]> git.proxmox.com Git - mirror_qemu.git/blob - hw/riscv/spike.c
RISC-V Spike Machines
[mirror_qemu.git] / hw / riscv / spike.c
1 /*
2 * QEMU RISC-V Spike Board
3 *
4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5 * Copyright (c) 2017-2018 SiFive, Inc.
6 *
7 * This provides a RISC-V Board with the following devices:
8 *
9 * 0) HTIF Console and Poweroff
10 * 1) CLINT (Timer and IPI)
11 * 2) PLIC (Platform Level Interrupt Controller)
12 *
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms and conditions of the GNU General Public License,
15 * version 2 or later, as published by the Free Software Foundation.
16 *
17 * This program is distributed in the hope it will be useful, but WITHOUT
18 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
20 * more details.
21 *
22 * You should have received a copy of the GNU General Public License along with
23 * this program. If not, see <http://www.gnu.org/licenses/>.
24 */
25
26 #include "qemu/osdep.h"
27 #include "qemu/log.h"
28 #include "qemu/error-report.h"
29 #include "qapi/error.h"
30 #include "hw/hw.h"
31 #include "hw/boards.h"
32 #include "hw/loader.h"
33 #include "hw/sysbus.h"
34 #include "target/riscv/cpu.h"
35 #include "hw/riscv/riscv_htif.h"
36 #include "hw/riscv/riscv_hart.h"
37 #include "hw/riscv/sifive_clint.h"
38 #include "hw/riscv/spike.h"
39 #include "chardev/char.h"
40 #include "sysemu/arch_init.h"
41 #include "sysemu/device_tree.h"
42 #include "exec/address-spaces.h"
43 #include "elf.h"
44
45 static const struct MemmapEntry {
46 hwaddr base;
47 hwaddr size;
48 } spike_memmap[] = {
49 [SPIKE_MROM] = { 0x1000, 0x2000 },
50 [SPIKE_CLINT] = { 0x2000000, 0x10000 },
51 [SPIKE_DRAM] = { 0x80000000, 0x0 },
52 };
53
54 static void copy_le32_to_phys(hwaddr pa, uint32_t *rom, size_t len)
55 {
56 int i;
57 for (i = 0; i < (len >> 2); i++) {
58 stl_phys(&address_space_memory, pa + (i << 2), rom[i]);
59 }
60 }
61
62 static uint64_t identity_translate(void *opaque, uint64_t addr)
63 {
64 return addr;
65 }
66
67 static uint64_t load_kernel(const char *kernel_filename)
68 {
69 uint64_t kernel_entry, kernel_high;
70
71 if (load_elf_ram_sym(kernel_filename, identity_translate, NULL,
72 &kernel_entry, NULL, &kernel_high, 0, ELF_MACHINE, 1, 0,
73 NULL, true, htif_symbol_callback) < 0) {
74 error_report("qemu: could not load kernel '%s'", kernel_filename);
75 exit(1);
76 }
77 return kernel_entry;
78 }
79
80 static void create_fdt(SpikeState *s, const struct MemmapEntry *memmap,
81 uint64_t mem_size, const char *cmdline)
82 {
83 void *fdt;
84 int cpu;
85 uint32_t *cells;
86 char *nodename;
87
88 fdt = s->fdt = create_device_tree(&s->fdt_size);
89 if (!fdt) {
90 error_report("create_device_tree() failed");
91 exit(1);
92 }
93
94 qemu_fdt_setprop_string(fdt, "/", "model", "ucbbar,spike-bare,qemu");
95 qemu_fdt_setprop_string(fdt, "/", "compatible", "ucbbar,spike-bare-dev");
96 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
97 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
98
99 qemu_fdt_add_subnode(fdt, "/htif");
100 qemu_fdt_setprop_string(fdt, "/htif", "compatible", "ucb,htif0");
101
102 qemu_fdt_add_subnode(fdt, "/soc");
103 qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
104 qemu_fdt_setprop_string(fdt, "/soc", "compatible", "ucbbar,spike-bare-soc");
105 qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x2);
