]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr_pci.c
Merge remote-tracking branch 'remotes/mst/tags/for_upstream' into staging
[mirror_qemu.git] / hw / ppc / spapr_pci.c
1 /*
2 * QEMU sPAPR PCI host originated from Uninorth PCI host
3 *
4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5 * Copyright (C) 2011 David Gibson, IBM Corporation.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
24 */
25 #include "qemu/osdep.h"
26 #include "qapi/error.h"
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "hw/hw.h"
30 #include "hw/sysbus.h"
31 #include "hw/pci/pci.h"
32 #include "hw/pci/msi.h"
33 #include "hw/pci/msix.h"
34 #include "hw/pci/pci_host.h"
35 #include "hw/ppc/spapr.h"
36 #include "hw/pci-host/spapr.h"
37 #include "exec/address-spaces.h"
38 #include <libfdt.h>
39 #include "trace.h"
40 #include "qemu/error-report.h"
41 #include "qapi/qmp/qerror.h"
42
43 #include "hw/pci/pci_bridge.h"
44 #include "hw/pci/pci_bus.h"
45 #include "hw/ppc/spapr_drc.h"
46 #include "sysemu/device_tree.h"
47 #include "sysemu/kvm.h"
48
49 #include "hw/vfio/vfio.h"
50
51 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
52 #define RTAS_QUERY_FN 0
53 #define RTAS_CHANGE_FN 1
54 #define RTAS_RESET_FN 2
55 #define RTAS_CHANGE_MSI_FN 3
56 #define RTAS_CHANGE_MSIX_FN 4
57
58 /* Interrupt types to return on RTAS_CHANGE_* */
59 #define RTAS_TYPE_MSI 1
60 #define RTAS_TYPE_MSIX 2
61
62 #define FDT_NAME_MAX 128
63
64 #define _FDT(exp) \
65 do { \
66 int ret = (exp); \
67 if (ret < 0) { \
68 return ret; \
69 } \
70 } while (0)
71
72 sPAPRPHBState *spapr_pci_find_phb(sPAPRMachineState *spapr, uint64_t buid)
73 {
74 sPAPRPHBState *sphb;
75
76 QLIST_FOREACH(sphb, &spapr->phbs, list) {
77 if (sphb->buid != buid) {
78 continue;
79 }
80 return sphb;
81 }
82
83 return NULL;
84 }
85
86 PCIDevice *spapr_pci_find_dev(sPAPRMachineState *spapr, uint64_t buid,
87 uint32_t config_addr)
88 {
89 sPAPRPHBState *sphb = spapr_pci_find_phb(spapr, buid);
90 PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
91 int bus_num = (config_addr >> 16) & 0xFF;
92 int devfn = (config_addr >> 8) & 0xFF;
93
94 if (!phb) {
95 return NULL;
96 }
97
98 return pci_find_device(phb->bus, bus_num, devfn);
99 }
100
101 static uint32_t rtas_pci_cfgaddr(uint32_t arg)
102 {
103 /* This handles the encoding of extended config space addresses */
104 return ((arg >> 20) & 0xf00) | (arg & 0xff);
105 }
106
107 static void finish_read_pci_config(sPAPRMachineState *spapr, uint64_t buid,
108 uint32_t addr, uint32_t size,
109 target_ulong rets)
110 {
111 PCIDevice *pci_dev;
112 uint32_t val;
113
114 if ((size != 1) && (size != 2) && (size != 4)) {
115 /* access must be 1, 2 or 4 bytes */
116 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
117 return;
118 }
119
120 pci_dev = spapr_pci_find_dev(spapr, buid, addr);
121 addr = rtas_pci_cfgaddr(addr);
122
123 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
124 /* Access must be to a valid device, within bounds and
125 * naturally aligned */
126 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
127 return;
128 }
129
130 val = pci_host_config_read_common(pci_dev, addr,
131 pci_config_size(pci_dev), size);
132
133 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
134 rtas_st(rets, 1, val);
135 }
136
137 static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
138 uint32_t token, uint32_t nargs,
139 target_ulong args,
140 uint32_t nret, target_ulong rets)
141 {
142 uint64_t buid;
143 uint32_t size, addr;
144
145 if ((nargs != 4) || (nret != 2)) {
146 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
147 return;
148 }
149
150 buid = rtas_ldq(args, 1);
151 size = rtas_ld(args, 3);
152 addr = rtas_ld(args, 0);
153
154 finish_read_pci_config(spapr, buid, addr, size, rets);
155 }
156
157 static void rtas_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
158 uint32_t token, uint32_t nargs,
159 target_ulong args,
160 uint32_t nret, target_ulong rets)
161 {
162 uint32_t size, addr;
163
164 if ((nargs != 2) || (nret != 2)) {
165 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
166 return;
167 }
168
169 size = rtas_ld(args, 1);
170 addr = rtas_ld(args, 0);
171
172 finish_read_pci_config(spapr, 0, addr, size, rets);
173 }
174
175 static void finish_write_pci_config(sPAPRMachineState *spapr, uint64_t buid,
176 uint32_t addr, uint32_t size,
177 uint32_t val, target_ulong rets)
178 {
179 PCIDevice *pci_dev;
180
181 if ((size != 1) && (size != 2) && (size != 4)) {
182 /* access must be 1, 2 or 4 bytes */
183 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
184 return;
185 }
186
187 pci_dev = spapr_pci_find_dev(spapr, buid, addr);
188 addr = rtas_pci_cfgaddr(addr);
189
190 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
191 /* Access must be to a valid device, within bounds and
192 * naturally aligned */
193 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
194 return;
195 }
196
197 pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
198 val, size);
199
200 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
201 }
202
203 static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
204 uint32_t token, uint32_t nargs,
205 target_ulong args,
206 uint32_t nret, target_ulong rets)
207 {
208 uint64_t buid;
209 uint32_t val, size, addr;
210
211 if ((nargs != 5) || (nret != 1)) {
212 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
213 return;
214 }
215
216 buid = rtas_ldq(args, 1);
217 val = rtas_ld(args, 4);
218 size = rtas_ld(args, 3);
219 addr = rtas_ld(args, 0);
220
221 finish_write_pci_config(spapr, buid, addr, size, val, rets);
222 }
223
224 static void rtas_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
225 uint32_t token, uint32_t nargs,
226 target_ulong args,
227 uint32_t nret, target_ulong rets)
228 {
229 uint32_t val, size, addr;
230
231 if ((nargs != 3) || (nret != 1)) {
232 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
233 return;
234 }
235
236
237 val = rtas_ld(args, 2);
238 size = rtas_ld(args, 1);
239 addr = rtas_ld(args, 0);
240
241 finish_write_pci_config(spapr, 0, addr, size, val, rets);
242 }
243
244 /*
245 * Set MSI/MSIX message data.
246 * This is required for msi_notify()/msix_notify() which
247 * will write at the addresses via spapr_msi_write().
248 *
249 * If hwaddr == 0, all entries will have .data == first_irq i.e.
250 * table will be reset.
