]> git.proxmox.com Git - mirror_qemu.git/blob - hw/riscv/virt.c
Merge remote-tracking branch 'remotes/hdeller/tags/hppa-updates-pull-request' into...
[mirror_qemu.git] / hw / riscv / virt.c
1 /*
2 * QEMU RISC-V VirtIO Board
3 *
4 * Copyright (c) 2017 SiFive, Inc.
5 *
6 * RISC-V machine with 16550a UART and VirtIO MMIO
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms and conditions of the GNU General Public License,
10 * version 2 or later, as published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
16 *
17 * You should have received a copy of the GNU General Public License along with
18 * this program. If not, see <http://www.gnu.org/licenses/>.
19 */
20
21 #include "qemu/osdep.h"
22 #include "qemu/units.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "hw/boards.h"
26 #include "hw/loader.h"
27 #include "hw/sysbus.h"
28 #include "hw/qdev-properties.h"
29 #include "hw/char/serial.h"
30 #include "target/riscv/cpu.h"
31 #include "hw/riscv/riscv_hart.h"
32 #include "hw/riscv/virt.h"
33 #include "hw/riscv/boot.h"
34 #include "hw/riscv/numa.h"
35 #include "hw/intc/riscv_aclint.h"
36 #include "hw/intc/sifive_plic.h"
37 #include "hw/misc/sifive_test.h"
38 #include "chardev/char.h"
39 #include "sysemu/device_tree.h"
40 #include "sysemu/sysemu.h"
41 #include "sysemu/kvm.h"
42 #include "hw/pci/pci.h"
43 #include "hw/pci-host/gpex.h"
44 #include "hw/display/ramfb.h"
45
46 static const MemMapEntry virt_memmap[] = {
47 [VIRT_DEBUG] = { 0x0, 0x100 },
48 [VIRT_MROM] = { 0x1000, 0xf000 },
49 [VIRT_TEST] = { 0x100000, 0x1000 },
50 [VIRT_RTC] = { 0x101000, 0x1000 },
51 [VIRT_CLINT] = { 0x2000000, 0x10000 },
52 [VIRT_ACLINT_SSWI] = { 0x2F00000, 0x4000 },
53 [VIRT_PCIE_PIO] = { 0x3000000, 0x10000 },
54 [VIRT_PLIC] = { 0xc000000, VIRT_PLIC_SIZE(VIRT_CPUS_MAX * 2) },
55 [VIRT_UART0] = { 0x10000000, 0x100 },
56 [VIRT_VIRTIO] = { 0x10001000, 0x1000 },
57 [VIRT_FW_CFG] = { 0x10100000, 0x18 },
58 [VIRT_FLASH] = { 0x20000000, 0x4000000 },
59 [VIRT_PCIE_ECAM] = { 0x30000000, 0x10000000 },
60 [VIRT_PCIE_MMIO] = { 0x40000000, 0x40000000 },
61 [VIRT_DRAM] = { 0x80000000, 0x0 },
62 };
63
64 /* PCIe high mmio is fixed for RV32 */
65 #define VIRT32_HIGH_PCIE_MMIO_BASE 0x300000000ULL
66 #define VIRT32_HIGH_PCIE_MMIO_SIZE (4 * GiB)
67
68 /* PCIe high mmio for RV64, size is fixed but base depends on top of RAM */
69 #define VIRT64_HIGH_PCIE_MMIO_SIZE (16 * GiB)
70
71 static MemMapEntry virt_high_pcie_memmap;
72
73 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
74
75 static PFlashCFI01 *virt_flash_create1(RISCVVirtState *s,
76 const char *name,
77 const char *alias_prop_name)
78 {
79 /*
80 * Create a single flash device. We use the same parameters as
81 * the flash devices on the ARM virt board.
82 */
83 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
84
85 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
86 qdev_prop_set_uint8(dev, "width", 4);
87 qdev_prop_set_uint8(dev, "device-width", 2);
88 qdev_prop_set_bit(dev, "big-endian", false);
89 qdev_prop_set_uint16(dev, "id0", 0x89);
90 qdev_prop_set_uint16(dev, "id1", 0x18);
91 qdev_prop_set_uint16(dev, "id2", 0x00);
92 qdev_prop_set_uint16(dev, "id3", 0x00);
93 qdev_prop_set_string(dev, "name", name);
94
95 object_property_add_child(OBJECT(s), name, OBJECT(dev));
96 object_property_add_alias(OBJECT(s), alias_prop_name,
97 OBJECT(dev), "drive");
98
99 return PFLASH_CFI01(dev);
100 }
101
102 static void virt_flash_create(RISCVVirtState *s)
103 {
104 s->flash[0] = virt_flash_create1(s, "virt.flash0", "pflash0");
105 s->flash[1] = virt_flash_create1(s, "virt.flash1", "pflash1");
106 }
107
108 static void virt_flash_map1(PFlashCFI01 *flash,
109 hwaddr base, hwaddr size,
110 MemoryRegion *sysmem)
111 {
112 DeviceState *dev = DEVICE(flash);
113
114 assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
115 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
116 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
117 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
118
119 memory_region_add_subregion(sysmem, base,
120 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
121 0));
122 }
123
124 static void virt_flash_map(RISCVVirtState *s,
125 MemoryRegion *sysmem)
126 {
127 hwaddr flashsize = virt_memmap[VIRT_FLASH].size / 2;
128 hwaddr flashbase = virt_memmap[VIRT_FLASH].base;
129
130 virt_flash_map1(s->flash[0], flashbase, flashsize,
131 sysmem);
132 virt_flash_map1(s->flash[1], flashbase + flashsize, flashsize,
133 sysmem);
134 }
135
136 static void create_pcie_irq_map(void *fdt, char *nodename,
137 uint32_t plic_phandle)
138 {
139 int pin, dev;
140 uint32_t
141 full_irq_map[GPEX_NUM_IRQS * GPEX_NUM_IRQS * FDT_INT_MAP_WIDTH] = {};
142 uint32_t *irq_map = full_irq_map;
143
144 /* This code creates a standard swizzle of interrupts such that
145 * each device's first interrupt is based on it's PCI_SLOT number.
