]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr_pci.c
spapr_pci: encode class code including Prog IF register
[mirror_qemu.git] / hw / ppc / spapr_pci.c
1 /*
2 * QEMU sPAPR PCI host originated from Uninorth PCI host
3 *
4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5 * Copyright (C) 2011 David Gibson, IBM Corporation.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
24 */
25 #include "hw/hw.h"
26 #include "hw/pci/pci.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/pci/pci_host.h"
30 #include "hw/ppc/spapr.h"
31 #include "hw/pci-host/spapr.h"
32 #include "exec/address-spaces.h"
33 #include <libfdt.h>
34 #include "trace.h"
35 #include "qemu/error-report.h"
36 #include "qapi/qmp/qerror.h"
37
38 #include "hw/pci/pci_bus.h"
39 #include "hw/ppc/spapr_drc.h"
40 #include "sysemu/device_tree.h"
41
42 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
43 #define RTAS_QUERY_FN 0
44 #define RTAS_CHANGE_FN 1
45 #define RTAS_RESET_FN 2
46 #define RTAS_CHANGE_MSI_FN 3
47 #define RTAS_CHANGE_MSIX_FN 4
48
49 /* Interrupt types to return on RTAS_CHANGE_* */
50 #define RTAS_TYPE_MSI 1
51 #define RTAS_TYPE_MSIX 2
52
53 #define _FDT(exp) \
54 do { \
55 int ret = (exp); \
56 if (ret < 0) { \
57 return ret; \
58 } \
59 } while (0)
60
61 sPAPRPHBState *spapr_pci_find_phb(sPAPRMachineState *spapr, uint64_t buid)
62 {
63 sPAPRPHBState *sphb;
64
65 QLIST_FOREACH(sphb, &spapr->phbs, list) {
66 if (sphb->buid != buid) {
67 continue;
68 }
69 return sphb;
70 }
71
72 return NULL;
73 }
74
75 PCIDevice *spapr_pci_find_dev(sPAPRMachineState *spapr, uint64_t buid,
76 uint32_t config_addr)
77 {
78 sPAPRPHBState *sphb = spapr_pci_find_phb(spapr, buid);
79 PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
80 int bus_num = (config_addr >> 16) & 0xFF;
81 int devfn = (config_addr >> 8) & 0xFF;
82
83 if (!phb) {
84 return NULL;
85 }
86
87 return pci_find_device(phb->bus, bus_num, devfn);
88 }
89
90 static uint32_t rtas_pci_cfgaddr(uint32_t arg)
91 {
92 /* This handles the encoding of extended config space addresses */
93 return ((arg >> 20) & 0xf00) | (arg & 0xff);
94 }
95
96 static void finish_read_pci_config(sPAPRMachineState *spapr, uint64_t buid,
97 uint32_t addr, uint32_t size,
98 target_ulong rets)
99 {
100 PCIDevice *pci_dev;
101 uint32_t val;
102
103 if ((size != 1) && (size != 2) && (size != 4)) {
104 /* access must be 1, 2 or 4 bytes */
105 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
106 return;
107 }
108
109 pci_dev = spapr_pci_find_dev(spapr, buid, addr);
110 addr = rtas_pci_cfgaddr(addr);
111
112 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
113 /* Access must be to a valid device, within bounds and
114 * naturally aligned */
115 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
116 return;
117 }
118
119 val = pci_host_config_read_common(pci_dev, addr,
120 pci_config_size(pci_dev), size);
121
122 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
123 rtas_st(rets, 1, val);
124 }
125
126 static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
127 uint32_t token, uint32_t nargs,
128 target_ulong args,
129 uint32_t nret, target_ulong rets)
130 {
131 uint64_t buid;
132 uint32_t size, addr;
133
134 if ((nargs != 4) || (nret != 2)) {
135 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
136 return;
137 }
138
139 buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
140 size = rtas_ld(args, 3);
141 addr = rtas_ld(args, 0);
142
143 finish_read_pci_config(spapr, buid, addr, size, rets);
144 }
145
146 static void rtas_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
147 uint32_t token, uint32_t nargs,
148 target_ulong args,
149 uint32_t nret, target_ulong rets)
150 {
151 uint32_t size, addr;
152
153 if ((nargs != 2) || (nret != 2)) {
154 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
155 return;
156 }
157
158 size = rtas_ld(args, 1);
159 addr = rtas_ld(args, 0);
160
161 finish_read_pci_config(spapr, 0, addr, size, rets);
162 }
163
164 static void finish_write_pci_config(sPAPRMachineState *spapr, uint64_t buid,
165 uint32_t addr, uint32_t size,
166 uint32_t val, target_ulong rets)
167 {
168 PCIDevice *pci_dev;
169
170 if ((size != 1) && (size != 2) && (size != 4)) {
171 /* access must be 1, 2 or 4 bytes */
172 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
173 return;
174 }
175
176 pci_dev = spapr_pci_find_dev(spapr, buid, addr);
177 addr = rtas_pci_cfgaddr(addr);
178
179 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
180 /* Access must be to a valid device, within bounds and
181 * naturally aligned */
182 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
183 return;
184 }
185
186 pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
187 val, size);
188
189 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
190 }
191
192 static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
193 uint32_t token, uint32_t nargs,
194 target_ulong args,
195 uint32_t nret, target_ulong rets)
196 {
197 uint64_t buid;
198 uint32_t val, size, addr;
199
200 if ((nargs != 5) || (nret != 1)) {
201 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
202 return;
203 }
204
205 buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
206 val = rtas_ld(args, 4);
207 size = rtas_ld(args, 3);
208 addr = rtas_ld(args, 0);
209
210 finish_write_pci_config(spapr, buid, addr, size, val, rets);
211 }
212
213 static void rtas_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
214 uint32_t token, uint32_t nargs,
215 target_ulong args,
216 uint32_t nret, target_ulong rets)
217 {
218 uint32_t val, size, addr;
219
220 if ((nargs != 3) || (nret != 1)) {
221 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
222 return;
223 }
224
225
226 val = rtas_ld(args, 2);
227 size = rtas_ld(args, 1);
228 addr = rtas_ld(args, 0);
229
230 finish_write_pci_config(spapr, 0, addr, size, val, rets);
231 }
232
233 /*
234 * Set MSI/MSIX message data.
235 * This is required for msi_notify()/msix_notify() which
236 * will write at the addresses via spapr_msi_write().
237 *
238 * If hwaddr == 0, all entries will have .data == first_irq i.e.
239 * table will be reset.
