2 * QEMU sPAPR PCI host originated from Uninorth PCI host
4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5 * Copyright (C) 2011 David Gibson, IBM Corporation.
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 #include "hw/pci/pci.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/pci/pci_host.h"
30 #include "hw/ppc/spapr.h"
31 #include "hw/pci-host/spapr.h"
32 #include "exec/address-spaces.h"
35 #include "qemu/error-report.h"
36 #include "qapi/qmp/qerror.h"
38 #include "hw/pci/pci_bus.h"
39 #include "hw/ppc/spapr_drc.h"
40 #include "sysemu/device_tree.h"
42 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
43 #define RTAS_QUERY_FN 0
44 #define RTAS_CHANGE_FN 1
45 #define RTAS_RESET_FN 2
46 #define RTAS_CHANGE_MSI_FN 3
47 #define RTAS_CHANGE_MSIX_FN 4
49 /* Interrupt types to return on RTAS_CHANGE_* */
50 #define RTAS_TYPE_MSI 1
51 #define RTAS_TYPE_MSIX 2
61 sPAPRPHBState
*spapr_pci_find_phb(sPAPRMachineState
*spapr
, uint64_t buid
)
65 QLIST_FOREACH(sphb
, &spapr
->phbs
, list
) {
66 if (sphb
->buid
!= buid
) {
75 PCIDevice
*spapr_pci_find_dev(sPAPRMachineState
*spapr
, uint64_t buid
,
78 sPAPRPHBState
*sphb
= spapr_pci_find_phb(spapr
, buid
);
79 PCIHostState
*phb
= PCI_HOST_BRIDGE(sphb
);
80 int bus_num
= (config_addr
>> 16) & 0xFF;
81 int devfn
= (config_addr
>> 8) & 0xFF;
87 return pci_find_device(phb
->bus
, bus_num
, devfn
);
90 static uint32_t rtas_pci_cfgaddr(uint32_t arg
)
92 /* This handles the encoding of extended config space addresses */
93 return ((arg
>> 20) & 0xf00) | (arg
& 0xff);
96 static void finish_read_pci_config(sPAPRMachineState
*spapr
, uint64_t buid
,
97 uint32_t addr
, uint32_t size
,
103 if ((size
!= 1) && (size
!= 2) && (size
!= 4)) {
104 /* access must be 1, 2 or 4 bytes */
105 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
109 pci_dev
= spapr_pci_find_dev(spapr
, buid
, addr
);
110 addr
= rtas_pci_cfgaddr(addr
);
112 if (!pci_dev
|| (addr
% size
) || (addr
>= pci_config_size(pci_dev
))) {
113 /* Access must be to a valid device, within bounds and
114 * naturally aligned */
115 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
119 val
= pci_host_config_read_common(pci_dev
, addr
,
120 pci_config_size(pci_dev
), size
);
122 rtas_st(rets
, 0, RTAS_OUT_SUCCESS
);
123 rtas_st(rets
, 1, val
);
126 static void rtas_ibm_read_pci_config(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
127 uint32_t token
, uint32_t nargs
,
129 uint32_t nret
, target_ulong rets
)
134 if ((nargs
!= 4) || (nret
!= 2)) {
135 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
139 buid
= ((uint64_t)rtas_ld(args
, 1) << 32) | rtas_ld(args
, 2);
140 size
= rtas_ld(args
, 3);
141 addr
= rtas_ld(args
, 0);
143 finish_read_pci_config(spapr
, buid
, addr
, size
, rets
);
146 static void rtas_read_pci_config(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
147 uint32_t token
, uint32_t nargs
,
149 uint32_t nret
, target_ulong rets
)
153 if ((nargs
!= 2) || (nret
!= 2)) {
154 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
158 size
= rtas_ld(args
, 1);
159 addr
= rtas_ld(args
, 0);
161 finish_read_pci_config(spapr
, 0, addr
, size
, rets
);
164 static void finish_write_pci_config(sPAPRMachineState
*spapr
, uint64_t buid
,
165 uint32_t addr
, uint32_t size
,
166 uint32_t val
, target_ulong rets
)
170 if ((size
!= 1) && (size
!= 2) && (size
!= 4)) {
171 /* access must be 1, 2 or 4 bytes */
172 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
176 pci_dev
= spapr_pci_find_dev(spapr
, buid
, addr
);
177 addr
= rtas_pci_cfgaddr(addr
);
179 if (!pci_dev
|| (addr
% size
) || (addr
>= pci_config_size(pci_dev
))) {
180 /* Access must be to a valid device, within bounds and
181 * naturally aligned */
182 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
186 pci_host_config_write_common(pci_dev
, addr
, pci_config_size(pci_dev
),
189 rtas_st(rets
, 0, RTAS_OUT_SUCCESS
);
192 static void rtas_ibm_write_pci_config(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
193 uint32_t token
, uint32_t nargs
,
195 uint32_t nret
, target_ulong rets
)
198 uint32_t val
, size
, addr
;
200 if ((nargs
!= 5) || (nret
!= 1)) {
201 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
205 buid
= ((uint64_t)rtas_ld(args
, 1) << 32) | rtas_ld(args
, 2);
206 val
= rtas_ld(args
, 4);
207 size
= rtas_ld(args
, 3);
208 addr
= rtas_ld(args
, 0);
210 finish_write_pci_config(spapr
, buid
, addr
, size
, val
, rets
);
213 static void rtas_write_pci_config(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
214 uint32_t token
, uint32_t nargs
,
216 uint32_t nret
, target_ulong rets
)
218 uint32_t val
, size
, addr
;
220 if ((nargs
!= 3) || (nret
!= 1)) {
221 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
226 val
= rtas_ld(args
, 2);
227 size
= rtas_ld(args
, 1);
228 addr
= rtas_ld(args
, 0);
230 finish_write_pci_config(spapr
, 0, addr
, size
, val
, rets
);
234 * Set MSI/MSIX message data.
235 * This is required for msi_notify()/msix_notify() which
236 * will write at the addresses via spapr_msi_write().
238 * If hwaddr == 0, all entries will have .data == first_irq i.e.
239 * table will be reset.