251 */
252 static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix,
253 unsigned first_irq, unsigned req_num)
254 {
255 unsigned i;
256 MSIMessage msg = { .address = addr, .data = first_irq };
257
258 if (!msix) {
259 msi_set_message(pdev, msg);
260 trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
261 return;
262 }
263
264 for (i = 0; i < req_num; ++i) {
265 msix_set_message(pdev, i, msg);
266 trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
267 if (addr) {
268 ++msg.data;
269 }
270 }
271 }
272
273 static void rtas_ibm_change_msi(PowerPCCPU *cpu, sPAPRMachineState *spapr,
274 uint32_t token, uint32_t nargs,
275 target_ulong args, uint32_t nret,
276 target_ulong rets)
277 {
278 uint32_t config_addr = rtas_ld(args, 0);
279 uint64_t buid = rtas_ldq(args, 1);
280 unsigned int func = rtas_ld(args, 3);
281 unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
282 unsigned int seq_num = rtas_ld(args, 5);
283 unsigned int ret_intr_type;
284 unsigned int irq, max_irqs = 0;
285 sPAPRPHBState *phb = NULL;
286 PCIDevice *pdev = NULL;
287 spapr_pci_msi *msi;
288 int *config_addr_key;
289 Error *err = NULL;
290
291 switch (func) {
292 case RTAS_CHANGE_MSI_FN:
293 case RTAS_CHANGE_FN:
294 ret_intr_type = RTAS_TYPE_MSI;
295 break;
296 case RTAS_CHANGE_MSIX_FN:
297 ret_intr_type = RTAS_TYPE_MSIX;
298 break;
299 default:
300 error_report("rtas_ibm_change_msi(%u) is not implemented", func);
301 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
302 return;
303 }
304
305 /* Fins sPAPRPHBState */
306 phb = spapr_pci_find_phb(spapr, buid);
307 if (phb) {
308 pdev = spapr_pci_find_dev(spapr, buid, config_addr);
309 }
310 if (!phb || !pdev) {
311 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
312 return;
313 }
314
315 msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
316
317 /* Releasing MSIs */
318 if (!req_num) {
319 if (!msi) {
320 trace_spapr_pci_msi("Releasing wrong config", config_addr);
321 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
322 return;
323 }
324
325 xics_free(spapr->icp, msi->first_irq, msi->num);
326 if (msi_present(pdev)) {
327 spapr_msi_setmsg(pdev, 0, false, 0, 0);
328 }
329 if (msix_present(pdev)) {
330 spapr_msi_setmsg(pdev, 0, true, 0, 0);
331 }
332 g_hash_table_remove(phb->msi, &config_addr);
333
334 trace_spapr_pci_msi("Released MSIs", config_addr);
335 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
336 rtas_st(rets, 1, 0);
337 return;
338 }
339
340 /* Enabling MSI */
341
342 /* Check if the device supports as many IRQs as requested */
343 if (ret_intr_type == RTAS_TYPE_MSI) {
344 max_irqs = msi_nr_vectors_allocated(pdev);
345 } else if (ret_intr_type == RTAS_TYPE_MSIX) {
346 max_irqs = pdev->msix_entries_nr;
347 }
348 if (!max_irqs) {
349 error_report("Requested interrupt type %d is not enabled for device %x",
350 ret_intr_type, config_addr);
351 rtas_st(rets, 0, -1); /* Hardware error */
352 return;
353 }
354 /* Correct the number if the guest asked for too many */
355 if (req_num > max_irqs) {
356 trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs);
357 req_num = max_irqs;
358 irq = 0; /* to avoid misleading trace */
359 goto out;
360 }
361
362 /* Allocate MSIs */
363 irq = xics_alloc_block(spapr->icp, 0, req_num, false,
364 ret_intr_type == RTAS_TYPE_MSI, &err);
365 if (err) {
366 error_reportf_err(err, "Can't allocate MSIs for device %x: ",
367 config_addr);
368 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
369 return;
370 }
371
372 /* Release previous MSIs */
373 if (msi) {
374 xics_free(spapr->icp, msi->first_irq, msi->num);
375 g_hash_table_remove(phb->msi, &config_addr);
376 }
377
378 /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
379 spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX,
380 irq, req_num);
381
382 /* Add MSI device to cache */
383 msi = g_new(spapr_pci_msi, 1);
384 msi->first_irq = irq;
385 msi->num = req_num;
386 config_addr_key = g_new(int, 1);
387 *config_addr_key = config_addr;
388 g_hash_table_insert(phb->msi, config_addr_key, msi);
389
390 out:
391 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
392 rtas_st(rets, 1, req_num);
393 rtas_st(rets, 2, ++seq_num);
394 if (nret > 3) {
395 rtas_st(rets, 3, ret_intr_type);
396 }
397
398 trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq);
399 }
400
401 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu,
402 sPAPRMachineState *spapr,
403 uint32_t token,
404 uint32_t nargs,
405 target_ulong args,
406 uint32_t nret,
407 target_ulong rets)
408 {
409 uint32_t config_addr = rtas_ld(args, 0);
410 uint64_t buid = rtas_ldq(args, 1);
411 unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
412 sPAPRPHBState *phb = NULL;
413 PCIDevice *pdev = NULL;
414 spapr_pci_msi *msi;
415
416 /* Find sPAPRPHBState */
417 phb = spapr_pci_find_phb(spapr, buid);
418 if (phb) {
419 pdev = spapr_pci_find_dev(spapr, buid, config_addr);
420 }
421 if (!phb || !pdev) {
422 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
423 return;
424 }
425
426 /* Find device descriptor and start IRQ */
427 msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
428 if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) {
429 trace_spapr_pci_msi("Failed to return vector", config_addr);
430 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
431 return;
432 }
433 intr_src_num = msi->first_irq + ioa_intr_num;
434 trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
435 intr_src_num);
436
437 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
438 rtas_st(rets, 1, intr_src_num);
439 rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
440 }
441
442 static void rtas_ibm_set_eeh_option(PowerPCCPU *cpu,
443 sPAPRMachineState *spapr,
444 uint32_t token, uint32_t nargs,
445 target_ulong args, uint32_t nret,
446 target_ulong rets)
447 {
448 sPAPRPHBState *sphb;
449 uint32_t addr, option;
450 uint64_t buid;
451 int ret;
452
453 if ((nargs != 4) || (nret != 1)) {
454 goto param_error_exit;
455 }
456
457 buid = rtas_ldq(args, 1);
458 addr = rtas_ld(args, 0);
459 option = rtas_ld(args, 3);
460
461 sphb = spapr_pci_find_phb(spapr, buid);
462 if (!sphb) {
463 goto param_error_exit;
464 }
465
466 if (!spapr_phb_eeh_available(sphb)) {
467 goto param_error_exit;
468 }
469
470 ret = spapr_phb_vfio_eeh_set_option(sphb, addr, option);
471 rtas_st(rets, 0, ret);
472 return;
473
474 param_error_exit:
475 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
476 }
477
478 static void rtas_ibm_get_config_addr_info2(PowerPCCPU *cpu,
479 sPAPRMachineState *spapr,
480 uint32_t token, uint32_t nargs,
481 target_ulong args, uint32_t nret,
482 target_ulong rets)
483 {
484 sPAPRPHBState *sphb;
485 PCIDevice *pdev;
486 uint32_t addr, option;
487 uint64_t buid;
488
489 if ((nargs != 4) || (nret != 2)) {
490 goto param_error_exit;
491 }
492
493 buid = rtas_ldq(args, 1);
494 sphb = spapr_pci_find_phb(spapr, buid);
495 if (!sphb) {
496 goto param_error_exit;
497 }
498
499 if (!spapr_phb_eeh_available(sphb)) {
500 goto param_error_exit;
501 }
502
503 /*
504 * We always have PE address of form "00BB0001". "BB"
505 * represents the bus number of PE's primary bus.
