]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/spapr_pci.c
spapr_pci: drop redundant args in spapr_[populate, create]_pci_child_dt
[mirror_qemu.git] / hw / ppc / spapr_pci.c
1 /*
2 * QEMU sPAPR PCI host originated from Uninorth PCI host
3 *
4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5 * Copyright (C) 2011 David Gibson, IBM Corporation.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
24 */
25 #include "hw/hw.h"
26 #include "hw/sysbus.h"
27 #include "hw/pci/pci.h"
28 #include "hw/pci/msi.h"
29 #include "hw/pci/msix.h"
30 #include "hw/pci/pci_host.h"
31 #include "hw/ppc/spapr.h"
32 #include "hw/pci-host/spapr.h"
33 #include "exec/address-spaces.h"
34 #include <libfdt.h>
35 #include "trace.h"
36 #include "qemu/error-report.h"
37 #include "qapi/qmp/qerror.h"
38
39 #include "hw/pci/pci_bridge.h"
40 #include "hw/pci/pci_bus.h"
41 #include "hw/ppc/spapr_drc.h"
42 #include "sysemu/device_tree.h"
43
44 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
45 #define RTAS_QUERY_FN 0
46 #define RTAS_CHANGE_FN 1
47 #define RTAS_RESET_FN 2
48 #define RTAS_CHANGE_MSI_FN 3
49 #define RTAS_CHANGE_MSIX_FN 4
50
51 /* Interrupt types to return on RTAS_CHANGE_* */
52 #define RTAS_TYPE_MSI 1
53 #define RTAS_TYPE_MSIX 2
54
55 #define FDT_NAME_MAX 128
56
57 #define _FDT(exp) \
58 do { \
59 int ret = (exp); \
60 if (ret < 0) { \
61 return ret; \
62 } \
63 } while (0)
64
65 sPAPRPHBState *spapr_pci_find_phb(sPAPRMachineState *spapr, uint64_t buid)
66 {
67 sPAPRPHBState *sphb;
68
69 QLIST_FOREACH(sphb, &spapr->phbs, list) {
70 if (sphb->buid != buid) {
71 continue;
72 }
73 return sphb;
74 }
75
76 return NULL;
77 }
78
79 PCIDevice *spapr_pci_find_dev(sPAPRMachineState *spapr, uint64_t buid,
80 uint32_t config_addr)
81 {
82 sPAPRPHBState *sphb = spapr_pci_find_phb(spapr, buid);
83 PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
84 int bus_num = (config_addr >> 16) & 0xFF;
85 int devfn = (config_addr >> 8) & 0xFF;
86
87 if (!phb) {
88 return NULL;
89 }
90
91 return pci_find_device(phb->bus, bus_num, devfn);
92 }
93
94 static uint32_t rtas_pci_cfgaddr(uint32_t arg)
95 {
96 /* This handles the encoding of extended config space addresses */
97 return ((arg >> 20) & 0xf00) | (arg & 0xff);
98 }
99
100 static void finish_read_pci_config(sPAPRMachineState *spapr, uint64_t buid,
101 uint32_t addr, uint32_t size,
102 target_ulong rets)
103 {
104 PCIDevice *pci_dev;
105 uint32_t val;
106
107 if ((size != 1) && (size != 2) && (size != 4)) {
108 /* access must be 1, 2 or 4 bytes */
109 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
110 return;
111 }
112
113 pci_dev = spapr_pci_find_dev(spapr, buid, addr);
114 addr = rtas_pci_cfgaddr(addr);
115
116 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
117 /* Access must be to a valid device, within bounds and
118 * naturally aligned */
119 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
120 return;
121 }
122
123 val = pci_host_config_read_common(pci_dev, addr,
124 pci_config_size(pci_dev), size);
125
126 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
127 rtas_st(rets, 1, val);
128 }
129
130 static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
131 uint32_t token, uint32_t nargs,
132 target_ulong args,
133 uint32_t nret, target_ulong rets)
134 {
135 uint64_t buid;
136 uint32_t size, addr;
137
138 if ((nargs != 4) || (nret != 2)) {
139 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
140 return;
141 }
142
143 buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
144 size = rtas_ld(args, 3);
145 addr = rtas_ld(args, 0);
146
147 finish_read_pci_config(spapr, buid, addr, size, rets);
148 }
149
150 static void rtas_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
151 uint32_t token, uint32_t nargs,
152 target_ulong args,
153 uint32_t nret, target_ulong rets)
154 {
155 uint32_t size, addr;
156
157 if ((nargs != 2) || (nret != 2)) {
158 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
159 return;
160 }
161
162 size = rtas_ld(args, 1);
163 addr = rtas_ld(args, 0);
164
165 finish_read_pci_config(spapr, 0, addr, size, rets);
166 }
167
168 static void finish_write_pci_config(sPAPRMachineState *spapr, uint64_t buid,
169 uint32_t addr, uint32_t size,
170 uint32_t val, target_ulong rets)
171 {
172 PCIDevice *pci_dev;
173
174 if ((size != 1) && (size != 2) && (size != 4)) {
175 /* access must be 1, 2 or 4 bytes */
176 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
177 return;
178 }
179
180 pci_dev = spapr_pci_find_dev(spapr, buid, addr);
181 addr = rtas_pci_cfgaddr(addr);
182
183 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
184 /* Access must be to a valid device, within bounds and
185 * naturally aligned */
186 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
187 return;
188 }
189
190 pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
191 val, size);
192
193 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
194 }
195
196 static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
197 uint32_t token, uint32_t nargs,
198 target_ulong args,
199 uint32_t nret, target_ulong rets)
200 {
201 uint64_t buid;
202 uint32_t val, size, addr;
203
204 if ((nargs != 5) || (nret != 1)) {
205 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
206 return;
207 }
208
209 buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
210 val = rtas_ld(args, 4);
211 size = rtas_ld(args, 3);
212 addr = rtas_ld(args, 0);
213
214 finish_write_pci_config(spapr, buid, addr, size, val, rets);
215 }
216
217 static void rtas_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
218 uint32_t token, uint32_t nargs,
219 target_ulong args,
220 uint32_t nret, target_ulong rets)
221 {
222 uint32_t val, size, addr;
223
224 if ((nargs != 3) || (nret != 1)) {
225 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
226 return;
227 }
228
229
230 val = rtas_ld(args, 2);
231 size = rtas_ld(args, 1);
232 addr = rtas_ld(args, 0);
233
234 finish_write_pci_config(spapr, 0, addr, size, val, rets);
235 }
236
237 /*
238 * Set MSI/MSIX message data.
239 * This is required for msi_notify()/msix_notify() which
240 * will write at the addresses via spapr_msi_write().
241 *
242 * If hwaddr == 0, all entries will have .data == first_irq i.e.
243 * table will be reset.
