]> git.proxmox.com Git - qemu.git/blob - hw/ppc.c
c1bc486e053660917e0cfdd2d8fb0c923a43d5ef
[qemu.git] / hw / ppc.c
1 /*
2 * QEMU generic PowerPC hardware System Emulator
3 *
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw.h"
25 #include "ppc.h"
26 #include "qemu-timer.h"
27 #include "sysemu.h"
28 #include "nvram.h"
29 #include "qemu-log.h"
30
31 //#define PPC_DEBUG_IRQ
32 //#define PPC_DEBUG_TB
33
34 static void cpu_ppc_tb_stop (CPUState *env);
35 static void cpu_ppc_tb_start (CPUState *env);
36
37 static void ppc_set_irq (CPUState *env, int n_IRQ, int level)
38 {
39 if (level) {
40 env->pending_interrupts |= 1 << n_IRQ;
41 cpu_interrupt(env, CPU_INTERRUPT_HARD);
42 } else {
43 env->pending_interrupts &= ~(1 << n_IRQ);
44 if (env->pending_interrupts == 0)
45 cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
46 }
47 #if defined(PPC_DEBUG_IRQ)
48 if (loglevel & CPU_LOG_INT) {
49 fprintf(logfile, "%s: %p n_IRQ %d level %d => pending %08" PRIx32
50 "req %08x\n", __func__, env, n_IRQ, level,
51 env->pending_interrupts, env->interrupt_request);
52 }
53 #endif
54 }
55
56 /* PowerPC 6xx / 7xx internal IRQ controller */
57 static void ppc6xx_set_irq (void *opaque, int pin, int level)
58 {
59 CPUState *env = opaque;
60 int cur_level;
61
62 #if defined(PPC_DEBUG_IRQ)
63 if (loglevel & CPU_LOG_INT) {
64 fprintf(logfile, "%s: env %p pin %d level %d\n", __func__,
65 env, pin, level);
66 }
67 #endif
68 cur_level = (env->irq_input_state >> pin) & 1;
69 /* Don't generate spurious events */
70 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
71 switch (pin) {
72 case PPC6xx_INPUT_TBEN:
73 /* Level sensitive - active high */
74 #if defined(PPC_DEBUG_IRQ)
75 if (loglevel & CPU_LOG_INT) {
76 fprintf(logfile, "%s: %s the time base\n",
77 __func__, level ? "start" : "stop");
78 }
79 #endif
80 if (level) {
81 cpu_ppc_tb_start(env);
82 } else {
83 cpu_ppc_tb_stop(env);
84 }
85 case PPC6xx_INPUT_INT:
86 /* Level sensitive - active high */
87 #if defined(PPC_DEBUG_IRQ)
88 if (loglevel & CPU_LOG_INT) {
89 fprintf(logfile, "%s: set the external IRQ state to %d\n",
90 __func__, level);
91 }
92 #endif
93 ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
94 break;
95 case PPC6xx_INPUT_SMI:
96 /* Level sensitive - active high */
97 #if defined(PPC_DEBUG_IRQ)
98 if (loglevel & CPU_LOG_INT) {
99 fprintf(logfile, "%s: set the SMI IRQ state to %d\n",
100 __func__, level);
101 }
102 #endif
103 ppc_set_irq(env, PPC_INTERRUPT_SMI, level);
104 break;
105 case PPC6xx_INPUT_MCP:
106 /* Negative edge sensitive */
107 /* XXX: TODO: actual reaction may depends on HID0 status
108 * 603/604/740/750: check HID0[EMCP]
109 */
110 if (cur_level == 1 && level == 0) {
111 #if defined(PPC_DEBUG_IRQ)
112 if (loglevel & CPU_LOG_INT) {
113 fprintf(logfile, "%s: raise machine check state\n",
114 __func__);
115 }
116 #endif
117 ppc_set_irq(env, PPC_INTERRUPT_MCK, 1);
118 }
119 break;
120 case PPC6xx_INPUT_CKSTP_IN:
121 /* Level sensitive - active low */
122 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
123 /* XXX: Note that the only way to restart the CPU is to reset it */
124 if (level) {
125 #if defined(PPC_DEBUG_IRQ)
126 if (loglevel & CPU_LOG_INT) {
127 fprintf(logfile, "%s: stop the CPU\n", __func__);
128 }
129 #endif
130 env->halted = 1;
131 }
132 break;
133 case PPC6xx_INPUT_HRESET:
134 /* Level sensitive - active low */
135 if (level) {
136 #if defined(PPC_DEBUG_IRQ)
137 if (loglevel & CPU_LOG_INT) {
138 fprintf(logfile, "%s: reset the CPU\n", __func__);
139 }
140 #endif
141 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
142 /* XXX: TOFIX */
143 #if 0
144 cpu_ppc_reset(env);
145 #else
146 qemu_system_reset_request();
147 #endif
148 }
149 break;
150 case PPC6xx_INPUT_SRESET:
151 #if defined(PPC_DEBUG_IRQ)
152 if (loglevel & CPU_LOG_INT) {
153 fprintf(logfile, "%s: set the RESET IRQ state to %d\n",
154 __func__, level);
155 }
156 #endif
157 ppc_set_irq(env, PPC_INTERRUPT_RESET, level);
158 break;
159 default:
160 /* Unknown pin - do nothing */
161 #if defined(PPC_DEBUG_IRQ)
162 if (loglevel & CPU_LOG_INT) {
163 fprintf(logfile, "%s: unknown IRQ pin %d\n", __func__, pin);
164 }
165 #endif
166 return;
167 }
168 if (level)
169 env->irq_input_state |= 1 << pin;
170 else
171 env->irq_input_state &= ~(1 << pin);
172 }
173 }
174
175 void ppc6xx_irq_init (CPUState *env)
176 {
177 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, env,
178 PPC6xx_INPUT_NB);
179 }
180
181 #if defined(TARGET_PPC64)
182 /* PowerPC 970 internal IRQ controller */
183 static void ppc970_set_irq (void *opaque, int pin, int level)
184 {
185 CPUState *env = opaque;
186 int cur_level;
187
188 #if defined(PPC_DEBUG_IRQ)
189 if (loglevel & CPU_LOG_INT) {
190 fprintf(logfile, "%s: env %p pin %d level %d\n", __func__,
191 env, pin, level);
192 }
193 #endif
194 cur_level = (env->irq_input_state >> pin) & 1;