146 * (See pci_swizzle_map_irq_fn())
147 *
148 * We only need one entry per interrupt in the table (not one per
149 * possible slot) seeing the interrupt-map-mask will allow the table
150 * to wrap to any number of devices.
151 */
152 for (dev = 0; dev < GPEX_NUM_IRQS; dev++) {
153 int devfn = dev * 0x8;
154
155 for (pin = 0; pin < GPEX_NUM_IRQS; pin++) {
156 int irq_nr = PCIE_IRQ + ((pin + PCI_SLOT(devfn)) % GPEX_NUM_IRQS);
157 int i = 0;
158
159 irq_map[i] = cpu_to_be32(devfn << 8);
160
161 i += FDT_PCI_ADDR_CELLS;
162 irq_map[i] = cpu_to_be32(pin + 1);
163
164 i += FDT_PCI_INT_CELLS;
165 irq_map[i++] = cpu_to_be32(plic_phandle);
166
167 i += FDT_PLIC_ADDR_CELLS;
168 irq_map[i] = cpu_to_be32(irq_nr);
169
170 irq_map += FDT_INT_MAP_WIDTH;
171 }
172 }
173
174 qemu_fdt_setprop(fdt, nodename, "interrupt-map",
175 full_irq_map, sizeof(full_irq_map));
176
177 qemu_fdt_setprop_cells(fdt, nodename, "interrupt-map-mask",
178 0x1800, 0, 0, 0x7);
179 }
180
181 static void create_fdt_socket_cpus(RISCVVirtState *s, int socket,
182 char *clust_name, uint32_t *phandle,
183 bool is_32_bit, uint32_t *intc_phandles)
184 {
185 int cpu;
186 uint32_t cpu_phandle;
187 MachineState *mc = MACHINE(s);
188 char *name, *cpu_name, *core_name, *intc_name;
189
190 for (cpu = s->soc[socket].num_harts - 1; cpu >= 0; cpu--) {
191 cpu_phandle = (*phandle)++;
192
193 cpu_name = g_strdup_printf("/cpus/cpu@%d",
194 s->soc[socket].hartid_base + cpu);
195 qemu_fdt_add_subnode(mc->fdt, cpu_name);
196 qemu_fdt_setprop_string(mc->fdt, cpu_name, "mmu-type",
197 (is_32_bit) ? "riscv,sv32" : "riscv,sv48");
198 name = riscv_isa_string(&s->soc[socket].harts[cpu]);
199 qemu_fdt_setprop_string(mc->fdt, cpu_name, "riscv,isa", name);
200 g_free(name);
201 qemu_fdt_setprop_string(mc->fdt, cpu_name, "compatible", "riscv");
202 qemu_fdt_setprop_string(mc->fdt, cpu_name, "status", "okay");
203 qemu_fdt_setprop_cell(mc->fdt, cpu_name, "reg",
204 s->soc[socket].hartid_base + cpu);
205 qemu_fdt_setprop_string(mc->fdt, cpu_name, "device_type", "cpu");
206 riscv_socket_fdt_write_id(mc, mc->fdt, cpu_name, socket);
207 qemu_fdt_setprop_cell(mc->fdt, cpu_name, "phandle", cpu_phandle);
208
209 intc_phandles[cpu] = (*phandle)++;
210
211 intc_name = g_strdup_printf("%s/interrupt-controller", cpu_name);
212 qemu_fdt_add_subnode(mc->fdt, intc_name);
213 qemu_fdt_setprop_cell(mc->fdt, intc_name, "phandle",
214 intc_phandles[cpu]);
215 qemu_fdt_setprop_string(mc->fdt, intc_name, "compatible",
216 "riscv,cpu-intc");
217 qemu_fdt_setprop(mc->fdt, intc_name, "interrupt-controller", NULL, 0);
218 qemu_fdt_setprop_cell(mc->fdt, intc_name, "#interrupt-cells", 1);
219
220 core_name = g_strdup_printf("%s/core%d", clust_name, cpu);
221 qemu_fdt_add_subnode(mc->fdt, core_name);
222 qemu_fdt_setprop_cell(mc->fdt, core_name, "cpu", cpu_phandle);
223
224 g_free(core_name);
225 g_free(intc_name);
226 g_free(cpu_name);
227 }
228 }
229
230 static void create_fdt_socket_memory(RISCVVirtState *s,
231 const MemMapEntry *memmap, int socket)
232 {
233 char *mem_name;
234 uint64_t addr, size;
235 MachineState *mc = MACHINE(s);
236
237 addr = memmap[VIRT_DRAM].base + riscv_socket_mem_offset(mc, socket);
238 size = riscv_socket_mem_size(mc, socket);
239 mem_name = g_strdup_printf("/memory@%lx", (long)addr);
240 qemu_fdt_add_subnode(mc->fdt, mem_name);
241 qemu_fdt_setprop_cells(mc->fdt, mem_name, "reg",
242 addr >> 32, addr, size >> 32, size);
243 qemu_fdt_setprop_string(mc->fdt, mem_name, "device_type", "memory");
244 riscv_socket_fdt_write_id(mc, mc->fdt, mem_name, socket);
245 g_free(mem_name);
246 }
247
248 static void create_fdt_socket_clint(RISCVVirtState *s,
249 const MemMapEntry *memmap, int socket,
250 uint32_t *intc_phandles)
251 {
252 int cpu;
253 char *clint_name;
254 uint32_t *clint_cells;
255 unsigned long clint_addr;
256 MachineState *mc = MACHINE(s);
257 static const char * const clint_compat[2] = {
258 "sifive,clint0", "riscv,clint0"
259 };
260
261 clint_cells = g_new0(uint32_t, s->soc[socket].num_harts * 4);
262
263 for (cpu = 0; cpu < s->soc[socket].num_harts; cpu++) {
264 clint_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandles[cpu]);
265 clint_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
266 clint_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandles[cpu]);
267 clint_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
268 }
269
270 clint_addr = memmap[VIRT_CLINT].base + (memmap[VIRT_CLINT].size * socket);
271 clint_name = g_strdup_printf("/soc/clint@%lx", clint_addr);
272 qemu_fdt_add_subnode(mc->fdt, clint_name);
273 qemu_fdt_setprop_string_array(mc->fdt, clint_name, "compatible",