244 */
245 static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix,
246 unsigned first_irq, unsigned req_num)
247 {
248 unsigned i;
249 MSIMessage msg = { .address = addr, .data = first_irq };
250
251 if (!msix) {
252 msi_set_message(pdev, msg);
253 trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
254 return;
255 }
256
257 for (i = 0; i < req_num; ++i) {
258 msix_set_message(pdev, i, msg);
259 trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
260 if (addr) {
261 ++msg.data;
262 }
263 }
264 }
265
266 static void rtas_ibm_change_msi(PowerPCCPU *cpu, sPAPRMachineState *spapr,
267 uint32_t token, uint32_t nargs,
268 target_ulong args, uint32_t nret,
269 target_ulong rets)
270 {
271 uint32_t config_addr = rtas_ld(args, 0);
272 uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
273 unsigned int func = rtas_ld(args, 3);
274 unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
275 unsigned int seq_num = rtas_ld(args, 5);
276 unsigned int ret_intr_type;
277 unsigned int irq, max_irqs = 0, num = 0;
278 sPAPRPHBState *phb = NULL;
279 PCIDevice *pdev = NULL;
280 spapr_pci_msi *msi;
281 int *config_addr_key;
282
283 switch (func) {
284 case RTAS_CHANGE_MSI_FN:
285 case RTAS_CHANGE_FN:
286 ret_intr_type = RTAS_TYPE_MSI;
287 break;
288 case RTAS_CHANGE_MSIX_FN:
289 ret_intr_type = RTAS_TYPE_MSIX;
290 break;
291 default:
292 error_report("rtas_ibm_change_msi(%u) is not implemented", func);
293 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
294 return;
295 }
296
297 /* Fins sPAPRPHBState */
298 phb = spapr_pci_find_phb(spapr, buid);
299 if (phb) {
300 pdev = spapr_pci_find_dev(spapr, buid, config_addr);
301 }
302 if (!phb || !pdev) {
303 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
304 return;
305 }
306
307 /* Releasing MSIs */
308 if (!req_num) {
309 msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
310 if (!msi) {
311 trace_spapr_pci_msi("Releasing wrong config", config_addr);
312 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
313 return;
314 }
315
316 xics_free(spapr->icp, msi->first_irq, msi->num);
317 if (msi_present(pdev)) {
318 spapr_msi_setmsg(pdev, 0, false, 0, num);
319 }
320 if (msix_present(pdev)) {
321 spapr_msi_setmsg(pdev, 0, true, 0, num);
322 }
323 g_hash_table_remove(phb->msi, &config_addr);
324
325 trace_spapr_pci_msi("Released MSIs", config_addr);
326 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
327 rtas_st(rets, 1, 0);
328 return;
329 }
330
331 /* Enabling MSI */
332
333 /* Check if the device supports as many IRQs as requested */
334 if (ret_intr_type == RTAS_TYPE_MSI) {
335 max_irqs = msi_nr_vectors_allocated(pdev);
336 } else if (ret_intr_type == RTAS_TYPE_MSIX) {
337 max_irqs = pdev->msix_entries_nr;
338 }
339 if (!max_irqs) {
340 error_report("Requested interrupt type %d is not enabled for device %x",
341 ret_intr_type, config_addr);
342 rtas_st(rets, 0, -1); /* Hardware error */
343 return;
344 }
345 /* Correct the number if the guest asked for too many */
346 if (req_num > max_irqs) {
347 trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs);
348 req_num = max_irqs;
349 irq = 0; /* to avoid misleading trace */
350 goto out;
351 }
352
353 /* Allocate MSIs */
354 irq = xics_alloc_block(spapr->icp, 0, req_num, false,
355 ret_intr_type == RTAS_TYPE_MSI);
356 if (!irq) {
357 error_report("Cannot allocate MSIs for device %x", config_addr);
358 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
359 return;
360 }
361
362 /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
363 spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX,
364 irq, req_num);
365
366 /* Add MSI device to cache */
367 msi = g_new(spapr_pci_msi, 1);
368 msi->first_irq = irq;
369 msi->num = req_num;
370 config_addr_key = g_new(int, 1);
371 *config_addr_key = config_addr;
372 g_hash_table_insert(phb->msi, config_addr_key, msi);
373
374 out:
375 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
376 rtas_st(rets, 1, req_num);
377 rtas_st(rets, 2, ++seq_num);
378 rtas_st(rets, 3, ret_intr_type);
379
380 trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq);
381 }
382
383 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu,
384 sPAPRMachineState *spapr,
385 uint32_t token,
386 uint32_t nargs,
387 target_ulong args,
388 uint32_t nret,
389 target_ulong rets)
390 {
391 uint32_t config_addr = rtas_ld(args, 0);
392 uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
393 unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
394 sPAPRPHBState *phb = NULL;
395 PCIDevice *pdev = NULL;
396 spapr_pci_msi *msi;
397
398 /* Find sPAPRPHBState */
399 phb = spapr_pci_find_phb(spapr, buid);
400 if (phb) {
401 pdev = spapr_pci_find_dev(spapr, buid, config_addr);
402 }
403 if (!phb || !pdev) {
404 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
405 return;
406 }
407
408 /* Find device descriptor and start IRQ */
409 msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
410 if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) {
411 trace_spapr_pci_msi("Failed to return vector", config_addr);
412 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
413 return;
414 }
415 intr_src_num = msi->first_irq + ioa_intr_num;
416 trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
417 intr_src_num);
418
419 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
420 rtas_st(rets, 1, intr_src_num);
421 rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
422 }
423
424 static void rtas_ibm_set_eeh_option(PowerPCCPU *cpu,
425 sPAPRMachineState *spapr,
426 uint32_t token, uint32_t nargs,
427 target_ulong args, uint32_t nret,
428 target_ulong rets)
429 {
430 sPAPRPHBState *sphb;
431 sPAPRPHBClass *spc;
432 uint32_t addr, option;
433 uint64_t buid;
434 int ret;
435
436 if ((nargs != 4) || (nret != 1)) {
437 goto param_error_exit;
438 }
439
440 buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
441 addr = rtas_ld(args, 0);
442 option = rtas_ld(args, 3);
443
444 sphb = spapr_pci_find_phb(spapr, buid);
445 if (!sphb) {
446 goto param_error_exit;
447 }
448
449 spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
450 if (!spc->eeh_set_option) {
451 goto param_error_exit;
452 }
453
454 ret = spc->eeh_set_option(sphb, addr, option);
455 rtas_st(rets, 0, ret);
456 return;
457
458 param_error_exit:
459 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
460 }
461
462 static void rtas_ibm_get_config_addr_info2(PowerPCCPU *cpu,
463 sPAPRMachineState *spapr,
464 uint32_t token, uint32_t nargs,
465 target_ulong args, uint32_t nret,
466 target_ulong rets)
467 {
468 sPAPRPHBState *sphb;
469 sPAPRPHBClass *spc;
470 PCIDevice *pdev;
471 uint32_t addr, option;
472 uint64_t buid;
473
474 if ((nargs != 4) || (nret != 2)) {
475 goto param_error_exit;
476 }
477
478 buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
479 sphb = spapr_pci_find_phb(spapr, buid);
480 if (!sphb) {
481 goto param_error_exit;
482 }
483
484 spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
485 if (!spc->eeh_set_option) {
486 goto param_error_exit;
487 }
488
489 /*
490 * We always have PE address of form "00BB0001". "BB"
491 * represents the bus number of PE's primary bus.