506 */
507 option = rtas_ld(args, 3);
508 switch (option) {
509 case RTAS_GET_PE_ADDR:
510 addr = rtas_ld(args, 0);
511 pdev = spapr_pci_find_dev(spapr, buid, addr);
512 if (!pdev) {
513 goto param_error_exit;
514 }
515
516 rtas_st(rets, 1, (pci_bus_num(pdev->bus) << 16) + 1);
517 break;
518 case RTAS_GET_PE_MODE:
519 rtas_st(rets, 1, RTAS_PE_MODE_SHARED);
520 break;
521 default:
522 goto param_error_exit;
523 }
524
525 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
526 return;
527
528 param_error_exit:
529 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
530 }
531
532 static void rtas_ibm_read_slot_reset_state2(PowerPCCPU *cpu,
533 sPAPRMachineState *spapr,
534 uint32_t token, uint32_t nargs,
535 target_ulong args, uint32_t nret,
536 target_ulong rets)
537 {
538 sPAPRPHBState *sphb;
539 uint64_t buid;
540 int state, ret;
541
542 if ((nargs != 3) || (nret != 4 && nret != 5)) {
543 goto param_error_exit;
544 }
545
546 buid = rtas_ldq(args, 1);
547 sphb = spapr_pci_find_phb(spapr, buid);
548 if (!sphb) {
549 goto param_error_exit;
550 }
551
552 if (!spapr_phb_eeh_available(sphb)) {
553 goto param_error_exit;
554 }
555
556 ret = spapr_phb_vfio_eeh_get_state(sphb, &state);
557 rtas_st(rets, 0, ret);
558 if (ret != RTAS_OUT_SUCCESS) {
559 return;
560 }
561
562 rtas_st(rets, 1, state);
563 rtas_st(rets, 2, RTAS_EEH_SUPPORT);
564 rtas_st(rets, 3, RTAS_EEH_PE_UNAVAIL_INFO);
565 if (nret >= 5) {
566 rtas_st(rets, 4, RTAS_EEH_PE_RECOVER_INFO);
567 }
568 return;
569
570 param_error_exit:
571 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
572 }
573
574 static void rtas_ibm_set_slot_reset(PowerPCCPU *cpu,
575 sPAPRMachineState *spapr,
576 uint32_t token, uint32_t nargs,
577 target_ulong args, uint32_t nret,
578 target_ulong rets)
579 {
580 sPAPRPHBState *sphb;
581 uint32_t option;
582 uint64_t buid;
583 int ret;
584
585 if ((nargs != 4) || (nret != 1)) {
586 goto param_error_exit;
587 }
588
589 buid = rtas_ldq(args, 1);
590 option = rtas_ld(args, 3);
591 sphb = spapr_pci_find_phb(spapr, buid);
592 if (!sphb) {
593 goto param_error_exit;
594 }
595
596 if (!spapr_phb_eeh_available(sphb)) {
597 goto param_error_exit;
598 }
599
600 ret = spapr_phb_vfio_eeh_reset(sphb, option);
601 rtas_st(rets, 0, ret);
602 return;
603
604 param_error_exit:
605 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
606 }
607
608 static void rtas_ibm_configure_pe(PowerPCCPU *cpu,
609 sPAPRMachineState *spapr,
610 uint32_t token, uint32_t nargs,
611 target_ulong args, uint32_t nret,
612 target_ulong rets)
613 {
614 sPAPRPHBState *sphb;
615 uint64_t buid;
616 int ret;
617
618 if ((nargs != 3) || (nret != 1)) {
619 goto param_error_exit;
620 }
621
622 buid = rtas_ldq(args, 1);
623 sphb = spapr_pci_find_phb(spapr, buid);
624 if (!sphb) {
625 goto param_error_exit;
626 }
627
628 if (!spapr_phb_eeh_available(sphb)) {
629 goto param_error_exit;
630 }
631
632 ret = spapr_phb_vfio_eeh_configure(sphb);
633 rtas_st(rets, 0, ret);
634 return;
635
636 param_error_exit:
637 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
638 }
639
640 /* To support it later */
641 static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu,
642 sPAPRMachineState *spapr,
643 uint32_t token, uint32_t nargs,
644 target_ulong args, uint32_t nret,
645 target_ulong rets)
646 {
647 sPAPRPHBState *sphb;
648 int option;
649 uint64_t buid;
650
651 if ((nargs != 8) || (nret != 1)) {
652 goto param_error_exit;
653 }
654
655 buid = rtas_ldq(args, 1);
656 sphb = spapr_pci_find_phb(spapr, buid);
657 if (!sphb) {
658 goto param_error_exit;
659 }
660
661 if (!spapr_phb_eeh_available(sphb)) {
662 goto param_error_exit;
663 }
664
665 option = rtas_ld(args, 7);
666 switch (option) {
667 case RTAS_SLOT_TEMP_ERR_LOG:
668 case RTAS_SLOT_PERM_ERR_LOG:
669 break;
670 default:
671 goto param_error_exit;
672 }
673
674 /* We don't have error log yet */
675 rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND);
676 return;
677
678 param_error_exit:
679 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
680 }
681
682 static int pci_spapr_swizzle(int slot, int pin)
683 {
684 return (slot + pin) % PCI_NUM_PINS;
685 }
686
687 static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
688 {
689 /*
690 * Here we need to convert pci_dev + irq_num to some unique value
691 * which is less than number of IRQs on the specific bus (4). We
692 * use standard PCI swizzling, that is (slot number + pin number)
693 * % 4.
694 */
695 return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
696 }
697
698 static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
699 {
700 /*
701 * Here we use the number returned by pci_spapr_map_irq to find a
702 * corresponding qemu_irq.
703 */
704 sPAPRPHBState *phb = opaque;
705
706 trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq);
707 qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level);
708 }
709
710 static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin)
711 {
712 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque);
713 PCIINTxRoute route;
714
715 route.mode = PCI_INTX_ENABLED;
716 route.irq = sphb->lsi_table[pin].irq;
717
718 return route;
719 }
720
721 /*
722 * MSI/MSIX memory region implementation.
723 * The handler handles both MSI and MSIX.
724 * For MSI-X, the vector number is encoded as a part of the address,
725 * data is set to 0.
726 * For MSI, the vector number is encoded in least bits in data.
727 */
728 static void spapr_msi_write(void *opaque, hwaddr addr,
729 uint64_t data, unsigned size)
730 {
731 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
732 uint32_t irq = data;
733
734 trace_spapr_pci_msi_write(addr, data, irq);
735
736 qemu_irq_pulse(xics_get_qirq(spapr->icp, irq));
737 }
738
739 static const MemoryRegionOps spapr_msi_ops = {
740 /* There is no .read as the read result is undefined by PCI spec */
741 .read = NULL,
742 .write = spapr_msi_write,
743 .endianness = DEVICE_LITTLE_ENDIAN
744 };
745
746 /*
747 * PHB PCI device
748 */
749 static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn)
750 {
751 sPAPRPHBState *phb = opaque;
752
753 return &phb->iommu_as;
754 }
755
756 static char *spapr_phb_vfio_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev)
757 {
758 char *path = NULL, *buf = NULL, *host = NULL;
759
760 /* Get the PCI VFIO host id */
761 host = object_property_get_str(OBJECT(pdev), "host", NULL);
762 if (!host) {
763 goto err_out;
764 }
765
766 /* Construct the path of the file that will give us the DT location */
767 path = g_strdup_printf("/sys/bus/pci/devices/%s/devspec", host);
768 g_free(host);
769 if (!path || !g_file_get_contents(path, &buf, NULL, NULL)) {
770 goto err_out;
771 }
772 g_free(path);
773
774 /* Construct and read from host device tree the loc-code */
775 path = g_strdup_printf("/proc/device-tree%s/ibm,loc-code", buf);
776 g_free(buf);
777 if (!path || !g_file_get_contents(path, &buf, NULL, NULL)) {
778 goto err_out;
779 }
780 return buf;
781
782 err_out:
783 g_free(path);
784 return NULL;
785 }
786
787 static char *spapr_phb_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev)
788 {
789 char *buf;
790 const char *devtype = "qemu";
791 uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
792
793 if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) {
794 buf = spapr_phb_vfio_get_loc_code(sphb, pdev);
795 if (buf) {
796 return buf;
797 }
798 devtype = "vfio";
799 }
800 /*
801 * For emulated devices and VFIO-failure case, make up
802 * the loc-code.
803 */
804 buf = g_strdup_printf("%s_%s:%04x:%02x:%02x.%x",
805 devtype, pdev->name, sphb->index, busnr,
806 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
807 return buf;
808 }
809
810 /* Macros to operate with address in OF binding to PCI */
811 #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p))
812 #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */
813 #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */
814 #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */
815 #define b_ss(x) b_x((x), 24, 2) /* the space code */
816 #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */
817 #define b_ddddd(x) b_x((x), 11, 5) /* device number */
818 #define b_fff(x) b_x((x), 8, 3) /* function number */
819 #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */
820
821 /* for 'reg'/'assigned-addresses' OF properties */
822 #define RESOURCE_CELLS_SIZE 2
823 #define RESOURCE_CELLS_ADDRESS 3
824
825 typedef struct ResourceFields {
826 uint32_t phys_hi;
827 uint32_t phys_mid;
828 uint32_t phys_lo;
829 uint32_t size_hi;
830 uint32_t size_lo;
831 } QEMU_PACKED ResourceFields;
832
833 typedef struct ResourceProps {
834 ResourceFields reg[8];
835 ResourceFields assigned[7];
836 uint32_t reg_len;
837 uint32_t assigned_len;
838 } ResourceProps;
839
840 /* fill in the 'reg'/'assigned-resources' OF properties for
841 * a PCI device. 'reg' describes resource requirements for a
842 * device's IO/MEM regions, 'assigned-addresses' describes the
843 * actual resource assignments.
844 *
845 * the properties are arrays of ('phys-addr', 'size') pairs describing
846 * the addressable regions of the PCI device, where 'phys-addr' is a
847 * RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to
848 * (phys.hi, phys.mid, phys.lo), and 'size' is a
849 * RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo).