274 (char **)&clint_compat,
275 ARRAY_SIZE(clint_compat));
276 qemu_fdt_setprop_cells(mc->fdt, clint_name, "reg",
277 0x0, clint_addr, 0x0, memmap[VIRT_CLINT].size);
278 qemu_fdt_setprop(mc->fdt, clint_name, "interrupts-extended",
279 clint_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4);
280 riscv_socket_fdt_write_id(mc, mc->fdt, clint_name, socket);
281 g_free(clint_name);
282
283 g_free(clint_cells);
284 }
285
286 static void create_fdt_socket_aclint(RISCVVirtState *s,
287 const MemMapEntry *memmap, int socket,
288 uint32_t *intc_phandles)
289 {
290 int cpu;
291 char *name;
292 unsigned long addr;
293 uint32_t aclint_cells_size;
294 uint32_t *aclint_mswi_cells;
295 uint32_t *aclint_sswi_cells;
296 uint32_t *aclint_mtimer_cells;
297 MachineState *mc = MACHINE(s);
298
299 aclint_mswi_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2);
300 aclint_mtimer_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2);
301 aclint_sswi_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2);
302
303 for (cpu = 0; cpu < s->soc[socket].num_harts; cpu++) {
304 aclint_mswi_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
305 aclint_mswi_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_M_SOFT);
306 aclint_mtimer_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
307 aclint_mtimer_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_M_TIMER);
308 aclint_sswi_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
309 aclint_sswi_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_S_SOFT);
310 }
311 aclint_cells_size = s->soc[socket].num_harts * sizeof(uint32_t) * 2;
312
313 addr = memmap[VIRT_CLINT].base + (memmap[VIRT_CLINT].size * socket);
314 name = g_strdup_printf("/soc/mswi@%lx", addr);
315 qemu_fdt_add_subnode(mc->fdt, name);
316 qemu_fdt_setprop_string(mc->fdt, name, "compatible", "riscv,aclint-mswi");
317 qemu_fdt_setprop_cells(mc->fdt, name, "reg",
318 0x0, addr, 0x0, RISCV_ACLINT_SWI_SIZE);
319 qemu_fdt_setprop(mc->fdt, name, "interrupts-extended",
320 aclint_mswi_cells, aclint_cells_size);
321 qemu_fdt_setprop(mc->fdt, name, "interrupt-controller", NULL, 0);
322 qemu_fdt_setprop_cell(mc->fdt, name, "#interrupt-cells", 0);
323 riscv_socket_fdt_write_id(mc, mc->fdt, name, socket);
324 g_free(name);
325
326 addr = memmap[VIRT_CLINT].base + RISCV_ACLINT_SWI_SIZE +
327 (memmap[VIRT_CLINT].size * socket);
328 name = g_strdup_printf("/soc/mtimer@%lx", addr);
329 qemu_fdt_add_subnode(mc->fdt, name);
330 qemu_fdt_setprop_string(mc->fdt, name, "compatible",
331 "riscv,aclint-mtimer");
332 qemu_fdt_setprop_cells(mc->fdt, name, "reg",
333 0x0, addr + RISCV_ACLINT_DEFAULT_MTIME,
334 0x0, memmap[VIRT_CLINT].size - RISCV_ACLINT_SWI_SIZE -
335 RISCV_ACLINT_DEFAULT_MTIME,
336 0x0, addr + RISCV_ACLINT_DEFAULT_MTIMECMP,
337 0x0, RISCV_ACLINT_DEFAULT_MTIME);
338 qemu_fdt_setprop(mc->fdt, name, "interrupts-extended",
339 aclint_mtimer_cells, aclint_cells_size);
340 riscv_socket_fdt_write_id(mc, mc->fdt, name, socket);
341 g_free(name);
342
343 addr = memmap[VIRT_ACLINT_SSWI].base +
344 (memmap[VIRT_ACLINT_SSWI].size * socket);
345 name = g_strdup_printf("/soc/sswi@%lx", addr);
346 qemu_fdt_add_subnode(mc->fdt, name);
347 qemu_fdt_setprop_string(mc->fdt, name, "compatible", "riscv,aclint-sswi");
348 qemu_fdt_setprop_cells(mc->fdt, name, "reg",
349 0x0, addr, 0x0, memmap[VIRT_ACLINT_SSWI].size);
350 qemu_fdt_setprop(mc->fdt, name, "interrupts-extended",
351 aclint_sswi_cells, aclint_cells_size);
352 qemu_fdt_setprop(mc->fdt, name, "interrupt-controller", NULL, 0);
353 qemu_fdt_setprop_cell(mc->fdt, name, "#interrupt-cells", 0);
354 riscv_socket_fdt_write_id(mc, mc->fdt, name, socket);
355 g_free(name);
356
357 g_free(aclint_mswi_cells);
358 g_free(aclint_mtimer_cells);
359 g_free(aclint_sswi_cells);
360 }
361
362 static void create_fdt_socket_plic(RISCVVirtState *s,
363 const MemMapEntry *memmap, int socket,
364 uint32_t *phandle, uint32_t *intc_phandles,
365 uint32_t *plic_phandles)
366 {
367 int cpu;
368 char *plic_name;
369 uint32_t *plic_cells;
370 unsigned long plic_addr;
371 MachineState *mc = MACHINE(s);
372 static const char * const plic_compat[2] = {
373 "sifive,plic-1.0.0", "riscv,plic0"
374 };
375
376 if (kvm_enabled()) {
377 plic_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2);
378 } else {
379 plic_cells = g_new0(uint32_t, s->soc[socket].num_harts * 4);
380 }
381
382 for (cpu = 0; cpu < s->soc[socket].num_harts; cpu++) {
383 if (kvm_enabled()) {
384 plic_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
385 plic_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_S_EXT);
386 } else {