106 qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x2);
107
108 nodename = g_strdup_printf("/memory@%lx",
109 (long)memmap[SPIKE_DRAM].base);
110 qemu_fdt_add_subnode(fdt, nodename);
111 qemu_fdt_setprop_cells(fdt, nodename, "reg",
112 memmap[SPIKE_DRAM].base >> 32, memmap[SPIKE_DRAM].base,
113 mem_size >> 32, mem_size);
114 qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
115 g_free(nodename);
116
117 qemu_fdt_add_subnode(fdt, "/cpus");
118 qemu_fdt_setprop_cell(fdt, "/cpus", "timebase-frequency", 10000000);
119 qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
120 qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
121
122 for (cpu = s->soc.num_harts - 1; cpu >= 0; cpu--) {
123 nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
124 char *intc = g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu);
125 char *isa = riscv_isa_string(&s->soc.harts[cpu]);
126 qemu_fdt_add_subnode(fdt, nodename);
127 qemu_fdt_setprop_cell(fdt, nodename, "clock-frequency", 1000000000);
128 qemu_fdt_setprop_string(fdt, nodename, "mmu-type", "riscv,sv48");
129 qemu_fdt_setprop_string(fdt, nodename, "riscv,isa", isa);
130 qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv");
131 qemu_fdt_setprop_string(fdt, nodename, "status", "okay");
132 qemu_fdt_setprop_cell(fdt, nodename, "reg", cpu);
133 qemu_fdt_setprop_string(fdt, nodename, "device_type", "cpu");
134 qemu_fdt_add_subnode(fdt, intc);
135 qemu_fdt_setprop_cell(fdt, intc, "phandle", 1);
136 qemu_fdt_setprop_cell(fdt, intc, "linux,phandle", 1);
137 qemu_fdt_setprop_string(fdt, intc, "compatible", "riscv,cpu-intc");
138 qemu_fdt_setprop(fdt, intc, "interrupt-controller", NULL, 0);
139 qemu_fdt_setprop_cell(fdt, intc, "#interrupt-cells", 1);
140 g_free(isa);
141 g_free(intc);
142 g_free(nodename);
143 }
144
145 cells = g_new0(uint32_t, s->soc.num_harts * 4);
146 for (cpu = 0; cpu < s->soc.num_harts; cpu++) {
147 nodename =
148 g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu);
149 uint32_t intc_phandle = qemu_fdt_get_phandle(fdt, nodename);
150 cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle);
151 cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
152 cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle);
153 cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
154 g_free(nodename);
155 }
156 nodename = g_strdup_printf("/soc/clint@%lx",
157 (long)memmap[SPIKE_CLINT].base);
158 qemu_fdt_add_subnode(fdt, nodename);
159 qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv,clint0");
160 qemu_fdt_setprop_cells(fdt, nodename, "reg",
161 0x0, memmap[SPIKE_CLINT].base,
162 0x0, memmap[SPIKE_CLINT].size);
163 qemu_fdt_setprop(fdt, nodename, "interrupts-extended",
164 cells, s->soc.num_harts * sizeof(uint32_t) * 4);
165 g_free(cells);
166 g_free(nodename);
167
168 qemu_fdt_add_subnode(fdt, "/chosen");
169 qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
170 }
171
172 static void spike_v1_10_0_board_init(MachineState *machine)
173 {
174 const struct MemmapEntry *memmap = spike_memmap;
175
176 SpikeState *s = g_new0(SpikeState, 1);
177 MemoryRegion *system_memory = get_system_memory();
178 MemoryRegion *main_mem = g_new(MemoryRegion, 1);
179 MemoryRegion *boot_rom = g_new(MemoryRegion, 1);
180
181 /* Initialize SOC */
182 object_initialize(&s->soc, sizeof(s->soc), TYPE_RISCV_HART_ARRAY);