850 *
851 * phys.hi = 0xYYXXXXZZ, where:
852 * 0xYY = npt000ss
853 * ||| |
854 * ||| +-- space code
855 * ||| |
856 * ||| + 00 if configuration space
857 * ||| + 01 if IO region,
858 * ||| + 10 if 32-bit MEM region
859 * ||| + 11 if 64-bit MEM region
860 * |||
861 * ||+------ for non-relocatable IO: 1 if aliased
862 * || for relocatable IO: 1 if below 64KB
863 * || for MEM: 1 if below 1MB
864 * |+------- 1 if region is prefetchable
865 * +-------- 1 if region is non-relocatable
866 * 0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function
867 * bits respectively
868 * 0xZZ = rrrrrrrr, the register number of the BAR corresponding
869 * to the region
870 *
871 * phys.mid and phys.lo correspond respectively to the hi/lo portions
872 * of the actual address of the region.
873 *
874 * how the phys-addr/size values are used differ slightly between
875 * 'reg' and 'assigned-addresses' properties. namely, 'reg' has
876 * an additional description for the config space region of the
877 * device, and in the case of QEMU has n=0 and phys.mid=phys.lo=0
878 * to describe the region as relocatable, with an address-mapping
879 * that corresponds directly to the PHB's address space for the
880 * resource. 'assigned-addresses' always has n=1 set with an absolute
881 * address assigned for the resource. in general, 'assigned-addresses'
882 * won't be populated, since addresses for PCI devices are generally
883 * unmapped initially and left to the guest to assign.
884 *
885 * note also that addresses defined in these properties are, at least
886 * for PAPR guests, relative to the PHBs IO/MEM windows, and
887 * correspond directly to the addresses in the BARs.
888 *
889 * in accordance with PCI Bus Binding to Open Firmware,
890 * IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7,
891 * Appendix C.
892 */
893 static void populate_resource_props(PCIDevice *d, ResourceProps *rp)
894 {
895 int bus_num = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d))));
896 uint32_t dev_id = (b_bbbbbbbb(bus_num) |
897 b_ddddd(PCI_SLOT(d->devfn)) |
898 b_fff(PCI_FUNC(d->devfn)));
899 ResourceFields *reg, *assigned;
900 int i, reg_idx = 0, assigned_idx = 0;
901
902 /* config space region */
903 reg = &rp->reg[reg_idx++];
904 reg->phys_hi = cpu_to_be32(dev_id);
905 reg->phys_mid = 0;
906 reg->phys_lo = 0;
907 reg->size_hi = 0;
908 reg->size_lo = 0;
909
910 for (i = 0; i < PCI_NUM_REGIONS; i++) {
911 if (!d->io_regions[i].size) {
912 continue;
913 }
914
915 reg = &rp->reg[reg_idx++];
916
917 reg->phys_hi = cpu_to_be32(dev_id | b_rrrrrrrr(pci_bar(d, i)));
918 if (d->io_regions[i].type & PCI_BASE_ADDRESS_SPACE_IO) {
919 reg->phys_hi |= cpu_to_be32(b_ss(1));
920 } else if (d->io_regions[i].type & PCI_BASE_ADDRESS_MEM_TYPE_64) {
921 reg->phys_hi |= cpu_to_be32(b_ss(3));
922 } else {
923 reg->phys_hi |= cpu_to_be32(b_ss(2));
924 }
925 reg->phys_mid = 0;
926 reg->phys_lo = 0;
927 reg->size_hi = cpu_to_be32(d->io_regions[i].size >> 32);
928 reg->size_lo = cpu_to_be32(d->io_regions[i].size);
929
930 if (d->io_regions[i].addr == PCI_BAR_UNMAPPED) {
931 continue;
932 }
933
934 assigned = &rp->assigned[assigned_idx++];
935 assigned->phys_hi = cpu_to_be32(reg->phys_hi | b_n(1));
936 assigned->phys_mid = cpu_to_be32(d->io_regions[i].addr >> 32);
937 assigned->phys_lo = cpu_to_be32(d->io_regions[i].addr);
938 assigned->size_hi = reg->size_hi;
939 assigned->size_lo = reg->size_lo;
940 }
941
942 rp->reg_len = reg_idx * sizeof(ResourceFields);
943 rp->assigned_len = assigned_idx * sizeof(ResourceFields);
944 }
945
946 static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb,
947 PCIDevice *pdev);
948
949 static int spapr_populate_pci_child_dt(PCIDevice *dev, void *fdt, int offset,
950 sPAPRPHBState *sphb)
951 {
952 ResourceProps rp;
953 bool is_bridge = false;
954 int pci_status, err;
955 char *buf = NULL;
956 uint32_t drc_index = spapr_phb_get_pci_drc_index(sphb, dev);
957 uint32_t max_msi, max_msix;
958
959 if (pci_default_read_config(dev, PCI_HEADER_TYPE, 1) ==
960 PCI_HEADER_TYPE_BRIDGE) {
961 is_bridge = true;
962 }
963
964 /* in accordance with PAPR+ v2.7 13.6.3, Table 181 */
965 _FDT(fdt_setprop_cell(fdt, offset, "vendor-id",
966 pci_default_read_config(dev, PCI_VENDOR_ID, 2)));
967 _FDT(fdt_setprop_cell(fdt, offset, "device-id",
968 pci_default_read_config(dev, PCI_DEVICE_ID, 2)));
969 _FDT(fdt_setprop_cell(fdt, offset, "revision-id",
970 pci_default_read_config(dev, PCI_REVISION_ID, 1)));
971 _FDT(fdt_setprop_cell(fdt, offset, "class-code",
972 pci_default_read_config(dev, PCI_CLASS_PROG, 3)));
973 if (pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)) {
974 _FDT(fdt_setprop_cell(fdt, offset, "interrupts",
975 pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)));
976 }
977
978 if (!is_bridge) {
979 _FDT(fdt_setprop_cell(fdt, offset, "min-grant",
980 pci_default_read_config(dev, PCI_MIN_GNT, 1)));
981 _FDT(fdt_setprop_cell(fdt, offset, "max-latency",
982 pci_default_read_config(dev, PCI_MAX_LAT, 1)));
983 }
984
985 if (pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)) {
986 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-id",
987 pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)));
988 }
989
990 if (pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)) {
991 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-vendor-id",
992 pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)));
993 }
994
995 _FDT(fdt_setprop_cell(fdt, offset, "cache-line-size",
996 pci_default_read_config(dev, PCI_CACHE_LINE_SIZE, 1)));
997
998 /* the following fdt cells are masked off the pci status register */
999 pci_status = pci_default_read_config(dev, PCI_STATUS, 2);
1000 _FDT(fdt_setprop_cell(fdt, offset, "devsel-speed",
1001 PCI_STATUS_DEVSEL_MASK & pci_status));
1002
1003 if (pci_status & PCI_STATUS_FAST_BACK) {
1004 _FDT(fdt_setprop(fdt, offset, "fast-back-to-back", NULL, 0));
1005 }
1006 if (pci_status & PCI_STATUS_66MHZ) {
1007 _FDT(fdt_setprop(fdt, offset, "66mhz-capable", NULL, 0));
1008 }
1009 if (pci_status & PCI_STATUS_UDF) {
1010 _FDT(fdt_setprop(fdt, offset, "udf-supported", NULL, 0));
1011 }
1012
1013 /* NOTE: this is normally generated by firmware via path/unit name,
1014 * but in our case we must set it manually since it does not get
1015 * processed by OF beforehand
1016 */
1017 _FDT(fdt_setprop_string(fdt, offset, "name", "pci"));