241 static void spapr_msi_setmsg(PCIDevice
*pdev
, hwaddr addr
, bool msix
,
242 unsigned first_irq
, unsigned req_num
)
245 MSIMessage msg
= { .address
= addr
, .data
= first_irq
};
248 msi_set_message(pdev
, msg
);
249 trace_spapr_pci_msi_setup(pdev
->name
, 0, msg
.address
);
253 for (i
= 0; i
< req_num
; ++i
) {
254 msix_set_message(pdev
, i
, msg
);
255 trace_spapr_pci_msi_setup(pdev
->name
, i
, msg
.address
);
262 static void rtas_ibm_change_msi(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
263 uint32_t token
, uint32_t nargs
,
264 target_ulong args
, uint32_t nret
,
267 uint32_t config_addr
= rtas_ld(args
, 0);
268 uint64_t buid
= ((uint64_t)rtas_ld(args
, 1) << 32) | rtas_ld(args
, 2);
269 unsigned int func
= rtas_ld(args
, 3);
270 unsigned int req_num
= rtas_ld(args
, 4); /* 0 == remove all */
271 unsigned int seq_num
= rtas_ld(args
, 5);
272 unsigned int ret_intr_type
;
273 unsigned int irq
, max_irqs
= 0, num
= 0;
274 sPAPRPHBState
*phb
= NULL
;
275 PCIDevice
*pdev
= NULL
;
277 int *config_addr_key
;
280 case RTAS_CHANGE_MSI_FN
:
282 ret_intr_type
= RTAS_TYPE_MSI
;
284 case RTAS_CHANGE_MSIX_FN
:
285 ret_intr_type
= RTAS_TYPE_MSIX
;
288 error_report("rtas_ibm_change_msi(%u) is not implemented", func
);
289 rtas_st(rets
, 0, RTAS_OUT_PARAM_ERROR
);
293 /* Fins sPAPRPHBState */
294 phb
= spapr_pci_find_phb(spapr
, buid
);
296 pdev
= spapr_pci_find_dev(spapr
, buid
, config_addr
);
299 rtas_st(rets
, 0, RTAS_OUT_PARAM_ERROR
);
305 msi
= (spapr_pci_msi
*) g_hash_table_lookup(phb
->msi
, &config_addr
);
307 trace_spapr_pci_msi("Releasing wrong config", config_addr
);
308 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
312 xics_free(spapr
->icp
, msi
->first_irq
, msi
->num
);
313 if (msi_present(pdev
)) {
314 spapr_msi_setmsg(pdev
, 0, false, 0, num
);
316 if (msix_present(pdev
)) {
317 spapr_msi_setmsg(pdev
, 0, true, 0, num
);
319 g_hash_table_remove(phb
->msi
, &config_addr
);
321 trace_spapr_pci_msi("Released MSIs", config_addr
);
322 rtas_st(rets
, 0, RTAS_OUT_SUCCESS
);
329 /* Check if the device supports as many IRQs as requested */
330 if (ret_intr_type
== RTAS_TYPE_MSI
) {
331 max_irqs
= msi_nr_vectors_allocated(pdev
);
332 } else if (ret_intr_type
== RTAS_TYPE_MSIX
) {
333 max_irqs
= pdev
->msix_entries_nr
;
336 error_report("Requested interrupt type %d is not enabled for device %x",
337 ret_intr_type
, config_addr
);
338 rtas_st(rets
, 0, -1); /* Hardware error */
341 /* Correct the number if the guest asked for too many */
342 if (req_num
> max_irqs
) {
343 trace_spapr_pci_msi_retry(config_addr
, req_num
, max_irqs
);
345 irq
= 0; /* to avoid misleading trace */
350 irq
= xics_alloc_block(spapr
->icp
, 0, req_num
, false,
351 ret_intr_type
== RTAS_TYPE_MSI
);
353 error_report("Cannot allocate MSIs for device %x", config_addr
);
354 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
358 /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
359 spapr_msi_setmsg(pdev
, SPAPR_PCI_MSI_WINDOW
, ret_intr_type
== RTAS_TYPE_MSIX
,
362 /* Add MSI device to cache */
363 msi
= g_new(spapr_pci_msi
, 1);
364 msi
->first_irq
= irq
;
366 config_addr_key
= g_new(int, 1);
367 *config_addr_key
= config_addr
;
368 g_hash_table_insert(phb
->msi
, config_addr_key
, msi
);
371 rtas_st(rets
, 0, RTAS_OUT_SUCCESS
);
372 rtas_st(rets
, 1, req_num
);
373 rtas_st(rets
, 2, ++seq_num
);
374 rtas_st(rets
, 3, ret_intr_type
);
376 trace_spapr_pci_rtas_ibm_change_msi(config_addr
, func
, req_num
, irq
);
379 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU
*cpu
,
380 sPAPRMachineState
*spapr
,
387 uint32_t config_addr
= rtas_ld(args
, 0);
388 uint64_t buid
= ((uint64_t)rtas_ld(args
, 1) << 32) | rtas_ld(args
, 2);
389 unsigned int intr_src_num
= -1, ioa_intr_num
= rtas_ld(args
, 3);
390 sPAPRPHBState
*phb
= NULL
;
391 PCIDevice
*pdev
= NULL
;
394 /* Find sPAPRPHBState */
395 phb
= spapr_pci_find_phb(spapr
, buid
);
397 pdev
= spapr_pci_find_dev(spapr
, buid
, config_addr
);
400 rtas_st(rets
, 0, RTAS_OUT_PARAM_ERROR
);
404 /* Find device descriptor and start IRQ */
405 msi
= (spapr_pci_msi
*) g_hash_table_lookup(phb
->msi
, &config_addr
);
406 if (!msi
|| !msi
->first_irq
|| !msi
->num
|| (ioa_intr_num
>= msi
->num
)) {
407 trace_spapr_pci_msi("Failed to return vector", config_addr
);
408 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
411 intr_src_num
= msi
->first_irq
+ ioa_intr_num
;
412 trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num
,
415 rtas_st(rets
, 0, RTAS_OUT_SUCCESS
);
416 rtas_st(rets
, 1, intr_src_num
);
417 rtas_st(rets
, 2, 1);/* 0 == level; 1 == edge */
420 static void rtas_ibm_set_eeh_option(PowerPCCPU
*cpu
,
421 sPAPRMachineState
*spapr
,
422 uint32_t token
, uint32_t nargs
,
423 target_ulong args
, uint32_t nret
,
428 uint32_t addr
, option
;
432 if ((nargs
!= 4) || (nret
!= 1)) {
433 goto param_error_exit
;
436 buid
= ((uint64_t)rtas_ld(args
, 1) << 32) | rtas_ld(args
, 2);
437 addr
= rtas_ld(args
, 0);
438 option
= rtas_ld(args
, 3);
440 sphb
= spapr_pci_find_phb(spapr
, buid
);
442 goto param_error_exit
;
445 spc
= SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb
);
446 if (!spc
->eeh_set_option
) {
447 goto param_error_exit
;
450 ret
= spc
->eeh_set_option(sphb
, addr
, option
);
451 rtas_st(rets
, 0, ret
);
455 rtas_st(rets
, 0, RTAS_OUT_PARAM_ERROR
);
458 static void rtas_ibm_get_config_addr_info2(PowerPCCPU
*cpu
,
459 sPAPRMachineState
*spapr
,
460 uint32_t token
, uint32_t nargs
,
461 target_ulong args
, uint32_t nret
,
467 uint32_t addr
, option
;
470 if ((nargs
!= 4) || (nret
!= 2)) {
471 goto param_error_exit
;
474 buid
= ((uint64_t)rtas_ld(args
, 1) << 32) | rtas_ld(args
, 2);
475 sphb
= spapr_pci_find_phb(spapr
, buid
);
477 goto param_error_exit
;
480 spc
= SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb
);
481 if (!spc
->eeh_set_option
) {
482 goto param_error_exit
;
486 * We always have PE address of form "00BB0001". "BB"
487 * represents the bus number of PE's primary bus.