492 */
493 option = rtas_ld(args, 3);
494 switch (option) {
495 case RTAS_GET_PE_ADDR:
496 addr = rtas_ld(args, 0);
497 pdev = spapr_pci_find_dev(spapr, buid, addr);
498 if (!pdev) {
499 goto param_error_exit;
500 }
501
502 rtas_st(rets, 1, (pci_bus_num(pdev->bus) << 16) + 1);
503 break;
504 case RTAS_GET_PE_MODE:
505 rtas_st(rets, 1, RTAS_PE_MODE_SHARED);
506 break;
507 default:
508 goto param_error_exit;
509 }
510
511 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
512 return;
513
514 param_error_exit:
515 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
516 }
517
518 static void rtas_ibm_read_slot_reset_state2(PowerPCCPU *cpu,
519 sPAPRMachineState *spapr,
520 uint32_t token, uint32_t nargs,
521 target_ulong args, uint32_t nret,
522 target_ulong rets)
523 {
524 sPAPRPHBState *sphb;
525 sPAPRPHBClass *spc;
526 uint64_t buid;
527 int state, ret;
528
529 if ((nargs != 3) || (nret != 4 && nret != 5)) {
530 goto param_error_exit;
531 }
532
533 buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
534 sphb = spapr_pci_find_phb(spapr, buid);
535 if (!sphb) {
536 goto param_error_exit;
537 }
538
539 spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
540 if (!spc->eeh_get_state) {
541 goto param_error_exit;
542 }
543
544 ret = spc->eeh_get_state(sphb, &state);
545 rtas_st(rets, 0, ret);
546 if (ret != RTAS_OUT_SUCCESS) {
547 return;
548 }
549
550 rtas_st(rets, 1, state);
551 rtas_st(rets, 2, RTAS_EEH_SUPPORT);
552 rtas_st(rets, 3, RTAS_EEH_PE_UNAVAIL_INFO);
553 if (nret >= 5) {
554 rtas_st(rets, 4, RTAS_EEH_PE_RECOVER_INFO);
555 }
556 return;
557
558 param_error_exit:
559 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
560 }
561
562 static void rtas_ibm_set_slot_reset(PowerPCCPU *cpu,
563 sPAPRMachineState *spapr,
564 uint32_t token, uint32_t nargs,
565 target_ulong args, uint32_t nret,
566 target_ulong rets)
567 {
568 sPAPRPHBState *sphb;
569 sPAPRPHBClass *spc;
570 uint32_t option;
571 uint64_t buid;
572 int ret;
573
574 if ((nargs != 4) || (nret != 1)) {
575 goto param_error_exit;
576 }
577
578 buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
579 option = rtas_ld(args, 3);
580 sphb = spapr_pci_find_phb(spapr, buid);
581 if (!sphb) {
582 goto param_error_exit;
583 }
584
585 spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
586 if (!spc->eeh_reset) {
587 goto param_error_exit;
588 }
589
590 ret = spc->eeh_reset(sphb, option);
591 rtas_st(rets, 0, ret);
592 return;
593
594 param_error_exit:
595 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
596 }
597
598 static void rtas_ibm_configure_pe(PowerPCCPU *cpu,
599 sPAPRMachineState *spapr,
600 uint32_t token, uint32_t nargs,
601 target_ulong args, uint32_t nret,
602 target_ulong rets)
603 {
604 sPAPRPHBState *sphb;
605 sPAPRPHBClass *spc;
606 uint64_t buid;
607 int ret;
608
609 if ((nargs != 3) || (nret != 1)) {
610 goto param_error_exit;
611 }
612
613 buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
614 sphb = spapr_pci_find_phb(spapr, buid);
615 if (!sphb) {
616 goto param_error_exit;
617 }
618
619 spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
620 if (!spc->eeh_configure) {
621 goto param_error_exit;
622 }
623
624 ret = spc->eeh_configure(sphb);
625 rtas_st(rets, 0, ret);
626 return;
627
628 param_error_exit:
629 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
630 }
631
632 /* To support it later */
633 static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu,
634 sPAPRMachineState *spapr,
635 uint32_t token, uint32_t nargs,
636 target_ulong args, uint32_t nret,
637 target_ulong rets)
638 {
639 sPAPRPHBState *sphb;
640 sPAPRPHBClass *spc;
641 int option;
642 uint64_t buid;
643
644 if ((nargs != 8) || (nret != 1)) {
645 goto param_error_exit;
646 }
647
648 buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
649 sphb = spapr_pci_find_phb(spapr, buid);
650 if (!sphb) {
651 goto param_error_exit;
652 }
653
654 spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
655 if (!spc->eeh_set_option) {
656 goto param_error_exit;
657 }
658
659 option = rtas_ld(args, 7);
660 switch (option) {
661 case RTAS_SLOT_TEMP_ERR_LOG:
662 case RTAS_SLOT_PERM_ERR_LOG:
663 break;
664 default:
665 goto param_error_exit;
666 }
667
668 /* We don't have error log yet */
669 rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND);
670 return;
671
672 param_error_exit:
673 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
674 }
675
676 static int pci_spapr_swizzle(int slot, int pin)
677 {
678 return (slot + pin) % PCI_NUM_PINS;
679 }
680
681 static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
682 {
683 /*
684 * Here we need to convert pci_dev + irq_num to some unique value
685 * which is less than number of IRQs on the specific bus (4). We
686 * use standard PCI swizzling, that is (slot number + pin number)
687 * % 4.
688 */
689 return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
690 }
691
692 static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
693 {
694 /*
695 * Here we use the number returned by pci_spapr_map_irq to find a
696 * corresponding qemu_irq.
697 */
698 sPAPRPHBState *phb = opaque;
699
700 trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq);
701 qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level);
702 }
703
704 static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin)
705 {
706 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque);
707 PCIINTxRoute route;
708
709 route.mode = PCI_INTX_ENABLED;
710 route.irq = sphb->lsi_table[pin].irq;
711
712 return route;
713 }
714
715 /*
716 * MSI/MSIX memory region implementation.
717 * The handler handles both MSI and MSIX.
718 * For MSI-X, the vector number is encoded as a part of the address,
719 * data is set to 0.
720 * For MSI, the vector number is encoded in least bits in data.
721 */
722 static void spapr_msi_write(void *opaque, hwaddr addr,
723 uint64_t data, unsigned size)
724 {
725 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
726 uint32_t irq = data;
727
728 trace_spapr_pci_msi_write(addr, data, irq);
729
730 qemu_irq_pulse(xics_get_qirq(spapr->icp, irq));
731 }
732
733 static const MemoryRegionOps spapr_msi_ops = {
734 /* There is no .read as the read result is undefined by PCI spec */
735 .read = NULL,
736 .write = spapr_msi_write,
737 .endianness = DEVICE_LITTLE_ENDIAN
738 };
739
740 /*
741 * PHB PCI device
742 */
743 static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn)
744 {
745 sPAPRPHBState *phb = opaque;
746
747 return &phb->iommu_as;
748 }
749
750 static char *spapr_phb_vfio_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev)
751 {
752 char *path = NULL, *buf = NULL, *host = NULL;
753
754 /* Get the PCI VFIO host id */
755 host = object_property_get_str(OBJECT(pdev), "host", NULL);
756 if (!host) {
757 goto err_out;
758 }
759
760 /* Construct the path of the file that will give us the DT location */
761 path = g_strdup_printf("/sys/bus/pci/devices/%s/devspec", host);
762 g_free(host);
763 if (!path || !g_file_get_contents(path, &buf, NULL, NULL)) {
764 goto err_out;
765 }
766 g_free(path);
767
768 /* Construct and read from host device tree the loc-code */
769 path = g_strdup_printf("/proc/device-tree%s/ibm,loc-code", buf);
770 g_free(buf);
771 if (!path || !g_file_get_contents(path, &buf, NULL, NULL)) {
772 goto err_out;
773 }
774 return buf;
775
776 err_out:
777 g_free(path);
778 return NULL;
779 }
780
781 static char *spapr_phb_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev)
782 {
783 char *buf;
784 const char *devtype = "qemu";
785 uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
786
787 if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) {
788 buf = spapr_phb_vfio_get_loc_code(sphb, pdev);
789 if (buf) {
790 return buf;
791 }
792 devtype = "vfio";
793 }
794 /*
795 * For emulated devices and VFIO-failure case, make up
796 * the loc-code.
797 */
798 buf = g_strdup_printf("%s_%s:%04x:%02x:%02x.%x",
799 devtype, pdev->name, sphb->index, busnr,
800 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
801 return buf;
802 }
803
804 /* Macros to operate with address in OF binding to PCI */
805 #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p))
806 #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */
807 #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */
808 #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */
809 #define b_ss(x) b_x((x), 24, 2) /* the space code */
810 #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */
811 #define b_ddddd(x) b_x((x), 11, 5) /* device number */
812 #define b_fff(x) b_x((x), 8, 3) /* function number */
813 #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */
814
815 /* for 'reg'/'assigned-addresses' OF properties */
816 #define RESOURCE_CELLS_SIZE 2
817 #define RESOURCE_CELLS_ADDRESS 3
818
819 typedef struct ResourceFields {
820 uint32_t phys_hi;
821 uint32_t phys_mid;
822 uint32_t phys_lo;
823 uint32_t size_hi;
824 uint32_t size_lo;
825 } QEMU_PACKED ResourceFields;
826
827 typedef struct ResourceProps {
828 ResourceFields reg[8];
829 ResourceFields assigned[7];
830 uint32_t reg_len;
831 uint32_t assigned_len;
832 } ResourceProps;
833
834 /* fill in the 'reg'/'assigned-resources' OF properties for
835 * a PCI device. 'reg' describes resource requirements for a
836 * device's IO/MEM regions, 'assigned-addresses' describes the
837 * actual resource assignments.
