PCISubClass undef_subclass[] = {
970 { PCI_CLASS_NOT_DEFINED_VGA, "display", NULL },
971 { 0xFF, NULL, NULL },
972 };
973
974 static const PCISubClass mass_subclass[] = {
975 { PCI_CLASS_STORAGE_SCSI, "scsi", NULL },
976 { PCI_CLASS_STORAGE_IDE, "ide", NULL },
977 { PCI_CLASS_STORAGE_FLOPPY, "fdc", NULL },
978 { PCI_CLASS_STORAGE_IPI, "ipi", NULL },
979 { PCI_CLASS_STORAGE_RAID, "raid", NULL },
980 { PCI_CLASS_STORAGE_ATA, "ata", NULL },
981 { PCI_CLASS_STORAGE_SATA, "sata", NULL },
982 { PCI_CLASS_STORAGE_SAS, "sas", NULL },
983 { 0xFF, NULL, NULL },
984 };
985
986 static const PCISubClass net_subclass[] = {
987 { PCI_CLASS_NETWORK_ETHERNET, "ethernet", NULL },
988 { PCI_CLASS_NETWORK_TOKEN_RING, "token-ring", NULL },
989 { PCI_CLASS_NETWORK_FDDI, "fddi", NULL },
990 { PCI_CLASS_NETWORK_ATM, "atm", NULL },
991 { PCI_CLASS_NETWORK_ISDN, "isdn", NULL },
992 { PCI_CLASS_NETWORK_WORLDFIP, "worldfip", NULL },
993 { PCI_CLASS_NETWORK_PICMG214, "picmg", NULL },
994 { 0xFF, NULL, NULL },
995 };
996
997 static const PCISubClass displ_subclass[] = {
998 { PCI_CLASS_DISPLAY_VGA, "vga", NULL },
999 { PCI_CLASS_DISPLAY_XGA, "xga", NULL },
1000 { PCI_CLASS_DISPLAY_3D, "3d-controller", NULL },
1001 { 0xFF, NULL, NULL },
1002 };
1003
1004 static const PCISubClass media_subclass[] = {
1005 { PCI_CLASS_MULTIMEDIA_VIDEO, "video", NULL },
1006 { PCI_CLASS_MULTIMEDIA_AUDIO, "sound", NULL },
1007 { PCI_CLASS_MULTIMEDIA_PHONE, "telephony", NULL },
1008 { 0xFF, NULL, NULL },
1009 };
1010
1011 static const PCISubClass mem_subclass[] = {
1012 { PCI_CLASS_MEMORY_RAM, "memory", NULL },
1013 { PCI_CLASS_MEMORY_FLASH, "flash", NULL },
1014 { 0xFF, NULL, NULL },
1015 };
1016
1017 static const PCISubClass bridg_subclass[] = {
1018 { PCI_CLASS_BRIDGE_HOST, "host", NULL },
1019 { PCI_CLASS_BRIDGE_ISA, "isa", NULL },
1020 { PCI_CLASS_BRIDGE_EISA, "eisa", NULL },
1021 { PCI_CLASS_BRIDGE_MC, "mca", NULL },
1022 { PCI_CLASS_BRIDGE_PCI, "pci", NULL },
1023 { PCI_CLASS_BRIDGE_PCMCIA, "pcmcia", NULL },
1024 { PCI_CLASS_BRIDGE_NUBUS, "nubus", NULL },
1025 { PCI_CLASS_BRIDGE_CARDBUS, "cardbus", NULL },
1026 { PCI_CLASS_BRIDGE_RACEWAY, "raceway", NULL },
1027 { PCI_CLASS_BRIDGE_PCI_SEMITP, "semi-transparent-pci", NULL },
1028 { PCI_CLASS_BRIDGE_IB_PCI, "infiniband", NULL },
1029 { 0xFF, NULL, NULL },
1030 };
1031
1032 static const PCISubClass comm_subclass[] = {
1033 { PCI_CLASS_COMMUNICATION_SERIAL, "serial", NULL },
1034 { PCI_CLASS_COMMUNICATION_PARALLEL, "parallel", NULL },
1035 { PCI_CLASS_COMMUNICATION_MULTISERIAL, "multiport-serial", NULL },
1036 { PCI_CLASS_COMMUNICATION_MODEM, "modem", NULL },
1037 { PCI_CLASS_COMMUNICATION_GPIB, "gpib", NULL },
1038 { PCI_CLASS_COMMUNICATION_SC, "smart-card", NULL },
1039 { 0xFF, NULL, NULL, },
1040 };
1041
1042 static const PCIIFace pic_iface[] = {
1043 { PCI_CLASS_SYSTEM_PIC_IOAPIC, "io-apic" },
1044 { PCI_CLASS_SYSTEM_PIC_IOXAPIC, "io-xapic" },
1045 { 0xFF, NULL },
1046 };
1047
1048 static const PCISubClass sys_subclass[] = {
1049 { PCI_CLASS_SYSTEM_PIC, "interrupt-controller", pic_iface },
1050 { PCI_CLASS_SYSTEM_DMA, "dma-controller", NULL },
1051 { PCI_CLASS_SYSTEM_TIMER, "timer", NULL },
1052 { PCI_CLASS_SYSTEM_RTC, "rtc", NULL },
1053 { PCI_CLASS_SYSTEM_PCI_HOTPLUG, "hot-plug-controller", NULL },
1054 { PCI_CLASS_SYSTEM_SDHCI, "sd-host-controller", NULL },
1055 { 0xFF, NULL, NULL },
1056 };
1057
1058 static const PCISubClass inp_subclass[] = {
1059 { PCI_CLASS_INPUT_KEYBOARD, "keyboard", NULL },
1060 { PCI_CLASS_INPUT_PEN, "pen", NULL },
1061 { PCI_CLASS_INPUT_MOUSE, "mouse", NULL },
1062 { PCI_CLASS_INPUT_SCANNER, "scanner", NULL },
1063 { PCI_CLASS_INPUT_GAMEPORT, "gameport", NULL },
1064 { 0xFF, NULL, NULL },
1065 };
1066
1067 static const PCISubClass dock_subclass[] = {
1068 { PCI_CLASS_DOCKING_GENERIC, "dock", NULL },
1069 { 0xFF, NULL, NULL },
1070 };
1071
1072 static const PCISubClass cpu_subclass[] = {
1073 { PCI_CLASS_PROCESSOR_PENTIUM, "pentium", NULL },
1074 { PCI_CLASS_PROCESSOR_POWERPC, "powerpc", NULL },
1075 { PCI_CLASS_PROCESSOR_MIPS, "mips", NULL },
1076 { PCI_CLASS_PROCESSOR_CO, "co-processor", NULL },
1077 { 0xFF, NULL, NULL },
1078 };
1079
1080 static const PCIIFace usb_iface[] = {
1081 { PCI_CLASS_SERIAL_USB_UHCI, "usb-uhci" },
1082 { PCI_CLASS_SERIAL_USB_OHCI, "usb-ohci", },
1083 { PCI_CLASS_SERIAL_USB_EHCI, "usb-ehci" },
1084 { PCI_CLASS_SERIAL_USB_XHCI, "usb-xhci" },
1085 { PCI_CLASS_SERIAL_USB_UNKNOWN, "usb-unknown" },
1086 { PCI_CLASS_SERIAL_USB_DEVICE, "usb-device" },
1087 { 0xFF, NULL },
1088 };
1089
1090 static const PCISubClass ser_subclass[] = {
1091 { PCI_CLASS_SERIAL_FIREWIRE, "firewire", NULL },
1092 { PCI_CLASS_SERIAL_ACCESS, "access-bus", NULL },
1093 { PCI_CLASS_SERIAL_SSA, "ssa", NULL },
1094 { PCI_CLASS_SERIAL_USB, "usb", usb_iface },
1095 { PCI_CLASS_SERIAL_FIBER, "fibre-channel", NULL },
1096 { PCI_CLASS_SERIAL_SMBUS, "smb", NULL },
1097 { PCI_CLASS_SERIAL_IB, "infiniband", NULL },
1098 { PCI_CLASS_SERIAL_IPMI, "ipmi", NULL },
1099 { PCI_CLASS_SERIAL_SERCOS, "sercos", NULL },
1100 { PCI_CLASS_SERIAL_CANBUS, "canbus", NULL },
1101 { 0xFF, NULL, NULL },
1102 };
1103
1104 static const PCISubClass wrl_subclass[] = {
1105 { PCI_CLASS_WIRELESS_IRDA, "irda", NULL },
1106 { PCI_CLASS_WIRELESS_CIR, "consumer-ir", NULL },
1107 { PCI_CLASS_WIRELESS_RF_CONTROLLER, "rf-controller", NULL },
1108 { PCI_CLASS_WIRELESS_BLUETOOTH, "bluetooth", NULL },
1109 { PCI_CLASS_WIRELESS_BROADBAND, "broadband", NULL },
1110 { 0xFF, NULL, NULL },
1111 };
1112
1113 static const PCISubClass sat_subclass[] = {
1114 { PCI_CLASS_SATELLITE_TV, "satellite-tv", NULL },
1115 { PCI_CLASS_SATELLITE_AUDIO, "satellite-audio", NULL },
1116 { PCI_CLASS_SATELLITE_VOICE, "satellite-voice", NULL },
1117 { PCI_CLASS_SATELLITE_DATA, "satellite-data", NULL },
1118 { 0xFF, NULL, NULL },
1119 };
1120
1121 static const PCISubClass crypt_subclass[] = {
1122 { PCI_CLASS_CRYPT_NETWORK, "network-encryption", NULL },