489 option
= rtas_ld(args
, 3);
491 case RTAS_GET_PE_ADDR
:
492 addr
= rtas_ld(args
, 0);
493 pdev
= spapr_pci_find_dev(spapr
, buid
, addr
);
495 goto param_error_exit
;
498 rtas_st(rets
, 1, (pci_bus_num(pdev
->bus
) << 16) + 1);
500 case RTAS_GET_PE_MODE
:
501 rtas_st(rets
, 1, RTAS_PE_MODE_SHARED
);
504 goto param_error_exit
;
507 rtas_st(rets
, 0, RTAS_OUT_SUCCESS
);
511 rtas_st(rets
, 0, RTAS_OUT_PARAM_ERROR
);
514 static void rtas_ibm_read_slot_reset_state2(PowerPCCPU
*cpu
,
515 sPAPRMachineState
*spapr
,
516 uint32_t token
, uint32_t nargs
,
517 target_ulong args
, uint32_t nret
,
525 if ((nargs
!= 3) || (nret
!= 4 && nret
!= 5)) {
526 goto param_error_exit
;
529 buid
= ((uint64_t)rtas_ld(args
, 1) << 32) | rtas_ld(args
, 2);
530 sphb
= spapr_pci_find_phb(spapr
, buid
);
532 goto param_error_exit
;
535 spc
= SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb
);
536 if (!spc
->eeh_get_state
) {
537 goto param_error_exit
;
540 ret
= spc
->eeh_get_state(sphb
, &state
);
541 rtas_st(rets
, 0, ret
);
542 if (ret
!= RTAS_OUT_SUCCESS
) {
546 rtas_st(rets
, 1, state
);
547 rtas_st(rets
, 2, RTAS_EEH_SUPPORT
);
548 rtas_st(rets
, 3, RTAS_EEH_PE_UNAVAIL_INFO
);
550 rtas_st(rets
, 4, RTAS_EEH_PE_RECOVER_INFO
);
555 rtas_st(rets
, 0, RTAS_OUT_PARAM_ERROR
);
558 static void rtas_ibm_set_slot_reset(PowerPCCPU
*cpu
,
559 sPAPRMachineState
*spapr
,
560 uint32_t token
, uint32_t nargs
,
561 target_ulong args
, uint32_t nret
,
570 if ((nargs
!= 4) || (nret
!= 1)) {
571 goto param_error_exit
;
574 buid
= ((uint64_t)rtas_ld(args
, 1) << 32) | rtas_ld(args
, 2);
575 option
= rtas_ld(args
, 3);
576 sphb
= spapr_pci_find_phb(spapr
, buid
);
578 goto param_error_exit
;
581 spc
= SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb
);
582 if (!spc
->eeh_reset
) {
583 goto param_error_exit
;
586 ret
= spc
->eeh_reset(sphb
, option
);
587 rtas_st(rets
, 0, ret
);
591 rtas_st(rets
, 0, RTAS_OUT_PARAM_ERROR
);
594 static void rtas_ibm_configure_pe(PowerPCCPU
*cpu
,
595 sPAPRMachineState
*spapr
,
596 uint32_t token
, uint32_t nargs
,
597 target_ulong args
, uint32_t nret
,
605 if ((nargs
!= 3) || (nret
!= 1)) {
606 goto param_error_exit
;
609 buid
= ((uint64_t)rtas_ld(args
, 1) << 32) | rtas_ld(args
, 2);
610 sphb
= spapr_pci_find_phb(spapr
, buid
);
612 goto param_error_exit
;
615 spc
= SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb
);
616 if (!spc
->eeh_configure
) {
617 goto param_error_exit
;
620 ret
= spc
->eeh_configure(sphb
);
621 rtas_st(rets
, 0, ret
);
625 rtas_st(rets
, 0, RTAS_OUT_PARAM_ERROR
);
628 /* To support it later */
629 static void rtas_ibm_slot_error_detail(PowerPCCPU
*cpu
,
630 sPAPRMachineState
*spapr
,
631 uint32_t token
, uint32_t nargs
,
632 target_ulong args
, uint32_t nret
,
640 if ((nargs
!= 8) || (nret
!= 1)) {
641 goto param_error_exit
;
644 buid
= ((uint64_t)rtas_ld(args
, 1) << 32) | rtas_ld(args
, 2);
645 sphb
= spapr_pci_find_phb(spapr
, buid
);
647 goto param_error_exit
;
650 spc
= SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb
);
651 if (!spc
->eeh_set_option
) {
652 goto param_error_exit
;
655 option
= rtas_ld(args
, 7);
657 case RTAS_SLOT_TEMP_ERR_LOG
:
658 case RTAS_SLOT_PERM_ERR_LOG
:
661 goto param_error_exit
;
664 /* We don't have error log yet */
665 rtas_st(rets
, 0, RTAS_OUT_NO_ERRORS_FOUND
);
669 rtas_st(rets
, 0, RTAS_OUT_PARAM_ERROR
);
672 static int pci_spapr_swizzle(int slot
, int pin
)
674 return (slot
+ pin
) % PCI_NUM_PINS
;
677 static int pci_spapr_map_irq(PCIDevice
*pci_dev
, int irq_num
)
680 * Here we need to convert pci_dev + irq_num to some unique value
681 * which is less than number of IRQs on the specific bus (4). We
682 * use standard PCI swizzling, that is (slot number + pin number)
685 return pci_spapr_swizzle(PCI_SLOT(pci_dev
->devfn
), irq_num
);
688 static void pci_spapr_set_irq(void *opaque
, int irq_num
, int level
)
691 * Here we use the number returned by pci_spapr_map_irq to find a
692 * corresponding qemu_irq.
694 sPAPRPHBState
*phb
= opaque
;
696 trace_spapr_pci_lsi_set(phb
->dtbusname
, irq_num
, phb
->lsi_table
[irq_num
].irq
);
697 qemu_set_irq(spapr_phb_lsi_qirq(phb
, irq_num
), level
);
700 static PCIINTxRoute
spapr_route_intx_pin_to_irq(void *opaque
, int pin
)
702 sPAPRPHBState
*sphb
= SPAPR_PCI_HOST_BRIDGE(opaque
);
705 route
.mode
= PCI_INTX_ENABLED
;
706 route
.irq
= sphb
->lsi_table
[pin
].irq
;
712 * MSI/MSIX memory region implementation.
713 * The handler handles both MSI and MSIX.
714 * For MSI-X, the vector number is encoded as a part of the address,
716 * For MSI, the vector number is encoded in least bits in data.
718 static void spapr_msi_write(void *opaque
, hwaddr addr
,
719 uint64_t data
, unsigned size
)
721 sPAPRMachineState
*spapr
= SPAPR_MACHINE(qdev_get_machine());
724 trace_spapr_pci_msi_write(addr
, data
, irq
);
726 qemu_irq_pulse(xics_get_qirq(spapr
->icp
, irq
));
729 static const MemoryRegionOps spapr_msi_ops
= {
730 /* There is no .read as the read result is undefined by PCI spec */
732 .write
= spapr_msi_write
,
733 .endianness
= DEVICE_LITTLE_ENDIAN
739 static AddressSpace
*spapr_pci_dma_iommu(PCIBus
*bus
, void *opaque
, int devfn
)
741 sPAPRPHBState
*phb
= opaque
;
743 return &phb
->iommu_as
;
746 /* Macros to operate with address in OF binding to PCI */
747 #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p))
748 #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */
749 #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */
750 #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */
751 #define b_ss(x) b_x((x), 24, 2) /* the space code */
752 #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */
753 #define b_ddddd(x) b_x((x), 11, 5) /* device number */
754 #define b_fff(x) b_x((x), 8, 3) /* function number */
755 #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */
757 /* for 'reg'/'assigned-addresses' OF properties */
758 #define RESOURCE_CELLS_SIZE 2
759 #define RESOURCE_CELLS_ADDRESS 3
761 typedef struct ResourceFields
{
767 } QEMU_PACKED ResourceFields
;
769 typedef struct ResourceProps
{
770 ResourceFields reg
[8];
771 ResourceFields assigned
[7];
773 uint32_t assigned_len
;
776 /* fill in the 'reg'/'assigned-resources' OF properties for
777 * a PCI device. 'reg' describes resource requirements for a
778 * device's IO/MEM regions, 'assigned-addresses' describes the
779 * actual resource assignments.
781 * the properties are arrays of ('phys-addr', 'size') pairs describing
782 * the addressable regions of the PCI device, where 'phys-addr' is a
783 * RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to
784 * (phys.hi, phys.mid, phys.lo), and 'size' is a
785 * RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo).
