]> git.proxmox.com Git - mirror_qemu.git/blob - hw/riscv/spike.c
hw/riscv: Allow creating multiple instances of CLINT
[mirror_qemu.git] / hw / riscv / spike.c
1 /*
2 * QEMU RISC-V Spike Board
3 *
4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5 * Copyright (c) 2017-2018 SiFive, Inc.
6 *
7 * This provides a RISC-V Board with the following devices:
8 *
9 * 0) HTIF Console and Poweroff
10 * 1) CLINT (Timer and IPI)
11 * 2) PLIC (Platform Level Interrupt Controller)
12 *
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms and conditions of the GNU General Public License,
15 * version 2 or later, as published by the Free Software Foundation.
16 *
17 * This program is distributed in the hope it will be useful, but WITHOUT
18 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
20 * more details.
21 *
22 * You should have received a copy of the GNU General Public License along with
23 * this program. If not, see <http://www.gnu.org/licenses/>.
24 */
25
26 #include "qemu/osdep.h"
27 #include "qemu/log.h"
28 #include "qemu/error-report.h"
29 #include "qapi/error.h"
30 #include "hw/boards.h"
31 #include "hw/loader.h"
32 #include "hw/sysbus.h"
33 #include "target/riscv/cpu.h"
34 #include "hw/riscv/riscv_htif.h"
35 #include "hw/riscv/riscv_hart.h"
36 #include "hw/riscv/sifive_clint.h"
37 #include "hw/riscv/spike.h"
38 #include "hw/riscv/boot.h"
39 #include "chardev/char.h"
40 #include "sysemu/arch_init.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/qtest.h"
43 #include "sysemu/sysemu.h"
44
45 /*
46 * Not like other RISC-V machines that use plain binary bios images,
47 * keeping ELF files here was intentional because BIN files don't work
48 * for the Spike machine as HTIF emulation depends on ELF parsing.
49 */
50 #if defined(TARGET_RISCV32)
51 # define BIOS_FILENAME "opensbi-riscv32-generic-fw_dynamic.elf"
52 #else
53 # define BIOS_FILENAME "opensbi-riscv64-generic-fw_dynamic.elf"
54 #endif
55
56 static const struct MemmapEntry {
57 hwaddr base;
58 hwaddr size;
59 } spike_memmap[] = {
60 [SPIKE_MROM] = { 0x1000, 0xf000 },
61 [SPIKE_CLINT] = { 0x2000000, 0x10000 },
62 [SPIKE_DRAM] = { 0x80000000, 0x0 },
63 };
64
65 static void create_fdt(SpikeState *s, const struct MemmapEntry *memmap,
66 uint64_t mem_size, const char *cmdline)
67 {
68 void *fdt;
69 int cpu;
70 uint32_t *cells;
71 char *nodename;
72
73 fdt = s->fdt = create_device_tree(&s->fdt_size);
74 if (!fdt) {
75 error_report("create_device_tree() failed");
76 exit(1);
77 }
78
79 qemu_fdt_setprop_string(fdt, "/", "model", "ucbbar,spike-bare,qemu");
80 qemu_fdt_setprop_string(fdt, "/", "compatible", "ucbbar,spike-bare-dev");
81 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
82 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
83
84 qemu_fdt_add_subnode(fdt, "/htif");
85 qemu_fdt_setprop_string(fdt, "/htif", "compatible", "ucb,htif0");
86
87 qemu_fdt_add_subnode(fdt, "/soc");
88 qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
89 qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus");
90 qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x2);
91 qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x2);
92
93 nodename = g_strdup_printf("/memory@%lx",
94 (long)memmap[SPIKE_DRAM].base);
95 qemu_fdt_add_subnode(fdt, nodename);
96 qemu_fdt_setprop_cells(fdt, nodename, "reg",
97 memmap[SPIKE_DRAM].base >> 32, memmap[SPIKE_DRAM].base,
98 mem_size >> 32, mem_size);
99 qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
100 g_free(nodename);
101
102 qemu_fdt_add_subnode(fdt, "/cpus");
103 qemu_fdt_setprop_cell(fdt, "/cpus", "timebase-frequency",
104 SIFIVE_CLINT_TIMEBASE_FREQ);
105 qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
106 qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
107
108 for (cpu = s->soc.num_harts - 1; cpu >= 0; cpu--) {
109 nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
110 char *intc = g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu);
111 char *isa = riscv_isa_string(&s->soc.harts[cpu]);
112 qemu_fdt_add_subnode(fdt, nodename);
113 #if defined(TARGET_RISCV32)
114 qemu_fdt_setprop_string(fdt, nodename, "mmu-type", "riscv,sv32");
115 #else
116 qemu_fdt_setprop_string(fdt, nodename, "mmu-type", "riscv,sv48");
117 #endif
118 qemu_fdt_setprop_string(fdt, nodename, "riscv,isa", isa);
119 qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv");
120 qemu_fdt_setprop_string(fdt, nodename, "status", "okay");
121 qemu_fdt_setprop_cell(fdt, nodename, "reg", cpu);
122 qemu_fdt_setprop_string(fdt, nodename, "device_type", "cpu");