1018 buf = spapr_phb_get_loc_code(sphb, dev);
1019 if (!buf) {
1020 error_report("Failed setting the ibm,loc-code");
1021 return -1;
1022 }
1023
1024 err = fdt_setprop_string(fdt, offset, "ibm,loc-code", buf);
1025 g_free(buf);
1026 if (err < 0) {
1027 return err;
1028 }
1029
1030 if (drc_index) {
1031 _FDT(fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index));
1032 }
1033
1034 _FDT(fdt_setprop_cell(fdt, offset, "#address-cells",
1035 RESOURCE_CELLS_ADDRESS));
1036 _FDT(fdt_setprop_cell(fdt, offset, "#size-cells",
1037 RESOURCE_CELLS_SIZE));
1038
1039 max_msi = msi_nr_vectors_allocated(dev);
1040 if (max_msi) {
1041 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi", max_msi));
1042 }
1043 max_msix = dev->msix_entries_nr;
1044 if (max_msix) {
1045 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi-x", max_msix));
1046 }
1047
1048 populate_resource_props(dev, &rp);
1049 _FDT(fdt_setprop(fdt, offset, "reg", (uint8_t *)rp.reg, rp.reg_len));
1050 _FDT(fdt_setprop(fdt, offset, "assigned-addresses",
1051 (uint8_t *)rp.assigned, rp.assigned_len));
1052
1053 return 0;
1054 }
1055
1056 /* create OF node for pci device and required OF DT properties */
1057 static int spapr_create_pci_child_dt(sPAPRPHBState *phb, PCIDevice *dev,
1058 void *fdt, int node_offset)
1059 {
1060 int offset, ret;
1061 int slot = PCI_SLOT(dev->devfn);
1062 int func = PCI_FUNC(dev->devfn);
1063 char nodename[FDT_NAME_MAX];
1064
1065 if (func != 0) {
1066 snprintf(nodename, FDT_NAME_MAX, "pci@%x,%x", slot, func);
1067 } else {
1068 snprintf(nodename, FDT_NAME_MAX, "pci@%x", slot);
1069 }
1070 offset = fdt_add_subnode(fdt, node_offset, nodename);
1071 ret = spapr_populate_pci_child_dt(dev, fdt, offset, phb);
1072
1073 g_assert(!ret);
1074 if (ret) {
1075 return 0;
1076 }
1077 return offset;
1078 }
1079
1080 static void spapr_phb_add_pci_device(sPAPRDRConnector *drc,
1081 sPAPRPHBState *phb,
1082 PCIDevice *pdev,
1083 Error **errp)
1084 {
1085 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1086 DeviceState *dev = DEVICE(pdev);
1087 void *fdt = NULL;
1088 int fdt_start_offset = 0, fdt_size;
1089
1090 if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) {
1091 sPAPRTCETable *tcet = spapr_tce_find_by_liobn(phb->dma_liobn);
1092
1093 spapr_tce_set_need_vfio(tcet, true);
1094 }
1095
1096 fdt = create_device_tree(&fdt_size);
1097 fdt_start_offset = spapr_create_pci_child_dt(phb, pdev, fdt, 0);
1098 if (!fdt_start_offset) {
1099 error_setg(errp, "Failed to create pci child device tree node");
1100 goto out;
1101 }
1102
1103 drck->attach(drc, DEVICE(pdev),
1104 fdt, fdt_start_offset, !dev->hotplugged, errp);
1105 out:
1106 if (*errp) {
1107 g_free(fdt);
1108 }
1109 }
1110
1111 static void spapr_phb_remove_pci_device_cb(DeviceState *dev, void *opaque)
1112 {
1113 /* some version guests do not wait for completion of a device
1114 * cleanup (generally done asynchronously by the kernel) before
1115 * signaling to QEMU that the device is safe, but instead sleep
1116 * for some 'safe' period of time. unfortunately on a busy host
1117 * this sleep isn't guaranteed to be long enough, resulting in
1118 * bad things like IRQ lines being left asserted during final
1119 * device removal. to deal with this we call reset just prior
1120 * to finalizing the device, which will put the device back into
1121 * an 'idle' state, as the device cleanup code expects.
1122 */
1123 pci_device_reset(PCI_DEVICE(dev));
1124 object_unparent(OBJECT(dev));
1125 }
1126
1127 static void spapr_phb_remove_pci_device(sPAPRDRConnector *drc,
1128 sPAPRPHBState *phb,
1129 PCIDevice *pdev,
1130 Error **errp)
1131 {
1132 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1133
1134 drck->detach(drc, DEVICE(pdev), spapr_phb_remove_pci_device_cb, phb, errp);
1135 }
1136
1137 static sPAPRDRConnector *spapr_phb_get_pci_func_drc(sPAPRPHBState *phb,
1138 uint32_t busnr,
1139 int32_t devfn)
1140 {
1141 return spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_PCI,
1142 (phb->index << 16) |
1143 (busnr << 8) |
1144 devfn);
1145 }
1146
1147 static sPAPRDRConnector *spapr_phb_get_pci_drc(sPAPRPHBState *phb,
1148 PCIDevice *pdev)
1149 {
1150 uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
1151 return spapr_phb_get_pci_func_drc(phb, busnr, pdev->devfn);
1152 }
1153
1154 static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb,
1155 PCIDevice *pdev)
1156 {
1157 sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1158 sPAPRDRConnectorClass *drck;
1159
1160 if (!drc) {
1161 return 0;
1162 }
1163
1164 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1165 return drck->get_index(drc);
1166 }
1167
1168 static void spapr_phb_hot_plug_child(HotplugHandler *plug_handler,
1169 DeviceState *plugged_dev, Error **errp)
1170 {
1171 sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1172 PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1173 sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1174 Error *local_err = NULL;
1175 PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)));
1176 uint32_t slotnr = PCI_SLOT(pdev->devfn);
1177
1178 /* if DR is disabled we don't need to do anything in the case of
1179 * hotplug or coldplug callbacks
1180 */
1181 if (!phb->dr_enabled) {
1182 /* if this is a hotplug operation initiated by the user
1183 * we need to let them know it's not enabled
1184 */
1185 if (plugged_dev->hotplugged) {
1186 error_setg(errp, QERR_BUS_NO_HOTPLUG,
1187 object_get_typename(OBJECT(phb)));
1188 }
1189 return;
1190 }
1191
1192 g_assert(drc);
1193
1194 /* Following the QEMU convention used for PCIe multifunction
1195 * hotplug, we do not allow functions to be hotplugged to a
1196 * slot that already has function 0 present
1197 */
1198 if (plugged_dev->hotplugged && bus->devices[PCI_DEVFN(slotnr, 0)] &&
1199 PCI_FUNC(pdev->devfn) != 0) {
1200 error_setg(errp, "PCI: slot %d function 0 already ocuppied by %s,"
1201 " additional functions can no longer be exposed to guest.",
1202 slotnr, bus->devices[PCI_DEVFN(slotnr, 0)]->name);
1203 return;
1204 }
1205
1206 spapr_phb_add_pci_device(drc, phb, pdev, &local_err);
1207 if (local_err) {
1208 error_propagate(errp, local_err);
1209 return;
1210 }
1211
1212 /* If this is function 0, signal hotplug for all the device functions.
1213 * Otherwise defer sending the hotplug event.