787 * phys.hi = 0xYYXXXXZZ, where:
792 * ||| + 00 if configuration space
793 * ||| + 01 if IO region,
794 * ||| + 10 if 32-bit MEM region
795 * ||| + 11 if 64-bit MEM region
797 * ||+------ for non-relocatable IO: 1 if aliased
798 * || for relocatable IO: 1 if below 64KB
799 * || for MEM: 1 if below 1MB
800 * |+------- 1 if region is prefetchable
801 * +-------- 1 if region is non-relocatable
802 * 0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function
804 * 0xZZ = rrrrrrrr, the register number of the BAR corresponding
807 * phys.mid and phys.lo correspond respectively to the hi/lo portions
808 * of the actual address of the region.
810 * how the phys-addr/size values are used differ slightly between
811 * 'reg' and 'assigned-addresses' properties. namely, 'reg' has
812 * an additional description for the config space region of the
813 * device, and in the case of QEMU has n=0 and phys.mid=phys.lo=0
814 * to describe the region as relocatable, with an address-mapping
815 * that corresponds directly to the PHB's address space for the
816 * resource. 'assigned-addresses' always has n=1 set with an absolute
817 * address assigned for the resource. in general, 'assigned-addresses'
818 * won't be populated, since addresses for PCI devices are generally
819 * unmapped initially and left to the guest to assign.
821 * note also that addresses defined in these properties are, at least
822 * for PAPR guests, relative to the PHBs IO/MEM windows, and
823 * correspond directly to the addresses in the BARs.
825 * in accordance with PCI Bus Binding to Open Firmware,
826 * IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7,
829 static void populate_resource_props(PCIDevice
*d
, ResourceProps
*rp
)
831 int bus_num
= pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d
))));
832 uint32_t dev_id
= (b_bbbbbbbb(bus_num
) |
833 b_ddddd(PCI_SLOT(d
->devfn
)) |
834 b_fff(PCI_FUNC(d
->devfn
)));
835 ResourceFields
*reg
, *assigned
;
836 int i
, reg_idx
= 0, assigned_idx
= 0;
838 /* config space region */
839 reg
= &rp
->reg
[reg_idx
++];
840 reg
->phys_hi
= cpu_to_be32(dev_id
);
846 for (i
= 0; i
< PCI_NUM_REGIONS
; i
++) {
847 if (!d
->io_regions
[i
].size
) {
851 reg
= &rp
->reg
[reg_idx
++];
853 reg
->phys_hi
= cpu_to_be32(dev_id
| b_rrrrrrrr(pci_bar(d
, i
)));
854 if (d
->io_regions
[i
].type
& PCI_BASE_ADDRESS_SPACE_IO
) {
855 reg
->phys_hi
|= cpu_to_be32(b_ss(1));
856 } else if (d
->io_regions
[i
].type
& PCI_BASE_ADDRESS_MEM_TYPE_64
) {
857 reg
->phys_hi
|= cpu_to_be32(b_ss(3));
859 reg
->phys_hi
|= cpu_to_be32(b_ss(2));
863 reg
->size_hi
= cpu_to_be32(d
->io_regions
[i
].size
>> 32);
864 reg
->size_lo
= cpu_to_be32(d
->io_regions
[i
].size
);
866 if (d
->io_regions
[i
].addr
== PCI_BAR_UNMAPPED
) {
870 assigned
= &rp
->assigned
[assigned_idx
++];
871 assigned
->phys_hi
= cpu_to_be32(reg
->phys_hi
| b_n(1));
872 assigned
->phys_mid
= cpu_to_be32(d
->io_regions
[i
].addr
>> 32);
873 assigned
->phys_lo
= cpu_to_be32(d
->io_regions
[i
].addr
);
874 assigned
->size_hi
= reg
->size_hi
;
875 assigned
->size_lo
= reg
->size_lo
;
878 rp
->reg_len
= reg_idx
* sizeof(ResourceFields
);
879 rp
->assigned_len
= assigned_idx
* sizeof(ResourceFields
);
882 static int spapr_populate_pci_child_dt(PCIDevice
*dev
, void *fdt
, int offset
,
883 int phb_index
, int drc_index
,
884 const char *drc_name
)
887 bool is_bridge
= false;
890 if (pci_default_read_config(dev
, PCI_HEADER_TYPE
, 1) ==
891 PCI_HEADER_TYPE_BRIDGE
) {
895 /* in accordance with PAPR+ v2.7 13.6.3, Table 181 */
896 _FDT(fdt_setprop_cell(fdt
, offset
, "vendor-id",
897 pci_default_read_config(dev
, PCI_VENDOR_ID
, 2)));
898 _FDT(fdt_setprop_cell(fdt
, offset
, "device-id",
899 pci_default_read_config(dev
, PCI_DEVICE_ID
, 2)));
900 _FDT(fdt_setprop_cell(fdt
, offset
, "revision-id",
901 pci_default_read_config(dev
, PCI_REVISION_ID
, 1)));
902 _FDT(fdt_setprop_cell(fdt
, offset
, "class-code",
903 pci_default_read_config(dev
, PCI_CLASS_PROG
, 3)));
904 if (pci_default_read_config(dev
, PCI_INTERRUPT_PIN
, 1)) {
905 _FDT(fdt_setprop_cell(fdt
, offset
, "interrupts",
906 pci_default_read_config(dev
, PCI_INTERRUPT_PIN
, 1)));
910 _FDT(fdt_setprop_cell(fdt
, offset
, "min-grant",
911 pci_default_read_config(dev
, PCI_MIN_GNT
, 1)));
912 _FDT(fdt_setprop_cell(fdt
, offset
, "max-latency",
913 pci_default_read_config(dev
, PCI_MAX_LAT
, 1)));
916 if (pci_default_read_config(dev
, PCI_SUBSYSTEM_ID
, 2)) {
917 _FDT(fdt_setprop_cell(fdt
, offset
, "subsystem-id",
918 pci_default_read_config(dev
, PCI_SUBSYSTEM_ID
, 2)));
921 if (pci_default_read_config(dev
, PCI_SUBSYSTEM_VENDOR_ID
, 2)) {
922 _FDT(fdt_setprop_cell(fdt
, offset
, "subsystem-vendor-id",
923 pci_default_read_config(dev
, PCI_SUBSYSTEM_VENDOR_ID
, 2)));
926 _FDT(fdt_setprop_cell(fdt
, offset
, "cache-line-size",
927 pci_default_read_config(dev
, PCI_CACHE_LINE_SIZE
, 1)));
929 /* the following fdt cells are masked off the pci status register */
930 pci_status
= pci_default_read_config(dev
, PCI_STATUS
, 2);
931 _FDT(fdt_setprop_cell(fdt
, offset
, "devsel-speed",
932 PCI_STATUS_DEVSEL_MASK
& pci_status
));
934 if (pci_status
& PCI_STATUS_FAST_BACK
) {
935 _FDT(fdt_setprop(fdt
, offset
, "fast-back-to-back", NULL
, 0));
937 if (pci_status
& PCI_STATUS_66MHZ
) {
938 _FDT(fdt_setprop(fdt
, offset
, "66mhz-capable", NULL
, 0));
940 if (pci_status
& PCI_STATUS_UDF
) {
941 _FDT(fdt_setprop(fdt
, offset