1123 { PCI_CLASS_CRYPT_ENTERTAINMENT,
1124 "entertainment-encryption", NULL },
1125 { 0xFF, NULL, NULL },
1126 };
1127
1128 static const PCISubClass spc_subclass[] = {
1129 { PCI_CLASS_SP_DPIO, "dpio", NULL },
1130 { PCI_CLASS_SP_PERF, "counter", NULL },
1131 { PCI_CLASS_SP_SYNCH, "measurement", NULL },
1132 { PCI_CLASS_SP_MANAGEMENT, "management-card", NULL },
1133 { 0xFF, NULL, NULL },
1134 };
1135
1136 static const PCIClass pci_classes[] = {
1137 { "legacy-device", undef_subclass },
1138 { "mass-storage", mass_subclass },
1139 { "network", net_subclass },
1140 { "display", displ_subclass, },
1141 { "multimedia-device", media_subclass },
1142 { "memory-controller", mem_subclass },
1143 { "unknown-bridge", bridg_subclass },
1144 { "communication-controller", comm_subclass},
1145 { "system-peripheral", sys_subclass },
1146 { "input-controller", inp_subclass },
1147 { "docking-station", dock_subclass },
1148 { "cpu", cpu_subclass },
1149 { "serial-bus", ser_subclass },
1150 { "wireless-controller", wrl_subclass },
1151 { "intelligent-io", NULL },
1152 { "satellite-device", sat_subclass },
1153 { "encryption", crypt_subclass },
1154 { "data-processing-controller", spc_subclass },
1155 };
1156
1157 static const char *dt_name_from_class(uint8_t class, uint8_t subclass,
1158 uint8_t iface)
1159 {
1160 const PCIClass *pclass;
1161 const PCISubClass *psubclass;
1162 const PCIIFace *piface;
1163 const char *name;
1164
1165 if (class >= ARRAY_SIZE(pci_classes)) {
1166 return "pci";
1167 }
1168
1169 pclass = pci_classes + class;
1170 name = pclass->name;
1171
1172 if (pclass->subc == NULL) {
1173 return name;
1174 }
1175
1176 psubclass = pclass->subc;
1177 while ((psubclass->subclass & 0xff) != 0xff) {
1178 if ((psubclass->subclass & 0xff) == subclass) {
1179 name = psubclass->name;
1180 break;
1181 }
1182 psubclass++;
1183 }
1184
1185 piface = psubclass->iface;
1186 if (piface == NULL) {
1187 return name;
1188 }
1189 while ((piface->iface & 0xff) != 0xff) {
1190 if ((piface->iface & 0xff) == iface) {
1191 name = piface->name;
1192 break;
1193 }
1194 piface++;
1195 }
1196
1197 return name;
1198 }
1199
1200 /*
1201 * DRC helper functions
1202 */
1203
1204 static uint32_t drc_id_from_devfn(SpaprPhbState *phb,
1205 uint8_t chassis, int32_t devfn)
1206 {
1207 return (phb->index << 16) | (chassis << 8) | devfn;
1208 }
1209
1210 static SpaprDrc *drc_from_devfn(SpaprPhbState *phb,
1211 uint8_t chassis, int32_t devfn)
1212 {
1213 return spapr_drc_by_id(TYPE_SPAPR_DRC_PCI,
1214 drc_id_from_devfn(phb, chassis, devfn));
1215 }
1216
1217 static uint8_t chassis_from_bus(PCIBus *bus)
1218 {
1219 if (pci_bus_is_root(bus)) {
1220 return 0;
1221 } else {
1222 PCIDevice *bridge = pci_bridge_get_device(bus);
1223
1224 return object_property_get_uint(OBJECT(bridge), "chassis_nr",
1225 &error_abort);
1226 }
1227 }
1228
1229 static SpaprDrc *drc_from_dev(SpaprPhbState *phb, PCIDevice *dev)
1230 {
1231 uint8_t chassis = chassis_from_bus(pci_get_bus(dev));
1232
1233 return drc_from_devfn(phb, chassis, dev->devfn);
1234 }
1235
1236 static void add_drcs(SpaprPhbState *phb, PCIBus *bus)
1237 {
1238 Object *owner;
1239 int i;
1240 uint8_t chassis;
1241
1242 if (!phb->dr_enabled) {
1243 return;
1244 }
1245
1246 chassis = chassis_from_bus(bus);
1247
1248 if (pci_bus_is_root(bus)) {
1249 owner = OBJECT(phb);
1250 } else {
1251 owner = OBJECT(pci_bridge_get_device(bus));
1252 }
1253
1254 for (i = 0; i < PCI_SLOT_MAX * PCI_FUNC_MAX; i++) {
1255 spapr_dr_connector_new(owner, TYPE_SPAPR_DRC_PCI,
1256 drc_id_from_devfn(phb, chassis, i));
1257 }
1258 }
1259
1260 static void remove_drcs(SpaprPhbState *phb, PCIBus *bus)
1261 {
1262 int i;
1263 uint8_t chassis;
1264
1265 if (!phb->dr_enabled) {
1266 return;
1267 }
1268
1269 chassis = chassis_from_bus(bus);
1270
1271 for (i = PCI_SLOT_MAX * PCI_FUNC_MAX - 1; i >= 0; i--) {
1272 SpaprDrc *drc = drc_from_devfn(phb, chassis, i);
1273
1274 if (drc) {
1275 object_unparent(OBJECT(drc));
1276 }
1277 }
1278 }
1279
1280 typedef struct PciWalkFdt {
1281 void *fdt;
1282 int offset;
1283 SpaprPhbState *sphb;
1284 int err;
1285 } PciWalkFdt;
1286
1287 static int spapr_dt_pci_device(SpaprPhbState *sphb, PCIDevice *dev,
1288 void *fdt, int parent_offset);
1289
1290 static void spapr_dt_pci_device_cb(PCIBus *bus, PCIDevice *pdev,
1291 void *opaque)
1292 {
1293 PciWalkFdt *p = opaque;
1294 int err;
1295
1296 if (p->err) {
1297 /* Something's already broken, don't keep going */
1298 return;
1299 }
1300
1301 err = spapr_dt_pci_device(p->sphb, pdev, p->fdt, p->offset);
1302 if (err < 0) {
1303 p->err = err;
1304 }
1305 }
1306
1307 /* Augment PCI device node with bridge specific information */
1308 static int spapr_dt_pci_bus(SpaprPhbState *sphb, PCIBus *bus,
1309 void *fdt, int offset)
1310 {
1311 Object *owner;
1312 PciWalkFdt cbinfo = {
1313 .fdt = fdt,
1314 .offset = offset,
1315 .sphb = sphb,
1316 .err = 0,
1317 };
1318 int ret;
1319
1320 _FDT(fdt_setprop_cell(fdt, offset, "#address-cells",
1321 RESOURCE_CELLS_ADDRESS));
1322 _FDT(fdt_setprop_cell(fdt, offset, "#size-cells",
1323 RESOURCE_CELLS_SIZE));
1324
1325 assert(bus);
1326 pci_for_each_device_reverse(bus, pci_bus_num(bus),
1327 spapr_dt_pci_device_cb, &cbinfo);
1328 if (cbinfo.err) {
1329 return cbinfo.err;
1330 }
1331
1332 if (pci_bus_is_root(bus)) {
1333 owner = OBJECT(sphb);
1334 } else {
1335 owner = OBJECT(pci_bridge_get_device(bus));
1336 }
1337
1338 ret = spapr_dt_drc(fdt, offset, owner,
1339 SPAPR_DR_CONNECTOR_TYPE_PCI);
1340 if (ret) {
1341 return ret;
1342 }
1343
1344 return offset;
1345 }
1346
1347 /* create OF node for pci device and required OF DT properties */
1348 static int spapr_dt_pci_device(SpaprPhbState *sphb, PCIDevice *dev,
1349 void *fdt, int parent_offset)
1350 {
1351 int offset;
1352 const gchar *basename;
1353 gchar *nodename;
1354 int slot = PCI_SLOT(dev->devfn);
1355 int func = PCI_FUNC(dev->devfn);