240 */
241 static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix,
242 unsigned first_irq, unsigned req_num)
243 {
244 unsigned i;
245 MSIMessage msg = { .address = addr, .data = first_irq };
246
247 if (!msix) {
248 msi_set_message(pdev, msg);
249 trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
250 return;
251 }
252
253 for (i = 0; i < req_num; ++i) {
254 msix_set_message(pdev, i, msg);
255 trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
256 if (addr) {
257 ++msg.data;
258 }
259 }
260 }
261
262 static void rtas_ibm_change_msi(PowerPCCPU *cpu, sPAPRMachineState *spapr,
263 uint32_t token, uint32_t nargs,
264 target_ulong args, uint32_t nret,
265 target_ulong rets)
266 {
267 uint32_t config_addr = rtas_ld(args, 0);
268 uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
269 unsigned int func = rtas_ld(args, 3);
270 unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
271 unsigned int seq_num = rtas_ld(args, 5);
272 unsigned int ret_intr_type;
273 unsigned int irq, max_irqs = 0, num = 0;
274 sPAPRPHBState *phb = NULL;
275 PCIDevice *pdev = NULL;
276 spapr_pci_msi *msi;
277 int *config_addr_key;
278
279 switch (func) {
280 case RTAS_CHANGE_MSI_FN:
281 case RTAS_CHANGE_FN:
282 ret_intr_type = RTAS_TYPE_MSI;
283 break;
284 case RTAS_CHANGE_MSIX_FN:
285 ret_intr_type = RTAS_TYPE_MSIX;
286 break;
287 default:
288 error_report("rtas_ibm_change_msi(%u) is not implemented", func);
289 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
290 return;
291 }
292
293 /* Fins sPAPRPHBState */
294 phb = spapr_pci_find_phb(spapr, buid);
295 if (phb) {
296 pdev = spapr_pci_find_dev(spapr, buid, config_addr);
297 }
298 if (!phb || !pdev) {
299 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
300 return;
301 }
302
303 /* Releasing MSIs */
304 if (!req_num) {
305 msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
306 if (!msi) {
307 trace_spapr_pci_msi("Releasing wrong config", config_addr);
308 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
309 return;
310 }
311
312 xics_free(spapr->icp, msi->first_irq, msi->num);
313 if (msi_present(pdev)) {
314 spapr_msi_setmsg(pdev, 0, false, 0, num);
315 }
316 if (msix_present(pdev)) {
317 spapr_msi_setmsg(pdev, 0, true, 0, num);
318 }
319 g_hash_table_remove(phb->msi, &config_addr);
320
321 trace_spapr_pci_msi("Released MSIs", config_addr);
322 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
323 rtas_st(rets, 1, 0);
324 return;
325 }
326
327 /* Enabling MSI */
328
329 /* Check if the device supports as many IRQs as requested */
330 if (ret_intr_type == RTAS_TYPE_MSI) {
331 max_irqs = msi_nr_vectors_allocated(pdev);
332 } else if (ret_intr_type == RTAS_TYPE_MSIX) {
333 max_irqs = pdev->msix_entries_nr;
334 }
335 if (!max_irqs) {
336 error_report("Requested interrupt type %d is not enabled for device %x",
337 ret_intr_type, config_addr);
338 rtas_st(rets, 0, -1); /* Hardware error */
339 return;
340 }
341 /* Correct the number if the guest asked for too many */
342 if (req_num > max_irqs) {
343 trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs);
344 req_num = max_irqs;
345 irq = 0; /* to avoid misleading trace */
346 goto out;
347 }
348
349 /* Allocate MSIs */
350 irq = xics_alloc_block(spapr->icp, 0, req_num, false,
351 ret_intr_type == RTAS_TYPE_MSI);
352 if (!irq) {
353 error_report("Cannot allocate MSIs for device %x", config_addr);
354 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
355 return;
356 }
357
358 /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
359 spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX,
360 irq, req_num);
361
362 /* Add MSI device to cache */
363 msi = g_new(spapr_pci_msi, 1);
364 msi->first_irq = irq;
365 msi->num = req_num;
366 config_addr_key = g_new(int, 1);
367 *config_addr_key = config_addr;
368 g_hash_table_insert(phb->msi, config_addr_key, msi);
369
370 out:
371 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
372 rtas_st(rets, 1, req_num);
373 rtas_st(rets, 2, ++seq_num);
374 rtas_st(rets, 3, ret_intr_type);
375
376 trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq);
377 }
378
379 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu,
380 sPAPRMachineState *spapr,
381 uint32_t token,
382 uint32_t nargs,
383 target_ulong args,
384 uint32_t nret,
385 target_ulong rets)
386 {
387 uint32_t config_addr = rtas_ld(args, 0);
388 uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
389 unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
390 sPAPRPHBState *phb = NULL;
391 PCIDevice *pdev = NULL;
392 spapr_pci_msi *msi;
393
394 /* Find sPAPRPHBState */
395 phb = spapr_pci_find_phb(spapr, buid);
396 if (phb) {
397 pdev = spapr_pci_find_dev(spapr, buid, config_addr);
398 }
399 if (!phb || !pdev) {
400 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
401 return;
402 }
403
404 /* Find device descriptor and start IRQ */
405 msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
406 if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) {
407 trace_spapr_pci_msi("Failed to return vector", config_addr);
408 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
409 return;
410 }
411 intr_src_num = msi->first_irq + ioa_intr_num;
412 trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
413 intr_src_num);
414
415 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
416 rtas_st(rets, 1, intr_src_num);
417 rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
418 }
419
420 static void rtas_ibm_set_eeh_option(PowerPCCPU *cpu,
421 sPAPRMachineState *spapr,
422 uint32_t token, uint32_t nargs,
423 target_ulong args, uint32_t nret,
424 target_ulong rets)
425 {
426 sPAPRPHBState *sphb;
427 sPAPRPHBClass *spc;
428 uint32_t addr, option;
429 uint64_t buid;
430 int ret;
431
432 if ((nargs != 4) || (nret != 1)) {
433 goto param_error_exit;
434 }
435
436 buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
437 addr = rtas_ld(args, 0);
438 option = rtas_ld(args, 3);
439
440 sphb = spapr_pci_find_phb(spapr, buid);
441 if (!sphb) {
442 goto param_error_exit;
443 }
444
445 spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
446 if (!spc->eeh_set_option) {
447 goto param_error_exit;
448 }
449
450 ret = spc->eeh_set_option(sphb, addr, option);
451 rtas_st(rets, 0, ret);
452 return;
453
454 param_error_exit:
455 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
456 }
457
458 static void rtas_ibm_get_config_addr_info2(PowerPCCPU *cpu,
459 sPAPRMachineState *spapr,
460 uint32_t token, uint32_t nargs,
461 target_ulong args, uint32_t nret,
462 target_ulong rets)
463 {
464 sPAPRPHBState *sphb;
465 sPAPRPHBClass *spc;
466 PCIDevice *pdev;
467 uint32_t addr, option;
468 uint64_t buid;
469
470 if ((nargs != 4) || (nret != 2)) {
471 goto param_error_exit;
472 }
473
474 buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
475 sphb = spapr_pci_find_phb(spapr, buid);
476 if (!sphb) {
477 goto param_error_exit;
478 }
479
480 spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
481 if (!spc->eeh_set_option) {
482 goto param_error_exit;
483 }
484
485 /*
486 * We always have PE address of form "00BB0001". "BB"
487 * represents the bus number of PE's primary bus.