387 plic_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandles[cpu]);
388 plic_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_EXT);
389 plic_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandles[cpu]);
390 plic_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_S_EXT);
391 }
392 }
393
394 plic_phandles[socket] = (*phandle)++;
395 plic_addr = memmap[VIRT_PLIC].base + (memmap[VIRT_PLIC].size * socket);
396 plic_name = g_strdup_printf("/soc/plic@%lx", plic_addr);
397 qemu_fdt_add_subnode(mc->fdt, plic_name);
398 qemu_fdt_setprop_cell(mc->fdt, plic_name,
399 "#address-cells", FDT_PLIC_ADDR_CELLS);
400 qemu_fdt_setprop_cell(mc->fdt, plic_name,
401 "#interrupt-cells", FDT_PLIC_INT_CELLS);
402 qemu_fdt_setprop_string_array(mc->fdt, plic_name, "compatible",
403 (char **)&plic_compat,
404 ARRAY_SIZE(plic_compat));
405 qemu_fdt_setprop(mc->fdt, plic_name, "interrupt-controller", NULL, 0);
406 qemu_fdt_setprop(mc->fdt, plic_name, "interrupts-extended",
407 plic_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4);
408 qemu_fdt_setprop_cells(mc->fdt, plic_name, "reg",
409 0x0, plic_addr, 0x0, memmap[VIRT_PLIC].size);
410 qemu_fdt_setprop_cell(mc->fdt, plic_name, "riscv,ndev", VIRTIO_NDEV);
411 riscv_socket_fdt_write_id(mc, mc->fdt, plic_name, socket);
412 qemu_fdt_setprop_cell(mc->fdt, plic_name, "phandle",
413 plic_phandles[socket]);
414 g_free(plic_name);
415
416 g_free(plic_cells);
417 }
418
419 static void create_fdt_sockets(RISCVVirtState *s, const MemMapEntry *memmap,
420 bool is_32_bit, uint32_t *phandle,
421 uint32_t *irq_mmio_phandle,
422 uint32_t *irq_pcie_phandle,
423 uint32_t *irq_virtio_phandle)
424 {
425 int socket;
426 char *clust_name;
427 uint32_t *intc_phandles;
428 MachineState *mc = MACHINE(s);
429 uint32_t xplic_phandles[MAX_NODES];
430
431 qemu_fdt_add_subnode(mc->fdt, "/cpus");
432 qemu_fdt_setprop_cell(mc->fdt, "/cpus", "timebase-frequency",
433 RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ);
434 qemu_fdt_setprop_cell(mc->fdt, "/cpus", "#size-cells", 0x0);
435 qemu_fdt_setprop_cell(mc->fdt, "/cpus", "#address-cells", 0x1);
436 qemu_fdt_add_subnode(mc->fdt, "/cpus/cpu-map");
437
438 for (socket = (riscv_socket_count(mc) - 1); socket >= 0; socket--) {
439 clust_name = g_strdup_printf("/cpus/cpu-map/cluster%d", socket);
440 qemu_fdt_add_subnode(mc->fdt, clust_name);
441
442 intc_phandles = g_new0(uint32_t, s->soc[socket].num_harts);
443
444 create_fdt_socket_cpus(s, socket, clust_name, phandle,
445 is_32_bit, intc_phandles);
446
447 create_fdt_socket_memory(s, memmap, socket);
448
449 if (!kvm_enabled()) {
450 if (s->have_aclint) {
451 create_fdt_socket_aclint(s, memmap, socket, intc_phandles);
452 } else {
453 create_fdt_socket_clint(s, memmap, socket, intc_phandles);
454 }
455 }
456
457 create_fdt_socket_plic(s, memmap, socket, phandle,
458 intc_phandles, xplic_phandles);
459
460 g_free(intc_phandles);
461 g_free(clust_name);
462 }
463
464 for (socket = 0; socket < riscv_socket_count(mc); socket++) {
465 if (socket == 0) {
466 *irq_mmio_phandle = xplic_phandles[socket];
467 *irq_virtio_phandle = xplic_phandles[socket];
468 *irq_pcie_phandle = xplic_phandles[socket];
469 }
470 if (socket == 1) {
471 *irq_virtio_phandle = xplic_phandles[socket];
472 *irq_pcie_phandle = xplic_phandles[socket];
473 }
474 if (socket == 2) {
475 *irq_pcie_phandle = xplic_phandles[socket];
476 }
477 }
478
479 riscv_socket_fdt_write_distance_matrix(mc, mc->fdt);
480 }
481
482 static void create_fdt_virtio(RISCVVirtState *s, const MemMapEntry *memmap,
483 uint32_t irq_virtio_phandle)
484 {
485 int i;
486 char *name;
487 MachineState *mc = MACHINE(s);
488
489 for (i = 0; i < VIRTIO_COUNT; i++) {
490 name = g_strdup_printf("/soc/virtio_mmio@%lx",
491 (long)(memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size));
492 qemu_fdt_add_subnode(mc->fdt, name);
493 qemu_fdt_setprop_string(mc->fdt, name, "compatible", "virtio,mmio");
494 qemu_fdt_setprop_cells(mc->fdt, name, "reg",
495 0x0, memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size,
496 0x0, memmap[VIRT_VIRTIO].size);
497 qemu_fdt_setprop_cell(mc->fdt, name, "interrupt-parent",
498 irq_virtio_phandle);
499 qemu_fdt_setprop_cell(mc->fdt, name, "interrupts", VIRTIO_IRQ + i);
500 g_free(name);
501 }
502 }
503
504 static void create_fdt_pcie(RISCVVirtState *s, const MemMapEntry *memmap,
505 uint32_t irq_pcie_phandle)
506 {
507 char *name;
508 MachineState *mc = MACHINE(s);
509
510 name = g_strdup_printf("/soc/pci@%lx",
511 (long) memmap[VIRT_PCIE_ECAM].base);
512 qemu_fdt_add_subnode(mc->fdt, name);
513 qemu_fdt_setprop_cell(mc->fdt, name, "#address-cells",
514 FDT_PCI_ADDR_CELLS);