1356 PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(dev);
1357 ResourceProps rp;
1358 SpaprDrc *drc = drc_from_dev(sphb, dev);
1359 uint32_t vendor_id = pci_default_read_config(dev, PCI_VENDOR_ID, 2);
1360 uint32_t device_id = pci_default_read_config(dev, PCI_DEVICE_ID, 2);
1361 uint32_t revision_id = pci_default_read_config(dev, PCI_REVISION_ID, 1);
1362 uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3);
1363 uint32_t irq_pin = pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1);
1364 uint32_t subsystem_id = pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2);
1365 uint32_t subsystem_vendor_id =
1366 pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2);
1367 uint32_t cache_line_size =
1368 pci_default_read_config(dev, PCI_CACHE_LINE_SIZE, 1);
1369 uint32_t pci_status = pci_default_read_config(dev, PCI_STATUS, 2);
1370 gchar *loc_code;
1371
1372 basename = dt_name_from_class((ccode >> 16) & 0xff, (ccode >> 8) & 0xff,
1373 ccode & 0xff);
1374
1375 if (func != 0) {
1376 nodename = g_strdup_printf("%s@%x,%x", basename, slot, func);
1377 } else {
1378 nodename = g_strdup_printf("%s@%x", basename, slot);
1379 }
1380
1381 _FDT(offset = fdt_add_subnode(fdt, parent_offset, nodename));
1382
1383 g_free(nodename);
1384
1385 /* in accordance with PAPR+ v2.7 13.6.3, Table 181 */
1386 _FDT(fdt_setprop_cell(fdt, offset, "vendor-id", vendor_id));
1387 _FDT(fdt_setprop_cell(fdt, offset, "device-id", device_id));
1388 _FDT(fdt_setprop_cell(fdt, offset, "revision-id", revision_id));
1389
1390 _FDT(fdt_setprop_cell(fdt, offset, "class-code", ccode));
1391 if (irq_pin) {
1392 _FDT(fdt_setprop_cell(fdt, offset, "interrupts", irq_pin));
1393 }
1394
1395 if (subsystem_id) {
1396 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-id", subsystem_id));
1397 }
1398
1399 if (subsystem_vendor_id) {
1400 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-vendor-id",
1401 subsystem_vendor_id));
1402 }
1403
1404 _FDT(fdt_setprop_cell(fdt, offset, "cache-line-size", cache_line_size));
1405
1406
1407 /* the following fdt cells are masked off the pci status register */
1408 _FDT(fdt_setprop_cell(fdt, offset, "devsel-speed",
1409 PCI_STATUS_DEVSEL_MASK & pci_status));
1410
1411 if (pci_status & PCI_STATUS_FAST_BACK) {
1412 _FDT(fdt_setprop(fdt, offset, "fast-back-to-back", NULL, 0));
1413 }
1414 if (pci_status & PCI_STATUS_66MHZ) {
1415 _FDT(fdt_setprop(fdt, offset, "66mhz-capable", NULL, 0));
1416 }
1417 if (pci_status & PCI_STATUS_UDF) {
1418 _FDT(fdt_setprop(fdt, offset, "udf-supported", NULL, 0));
1419 }
1420
1421 loc_code = spapr_phb_get_loc_code(sphb, dev);
1422 _FDT(fdt_setprop_string(fdt, offset, "ibm,loc-code", loc_code));
1423 g_free(loc_code);
1424
1425 if (drc) {
1426 _FDT(fdt_setprop_cell(fdt, offset, "ibm,my-drc-index",
1427 spapr_drc_index(drc)));
1428 }
1429
1430 if (msi_present(dev)) {
1431 uint32_t max_msi = msi_nr_vectors_allocated(dev);
1432 if (max_msi) {
1433 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi", max_msi));
1434 }
1435 }
1436 if (msix_present(dev)) {
1437 uint32_t max_msix = dev->msix_entries_nr;
1438 if (max_msix) {
1439 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi-x", max_msix));
1440 }
1441 }
1442
1443 populate_resource_props(dev, &rp);
1444 _FDT(fdt_setprop(fdt, offset, "reg", (uint8_t *)rp.reg, rp.reg_len));
1445
1446 if (sphb->pcie_ecs && pci_is_express(dev)) {
1447 _FDT(fdt_setprop_cell(fdt, offset, "ibm,pci-config-space-type", 0x1));
1448 }
1449
1450 spapr_phb_nvgpu_populate_pcidev_dt(dev, fdt, offset, sphb);
1451
1452 if (!pc->is_bridge) {
1453 /* Properties only for non-bridges */
1454 uint32_t min_grant = pci_default_read_config(dev, PCI_MIN_GNT, 1);
1455 uint32_t max_latency = pci_default_read_config(dev, PCI_MAX_LAT, 1);
1456 _FDT(fdt_setprop_cell(fdt, offset, "min-grant", min_grant));
1457 _FDT(fdt_setprop_cell(fdt, offset, "max-latency", max_latency));
1458 return offset;
1459 } else {
1460 PCIBus *sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(dev));
1461
1462 return spapr_dt_pci_bus(sphb, sec_bus, fdt, offset);
1463 }
1464 }
1465
1466 /* Callback to be called during DRC release. */
1467 void spapr_phb_remove_pci_device_cb(DeviceState *dev)
1468 {
1469 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
1470
1471 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
1472 object_unparent(OBJECT(dev));
1473 }
1474
1475 int spapr_pci_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
1476 void *fdt, int *fdt_start_offset, Error **errp)
1477 {
1478 HotplugHandler *plug_handler = qdev_get_hotplug_handler(drc->dev);
1479 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(plug_handler);
1480 PCIDevice *pdev = PCI_DEVICE(drc->dev);
1481
1482 *fdt_start_offset = spapr_dt_pci_device(sphb, pdev, fdt, 0);
1483 return 0;
1484 }
1485
1486 static void spapr_pci_bridge_plug(SpaprPhbState *phb,
1487 PCIBridge *bridge)
1488 {
1489 PCIBus *bus = pci_bridge_get_sec_bus(bridge);
1490
1491 add_drcs(phb, bus);
1492 }
1493
1494 /* Returns non-zero if the value of "chassis_nr" is already in use */
1495 static int check_chassis_nr(Object *obj, void *opaque)
1496 {
1497 int new_chassis_nr =
1498 object_property_get_uint(opaque, "chassis_nr", &error_abort);
1499 int chassis_nr =
1500 object_property_get_uint(obj, "chassis_nr", NULL);
1501
1502 if (!object_dynamic_cast(obj, TYPE_PCI_BRIDGE)) {
1503 return 0;
1504 }
1505
1506 /* Skip unsupported bridge types */
1507 if (!chassis_nr) {
1508 return 0;
1509 }
1510
1511 /* Skip self */
1512 if (obj == opaque) {
1513 return 0;
1514 }
1515
1516 return chassis_nr == new_chassis_nr;
1517 }
1518
1519 static bool bridge_has_valid_chassis_nr(Object *bridge, Error **errp)
1520 {
1521 int chassis_nr =
1522 object_property_get_uint(bridge, "chassis_nr", NULL);
1523
1524 /*
1525 * slotid_cap_init() already ensures that "chassis_nr" isn't null for
1526 * standard PCI bridges, so this really tells if "chassis_nr" is present
1527 * or not.