488 */
489 option = rtas_ld(args, 3);
490 switch (option) {
491 case RTAS_GET_PE_ADDR:
492 addr = rtas_ld(args, 0);
493 pdev = spapr_pci_find_dev(spapr, buid, addr);
494 if (!pdev) {
495 goto param_error_exit;
496 }
497
498 rtas_st(rets, 1, (pci_bus_num(pdev->bus) << 16) + 1);
499 break;
500 case RTAS_GET_PE_MODE:
501 rtas_st(rets, 1, RTAS_PE_MODE_SHARED);
502 break;
503 default:
504 goto param_error_exit;
505 }
506
507 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
508 return;
509
510 param_error_exit:
511 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
512 }
513
514 static void rtas_ibm_read_slot_reset_state2(PowerPCCPU *cpu,
515 sPAPRMachineState *spapr,
516 uint32_t token, uint32_t nargs,
517 target_ulong args, uint32_t nret,
518 target_ulong rets)
519 {
520 sPAPRPHBState *sphb;
521 sPAPRPHBClass *spc;
522 uint64_t buid;
523 int state, ret;
524
525 if ((nargs != 3) || (nret != 4 && nret != 5)) {
526 goto param_error_exit;
527 }
528
529 buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
530 sphb = spapr_pci_find_phb(spapr, buid);
531 if (!sphb) {
532 goto param_error_exit;
533 }
534
535 spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
536 if (!spc->eeh_get_state) {
537 goto param_error_exit;
538 }
539
540 ret = spc->eeh_get_state(sphb, &state);
541 rtas_st(rets, 0, ret);
542 if (ret != RTAS_OUT_SUCCESS) {
543 return;
544 }
545
546 rtas_st(rets, 1, state);
547 rtas_st(rets, 2, RTAS_EEH_SUPPORT);
548 rtas_st(rets, 3, RTAS_EEH_PE_UNAVAIL_INFO);
549 if (nret >= 5) {
550 rtas_st(rets, 4, RTAS_EEH_PE_RECOVER_INFO);
551 }
552 return;
553
554 param_error_exit:
555 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
556 }
557
558 static void rtas_ibm_set_slot_reset(PowerPCCPU *cpu,
559 sPAPRMachineState *spapr,
560 uint32_t token, uint32_t nargs,
561 target_ulong args, uint32_t nret,
562 target_ulong rets)
563 {
564 sPAPRPHBState *sphb;
565 sPAPRPHBClass *spc;
566 uint32_t option;
567 uint64_t buid;
568 int ret;
569
570 if ((nargs != 4) || (nret != 1)) {
571 goto param_error_exit;
572 }
573
574 buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
575 option = rtas_ld(args, 3);
576 sphb = spapr_pci_find_phb(spapr, buid);
577 if (!sphb) {
578 goto param_error_exit;
579 }
580
581 spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
582 if (!spc->eeh_reset) {
583 goto param_error_exit;
584 }
585
586 ret = spc->eeh_reset(sphb, option);
587 rtas_st(rets, 0, ret);
588 return;
589
590 param_error_exit:
591 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
592 }
593
594 static void rtas_ibm_configure_pe(PowerPCCPU *cpu,
595 sPAPRMachineState *spapr,
596 uint32_t token, uint32_t nargs,
597 target_ulong args, uint32_t nret,
598 target_ulong rets)
599 {
600 sPAPRPHBState *sphb;
601 sPAPRPHBClass *spc;
602 uint64_t buid;
603 int ret;
604
605 if ((nargs != 3) || (nret != 1)) {
606 goto param_error_exit;
607 }
608
609 buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
610 sphb = spapr_pci_find_phb(spapr, buid);
611 if (!sphb) {
612 goto param_error_exit;
613 }
614
615 spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
616 if (!spc->eeh_configure) {
617 goto param_error_exit;
618 }
619
620 ret = spc->eeh_configure(sphb);
621 rtas_st(rets, 0, ret);
622 return;
623
624 param_error_exit:
625 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
626 }
627
628 /* To support it later */
629 static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu,
630 sPAPRMachineState *spapr,
631 uint32_t token, uint32_t nargs,
632 target_ulong args, uint32_t nret,
633 target_ulong rets)
634 {
635 sPAPRPHBState *sphb;
636 sPAPRPHBClass *spc;
637 int option;
638 uint64_t buid;
639
640 if ((nargs != 8) || (nret != 1)) {
641 goto param_error_exit;
642 }
643
644 buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
645 sphb = spapr_pci_find_phb(spapr, buid);
646 if (!sphb) {
647 goto param_error_exit;
648 }
649
650 spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
651 if (!spc->eeh_set_option) {
652 goto param_error_exit;
653 }
654
655 option = rtas_ld(args, 7);
656 switch (option) {
657 case RTAS_SLOT_TEMP_ERR_LOG:
658 case RTAS_SLOT_PERM_ERR_LOG:
659 break;
660 default:
661 goto param_error_exit;
662 }
663
664 /* We don't have error log yet */
665 rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND);
666 return;
667
668 param_error_exit:
669 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
670 }
671
672 static int pci_spapr_swizzle(int slot, int pin)
673 {
674 return (slot + pin) % PCI_NUM_PINS;
675 }
676
677 static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
678 {
679 /*
680 * Here we need to convert pci_dev + irq_num to some unique value
681 * which is less than number of IRQs on the specific bus (4). We
682 * use standard PCI swizzling, that is (slot number + pin number)
683 * % 4.
684 */
685 return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
686 }
687
688 static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
689 {
690 /*
691 * Here we use the number returned by pci_spapr_map_irq to find a
692 * corresponding qemu_irq.
693 */
694 sPAPRPHBState *phb = opaque;
695
696 trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq);
697 qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level);
698 }
699
700 static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin)
701 {
702 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque);
703 PCIINTxRoute route;
704
705 route.mode = PCI_INTX_ENABLED;
706 route.irq = sphb->lsi_table[pin].irq;
707
708 return route;
709 }
710
711 /*
712 * MSI/MSIX memory region implementation.
713 * The handler handles both MSI and MSIX.
714 * For MSI-X, the vector number is encoded as a part of the address,
715 * data is set to 0.
716 * For MSI, the vector number is encoded in least bits in data.
717 */
718 static void spapr_msi_write(void *opaque, hwaddr addr,
719 uint64_t data, unsigned size)
720 {
721 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
722 uint32_t irq = data;
723
724 trace_spapr_pci_msi_write(addr, data, irq);
725
726 qemu_irq_pulse(xics_get_qirq(spapr->icp, irq));
727 }
728
729 static const MemoryRegionOps spapr_msi_ops = {
730 /* There is no .read as the read result is undefined by PCI spec */
731 .read = NULL,
732 .write = spapr_msi_write,
733 .endianness = DEVICE_LITTLE_ENDIAN
734 };
735
736 /*
737 * PHB PCI device
738 */
739 static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn)
740 {
741 sPAPRPHBState *phb = opaque;
742
743 return &phb->iommu_as;
744 }
745
746 /* Macros to operate with address in OF binding to PCI */
747 #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p))
748 #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */
749 #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */
750 #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */
751 #define b_ss(x) b_x((x), 24, 2) /* the space code */
752 #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */
753 #define b_ddddd(x) b_x((x), 11, 5) /* device number */
754 #define b_fff(x) b_x((x), 8, 3) /* function number */
755 #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */
756
757 /* for 'reg'/'assigned-addresses' OF properties */
758 #define RESOURCE_CELLS_SIZE 2
759 #define RESOURCE_CELLS_ADDRESS 3
760
761 typedef struct ResourceFields {
762 uint32_t phys_hi;
763 uint32_t phys_mid;
764 uint32_t phys_lo;
765 uint32_t size_hi;
766 uint32_t size_lo;
767 } QEMU_PACKED ResourceFields;
768
769 typedef struct ResourceProps {
770 ResourceFields reg[8];
771 ResourceFields assigned[7];
772 uint32_t reg_len;
773 uint32_t assigned_len;
774 } ResourceProps;
775
776 /* fill in the 'reg'/'assigned-resources' OF properties for
777 * a PCI device. 'reg' describes resource requirements for a
778 * device's IO/MEM regions, 'assigned-addresses' describes the
779 * actual resource assignments.