838 *
839 * the properties are arrays of ('phys-addr', 'size') pairs describing
840 * the addressable regions of the PCI device, where 'phys-addr' is a
841 * RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to
842 * (phys.hi, phys.mid, phys.lo), and 'size' is a
843 * RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo).
844 *
845 * phys.hi = 0xYYXXXXZZ, where:
846 * 0xYY = npt000ss
847 * ||| |
848 * ||| +-- space code
849 * ||| |
850 * ||| + 00 if configuration space
851 * ||| + 01 if IO region,
852 * ||| + 10 if 32-bit MEM region
853 * ||| + 11 if 64-bit MEM region
854 * |||
855 * ||+------ for non-relocatable IO: 1 if aliased
856 * || for relocatable IO: 1 if below 64KB
857 * || for MEM: 1 if below 1MB
858 * |+------- 1 if region is prefetchable
859 * +-------- 1 if region is non-relocatable
860 * 0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function
861 * bits respectively
862 * 0xZZ = rrrrrrrr, the register number of the BAR corresponding
863 * to the region
864 *
865 * phys.mid and phys.lo correspond respectively to the hi/lo portions
866 * of the actual address of the region.
867 *
868 * how the phys-addr/size values are used differ slightly between
869 * 'reg' and 'assigned-addresses' properties. namely, 'reg' has
870 * an additional description for the config space region of the
871 * device, and in the case of QEMU has n=0 and phys.mid=phys.lo=0
872 * to describe the region as relocatable, with an address-mapping
873 * that corresponds directly to the PHB's address space for the
874 * resource. 'assigned-addresses' always has n=1 set with an absolute
875 * address assigned for the resource. in general, 'assigned-addresses'
876 * won't be populated, since addresses for PCI devices are generally
877 * unmapped initially and left to the guest to assign.
878 *
879 * note also that addresses defined in these properties are, at least
880 * for PAPR guests, relative to the PHBs IO/MEM windows, and
881 * correspond directly to the addresses in the BARs.
882 *
883 * in accordance with PCI Bus Binding to Open Firmware,
884 * IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7,
885 * Appendix C.
886 */
887 static void populate_resource_props(PCIDevice *d, ResourceProps *rp)
888 {
889 int bus_num = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d))));
890 uint32_t dev_id = (b_bbbbbbbb(bus_num) |
891 b_ddddd(PCI_SLOT(d->devfn)) |
892 b_fff(PCI_FUNC(d->devfn)));
893 ResourceFields *reg, *assigned;
894 int i, reg_idx = 0, assigned_idx = 0;
895
896 /* config space region */
897 reg = &rp->reg[reg_idx++];
898 reg->phys_hi = cpu_to_be32(dev_id);
899 reg->phys_mid = 0;
900 reg->phys_lo = 0;
901 reg->size_hi = 0;
902 reg->size_lo = 0;
903
904 for (i = 0; i < PCI_NUM_REGIONS; i++) {
905 if (!d->io_regions[i].size) {
906 continue;
907 }
908
909 reg = &rp->reg[reg_idx++];
910
911 reg->phys_hi = cpu_to_be32(dev_id | b_rrrrrrrr(pci_bar(d, i)));
912 if (d->io_regions[i].type & PCI_BASE_ADDRESS_SPACE_IO) {
913 reg->phys_hi |= cpu_to_be32(b_ss(1));
914 } else if (d->io_regions[i].type & PCI_BASE_ADDRESS_MEM_TYPE_64) {
915 reg->phys_hi |= cpu_to_be32(b_ss(3));
916 } else {
917 reg->phys_hi |= cpu_to_be32(b_ss(2));
918 }
919 reg->phys_mid = 0;
920 reg->phys_lo = 0;
921 reg->size_hi = cpu_to_be32(d->io_regions[i].size >> 32);
922 reg->size_lo = cpu_to_be32(d->io_regions[i].size);
923
924 if (d->io_regions[i].addr == PCI_BAR_UNMAPPED) {
925 continue;
926 }
927
928 assigned = &rp->assigned[assigned_idx++];
929 assigned->phys_hi = cpu_to_be32(reg->phys_hi | b_n(1));
930 assigned->phys_mid = cpu_to_be32(d->io_regions[i].addr >> 32);
931 assigned->phys_lo = cpu_to_be32(d->io_regions[i].addr);
932 assigned->size_hi = reg->size_hi;
933 assigned->size_lo = reg->size_lo;
934 }
935
936 rp->reg_len = reg_idx * sizeof(ResourceFields);
937 rp->assigned_len = assigned_idx * sizeof(ResourceFields);
938 }
939
940 static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb,
941 PCIDevice *pdev);
942
943 static int spapr_populate_pci_child_dt(PCIDevice *dev, void *fdt, int offset,
944 sPAPRPHBState *sphb)
945 {
946 ResourceProps rp;
947 bool is_bridge = false;
948 int pci_status, err;
949 char *buf = NULL;
950 uint32_t drc_index = spapr_phb_get_pci_drc_index(sphb, dev);
951
952 if (pci_default_read_config(dev, PCI_HEADER_TYPE, 1) ==
953 PCI_HEADER_TYPE_BRIDGE) {
954 is_bridge = true;
955 }
956
957 /* in accordance with PAPR+ v2.7 13.6.3, Table 181 */
958 _FDT(fdt_setprop_cell(fdt, offset, "vendor-id",
959 pci_default_read_config(dev, PCI_VENDOR_ID, 2)));
960 _FDT(fdt_setprop_cell(fdt, offset, "device-id",
961 pci_default_read_config(dev, PCI_DEVICE_ID, 2)));
962 _FDT(fdt_setprop_cell(fdt, offset, "revision-id",
963 pci_default_read_config(dev, PCI_REVISION_ID, 1)));
964 _FDT(fdt_setprop_cell(fdt, offset, "class-code",
965 pci_default_read_config(dev, PCI_CLASS_PROG, 3)));
966 if (pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)) {
967 _FDT(fdt_setprop_cell(fdt, offset, "interrupts",
968 pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)));
969 }
970
971 if (!is_bridge) {
972 _FDT(fdt_setprop_cell(fdt, offset, "min-grant",
973 pci_default_read_config(dev, PCI_MIN_GNT, 1)));
974 _FDT(fdt_setprop_cell(fdt, offset, "max-latency",
975 pci_default_read_config(dev, PCI_MAX_LAT, 1)));
976 }
977
978 if (pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)) {
979 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-id",
980 pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)));
981 }
982
983 if (pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)) {
984 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-vendor-id",
985 pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)));
986 }
987
988 _FDT(fdt_setprop_cell(fdt, offset, "cache-line-size",
989 pci_default_read_config(dev, PCI_CACHE_LINE_SIZE, 1)));
990
991 /* the following fdt cells are masked off the pci status register */
992 pci_status = pci_default_read_config(dev, PCI_STATUS, 2);
993 _FDT(fdt_setprop_cell(fdt, offset, "devsel-speed",
994 PCI_STATUS_DEVSEL_MASK & pci_status));
995
996 if (pci_status & PCI_STATUS_FAST_BACK) {
997 _FDT(fdt_setprop(fdt, offset, "fast-back-to-back", NULL, 0));
998 }
999 if (pci_status & PCI_STATUS_66MHZ) {
1000 _FDT(fdt_setprop(fdt, offset, "66mhz-capable", NULL, 0));
1001 }
1002 if (pci_status & PCI_STATUS_UDF) {
1003 _FDT(fdt_setprop(fdt, offset, "udf-supported", NULL, 0));
1004 }
1005
1006 /* NOTE: this is normally generated by firmware via path/unit name,
1007 * but in our case we must set it manually since it does not get
1008 * processed by OF beforehand
1009 */