195 /* Don't generate spurious events */
196 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
197 switch (pin) {
198 case PPC970_INPUT_INT:
199 /* Level sensitive - active high */
200 #if defined(PPC_DEBUG_IRQ)
201 if (loglevel & CPU_LOG_INT) {
202 fprintf(logfile, "%s: set the external IRQ state to %d\n",
203 __func__, level);
204 }
205 #endif
206 ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
207 break;
208 case PPC970_INPUT_THINT:
209 /* Level sensitive - active high */
210 #if defined(PPC_DEBUG_IRQ)
211 if (loglevel & CPU_LOG_INT) {
212 fprintf(logfile, "%s: set the SMI IRQ state to %d\n", __func__,
213 level);
214 }
215 #endif
216 ppc_set_irq(env, PPC_INTERRUPT_THERM, level);
217 break;
218 case PPC970_INPUT_MCP:
219 /* Negative edge sensitive */
220 /* XXX: TODO: actual reaction may depends on HID0 status
221 * 603/604/740/750: check HID0[EMCP]
222 */
223 if (cur_level == 1 && level == 0) {
224 #if defined(PPC_DEBUG_IRQ)
225 if (loglevel & CPU_LOG_INT) {
226 fprintf(logfile, "%s: raise machine check state\n",
227 __func__);
228 }
229 #endif
230 ppc_set_irq(env, PPC_INTERRUPT_MCK, 1);
231 }
232 break;
233 case PPC970_INPUT_CKSTP:
234 /* Level sensitive - active low */
235 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
236 if (level) {
237 #if defined(PPC_DEBUG_IRQ)
238 if (loglevel & CPU_LOG_INT) {
239 fprintf(logfile, "%s: stop the CPU\n", __func__);
240 }
241 #endif
242 env->halted = 1;
243 } else {
244 #if defined(PPC_DEBUG_IRQ)
245 if (loglevel & CPU_LOG_INT) {
246 fprintf(logfile, "%s: restart the CPU\n", __func__);
247 }
248 #endif
249 env->halted = 0;
250 }
251 break;
252 case PPC970_INPUT_HRESET:
253 /* Level sensitive - active low */
254 if (level) {
255 #if 0 // XXX: TOFIX
256 #if defined(PPC_DEBUG_IRQ)
257 if (loglevel & CPU_LOG_INT) {
258 fprintf(logfile, "%s: reset the CPU\n", __func__);
259 }
260 #endif
261 cpu_reset(env);
262 #endif
263 }
264 break;
265 case PPC970_INPUT_SRESET:
266 #if defined(PPC_DEBUG_IRQ)
267 if (loglevel & CPU_LOG_INT) {
268 fprintf(logfile, "%s: set the RESET IRQ state to %d\n",
269 __func__, level);
270 }
271 #endif
272 ppc_set_irq(env, PPC_INTERRUPT_RESET, level);
273 break;
274 case PPC970_INPUT_TBEN:
275 #if defined(PPC_DEBUG_IRQ)
276 if (loglevel & CPU_LOG_INT) {
277 fprintf(logfile, "%s: set the TBEN state to %d\n", __func__,
278 level);
279 }
280 #endif
281 /* XXX: TODO */
282 break;
283 default:
284 /* Unknown pin - do nothing */
285 #if defined(PPC_DEBUG_IRQ)
286 if (loglevel & CPU_LOG_INT) {
287 fprintf(logfile, "%s: unknown IRQ pin %d\n", __func__, pin);
288 }
289 #endif
290 return;
291 }
292 if (level)
293 env->irq_input_state |= 1 << pin;
294 else
295 env->irq_input_state &= ~(1 << pin);
296 }
297 }
298
299 void ppc970_irq_init (CPUState *env)
300 {
301 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, env,
302 PPC970_INPUT_NB);
303 }
304 #endif /* defined(TARGET_PPC64) */
305
306 /* PowerPC 40x internal IRQ controller */
307 static void ppc40x_set_irq (void *opaque, int pin, int level)
308 {
309 CPUState *env = opaque;
310 int cur_level;
311
312 #if defined(PPC_DEBUG_IRQ)
313 if (loglevel & CPU_LOG_INT) {
314 fprintf(logfile, "%s: env %p pin %d level %d\n", __func__,
315 env, pin, level);
316 }
317 #endif
318 cur_level = (env->irq_input_state >> pin) & 1;
319 /* Don't generate spurious events */
320 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
321 switch (pin) {
322 case PPC40x_INPUT_RESET_SYS:
323 if (level) {
324 #if defined(PPC_DEBUG_IRQ)
325 if (loglevel & CPU_LOG_INT) {
326 fprintf(logfile, "%s: reset the PowerPC system\n",
327 __func__);
328 }
329 #endif
330 ppc40x_system_reset(env);
331 }
332 break;
333 case PPC40x_INPUT_RESET_CHIP:
334 if (level) {
335 #if defined(PPC_DEBUG_IRQ)
336 if (loglevel & CPU_LOG_INT) {
337 fprintf(logfile, "%s: reset the PowerPC chip\n", __func__);
338 }
339 #endif
340 ppc40x_chip_reset(env);
341 }
342 break;
343 case PPC40x_INPUT_RESET_CORE:
344 /* XXX: TODO: update DBSR[MRR] */
345 if (level) {
346 #if defined(PPC_DEBUG_IRQ)
347 if (loglevel & CPU_LOG_INT) {
348 fprintf(logfile, "%s: reset the PowerPC core\n", __func__);
349 }
350 #endif
351 ppc40x_core_reset(env);
352 }
353 break;
354 case PPC40x_INPUT_CINT:
355 /* Level sensitive - active high */
356 #if defined(PPC_DEBUG_IRQ)
357 if (loglevel & CPU_LOG_INT) {
358 fprintf(logfile, "%s: set the critical IRQ state to %d\n",
359 __func__, level);
360 }
361 #endif
362 ppc_set_irq(env, PPC_INTERRUPT_CEXT, level);
363 break;
364 case PPC40x_INPUT_INT:
365 /* Level sensitive - active high */
366 #if defined(PPC_DEBUG_IRQ)
367 if (loglevel & CPU_LOG_INT) {
368 fprintf(logfile, "%s: set the external IRQ state to %d\n",
369 __func__, level);
370 }
371 #endif
372 ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
373 break;