780 *
781 * the properties are arrays of ('phys-addr', 'size') pairs describing
782 * the addressable regions of the PCI device, where 'phys-addr' is a
783 * RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to
784 * (phys.hi, phys.mid, phys.lo), and 'size' is a
785 * RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo).
786 *
787 * phys.hi = 0xYYXXXXZZ, where:
788 * 0xYY = npt000ss
789 * ||| |
790 * ||| +-- space code
791 * ||| |
792 * ||| + 00 if configuration space
793 * ||| + 01 if IO region,
794 * ||| + 10 if 32-bit MEM region
795 * ||| + 11 if 64-bit MEM region
796 * |||
797 * ||+------ for non-relocatable IO: 1 if aliased
798 * || for relocatable IO: 1 if below 64KB
799 * || for MEM: 1 if below 1MB
800 * |+------- 1 if region is prefetchable
801 * +-------- 1 if region is non-relocatable
802 * 0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function
803 * bits respectively
804 * 0xZZ = rrrrrrrr, the register number of the BAR corresponding
805 * to the region
806 *
807 * phys.mid and phys.lo correspond respectively to the hi/lo portions
808 * of the actual address of the region.
809 *
810 * how the phys-addr/size values are used differ slightly between
811 * 'reg' and 'assigned-addresses' properties. namely, 'reg' has
812 * an additional description for the config space region of the
813 * device, and in the case of QEMU has n=0 and phys.mid=phys.lo=0
814 * to describe the region as relocatable, with an address-mapping
815 * that corresponds directly to the PHB's address space for the
816 * resource. 'assigned-addresses' always has n=1 set with an absolute
817 * address assigned for the resource. in general, 'assigned-addresses'
818 * won't be populated, since addresses for PCI devices are generally
819 * unmapped initially and left to the guest to assign.
820 *
821 * note also that addresses defined in these properties are, at least
822 * for PAPR guests, relative to the PHBs IO/MEM windows, and
823 * correspond directly to the addresses in the BARs.
824 *
825 * in accordance with PCI Bus Binding to Open Firmware,
826 * IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7,
827 * Appendix C.
828 */
829 static void populate_resource_props(PCIDevice *d, ResourceProps *rp)
830 {
831 int bus_num = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d))));
832 uint32_t dev_id = (b_bbbbbbbb(bus_num) |
833 b_ddddd(PCI_SLOT(d->devfn)) |
834 b_fff(PCI_FUNC(d->devfn)));
835 ResourceFields *reg, *assigned;
836 int i, reg_idx = 0, assigned_idx = 0;
837
838 /* config space region */
839 reg = &rp->reg[reg_idx++];
840 reg->phys_hi = cpu_to_be32(dev_id);
841 reg->phys_mid = 0;
842 reg->phys_lo = 0;
843 reg->size_hi = 0;
844 reg->size_lo = 0;
845
846 for (i = 0; i < PCI_NUM_REGIONS; i++) {
847 if (!d->io_regions[i].size) {
848 continue;
849 }
850
851 reg = &rp->reg[reg_idx++];
852
853 reg->phys_hi = cpu_to_be32(dev_id | b_rrrrrrrr(pci_bar(d, i)));
854 if (d->io_regions[i].type & PCI_BASE_ADDRESS_SPACE_IO) {
855 reg->phys_hi |= cpu_to_be32(b_ss(1));
856 } else if (d->io_regions[i].type & PCI_BASE_ADDRESS_MEM_TYPE_64) {
857 reg->phys_hi |= cpu_to_be32(b_ss(3));
858 } else {
859 reg->phys_hi |= cpu_to_be32(b_ss(2));
860 }
861 reg->phys_mid = 0;
862 reg->phys_lo = 0;
863 reg->size_hi = cpu_to_be32(d->io_regions[i].size >> 32);
864 reg->size_lo = cpu_to_be32(d->io_regions[i].size);
865
866 if (d->io_regions[i].addr == PCI_BAR_UNMAPPED) {
867 continue;
868 }
869
870 assigned = &rp->assigned[assigned_idx++];
871 assigned->phys_hi = cpu_to_be32(reg->phys_hi | b_n(1));
872 assigned->phys_mid = cpu_to_be32(d->io_regions[i].addr >> 32);
873 assigned->phys_lo = cpu_to_be32(d->io_regions[i].addr);
874 assigned->size_hi = reg->size_hi;
875 assigned->size_lo = reg->size_lo;
876 }
877
878 rp->reg_len = reg_idx * sizeof(ResourceFields);
879 rp->assigned_len = assigned_idx * sizeof(ResourceFields);
880 }
881
882 static int spapr_populate_pci_child_dt(PCIDevice *dev, void *fdt, int offset,
883 int phb_index, int drc_index,
884 const char *drc_name)
885 {
886 ResourceProps rp;
887 bool is_bridge = false;
888 int pci_status;
889
890 if (pci_default_read_config(dev, PCI_HEADER_TYPE, 1) ==
891 PCI_HEADER_TYPE_BRIDGE) {
892 is_bridge = true;
893 }
894
895 /* in accordance with PAPR+ v2.7 13.6.3, Table 181 */
896 _FDT(fdt_setprop_cell(fdt, offset, "vendor-id",
897 pci_default_read_config(dev, PCI_VENDOR_ID, 2)));
898 _FDT(fdt_setprop_cell(fdt, offset, "device-id",
899 pci_default_read_config(dev, PCI_DEVICE_ID, 2)));
900 _FDT(fdt_setprop_cell(fdt, offset, "revision-id",
901 pci_default_read_config(dev, PCI_REVISION_ID, 1)));
902 _FDT(fdt_setprop_cell(fdt, offset, "class-code",
903 pci_default_read_config(dev, PCI_CLASS_PROG, 3)));
904 if (pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)) {
905 _FDT(fdt_setprop_cell(fdt, offset, "interrupts",
906 pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)));
907 }
908
909 if (!is_bridge) {
910 _FDT(fdt_setprop_cell(fdt, offset, "min-grant",
911 pci_default_read_config(dev, PCI_MIN_GNT, 1)));
912 _FDT(fdt_setprop_cell(fdt, offset, "max-latency",
913 pci_default_read_config(dev, PCI_MAX_LAT, 1)));
914 }
915
916 if (pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)) {
917 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-id",
918 pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)));
919 }
920
921 if (pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)) {