1214 */
1215 if (plugged_dev->hotplugged && PCI_FUNC(pdev->devfn) == 0) {
1216 int i;
1217
1218 for (i = 0; i < 8; i++) {
1219 sPAPRDRConnector *func_drc;
1220 sPAPRDRConnectorClass *func_drck;
1221 sPAPRDREntitySense state;
1222
1223 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1224 PCI_DEVFN(slotnr, i));
1225 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1226 func_drck->entity_sense(func_drc, &state);
1227
1228 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1229 spapr_hotplug_req_add_by_index(func_drc);
1230 }
1231 }
1232 }
1233 }
1234
1235 static void spapr_phb_hot_unplug_child(HotplugHandler *plug_handler,
1236 DeviceState *plugged_dev, Error **errp)
1237 {
1238 sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1239 PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1240 sPAPRDRConnectorClass *drck;
1241 sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1242 Error *local_err = NULL;
1243
1244 if (!phb->dr_enabled) {
1245 error_setg(errp, QERR_BUS_NO_HOTPLUG,
1246 object_get_typename(OBJECT(phb)));
1247 return;
1248 }
1249
1250 g_assert(drc);
1251
1252 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1253 if (!drck->release_pending(drc)) {
1254 PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)));
1255 uint32_t slotnr = PCI_SLOT(pdev->devfn);
1256 sPAPRDRConnector *func_drc;
1257 sPAPRDRConnectorClass *func_drck;
1258 sPAPRDREntitySense state;
1259 int i;
1260
1261 /* ensure any other present functions are pending unplug */
1262 if (PCI_FUNC(pdev->devfn) == 0) {
1263 for (i = 1; i < 8; i++) {
1264 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1265 PCI_DEVFN(slotnr, i));
1266 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1267 func_drck->entity_sense(func_drc, &state);
1268 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT
1269 && !func_drck->release_pending(func_drc)) {
1270 error_setg(errp,
1271 "PCI: slot %d, function %d still present. "
1272 "Must unplug all non-0 functions first.",
1273 slotnr, i);
1274 return;
1275 }
1276 }
1277 }
1278
1279 spapr_phb_remove_pci_device(drc, phb, pdev, &local_err);
1280 if (local_err) {
1281 error_propagate(errp, local_err);
1282 return;
1283 }
1284
1285 /* if this isn't func 0, defer unplug event. otherwise signal removal
1286 * for all present functions
1287 */
1288 if (PCI_FUNC(pdev->devfn) == 0) {
1289 for (i = 7; i >= 0; i--) {
1290 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1291 PCI_DEVFN(slotnr, i));
1292 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1293 func_drck->entity_sense(func_drc, &state);
1294 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1295 spapr_hotplug_req_remove_by_index(func_drc);
1296 }
1297 }
1298 }
1299 }
1300 }
1301
1302 static void spapr_phb_realize(DeviceState *dev, Error **errp)
1303 {
1304 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1305 SysBusDevice *s = SYS_BUS_DEVICE(dev);
1306 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
1307 PCIHostState *phb = PCI_HOST_BRIDGE(s);
1308 char *namebuf;
1309 int i;
1310 PCIBus *bus;
1311 uint64_t msi_window_size = 4096;
1312 sPAPRTCETable *tcet;
1313
1314 if (sphb->index != (uint32_t)-1) {
1315 hwaddr windows_base;
1316
1317 if ((sphb->buid != (uint64_t)-1) || (sphb->dma_liobn != (uint32_t)-1)
1318 || (sphb->mem_win_addr != (hwaddr)-1)
1319 || (sphb->io_win_addr != (hwaddr)-1)) {
1320 error_setg(errp, "Either \"index\" or other parameters must"
1321 " be specified for PAPR PHB, not both");
1322 return;
1323 }
1324
1325 if (sphb->index > SPAPR_PCI_MAX_INDEX) {
1326 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
1327 SPAPR_PCI_MAX_INDEX);
1328 return;
1329 }
1330
1331 sphb->buid = SPAPR_PCI_BASE_BUID + sphb->index;
1332 sphb->dma_liobn = SPAPR_PCI_LIOBN(sphb->index, 0);
1333
1334 windows_base = SPAPR_PCI_WINDOW_BASE
1335 + sphb->index * SPAPR_PCI_WINDOW_SPACING;
1336 sphb->mem_win_addr = windows_base + SPAPR_PCI_MMIO_WIN_OFF;
1337 sphb->io_win_addr = windows_base + SPAPR_PCI_IO_WIN_OFF;
1338 }
1339
1340 if (sphb->buid == (uint64_t)-1) {
1341 error_setg(errp, "BUID not specified for PHB");
1342 return;
1343 }
1344
1345 if (sphb->dma_liobn == (uint32_t)-1) {
1346 error_setg(errp, "LIOBN not specified for PHB");
1347 return;
1348 }
1349
1350 if (sphb->mem_win_addr == (hwaddr)-1) {
1351 error_setg(errp, "Memory window address not specified for PHB");
1352 return;
1353 }
1354
1355 if (sphb->io_win_addr == (hwaddr)-1) {
1356 error_setg(errp, "IO window address not specified for PHB");
1357 return;
1358 }
1359
1360 if (spapr_pci_find_phb(spapr, sphb->buid)) {
1361 error_setg(errp, "PCI host bridges must have unique BUIDs");
1362 return;
1363 }
1364
1365 sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
1366
1367 namebuf = alloca(strlen(sphb->dtbusname) + 32);
1368
1369 /* Initialize memory regions */
1370 sprintf(namebuf, "%s.mmio", sphb->dtbusname);
1371 memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX);
1372
1373 sprintf(namebuf, "%s.mmio-alias", sphb->dtbusname);
1374 memory_region_init_alias(&sphb->memwindow, OBJECT(sphb),
1375 namebuf, &sphb->memspace,
1376 SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
1377 memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
1378 &sphb->memwindow);
1379
1380 /* Initialize IO regions */
1381 sprintf(namebuf, "%s.io", sphb->dtbusname);
1382 memory_region_init(&sphb->iospace, OBJECT(sphb),
1383 namebuf, SPAPR_PCI_IO_WIN_SIZE);
1384
1385 sprintf(namebuf, "%s.io-alias", sphb->dtbusname);
1386 memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf,
1387 &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE);
1388 memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
1389 &sphb->iowindow);
1390
1391 bus = pci_register_bus(dev, NULL,
1392 pci_spapr_set_irq, pci_spapr_map_irq, sphb,
1393 &sphb->memspace, &sphb->iospace,
1394 PCI_DEVFN(0, 0), PCI_NUM_PINS, TYPE_PCI_BUS);
1395 phb->bus = bus;
1396 qbus_set_hotplug_handler(BUS(phb->bus), DEVICE(sphb), NULL);
1397
1398 /*
1399 * Initialize PHB address space.
1400 * By default there will be at least one subregion for default
1401 * 32bit DMA window.
1402 * Later the guest might want to create another DMA window
1403 * which will become another memory subregion.
1404 */
1405 sprintf(namebuf, "%s.iommu-root", sphb->dtbusname);
1406
1407 memory_region_init(&sphb->iommu_root, OBJECT(sphb),
1408 namebuf, UINT64_MAX);
1409 address_space_init(&sphb->iommu_as, &sphb->iommu_root,
1410 sphb->dtbusname);
1411
1412 /*
1413 * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
1414 * we need to allocate some memory to catch those writes coming
1415 * from msi_notify()/msix_notify().
1416 * As MSIMessage:addr is going to be the same and MSIMessage:data
1417 * is going to be a VIRQ number, 4 bytes of the MSI MR will only
1418 * be used.
1419 *
1420 * For KVM we want to ensure that this memory is a full page so that
1421 * our memory slot is of page size granularity.
1422 */
1423 #ifdef CONFIG_KVM
1424 if (kvm_enabled()) {
1425 msi_window_size = getpagesize();
1426 }
1427 #endif
1428
1429 memory_region_init_io(&sphb->msiwindow, NULL, &spapr_msi_ops, spapr,
1430 "msi", msi_window_size);
1431 memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW,
1432 &sphb->msiwindow);
1433
1434 pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb);
1435
1436 pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq);
1437
1438 QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
1439
1440 /* Initialize the LSI table */
1441 for (i = 0; i < PCI_NUM_PINS; i++) {
1442 uint32_t irq;
1443 Error *local_err = NULL;
1444
1445 irq = xics_alloc_block(spapr->icp, 0, 1, true, false, &local_err);
1446 if (local_err) {
1447 error_propagate(errp, local_err);
1448 error_prepend(errp, "can't allocate LSIs: ");
1449 return;