, "udf-supported", NULL
, 0));
944 /* NOTE: this is normally generated by firmware via path/unit name,
945 * but in our case we must set it manually since it does not get
946 * processed by OF beforehand
948 _FDT(fdt_setprop_string(fdt
, offset
, "name", "pci"));
949 _FDT(fdt_setprop(fdt
, offset
, "ibm,loc-code", drc_name
, strlen(drc_name
)));
950 _FDT(fdt_setprop_cell(fdt
, offset
, "ibm,my-drc-index", drc_index
));
952 _FDT(fdt_setprop_cell(fdt
, offset
, "#address-cells",
953 RESOURCE_CELLS_ADDRESS
));
954 _FDT(fdt_setprop_cell(fdt
, offset
, "#size-cells",
955 RESOURCE_CELLS_SIZE
));
956 _FDT(fdt_setprop_cell(fdt
, offset
, "ibm,req#msi-x",
957 RESOURCE_CELLS_SIZE
));
959 populate_resource_props(dev
, &rp
);
960 _FDT(fdt_setprop(fdt
, offset
, "reg", (uint8_t *)rp
.reg
, rp
.reg_len
));
961 _FDT(fdt_setprop(fdt
, offset
, "assigned-addresses",
962 (uint8_t *)rp
.assigned
, rp
.assigned_len
));
967 /* create OF node for pci device and required OF DT properties */
968 static void *spapr_create_pci_child_dt(sPAPRPHBState
*phb
, PCIDevice
*dev
,
969 int drc_index
, const char *drc_name
,
973 int offset
, ret
, fdt_size
;
974 int slot
= PCI_SLOT(dev
->devfn
);
975 int func
= PCI_FUNC(dev
->devfn
);
978 fdt
= create_device_tree(&fdt_size
);
980 sprintf(nodename
, "pci@%d,%d", slot
, func
);
982 sprintf(nodename
, "pci@%d", slot
);
984 offset
= fdt_add_subnode(fdt
, 0, nodename
);
985 ret
= spapr_populate_pci_child_dt(dev
, fdt
, offset
, phb
->index
, drc_index
,
993 static void spapr_phb_add_pci_device(sPAPRDRConnector
*drc
,
998 sPAPRDRConnectorClass
*drck
= SPAPR_DR_CONNECTOR_GET_CLASS(drc
);
999 DeviceState
*dev
= DEVICE(pdev
);
1000 int drc_index
= drck
->get_index(drc
);
1001 const char *drc_name
= drck
->get_name(drc
);
1003 int fdt_start_offset
= 0;
1005 /* boot-time devices get their device tree node created by SLOF, but for
1006 * hotplugged devices we need QEMU to generate it so the guest can fetch
1009 if (dev
->hotplugged
) {
1010 fdt
= spapr_create_pci_child_dt(phb
, pdev
, drc_index
, drc_name
,
1014 drck
->attach(drc
, DEVICE(pdev
),
1015 fdt
, fdt_start_offset
, !dev
->hotplugged
, errp
);
1021 static void spapr_phb_remove_pci_device_cb(DeviceState
*dev
, void *opaque
)
1023 /* some version guests do not wait for completion of a device
1024 * cleanup (generally done asynchronously by the kernel) before
1025 * signaling to QEMU that the device is safe, but instead sleep
1026 * for some 'safe' period of time. unfortunately on a busy host
1027 * this sleep isn't guaranteed to be long enough, resulting in
1028 * bad things like IRQ lines being left asserted during final
1029 * device removal. to deal with this we call reset just prior
1030 * to finalizing the device, which will put the device back into
1031 * an 'idle' state, as the device cleanup code expects.
1033 pci_device_reset(PCI_DEVICE(dev
));
1034 object_unparent(OBJECT(dev
));
1037 static void spapr_phb_remove_pci_device(sPAPRDRConnector
*drc
,
1042 sPAPRDRConnectorClass
*drck
= SPAPR_DR_CONNECTOR_GET_CLASS(drc
);
1044 drck
->detach(drc
, DEVICE(pdev
), spapr_phb_remove_pci_device_cb
, phb
, errp
);
1047 static sPAPRDRConnector
*spapr_phb_get_pci_drc(sPAPRPHBState
*phb
,
1050 uint32_t busnr
= pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev
))));
1051 return spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_PCI
,
1052 (phb
->index
<< 16) |
1057 static void spapr_phb_hot_plug_child(HotplugHandler
*plug_handler
,
1058 DeviceState
*plugged_dev
, Error
**errp
)
1060 sPAPRPHBState
*phb
= SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler
));
1061 PCIDevice
*pdev
= PCI_DEVICE(plugged_dev
);
1062 sPAPRDRConnector
*drc
= spapr_phb_get_pci_drc(phb
, pdev
);
1063 Error
*local_err
= NULL
;
1065 /* if DR is disabled we don't need to do anything in the case of
1066 * hotplug or coldplug callbacks
1068 if (!phb
->dr_enabled
) {
1069 /* if this is a hotplug operation initiated by the user
1070 * we need to let them know it's not enabled
1072 if (plugged_dev
->hotplugged
) {
1073 error_setg(errp
, QERR_BUS_NO_HOTPLUG
,
1074 object_get_typename(OBJECT(phb
)));
1081 spapr_phb_add_pci_device(drc
, phb
, pdev
, &local_err
);
1083 error_propagate(errp
, local_err
);
1086 if (plugged_dev
->hotplugged
) {
1087 spapr_hotplug_req_add_event(drc
);
1091 static void spapr_phb_hot_unplug_child(HotplugHandler
*plug_handler
,
1092 DeviceState
*plugged_dev
, Error
**errp
)
1094 sPAPRPHBState
*phb
= SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler
));
1095 PCIDevice
*pdev
= PCI_DEVICE(plugged_dev
);
1096 sPAPRDRConnectorClass
*drck
;
1097 sPAPRDRConnector
*drc
= spapr_phb_get_pci_drc(phb
, pdev
);
1098 Error
*local_err
= NULL
;
1100 if (!phb
->dr_enabled
) {
1101 error_setg(errp
, QERR_BUS_NO_HOTPLUG
,
1102 object_get_typename(OBJECT(phb
)));
1108 drck
= SPAPR_DR_CONNECTOR_GET_CLASS(drc
);
1109 if (!drck
->release_pending(drc
)) {
1110 spapr_phb_remove_pci_device(drc
, phb
, pdev
, &local_err
);
1112 error_propagate(errp
, local_err
);
1115 spapr_hotplug_req_remove_event(drc
);
1119 static void spapr_phb_realize(DeviceState
*dev
, Error
**errp
)
1121 sPAPRMachineState
*spapr
= SPAPR_MACHINE(qdev_get_machine());
1122 SysBusDevice
*s
= SYS_BUS_DEVICE(dev
);
1123 sPAPRPHBState
*sphb
= SPAPR_PCI_HOST_BRIDGE(s
);
1124 PCIHostState
*phb
= PCI_HOST_BRIDGE(s
);
1125 sPAPRPHBClass
*info
= SPAPR_PCI_HOST_BRIDGE_GET_CLASS(s
);