1528 */
1529 if (!chassis_nr) {
1530 error_setg(errp, "PCI Bridge lacks a \"chassis_nr\" property");
1531 error_append_hint(errp, "Try -device pci-bridge instead.\n");
1532 return false;
1533 }
1534
1535 /* We want unique values for "chassis_nr" */
1536 if (object_child_foreach_recursive(object_get_root(), check_chassis_nr,
1537 bridge)) {
1538 error_setg(errp, "Bridge chassis %d already in use", chassis_nr);
1539 return false;
1540 }
1541
1542 return true;
1543 }
1544
1545 static void spapr_pci_pre_plug(HotplugHandler *plug_handler,
1546 DeviceState *plugged_dev, Error **errp)
1547 {
1548 SpaprPhbState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1549 PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1550 PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(plugged_dev);
1551 SpaprDrc *drc = drc_from_dev(phb, pdev);
1552 PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)));
1553 uint32_t slotnr = PCI_SLOT(pdev->devfn);
1554
1555 if (!phb->dr_enabled) {
1556 /* if this is a hotplug operation initiated by the user
1557 * we need to let them know it's not enabled
1558 */
1559 if (plugged_dev->hotplugged) {
1560 error_setg(errp, QERR_BUS_NO_HOTPLUG,
1561 object_get_typename(OBJECT(phb)));
1562 return;
1563 }
1564 }
1565
1566 if (pc->is_bridge) {
1567 if (!bridge_has_valid_chassis_nr(OBJECT(plugged_dev), errp)) {
1568 return;
1569 }
1570 }
1571
1572 /* Following the QEMU convention used for PCIe multifunction
1573 * hotplug, we do not allow functions to be hotplugged to a
1574 * slot that already has function 0 present
1575 */
1576 if (plugged_dev->hotplugged && bus->devices[PCI_DEVFN(slotnr, 0)] &&
1577 PCI_FUNC(pdev->devfn) != 0) {
1578 error_setg(errp, "PCI: slot %d function 0 already occupied by %s,"
1579 " additional functions can no longer be exposed to guest.",
1580 slotnr, bus->devices[PCI_DEVFN(slotnr, 0)]->name);
1581 }
1582
1583 if (drc && drc->dev) {
1584 error_setg(errp, "PCI: slot %d already occupied by %s", slotnr,
1585 pci_get_function_0(PCI_DEVICE(drc->dev))->name);
1586 return;
1587 }
1588 }
1589
1590 static void spapr_pci_plug(HotplugHandler *plug_handler,
1591 DeviceState *plugged_dev, Error **errp)
1592 {
1593 SpaprPhbState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1594 PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1595 PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(plugged_dev);
1596 SpaprDrc *drc = drc_from_dev(phb, pdev);
1597 uint32_t slotnr = PCI_SLOT(pdev->devfn);
1598
1599 /*
1600 * If DR is disabled we don't need to do anything in the case of
1601 * hotplug or coldplug callbacks.
1602 */
1603 if (!phb->dr_enabled) {
1604 return;
1605 }
1606
1607 g_assert(drc);
1608
1609 if (pc->is_bridge) {
1610 spapr_pci_bridge_plug(phb, PCI_BRIDGE(plugged_dev));
1611 }
1612
1613 /* spapr_pci_pre_plug() already checked the DRC is attachable */
1614 spapr_drc_attach(drc, DEVICE(pdev));
1615
1616 /* If this is function 0, signal hotplug for all the device functions.
1617 * Otherwise defer sending the hotplug event.
1618 */
1619 if (!spapr_drc_hotplugged(plugged_dev)) {
1620 spapr_drc_reset(drc);
1621 } else if (PCI_FUNC(pdev->devfn) == 0) {
1622 int i;
1623 uint8_t chassis = chassis_from_bus(pci_get_bus(pdev));
1624
1625 for (i = 0; i < 8; i++) {
1626 SpaprDrc *func_drc;
1627 SpaprDrcClass *func_drck;
1628 SpaprDREntitySense state;
1629
1630 func_drc = drc_from_devfn(phb, chassis, PCI_DEVFN(slotnr, i));
1631 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1632 state = func_drck->dr_entity_sense(func_drc);
1633
1634 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1635 spapr_hotplug_req_add_by_index(func_drc);
1636 }
1637 }
1638 }
1639 }
1640
1641 static void spapr_pci_bridge_unplug(SpaprPhbState *phb,
1642 PCIBridge *bridge)
1643 {
1644 PCIBus *bus = pci_bridge_get_sec_bus(bridge);
1645
1646 remove_drcs(phb, bus);
1647 }
1648
1649 static void spapr_pci_unplug(HotplugHandler *plug_handler,
1650 DeviceState *plugged_dev, Error **errp)
1651 {
1652 PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(plugged_dev);
1653 SpaprPhbState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1654
1655 /* some version guests do not wait for completion of a device
1656 * cleanup (generally done asynchronously by the kernel) before
1657 * signaling to QEMU that the device is safe, but instead sleep
1658 * for some 'safe' period of time. unfortunately on a busy host
1659 * this sleep isn't guaranteed to be long enough, resulting in
1660 * bad things like IRQ lines being left asserted during final
1661 * device removal. to deal with this we call reset just prior
1662 * to finalizing the device, which will put the device back into
1663 * an 'idle' state, as the device cleanup code expects.
1664 */
1665 pci_device_reset(PCI_DEVICE(plugged_dev));
1666
1667 if (pc->is_bridge) {
1668 spapr_pci_bridge_unplug(phb, PCI_BRIDGE(plugged_dev));
1669 return;
1670 }
1671
1672 qdev_unrealize(plugged_dev);
1673 }
1674
1675 static void spapr_pci_unplug_request(HotplugHandler *plug_handler,
1676 DeviceState *plugged_dev, Error **errp)
1677 {
1678 SpaprPhbState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1679 PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1680 SpaprDrc *drc = drc_from_dev(phb, pdev);
1681
1682 if (!phb->dr_enabled) {
1683 error_setg(errp, QERR_BUS_NO_HOTPLUG,
1684 object_get_typename(OBJECT(phb)));
1685 return;
1686 }
1687
1688 g_assert(drc);
1689 g_assert(drc->dev == plugged_dev);
1690
1691 if (!spapr_drc_unplug_requested(drc)) {
1692 PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(plugged_dev);
1693 uint32_t slotnr = PCI_SLOT(pdev->devfn);
1694 SpaprDrc *func_drc;
1695 SpaprDrcClass *func_drck;
1696 SpaprDREntitySense state;
1697 int i;
1698 uint8_t chassis = chassis_from_bus(pci_get_bus(pdev));
1699
1700 if (pc->is_bridge) {
1701 error_setg(errp, "PCI: Hot unplug of PCI bridges not supported");
1702 return;
1703 }
1704 if (object_property_get_uint(OBJECT(pdev), "nvlink2-tgt", NULL)) {
1705 error_setg(errp, "PCI: Cannot unplug NVLink2 devices");
1706 return;
1707 }
1708
1709 /* ensure any other present functions are pending unplug */
1710 if (PCI_FUNC(pdev->devfn) == 0) {
1711 for (i = 1; i < 8; i++) {
1712 func_drc = drc_from_devfn(phb, chassis, PCI_DEVFN(slotnr, i));
1713 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1714 state = func_drck->dr_entity_sense(func_drc);
1715 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT
1716 && !spapr_drc_unplug_requested(func_drc)) {
1717 /*
1718 * Attempting to remove function 0 of a multifunction
1719 * device will will cascade into removing all child
1720 * functions, even if their unplug weren't requested
1721 * beforehand.