922 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-vendor-id",
923 pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)));
924 }
925
926 _FDT(fdt_setprop_cell(fdt, offset, "cache-line-size",
927 pci_default_read_config(dev, PCI_CACHE_LINE_SIZE, 1)));
928
929 /* the following fdt cells are masked off the pci status register */
930 pci_status = pci_default_read_config(dev, PCI_STATUS, 2);
931 _FDT(fdt_setprop_cell(fdt, offset, "devsel-speed",
932 PCI_STATUS_DEVSEL_MASK & pci_status));
933
934 if (pci_status & PCI_STATUS_FAST_BACK) {
935 _FDT(fdt_setprop(fdt, offset, "fast-back-to-back", NULL, 0));
936 }
937 if (pci_status & PCI_STATUS_66MHZ) {
938 _FDT(fdt_setprop(fdt, offset, "66mhz-capable", NULL, 0));
939 }
940 if (pci_status & PCI_STATUS_UDF) {
941 _FDT(fdt_setprop(fdt, offset, "udf-supported", NULL, 0));
942 }
943
944 /* NOTE: this is normally generated by firmware via path/unit name,
945 * but in our case we must set it manually since it does not get
946 * processed by OF beforehand
947 */
948 _FDT(fdt_setprop_string(fdt, offset, "name", "pci"));
949 _FDT(fdt_setprop(fdt, offset, "ibm,loc-code", drc_name, strlen(drc_name)));
950 _FDT(fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index));
951
952 _FDT(fdt_setprop_cell(fdt, offset, "#address-cells",
953 RESOURCE_CELLS_ADDRESS));
954 _FDT(fdt_setprop_cell(fdt, offset, "#size-cells",
955 RESOURCE_CELLS_SIZE));
956 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi-x",
957 RESOURCE_CELLS_SIZE));
958
959 populate_resource_props(dev, &rp);
960 _FDT(fdt_setprop(fdt, offset, "reg", (uint8_t *)rp.reg, rp.reg_len));
961 _FDT(fdt_setprop(fdt, offset, "assigned-addresses",
962 (uint8_t *)rp.assigned, rp.assigned_len));
963
964 return 0;
965 }
966
967 /* create OF node for pci device and required OF DT properties */
968 static void *spapr_create_pci_child_dt(sPAPRPHBState *phb, PCIDevice *dev,
969 int drc_index, const char *drc_name,
970 int *dt_offset)
971 {
972 void *fdt;
973 int offset, ret, fdt_size;
974 int slot = PCI_SLOT(dev->devfn);
975 int func = PCI_FUNC(dev->devfn);
976 char nodename[512];
977
978 fdt = create_device_tree(&fdt_size);
979 if (func != 0) {
980 sprintf(nodename, "pci@%d,%d", slot, func);
981 } else {
982 sprintf(nodename, "pci@%d", slot);
983 }
984 offset = fdt_add_subnode(fdt, 0, nodename);
985 ret = spapr_populate_pci_child_dt(dev, fdt, offset, phb->index, drc_index,
986 drc_name);
987 g_assert(!ret);
988
989 *dt_offset = offset;
990 return fdt;
991 }
992
993 static void spapr_phb_add_pci_device(sPAPRDRConnector *drc,
994 sPAPRPHBState *phb,
995 PCIDevice *pdev,
996 Error **errp)
997 {
998 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
999 DeviceState *dev = DEVICE(pdev);
1000 int drc_index = drck->get_index(drc);
1001 const char *drc_name = drck->get_name(drc);
1002 void *fdt = NULL;
1003 int fdt_start_offset = 0;
1004
1005 /* boot-time devices get their device tree node created by SLOF, but for
1006 * hotplugged devices we need QEMU to generate it so the guest can fetch
1007 * it via RTAS
1008 */
1009 if (dev->hotplugged) {
1010 fdt = spapr_create_pci_child_dt(phb, pdev, drc_index, drc_name,
1011 &fdt_start_offset);
1012 }
1013
1014 drck->attach(drc, DEVICE(pdev),
1015 fdt, fdt_start_offset, !dev->hotplugged, errp);
1016 if (*errp) {
1017 g_free(fdt);
1018 }
1019 }
1020
1021 static void spapr_phb_remove_pci_device_cb(DeviceState *dev, void *opaque)
1022 {
1023 /* some version guests do not wait for completion of a device
1024 * cleanup (generally done asynchronously by the kernel) before
1025 * signaling to QEMU that the device is safe, but instead sleep
1026 * for some 'safe' period of time. unfortunately on a busy host
1027 * this sleep isn't guaranteed to be long enough, resulting in
1028 * bad things like IRQ lines being left asserted during final
1029 * device removal. to deal with this we call reset just prior
1030 * to finalizing the device, which will put the device back into
1031 * an 'idle' state, as the device cleanup code expects.
1032 */
1033 pci_device_reset(PCI_DEVICE(dev));
1034 object_unparent(OBJECT(dev));
1035 }
1036
1037 static void spapr_phb_remove_pci_device(sPAPRDRConnector *drc,
1038 sPAPRPHBState *phb,
1039 PCIDevice *pdev,
1040 Error **errp)
1041 {
1042 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1043
1044 drck->detach(drc, DEVICE(pdev), spapr_phb_remove_pci_device_cb, phb, errp);
1045 }
1046
1047 static sPAPRDRConnector *spapr_phb_get_pci_drc(sPAPRPHBState *phb,
1048 PCIDevice *pdev)
1049 {
1050 uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
1051 return spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_PCI,
1052 (phb->index << 16) |
1053 (busnr << 8) |
1054 pdev->devfn);
1055 }
1056
1057 static void spapr_phb_hot_plug_child(HotplugHandler *plug_handler,
1058 DeviceState *plugged_dev, Error **errp)
1059 {
1060 sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1061 PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1062 sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1063 Error *local_err = NULL;
1064
1065 /* if DR is disabled we don't need to do anything in the case of
1066 * hotplug or coldplug callbacks
1067 */
1068 if (!phb->dr_enabled) {
1069 /* if this is a hotplug operation initiated by the user
1070 * we need to let them know it's not enabled
1071 */
1072 if (plugged_dev->hotplugged) {
1073 error_setg(errp, QERR_BUS_NO_HOTPLUG,