1129 uint64_t msi_window_size
= 4096;
1131 if (sphb
->index
!= (uint32_t)-1) {
1132 hwaddr windows_base
;
1134 if ((sphb
->buid
!= (uint64_t)-1) || (sphb
->dma_liobn
!= (uint32_t)-1)
1135 || (sphb
->mem_win_addr
!= (hwaddr
)-1)
1136 || (sphb
->io_win_addr
!= (hwaddr
)-1)) {
1137 error_setg(errp
, "Either \"index\" or other parameters must"
1138 " be specified for PAPR PHB, not both");
1142 if (sphb
->index
> SPAPR_PCI_MAX_INDEX
) {
1143 error_setg(errp
, "\"index\" for PAPR PHB is too large (max %u)",
1144 SPAPR_PCI_MAX_INDEX
);
1148 sphb
->buid
= SPAPR_PCI_BASE_BUID
+ sphb
->index
;
1149 sphb
->dma_liobn
= SPAPR_PCI_LIOBN(sphb
->index
, 0);
1151 windows_base
= SPAPR_PCI_WINDOW_BASE
1152 + sphb
->index
* SPAPR_PCI_WINDOW_SPACING
;
1153 sphb
->mem_win_addr
= windows_base
+ SPAPR_PCI_MMIO_WIN_OFF
;
1154 sphb
->io_win_addr
= windows_base
+ SPAPR_PCI_IO_WIN_OFF
;
1157 if (sphb
->buid
== (uint64_t)-1) {
1158 error_setg(errp
, "BUID not specified for PHB");
1162 if (sphb
->dma_liobn
== (uint32_t)-1) {
1163 error_setg(errp
, "LIOBN not specified for PHB");
1167 if (sphb
->mem_win_addr
== (hwaddr
)-1) {
1168 error_setg(errp
, "Memory window address not specified for PHB");
1172 if (sphb
->io_win_addr
== (hwaddr
)-1) {
1173 error_setg(errp
, "IO window address not specified for PHB");
1177 if (spapr_pci_find_phb(spapr
, sphb
->buid
)) {
1178 error_setg(errp
, "PCI host bridges must have unique BUIDs");
1182 sphb
->dtbusname
= g_strdup_printf("pci@%" PRIx64
, sphb
->buid
);
1184 namebuf
= alloca(strlen(sphb
->dtbusname
) + 32);
1186 /* Initialize memory regions */
1187 sprintf(namebuf
, "%s.mmio", sphb
->dtbusname
);
1188 memory_region_init(&sphb
->memspace
, OBJECT(sphb
), namebuf
, UINT64_MAX
);
1190 sprintf(namebuf
, "%s.mmio-alias", sphb
->dtbusname
);
1191 memory_region_init_alias(&sphb
->memwindow
, OBJECT(sphb
),
1192 namebuf
, &sphb
->memspace
,
1193 SPAPR_PCI_MEM_WIN_BUS_OFFSET
, sphb
->mem_win_size
);
1194 memory_region_add_subregion(get_system_memory(), sphb
->mem_win_addr
,
1197 /* Initialize IO regions */
1198 sprintf(namebuf
, "%s.io", sphb
->dtbusname
);
1199 memory_region_init(&sphb
->iospace
, OBJECT(sphb
),
1200 namebuf
, SPAPR_PCI_IO_WIN_SIZE
);
1202 sprintf(namebuf
, "%s.io-alias", sphb
->dtbusname
);
1203 memory_region_init_alias(&sphb
->iowindow
, OBJECT(sphb
), namebuf
,
1204 &sphb
->iospace
, 0, SPAPR_PCI_IO_WIN_SIZE
);
1205 memory_region_add_subregion(get_system_memory(), sphb
->io_win_addr
,
1208 bus
= pci_register_bus(dev
, NULL
,
1209 pci_spapr_set_irq
, pci_spapr_map_irq
, sphb
,
1210 &sphb
->memspace
, &sphb
->iospace
,
1211 PCI_DEVFN(0, 0), PCI_NUM_PINS
, TYPE_PCI_BUS
);
1213 qbus_set_hotplug_handler(BUS(phb
->bus
), DEVICE(sphb
), NULL
);
1216 * Initialize PHB address space.
1217 * By default there will be at least one subregion for default
1219 * Later the guest might want to create another DMA window
1220 * which will become another memory subregion.
1222 sprintf(namebuf
, "%s.iommu-root", sphb
->dtbusname
);
1224 memory_region_init(&sphb
->iommu_root
, OBJECT(sphb
),
1225 namebuf
, UINT64_MAX
);
1226 address_space_init(&sphb
->iommu_as
, &sphb
->iommu_root
,
1230 * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
1231 * we need to allocate some memory to catch those writes coming
1232 * from msi_notify()/msix_notify().
1233 * As MSIMessage:addr is going to be the same and MSIMessage:data
1234 * is going to be a VIRQ number, 4 bytes of the MSI MR will only
1237 * For KVM we want to ensure that this memory is a full page so that
1238 * our memory slot is of page size granularity.
1241 if (kvm_enabled()) {
1242 msi_window_size
= getpagesize();
1246 memory_region_init_io(&sphb
->msiwindow
, NULL
, &spapr_msi_ops
, spapr
,
1247 "msi", msi_window_size
);
1248 memory_region_add_subregion(&sphb
->iommu_root
, SPAPR_PCI_MSI_WINDOW
,
1251 pci_setup_iommu(bus
, spapr_pci_dma_iommu
, sphb
);
1253 pci_bus_set_route_irq_fn(bus
, spapr_route_intx_pin_to_irq
);
1255 QLIST_INSERT_HEAD(&spapr
->phbs
, sphb
, list
);
1257 /* Initialize the LSI table */
1258 for (i
= 0; i
< PCI_NUM_PINS
; i
++) {
1261 irq
= xics_alloc_block(spapr
->icp
, 0, 1, true, false);
1263 error_setg(errp
, "spapr_allocate_lsi failed");
1267 sphb
->lsi_table
[i
].irq
= irq
;
1270 /* allocate connectors for child PCI devices */
1271 if (sphb
->dr_enabled
) {
1272 for (i
= 0; i
< PCI_SLOT_MAX
* 8; i
++) {
1273 spapr_dr_connector_new(OBJECT(phb
),
1274 SPAPR_DR_CONNECTOR_TYPE_PCI
,
1275 (sphb
->index
<< 16) | i
);
1279 if (!info
->finish_realize
) {
1280 error_setg(errp
, "finish_realize not defined");
1284 info
->finish_realize(sphb
, errp
);
1286 sphb
->msi
= g_hash_table_new_full(g_int_hash
, g_int_equal
, g_free
, g_free
);
1289 static void spapr_phb_finish_realize(sPAPRPHBState
*sphb
, Error
**errp
)
1291 sPAPRTCETable
*tcet
;
1294 nb_table
= SPAPR_PCI_DMA32_SIZE
>> SPAPR_TCE_PAGE_SHIFT
;
1295 tcet
= spapr_tce_new_table(DEVICE(sphb
), sphb
->dma_liobn
,
1296 0, SPAPR_TCE_PAGE_SHIFT
, nb_table
, false);
1298 error_setg(errp
, "Unable to create TCE table for %s",
1303 /* Register default 32bit DMA window */
1304 memory_region_add_subregion(&sphb
->iommu_root
, 0,
1305 spapr_tce_get_iommu(tcet
));
1308 static int spapr_phb_children_reset(Object
*child
, void *opaque
)
1310 DeviceState
*dev
= (DeviceState
*) object_dynamic_cast(child
, TYPE_DEVICE
);
1319 static void spapr_phb_reset(DeviceState
*qdev
)