1450 }
1451
1452 sphb->lsi_table[i].irq = irq;
1453 }
1454
1455 /* allocate connectors for child PCI devices */
1456 if (sphb->dr_enabled) {
1457 for (i = 0; i < PCI_SLOT_MAX * 8; i++) {
1458 spapr_dr_connector_new(OBJECT(phb),
1459 SPAPR_DR_CONNECTOR_TYPE_PCI,
1460 (sphb->index << 16) | i);
1461 }
1462 }
1463
1464 tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn);
1465 if (!tcet) {
1466 error_setg(errp, "Unable to create TCE table for %s",
1467 sphb->dtbusname);
1468 return;
1469 }
1470
1471 memory_region_add_subregion_overlap(&sphb->iommu_root, 0,
1472 spapr_tce_get_iommu(tcet), 0);
1473
1474 sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free, g_free);
1475 }
1476
1477 static int spapr_phb_children_reset(Object *child, void *opaque)
1478 {
1479 DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE);
1480
1481 if (dev) {
1482 device_reset(dev);
1483 }
1484
1485 return 0;
1486 }
1487
1488 void spapr_phb_dma_reset(sPAPRPHBState *sphb)
1489 {
1490 sPAPRTCETable *tcet = spapr_tce_find_by_liobn(sphb->dma_liobn);
1491
1492 if (tcet && tcet->nb_table) {
1493 spapr_tce_table_disable(tcet);
1494 }
1495
1496 /* Register default 32bit DMA window */
1497 spapr_tce_table_enable(tcet, SPAPR_TCE_PAGE_SHIFT, sphb->dma_win_addr,
1498 sphb->dma_win_size >> SPAPR_TCE_PAGE_SHIFT);
1499 }
1500
1501 static void spapr_phb_reset(DeviceState *qdev)
1502 {
1503 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(qdev);
1504
1505 spapr_phb_dma_reset(sphb);
1506
1507 /* Reset the IOMMU state */
1508 object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL);
1509
1510 if (spapr_phb_eeh_available(SPAPR_PCI_HOST_BRIDGE(qdev))) {
1511 spapr_phb_vfio_reset(qdev);
1512 }
1513 }
1514
1515 static Property spapr_phb_properties[] = {
1516 DEFINE_PROP_UINT32("index", sPAPRPHBState, index, -1),
1517 DEFINE_PROP_UINT64("buid", sPAPRPHBState, buid, -1),
1518 DEFINE_PROP_UINT32("liobn", sPAPRPHBState, dma_liobn, -1),
1519 DEFINE_PROP_UINT64("mem_win_addr", sPAPRPHBState, mem_win_addr, -1),
1520 DEFINE_PROP_UINT64("mem_win_size", sPAPRPHBState, mem_win_size,
1521 SPAPR_PCI_MMIO_WIN_SIZE),
1522 DEFINE_PROP_UINT64("io_win_addr", sPAPRPHBState, io_win_addr, -1),
1523 DEFINE_PROP_UINT64("io_win_size", sPAPRPHBState, io_win_size,
1524 SPAPR_PCI_IO_WIN_SIZE),
1525 DEFINE_PROP_BOOL("dynamic-reconfiguration", sPAPRPHBState, dr_enabled,
1526 true),
1527 /* Default DMA window is 0..1GB */
1528 DEFINE_PROP_UINT64("dma_win_addr", sPAPRPHBState, dma_win_addr, 0),
1529 DEFINE_PROP_UINT64("dma_win_size", sPAPRPHBState, dma_win_size, 0x40000000),
1530 DEFINE_PROP_END_OF_LIST(),
1531 };
1532
1533 static const VMStateDescription vmstate_spapr_pci_lsi = {
1534 .name = "spapr_pci/lsi",
1535 .version_id = 1,
1536 .minimum_version_id = 1,
1537 .fields = (VMStateField[]) {
1538 VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi),
1539
1540 VMSTATE_END_OF_LIST()
1541 },
1542 };
1543
1544 static const VMStateDescription vmstate_spapr_pci_msi = {
1545 .name = "spapr_pci/msi",
1546 .version_id = 1,
1547 .minimum_version_id = 1,
1548 .fields = (VMStateField []) {
1549 VMSTATE_UINT32(key, spapr_pci_msi_mig),
1550 VMSTATE_UINT32(value.first_irq, spapr_pci_msi_mig),
1551 VMSTATE_UINT32(value.num, spapr_pci_msi_mig),
1552 VMSTATE_END_OF_LIST()
1553 },
1554 };
1555
1556 static void spapr_pci_pre_save(void *opaque)
1557 {
1558 sPAPRPHBState *sphb = opaque;
1559 GHashTableIter iter;
1560 gpointer key, value;
1561 int i;
1562
1563 g_free(sphb->msi_devs);
1564 sphb->msi_devs = NULL;
1565 sphb->msi_devs_num = g_hash_table_size(sphb->msi);
1566 if (!sphb->msi_devs_num) {
1567 return;
1568 }
1569 sphb->msi_devs = g_malloc(sphb->msi_devs_num * sizeof(spapr_pci_msi_mig));
1570
1571 g_hash_table_iter_init(&iter, sphb->msi);
1572 for (i = 0; g_hash_table_iter_next(&iter, &key, &value); ++i) {
1573 sphb->msi_devs[i].key = *(uint32_t *) key;
1574 sphb->msi_devs[i].value = *(spapr_pci_msi *) value;
1575 }
1576 }
1577
1578 static int spapr_pci_post_load(void *opaque, int version_id)
1579 {
1580 sPAPRPHBState *sphb = opaque;
1581 gpointer key, value;
1582 int i;
1583
1584 for (i = 0; i < sphb->msi_devs_num; ++i) {
1585 key = g_memdup(&sphb->msi_devs[i].key,
1586 sizeof(sphb->msi_devs[i].key));
1587 value = g_memdup(&sphb->msi_devs[i].value,
1588 sizeof(sphb->msi_devs[i].value));
1589 g_hash_table_insert(sphb->msi, key, value);
1590 }
1591 g_free(sphb->msi_devs);
1592 sphb->msi_devs = NULL;
1593 sphb->msi_devs_num = 0;
1594
1595 return 0;
1596 }
1597
1598 static const VMStateDescription vmstate_spapr_pci = {
1599 .name = "spapr_pci",
1600 .version_id = 2,
1601 .minimum_version_id = 2,
1602 .pre_save = spapr_pci_pre_save,
1603 .post_load = spapr_pci_post_load,
1604 .fields = (VMStateField[]) {
1605 VMSTATE_UINT64_EQUAL(buid, sPAPRPHBState),
1606 VMSTATE_UINT32_EQUAL(dma_liobn, sPAPRPHBState),
1607 VMSTATE_UINT64_EQUAL(mem_win_addr, sPAPRPHBState),
1608 VMSTATE_UINT64_EQUAL(mem_win_size, sPAPRPHBState),
1609 VMSTATE_UINT64_EQUAL(io_win_addr, sPAPRPHBState),
1610 VMSTATE_UINT64_EQUAL(io_win_size, sPAPRPHBState),
1611 VMSTATE_STRUCT_ARRAY(lsi_table, sPAPRPHBState, PCI_NUM_PINS, 0,
1612 vmstate_spapr_pci_lsi, struct spapr_pci_lsi),
1613 VMSTATE_INT32(msi_devs_num, sPAPRPHBState),
1614 VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, sPAPRPHBState, msi_devs_num, 0,
1615 vmstate_spapr_pci_msi, spapr_pci_msi_mig),
1616 VMSTATE_END_OF_LIST()
1617 },
1618 };
1619
1620 static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge,
1621 PCIBus *rootbus)
1622 {
1623 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge);
1624
1625 return sphb->dtbusname;
1626 }
1627
1628 static void spapr_phb_class_init(ObjectClass *klass, void *data)
1629 {
1630 PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
1631 DeviceClass *dc = DEVICE_CLASS(klass);
1632 HotplugHandlerClass *hp = HOTPLUG_HANDLER_CLASS(klass);
1633
1634 hc->root_bus_path = spapr_phb_root_bus_path;
1635 dc->realize = spapr_phb_realize;
1636 dc->props = spapr_phb_properties;
1637 dc->reset = spapr_phb_reset;
1638 dc->vmsd = &vmstate_spapr_pci;
1639 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
1640 hp->plug = spapr_phb_hot_plug_child;
1641 hp->unplug = spapr_phb_hot_unplug_child;
1642 }
1643
1644 static const TypeInfo spapr_phb_info = {
1645 .name = TYPE_SPAPR_PCI_HOST_BRIDGE,
1646 .parent = TYPE_PCI_HOST_BRIDGE,
1647 .instance_size = sizeof(sPAPRPHBState),
1648 .class_init = spapr_phb_class_init,
1649 .interfaces = (InterfaceInfo[]) {
1650 { TYPE_HOTPLUG_HANDLER },
1651 { }
1652 }
1653 };
1654
1655 PCIHostState *spapr_create_phb(sPAPRMachineState *spapr, int index)
1656 {
1657 DeviceState *dev;
1658
1659 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
1660 qdev_prop_set_uint32(dev, "index", index);
1661 qdev_init_nofail(dev);
1662
1663 return PCI_HOST_BRIDGE(dev);
1664 }
1665
1666 typedef struct sPAPRFDT {
1667 void *fdt;
1668 int node_off;
1669 sPAPRPHBState *sphb;
1670 } sPAPRFDT;
1671
1672 static void spapr_populate_pci_devices_dt(PCIBus *bus, PCIDevice *pdev,
1673 void *opaque)
1674 {
1675 PCIBus *sec_bus;
1676 sPAPRFDT *p = opaque;
1677 int offset;
1678 sPAPRFDT s_fdt;
1679
1680 offset = spapr_create_pci_child_dt(p->sphb, pdev, p->fdt, p->node_off);
1681 if (!offset) {
1682 error_report("Failed to create pci child device tree node");
1683 return;
1684 }
1685
1686 if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
1687 PCI_HEADER_TYPE_BRIDGE)) {
1688 return;
1689 }
1690
1691 sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
1692 if (!sec_bus) {
1693 return;
1694 }
1695
1696 s_fdt.fdt = p->fdt;
1697 s_fdt.node_off = offset;
1698 s_fdt.sphb = p->sphb;
1699 pci_for_each_device(sec_bus, pci_bus_num(sec_bus),
1700 spapr_populate_pci_devices_dt,
1701 &s_fdt);
1702 }
1703