123 qemu_fdt_add_subnode(fdt, intc);
124 qemu_fdt_setprop_cell(fdt, intc, "phandle", 1);
125 qemu_fdt_setprop_string(fdt, intc, "compatible", "riscv,cpu-intc");
126 qemu_fdt_setprop(fdt, intc, "interrupt-controller", NULL, 0);
127 qemu_fdt_setprop_cell(fdt, intc, "#interrupt-cells", 1);
128 g_free(isa);
129 g_free(intc);
130 g_free(nodename);
131 }
132
133 cells = g_new0(uint32_t, s->soc.num_harts * 4);
134 for (cpu = 0; cpu < s->soc.num_harts; cpu++) {
135 nodename =
136 g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu);
137 uint32_t intc_phandle = qemu_fdt_get_phandle(fdt, nodename);
138 cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle);
139 cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
140 cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle);
141 cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
142 g_free(nodename);
143 }
144 nodename = g_strdup_printf("/soc/clint@%lx",
145 (long)memmap[SPIKE_CLINT].base);
146 qemu_fdt_add_subnode(fdt, nodename);
147 qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv,clint0");
148 qemu_fdt_setprop_cells(fdt, nodename, "reg",
149 0x0, memmap[SPIKE_CLINT].base,
150 0x0, memmap[SPIKE_CLINT].size);
151 qemu_fdt_setprop(fdt, nodename, "interrupts-extended",
152 cells, s->soc.num_harts * sizeof(uint32_t) * 4);
153 g_free(cells);
154 g_free(nodename);
155
156 if (cmdline) {
157 qemu_fdt_add_subnode(fdt, "/chosen");
158 qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
159 }
160 }
161
162 static void spike_board_init(MachineState *machine)
163 {
164 const struct MemmapEntry *memmap = spike_memmap;
165
166 SpikeState *s = g_new0(SpikeState, 1);
167 MemoryRegion *system_memory = get_system_memory();
168 MemoryRegion *main_mem = g_new(MemoryRegion, 1);
169 MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
170 unsigned int smp_cpus = machine->smp.cpus;
171 uint32_t fdt_load_addr;
172 uint64_t kernel_entry;
173
174 /* Initialize SOC */
175 object_initialize_child(OBJECT(machine), "soc", &s->soc,
176 TYPE_RISCV_HART_ARRAY);
177 object_property_set_str(OBJECT(&s->soc), "cpu-type", machine->cpu_type,
178 &error_abort);
179 object_property_set_int(OBJECT(&s->soc), "num-harts", smp_cpus,
180 &error_abort);
181 sysbus_realize(SYS_BUS_DEVICE(&s->soc), &error_abort);
182
183 /* register system main memory (actual RAM) */
184 memory_region_init_ram(main_mem, NULL, "riscv.spike.ram",
185 machine->ram_size, &error_fatal);
186 memory_region_add_subregion(system_memory, memmap[SPIKE_DRAM].base,
187 main_mem);
188
189 /* create device tree */
190 create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline);
191
192 /* boot rom */
193 memory_region_init_rom(mask_rom, NULL, "riscv.spike.mrom",
194 memmap[SPIKE_MROM].size, &error_fatal);
195 memory_region_add_subregion(system_memory, memmap[SPIKE_MROM].base,
196 mask_rom);
197
198 riscv_find_and_load_firmware(machine, BIOS_FILENAME,
199 memmap[SPIKE_DRAM].base,
200 htif_symbol_callback);
201
202 if (machine->kernel_filename) {
203 kernel_entry = riscv_load_kernel(machine->kernel_filename,
204 htif_symbol_callback);
205
206 if (machine->initrd_filename) {
207 hwaddr start;
208 hwaddr end = riscv_load_initrd(machine->initrd_filename,
209 machine->ram_size, kernel_entry,
210 &start);
211 qemu_fdt_setprop_cell(s->fdt, "/chosen",
212 "linux,initrd-start", start);
213 qemu_fdt_setprop_cell(s->fdt, "/chosen", "linux,initrd-end",
214 end);
215 }
216 } else {
217 /*
218 * If dynamic firmware is used, it doesn't know where is the next mode
219 * if kernel argument is not set.
220 */
221 kernel_entry = 0;
222 }
223
224 /* Compute the fdt load address in dram */
225 fdt_load_addr = riscv_load_fdt(memmap[SPIKE_DRAM].base,
226 machine->ram_size, s->fdt);
227 /* load the reset vector */
228 riscv_setup_rom_reset_vec(memmap[SPIKE_DRAM].base, memmap[SPIKE_MROM].base,
229 memmap[SPIKE_MROM].size, kernel_entry,
230 fdt_load_addr, s->fdt);
231
232 /* initialize HTIF using symbols found in load_kernel */
233 htif_mm_init(system_memory, mask_rom, &s->soc.harts[0].env, serial_hd(0));
234
235 /* Core Local Interruptor (timer and IPI) */
236 sifive_clint_create(memmap[SPIKE_CLINT].base, memmap[SPIKE_CLINT].size,
237 0, smp_cpus, SIFIVE_SIP_BASE, SIFIVE_TIMECMP_BASE, SIFIVE_TIME_BASE,
238 false);
239 }
240
241 static void spike_machine_init(MachineClass *mc)
242 {
243 mc->desc = "RISC-V Spike Board";
244 mc->init = spike_board_init;
245 mc->max_cpus = 8;
246 mc->is_default = true;
247 mc->default_cpu_type = SPIKE_V1_10_0_CPU;
248 }
249
250 DEFINE_MACHINE("spike", spike_machine_init)