1321 /* Reset the IOMMU state */
1322 object_child_foreach(OBJECT(qdev
), spapr_phb_children_reset
, NULL
);
1325 static Property spapr_phb_properties
[] = {
1326 DEFINE_PROP_UINT32("index", sPAPRPHBState
, index
, -1),
1327 DEFINE_PROP_UINT64("buid", sPAPRPHBState
, buid
, -1),
1328 DEFINE_PROP_UINT32("liobn", sPAPRPHBState
, dma_liobn
, -1),
1329 DEFINE_PROP_UINT64("mem_win_addr", sPAPRPHBState
, mem_win_addr
, -1),
1330 DEFINE_PROP_UINT64("mem_win_size", sPAPRPHBState
, mem_win_size
,
1331 SPAPR_PCI_MMIO_WIN_SIZE
),
1332 DEFINE_PROP_UINT64("io_win_addr", sPAPRPHBState
, io_win_addr
, -1),
1333 DEFINE_PROP_UINT64("io_win_size", sPAPRPHBState
, io_win_size
,
1334 SPAPR_PCI_IO_WIN_SIZE
),
1335 DEFINE_PROP_BOOL("dynamic-reconfiguration", sPAPRPHBState
, dr_enabled
,
1337 DEFINE_PROP_END_OF_LIST(),
1340 static const VMStateDescription vmstate_spapr_pci_lsi
= {
1341 .name
= "spapr_pci/lsi",
1343 .minimum_version_id
= 1,
1344 .fields
= (VMStateField
[]) {
1345 VMSTATE_UINT32_EQUAL(irq
, struct spapr_pci_lsi
),
1347 VMSTATE_END_OF_LIST()
1351 static const VMStateDescription vmstate_spapr_pci_msi
= {
1352 .name
= "spapr_pci/msi",
1354 .minimum_version_id
= 1,
1355 .fields
= (VMStateField
[]) {
1356 VMSTATE_UINT32(key
, spapr_pci_msi_mig
),
1357 VMSTATE_UINT32(value
.first_irq
, spapr_pci_msi_mig
),
1358 VMSTATE_UINT32(value
.num
, spapr_pci_msi_mig
),
1359 VMSTATE_END_OF_LIST()
1363 static void spapr_pci_fill_msi_devs(gpointer key
, gpointer value
,
1366 sPAPRPHBState
*sphb
= opaque
;
1368 sphb
->msi_devs
[sphb
->msi_devs_num
].key
= *(uint32_t *)key
;
1369 sphb
->msi_devs
[sphb
->msi_devs_num
].value
= *(spapr_pci_msi
*)value
;
1370 sphb
->msi_devs_num
++;
1373 static void spapr_pci_pre_save(void *opaque
)
1375 sPAPRPHBState
*sphb
= opaque
;
1378 if (sphb
->msi_devs
) {
1379 g_free(sphb
->msi_devs
);
1380 sphb
->msi_devs
= NULL
;
1382 sphb
->msi_devs_num
= 0;
1383 msi_devs_num
= g_hash_table_size(sphb
->msi
);
1384 if (!msi_devs_num
) {
1387 sphb
->msi_devs
= g_malloc(msi_devs_num
* sizeof(spapr_pci_msi_mig
));
1389 g_hash_table_foreach(sphb
->msi
, spapr_pci_fill_msi_devs
, sphb
);
1390 assert(sphb
->msi_devs_num
== msi_devs_num
);
1393 static int spapr_pci_post_load(void *opaque
, int version_id
)
1395 sPAPRPHBState
*sphb
= opaque
;
1396 gpointer key
, value
;
1399 for (i
= 0; i
< sphb
->msi_devs_num
; ++i
) {
1400 key
= g_memdup(&sphb
->msi_devs
[i
].key
,
1401 sizeof(sphb
->msi_devs
[i
].key
));
1402 value
= g_memdup(&sphb
->msi_devs
[i
].value
,
1403 sizeof(sphb
->msi_devs
[i
].value
));
1404 g_hash_table_insert(sphb
->msi
, key
, value
);
1406 if (sphb
->msi_devs
) {
1407 g_free(sphb
->msi_devs
);
1408 sphb
->msi_devs
= NULL
;
1410 sphb
->msi_devs_num
= 0;
1415 static const VMStateDescription vmstate_spapr_pci
= {
1416 .name
= "spapr_pci",
1418 .minimum_version_id
= 2,
1419 .pre_save
= spapr_pci_pre_save
,
1420 .post_load
= spapr_pci_post_load
,
1421 .fields
= (VMStateField
[]) {
1422 VMSTATE_UINT64_EQUAL(buid
, sPAPRPHBState
),
1423 VMSTATE_UINT32_EQUAL(dma_liobn
, sPAPRPHBState
),
1424 VMSTATE_UINT64_EQUAL(mem_win_addr
, sPAPRPHBState
),
1425 VMSTATE_UINT64_EQUAL(mem_win_size
, sPAPRPHBState
),
1426 VMSTATE_UINT64_EQUAL(io_win_addr
, sPAPRPHBState
),
1427 VMSTATE_UINT64_EQUAL(io_win_size
, sPAPRPHBState
),
1428 VMSTATE_STRUCT_ARRAY(lsi_table
, sPAPRPHBState
, PCI_NUM_PINS
, 0,
1429 vmstate_spapr_pci_lsi
, struct spapr_pci_lsi
),
1430 VMSTATE_INT32(msi_devs_num
, sPAPRPHBState
),
1431 VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs
, sPAPRPHBState
, msi_devs_num
, 0,
1432 vmstate_spapr_pci_msi
, spapr_pci_msi_mig
),
1433 VMSTATE_END_OF_LIST()
1437 static const char *spapr_phb_root_bus_path(PCIHostState
*host_bridge
,
1440 sPAPRPHBState
*sphb
= SPAPR_PCI_HOST_BRIDGE(host_bridge
);
1442 return sphb
->dtbusname
;
1445 static void spapr_phb_class_init(ObjectClass
*klass
, void *data
)
1447 PCIHostBridgeClass
*hc
= PCI_HOST_BRIDGE_CLASS(klass
);
1448 DeviceClass
*dc
= DEVICE_CLASS(klass
);
1449 sPAPRPHBClass
*spc
= SPAPR_PCI_HOST_BRIDGE_CLASS(klass
);
1450 HotplugHandlerClass
*hp
= HOTPLUG_HANDLER_CLASS(klass
);
1452 hc
->root_bus_path
= spapr_phb_root_bus_path
;
1453 dc
->realize
= spapr_phb_realize
;
1454 dc
->props
= spapr_phb_properties
;
1455 dc
->reset
= spapr_phb_reset
;
1456 dc
->vmsd
= &vmstate_spapr_pci
;
1457 set_bit(DEVICE_CATEGORY_BRIDGE
, dc
->categories
);
1458 dc
->cannot_instantiate_with_device_add_yet
= false;
1459 spc
->finish_realize
= spapr_phb_finish_realize
;
1460 hp
->plug
= spapr_phb_hot_plug_child
;
1461 hp
->unplug
= spapr_phb_hot_unplug_child
;
1464 static const TypeInfo spapr_phb_info
= {
1465 .name
= TYPE_SPAPR_PCI_HOST_BRIDGE
,
1466 .parent
= TYPE_PCI_HOST_BRIDGE
,
1467 .instance_size
= sizeof(sPAPRPHBState
),
1468 .class_init
= spapr_phb_class_init
,
1469 .class_size
= sizeof(sPAPRPHBClass
),
1470 .interfaces
= (InterfaceInfo
[]) {
1471 { TYPE_HOTPLUG_HANDLER
},
1476 PCIHostState
*spapr_create_phb(sPAPRMachineState
*spapr
, int index
)
1480 dev
= qdev_create(NULL
, TYPE_SPAPR_PCI_HOST_BRIDGE
);
1481 qdev_prop_set_uint32(dev
, "index", index
);
1482 qdev_init_nofail(dev
);
1484 return PCI_HOST_BRIDGE(dev
);
1487 int spapr_populate_pci_dt(sPAPRPHBState
*phb
,
1488 uint32_t xics_phandle
,
1491 int bus_off
, i
, j
, ret
;
1493 uint32_t bus_range
[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
1494 const uint64_t mmiosize
= memory_region_size(&phb
->memwindow
);
