]> git.proxmox.com Git - mirror_qemu.git/blob - hw/riscv/spike.c
3c8a8de673b0504202cb83f568fd91fc142326fb
[mirror_qemu.git] / hw / riscv / spike.c
1 /*
2 * QEMU RISC-V Spike Board
3 *
4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5 * Copyright (c) 2017-2018 SiFive, Inc.
6 *
7 * This provides a RISC-V Board with the following devices:
8 *
9 * 0) HTIF Console and Poweroff
10 * 1) CLINT (Timer and IPI)
11 *
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms and conditions of the GNU General Public License,
14 * version 2 or later, as published by the Free Software Foundation.
15 *
16 * This program is distributed in the hope it will be useful, but WITHOUT
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
19 * more details.
20 *
21 * You should have received a copy of the GNU General Public License along with
22 * this program. If not, see <http://www.gnu.org/licenses/>.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qemu/error-report.h"
27 #include "qapi/error.h"
28 #include "hw/boards.h"
29 #include "hw/loader.h"
30 #include "hw/sysbus.h"
31 #include "target/riscv/cpu.h"
32 #include "hw/riscv/riscv_hart.h"
33 #include "hw/riscv/spike.h"
34 #include "hw/riscv/boot.h"
35 #include "hw/riscv/numa.h"
36 #include "hw/char/riscv_htif.h"
37 #include "hw/intc/riscv_aclint.h"
38 #include "chardev/char.h"
39 #include "sysemu/device_tree.h"
40 #include "sysemu/sysemu.h"
41
42 #include <libfdt.h>
43
44 static const MemMapEntry spike_memmap[] = {
45 [SPIKE_MROM] = { 0x1000, 0xf000 },
46 [SPIKE_HTIF] = { 0x1000000, 0x1000 },
47 [SPIKE_CLINT] = { 0x2000000, 0x10000 },
48 [SPIKE_DRAM] = { 0x80000000, 0x0 },
49 };
50
51 static void create_fdt(SpikeState *s, const MemMapEntry *memmap,
52 uint64_t mem_size, const char *cmdline, bool is_32_bit)
53 {
54 void *fdt;
55 uint64_t addr, size;
56 unsigned long clint_addr;
57 int cpu, socket;
58 MachineState *mc = MACHINE(s);
59 uint32_t *clint_cells;
60 uint32_t cpu_phandle, intc_phandle, phandle = 1;
61 char *name, *mem_name, *clint_name, *clust_name;
62 char *core_name, *cpu_name, *intc_name;
63 static const char * const clint_compat[2] = {
64 "sifive,clint0", "riscv,clint0"
65 };
66
67 fdt = s->fdt = create_device_tree(&s->fdt_size);
68 if (!fdt) {
69 error_report("create_device_tree() failed");
70 exit(1);
71 }
72
73 qemu_fdt_setprop_string(fdt, "/", "model", "ucbbar,spike-bare,qemu");
74 qemu_fdt_setprop_string(fdt, "/", "compatible", "ucbbar,spike-bare-dev");
75 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
76 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
77
78 qemu_fdt_add_subnode(fdt, "/htif");
79 qemu_fdt_setprop_string(fdt, "/htif", "compatible", "ucb,htif0");
80 if (!htif_uses_elf_symbols()) {
81 qemu_fdt_setprop_cells(fdt, "/htif", "reg",
82 0x0, memmap[SPIKE_HTIF].base, 0x0, memmap[SPIKE_HTIF].size);
83 }
84
85 qemu_fdt_add_subnode(fdt, "/soc");
86 qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
87 qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus");
88 qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x2);
89 qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x2);
90
91 qemu_fdt_add_subnode(fdt, "/cpus");
92 qemu_fdt_setprop_cell(fdt, "/cpus", "timebase-frequency",
93 RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ);
94 qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
95 qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
96 qemu_fdt_add_subnode(fdt, "/cpus/cpu-map");
97
98 for (socket = (riscv_socket_count(mc) - 1); socket >= 0; socket--) {
99 clust_name = g_strdup_printf("/cpus/cpu-map/cluster%d", socket);
100 qemu_fdt_add_subnode(fdt, clust_name);
101
102 clint_cells = g_new0(uint32_t, s->soc[socket].num_harts * 4);
103
104 for (cpu = s->soc[socket].num_harts - 1; cpu >= 0; cpu--) {
105 cpu_phandle = phandle++;
106
107 cpu_name = g_strdup_printf("/cpus/cpu@%d",
108 s->soc[socket].hartid_base + cpu);
109 qemu_fdt_add_subnode(fdt, cpu_name);
110 if (is_32_bit) {
111 qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv32");
112 } else {
113 qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv48");
114 }
115 name = riscv_isa_string(&s->soc[socket].harts[cpu]);