1722 */
1723 spapr_drc_detach(func_drc);
1724 }
1725 }
1726 }
1727
1728 spapr_drc_detach(drc);
1729
1730 /* if this isn't func 0, defer unplug event. otherwise signal removal
1731 * for all present functions
1732 */
1733 if (PCI_FUNC(pdev->devfn) == 0) {
1734 for (i = 7; i >= 0; i--) {
1735 func_drc = drc_from_devfn(phb, chassis, PCI_DEVFN(slotnr, i));
1736 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1737 state = func_drck->dr_entity_sense(func_drc);
1738 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1739 spapr_hotplug_req_remove_by_index(func_drc);
1740 }
1741 }
1742 }
1743 }
1744 }
1745
1746 static void spapr_phb_finalizefn(Object *obj)
1747 {
1748 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(obj);
1749
1750 g_free(sphb->dtbusname);
1751 sphb->dtbusname = NULL;
1752 }
1753
1754 static void spapr_phb_unrealize(DeviceState *dev)
1755 {
1756 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1757 SysBusDevice *s = SYS_BUS_DEVICE(dev);
1758 PCIHostState *phb = PCI_HOST_BRIDGE(s);
1759 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(phb);
1760 SpaprTceTable *tcet;
1761 int i;
1762 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
1763
1764 spapr_phb_nvgpu_free(sphb);
1765
1766 if (sphb->msi) {
1767 g_hash_table_unref(sphb->msi);
1768 sphb->msi = NULL;
1769 }
1770
1771 /*
1772 * Remove IO/MMIO subregions and aliases, rest should get cleaned
1773 * via PHB's unrealize->object_finalize
1774 */
1775 for (i = windows_supported - 1; i >= 0; i--) {
1776 tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[i]);
1777 if (tcet) {
1778 memory_region_del_subregion(&sphb->iommu_root,
1779 spapr_tce_get_iommu(tcet));
1780 }
1781 }
1782
1783 remove_drcs(sphb, phb->bus);
1784
1785 for (i = PCI_NUM_PINS - 1; i >= 0; i--) {
1786 if (sphb->lsi_table[i].irq) {
1787 spapr_irq_free(spapr, sphb->lsi_table[i].irq, 1);
1788 sphb->lsi_table[i].irq = 0;
1789 }
1790 }
1791
1792 QLIST_REMOVE(sphb, list);
1793
1794 memory_region_del_subregion(&sphb->iommu_root, &sphb->msiwindow);
1795
1796 /*
1797 * An attached PCI device may have memory listeners, eg. VFIO PCI. We have
1798 * unmapped all sections. Remove the listeners now, before destroying the
1799 * address space.
1800 */
1801 address_space_remove_listeners(&sphb->iommu_as);
1802 address_space_destroy(&sphb->iommu_as);
1803
1804 qbus_set_hotplug_handler(BUS(phb->bus), NULL);
1805 pci_unregister_root_bus(phb->bus);
1806
1807 memory_region_del_subregion(get_system_memory(), &sphb->iowindow);
1808 if (sphb->mem64_win_pciaddr != (hwaddr)-1) {
1809 memory_region_del_subregion(get_system_memory(), &sphb->mem64window);
1810 }
1811 memory_region_del_subregion(get_system_memory(), &sphb->mem32window);
1812 }
1813
1814 static void spapr_phb_destroy_msi(gpointer opaque)
1815 {
1816 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1817 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
1818 SpaprPciMsi *msi = opaque;
1819
1820 if (!smc->legacy_irq_allocation) {
1821 spapr_irq_msi_free(spapr, msi->first_irq, msi->num);
1822 }
1823 spapr_irq_free(spapr, msi->first_irq, msi->num);
1824 g_free(msi);
1825 }
1826
1827 static void spapr_phb_realize(DeviceState *dev, Error **errp)
1828 {
1829 ERRP_GUARD();
1830 /* We don't use SPAPR_MACHINE() in order to exit gracefully if the user
1831 * tries to add a sPAPR PHB to a non-pseries machine.
1832 */
1833 SpaprMachineState *spapr =
1834 (SpaprMachineState *) object_dynamic_cast(qdev_get_machine(),
1835 TYPE_SPAPR_MACHINE);
1836 SpaprMachineClass *smc = spapr ? SPAPR_MACHINE_GET_CLASS(spapr) : NULL;
1837 SysBusDevice *s = SYS_BUS_DEVICE(dev);
1838 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
1839 PCIHostState *phb = PCI_HOST_BRIDGE(s);
1840 MachineState *ms = MACHINE(spapr);
1841 char *namebuf;
1842 int i;
1843 PCIBus *bus;
1844 uint64_t msi_window_size = 4096;
1845 SpaprTceTable *tcet;
1846 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
1847
1848 if (!spapr) {
1849 error_setg(errp, TYPE_SPAPR_PCI_HOST_BRIDGE " needs a pseries machine");
1850 return;
1851 }
1852
1853 assert(sphb->index != (uint32_t)-1); /* checked in spapr_phb_pre_plug() */
1854
1855 if (sphb->mem64_win_size != 0) {
1856 if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) {
1857 error_setg(errp, "32-bit memory window of size 0x%"HWADDR_PRIx
1858 " (max 2 GiB)", sphb->mem_win_size);
1859 return;
1860 }
1861
1862 /* 64-bit window defaults to identity mapping */
1863 sphb->mem64_win_pciaddr = sphb->mem64_win_addr;
1864 } else if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) {
1865 /*
1866 * For compatibility with old configuration, if no 64-bit MMIO
1867 * window is specified, but the ordinary (32-bit) memory
1868 * window is specified as > 2GiB, we treat it as a 2GiB 32-bit
1869 * window, with a 64-bit MMIO window following on immediately
1870 * afterwards
1871 */
1872 sphb->mem64_win_size = sphb->mem_win_size - SPAPR_PCI_MEM32_WIN_SIZE;
1873 sphb->mem64_win_addr = sphb->mem_win_addr + SPAPR_PCI_MEM32_WIN_SIZE;
1874 sphb->mem64_win_pciaddr =
1875 SPAPR_PCI_MEM_WIN_BUS_OFFSET + SPAPR_PCI_MEM32_WIN_SIZE;
1876 sphb->mem_win_size = SPAPR_PCI_MEM32_WIN_SIZE;
1877 }
1878
1879 if (spapr_pci_find_phb(spapr, sphb->buid)) {
1880 SpaprPhbState *s;
1881
1882 error_setg(errp, "PCI host bridges must have unique indexes");
1883 error_append_hint(errp, "The following indexes are already in use:");
1884 QLIST_FOREACH(s, &spapr->phbs, list) {
1885 error_append_hint(errp, " %d", s->index);
1886 }
1887 error_append_hint(errp, "\nTry another value for the index property\n");
1888 return;
1889 }
1890
1891 if (sphb->numa_node != -1 &&
1892 (sphb->numa_node >= MAX_NODES ||
1893 !ms->numa_state->nodes[sphb->numa_node].present)) {
1894 error_setg(errp, "Invalid NUMA node ID for PCI host bridge");
1895 return;
1896 }
1897
1898 sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
1899
1900 /* Initialize memory regions */
1901 namebuf = g_strdup_printf("%s.mmio", sphb->dtbusname);
1902 memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX);
1903 g_free(namebuf);
1904
1905 namebuf = g_strdup_printf("%s.mmio32-alias", sphb->dtbusname);
1906 memory_region_init_alias(&sphb->mem32window, OBJECT(sphb),
1907 namebuf, &sphb->memspace,
1908 SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
1909 g_free(namebuf);
1910 memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
1911 &sphb->mem32window);
1912
1913 if (sphb->mem64_win_size != 0) {
1914 namebuf = g_strdup_printf("%s.mmio64-alias", sphb->dtbusname);
1915 memory_region_init_alias(&sphb->mem64window, OBJECT(sphb),
1916 namebuf, &sphb->memspace,
1917 sphb->mem64_win_pciaddr, sphb->mem64_win_size);
1918 g_free(namebuf);
1919
1920 memory_region_add_subregion(get_system_memory(),
1921 sphb->mem64_win_addr,
1922 &sphb->mem64window);
1923 }
1924
1925 /* Initialize IO regions */
1926 namebuf = g_strdup_printf("%s.io", sphb->dtbusname);
1927 memory_region_init(&sphb->iospace, OBJECT(sphb),
1928 namebuf, SPAPR_PCI_IO_WIN_SIZE);
1929 g_free(namebuf);
1930
1931 namebuf = g_strdup_printf("%s.io-alias", sphb->dtbusname);
1932 memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf,
1933 &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE);
1934 g_free(namebuf);
1935 memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
1936 &sphb->iowindow);
1937
1938 bus = pci_register_root_bus(dev, NULL,
1939 pci_spapr_set_irq, pci_swizzle_map_irq_fn, sphb,
1940 &sphb->memspace, &sphb->iospace,
1941 PCI_DEVFN(0, 0), PCI_NUM_PINS,
1942 TYPE_PCI_BUS);
1943
1944 /*
1945 * Despite resembling a vanilla PCI bus in most ways, the PAPR
1946 * para-virtualized PCI bus *does* permit PCI-E extended config
1947 * space access
1948 */
1949 if (sphb->pcie_ecs) {
1950 bus->flags |= PCI_BUS_EXTENDED_CONFIG_SPACE;
1951 }
1952 phb->bus = bus;
1953 qbus_set_hotplug_handler(BUS(phb->bus), OBJECT(sphb));
1954
1955 /*
1956 * Initialize PHB address space.