374 case PPC40x_INPUT_HALT:
375 /* Level sensitive - active low */
376 if (level) {
377 #if defined(PPC_DEBUG_IRQ)
378 if (loglevel & CPU_LOG_INT) {
379 fprintf(logfile, "%s: stop the CPU\n", __func__);
380 }
381 #endif
382 env->halted = 1;
383 } else {
384 #if defined(PPC_DEBUG_IRQ)
385 if (loglevel & CPU_LOG_INT) {
386 fprintf(logfile, "%s: restart the CPU\n", __func__);
387 }
388 #endif
389 env->halted = 0;
390 }
391 break;
392 case PPC40x_INPUT_DEBUG:
393 /* Level sensitive - active high */
394 #if defined(PPC_DEBUG_IRQ)
395 if (loglevel & CPU_LOG_INT) {
396 fprintf(logfile, "%s: set the debug pin state to %d\n",
397 __func__, level);
398 }
399 #endif
400 ppc_set_irq(env, PPC_INTERRUPT_DEBUG, level);
401 break;
402 default:
403 /* Unknown pin - do nothing */
404 #if defined(PPC_DEBUG_IRQ)
405 if (loglevel & CPU_LOG_INT) {
406 fprintf(logfile, "%s: unknown IRQ pin %d\n", __func__, pin);
407 }
408 #endif
409 return;
410 }
411 if (level)
412 env->irq_input_state |= 1 << pin;
413 else
414 env->irq_input_state &= ~(1 << pin);
415 }
416 }
417
418 void ppc40x_irq_init (CPUState *env)
419 {
420 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
421 env, PPC40x_INPUT_NB);
422 }
423
424 /*****************************************************************************/
425 /* PowerPC time base and decrementer emulation */
426 struct ppc_tb_t {
427 /* Time base management */
428 int64_t tb_offset; /* Compensation */
429 int64_t atb_offset; /* Compensation */
430 uint32_t tb_freq; /* TB frequency */
431 /* Decrementer management */
432 uint64_t decr_next; /* Tick for next decr interrupt */
433 uint32_t decr_freq; /* decrementer frequency */
434 struct QEMUTimer *decr_timer;
435 /* Hypervisor decrementer management */
436 uint64_t hdecr_next; /* Tick for next hdecr interrupt */
437 struct QEMUTimer *hdecr_timer;
438 uint64_t purr_load;
439 uint64_t purr_start;
440 void *opaque;
441 };
442
443 static always_inline uint64_t cpu_ppc_get_tb (ppc_tb_t *tb_env, uint64_t vmclk,
444 int64_t tb_offset)
445 {
446 /* TB time in tb periods */
447 return muldiv64(vmclk, tb_env->tb_freq, ticks_per_sec) + tb_offset;
448 }
449
450 uint32_t cpu_ppc_load_tbl (CPUState *env)
451 {
452 ppc_tb_t *tb_env = env->tb_env;
453 uint64_t tb;
454
455 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset);
456 #if defined(PPC_DEBUG_TB)
457 if (loglevel != 0) {
458 fprintf(logfile, "%s: tb %016" PRIx64 "\n", __func__, tb);
459 }
460 #endif
461
462 return tb & 0xFFFFFFFF;
463 }
464
465 static always_inline uint32_t _cpu_ppc_load_tbu (CPUState *env)
466 {
467 ppc_tb_t *tb_env = env->tb_env;
468 uint64_t tb;
469
470 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset);
471 #if defined(PPC_DEBUG_TB)
472 if (loglevel != 0) {
473 fprintf(logfile, "%s: tb %016" PRIx64 "\n", __func__, tb);
474 }
475 #endif
476
477 return tb >> 32;
478 }
479
480 uint32_t cpu_ppc_load_tbu (CPUState *env)
481 {
482 return _cpu_ppc_load_tbu(env);
483 }
484
485 static always_inline void cpu_ppc_store_tb (ppc_tb_t *tb_env, uint64_t vmclk,
486 int64_t *tb_offsetp,
487 uint64_t value)
488 {
489 *tb_offsetp = value - muldiv64(vmclk, tb_env->tb_freq, ticks_per_sec);
490 #ifdef PPC_DEBUG_TB
491 if (loglevel != 0) {
492 fprintf(logfile, "%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
493 __func__, value, *tb_offsetp);
494 }
495 #endif
496 }
497
498 void cpu_ppc_store_tbl (CPUState *env, uint32_t value)
499 {
500 ppc_tb_t *tb_env = env->tb_env;
501 uint64_t tb;
502
503 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset);
504 tb &= 0xFFFFFFFF00000000ULL;
505 cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock),
506 &tb_env->tb_offset, tb | (uint64_t)value);
507 }
508
509 static always_inline void _cpu_ppc_store_tbu (CPUState *env, uint32_t value)
510 {
511 ppc_tb_t *tb_env = env->tb_env;
512 uint64_t tb;
513
514 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset);
515 tb &= 0x00000000FFFFFFFFULL;
516 cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock),
517 &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
518 }
519
520 void cpu_ppc_store_tbu (CPUState *env, uint32_t value)
521 {
522 _cpu_ppc_store_tbu(env, value);
523 }
524
525 uint32_t cpu_ppc_load_atbl (CPUState *env)
526 {
527 ppc_tb_t *tb_env = env->tb_env;
528 uint64_t tb;
529
530 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset);
531 #if defined(PPC_DEBUG_TB)
532 if (loglevel != 0) {
533 fprintf(logfile, "%s: tb %016" PRIx64 "\n", __func__, tb);
534 }
535 #endif
536
537 return tb & 0xFFFFFFFF;
538 }
539
540 uint32_t cpu_ppc_load_atbu (CPUState *env)
541 {
542 ppc_tb_t *tb_env = env->tb_env;
543 uint64_t tb;
544
545 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset);
546 #if defined(PPC_DEBUG_TB)
547 if (loglevel != 0) {
548 fprintf(logfile, "%s: tb %016" PRIx64 "\n", __func__, tb);
549 }
550 #endif
551