515 qemu_fdt_setprop_cell(mc->fdt, name, "#interrupt-cells",
516 FDT_PCI_INT_CELLS);
517 qemu_fdt_setprop_cell(mc->fdt, name, "#size-cells", 0x2);
518 qemu_fdt_setprop_string(mc->fdt, name, "compatible",
519 "pci-host-ecam-generic");
520 qemu_fdt_setprop_string(mc->fdt, name, "device_type", "pci");
521 qemu_fdt_setprop_cell(mc->fdt, name, "linux,pci-domain", 0);
522 qemu_fdt_setprop_cells(mc->fdt, name, "bus-range", 0,
523 memmap[VIRT_PCIE_ECAM].size / PCIE_MMCFG_SIZE_MIN - 1);
524 qemu_fdt_setprop(mc->fdt, name, "dma-coherent", NULL, 0);
525 qemu_fdt_setprop_cells(mc->fdt, name, "reg", 0,
526 memmap[VIRT_PCIE_ECAM].base, 0, memmap[VIRT_PCIE_ECAM].size);
527 qemu_fdt_setprop_sized_cells(mc->fdt, name, "ranges",
528 1, FDT_PCI_RANGE_IOPORT, 2, 0,
529 2, memmap[VIRT_PCIE_PIO].base, 2, memmap[VIRT_PCIE_PIO].size,
530 1, FDT_PCI_RANGE_MMIO,
531 2, memmap[VIRT_PCIE_MMIO].base,
532 2, memmap[VIRT_PCIE_MMIO].base, 2, memmap[VIRT_PCIE_MMIO].size,
533 1, FDT_PCI_RANGE_MMIO_64BIT,
534 2, virt_high_pcie_memmap.base,
535 2, virt_high_pcie_memmap.base, 2, virt_high_pcie_memmap.size);
536
537 create_pcie_irq_map(mc->fdt, name, irq_pcie_phandle);
538 g_free(name);
539 }
540
541 static void create_fdt_reset(RISCVVirtState *s, const MemMapEntry *memmap,
542 uint32_t *phandle)
543 {
544 char *name;
545 uint32_t test_phandle;
546 MachineState *mc = MACHINE(s);
547
548 test_phandle = (*phandle)++;
549 name = g_strdup_printf("/soc/test@%lx",
550 (long)memmap[VIRT_TEST].base);
551 qemu_fdt_add_subnode(mc->fdt, name);
552 {
553 static const char * const compat[3] = {
554 "sifive,test1", "sifive,test0", "syscon"
555 };
556 qemu_fdt_setprop_string_array(mc->fdt, name, "compatible",
557 (char **)&compat, ARRAY_SIZE(compat));
558 }
559 qemu_fdt_setprop_cells(mc->fdt, name, "reg",
560 0x0, memmap[VIRT_TEST].base, 0x0, memmap[VIRT_TEST].size);
561 qemu_fdt_setprop_cell(mc->fdt, name, "phandle", test_phandle);
562 test_phandle = qemu_fdt_get_phandle(mc->fdt, name);
563 g_free(name);
564
565 name = g_strdup_printf("/soc/reboot");
566 qemu_fdt_add_subnode(mc->fdt, name);
567 qemu_fdt_setprop_string(mc->fdt, name, "compatible", "syscon-reboot");
568 qemu_fdt_setprop_cell(mc->fdt, name, "regmap", test_phandle);
569 qemu_fdt_setprop_cell(mc->fdt, name, "offset", 0x0);
570 qemu_fdt_setprop_cell(mc->fdt, name, "value", FINISHER_RESET);
571 g_free(name);
572
573 name = g_strdup_printf("/soc/poweroff");
574 qemu_fdt_add_subnode(mc->fdt, name);
575 qemu_fdt_setprop_string(mc->fdt, name, "compatible", "syscon-poweroff");
576 qemu_fdt_setprop_cell(mc->fdt, name, "regmap", test_phandle);
577 qemu_fdt_setprop_cell(mc->fdt, name, "offset", 0x0);
578 qemu_fdt_setprop_cell(mc->fdt, name, "value", FINISHER_PASS);
579 g_free(name);
580 }
581
582 static void create_fdt_uart(RISCVVirtState *s, const MemMapEntry *memmap,
583 uint32_t irq_mmio_phandle)
584 {
585 char *name;
586 MachineState *mc = MACHINE(s);
587
588 name = g_strdup_printf("/soc/uart@%lx", (long)memmap[VIRT_UART0].base);
589 qemu_fdt_add_subnode(mc->fdt, name);
590 qemu_fdt_setprop_string(mc->fdt, name, "compatible", "ns16550a");
591 qemu_fdt_setprop_cells(mc->fdt, name, "reg",
592 0x0, memmap[VIRT_UART0].base,
593 0x0, memmap[VIRT_UART0].size);
594 qemu_fdt_setprop_cell(mc->fdt, name, "clock-frequency", 3686400);
595 qemu_fdt_setprop_cell(mc->fdt, name, "interrupt-parent", irq_mmio_phandle);
596 qemu_fdt_setprop_cell(mc->fdt, name, "interrupts", UART0_IRQ);
597
598 qemu_fdt_add_subnode(mc->fdt, "/chosen");
599 qemu_fdt_setprop_string(mc->fdt, "/chosen", "stdout-path", name);
600 g_free(name);
601 }
602
603 static void create_fdt_rtc(RISCVVirtState *s, const MemMapEntry *memmap,
604 uint32_t irq_mmio_phandle)
605 {
606 char *name;
607 MachineState *mc = MACHINE(s);
608
609 name = g_strdup_printf("/soc/rtc@%lx", (long)memmap[VIRT_RTC].base);
610 qemu_fdt_add_subnode(mc->fdt, name);
611 qemu_fdt_setprop_string(mc->fdt, name, "compatible",
612 "google,goldfish-rtc");
613 qemu_fdt_setprop_cells(mc->fdt, name, "reg",
614 0x0, memmap[VIRT_RTC].base, 0x0, memmap[VIRT_RTC].size);
615 qemu_fdt_setprop_cell(mc->fdt, name, "interrupt-parent",
616 irq_mmio_phandle);
617 qemu_fdt_setprop_cell(mc->fdt, name, "interrupts", RTC_IRQ);
618 g_free(name);
619 }
620
621 static void create_fdt_flash(RISCVVirtState *s, const MemMapEntry *memmap)
622 {
623 char *name;
624 MachineState *mc = MACHINE(s);
625 hwaddr flashsize = virt_memmap[VIRT_FLASH].size / 2;
626 hwaddr flashbase = virt_memmap[VIRT_FLASH].base;
627
628 name = g_strdup_printf("/flash@%" PRIx64, flashbase);
629 qemu_fdt_add_subnode(mc->fdt, name);
630 qemu_fdt_setprop_string(mc->fdt, name, "compatible", "cfi-flash");