1074 object_get_typename(OBJECT(phb)));
1075 }
1076 return;
1077 }
1078
1079 g_assert(drc);
1080
1081 spapr_phb_add_pci_device(drc, phb, pdev, &local_err);
1082 if (local_err) {
1083 error_propagate(errp, local_err);
1084 return;
1085 }
1086 if (plugged_dev->hotplugged) {
1087 spapr_hotplug_req_add_event(drc);
1088 }
1089 }
1090
1091 static void spapr_phb_hot_unplug_child(HotplugHandler *plug_handler,
1092 DeviceState *plugged_dev, Error **errp)
1093 {
1094 sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1095 PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1096 sPAPRDRConnectorClass *drck;
1097 sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1098 Error *local_err = NULL;
1099
1100 if (!phb->dr_enabled) {
1101 error_setg(errp, QERR_BUS_NO_HOTPLUG,
1102 object_get_typename(OBJECT(phb)));
1103 return;
1104 }
1105
1106 g_assert(drc);
1107
1108 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1109 if (!drck->release_pending(drc)) {
1110 spapr_phb_remove_pci_device(drc, phb, pdev, &local_err);
1111 if (local_err) {
1112 error_propagate(errp, local_err);
1113 return;
1114 }
1115 spapr_hotplug_req_remove_event(drc);
1116 }
1117 }
1118
1119 static void spapr_phb_realize(DeviceState *dev, Error **errp)
1120 {
1121 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1122 SysBusDevice *s = SYS_BUS_DEVICE(dev);
1123 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
1124 PCIHostState *phb = PCI_HOST_BRIDGE(s);
1125 sPAPRPHBClass *info = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(s);
1126 char *namebuf;
1127 int i;
1128 PCIBus *bus;
1129 uint64_t msi_window_size = 4096;
1130
1131 if (sphb->index != (uint32_t)-1) {
1132 hwaddr windows_base;
1133
1134 if ((sphb->buid != (uint64_t)-1) || (sphb->dma_liobn != (uint32_t)-1)
1135 || (sphb->mem_win_addr != (hwaddr)-1)
1136 || (sphb->io_win_addr != (hwaddr)-1)) {
1137 error_setg(errp, "Either \"index\" or other parameters must"
1138 " be specified for PAPR PHB, not both");
1139 return;
1140 }
1141
1142 if (sphb->index > SPAPR_PCI_MAX_INDEX) {
1143 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
1144 SPAPR_PCI_MAX_INDEX);
1145 return;
1146 }
1147
1148 sphb->buid = SPAPR_PCI_BASE_BUID + sphb->index;
1149 sphb->dma_liobn = SPAPR_PCI_LIOBN(sphb->index, 0);
1150
1151 windows_base = SPAPR_PCI_WINDOW_BASE
1152 + sphb->index * SPAPR_PCI_WINDOW_SPACING;
1153 sphb->mem_win_addr = windows_base + SPAPR_PCI_MMIO_WIN_OFF;
1154 sphb->io_win_addr = windows_base + SPAPR_PCI_IO_WIN_OFF;
1155 }
1156
1157 if (sphb->buid == (uint64_t)-1) {
1158 error_setg(errp, "BUID not specified for PHB");
1159 return;
1160 }
1161
1162 if (sphb->dma_liobn == (uint32_t)-1) {
1163 error_setg(errp, "LIOBN not specified for PHB");
1164 return;
1165 }
1166
1167 if (sphb->mem_win_addr == (hwaddr)-1) {
1168 error_setg(errp, "Memory window address not specified for PHB");
1169 return;
1170 }
1171
1172 if (sphb->io_win_addr == (hwaddr)-1) {
1173 error_setg(errp, "IO window address not specified for PHB");
1174 return;
1175 }
1176
1177 if (spapr_pci_find_phb(spapr, sphb->buid)) {
1178 error_setg(errp, "PCI host bridges must have unique BUIDs");
1179 return;
1180 }
1181
1182 sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
1183
1184 namebuf = alloca(strlen(sphb->dtbusname) + 32);
1185
1186 /* Initialize memory regions */
1187 sprintf(namebuf, "%s.mmio", sphb->dtbusname);
1188 memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX);
1189
1190 sprintf(namebuf, "%s.mmio-alias", sphb->dtbusname);
1191 memory_region_init_alias(&sphb->memwindow, OBJECT(sphb),
1192 namebuf, &sphb->memspace,
1193 SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
1194 memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
1195 &sphb->memwindow);
1196
1197 /* Initialize IO regions */
1198 sprintf(namebuf, "%s.io", sphb->dtbusname);
1199 memory_region_init(&sphb->iospace, OBJECT(sphb),
1200 namebuf, SPAPR_PCI_IO_WIN_SIZE);
1201
1202 sprintf(namebuf, "%s.io-alias", sphb->dtbusname);
1203 memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf,
1204 &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE);
1205 memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
1206 &sphb->iowindow);
1207
1208 bus = pci_register_bus(dev, NULL,
1209 pci_spapr_set_irq, pci_spapr_map_irq, sphb,
1210 &sphb->memspace, &sphb->iospace,
1211 PCI_DEVFN(0, 0), PCI_NUM_PINS, TYPE_PCI_BUS);
1212 phb->bus = bus;
1213 qbus_set_hotplug_handler(BUS(phb->bus), DEVICE(sphb), NULL);
1214
1215 /*
1216 * Initialize PHB address space.
1217 * By default there will be at least one subregion for default
1218 * 32bit DMA window.
1219 * Later the guest might want to create another DMA window
1220 * which will become another memory subregion.
1221 */
1222 sprintf(namebuf, "%s.iommu-root", sphb->dtbusname);
1223
1224 memory_region_init(&sphb->iommu_root, OBJECT(sphb),
1225 namebuf, UINT64_MAX);
1226 address_space_init(&sphb->iommu_as, &sphb->iommu_root,
1227 sphb->dtbusname);
1228
1229 /*
1230 * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
1231 * we need to allocate some memory to catch those writes coming
1232 * from msi_notify()/msix_notify().
1233 * As MSIMessage:addr is going to be the same and MSIMessage:data
1234 * is going to be a VIRQ number, 4 bytes of the MSI MR will only
1235 * be used.
1236 *
1237 * For KVM we want to ensure that this memory is a full page so that
1238 * our memory slot is of page size granularity.