1010 _FDT(fdt_setprop_string(fdt, offset, "name", "pci"));
1011 buf = spapr_phb_get_loc_code(sphb, dev);
1012 if (!buf) {
1013 error_report("Failed setting the ibm,loc-code");
1014 return -1;
1015 }
1016
1017 err = fdt_setprop_string(fdt, offset, "ibm,loc-code", buf);
1018 g_free(buf);
1019 if (err < 0) {
1020 return err;
1021 }
1022
1023 if (drc_index) {
1024 _FDT(fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index));
1025 }
1026
1027 _FDT(fdt_setprop_cell(fdt, offset, "#address-cells",
1028 RESOURCE_CELLS_ADDRESS));
1029 _FDT(fdt_setprop_cell(fdt, offset, "#size-cells",
1030 RESOURCE_CELLS_SIZE));
1031 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi-x",
1032 RESOURCE_CELLS_SIZE));
1033
1034 populate_resource_props(dev, &rp);
1035 _FDT(fdt_setprop(fdt, offset, "reg", (uint8_t *)rp.reg, rp.reg_len));
1036 _FDT(fdt_setprop(fdt, offset, "assigned-addresses",
1037 (uint8_t *)rp.assigned, rp.assigned_len));
1038
1039 return 0;
1040 }
1041
1042 /* create OF node for pci device and required OF DT properties */
1043 static int spapr_create_pci_child_dt(sPAPRPHBState *phb, PCIDevice *dev,
1044 void *fdt, int node_offset)
1045 {
1046 int offset, ret;
1047 int slot = PCI_SLOT(dev->devfn);
1048 int func = PCI_FUNC(dev->devfn);
1049 char nodename[FDT_NAME_MAX];
1050
1051 if (func != 0) {
1052 snprintf(nodename, FDT_NAME_MAX, "pci@%x,%x", slot, func);
1053 } else {
1054 snprintf(nodename, FDT_NAME_MAX, "pci@%x", slot);
1055 }
1056 offset = fdt_add_subnode(fdt, node_offset, nodename);
1057 ret = spapr_populate_pci_child_dt(dev, fdt, offset, phb);
1058
1059 g_assert(!ret);
1060 if (ret) {
1061 return 0;
1062 }
1063 return offset;
1064 }
1065
1066 static void spapr_phb_add_pci_device(sPAPRDRConnector *drc,
1067 sPAPRPHBState *phb,
1068 PCIDevice *pdev,
1069 Error **errp)
1070 {
1071 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1072 DeviceState *dev = DEVICE(pdev);
1073 void *fdt = NULL;
1074 int fdt_start_offset = 0, fdt_size;
1075
1076 if (dev->hotplugged) {
1077 fdt = create_device_tree(&fdt_size);
1078 fdt_start_offset = spapr_create_pci_child_dt(phb, pdev, fdt, 0);
1079 if (!fdt_start_offset) {
1080 error_setg(errp, "Failed to create pci child device tree node");
1081 goto out;
1082 }
1083 }
1084
1085 drck->attach(drc, DEVICE(pdev),
1086 fdt, fdt_start_offset, !dev->hotplugged, errp);
1087 out:
1088 if (*errp) {
1089 g_free(fdt);
1090 }
1091 }
1092
1093 static void spapr_phb_remove_pci_device_cb(DeviceState *dev, void *opaque)
1094 {
1095 /* some version guests do not wait for completion of a device
1096 * cleanup (generally done asynchronously by the kernel) before
1097 * signaling to QEMU that the device is safe, but instead sleep
1098 * for some 'safe' period of time. unfortunately on a busy host
1099 * this sleep isn't guaranteed to be long enough, resulting in
1100 * bad things like IRQ lines being left asserted during final
1101 * device removal. to deal with this we call reset just prior
1102 * to finalizing the device, which will put the device back into
1103 * an 'idle' state, as the device cleanup code expects.
1104 */
1105 pci_device_reset(PCI_DEVICE(dev));
1106 object_unparent(OBJECT(dev));
1107 }
1108
1109 static void spapr_phb_remove_pci_device(sPAPRDRConnector *drc,
1110 sPAPRPHBState *phb,
1111 PCIDevice *pdev,
1112 Error **errp)
1113 {
1114 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1115
1116 drck->detach(drc, DEVICE(pdev), spapr_phb_remove_pci_device_cb, phb, errp);
1117 }
1118
1119 static sPAPRDRConnector *spapr_phb_get_pci_drc(sPAPRPHBState *phb,
1120 PCIDevice *pdev)
1121 {
1122 uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
1123 return spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_PCI,
1124 (phb->index << 16) |
1125 (busnr << 8) |
1126 pdev->devfn);
1127 }
1128
1129 static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb,
1130 PCIDevice *pdev)
1131 {
1132 sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1133 sPAPRDRConnectorClass *drck;
1134
1135 if (!drc) {
1136 return 0;
1137 }
1138
1139 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1140 return drck->get_index(drc);
1141 }
1142
1143 static void spapr_phb_hot_plug_child(HotplugHandler *plug_handler,
1144 DeviceState *plugged_dev, Error **errp)
1145 {
1146 sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1147 PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1148 sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1149 Error *local_err = NULL;
1150
1151 /* if DR is disabled we don't need to do anything in the case of
1152 * hotplug or coldplug callbacks
1153 */
1154 if (!phb->dr_enabled) {
1155 /* if this is a hotplug operation initiated by the user
1156 * we need to let them know it's not enabled
1157 */
1158 if (plugged_dev->hotplugged) {
1159 error_setg(errp, QERR_BUS_NO_HOTPLUG,
1160 object_get_typename(OBJECT(phb)));
1161 }
1162 return;
1163 }
1164
1165 g_assert(drc);
1166
1167 spapr_phb_add_pci_device(drc, phb, pdev, &local_err);
1168 if (local_err) {
1169 error_propagate(errp, local_err);
1170 return;
1171 }
1172 if (plugged_dev->hotplugged) {
1173 spapr_hotplug_req_add_event(drc);
1174 }
1175 }
1176
1177 static void spapr_phb_hot_unplug_child(HotplugHandler *plug_handler,
1178 DeviceState *plugged_dev, Error **errp)
1179 {
1180 sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1181 PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1182 sPAPRDRConnectorClass *drck;
1183 sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1184 Error *local_err = NULL;
1185
1186 if (!phb->dr_enabled) {
1187 error_setg(errp, QERR_BUS_NO_HOTPLUG,
1188 object_get_typename(OBJECT(phb)));
1189 return;
1190 }
1191
1192 g_assert(drc);
1193
1194 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1195 if (!drck->release_pending(drc)) {
1196 spapr_phb_remove_pci_device(drc, phb, pdev, &local_err);
1197 if (local_err) {
1198 error_propagate(errp, local_err);
1199 return;
1200 }
1201 spapr_hotplug_req_remove_event(drc);
1202 }
1203 }
1204
1205 static void spapr_phb_realize(DeviceState *dev, Error **errp)
1206 {
1207 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1208 SysBusDevice *s = SYS_BUS_DEVICE(dev);
1209 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
1210 PCIHostState *phb = PCI_HOST_BRIDGE(s);
1211 sPAPRPHBClass *info = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(s);
1212 char *namebuf;
1213 int i;
1214 PCIBus *bus;
1215 uint64_t msi_window_size = 4096;
1216
1217 if (sphb->index != (uint32_t)-1) {
1218 hwaddr windows_base;
1219
1220 if ((sphb->buid != (uint64_t)-1) || (sphb->dma_liobn != (uint32_t)-1)