116 qemu_fdt_setprop_string(fdt, cpu_name, "riscv,isa", name);
117 g_free(name);
118 qemu_fdt_setprop_string(fdt, cpu_name, "compatible", "riscv");
119 qemu_fdt_setprop_string(fdt, cpu_name, "status", "okay");
120 qemu_fdt_setprop_cell(fdt, cpu_name, "reg",
121 s->soc[socket].hartid_base + cpu);
122 qemu_fdt_setprop_string(fdt, cpu_name, "device_type", "cpu");
123 riscv_socket_fdt_write_id(mc, fdt, cpu_name, socket);
124 qemu_fdt_setprop_cell(fdt, cpu_name, "phandle", cpu_phandle);
125
126 intc_name = g_strdup_printf("%s/interrupt-controller", cpu_name);
127 qemu_fdt_add_subnode(fdt, intc_name);
128 intc_phandle = phandle++;
129 qemu_fdt_setprop_cell(fdt, intc_name, "phandle", intc_phandle);
130 qemu_fdt_setprop_string(fdt, intc_name, "compatible",
131 "riscv,cpu-intc");
132 qemu_fdt_setprop(fdt, intc_name, "interrupt-controller", NULL, 0);
133 qemu_fdt_setprop_cell(fdt, intc_name, "#interrupt-cells", 1);
134
135 clint_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle);
136 clint_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
137 clint_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle);
138 clint_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
139
140 core_name = g_strdup_printf("%s/core%d", clust_name, cpu);
141 qemu_fdt_add_subnode(fdt, core_name);
142 qemu_fdt_setprop_cell(fdt, core_name, "cpu", cpu_phandle);
143
144 g_free(core_name);
145 g_free(intc_name);
146 g_free(cpu_name);
147 }
148
149 addr = memmap[SPIKE_DRAM].base + riscv_socket_mem_offset(mc, socket);
150 size = riscv_socket_mem_size(mc, socket);
151 mem_name = g_strdup_printf("/memory@%lx", (long)addr);
152 qemu_fdt_add_subnode(fdt, mem_name);
153 qemu_fdt_setprop_cells(fdt, mem_name, "reg",
154 addr >> 32, addr, size >> 32, size);
155 qemu_fdt_setprop_string(fdt, mem_name, "device_type", "memory");
156 riscv_socket_fdt_write_id(mc, fdt, mem_name, socket);
157 g_free(mem_name);
158
159 clint_addr = memmap[SPIKE_CLINT].base +
160 (memmap[SPIKE_CLINT].size * socket);
161 clint_name = g_strdup_printf("/soc/clint@%lx", clint_addr);
162 qemu_fdt_add_subnode(fdt, clint_name);
163 qemu_fdt_setprop_string_array(fdt, clint_name, "compatible",
164 (char **)&clint_compat, ARRAY_SIZE(clint_compat));
165 qemu_fdt_setprop_cells(fdt, clint_name, "reg",
166 0x0, clint_addr, 0x0, memmap[SPIKE_CLINT].size);
167 qemu_fdt_setprop(fdt, clint_name, "interrupts-extended",
168 clint_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4);
169 riscv_socket_fdt_write_id(mc, fdt, clint_name, socket);
170
171 g_free(clint_name);
172 g_free(clint_cells);
173 g_free(clust_name);
174 }
175
176 riscv_socket_fdt_write_distance_matrix(mc, fdt);
177
178 qemu_fdt_add_subnode(fdt, "/chosen");
179 qemu_fdt_setprop_string(fdt, "/chosen", "stdout-path", "/htif");
180
181 if (cmdline && *cmdline) {
182 qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
183 }
184 }
185
186 static void spike_board_init(MachineState *machine)
187 {
188 const MemMapEntry *memmap = spike_memmap;
189 SpikeState *s = SPIKE_MACHINE(machine);
190 MemoryRegion *system_memory = get_system_memory();
191 MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
192 target_ulong firmware_end_addr, kernel_start_addr;
193 const char *firmware_name;
194 uint32_t fdt_load_addr;
195 uint64_t kernel_entry;
196 char *soc_name;
197 int i, base_hartid, hart_count;
198
199 /* Check socket count limit */
200 if (SPIKE_SOCKETS_MAX < riscv_socket_count(machine)) {
201 error_report("number of sockets/nodes should be less than %d",
202 SPIKE_SOCKETS_MAX);
203 exit(1);
204 }
205
206 /* Initialize sockets */
207 for (i = 0; i < riscv_socket_count(machine); i++) {
208 if (!riscv_socket_check_hartids(machine, i)) {
209 error_report("discontinuous hartids in socket%d", i);
210 exit(1);
211 }
212
213 base_hartid = riscv_socket_first_hartid(machine, i);
214 if (base_hartid < 0) {
215 error_report("can't find hartid base for socket%d", i);
216 exit(1);
217 }
218
219 hart_count = riscv_socket_hart_count(machine, i);
220 if (hart_count < 0) {
221 error_report("can't find hart count for socket%d", i);
222 exit(1);
223 }
224
225 soc_name = g_strdup_printf("soc%d", i);