552 return tb >> 32;
553 }
554
555 void cpu_ppc_store_atbl (CPUState *env, uint32_t value)
556 {
557 ppc_tb_t *tb_env = env->tb_env;
558 uint64_t tb;
559
560 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset);
561 tb &= 0xFFFFFFFF00000000ULL;
562 cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock),
563 &tb_env->atb_offset, tb | (uint64_t)value);
564 }
565
566 void cpu_ppc_store_atbu (CPUState *env, uint32_t value)
567 {
568 ppc_tb_t *tb_env = env->tb_env;
569 uint64_t tb;
570
571 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset);
572 tb &= 0x00000000FFFFFFFFULL;
573 cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock),
574 &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
575 }
576
577 static void cpu_ppc_tb_stop (CPUState *env)
578 {
579 ppc_tb_t *tb_env = env->tb_env;
580 uint64_t tb, atb, vmclk;
581
582 /* If the time base is already frozen, do nothing */
583 if (tb_env->tb_freq != 0) {
584 vmclk = qemu_get_clock(vm_clock);
585 /* Get the time base */
586 tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
587 /* Get the alternate time base */
588 atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
589 /* Store the time base value (ie compute the current offset) */
590 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
591 /* Store the alternate time base value (compute the current offset) */
592 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
593 /* Set the time base frequency to zero */
594 tb_env->tb_freq = 0;
595 /* Now, the time bases are frozen to tb_offset / atb_offset value */
596 }
597 }
598
599 static void cpu_ppc_tb_start (CPUState *env)
600 {
601 ppc_tb_t *tb_env = env->tb_env;
602 uint64_t tb, atb, vmclk;
603
604 /* If the time base is not frozen, do nothing */
605 if (tb_env->tb_freq == 0) {
606 vmclk = qemu_get_clock(vm_clock);
607 /* Get the time base from tb_offset */
608 tb = tb_env->tb_offset;
609 /* Get the alternate time base from atb_offset */
610 atb = tb_env->atb_offset;
611 /* Restore the tb frequency from the decrementer frequency */
612 tb_env->tb_freq = tb_env->decr_freq;
613 /* Store the time base value */
614 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
615 /* Store the alternate time base value */
616 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
617 }
618 }
619
620 static always_inline uint32_t _cpu_ppc_load_decr (CPUState *env,
621 uint64_t *next)
622 {
623 ppc_tb_t *tb_env = env->tb_env;
624 uint32_t decr;
625 int64_t diff;
626
627 diff = tb_env->decr_next - qemu_get_clock(vm_clock);
628 if (diff >= 0)
629 decr = muldiv64(diff, tb_env->decr_freq, ticks_per_sec);
630 else
631 decr = -muldiv64(-diff, tb_env->decr_freq, ticks_per_sec);
632 #if defined(PPC_DEBUG_TB)
633 if (loglevel != 0) {
634 fprintf(logfile, "%s: %08" PRIx32 "\n", __func__, decr);
635 }
636 #endif
637
638 return decr;
639 }
640
641 uint32_t cpu_ppc_load_decr (CPUState *env)
642 {
643 ppc_tb_t *tb_env = env->tb_env;
644
645 return _cpu_ppc_load_decr(env, &tb_env->decr_next);
646 }
647
648 uint32_t cpu_ppc_load_hdecr (CPUState *env)
649 {
650 ppc_tb_t *tb_env = env->tb_env;
651
652 return _cpu_ppc_load_decr(env, &tb_env->hdecr_next);
653 }
654
655 uint64_t cpu_ppc_load_purr (CPUState *env)
656 {
657 ppc_tb_t *tb_env = env->tb_env;
658 uint64_t diff;
659
660 diff = qemu_get_clock(vm_clock) - tb_env->purr_start;
661
662 return tb_env->purr_load + muldiv64(diff, tb_env->tb_freq, ticks_per_sec);
663 }
664
665 /* When decrementer expires,
666 * all we need to do is generate or queue a CPU exception
667 */
668 static always_inline void cpu_ppc_decr_excp (CPUState *env)
669 {
670 /* Raise it */
671 #ifdef PPC_DEBUG_TB
672 if (loglevel != 0) {
673 fprintf(logfile, "raise decrementer exception\n");
674 }
675 #endif
676 ppc_set_irq(env, PPC_INTERRUPT_DECR, 1);
677 }
678
679 static always_inline void cpu_ppc_hdecr_excp (CPUState *env)
680 {
681 /* Raise it */
682 #ifdef PPC_DEBUG_TB
683 if (loglevel != 0) {
684 fprintf(logfile, "raise decrementer exception\n");
685 }
686 #endif
687 ppc_set_irq(env, PPC_INTERRUPT_HDECR, 1);
688 }
689
690 static void __cpu_ppc_store_decr (CPUState *env, uint64_t *nextp,
691 struct QEMUTimer *timer,
692 void (*raise_excp)(CPUState *),
693 uint32_t decr, uint32_t value,
694 int is_excp)
695 {
696 ppc_tb_t *tb_env = env->tb_env;
697 uint64_t now, next;
698
699 #ifdef PPC_DEBUG_TB
700 if (loglevel != 0) {
701 fprintf(logfile, "%s: %08" PRIx32 " => %08" PRIx32 "\n", __func__,
702 decr, value);
703 }
704 #endif
705 now = qemu_get_clock(vm_clock);
706 next = now + muldiv64(value, ticks_per_sec, tb_env->decr_freq);
707 if (is_excp)
708 next += *nextp - now;
709 if (next == now)
710 next++;
711 *nextp = next;
712 /* Adjust timer */
713 qemu_mod_timer(timer, next);
714 /* If we set a negative value and the decrementer was positive,
715 * raise an exception.