183 object_property_add_child(OBJECT(machine), "soc", OBJECT(&s->soc),
184 &error_abort);
185 object_property_set_str(OBJECT(&s->soc), SPIKE_V1_10_0_CPU, "cpu-type",
186 &error_abort);
187 object_property_set_int(OBJECT(&s->soc), smp_cpus, "num-harts",
188 &error_abort);
189 object_property_set_bool(OBJECT(&s->soc), true, "realized",
190 &error_abort);
191
192 /* register system main memory (actual RAM) */
193 memory_region_init_ram(main_mem, NULL, "riscv.spike.ram",
194 machine->ram_size, &error_fatal);
195 memory_region_add_subregion(system_memory, memmap[SPIKE_DRAM].base,
196 main_mem);
197
198 /* create device tree */
199 create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline);
200
201 /* boot rom */
202 memory_region_init_ram(boot_rom, NULL, "riscv.spike.bootrom",
203 s->fdt_size + 0x2000, &error_fatal);
204 memory_region_add_subregion(system_memory, 0x0, boot_rom);
205
206 if (machine->kernel_filename) {
207 load_kernel(machine->kernel_filename);
208 }
209
210 /* reset vector */
211 uint32_t reset_vec[8] = {
212 0x00000297, /* 1: auipc t0, %pcrel_hi(dtb) */
213 0x02028593, /* addi a1, t0, %pcrel_lo(1b) */
214 0xf1402573, /* csrr a0, mhartid */
215 #if defined(TARGET_RISCV32)
216 0x0182a283, /* lw t0, 24(t0) */
217 #elif defined(TARGET_RISCV64)
218 0x0182b283, /* ld t0, 24(t0) */
219 #endif
220 0x00028067, /* jr t0 */
221 0x00000000,
222 memmap[SPIKE_DRAM].base, /* start: .dword DRAM_BASE */
223 0x00000000,
224 /* dtb: */
225 };
226
227 /* copy in the reset vector */
228 copy_le32_to_phys(memmap[SPIKE_MROM].base, reset_vec, sizeof(reset_vec));
229
230 /* copy in the device tree */
231 qemu_fdt_dumpdtb(s->fdt, s->fdt_size);
232 cpu_physical_memory_write(memmap[SPIKE_MROM].base + sizeof(reset_vec),
233 s->fdt, s->fdt_size);
234
235 /* initialize HTIF using symbols found in load_kernel */
236 htif_mm_init(system_memory, boot_rom, &s->soc.harts[0].env, serial_hds[0]);
237
238 /* Core Local Interruptor (timer and IPI) */
239 sifive_clint_create(memmap[SPIKE_CLINT].base, memmap[SPIKE_CLINT].size,
240 smp_cpus, SIFIVE_SIP_BASE, SIFIVE_TIMECMP_BASE, SIFIVE_TIME_BASE);
241 }
242
243 static void spike_v1_09_1_board_init(MachineState *machine)
244 {
245 const struct MemmapEntry *memmap = spike_memmap;
246
247 SpikeState *s = g_new0(SpikeState, 1);
248 MemoryRegion *system_memory = get_system_memory();
249 MemoryRegion *main_mem = g_new(MemoryRegion, 1);
250 MemoryRegion *boot_rom = g_new(MemoryRegion, 1);
251
252 /* Initialize SOC */
253 object_initialize(&s->soc, sizeof(s->soc), TYPE_RISCV_HART_ARRAY);
254 object_property_add_child(OBJECT(machine), "soc", OBJECT(&s->soc),
255 &error_abort);
256 object_property_set_str(OBJECT(&s->soc), SPIKE_V1_09_1_CPU, "cpu-type",
257 &error_abort);
258 object_property_set_int(OBJECT(&s->soc), smp_cpus, "num-harts",
259 &error_abort);
260 object_property_set_bool(OBJECT(&s->soc), true, "realized",
261 &error_abort);
262
263 /* register system main memory (actual RAM) */
264 memory_region_init_ram(main_mem, NULL, "riscv.spike.ram",
265 machine->ram_size, &error_fatal);
266 memory_region_add_subregion(system_memory, memmap[SPIKE_DRAM].base,
267 main_mem);
268
269 /* boot rom */
270 memory_region_init_ram(boot_rom, NULL, "riscv.spike.bootrom",
271 0x40000, &error_fatal);
272 memory_region_add_subregion(system_memory, 0x0, boot_rom);