1704 static void spapr_phb_pci_enumerate_bridge(PCIBus *bus, PCIDevice *pdev,
1705 void *opaque)
1706 {
1707 unsigned int *bus_no = opaque;
1708 unsigned int primary = *bus_no;
1709 unsigned int subordinate = 0xff;
1710 PCIBus *sec_bus = NULL;
1711
1712 if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
1713 PCI_HEADER_TYPE_BRIDGE)) {
1714 return;
1715 }
1716
1717 (*bus_no)++;
1718 pci_default_write_config(pdev, PCI_PRIMARY_BUS, primary, 1);
1719 pci_default_write_config(pdev, PCI_SECONDARY_BUS, *bus_no, 1);
1720 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
1721
1722 sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
1723 if (!sec_bus) {
1724 return;
1725 }
1726
1727 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, subordinate, 1);
1728 pci_for_each_device(sec_bus, pci_bus_num(sec_bus),
1729 spapr_phb_pci_enumerate_bridge, bus_no);
1730 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
1731 }
1732
1733 static void spapr_phb_pci_enumerate(sPAPRPHBState *phb)
1734 {
1735 PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
1736 unsigned int bus_no = 0;
1737
1738 pci_for_each_device(bus, pci_bus_num(bus),
1739 spapr_phb_pci_enumerate_bridge,
1740 &bus_no);
1741
1742 }
1743
1744 int spapr_populate_pci_dt(sPAPRPHBState *phb,
1745 uint32_t xics_phandle,
1746 void *fdt)
1747 {
1748 int bus_off, i, j, ret;
1749 char nodename[FDT_NAME_MAX];
1750 uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
1751 const uint64_t mmiosize = memory_region_size(&phb->memwindow);
1752 const uint64_t w32max = (1ULL << 32) - SPAPR_PCI_MEM_WIN_BUS_OFFSET;
1753 const uint64_t w32size = MIN(w32max, mmiosize);
1754 const uint64_t w64size = (mmiosize > w32size) ? (mmiosize - w32size) : 0;
1755 struct {
1756 uint32_t hi;
1757 uint64_t child;
1758 uint64_t parent;
1759 uint64_t size;
1760 } QEMU_PACKED ranges[] = {
1761 {
1762 cpu_to_be32(b_ss(1)), cpu_to_be64(0),
1763 cpu_to_be64(phb->io_win_addr),
1764 cpu_to_be64(memory_region_size(&phb->iospace)),
1765 },
1766 {
1767 cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
1768 cpu_to_be64(phb->mem_win_addr),
1769 cpu_to_be64(w32size),
1770 },
1771 {
1772 cpu_to_be32(b_ss(3)), cpu_to_be64(1ULL << 32),
1773 cpu_to_be64(phb->mem_win_addr + w32size),
1774 cpu_to_be64(w64size)
1775 },
1776 };
1777 const unsigned sizeof_ranges = (w64size ? 3 : 2) * sizeof(ranges[0]);
1778 uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
1779 uint32_t interrupt_map_mask[] = {
1780 cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
1781 uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
1782 sPAPRTCETable *tcet;
1783 PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
1784 sPAPRFDT s_fdt;
1785
1786 /* Start populating the FDT */
1787 snprintf(nodename, FDT_NAME_MAX, "pci@%" PRIx64, phb->buid);
1788 bus_off = fdt_add_subnode(fdt, 0, nodename);
1789 if (bus_off < 0) {
1790 return bus_off;
1791 }
1792
1793 /* Write PHB properties */
1794 _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
1795 _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
1796 _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
1797 _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
1798 _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
1799 _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
1800 _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
1801 _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof_ranges));
1802 _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
1803 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
1804 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi", XICS_IRQS));
1805
1806 /* Build the interrupt-map, this must matches what is done
1807 * in pci_spapr_map_irq
1808 */
1809 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
1810 &interrupt_map_mask, sizeof(interrupt_map_mask)));
1811 for (i = 0; i < PCI_SLOT_MAX; i++) {
1812 for (j = 0; j < PCI_NUM_PINS; j++) {
1813 uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
1814 int lsi_num = pci_spapr_swizzle(i, j);
1815
1816 irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
1817 irqmap[1] = 0;
1818 irqmap[2] = 0;
1819 irqmap[3] = cpu_to_be32(j+1);
1820 irqmap[4] = cpu_to_be32(xics_phandle);
1821 irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].irq);
1822 irqmap[6] = cpu_to_be32(0x8);
1823 }
1824 }
1825 /* Write interrupt map */
1826 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
1827 sizeof(interrupt_map)));
1828
1829 tcet = spapr_tce_find_by_liobn(phb->dma_liobn);
1830 if (!tcet) {
1831 return -1;
1832 }
1833 spapr_dma_dt(fdt, bus_off, "ibm,dma-window",
1834 tcet->liobn, tcet->bus_offset,
1835 tcet->nb_table << tcet->page_shift);
1836
1837 /* Walk the bridges and program the bus numbers*/
1838 spapr_phb_pci_enumerate(phb);
1839 _FDT(fdt_setprop_cell(fdt, bus_off, "qemu,phb-enumerated", 0x1));
1840
1841 /* Populate tree nodes with PCI devices attached */
1842 s_fdt.fdt = fdt;
1843 s_fdt.node_off = bus_off;
1844 s_fdt.sphb = phb;
1845 pci_for_each_device(bus, pci_bus_num(bus),
1846 spapr_populate_pci_devices_dt,
1847 &s_fdt);
1848
1849 ret = spapr_drc_populate_dt(fdt, bus_off, OBJECT(phb),
1850 SPAPR_DR_CONNECTOR_TYPE_PCI);
1851 if (ret) {
1852 return ret;
1853 }
1854
1855 return 0;
1856 }
1857
1858 void spapr_pci_rtas_init(void)
1859 {
1860 spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config",
1861 rtas_read_pci_config);
1862 spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config",
1863 rtas_write_pci_config);
1864 spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config",
1865 rtas_ibm_read_pci_config);
1866 spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config",
1867 rtas_ibm_write_pci_config);
1868 if (msi_nonbroken) {
1869 spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER,
1870 "ibm,query-interrupt-source-number",
1871 rtas_ibm_query_interrupt_source_number);
1872 spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi",
1873 rtas_ibm_change_msi);
1874 }
1875
1876 spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION,
1877 "ibm,set-eeh-option",
1878 rtas_ibm_set_eeh_option);
1879 spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2,
1880 "ibm,get-config-addr-info2",
1881 rtas_ibm_get_config_addr_info2);
1882 spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2,
1883 "ibm,read-slot-reset-state2",
1884 rtas_ibm_read_slot_reset_state2);
1885 spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET,
1886 "ibm,set-slot-reset",
1887 rtas_ibm_set_slot_reset);
1888 spapr_rtas_register(RTAS_IBM_CONFIGURE_PE,
1889 "ibm,configure-pe",
1890 rtas_ibm_configure_pe);
1891 spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL,
1892 "ibm,slot-error-detail",
1893 rtas_ibm_slot_error_detail);
1894 }
1895
1896 static void spapr_pci_register_types(void)
1897 {
1898 type_register_static(&spapr_phb_info);
1899 }
1900
1901 type_init(spapr_pci_register_types)
1902
1903 static int spapr_switch_one_vga(DeviceState *dev, void *opaque)
1904 {
1905 bool be = *(bool *)opaque;
1906
1907 if (object_dynamic_cast(OBJECT(dev), "VGA")
1908 || object_dynamic_cast(OBJECT(dev), "secondary-vga")) {
1909 object_property_set_bool(OBJECT(dev), be, "big-endian-framebuffer",
1910 &error_abort);
1911 }
1912 return 0;
1913 }
1914
1915 void spapr_pci_switch_vga(bool big_endian)
1916 {
1917 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1918 sPAPRPHBState *sphb;
1919
1920 /*
1921 * For backward compatibility with existing guests, we switch
1922 * the endianness of the VGA controller when changing the guest
1923 * interrupt mode
1924 */
1925 QLIST_FOREACH(sphb, &spapr->phbs, list) {
1926 BusState *bus = &PCI_HOST_BRIDGE(sphb)->bus->qbus;
1927 qbus_walk_children(bus, spapr_switch_one_vga, NULL, NULL, NULL,
1928 &big_endian);
1929 }
1930 }