716 */
717 if ((value & 0x80000000) && !(decr & 0x80000000))
718 (*raise_excp)(env);
719 }
720
721 static always_inline void _cpu_ppc_store_decr (CPUState *env, uint32_t decr,
722 uint32_t value, int is_excp)
723 {
724 ppc_tb_t *tb_env = env->tb_env;
725
726 __cpu_ppc_store_decr(env, &tb_env->decr_next, tb_env->decr_timer,
727 &cpu_ppc_decr_excp, decr, value, is_excp);
728 }
729
730 void cpu_ppc_store_decr (CPUState *env, uint32_t value)
731 {
732 _cpu_ppc_store_decr(env, cpu_ppc_load_decr(env), value, 0);
733 }
734
735 static void cpu_ppc_decr_cb (void *opaque)
736 {
737 _cpu_ppc_store_decr(opaque, 0x00000000, 0xFFFFFFFF, 1);
738 }
739
740 static always_inline void _cpu_ppc_store_hdecr (CPUState *env, uint32_t hdecr,
741 uint32_t value, int is_excp)
742 {
743 ppc_tb_t *tb_env = env->tb_env;
744
745 if (tb_env->hdecr_timer != NULL) {
746 __cpu_ppc_store_decr(env, &tb_env->hdecr_next, tb_env->hdecr_timer,
747 &cpu_ppc_hdecr_excp, hdecr, value, is_excp);
748 }
749 }
750
751 void cpu_ppc_store_hdecr (CPUState *env, uint32_t value)
752 {
753 _cpu_ppc_store_hdecr(env, cpu_ppc_load_hdecr(env), value, 0);
754 }
755
756 static void cpu_ppc_hdecr_cb (void *opaque)
757 {
758 _cpu_ppc_store_hdecr(opaque, 0x00000000, 0xFFFFFFFF, 1);
759 }
760
761 void cpu_ppc_store_purr (CPUState *env, uint64_t value)
762 {
763 ppc_tb_t *tb_env = env->tb_env;
764
765 tb_env->purr_load = value;
766 tb_env->purr_start = qemu_get_clock(vm_clock);
767 }
768
769 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
770 {
771 CPUState *env = opaque;
772 ppc_tb_t *tb_env = env->tb_env;
773
774 tb_env->tb_freq = freq;
775 tb_env->decr_freq = freq;
776 /* There is a bug in Linux 2.4 kernels:
777 * if a decrementer exception is pending when it enables msr_ee at startup,
778 * it's not ready to handle it...
779 */
780 _cpu_ppc_store_decr(env, 0xFFFFFFFF, 0xFFFFFFFF, 0);
781 _cpu_ppc_store_hdecr(env, 0xFFFFFFFF, 0xFFFFFFFF, 0);
782 cpu_ppc_store_purr(env, 0x0000000000000000ULL);
783 }
784
785 /* Set up (once) timebase frequency (in Hz) */
786 clk_setup_cb cpu_ppc_tb_init (CPUState *env, uint32_t freq)
787 {
788 ppc_tb_t *tb_env;
789
790 tb_env = qemu_mallocz(sizeof(ppc_tb_t));
791 if (tb_env == NULL)
792 return NULL;
793 env->tb_env = tb_env;
794 /* Create new timer */
795 tb_env->decr_timer = qemu_new_timer(vm_clock, &cpu_ppc_decr_cb, env);
796 if (0) {
797 /* XXX: find a suitable condition to enable the hypervisor decrementer
798 */
799 tb_env->hdecr_timer = qemu_new_timer(vm_clock, &cpu_ppc_hdecr_cb, env);
800 } else {
801 tb_env->hdecr_timer = NULL;
802 }
803 cpu_ppc_set_tb_clk(env, freq);
804
805 return &cpu_ppc_set_tb_clk;
806 }
807
808 /* Specific helpers for POWER & PowerPC 601 RTC */
809 clk_setup_cb cpu_ppc601_rtc_init (CPUState *env)
810 {
811 return cpu_ppc_tb_init(env, 7812500);
812 }
813
814 void cpu_ppc601_store_rtcu (CPUState *env, uint32_t value)
815 {
816 _cpu_ppc_store_tbu(env, value);
817 }
818
819 uint32_t cpu_ppc601_load_rtcu (CPUState *env)
820 {
821 return _cpu_ppc_load_tbu(env);
822 }
823
824 void cpu_ppc601_store_rtcl (CPUState *env, uint32_t value)
825 {
826 cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
827 }
828
829 uint32_t cpu_ppc601_load_rtcl (CPUState *env)
830 {
831 return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
832 }
833
834 /*****************************************************************************/
835 /* Embedded PowerPC timers */
836
837 /* PIT, FIT & WDT */
838 typedef struct ppcemb_timer_t ppcemb_timer_t;
839 struct ppcemb_timer_t {
840 uint64_t pit_reload; /* PIT auto-reload value */
841 uint64_t fit_next; /* Tick for next FIT interrupt */
842 struct QEMUTimer *fit_timer;
843 uint64_t wdt_next; /* Tick for next WDT interrupt */
844 struct QEMUTimer *wdt_timer;
845 };
846
847 /* Fixed interval timer */
848 static void cpu_4xx_fit_cb (void *opaque)
849 {
850 CPUState *env;
851 ppc_tb_t *tb_env;
852 ppcemb_timer_t *ppcemb_timer;
853 uint64_t now, next;
854
855 env = opaque;
856 tb_env = env->tb_env;
857 ppcemb_timer = tb_env->opaque;
858 now = qemu_get_clock(vm_clock);
859 switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
860 case 0:
861 next = 1 << 9;
862 break;
863 case 1:
864 next = 1 << 13;
865 break;
866 case 2:
867 next = 1 << 17;
868 break;
869 case 3:
870 next = 1 << 21;
871 break;
872 default:
873 /* Cannot occur, but makes gcc happy */
874 return;
875 }
876 next = now + muldiv64(next, ticks_per_sec, tb_env->tb_freq);
877 if (next == now)
878 next++;
879 qemu_mod_timer(ppcemb_timer->fit_timer, next);
880 env->spr[SPR_40x_TSR] |= 1 << 26;
881 if ((env->spr[SPR_40x_TCR] >> 23) & 0x1)
882 ppc_set_irq(env, PPC_INTERRUPT_FIT, 1);
883 #ifdef PPC_DEBUG_TB
884 if (loglevel != 0) {