1239 */
1240 #ifdef CONFIG_KVM
1241 if (kvm_enabled()) {
1242 msi_window_size = getpagesize();
1243 }
1244 #endif
1245
1246 memory_region_init_io(&sphb->msiwindow, NULL, &spapr_msi_ops, spapr,
1247 "msi", msi_window_size);
1248 memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW,
1249 &sphb->msiwindow);
1250
1251 pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb);
1252
1253 pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq);
1254
1255 QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
1256
1257 /* Initialize the LSI table */
1258 for (i = 0; i < PCI_NUM_PINS; i++) {
1259 uint32_t irq;
1260
1261 irq = xics_alloc_block(spapr->icp, 0, 1, true, false);
1262 if (!irq) {
1263 error_setg(errp, "spapr_allocate_lsi failed");
1264 return;
1265 }
1266
1267 sphb->lsi_table[i].irq = irq;
1268 }
1269
1270 /* allocate connectors for child PCI devices */
1271 if (sphb->dr_enabled) {
1272 for (i = 0; i < PCI_SLOT_MAX * 8; i++) {
1273 spapr_dr_connector_new(OBJECT(phb),
1274 SPAPR_DR_CONNECTOR_TYPE_PCI,
1275 (sphb->index << 16) | i);
1276 }
1277 }
1278
1279 if (!info->finish_realize) {
1280 error_setg(errp, "finish_realize not defined");
1281 return;
1282 }
1283
1284 info->finish_realize(sphb, errp);
1285
1286 sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free, g_free);
1287 }
1288
1289 static void spapr_phb_finish_realize(sPAPRPHBState *sphb, Error **errp)
1290 {
1291 sPAPRTCETable *tcet;
1292 uint32_t nb_table;
1293
1294 nb_table = SPAPR_PCI_DMA32_SIZE >> SPAPR_TCE_PAGE_SHIFT;
1295 tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn,
1296 0, SPAPR_TCE_PAGE_SHIFT, nb_table, false);
1297 if (!tcet) {
1298 error_setg(errp, "Unable to create TCE table for %s",
1299 sphb->dtbusname);
1300 return ;
1301 }
1302
1303 /* Register default 32bit DMA window */
1304 memory_region_add_subregion(&sphb->iommu_root, 0,
1305 spapr_tce_get_iommu(tcet));
1306 }
1307
1308 static int spapr_phb_children_reset(Object *child, void *opaque)
1309 {
1310 DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE);
1311
1312 if (dev) {
1313 device_reset(dev);
1314 }
1315
1316 return 0;
1317 }
1318
1319 static void spapr_phb_reset(DeviceState *qdev)
1320 {
1321 /* Reset the IOMMU state */
1322 object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL);
1323 }
1324
1325 static Property spapr_phb_properties[] = {
1326 DEFINE_PROP_UINT32("index", sPAPRPHBState, index, -1),
1327 DEFINE_PROP_UINT64("buid", sPAPRPHBState, buid, -1),
1328 DEFINE_PROP_UINT32("liobn", sPAPRPHBState, dma_liobn, -1),
1329 DEFINE_PROP_UINT64("mem_win_addr", sPAPRPHBState, mem_win_addr, -1),
1330 DEFINE_PROP_UINT64("mem_win_size", sPAPRPHBState, mem_win_size,
1331 SPAPR_PCI_MMIO_WIN_SIZE),
1332 DEFINE_PROP_UINT64("io_win_addr", sPAPRPHBState, io_win_addr, -1),
1333 DEFINE_PROP_UINT64("io_win_size", sPAPRPHBState, io_win_size,
1334 SPAPR_PCI_IO_WIN_SIZE),
1335 DEFINE_PROP_BOOL("dynamic-reconfiguration", sPAPRPHBState, dr_enabled,
1336 true),
1337 DEFINE_PROP_END_OF_LIST(),
1338 };
1339
1340 static const VMStateDescription vmstate_spapr_pci_lsi = {
1341 .name = "spapr_pci/lsi",
1342 .version_id = 1,
1343 .minimum_version_id = 1,
1344 .fields = (VMStateField[]) {
1345 VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi),
1346
1347 VMSTATE_END_OF_LIST()
1348 },
1349 };
1350
1351 static const VMStateDescription vmstate_spapr_pci_msi = {
1352 .name = "spapr_pci/msi",
1353 .version_id = 1,
1354 .minimum_version_id = 1,
1355 .fields = (VMStateField []) {
1356 VMSTATE_UINT32(key, spapr_pci_msi_mig),
1357 VMSTATE_UINT32(value.first_irq, spapr_pci_msi_mig),
1358 VMSTATE_UINT32(value.num, spapr_pci_msi_mig),
1359 VMSTATE_END_OF_LIST()
1360 },
1361 };
1362
1363 static void spapr_pci_fill_msi_devs(gpointer key, gpointer value,
1364 gpointer opaque)
1365 {
1366 sPAPRPHBState *sphb = opaque;
1367
1368 sphb->msi_devs[sphb->msi_devs_num].key = *(uint32_t *)key;
1369 sphb->msi_devs[sphb->msi_devs_num].value = *(spapr_pci_msi *)value;
1370 sphb->msi_devs_num++;
1371 }
1372
1373 static void spapr_pci_pre_save(void *opaque)
1374 {
1375 sPAPRPHBState *sphb = opaque;
1376 int msi_devs_num;
1377
1378 if (sphb->msi_devs) {
1379 g_free(sphb->msi_devs);
1380 sphb->msi_devs = NULL;
1381 }
1382 sphb->msi_devs_num = 0;
1383 msi_devs_num = g_hash_table_size(sphb->msi);
1384 if (!msi_devs_num) {
1385 return;
1386 }
1387 sphb->msi_devs = g_malloc(msi_devs_num * sizeof(spapr_pci_msi_mig));
1388
1389 g_hash_table_foreach(sphb->msi, spapr_pci_fill_msi_devs, sphb);
1390 assert(sphb->msi_devs_num == msi_devs_num);
1391 }
1392
1393 static int spapr_pci_post_load(void *opaque, int version_id)
1394 {
1395 sPAPRPHBState *sphb = opaque;
1396 gpointer key, value;
1397 int i;
1398
1399 for (i = 0; i < sphb->msi_devs_num; ++i) {
1400 key = g_memdup(&sphb->msi_devs[i].key,
1401 sizeof(sphb->msi_devs[i].key));
1402 value = g_memdup(&sphb->msi_devs[i].value,
1403 sizeof(sphb->msi_devs[i].value));
1404 g_hash_table_insert(sphb->msi, key, value);
1405 }
1406 if (sphb->msi_devs) {
1407 g_free(sphb->msi_devs);
1408 sphb->msi_devs = NULL;
1409 }
1410 sphb->msi_devs_num = 0;
1411
1412 return 0;
1413 }
1414
1415 static const VMStateDescription vmstate_spapr_pci = {
1416 .name = "spapr_pci",
1417 .version_id = 2,
1418 .minimum_version_id = 2,
1419 .pre_save = spapr_pci_pre_save,
1420 .post_load = spapr_pci_post_load,
1421 .fields = (VMStateField[]) {
1422 VMSTATE_UINT64_EQUAL(buid, sPAPRPHBState),
1423 VMSTATE_UINT32_EQUAL(dma_liobn, sPAPRPHBState),
1424 VMSTATE_UINT64_EQUAL(mem_win_addr, sPAPRPHBState),
1425 VMSTATE_UINT64_EQUAL(mem_win_size, sPAPRPHBState),
1426 VMSTATE_UINT64_EQUAL(io_win_addr, sPAPRPHBState),
1427 VMSTATE_UINT64_EQUAL(io_win_size, sPAPRPHBState),
1428 VMSTATE_STRUCT_ARRAY(lsi_table, sPAPRPHBState, PCI_NUM_PINS, 0,
1429 vmstate_spapr_pci_lsi, struct spapr_pci_lsi),
1430 VMSTATE_INT32(msi_devs_num, sPAPRPHBState),
1431 VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, sPAPRPHBState, msi_devs_num, 0,
1432 vmstate_spapr_pci_msi, spapr_pci_msi_mig),
1433 VMSTATE_END_OF_LIST()
1434 },
1435 };
1436
1437 static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge,
1438 PCIBus *rootbus)
1439 {
1440 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge);
1441
1442 return sphb->dtbusname;
1443 }
1444
1445 static void spapr_phb_class_init(ObjectClass *klass, void *data)
1446 {
1447 PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
1448 DeviceClass *dc = DEVICE_CLASS(klass);
1449 sPAPRPHBClass *spc = SPAPR_PCI_HOST_BRIDGE_CLASS(klass);
1450 HotplugHandlerClass *hp = HOTPLUG_HANDLER_CLASS(klass);
1451
1452 hc->root_bus_path = spapr_phb_root_bus_path;
1453 dc->realize = spapr_phb_realize;
1454 dc->props = spapr_phb_properties;
1455 dc->reset = spapr_phb_reset;
1456 dc->vmsd = &vmstate_spapr_pci;
1457 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