631 qemu_fdt_setprop_sized_cells(mc->fdt, name, "reg",
632 2, flashbase, 2, flashsize,
633 2, flashbase + flashsize, 2, flashsize);
634 qemu_fdt_setprop_cell(mc->fdt, name, "bank-width", 4);
635 g_free(name);
636 }
637
638 static void create_fdt(RISCVVirtState *s, const MemMapEntry *memmap,
639 uint64_t mem_size, const char *cmdline, bool is_32_bit)
640 {
641 MachineState *mc = MACHINE(s);
642 uint32_t phandle = 1, irq_mmio_phandle = 1;
643 uint32_t irq_pcie_phandle = 1, irq_virtio_phandle = 1;
644
645 if (mc->dtb) {
646 mc->fdt = load_device_tree(mc->dtb, &s->fdt_size);
647 if (!mc->fdt) {
648 error_report("load_device_tree() failed");
649 exit(1);
650 }
651 goto update_bootargs;
652 } else {
653 mc->fdt = create_device_tree(&s->fdt_size);
654 if (!mc->fdt) {
655 error_report("create_device_tree() failed");
656 exit(1);
657 }
658 }
659
660 qemu_fdt_setprop_string(mc->fdt, "/", "model", "riscv-virtio,qemu");
661 qemu_fdt_setprop_string(mc->fdt, "/", "compatible", "riscv-virtio");
662 qemu_fdt_setprop_cell(mc->fdt, "/", "#size-cells", 0x2);
663 qemu_fdt_setprop_cell(mc->fdt, "/", "#address-cells", 0x2);
664
665 qemu_fdt_add_subnode(mc->fdt, "/soc");
666 qemu_fdt_setprop(mc->fdt, "/soc", "ranges", NULL, 0);
667 qemu_fdt_setprop_string(mc->fdt, "/soc", "compatible", "simple-bus");
668 qemu_fdt_setprop_cell(mc->fdt, "/soc", "#size-cells", 0x2);
669 qemu_fdt_setprop_cell(mc->fdt, "/soc", "#address-cells", 0x2);
670
671 create_fdt_sockets(s, memmap, is_32_bit, &phandle,
672 &irq_mmio_phandle, &irq_pcie_phandle, &irq_virtio_phandle);
673
674 create_fdt_virtio(s, memmap, irq_virtio_phandle);
675
676 create_fdt_pcie(s, memmap, irq_pcie_phandle);
677
678 create_fdt_reset(s, memmap, &phandle);
679
680 create_fdt_uart(s, memmap, irq_mmio_phandle);
681
682 create_fdt_rtc(s, memmap, irq_mmio_phandle);
683
684 create_fdt_flash(s, memmap);
685
686 update_bootargs:
687 if (cmdline) {
688 qemu_fdt_setprop_string(mc->fdt, "/chosen", "bootargs", cmdline);
689 }
690 }
691
692 static inline DeviceState *gpex_pcie_init(MemoryRegion *sys_mem,
693 hwaddr ecam_base, hwaddr ecam_size,
694 hwaddr mmio_base, hwaddr mmio_size,
695 hwaddr high_mmio_base,
696 hwaddr high_mmio_size,
697 hwaddr pio_base,
698 DeviceState *plic)
699 {
700 DeviceState *dev;
701 MemoryRegion *ecam_alias, *ecam_reg;
702 MemoryRegion *mmio_alias, *high_mmio_alias, *mmio_reg;
703 qemu_irq irq;
704 int i;
705
706 dev = qdev_new(TYPE_GPEX_HOST);
707
708 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
709
710 ecam_alias = g_new0(MemoryRegion, 1);
711 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
712 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
713 ecam_reg, 0, ecam_size);
714 memory_region_add_subregion(get_system_memory(), ecam_base, ecam_alias);
715
716 mmio_alias = g_new0(MemoryRegion, 1);
717 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
718 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
719 mmio_reg, mmio_base, mmio_size);
720 memory_region_add_subregion(get_system_memory(), mmio_base, mmio_alias);
721
722 /* Map high MMIO space */
723 high_mmio_alias = g_new0(MemoryRegion, 1);
724 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
725 mmio_reg, high_mmio_base, high_mmio_size);
726 memory_region_add_subregion(get_system_memory(), high_mmio_base,
727 high_mmio_alias);
728
729 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, pio_base);
730
731 for (i = 0; i < GPEX_NUM_IRQS; i++) {
732 irq = qdev_get_gpio_in(plic, PCIE_IRQ + i);
733
734 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, irq);
735 gpex_set_irq_num(GPEX_HOST(dev), i, PCIE_IRQ + i);
736 }
737
738 return dev;
739 }
740
741 static FWCfgState *create_fw_cfg(const MachineState *mc)
742 {
743 hwaddr base = virt_memmap[VIRT_FW_CFG].base;
744 hwaddr size = virt_memmap[VIRT_FW_CFG].size;
745 FWCfgState *fw_cfg;
746 char *nodename;
747
748 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16,
749 &address_space_memory);
750 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)mc->smp.cpus);
751
752 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
753 qemu_fdt_add_subnode(mc->fdt, nodename);
754 qemu_fdt_setprop_string(mc->fdt, nodename,
755 "compatible", "qemu,fw-cfg-mmio");
756 qemu_fdt_setprop_sized_cells(mc->fdt, nodename, "reg",
757 2, base, 2, size);
758 qemu_fdt_setprop(mc->fdt, nodename, "dma-coherent", NULL, 0);
759 g_free(nodename);
760 return fw_cfg;
761 }
762
763 static void virt_machine_init(MachineState *machine)
764 {
765 const MemMapEntry *memmap = virt_memmap;
766 RISCVVirtState *s = RISCV_VIRT_MACHINE(machine);