1957 * By default there will be at least one subregion for default
1958 * 32bit DMA window.
1959 * Later the guest might want to create another DMA window
1960 * which will become another memory subregion.
1961 */
1962 namebuf = g_strdup_printf("%s.iommu-root", sphb->dtbusname);
1963 memory_region_init(&sphb->iommu_root, OBJECT(sphb),
1964 namebuf, UINT64_MAX);
1965 g_free(namebuf);
1966 address_space_init(&sphb->iommu_as, &sphb->iommu_root,
1967 sphb->dtbusname);
1968
1969 /*
1970 * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
1971 * we need to allocate some memory to catch those writes coming
1972 * from msi_notify()/msix_notify().
1973 * As MSIMessage:addr is going to be the same and MSIMessage:data
1974 * is going to be a VIRQ number, 4 bytes of the MSI MR will only
1975 * be used.
1976 *
1977 * For KVM we want to ensure that this memory is a full page so that
1978 * our memory slot is of page size granularity.
1979 */
1980 if (kvm_enabled()) {
1981 msi_window_size = qemu_real_host_page_size;
1982 }
1983
1984 memory_region_init_io(&sphb->msiwindow, OBJECT(sphb), &spapr_msi_ops, spapr,
1985 "msi", msi_window_size);
1986 memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW,
1987 &sphb->msiwindow);
1988
1989 pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb);
1990
1991 pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq);
1992
1993 QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
1994
1995 /* Initialize the LSI table */
1996 for (i = 0; i < PCI_NUM_PINS; i++) {
1997 int irq = SPAPR_IRQ_PCI_LSI + sphb->index * PCI_NUM_PINS + i;
1998
1999 if (smc->legacy_irq_allocation) {
2000 irq = spapr_irq_findone(spapr, errp);
2001 if (irq < 0) {
2002 error_prepend(errp, "can't allocate LSIs: ");
2003 /*
2004 * Older machines will never support PHB hotplug, ie, this is an
2005 * init only path and QEMU will terminate. No need to rollback.
2006 */
2007 return;
2008 }
2009 }
2010
2011 if (spapr_irq_claim(spapr, irq, true, errp) < 0) {
2012 error_prepend(errp, "can't allocate LSIs: ");
2013 goto unrealize;
2014 }
2015
2016 sphb->lsi_table[i].irq = irq;
2017 }
2018
2019 /* allocate connectors for child PCI devices */
2020 add_drcs(sphb, phb->bus);
2021
2022 /* DMA setup */
2023 for (i = 0; i < windows_supported; ++i) {
2024 tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn[i]);
2025 if (!tcet) {
2026 error_setg(errp, "Creating window#%d failed for %s",
2027 i, sphb->dtbusname);
2028 goto unrealize;
2029 }
2030 memory_region_add_subregion(&sphb->iommu_root, 0,
2031 spapr_tce_get_iommu(tcet));
2032 }
2033
2034 sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free,
2035 spapr_phb_destroy_msi);
2036 return;
2037
2038 unrealize:
2039 spapr_phb_unrealize(dev);
2040 }
2041
2042 static int spapr_phb_children_reset(Object *child, void *opaque)
2043 {
2044 DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE);
2045
2046 if (dev) {
2047 device_legacy_reset(dev);
2048 }
2049
2050 return 0;
2051 }
2052
2053 void spapr_phb_dma_reset(SpaprPhbState *sphb)
2054 {
2055 int i;
2056 SpaprTceTable *tcet;
2057
2058 for (i = 0; i < SPAPR_PCI_DMA_MAX_WINDOWS; ++i) {
2059 tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[i]);
2060
2061 if (tcet && tcet->nb_table) {
2062 spapr_tce_table_disable(tcet);
2063 }
2064 }
2065
2066 /* Register default 32bit DMA window */
2067 tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[0]);
2068 spapr_tce_table_enable(tcet, SPAPR_TCE_PAGE_SHIFT, sphb->dma_win_addr,
2069 sphb->dma_win_size >> SPAPR_TCE_PAGE_SHIFT);
2070 }
2071
2072 static void spapr_phb_reset(DeviceState *qdev)
2073 {
2074 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(qdev);
2075 Error *err = NULL;
2076
2077 spapr_phb_dma_reset(sphb);
2078 spapr_phb_nvgpu_free(sphb);
2079 spapr_phb_nvgpu_setup(sphb, &err);
2080 if (err) {
2081 error_report_err(err);
2082 }
2083
2084 /* Reset the IOMMU state */
2085 object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL);
2086
2087 if (spapr_phb_eeh_available(SPAPR_PCI_HOST_BRIDGE(qdev))) {
2088 spapr_phb_vfio_reset(qdev);
2089 }
2090
2091 g_hash_table_remove_all(sphb->msi);
2092 }
2093
2094 static Property spapr_phb_properties[] = {
2095 DEFINE_PROP_UINT32("index", SpaprPhbState, index, -1),
2096 DEFINE_PROP_UINT64("mem_win_size", SpaprPhbState, mem_win_size,
2097 SPAPR_PCI_MEM32_WIN_SIZE),
2098 DEFINE_PROP_UINT64("mem64_win_size", SpaprPhbState, mem64_win_size,
2099 SPAPR_PCI_MEM64_WIN_SIZE),
2100 DEFINE_PROP_UINT64("io_win_size", SpaprPhbState, io_win_size,
2101 SPAPR_PCI_IO_WIN_SIZE),
2102 DEFINE_PROP_BOOL("dynamic-reconfiguration", SpaprPhbState, dr_enabled,
2103 true),
2104 /* Default DMA window is 0..1GB */
2105 DEFINE_PROP_UINT64("dma_win_addr", SpaprPhbState, dma_win_addr, 0),
2106 DEFINE_PROP_UINT64("dma_win_size", SpaprPhbState, dma_win_size, 0x40000000),
2107 DEFINE_PROP_UINT64("dma64_win_addr", SpaprPhbState, dma64_win_addr,
2108 0x800000000000000ULL),
2109 DEFINE_PROP_BOOL("ddw", SpaprPhbState, ddw_enabled, true),
2110 DEFINE_PROP_UINT64("pgsz", SpaprPhbState, page_size_mask,
2111 (1ULL << 12) | (1ULL << 16)
2112 | (1ULL << 21) | (1ULL << 24)),
2113 DEFINE_PROP_UINT32("numa_node", SpaprPhbState, numa_node, -1),
2114 DEFINE_PROP_BOOL("pre-2.8-migration", SpaprPhbState,
2115 pre_2_8_migration, false),
2116 DEFINE_PROP_BOOL("pcie-extended-configuration-space", SpaprPhbState,
2117 pcie_ecs, true),
2118 DEFINE_PROP_UINT64("gpa", SpaprPhbState, nv2_gpa_win_addr, 0),
2119 DEFINE_PROP_UINT64("atsd", SpaprPhbState, nv2_atsd_win_addr, 0),
2120 DEFINE_PROP_BOOL("pre-5.1-associativity", SpaprPhbState,
2121 pre_5_1_assoc, false),
2122 DEFINE_PROP_END_OF_LIST(),
2123 };
2124
2125 static const VMStateDescription vmstate_spapr_pci_lsi = {
2126 .name = "spapr_pci/lsi",
2127 .version_id = 1,
2128 .minimum_version_id = 1,
2129 .fields = (VMStateField[]) {
2130 VMSTATE_UINT32_EQUAL(irq, SpaprPciLsi, NULL),
2131
2132 VMSTATE_END_OF_LIST()
2133 },
2134 };
2135
2136 static const VMStateDescription vmstate_spapr_pci_msi = {
2137 .name = "spapr_pci/msi",
2138 .version_id = 1,
2139 .minimum_version_id = 1,
2140 .fields = (VMStateField []) {
2141 VMSTATE_UINT32(key, SpaprPciMsiMig),
2142 VMSTATE_UINT32(value.first_irq, SpaprPciMsiMig),
2143 VMSTATE_UINT32(value.num, SpaprPciMsiMig),
2144 VMSTATE_END_OF_LIST()
2145 },
2146 };
2147
2148 static int spapr_pci_pre_save(void *opaque)