885 fprintf(logfile, "%s: ir %d TCR " ADDRX " TSR " ADDRX "\n", __func__,
886 (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
887 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
888 }
889 #endif
890 }
891
892 /* Programmable interval timer */
893 static void start_stop_pit (CPUState *env, ppc_tb_t *tb_env, int is_excp)
894 {
895 ppcemb_timer_t *ppcemb_timer;
896 uint64_t now, next;
897
898 ppcemb_timer = tb_env->opaque;
899 if (ppcemb_timer->pit_reload <= 1 ||
900 !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
901 (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
902 /* Stop PIT */
903 #ifdef PPC_DEBUG_TB
904 if (loglevel != 0) {
905 fprintf(logfile, "%s: stop PIT\n", __func__);
906 }
907 #endif
908 qemu_del_timer(tb_env->decr_timer);
909 } else {
910 #ifdef PPC_DEBUG_TB
911 if (loglevel != 0) {
912 fprintf(logfile, "%s: start PIT %016" PRIx64 "\n",
913 __func__, ppcemb_timer->pit_reload);
914 }
915 #endif
916 now = qemu_get_clock(vm_clock);
917 next = now + muldiv64(ppcemb_timer->pit_reload,
918 ticks_per_sec, tb_env->decr_freq);
919 if (is_excp)
920 next += tb_env->decr_next - now;
921 if (next == now)
922 next++;
923 qemu_mod_timer(tb_env->decr_timer, next);
924 tb_env->decr_next = next;
925 }
926 }
927
928 static void cpu_4xx_pit_cb (void *opaque)
929 {
930 CPUState *env;
931 ppc_tb_t *tb_env;
932 ppcemb_timer_t *ppcemb_timer;
933
934 env = opaque;
935 tb_env = env->tb_env;
936 ppcemb_timer = tb_env->opaque;
937 env->spr[SPR_40x_TSR] |= 1 << 27;
938 if ((env->spr[SPR_40x_TCR] >> 26) & 0x1)
939 ppc_set_irq(env, PPC_INTERRUPT_PIT, 1);
940 start_stop_pit(env, tb_env, 1);
941 #ifdef PPC_DEBUG_TB
942 if (loglevel != 0) {
943 fprintf(logfile, "%s: ar %d ir %d TCR " ADDRX " TSR " ADDRX " "
944 "%016" PRIx64 "\n", __func__,
945 (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
946 (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
947 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
948 ppcemb_timer->pit_reload);
949 }
950 #endif
951 }
952
953 /* Watchdog timer */
954 static void cpu_4xx_wdt_cb (void *opaque)
955 {
956 CPUState *env;
957 ppc_tb_t *tb_env;
958 ppcemb_timer_t *ppcemb_timer;
959 uint64_t now, next;
960
961 env = opaque;
962 tb_env = env->tb_env;
963 ppcemb_timer = tb_env->opaque;
964 now = qemu_get_clock(vm_clock);
965 switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
966 case 0:
967 next = 1 << 17;
968 break;
969 case 1:
970 next = 1 << 21;
971 break;
972 case 2:
973 next = 1 << 25;
974 break;
975 case 3:
976 next = 1 << 29;
977 break;
978 default:
979 /* Cannot occur, but makes gcc happy */
980 return;
981 }
982 next = now + muldiv64(next, ticks_per_sec, tb_env->decr_freq);
983 if (next == now)
984 next++;
985 #ifdef PPC_DEBUG_TB
986 if (loglevel != 0) {
987 fprintf(logfile, "%s: TCR " ADDRX " TSR " ADDRX "\n", __func__,
988 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
989 }
990 #endif
991 switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
992 case 0x0:
993 case 0x1:
994 qemu_mod_timer(ppcemb_timer->wdt_timer, next);
995 ppcemb_timer->wdt_next = next;
996 env->spr[SPR_40x_TSR] |= 1 << 31;
997 break;
998 case 0x2:
999 qemu_mod_timer(ppcemb_timer->wdt_timer, next);
1000 ppcemb_timer->wdt_next = next;
1001 env->spr[SPR_40x_TSR] |= 1 << 30;
1002 if ((env->spr[SPR_40x_TCR] >> 27) & 0x1)
1003 ppc_set_irq(env, PPC_INTERRUPT_WDT, 1);
1004 break;
1005 case 0x3:
1006 env->spr[SPR_40x_TSR] &= ~0x30000000;
1007 env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1008 switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1009 case 0x0:
1010 /* No reset */
1011 break;
1012 case 0x1: /* Core reset */
1013 ppc40x_core_reset(env);
1014 break;
1015 case 0x2: /* Chip reset */
1016 ppc40x_chip_reset(env);
1017 break;
1018 case 0x3: /* System reset */
1019 ppc40x_system_reset(env);
1020 break;
1021 }
1022 }
1023 }
1024
1025 void store_40x_pit (CPUState *env, target_ulong val)
1026 {
1027 ppc_tb_t *tb_env;
1028 ppcemb_timer_t *ppcemb_timer;
1029
1030 tb_env = env->tb_env;
1031 ppcemb_timer = tb_env->opaque;
1032 #ifdef PPC_DEBUG_TB
1033 if (loglevel != 0) {
1034 fprintf(logfile, "%s val" ADDRX "\n", __func__, val);
1035 }
1036 #endif
1037 ppcemb_timer->pit_reload = val;
1038 start_stop_pit(env, tb_env, 0);
1039 }
1040
1041 target_ulong load_40x_pit (CPUState *env)
1042 {
1043 return cpu_ppc_load_decr(env);
1044 }
1045
1046 void store_booke_tsr (CPUState *env, target_ulong val)
1047 {
1048 #ifdef PPC_DEBUG_TB
1049 if (loglevel != 0) {
1050 fprintf(logfile, "%s: val " ADDRX "\n", __func__, val);
1051 }
1052 #endif
1053 env->spr[SPR_40x_TSR] &= ~(val & 0xFC000000);
1054 if (val & 0x80000000)
1055 ppc_set_irq(env, PPC_INTERRUPT_PIT, 0);
1056 }
1057
1058 void store_booke_tcr (CPUState *env, target_ulong val)