767 MemoryRegion *system_memory = get_system_memory();
768 MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
769 char *plic_hart_config, *soc_name;
770 target_ulong start_addr = memmap[VIRT_DRAM].base;
771 target_ulong firmware_end_addr, kernel_start_addr;
772 uint32_t fdt_load_addr;
773 uint64_t kernel_entry;
774 DeviceState *mmio_plic, *virtio_plic, *pcie_plic;
775 int i, base_hartid, hart_count;
776
777 /* Check socket count limit */
778 if (VIRT_SOCKETS_MAX < riscv_socket_count(machine)) {
779 error_report("number of sockets/nodes should be less than %d",
780 VIRT_SOCKETS_MAX);
781 exit(1);
782 }
783
784 /* Initialize sockets */
785 mmio_plic = virtio_plic = pcie_plic = NULL;
786 for (i = 0; i < riscv_socket_count(machine); i++) {
787 if (!riscv_socket_check_hartids(machine, i)) {
788 error_report("discontinuous hartids in socket%d", i);
789 exit(1);
790 }
791
792 base_hartid = riscv_socket_first_hartid(machine, i);
793 if (base_hartid < 0) {
794 error_report("can't find hartid base for socket%d", i);
795 exit(1);
796 }
797
798 hart_count = riscv_socket_hart_count(machine, i);
799 if (hart_count < 0) {
800 error_report("can't find hart count for socket%d", i);
801 exit(1);
802 }
803
804 soc_name = g_strdup_printf("soc%d", i);
805 object_initialize_child(OBJECT(machine), soc_name, &s->soc[i],
806 TYPE_RISCV_HART_ARRAY);
807 g_free(soc_name);
808 object_property_set_str(OBJECT(&s->soc[i]), "cpu-type",
809 machine->cpu_type, &error_abort);
810 object_property_set_int(OBJECT(&s->soc[i]), "hartid-base",
811 base_hartid, &error_abort);
812 object_property_set_int(OBJECT(&s->soc[i]), "num-harts",
813 hart_count, &error_abort);
814 sysbus_realize(SYS_BUS_DEVICE(&s->soc[i]), &error_abort);
815
816 if (!kvm_enabled()) {
817 /* Per-socket CLINT */
818 riscv_aclint_swi_create(
819 memmap[VIRT_CLINT].base + i * memmap[VIRT_CLINT].size,
820 base_hartid, hart_count, false);
821 riscv_aclint_mtimer_create(
822 memmap[VIRT_CLINT].base + i * memmap[VIRT_CLINT].size +
823 RISCV_ACLINT_SWI_SIZE,
824 RISCV_ACLINT_DEFAULT_MTIMER_SIZE, base_hartid, hart_count,
825 RISCV_ACLINT_DEFAULT_MTIMECMP, RISCV_ACLINT_DEFAULT_MTIME,
826 RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ, true);
827
828 /* Per-socket ACLINT SSWI */
829 if (s->have_aclint) {
830 riscv_aclint_swi_create(
831 memmap[VIRT_ACLINT_SSWI].base +
832 i * memmap[VIRT_ACLINT_SSWI].size,
833 base_hartid, hart_count, true);
834 }
835 }
836
837 /* Per-socket PLIC hart topology configuration string */
838 plic_hart_config = riscv_plic_hart_config_string(hart_count);
839
840 /* Per-socket PLIC */
841 s->plic[i] = sifive_plic_create(
842 memmap[VIRT_PLIC].base + i * memmap[VIRT_PLIC].size,
843 plic_hart_config, hart_count, base_hartid,
844 VIRT_PLIC_NUM_SOURCES,
845 VIRT_PLIC_NUM_PRIORITIES,
846 VIRT_PLIC_PRIORITY_BASE,
847 VIRT_PLIC_PENDING_BASE,
848 VIRT_PLIC_ENABLE_BASE,
849 VIRT_PLIC_ENABLE_STRIDE,
850 VIRT_PLIC_CONTEXT_BASE,
851 VIRT_PLIC_CONTEXT_STRIDE,
852 memmap[VIRT_PLIC].size);
853 g_free(plic_hart_config);
854
855 /* Try to use different PLIC instance based device type */
856 if (i == 0) {
857 mmio_plic = s->plic[i];
858 virtio_plic = s->plic[i];
859 pcie_plic = s->plic[i];
860 }
861 if (i == 1) {
862 virtio_plic = s->plic[i];
863 pcie_plic = s->plic[i];
864 }
865 if (i == 2) {
866 pcie_plic = s->plic[i];
867 }
868 }
869
870 if (riscv_is_32bit(&s->soc[0])) {
871 #if HOST_LONG_BITS == 64
872 /* limit RAM size in a 32-bit system */
873 if (machine->ram_size > 10 * GiB) {
874 machine->ram_size = 10 * GiB;
875 error_report("Limiting RAM size to 10 GiB");
876 }
877 #endif
878 virt_high_pcie_memmap.base = VIRT32_HIGH_PCIE_MMIO_BASE;
879 virt_high_pcie_memmap.size = VIRT32_HIGH_PCIE_MMIO_SIZE;
880 } else {
881 virt_high_pcie_memmap.size = VIRT64_HIGH_PCIE_MMIO_SIZE;
882 virt_high_pcie_memmap.base = memmap[VIRT_DRAM].base + machine->ram_size;
883 virt_high_pcie_memmap.base =
884 ROUND_UP(virt_high_pcie_memmap.base, virt_high_pcie_memmap.size);
885 }
886
887 /* register system main memory (actual RAM) */
888 memory_region_add_subregion(system_memory, memmap[VIRT_DRAM].base,
889 machine->ram);
890
891 /* create device tree */
892 create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline,
893 riscv_is_32bit(&s->soc[0]));
894
895 /* boot rom */
896 memory_region_init_rom(mask_rom, NULL, "riscv_virt_board.mrom",
897 memmap[VIRT_MROM].size, &error_fatal);
898 memory_region_add_subregion(system_memory, memmap[VIRT_MROM].base,
899 mask_rom);
900
901 /*
902 * Only direct boot kernel is currently supported for KVM VM,
903 * so the "-bios" parameter is ignored and treated like "-bios none"
904 * when KVM is enabled.