1221 || (sphb->mem_win_addr != (hwaddr)-1)
1222 || (sphb->io_win_addr != (hwaddr)-1)) {
1223 error_setg(errp, "Either \"index\" or other parameters must"
1224 " be specified for PAPR PHB, not both");
1225 return;
1226 }
1227
1228 if (sphb->index > SPAPR_PCI_MAX_INDEX) {
1229 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
1230 SPAPR_PCI_MAX_INDEX);
1231 return;
1232 }
1233
1234 sphb->buid = SPAPR_PCI_BASE_BUID + sphb->index;
1235 sphb->dma_liobn = SPAPR_PCI_LIOBN(sphb->index, 0);
1236
1237 windows_base = SPAPR_PCI_WINDOW_BASE
1238 + sphb->index * SPAPR_PCI_WINDOW_SPACING;
1239 sphb->mem_win_addr = windows_base + SPAPR_PCI_MMIO_WIN_OFF;
1240 sphb->io_win_addr = windows_base + SPAPR_PCI_IO_WIN_OFF;
1241 }
1242
1243 if (sphb->buid == (uint64_t)-1) {
1244 error_setg(errp, "BUID not specified for PHB");
1245 return;
1246 }
1247
1248 if (sphb->dma_liobn == (uint32_t)-1) {
1249 error_setg(errp, "LIOBN not specified for PHB");
1250 return;
1251 }
1252
1253 if (sphb->mem_win_addr == (hwaddr)-1) {
1254 error_setg(errp, "Memory window address not specified for PHB");
1255 return;
1256 }
1257
1258 if (sphb->io_win_addr == (hwaddr)-1) {
1259 error_setg(errp, "IO window address not specified for PHB");
1260 return;
1261 }
1262
1263 if (spapr_pci_find_phb(spapr, sphb->buid)) {
1264 error_setg(errp, "PCI host bridges must have unique BUIDs");
1265 return;
1266 }
1267
1268 sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
1269
1270 namebuf = alloca(strlen(sphb->dtbusname) + 32);
1271
1272 /* Initialize memory regions */
1273 sprintf(namebuf, "%s.mmio", sphb->dtbusname);
1274 memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX);
1275
1276 sprintf(namebuf, "%s.mmio-alias", sphb->dtbusname);
1277 memory_region_init_alias(&sphb->memwindow, OBJECT(sphb),
1278 namebuf, &sphb->memspace,
1279 SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
1280 memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
1281 &sphb->memwindow);
1282
1283 /* Initialize IO regions */
1284 sprintf(namebuf, "%s.io", sphb->dtbusname);
1285 memory_region_init(&sphb->iospace, OBJECT(sphb),
1286 namebuf, SPAPR_PCI_IO_WIN_SIZE);
1287
1288 sprintf(namebuf, "%s.io-alias", sphb->dtbusname);
1289 memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf,
1290 &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE);
1291 memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
1292 &sphb->iowindow);
1293
1294 bus = pci_register_bus(dev, NULL,
1295 pci_spapr_set_irq, pci_spapr_map_irq, sphb,
1296 &sphb->memspace, &sphb->iospace,
1297 PCI_DEVFN(0, 0), PCI_NUM_PINS, TYPE_PCI_BUS);
1298 phb->bus = bus;
1299 qbus_set_hotplug_handler(BUS(phb->bus), DEVICE(sphb), NULL);
1300
1301 /*
1302 * Initialize PHB address space.
1303 * By default there will be at least one subregion for default
1304 * 32bit DMA window.
1305 * Later the guest might want to create another DMA window
1306 * which will become another memory subregion.
1307 */
1308 sprintf(namebuf, "%s.iommu-root", sphb->dtbusname);
1309
1310 memory_region_init(&sphb->iommu_root, OBJECT(sphb),
1311 namebuf, UINT64_MAX);
1312 address_space_init(&sphb->iommu_as, &sphb->iommu_root,
1313 sphb->dtbusname);
1314
1315 /*
1316 * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
1317 * we need to allocate some memory to catch those writes coming
1318 * from msi_notify()/msix_notify().
1319 * As MSIMessage:addr is going to be the same and MSIMessage:data
1320 * is going to be a VIRQ number, 4 bytes of the MSI MR will only
1321 * be used.
1322 *
1323 * For KVM we want to ensure that this memory is a full page so that
1324 * our memory slot is of page size granularity.
1325 */
1326 #ifdef CONFIG_KVM
1327 if (kvm_enabled()) {
1328 msi_window_size = getpagesize();
1329 }
1330 #endif
1331
1332 memory_region_init_io(&sphb->msiwindow, NULL, &spapr_msi_ops, spapr,
1333 "msi", msi_window_size);
1334 memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW,
1335 &sphb->msiwindow);
1336
1337 pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb);
1338
1339 pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq);
1340
1341 QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
1342
1343 /* Initialize the LSI table */
1344 for (i = 0; i < PCI_NUM_PINS; i++) {
1345 uint32_t irq;
1346
1347 irq = xics_alloc_block(spapr->icp, 0, 1, true, false);
1348 if (!irq) {
1349 error_setg(errp, "spapr_allocate_lsi failed");
1350 return;
1351 }
1352
1353 sphb->lsi_table[i].irq = irq;
1354 }
1355
1356 /* allocate connectors for child PCI devices */
1357 if (sphb->dr_enabled) {
1358 for (i = 0; i < PCI_SLOT_MAX * 8; i++) {
1359 spapr_dr_connector_new(OBJECT(phb),
1360 SPAPR_DR_CONNECTOR_TYPE_PCI,
1361 (sphb->index << 16) | i);
1362 }
1363 }
1364
1365 if (!info->finish_realize) {
1366 error_setg(errp, "finish_realize not defined");
1367 return;
1368 }
1369
1370 info->finish_realize(sphb, errp);
1371
1372 sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free, g_free);
1373 }
1374
1375 static void spapr_phb_finish_realize(sPAPRPHBState *sphb, Error **errp)
1376 {
1377 sPAPRTCETable *tcet;
1378 uint32_t nb_table;
1379
1380 nb_table = SPAPR_PCI_DMA32_SIZE >> SPAPR_TCE_PAGE_SHIFT;
1381 tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn,
1382 0, SPAPR_TCE_PAGE_SHIFT, nb_table, false);
1383 if (!tcet) {
1384 error_setg(errp, "Unable to create TCE table for %s",
1385 sphb->dtbusname);
1386 return ;
1387 }
1388
1389 /* Register default 32bit DMA window */
1390 memory_region_add_subregion(&sphb->iommu_root, 0,
1391 spapr_tce_get_iommu(tcet));
1392 }
1393
1394 static int spapr_phb_children_reset(Object *child, void *opaque)
1395 {
1396 DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE);
1397
1398 if (dev) {
1399 device_reset(dev);
1400 }
1401
1402 return 0;
1403 }
1404
1405 static void spapr_phb_reset(DeviceState *qdev)
1406 {
1407 /* Reset the IOMMU state */
1408 object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL);
1409 }
1410
1411 static Property spapr_phb_properties[] = {
1412 DEFINE_PROP_UINT32("index", sPAPRPHBState, index, -1),
1413 DEFINE_PROP_UINT64("buid", sPAPRPHBState, buid, -1),
1414 DEFINE_PROP_UINT32("liobn", sPAPRPHBState, dma_liobn, -1),
1415 DEFINE_PROP_UINT64("mem_win_addr", sPAPRPHBState, mem_win_addr, -1),
1416 DEFINE_PROP_UINT64("mem_win_size", sPAPRPHBState, mem_win_size,
1417 SPAPR_PCI_MMIO_WIN_SIZE),
1418 DEFINE_PROP_UINT64("io_win_addr", sPAPRPHBState, io_win_addr, -1),
1419 DEFINE_PROP_UINT64("io_win_size", sPAPRPHBState, io_win_size,
1420 SPAPR_PCI_IO_WIN_SIZE),
1421 DEFINE_PROP_BOOL("dynamic-reconfiguration", sPAPRPHBState, dr_enabled,
1422 true),