2149 {
2150 SpaprPhbState *sphb = opaque;
2151 GHashTableIter iter;
2152 gpointer key, value;
2153 int i;
2154
2155 if (sphb->pre_2_8_migration) {
2156 sphb->mig_liobn = sphb->dma_liobn[0];
2157 sphb->mig_mem_win_addr = sphb->mem_win_addr;
2158 sphb->mig_mem_win_size = sphb->mem_win_size;
2159 sphb->mig_io_win_addr = sphb->io_win_addr;
2160 sphb->mig_io_win_size = sphb->io_win_size;
2161
2162 if ((sphb->mem64_win_size != 0)
2163 && (sphb->mem64_win_addr
2164 == (sphb->mem_win_addr + sphb->mem_win_size))) {
2165 sphb->mig_mem_win_size += sphb->mem64_win_size;
2166 }
2167 }
2168
2169 g_free(sphb->msi_devs);
2170 sphb->msi_devs = NULL;
2171 sphb->msi_devs_num = g_hash_table_size(sphb->msi);
2172 if (!sphb->msi_devs_num) {
2173 return 0;
2174 }
2175 sphb->msi_devs = g_new(SpaprPciMsiMig, sphb->msi_devs_num);
2176
2177 g_hash_table_iter_init(&iter, sphb->msi);
2178 for (i = 0; g_hash_table_iter_next(&iter, &key, &value); ++i) {
2179 sphb->msi_devs[i].key = *(uint32_t *) key;
2180 sphb->msi_devs[i].value = *(SpaprPciMsi *) value;
2181 }
2182
2183 return 0;
2184 }
2185
2186 static int spapr_pci_post_save(void *opaque)
2187 {
2188 SpaprPhbState *sphb = opaque;
2189
2190 g_free(sphb->msi_devs);
2191 sphb->msi_devs = NULL;
2192 sphb->msi_devs_num = 0;
2193 return 0;
2194 }
2195
2196 static int spapr_pci_post_load(void *opaque, int version_id)
2197 {
2198 SpaprPhbState *sphb = opaque;
2199 gpointer key, value;
2200 int i;
2201
2202 for (i = 0; i < sphb->msi_devs_num; ++i) {
2203 key = g_memdup(&sphb->msi_devs[i].key,
2204 sizeof(sphb->msi_devs[i].key));
2205 value = g_memdup(&sphb->msi_devs[i].value,
2206 sizeof(sphb->msi_devs[i].value));
2207 g_hash_table_insert(sphb->msi, key, value);
2208 }
2209 g_free(sphb->msi_devs);
2210 sphb->msi_devs = NULL;
2211 sphb->msi_devs_num = 0;
2212
2213 return 0;
2214 }
2215
2216 static bool pre_2_8_migration(void *opaque, int version_id)
2217 {
2218 SpaprPhbState *sphb = opaque;
2219
2220 return sphb->pre_2_8_migration;
2221 }
2222
2223 static const VMStateDescription vmstate_spapr_pci = {
2224 .name = "spapr_pci",
2225 .version_id = 2,
2226 .minimum_version_id = 2,
2227 .pre_save = spapr_pci_pre_save,
2228 .post_save = spapr_pci_post_save,
2229 .post_load = spapr_pci_post_load,
2230 .fields = (VMStateField[]) {
2231 VMSTATE_UINT64_EQUAL(buid, SpaprPhbState, NULL),
2232 VMSTATE_UINT32_TEST(mig_liobn, SpaprPhbState, pre_2_8_migration),
2233 VMSTATE_UINT64_TEST(mig_mem_win_addr, SpaprPhbState, pre_2_8_migration),
2234 VMSTATE_UINT64_TEST(mig_mem_win_size, SpaprPhbState, pre_2_8_migration),
2235 VMSTATE_UINT64_TEST(mig_io_win_addr, SpaprPhbState, pre_2_8_migration),
2236 VMSTATE_UINT64_TEST(mig_io_win_size, SpaprPhbState, pre_2_8_migration),
2237 VMSTATE_STRUCT_ARRAY(lsi_table, SpaprPhbState, PCI_NUM_PINS, 0,
2238 vmstate_spapr_pci_lsi, SpaprPciLsi),
2239 VMSTATE_INT32(msi_devs_num, SpaprPhbState),
2240 VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, SpaprPhbState, msi_devs_num, 0,
2241 vmstate_spapr_pci_msi, SpaprPciMsiMig),
2242 VMSTATE_END_OF_LIST()
2243 },
2244 };
2245
2246 static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge,
2247 PCIBus *rootbus)
2248 {
2249 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge);
2250
2251 return sphb->dtbusname;
2252 }
2253
2254 static void spapr_phb_class_init(ObjectClass *klass, void *data)
2255 {
2256 PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
2257 DeviceClass *dc = DEVICE_CLASS(klass);
2258 HotplugHandlerClass *hp = HOTPLUG_HANDLER_CLASS(klass);
2259
2260 hc->root_bus_path = spapr_phb_root_bus_path;
2261 dc->realize = spapr_phb_realize;
2262 dc->unrealize = spapr_phb_unrealize;
2263 device_class_set_props(dc, spapr_phb_properties);
2264 dc->reset = spapr_phb_reset;
2265 dc->vmsd = &vmstate_spapr_pci;
2266 /* Supported by TYPE_SPAPR_MACHINE */
2267 dc->user_creatable = true;
2268 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
2269 hp->pre_plug = spapr_pci_pre_plug;
2270 hp->plug = spapr_pci_plug;
2271 hp->unplug = spapr_pci_unplug;
2272 hp->unplug_request = spapr_pci_unplug_request;
2273 }
2274
2275 static const TypeInfo spapr_phb_info = {
2276 .name = TYPE_SPAPR_PCI_HOST_BRIDGE,
2277 .parent = TYPE_PCI_HOST_BRIDGE,
2278 .instance_size = sizeof(SpaprPhbState),
2279 .instance_finalize = spapr_phb_finalizefn,
2280 .class_init = spapr_phb_class_init,
2281 .interfaces = (InterfaceInfo[]) {
2282 { TYPE_HOTPLUG_HANDLER },
2283 { }
2284 }
2285 };
2286
2287 static void spapr_phb_pci_enumerate_bridge(PCIBus *bus, PCIDevice *pdev,
2288 void *opaque)
2289 {
2290 unsigned int *bus_no = opaque;
2291 PCIBus *sec_bus = NULL;
2292
2293 if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
2294 PCI_HEADER_TYPE_BRIDGE)) {
2295 return;
2296 }
2297
2298 (*bus_no)++;
2299 pci_default_write_config(pdev, PCI_PRIMARY_BUS, pci_dev_bus_num(pdev), 1);
2300 pci_default_write_config(pdev, PCI_SECONDARY_BUS, *bus_no, 1);
2301 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
2302
2303 sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
2304 if (!sec_bus) {
2305 return;
2306 }
2307
2308 pci_for_each_device(sec_bus, pci_bus_num(sec_bus),
2309 spapr_phb_pci_enumerate_bridge, bus_no);
2310 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
2311 }
2312
2313 static void spapr_phb_pci_enumerate(SpaprPhbState *phb)
2314 {
2315 PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
2316 unsigned int bus_no = 0;
2317
2318 pci_for_each_device(bus, pci_bus_num(bus),
2319 spapr_phb_pci_enumerate_bridge,
2320 &bus_no);
2321
2322 }
2323
2324 int spapr_dt_phb(SpaprMachineState *spapr, SpaprPhbState *phb,
2325 uint32_t intc_phandle, void *fdt, int *node_offset)
2326 {
2327 int bus_off, i, j, ret;
2328 uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
2329 struct {
2330 uint32_t hi;
2331 uint64_t child;
2332 uint64_t parent;
2333 uint64_t size;
2334 } QEMU_PACKED ranges[] = {
2335 {
2336 cpu_to_be32(b_ss(1)), cpu_to_be64(0),
2337 cpu_to_be64(phb->io_win_addr),
2338 cpu_to_be64(memory_region_size(&phb->iospace)),
2339 },
2340 {
2341 cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
2342 cpu_to_be64(phb->mem_win_addr),
2343 cpu_to_be64(phb->mem_win_size),
2344 },
2345 {
2346 cpu_to_be32(b_ss(3)), cpu_to_be64(phb->mem64_win_pciaddr),
2347 cpu_to_be64(phb->mem64_win_addr),
2348 cpu_to_be64(phb->mem64_win_size),
2349 },
2350 };