1458 dc->cannot_instantiate_with_device_add_yet = false;
1459 spc->finish_realize = spapr_phb_finish_realize;
1460 hp->plug = spapr_phb_hot_plug_child;
1461 hp->unplug = spapr_phb_hot_unplug_child;
1462 }
1463
1464 static const TypeInfo spapr_phb_info = {
1465 .name = TYPE_SPAPR_PCI_HOST_BRIDGE,
1466 .parent = TYPE_PCI_HOST_BRIDGE,
1467 .instance_size = sizeof(sPAPRPHBState),
1468 .class_init = spapr_phb_class_init,
1469 .class_size = sizeof(sPAPRPHBClass),
1470 .interfaces = (InterfaceInfo[]) {
1471 { TYPE_HOTPLUG_HANDLER },
1472 { }
1473 }
1474 };
1475
1476 PCIHostState *spapr_create_phb(sPAPRMachineState *spapr, int index)
1477 {
1478 DeviceState *dev;
1479
1480 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
1481 qdev_prop_set_uint32(dev, "index", index);
1482 qdev_init_nofail(dev);
1483
1484 return PCI_HOST_BRIDGE(dev);
1485 }
1486
1487 int spapr_populate_pci_dt(sPAPRPHBState *phb,
1488 uint32_t xics_phandle,
1489 void *fdt)
1490 {
1491 int bus_off, i, j, ret;
1492 char nodename[256];
1493 uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
1494 const uint64_t mmiosize = memory_region_size(&phb->memwindow);
1495 const uint64_t w32max = (1ULL << 32) - SPAPR_PCI_MEM_WIN_BUS_OFFSET;
1496 const uint64_t w32size = MIN(w32max, mmiosize);
1497 const uint64_t w64size = (mmiosize > w32size) ? (mmiosize - w32size) : 0;
1498 struct {
1499 uint32_t hi;
1500 uint64_t child;
1501 uint64_t parent;
1502 uint64_t size;
1503 } QEMU_PACKED ranges[] = {
1504 {
1505 cpu_to_be32(b_ss(1)), cpu_to_be64(0),
1506 cpu_to_be64(phb->io_win_addr),
1507 cpu_to_be64(memory_region_size(&phb->iospace)),
1508 },
1509 {
1510 cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
1511 cpu_to_be64(phb->mem_win_addr),
1512 cpu_to_be64(w32size),
1513 },
1514 {
1515 cpu_to_be32(b_ss(3)), cpu_to_be64(1ULL << 32),
1516 cpu_to_be64(phb->mem_win_addr + w32size),
1517 cpu_to_be64(w64size)
1518 },
1519 };
1520 const unsigned sizeof_ranges = (w64size ? 3 : 2) * sizeof(ranges[0]);
1521 uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
1522 uint32_t interrupt_map_mask[] = {
1523 cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
1524 uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
1525 sPAPRTCETable *tcet;
1526
1527 /* Start populating the FDT */
1528 sprintf(nodename, "pci@%" PRIx64, phb->buid);
1529 bus_off = fdt_add_subnode(fdt, 0, nodename);
1530 if (bus_off < 0) {
1531 return bus_off;
1532 }
1533
1534 /* Write PHB properties */
1535 _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
1536 _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
1537 _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
1538 _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
1539 _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
1540 _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
1541 _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
1542 _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof_ranges));
1543 _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
1544 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
1545 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi", XICS_IRQS));
1546
1547 /* Build the interrupt-map, this must matches what is done
1548 * in pci_spapr_map_irq
1549 */
1550 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
1551 &interrupt_map_mask, sizeof(interrupt_map_mask)));
1552 for (i = 0; i < PCI_SLOT_MAX; i++) {
1553 for (j = 0; j < PCI_NUM_PINS; j++) {
1554 uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
1555 int lsi_num = pci_spapr_swizzle(i, j);
1556
1557 irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
1558 irqmap[1] = 0;
1559 irqmap[2] = 0;
1560 irqmap[3] = cpu_to_be32(j+1);
1561 irqmap[4] = cpu_to_be32(xics_phandle);
1562 irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].irq);
1563 irqmap[6] = cpu_to_be32(0x8);
1564 }
1565 }
1566 /* Write interrupt map */
1567 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
1568 sizeof(interrupt_map)));
1569
1570 tcet = spapr_tce_find_by_liobn(SPAPR_PCI_LIOBN(phb->index, 0));
1571 spapr_dma_dt(fdt, bus_off, "ibm,dma-window",
1572 tcet->liobn, tcet->bus_offset,
1573 tcet->nb_table << tcet->page_shift);
1574
1575 ret = spapr_drc_populate_dt(fdt, bus_off, OBJECT(phb),
1576 SPAPR_DR_CONNECTOR_TYPE_PCI);
1577 if (ret) {
1578 return ret;
1579 }
1580
1581 return 0;
1582 }
1583
1584 void spapr_pci_rtas_init(void)
1585 {
1586 spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config",
1587 rtas_read_pci_config);
1588 spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config",
1589 rtas_write_pci_config);
1590 spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config",
1591 rtas_ibm_read_pci_config);
1592 spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config",
1593 rtas_ibm_write_pci_config);
1594 if (msi_supported) {
1595 spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER,
1596 "ibm,query-interrupt-source-number",
1597 rtas_ibm_query_interrupt_source_number);
1598 spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi",
1599 rtas_ibm_change_msi);
1600 }
1601
1602 spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION,
1603 "ibm,set-eeh-option",
1604 rtas_ibm_set_eeh_option);
1605 spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2,
1606 "ibm,get-config-addr-info2",
1607 rtas_ibm_get_config_addr_info2);
1608 spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2,
1609 "ibm,read-slot-reset-state2",
1610 rtas_ibm_read_slot_reset_state2);
1611 spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET,
1612 "ibm,set-slot-reset",
1613 rtas_ibm_set_slot_reset);
1614 spapr_rtas_register(RTAS_IBM_CONFIGURE_PE,
1615 "ibm,configure-pe",
1616 rtas_ibm_configure_pe);
1617 spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL,
1618 "ibm,slot-error-detail",
1619 rtas_ibm_slot_error_detail);
1620 }
1621
1622 static void spapr_pci_register_types(void)
1623 {
1624 type_register_static(&spapr_phb_info);
1625 }
1626
1627 type_init(spapr_pci_register_types)
1628
1629 static int spapr_switch_one_vga(DeviceState *dev, void *opaque)
1630 {
1631 bool be = *(bool *)opaque;
1632
1633 if (object_dynamic_cast(OBJECT(dev), "VGA")
1634 || object_dynamic_cast(OBJECT(dev), "secondary-vga")) {
1635 object_property_set_bool(OBJECT(dev), be, "big-endian-framebuffer",
1636 &error_abort);
1637 }
1638 return 0;
1639 }
1640
1641 void spapr_pci_switch_vga(bool big_endian)
1642 {
1643 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1644 sPAPRPHBState *sphb;
1645
1646 /*
1647 * For backward compatibility with existing guests, we switch
1648 * the endianness of the VGA controller when changing the guest
1649 * interrupt mode
1650 */
1651 QLIST_FOREACH(sphb, &spapr->phbs, list) {
1652 BusState *bus = &PCI_HOST_BRIDGE(sphb)->bus->qbus;
1653 qbus_walk_children(bus, spapr_switch_one_vga, NULL, NULL, NULL,
1654 &big_endian);
1655 }
1656 }