1423 DEFINE_PROP_END_OF_LIST(),
1424 };
1425
1426 static const VMStateDescription vmstate_spapr_pci_lsi = {
1427 .name = "spapr_pci/lsi",
1428 .version_id = 1,
1429 .minimum_version_id = 1,
1430 .fields = (VMStateField[]) {
1431 VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi),
1432
1433 VMSTATE_END_OF_LIST()
1434 },
1435 };
1436
1437 static const VMStateDescription vmstate_spapr_pci_msi = {
1438 .name = "spapr_pci/msi",
1439 .version_id = 1,
1440 .minimum_version_id = 1,
1441 .fields = (VMStateField []) {
1442 VMSTATE_UINT32(key, spapr_pci_msi_mig),
1443 VMSTATE_UINT32(value.first_irq, spapr_pci_msi_mig),
1444 VMSTATE_UINT32(value.num, spapr_pci_msi_mig),
1445 VMSTATE_END_OF_LIST()
1446 },
1447 };
1448
1449 static void spapr_pci_pre_save(void *opaque)
1450 {
1451 sPAPRPHBState *sphb = opaque;
1452 GHashTableIter iter;
1453 gpointer key, value;
1454 int i;
1455
1456 if (sphb->msi_devs) {
1457 g_free(sphb->msi_devs);
1458 sphb->msi_devs = NULL;
1459 }
1460 sphb->msi_devs_num = g_hash_table_size(sphb->msi);
1461 if (!sphb->msi_devs_num) {
1462 return;
1463 }
1464 sphb->msi_devs = g_malloc(sphb->msi_devs_num * sizeof(spapr_pci_msi_mig));
1465
1466 g_hash_table_iter_init(&iter, sphb->msi);
1467 for (i = 0; g_hash_table_iter_next(&iter, &key, &value); ++i) {
1468 sphb->msi_devs[i].key = *(uint32_t *) key;
1469 sphb->msi_devs[i].value = *(spapr_pci_msi *) value;
1470 }
1471 }
1472
1473 static int spapr_pci_post_load(void *opaque, int version_id)
1474 {
1475 sPAPRPHBState *sphb = opaque;
1476 gpointer key, value;
1477 int i;
1478
1479 for (i = 0; i < sphb->msi_devs_num; ++i) {
1480 key = g_memdup(&sphb->msi_devs[i].key,
1481 sizeof(sphb->msi_devs[i].key));
1482 value = g_memdup(&sphb->msi_devs[i].value,
1483 sizeof(sphb->msi_devs[i].value));
1484 g_hash_table_insert(sphb->msi, key, value);
1485 }
1486 if (sphb->msi_devs) {
1487 g_free(sphb->msi_devs);
1488 sphb->msi_devs = NULL;
1489 }
1490 sphb->msi_devs_num = 0;
1491
1492 return 0;
1493 }
1494
1495 static const VMStateDescription vmstate_spapr_pci = {
1496 .name = "spapr_pci",
1497 .version_id = 2,
1498 .minimum_version_id = 2,
1499 .pre_save = spapr_pci_pre_save,
1500 .post_load = spapr_pci_post_load,
1501 .fields = (VMStateField[]) {
1502 VMSTATE_UINT64_EQUAL(buid, sPAPRPHBState),
1503 VMSTATE_UINT32_EQUAL(dma_liobn, sPAPRPHBState),
1504 VMSTATE_UINT64_EQUAL(mem_win_addr, sPAPRPHBState),
1505 VMSTATE_UINT64_EQUAL(mem_win_size, sPAPRPHBState),
1506 VMSTATE_UINT64_EQUAL(io_win_addr, sPAPRPHBState),
1507 VMSTATE_UINT64_EQUAL(io_win_size, sPAPRPHBState),
1508 VMSTATE_STRUCT_ARRAY(lsi_table, sPAPRPHBState, PCI_NUM_PINS, 0,
1509 vmstate_spapr_pci_lsi, struct spapr_pci_lsi),
1510 VMSTATE_INT32(msi_devs_num, sPAPRPHBState),
1511 VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, sPAPRPHBState, msi_devs_num, 0,
1512 vmstate_spapr_pci_msi, spapr_pci_msi_mig),
1513 VMSTATE_END_OF_LIST()
1514 },
1515 };
1516
1517 static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge,
1518 PCIBus *rootbus)
1519 {
1520 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge);
1521
1522 return sphb->dtbusname;
1523 }
1524
1525 static void spapr_phb_class_init(ObjectClass *klass, void *data)
1526 {
1527 PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
1528 DeviceClass *dc = DEVICE_CLASS(klass);
1529 sPAPRPHBClass *spc = SPAPR_PCI_HOST_BRIDGE_CLASS(klass);
1530 HotplugHandlerClass *hp = HOTPLUG_HANDLER_CLASS(klass);
1531
1532 hc->root_bus_path = spapr_phb_root_bus_path;
1533 dc->realize = spapr_phb_realize;
1534 dc->props = spapr_phb_properties;
1535 dc->reset = spapr_phb_reset;
1536 dc->vmsd = &vmstate_spapr_pci;
1537 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
1538 dc->cannot_instantiate_with_device_add_yet = false;
1539 spc->finish_realize = spapr_phb_finish_realize;
1540 hp->plug = spapr_phb_hot_plug_child;
1541 hp->unplug = spapr_phb_hot_unplug_child;
1542 }
1543
1544 static const TypeInfo spapr_phb_info = {
1545 .name = TYPE_SPAPR_PCI_HOST_BRIDGE,
1546 .parent = TYPE_PCI_HOST_BRIDGE,
1547 .instance_size = sizeof(sPAPRPHBState),
1548 .class_init = spapr_phb_class_init,
1549 .class_size = sizeof(sPAPRPHBClass),
1550 .interfaces = (InterfaceInfo[]) {
1551 { TYPE_HOTPLUG_HANDLER },
1552 { }
1553 }
1554 };
1555
1556 PCIHostState *spapr_create_phb(sPAPRMachineState *spapr, int index)
1557 {
1558 DeviceState *dev;
1559
1560 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
1561 qdev_prop_set_uint32(dev, "index", index);
1562 qdev_init_nofail(dev);
1563
1564 return PCI_HOST_BRIDGE(dev);
1565 }
1566
1567 typedef struct sPAPRFDT {
1568 void *fdt;
1569 int node_off;
1570 sPAPRPHBState *sphb;
1571 } sPAPRFDT;
1572
1573 static void spapr_populate_pci_devices_dt(PCIBus *bus, PCIDevice *pdev,
1574 void *opaque)
1575 {
1576 PCIBus *sec_bus;
1577 sPAPRFDT *p = opaque;
1578 int offset;
1579 sPAPRFDT s_fdt;
1580
1581 offset = spapr_create_pci_child_dt(p->sphb, pdev, p->fdt, p->node_off);
1582 if (!offset) {
1583 error_report("Failed to create pci child device tree node");
1584 return;
1585 }
1586
1587 if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
1588 PCI_HEADER_TYPE_BRIDGE)) {
1589 return;
1590 }
1591
1592 sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
1593 if (!sec_bus) {
1594 return;
1595 }
1596
1597 s_fdt.fdt = p->fdt;
1598 s_fdt.node_off = offset;
1599 s_fdt.sphb = p->sphb;
1600 pci_for_each_device(sec_bus, pci_bus_num(sec_bus),
1601 spapr_populate_pci_devices_dt,
1602 &s_fdt);
1603 }
1604
1605 static void spapr_phb_pci_enumerate_bridge(PCIBus *bus, PCIDevice *pdev,
1606 void *opaque)
1607 {
1608 unsigned int *bus_no = opaque;
1609 unsigned int primary = *bus_no;
1610 unsigned int subordinate = 0xff;
1611 PCIBus *sec_bus = NULL;
1612
1613 if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
1614 PCI_HEADER_TYPE_BRIDGE)) {
1615 return;
1616 }
1617
1618 (*bus_no)++;
1619 pci_default_write_config(pdev, PCI_PRIMARY_BUS, primary, 1);
1620 pci_default_write_config(pdev, PCI_SECONDARY_BUS, *bus_no, 1);
1621 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
1622
1623 sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
1624 if (!sec_bus) {
1625 return;
1626 }
1627
1628 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, subordinate, 1);
1629 pci_for_each_device(sec_bus, pci_bus_num(sec_bus),
1630 spapr_phb_pci_enumerate_bridge, bus_no);
1631 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
1632 }
1633
1634 static void spapr_phb_pci_enumerate(sPAPRPHBState *phb)
1635 {
1636 PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
1637 unsigned int bus_no = 0;
1638
1639 pci_for_each_device(bus, pci_bus_num(bus),