1495 const uint64_t w32max
= (1ULL << 32) - SPAPR_PCI_MEM_WIN_BUS_OFFSET
;
1496 const uint64_t w32size
= MIN(w32max
, mmiosize
);
1497 const uint64_t w64size
= (mmiosize
> w32size
) ? (mmiosize
- w32size
) : 0;
1503 } QEMU_PACKED ranges
[] = {
1505 cpu_to_be32(b_ss(1)), cpu_to_be64(0),
1506 cpu_to_be64(phb
->io_win_addr
),
1507 cpu_to_be64(memory_region_size(&phb
->iospace
)),
1510 cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET
),
1511 cpu_to_be64(phb
->mem_win_addr
),
1512 cpu_to_be64(w32size
),
1515 cpu_to_be32(b_ss(3)), cpu_to_be64(1ULL << 32),
1516 cpu_to_be64(phb
->mem_win_addr
+ w32size
),
1517 cpu_to_be64(w64size
)
1520 const unsigned sizeof_ranges
= (w64size
? 3 : 2) * sizeof(ranges
[0]);
1521 uint64_t bus_reg
[] = { cpu_to_be64(phb
->buid
), 0 };
1522 uint32_t interrupt_map_mask
[] = {
1523 cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
1524 uint32_t interrupt_map
[PCI_SLOT_MAX
* PCI_NUM_PINS
][7];
1525 sPAPRTCETable
*tcet
;
1527 /* Start populating the FDT */
1528 sprintf(nodename
, "pci@%" PRIx64
, phb
->buid
);
1529 bus_off
= fdt_add_subnode(fdt
, 0, nodename
);
1534 /* Write PHB properties */
1535 _FDT(fdt_setprop_string(fdt
, bus_off
, "device_type", "pci"));
1536 _FDT(fdt_setprop_string(fdt
, bus_off
, "compatible", "IBM,Logical_PHB"));
1537 _FDT(fdt_setprop_cell(fdt
, bus_off
, "#address-cells", 0x3));
1538 _FDT(fdt_setprop_cell(fdt
, bus_off
, "#size-cells", 0x2));
1539 _FDT(fdt_setprop_cell(fdt
, bus_off
, "#interrupt-cells", 0x1));
1540 _FDT(fdt_setprop(fdt
, bus_off
, "used-by-rtas", NULL
, 0));
1541 _FDT(fdt_setprop(fdt
, bus_off
, "bus-range", &bus_range
, sizeof(bus_range
)));
1542 _FDT(fdt_setprop(fdt
, bus_off
, "ranges", &ranges
, sizeof_ranges
));
1543 _FDT(fdt_setprop(fdt
, bus_off
, "reg", &bus_reg
, sizeof(bus_reg
)));
1544 _FDT(fdt_setprop_cell(fdt
, bus_off
, "ibm,pci-config-space-type", 0x1));
1545 _FDT(fdt_setprop_cell(fdt
, bus_off
, "ibm,pe-total-#msi", XICS_IRQS
));
1547 /* Build the interrupt-map, this must matches what is done
1548 * in pci_spapr_map_irq
1550 _FDT(fdt_setprop(fdt
, bus_off
, "interrupt-map-mask",
1551 &interrupt_map_mask
, sizeof(interrupt_map_mask
)));
1552 for (i
= 0; i
< PCI_SLOT_MAX
; i
++) {
1553 for (j
= 0; j
< PCI_NUM_PINS
; j
++) {
1554 uint32_t *irqmap
= interrupt_map
[i
*PCI_NUM_PINS
+ j
];
1555 int lsi_num
= pci_spapr_swizzle(i
, j
);
1557 irqmap
[0] = cpu_to_be32(b_ddddd(i
)|b_fff(0));
1560 irqmap
[3] = cpu_to_be32(j
+1);
1561 irqmap
[4] = cpu_to_be32(xics_phandle
);
1562 irqmap
[5] = cpu_to_be32(phb
->lsi_table
[lsi_num
].irq
);
1563 irqmap
[6] = cpu_to_be32(0x8);
1566 /* Write interrupt map */
1567 _FDT(fdt_setprop(fdt
, bus_off
, "interrupt-map", &interrupt_map
,
1568 sizeof(interrupt_map
)));
1570 tcet
= spapr_tce_find_by_liobn(SPAPR_PCI_LIOBN(phb
->index
, 0));
1571 spapr_dma_dt(fdt
, bus_off
, "ibm,dma-window",
1572 tcet
->liobn
, tcet
->bus_offset
,
1573 tcet
->nb_table
<< tcet
->page_shift
);
1575 ret
= spapr_drc_populate_dt(fdt
, bus_off
, OBJECT(phb
),
1576 SPAPR_DR_CONNECTOR_TYPE_PCI
);
1584 void spapr_pci_rtas_init(void)
1586 spapr_rtas_register(RTAS_READ_PCI_CONFIG
, "read-pci-config",
1587 rtas_read_pci_config
);
1588 spapr_rtas_register(RTAS_WRITE_PCI_CONFIG
, "write-pci-config",
1589 rtas_write_pci_config
);
1590 spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG
, "ibm,read-pci-config",
1591 rtas_ibm_read_pci_config
);
1592 spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG
, "ibm,write-pci-config",
1593 rtas_ibm_write_pci_config
);
1594 if (msi_supported
) {
1595 spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER
,
1596 "ibm,query-interrupt-source-number",
1597 rtas_ibm_query_interrupt_source_number
);
1598 spapr_rtas_register(RTAS_IBM_CHANGE_MSI
, "ibm,change-msi",
1599 rtas_ibm_change_msi
);
1602 spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION
,
1603 "ibm,set-eeh-option",
1604 rtas_ibm_set_eeh_option
);
1605 spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2
,
1606 "ibm,get-config-addr-info2",
1607 rtas_ibm_get_config_addr_info2
);
1608 spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2
,
1609 "ibm,read-slot-reset-state2",
1610 rtas_ibm_read_slot_reset_state2
);
1611 spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET
,
1612 "ibm,set-slot-reset",
1613 rtas_ibm_set_slot_reset
);
1614 spapr_rtas_register(RTAS_IBM_CONFIGURE_PE
,
1616 rtas_ibm_configure_pe
);
1617 spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL
,
1618 "ibm,slot-error-detail",
1619 rtas_ibm_slot_error_detail
);
1622 static void spapr_pci_register_types(void)
1624 type_register_static(&spapr_phb_info
);
1627 type_init(spapr_pci_register_types
)
1629 static int spapr_switch_one_vga(DeviceState
*dev
, void *opaque
)
1631 bool be
= *(bool *)opaque
;
1633 if (object_dynamic_cast(OBJECT(dev
), "VGA")
1634 || object_dynamic_cast(OBJECT(dev
), "secondary-vga")) {
1635 object_property_set_bool(OBJECT(dev
), be
, "big-endian-framebuffer",
1641 void spapr_pci_switch_vga(bool big_endian
)
1643 sPAPRMachineState
*spapr
= SPAPR_MACHINE(qdev_get_machine());
1644 sPAPRPHBState
*sphb
;
1647 * For backward compatibility with existing guests, we switch
1648 * the endianness of the VGA controller when changing the guest
1651 QLIST_FOREACH(sphb
, &spapr
->phbs
, list
) {
1652 BusState
*bus
= &PCI_HOST_BRIDGE(sphb
)->bus
->qbus
;
1653 qbus_walk_children(bus
, spapr_switch_one_vga
, NULL
, NULL
, NULL
,