2351 const unsigned sizeof_ranges =
2352 (phb->mem64_win_size ? 3 : 2) * sizeof(ranges[0]);
2353 uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
2354 uint32_t interrupt_map_mask[] = {
2355 cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
2356 uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
2357 uint32_t ddw_applicable[] = {
2358 cpu_to_be32(RTAS_IBM_QUERY_PE_DMA_WINDOW),
2359 cpu_to_be32(RTAS_IBM_CREATE_PE_DMA_WINDOW),
2360 cpu_to_be32(RTAS_IBM_REMOVE_PE_DMA_WINDOW)
2361 };
2362 uint32_t ddw_extensions[] = {
2363 cpu_to_be32(1),
2364 cpu_to_be32(RTAS_IBM_RESET_PE_DMA_WINDOW)
2365 };
2366 SpaprTceTable *tcet;
2367 SpaprDrc *drc;
2368 Error *err = NULL;
2369
2370 /* Start populating the FDT */
2371 _FDT(bus_off = fdt_add_subnode(fdt, 0, phb->dtbusname));
2372 if (node_offset) {
2373 *node_offset = bus_off;
2374 }
2375
2376 /* Write PHB properties */
2377 _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
2378 _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
2379 _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
2380 _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
2381 _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
2382 _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof_ranges));
2383 _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
2384 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
2385 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi",
2386 spapr_irq_nr_msis(spapr)));
2387
2388 /* Dynamic DMA window */
2389 if (phb->ddw_enabled) {
2390 _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-applicable", &ddw_applicable,
2391 sizeof(ddw_applicable)));
2392 _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-extensions",
2393 &ddw_extensions, sizeof(ddw_extensions)));
2394 }
2395
2396 /* Advertise NUMA via ibm,associativity */
2397 if (phb->numa_node != -1) {
2398 spapr_numa_write_associativity_dt(spapr, fdt, bus_off, phb->numa_node);
2399 }
2400
2401 /* Build the interrupt-map, this must matches what is done
2402 * in pci_swizzle_map_irq_fn
2403 */
2404 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
2405 &interrupt_map_mask, sizeof(interrupt_map_mask)));
2406 for (i = 0; i < PCI_SLOT_MAX; i++) {
2407 for (j = 0; j < PCI_NUM_PINS; j++) {
2408 uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
2409 int lsi_num = pci_swizzle(i, j);
2410
2411 irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
2412 irqmap[1] = 0;
2413 irqmap[2] = 0;
2414 irqmap[3] = cpu_to_be32(j+1);
2415 irqmap[4] = cpu_to_be32(intc_phandle);
2416 spapr_dt_irq(&irqmap[5], phb->lsi_table[lsi_num].irq, true);
2417 }
2418 }
2419 /* Write interrupt map */
2420 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
2421 sizeof(interrupt_map)));
2422
2423 tcet = spapr_tce_find_by_liobn(phb->dma_liobn[0]);
2424 if (!tcet) {
2425 return -1;
2426 }
2427 spapr_dma_dt(fdt, bus_off, "ibm,dma-window",
2428 tcet->liobn, tcet->bus_offset,
2429 tcet->nb_table << tcet->page_shift);
2430
2431 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, phb->index);
2432 if (drc) {
2433 uint32_t drc_index = cpu_to_be32(spapr_drc_index(drc));
2434
2435 _FDT(fdt_setprop(fdt, bus_off, "ibm,my-drc-index", &drc_index,
2436 sizeof(drc_index)));
2437 }
2438
2439 /* Walk the bridges and program the bus numbers*/
2440 spapr_phb_pci_enumerate(phb);
2441 _FDT(fdt_setprop_cell(fdt, bus_off, "qemu,phb-enumerated", 0x1));
2442
2443 /* Walk the bridge and subordinate buses */
2444 ret = spapr_dt_pci_bus(phb, PCI_HOST_BRIDGE(phb)->bus, fdt, bus_off);
2445 if (ret < 0) {
2446 return ret;
2447 }
2448
2449 spapr_phb_nvgpu_populate_dt(phb, fdt, bus_off, &err);
2450 if (err) {
2451 error_report_err(err);
2452 }
2453 spapr_phb_nvgpu_ram_populate_dt(phb, fdt);
2454
2455 return 0;
2456 }
2457
2458 void spapr_pci_rtas_init(void)
2459 {
2460 spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config",
2461 rtas_read_pci_config);
2462 spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config",
2463 rtas_write_pci_config);
2464 spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config",
2465 rtas_ibm_read_pci_config);
2466 spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config",
2467 rtas_ibm_write_pci_config);
2468 if (msi_nonbroken) {
2469 spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER,
2470 "ibm,query-interrupt-source-number",
2471 rtas_ibm_query_interrupt_source_number);
2472 spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi",
2473 rtas_ibm_change_msi);
2474 }
2475
2476 spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION,
2477 "ibm,set-eeh-option",
2478 rtas_ibm_set_eeh_option);
2479 spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2,
2480 "ibm,get-config-addr-info2",
2481 rtas_ibm_get_config_addr_info2);
2482 spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2,
2483 "ibm,read-slot-reset-state2",
2484 rtas_ibm_read_slot_reset_state2);
2485 spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET,
2486 "ibm,set-slot-reset",
2487 rtas_ibm_set_slot_reset);
2488 spapr_rtas_register(RTAS_IBM_CONFIGURE_PE,
2489 "ibm,configure-pe",
2490 rtas_ibm_configure_pe);
2491 spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL,
2492 "ibm,slot-error-detail",
2493 rtas_ibm_slot_error_detail);
2494 }
2495
2496 static void spapr_pci_register_types(void)
2497 {
2498 type_register_static(&spapr_phb_info);
2499 }
2500
2501 type_init(spapr_pci_register_types)
2502
2503 static int spapr_switch_one_vga(DeviceState *dev, void *opaque)
2504 {
2505 bool be = *(bool *)opaque;
2506
2507 if (object_dynamic_cast(OBJECT(dev), "VGA")
2508 || object_dynamic_cast(OBJECT(dev), "secondary-vga")
2509 || object_dynamic_cast(OBJECT(dev), "bochs-display")
2510 || object_dynamic_cast(OBJECT(dev), "virtio-vga")) {
2511 object_property_set_bool(OBJECT(dev), "big-endian-framebuffer", be,
2512 &error_abort);
2513 }
2514 return 0;
2515 }
2516
2517 void spapr_pci_switch_vga(SpaprMachineState *spapr, bool big_endian)
2518 {
2519 SpaprPhbState *sphb;
2520
2521 /*
2522 * For backward compatibility with existing guests, we switch
2523 * the endianness of the VGA controller when changing the guest
2524 * interrupt mode
2525 */
2526 QLIST_FOREACH(sphb, &spapr->phbs, list) {
2527 BusState *bus = &PCI_HOST_BRIDGE(sphb)->bus->qbus;
2528 qbus_walk_children(bus, spapr_switch_one_vga, NULL, NULL, NULL,
2529 &big_endian);
2530 }
2531 }