226 object_initialize_child(OBJECT(machine), soc_name, &s->soc[i],
227 TYPE_RISCV_HART_ARRAY);
228 g_free(soc_name);
229 object_property_set_str(OBJECT(&s->soc[i]), "cpu-type",
230 machine->cpu_type, &error_abort);
231 object_property_set_int(OBJECT(&s->soc[i]), "hartid-base",
232 base_hartid, &error_abort);
233 object_property_set_int(OBJECT(&s->soc[i]), "num-harts",
234 hart_count, &error_abort);
235 sysbus_realize(SYS_BUS_DEVICE(&s->soc[i]), &error_fatal);
236
237 /* Core Local Interruptor (timer and IPI) for each socket */
238 riscv_aclint_swi_create(
239 memmap[SPIKE_CLINT].base + i * memmap[SPIKE_CLINT].size,
240 base_hartid, hart_count, false);
241 riscv_aclint_mtimer_create(
242 memmap[SPIKE_CLINT].base + i * memmap[SPIKE_CLINT].size +
243 RISCV_ACLINT_SWI_SIZE,
244 RISCV_ACLINT_DEFAULT_MTIMER_SIZE, base_hartid, hart_count,
245 RISCV_ACLINT_DEFAULT_MTIMECMP, RISCV_ACLINT_DEFAULT_MTIME,
246 RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ, false);
247 }
248
249 /* register system main memory (actual RAM) */
250 memory_region_add_subregion(system_memory, memmap[SPIKE_DRAM].base,
251 machine->ram);
252
253 /* boot rom */
254 memory_region_init_rom(mask_rom, NULL, "riscv.spike.mrom",
255 memmap[SPIKE_MROM].size, &error_fatal);
256 memory_region_add_subregion(system_memory, memmap[SPIKE_MROM].base,
257 mask_rom);
258
259 firmware_name = riscv_default_firmware_name(&s->soc[0]);
260 firmware_end_addr = riscv_find_and_load_firmware(machine, firmware_name,
261 memmap[SPIKE_DRAM].base,
262 htif_symbol_callback);
263
264 /* Load kernel */
265 if (machine->kernel_filename) {
266 kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc[0],
267 firmware_end_addr);
268
269 kernel_entry = riscv_load_kernel(machine->kernel_filename,
270 kernel_start_addr,
271 htif_symbol_callback);
272 } else {
273 /*
274 * If dynamic firmware is used, it doesn't know where is the next mode
275 * if kernel argument is not set.
276 */
277 kernel_entry = 0;
278 }
279
280 /* Create device tree */
281 create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline,
282 riscv_is_32bit(&s->soc[0]));
283
284 /* Load initrd */
285 if (machine->kernel_filename && machine->initrd_filename) {
286 hwaddr start;
287 hwaddr end = riscv_load_initrd(machine->initrd_filename,
288 machine->ram_size, kernel_entry,
289 &start);
290 qemu_fdt_setprop_cell(s->fdt, "/chosen",
291 "linux,initrd-start", start);
292 qemu_fdt_setprop_cell(s->fdt, "/chosen", "linux,initrd-end",
293 end);
294 }
295
296 /* Compute the fdt load address in dram */
297 fdt_load_addr = riscv_load_fdt(memmap[SPIKE_DRAM].base,
298 machine->ram_size, s->fdt);
299
300 /* Set machine->fdt for 'dumpdtb' QMP/HMP command */
301 machine->fdt = s->fdt;
302
303 /* load the reset vector */
304 riscv_setup_rom_reset_vec(machine, &s->soc[0], memmap[SPIKE_DRAM].base,
305 memmap[SPIKE_MROM].base,
306 memmap[SPIKE_MROM].size, kernel_entry,
307 fdt_load_addr);
308
309 /* initialize HTIF using symbols found in load_kernel */
310 htif_mm_init(system_memory, serial_hd(0), memmap[SPIKE_HTIF].base);
311 }
312
313 static void spike_machine_instance_init(Object *obj)
314 {
315 }
316
317 static void spike_machine_class_init(ObjectClass *oc, void *data)
318 {
319 MachineClass *mc = MACHINE_CLASS(oc);
320
321 mc->desc = "RISC-V Spike board";
322 mc->init = spike_board_init;
323 mc->max_cpus = SPIKE_CPUS_MAX;
324 mc->is_default = true;
325 mc->default_cpu_type = TYPE_RISCV_CPU_BASE;
326 mc->possible_cpu_arch_ids = riscv_numa_possible_cpu_arch_ids;
327 mc->cpu_index_to_instance_props = riscv_numa_cpu_index_to_props;
328 mc->get_default_cpu_node_id = riscv_numa_get_default_cpu_node_id;
329 mc->numa_mem_supported = true;
330 mc->default_ram_id = "riscv.spike.ram";
331 }
332
333 static const TypeInfo spike_machine_typeinfo = {
334 .name = MACHINE_TYPE_NAME("spike"),
335 .parent = TYPE_MACHINE,
336 .class_init = spike_machine_class_init,
337 .instance_init = spike_machine_instance_init,
338 .instance_size = sizeof(SpikeState),
339 };
340
341 static void spike_machine_init_register_types(void)
342 {
343 type_register_static(&spike_machine_typeinfo);
344 }
345
346 type_init(spike_machine_init_register_types)