1059 {
1060 ppc_tb_t *tb_env;
1061
1062 tb_env = env->tb_env;
1063 #ifdef PPC_DEBUG_TB
1064 if (loglevel != 0) {
1065 fprintf(logfile, "%s: val " ADDRX "\n", __func__, val);
1066 }
1067 #endif
1068 env->spr[SPR_40x_TCR] = val & 0xFFC00000;
1069 start_stop_pit(env, tb_env, 1);
1070 cpu_4xx_wdt_cb(env);
1071 }
1072
1073 static void ppc_emb_set_tb_clk (void *opaque, uint32_t freq)
1074 {
1075 CPUState *env = opaque;
1076 ppc_tb_t *tb_env = env->tb_env;
1077
1078 #ifdef PPC_DEBUG_TB
1079 if (loglevel != 0) {
1080 fprintf(logfile, "%s set new frequency to %" PRIu32 "\n", __func__,
1081 freq);
1082 }
1083 #endif
1084 tb_env->tb_freq = freq;
1085 tb_env->decr_freq = freq;
1086 /* XXX: we should also update all timers */
1087 }
1088
1089 clk_setup_cb ppc_emb_timers_init (CPUState *env, uint32_t freq)
1090 {
1091 ppc_tb_t *tb_env;
1092 ppcemb_timer_t *ppcemb_timer;
1093
1094 tb_env = qemu_mallocz(sizeof(ppc_tb_t));
1095 if (tb_env == NULL) {
1096 return NULL;
1097 }
1098 env->tb_env = tb_env;
1099 ppcemb_timer = qemu_mallocz(sizeof(ppcemb_timer_t));
1100 tb_env->tb_freq = freq;
1101 tb_env->decr_freq = freq;
1102 tb_env->opaque = ppcemb_timer;
1103 #ifdef PPC_DEBUG_TB
1104 if (loglevel != 0) {
1105 fprintf(logfile, "%s freq %" PRIu32 "\n", __func__, freq);
1106 }
1107 #endif
1108 if (ppcemb_timer != NULL) {
1109 /* We use decr timer for PIT */
1110 tb_env->decr_timer = qemu_new_timer(vm_clock, &cpu_4xx_pit_cb, env);
1111 ppcemb_timer->fit_timer =
1112 qemu_new_timer(vm_clock, &cpu_4xx_fit_cb, env);
1113 ppcemb_timer->wdt_timer =
1114 qemu_new_timer(vm_clock, &cpu_4xx_wdt_cb, env);
1115 }
1116
1117 return &ppc_emb_set_tb_clk;
1118 }
1119
1120 /*****************************************************************************/
1121 /* Embedded PowerPC Device Control Registers */
1122 typedef struct ppc_dcrn_t ppc_dcrn_t;
1123 struct ppc_dcrn_t {
1124 dcr_read_cb dcr_read;
1125 dcr_write_cb dcr_write;
1126 void *opaque;
1127 };
1128
1129 /* XXX: on 460, DCR addresses are 32 bits wide,
1130 * using DCRIPR to get the 22 upper bits of the DCR address
1131 */
1132 #define DCRN_NB 1024
1133 struct ppc_dcr_t {
1134 ppc_dcrn_t dcrn[DCRN_NB];
1135 int (*read_error)(int dcrn);
1136 int (*write_error)(int dcrn);
1137 };
1138
1139 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, target_ulong *valp)
1140 {
1141 ppc_dcrn_t *dcr;
1142
1143 if (dcrn < 0 || dcrn >= DCRN_NB)
1144 goto error;
1145 dcr = &dcr_env->dcrn[dcrn];
1146 if (dcr->dcr_read == NULL)
1147 goto error;
1148 *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1149
1150 return 0;
1151
1152 error:
1153 if (dcr_env->read_error != NULL)
1154 return (*dcr_env->read_error)(dcrn);
1155
1156 return -1;
1157 }
1158
1159 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, target_ulong val)
1160 {
1161 ppc_dcrn_t *dcr;
1162
1163 if (dcrn < 0 || dcrn >= DCRN_NB)
1164 goto error;
1165 dcr = &dcr_env->dcrn[dcrn];
1166 if (dcr->dcr_write == NULL)
1167 goto error;
1168 (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1169
1170 return 0;
1171
1172 error:
1173 if (dcr_env->write_error != NULL)
1174 return (*dcr_env->write_error)(dcrn);
1175
1176 return -1;
1177 }
1178
1179 int ppc_dcr_register (CPUState *env, int dcrn, void *opaque,
1180 dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1181 {
1182 ppc_dcr_t *dcr_env;
1183 ppc_dcrn_t *dcr;
1184
1185 dcr_env = env->dcr_env;
1186 if (dcr_env == NULL)
1187 return -1;
1188 if (dcrn < 0 || dcrn >= DCRN_NB)
1189 return -1;
1190 dcr = &dcr_env->dcrn[dcrn];
1191 if (dcr->opaque != NULL ||
1192 dcr->dcr_read != NULL ||
1193 dcr->dcr_write != NULL)
1194 return -1;
1195 dcr->opaque = opaque;
1196 dcr->dcr_read = dcr_read;
1197 dcr->dcr_write = dcr_write;
1198
1199 return 0;
1200 }
1201
1202 int ppc_dcr_init (CPUState *env, int (*read_error)(int dcrn),
1203 int (*write_error)(int dcrn))
1204 {
1205 ppc_dcr_t *dcr_env;
1206
1207 dcr_env = qemu_mallocz(sizeof(ppc_dcr_t));
1208 if (dcr_env == NULL)
1209 return -1;
1210 dcr_env->read_error = read_error;
1211 dcr_env->write_error = write_error;
1212 env->dcr_env = dcr_env;
1213
1214 return 0;
1215 }
1216
1217 #if 0
1218 /*****************************************************************************/
1219 /* Handle system reset (for now, just stop emulation) */
1220 void cpu_ppc_reset (CPUState *env)
1221 {
1222 printf("Reset asked... Stop emulation\n");
1223 abort();
1224 }
1225 #endif
1226
1227 /*****************************************************************************/
1228 /* Debug port */
1229 void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1230 {
1231 addr &= 0xF;
1232 switch (addr) {
1233 case 0:
1234 printf("%c", val);
1235 break;
1236 case 1:
1237 printf("\n");
1238 fflush(stdout);
1239 break;