1640 spapr_phb_pci_enumerate_bridge,
1641 &bus_no);
1642
1643 }
1644
1645 int spapr_populate_pci_dt(sPAPRPHBState *phb,
1646 uint32_t xics_phandle,
1647 void *fdt)
1648 {
1649 int bus_off, i, j, ret;
1650 char nodename[FDT_NAME_MAX];
1651 uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
1652 const uint64_t mmiosize = memory_region_size(&phb->memwindow);
1653 const uint64_t w32max = (1ULL << 32) - SPAPR_PCI_MEM_WIN_BUS_OFFSET;
1654 const uint64_t w32size = MIN(w32max, mmiosize);
1655 const uint64_t w64size = (mmiosize > w32size) ? (mmiosize - w32size) : 0;
1656 struct {
1657 uint32_t hi;
1658 uint64_t child;
1659 uint64_t parent;
1660 uint64_t size;
1661 } QEMU_PACKED ranges[] = {
1662 {
1663 cpu_to_be32(b_ss(1)), cpu_to_be64(0),
1664 cpu_to_be64(phb->io_win_addr),
1665 cpu_to_be64(memory_region_size(&phb->iospace)),
1666 },
1667 {
1668 cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
1669 cpu_to_be64(phb->mem_win_addr),
1670 cpu_to_be64(w32size),
1671 },
1672 {
1673 cpu_to_be32(b_ss(3)), cpu_to_be64(1ULL << 32),
1674 cpu_to_be64(phb->mem_win_addr + w32size),
1675 cpu_to_be64(w64size)
1676 },
1677 };
1678 const unsigned sizeof_ranges = (w64size ? 3 : 2) * sizeof(ranges[0]);
1679 uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
1680 uint32_t interrupt_map_mask[] = {
1681 cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
1682 uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
1683 sPAPRTCETable *tcet;
1684 PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
1685 sPAPRFDT s_fdt;
1686
1687 /* Start populating the FDT */
1688 snprintf(nodename, FDT_NAME_MAX, "pci@%" PRIx64, phb->buid);
1689 bus_off = fdt_add_subnode(fdt, 0, nodename);
1690 if (bus_off < 0) {
1691 return bus_off;
1692 }
1693
1694 /* Write PHB properties */
1695 _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
1696 _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
1697 _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
1698 _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
1699 _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
1700 _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
1701 _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
1702 _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof_ranges));
1703 _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
1704 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
1705 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi", XICS_IRQS));
1706
1707 /* Build the interrupt-map, this must matches what is done
1708 * in pci_spapr_map_irq
1709 */
1710 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
1711 &interrupt_map_mask, sizeof(interrupt_map_mask)));
1712 for (i = 0; i < PCI_SLOT_MAX; i++) {
1713 for (j = 0; j < PCI_NUM_PINS; j++) {
1714 uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
1715 int lsi_num = pci_spapr_swizzle(i, j);
1716
1717 irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
1718 irqmap[1] = 0;
1719 irqmap[2] = 0;
1720 irqmap[3] = cpu_to_be32(j+1);
1721 irqmap[4] = cpu_to_be32(xics_phandle);
1722 irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].irq);
1723 irqmap[6] = cpu_to_be32(0x8);
1724 }
1725 }
1726 /* Write interrupt map */
1727 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
1728 sizeof(interrupt_map)));
1729
1730 tcet = spapr_tce_find_by_liobn(SPAPR_PCI_LIOBN(phb->index, 0));
1731 spapr_dma_dt(fdt, bus_off, "ibm,dma-window",
1732 tcet->liobn, tcet->bus_offset,
1733 tcet->nb_table << tcet->page_shift);
1734
1735 /* Walk the bridges and program the bus numbers*/
1736 spapr_phb_pci_enumerate(phb);
1737 _FDT(fdt_setprop_cell(fdt, bus_off, "qemu,phb-enumerated", 0x1));
1738
1739 /* Populate tree nodes with PCI devices attached */
1740 s_fdt.fdt = fdt;
1741 s_fdt.node_off = bus_off;
1742 s_fdt.sphb = phb;
1743 pci_for_each_device(bus, pci_bus_num(bus),
1744 spapr_populate_pci_devices_dt,
1745 &s_fdt);
1746
1747 ret = spapr_drc_populate_dt(fdt, bus_off, OBJECT(phb),
1748 SPAPR_DR_CONNECTOR_TYPE_PCI);
1749 if (ret) {
1750 return ret;
1751 }
1752
1753 return 0;
1754 }
1755
1756 void spapr_pci_rtas_init(void)
1757 {
1758 spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config",
1759 rtas_read_pci_config);
1760 spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config",
1761 rtas_write_pci_config);
1762 spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config",
1763 rtas_ibm_read_pci_config);
1764 spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config",
1765 rtas_ibm_write_pci_config);
1766 if (msi_supported) {
1767 spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER,
1768 "ibm,query-interrupt-source-number",
1769 rtas_ibm_query_interrupt_source_number);
1770 spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi",
1771 rtas_ibm_change_msi);
1772 }
1773
1774 spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION,
1775 "ibm,set-eeh-option",
1776 rtas_ibm_set_eeh_option);
1777 spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2,
1778 "ibm,get-config-addr-info2",
1779 rtas_ibm_get_config_addr_info2);
1780 spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2,
1781 "ibm,read-slot-reset-state2",
1782 rtas_ibm_read_slot_reset_state2);
1783 spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET,
1784 "ibm,set-slot-reset",
1785 rtas_ibm_set_slot_reset);
1786 spapr_rtas_register(RTAS_IBM_CONFIGURE_PE,
1787 "ibm,configure-pe",
1788 rtas_ibm_configure_pe);
1789 spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL,
1790 "ibm,slot-error-detail",
1791 rtas_ibm_slot_error_detail);
1792 }
1793
1794 static void spapr_pci_register_types(void)
1795 {
1796 type_register_static(&spapr_phb_info);
1797 }
1798
1799 type_init(spapr_pci_register_types)
1800
1801 static int spapr_switch_one_vga(DeviceState *dev, void *opaque)
1802 {
1803 bool be = *(bool *)opaque;
1804
1805 if (object_dynamic_cast(OBJECT(dev), "VGA")
1806 || object_dynamic_cast(OBJECT(dev), "secondary-vga")) {
1807 object_property_set_bool(OBJECT(dev), be, "big-endian-framebuffer",
1808 &error_abort);
1809 }
1810 return 0;
1811 }
1812
1813 void spapr_pci_switch_vga(bool big_endian)
1814 {
1815 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1816 sPAPRPHBState *sphb;
1817
1818 /*
1819 * For backward compatibility with existing guests, we switch
1820 * the endianness of the VGA controller when changing the guest
1821 * interrupt mode
1822 */
1823 QLIST_FOREACH(sphb, &spapr->phbs, list) {
1824 BusState *bus = &PCI_HOST_BRIDGE(sphb)->bus->qbus;
1825 qbus_walk_children(bus, spapr_switch_one_vga, NULL, NULL, NULL,
1826 &big_endian);
1827 }
1828 }