273
274 if (machine->kernel_filename) {
275 load_kernel(machine->kernel_filename);
276 }
277
278 /* reset vector */
279 uint32_t reset_vec[8] = {
280 0x297 + memmap[SPIKE_DRAM].base - memmap[SPIKE_MROM].base, /* lui */
281 0x00028067, /* jump to DRAM_BASE */
282 0x00000000, /* reserved */
283 memmap[SPIKE_MROM].base + sizeof(reset_vec), /* config string pointer */
284 0, 0, 0, 0 /* trap vector */
285 };
286
287 /* part one of config string - before memory size specified */
288 const char *config_string_tmpl =
289 "platform {\n"
290 " vendor ucb;\n"
291 " arch spike;\n"
292 "};\n"
293 "rtc {\n"
294 " addr 0x%" PRIx64 "x;\n"
295 "};\n"
296 "ram {\n"
297 " 0 {\n"
298 " addr 0x%" PRIx64 "x;\n"
299 " size 0x%" PRIx64 "x;\n"
300 " };\n"
301 "};\n"
302 "core {\n"
303 " 0" " {\n"
304 " " "0 {\n"
305 " isa %s;\n"
306 " timecmp 0x%" PRIx64 "x;\n"
307 " ipi 0x%" PRIx64 "x;\n"
308 " };\n"
309 " };\n"
310 "};\n";
311
312 /* build config string with supplied memory size */
313 char *isa = riscv_isa_string(&s->soc.harts[0]);
314 size_t config_string_size = strlen(config_string_tmpl) + 48;
315 char *config_string = malloc(config_string_size);
316 snprintf(config_string, config_string_size, config_string_tmpl,
317 (uint64_t)memmap[SPIKE_CLINT].base + SIFIVE_TIME_BASE,
318 (uint64_t)memmap[SPIKE_DRAM].base,
319 (uint64_t)ram_size, isa,
320 (uint64_t)memmap[SPIKE_CLINT].base + SIFIVE_TIMECMP_BASE,
321 (uint64_t)memmap[SPIKE_CLINT].base + SIFIVE_SIP_BASE);
322 g_free(isa);
323 size_t config_string_len = strlen(config_string);
324
325 /* copy in the reset vector */
326 copy_le32_to_phys(memmap[SPIKE_MROM].base, reset_vec, sizeof(reset_vec));
327
328 /* copy in the config string */
329 cpu_physical_memory_write(memmap[SPIKE_MROM].base + sizeof(reset_vec),
330 config_string, config_string_len);
331
332 /* initialize HTIF using symbols found in load_kernel */
333 htif_mm_init(system_memory, boot_rom, &s->soc.harts[0].env, serial_hds[0]);
334
335 /* Core Local Interruptor (timer and IPI) */
336 sifive_clint_create(memmap[SPIKE_CLINT].base, memmap[SPIKE_CLINT].size,
337 smp_cpus, SIFIVE_SIP_BASE, SIFIVE_TIMECMP_BASE, SIFIVE_TIME_BASE);
338 }
339
340 static const TypeInfo spike_v_1_09_1_device = {
341 .name = TYPE_RISCV_SPIKE_V1_09_1_BOARD,
342 .parent = TYPE_SYS_BUS_DEVICE,
343 .instance_size = sizeof(SpikeState),
344 };
345
346 static const TypeInfo spike_v_1_10_0_device = {
347 .name = TYPE_RISCV_SPIKE_V1_10_0_BOARD,
348 .parent = TYPE_SYS_BUS_DEVICE,
349 .instance_size = sizeof(SpikeState),
350 };
351
352 static void spike_v1_09_1_machine_init(MachineClass *mc)
353 {
354 mc->desc = "RISC-V Spike Board (Privileged ISA v1.9.1)";
355 mc->init = spike_v1_09_1_board_init;
356 mc->max_cpus = 1;
357 }
358
359 static void spike_v1_10_0_machine_init(MachineClass *mc)
360 {
361 mc->desc = "RISC-V Spike Board (Privileged ISA v1.10)";
362 mc->init = spike_v1_10_0_board_init;
363 mc->max_cpus = 1;
364 mc->is_default = 1;
365 }
366
367 DEFINE_MACHINE("spike_v1.9.1", spike_v1_09_1_machine_init)
368 DEFINE_MACHINE("spike_v1.10", spike_v1_10_0_machine_init)
369
370 static void riscv_spike_board_register_types(void)
371 {
372 type_register_static(&spike_v_1_09_1_device);
373 type_register_static(&spike_v_1_10_0_device);
374 }
375
376 type_init(riscv_spike_board_register_types);