1240 case 2:
1241 printf("Set loglevel to %04" PRIx32 "\n", val);
1242 cpu_set_log(val | 0x100);
1243 break;
1244 }
1245 }
1246
1247 /*****************************************************************************/
1248 /* NVRAM helpers */
1249 static inline uint32_t nvram_read (nvram_t *nvram, uint32_t addr)
1250 {
1251 return (*nvram->read_fn)(nvram->opaque, addr);;
1252 }
1253
1254 static inline void nvram_write (nvram_t *nvram, uint32_t addr, uint32_t val)
1255 {
1256 (*nvram->write_fn)(nvram->opaque, addr, val);
1257 }
1258
1259 void NVRAM_set_byte (nvram_t *nvram, uint32_t addr, uint8_t value)
1260 {
1261 nvram_write(nvram, addr, value);
1262 }
1263
1264 uint8_t NVRAM_get_byte (nvram_t *nvram, uint32_t addr)
1265 {
1266 return nvram_read(nvram, addr);
1267 }
1268
1269 void NVRAM_set_word (nvram_t *nvram, uint32_t addr, uint16_t value)
1270 {
1271 nvram_write(nvram, addr, value >> 8);
1272 nvram_write(nvram, addr + 1, value & 0xFF);
1273 }
1274
1275 uint16_t NVRAM_get_word (nvram_t *nvram, uint32_t addr)
1276 {
1277 uint16_t tmp;
1278
1279 tmp = nvram_read(nvram, addr) << 8;
1280 tmp |= nvram_read(nvram, addr + 1);
1281
1282 return tmp;
1283 }
1284
1285 void NVRAM_set_lword (nvram_t *nvram, uint32_t addr, uint32_t value)
1286 {
1287 nvram_write(nvram, addr, value >> 24);
1288 nvram_write(nvram, addr + 1, (value >> 16) & 0xFF);
1289 nvram_write(nvram, addr + 2, (value >> 8) & 0xFF);
1290 nvram_write(nvram, addr + 3, value & 0xFF);
1291 }
1292
1293 uint32_t NVRAM_get_lword (nvram_t *nvram, uint32_t addr)
1294 {
1295 uint32_t tmp;
1296
1297 tmp = nvram_read(nvram, addr) << 24;
1298 tmp |= nvram_read(nvram, addr + 1) << 16;
1299 tmp |= nvram_read(nvram, addr + 2) << 8;
1300 tmp |= nvram_read(nvram, addr + 3);
1301
1302 return tmp;
1303 }
1304
1305 void NVRAM_set_string (nvram_t *nvram, uint32_t addr,
1306 const char *str, uint32_t max)
1307 {
1308 int i;
1309
1310 for (i = 0; i < max && str[i] != '\0'; i++) {
1311 nvram_write(nvram, addr + i, str[i]);
1312 }
1313 nvram_write(nvram, addr + i, str[i]);
1314 nvram_write(nvram, addr + max - 1, '\0');
1315 }
1316
1317 int NVRAM_get_string (nvram_t *nvram, uint8_t *dst, uint16_t addr, int max)
1318 {
1319 int i;
1320
1321 memset(dst, 0, max);
1322 for (i = 0; i < max; i++) {
1323 dst[i] = NVRAM_get_byte(nvram, addr + i);
1324 if (dst[i] == '\0')
1325 break;
1326 }
1327
1328 return i;
1329 }
1330
1331 static uint16_t NVRAM_crc_update (uint16_t prev, uint16_t value)
1332 {
1333 uint16_t tmp;
1334 uint16_t pd, pd1, pd2;
1335
1336 tmp = prev >> 8;
1337 pd = prev ^ value;
1338 pd1 = pd & 0x000F;
1339 pd2 = ((pd >> 4) & 0x000F) ^ pd1;
1340 tmp ^= (pd1 << 3) | (pd1 << 8);
1341 tmp ^= pd2 | (pd2 << 7) | (pd2 << 12);
1342
1343 return tmp;
1344 }
1345
1346 uint16_t NVRAM_compute_crc (nvram_t *nvram, uint32_t start, uint32_t count)
1347 {
1348 uint32_t i;
1349 uint16_t crc = 0xFFFF;
1350 int odd;
1351
1352 odd = count & 1;
1353 count &= ~1;
1354 for (i = 0; i != count; i++) {
1355 crc = NVRAM_crc_update(crc, NVRAM_get_word(nvram, start + i));
1356 }
1357 if (odd) {
1358 crc = NVRAM_crc_update(crc, NVRAM_get_byte(nvram, start + i) << 8);
1359 }
1360
1361 return crc;
1362 }
1363
1364 #define CMDLINE_ADDR 0x017ff000
1365
1366 int PPC_NVRAM_set_params (nvram_t *nvram, uint16_t NVRAM_size,
1367 const char *arch,
1368 uint32_t RAM_size, int boot_device,
1369 uint32_t kernel_image, uint32_t kernel_size,
1370 const char *cmdline,
1371 uint32_t initrd_image, uint32_t initrd_size,
1372 uint32_t NVRAM_image,
1373 int width, int height, int depth)
1374 {
1375 uint16_t crc;
1376
1377 /* Set parameters for Open Hack'Ware BIOS */
1378 NVRAM_set_string(nvram, 0x00, "QEMU_BIOS", 16);
1379 NVRAM_set_lword(nvram, 0x10, 0x00000002); /* structure v2 */
1380 NVRAM_set_word(nvram, 0x14, NVRAM_size);
1381 NVRAM_set_string(nvram, 0x20, arch, 16);
1382 NVRAM_set_lword(nvram, 0x30, RAM_size);
1383 NVRAM_set_byte(nvram, 0x34, boot_device);
1384 NVRAM_set_lword(nvram, 0x38, kernel_image);
1385 NVRAM_set_lword(nvram, 0x3C, kernel_size);
1386 if (cmdline) {
1387 /* XXX: put the cmdline in NVRAM too ? */
1388 strcpy((char *)(phys_ram_base + CMDLINE_ADDR), cmdline);
1389 NVRAM_set_lword(nvram, 0x40, CMDLINE_ADDR);
1390 NVRAM_set_lword(nvram, 0x44, strlen(cmdline));
1391 } else {
1392 NVRAM_set_lword(nvram, 0x40, 0);
1393 NVRAM_set_lword(nvram, 0x44, 0);
1394 }
1395 NVRAM_set_lword(nvram, 0x48, initrd_image);
1396 NVRAM_set_lword(nvram, 0x4C, initrd_size);
1397 NVRAM_set_lword(nvram, 0x50, NVRAM_image);
1398
1399 NVRAM_set_word(nvram, 0x54, width);
1400 NVRAM_set_word(nvram, 0x56, height);
1401 NVRAM_set_word(nvram, 0x58, depth);
1402 crc = NVRAM_compute_crc(nvram, 0x00, 0xF8);
1403 NVRAM_set_word(nvram, 0xFC, crc);
1404
1405 return 0;
1406 }