905 */
906 if (kvm_enabled()) {
907 g_free(machine->firmware);
908 machine->firmware = g_strdup("none");
909 }
910
911 if (riscv_is_32bit(&s->soc[0])) {
912 firmware_end_addr = riscv_find_and_load_firmware(machine,
913 RISCV32_BIOS_BIN, start_addr, NULL);
914 } else {
915 firmware_end_addr = riscv_find_and_load_firmware(machine,
916 RISCV64_BIOS_BIN, start_addr, NULL);
917 }
918
919 if (machine->kernel_filename) {
920 kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc[0],
921 firmware_end_addr);
922
923 kernel_entry = riscv_load_kernel(machine->kernel_filename,
924 kernel_start_addr, NULL);
925
926 if (machine->initrd_filename) {
927 hwaddr start;
928 hwaddr end = riscv_load_initrd(machine->initrd_filename,
929 machine->ram_size, kernel_entry,
930 &start);
931 qemu_fdt_setprop_cell(machine->fdt, "/chosen",
932 "linux,initrd-start", start);
933 qemu_fdt_setprop_cell(machine->fdt, "/chosen", "linux,initrd-end",
934 end);
935 }
936 } else {
937 /*
938 * If dynamic firmware is used, it doesn't know where is the next mode
939 * if kernel argument is not set.
940 */
941 kernel_entry = 0;
942 }
943
944 if (drive_get(IF_PFLASH, 0, 0)) {
945 /*
946 * Pflash was supplied, let's overwrite the address we jump to after
947 * reset to the base of the flash.
948 */
949 start_addr = virt_memmap[VIRT_FLASH].base;
950 }
951
952 /*
953 * Init fw_cfg. Must be done before riscv_load_fdt, otherwise the device
954 * tree cannot be altered and we get FDT_ERR_NOSPACE.
955 */
956 s->fw_cfg = create_fw_cfg(machine);
957 rom_set_fw(s->fw_cfg);
958
959 /* Compute the fdt load address in dram */
960 fdt_load_addr = riscv_load_fdt(memmap[VIRT_DRAM].base,
961 machine->ram_size, machine->fdt);
962 /* load the reset vector */
963 riscv_setup_rom_reset_vec(machine, &s->soc[0], start_addr,
964 virt_memmap[VIRT_MROM].base,
965 virt_memmap[VIRT_MROM].size, kernel_entry,
966 fdt_load_addr, machine->fdt);
967
968 /*
969 * Only direct boot kernel is currently supported for KVM VM,
970 * So here setup kernel start address and fdt address.
971 * TODO:Support firmware loading and integrate to TCG start
972 */
973 if (kvm_enabled()) {
974 riscv_setup_direct_kernel(kernel_entry, fdt_load_addr);
975 }
976
977 /* SiFive Test MMIO device */
978 sifive_test_create(memmap[VIRT_TEST].base);
979
980 /* VirtIO MMIO devices */
981 for (i = 0; i < VIRTIO_COUNT; i++) {
982 sysbus_create_simple("virtio-mmio",
983 memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size,
984 qdev_get_gpio_in(DEVICE(virtio_plic), VIRTIO_IRQ + i));
985 }
986
987 gpex_pcie_init(system_memory,
988 memmap[VIRT_PCIE_ECAM].base,
989 memmap[VIRT_PCIE_ECAM].size,
990 memmap[VIRT_PCIE_MMIO].base,
991 memmap[VIRT_PCIE_MMIO].size,
992 virt_high_pcie_memmap.base,
993 virt_high_pcie_memmap.size,
994 memmap[VIRT_PCIE_PIO].base,
995 DEVICE(pcie_plic));
996
997 serial_mm_init(system_memory, memmap[VIRT_UART0].base,
998 0, qdev_get_gpio_in(DEVICE(mmio_plic), UART0_IRQ), 399193,
999 serial_hd(0), DEVICE_LITTLE_ENDIAN);
1000
1001 sysbus_create_simple("goldfish_rtc", memmap[VIRT_RTC].base,
1002 qdev_get_gpio_in(DEVICE(mmio_plic), RTC_IRQ));
1003
1004 virt_flash_create(s);
1005
1006 for (i = 0; i < ARRAY_SIZE(s->flash); i++) {
1007 /* Map legacy -drive if=pflash to machine properties */
1008 pflash_cfi01_legacy_drive(s->flash[i],
1009 drive_get(IF_PFLASH, 0, i));
1010 }
1011 virt_flash_map(s, system_memory);
1012 }
1013
1014 static void virt_machine_instance_init(Object *obj)
1015 {
1016 }
1017
1018 static bool virt_get_aclint(Object *obj, Error **errp)
1019 {
1020 MachineState *ms = MACHINE(obj);
1021 RISCVVirtState *s = RISCV_VIRT_MACHINE(ms);
1022
1023 return s->have_aclint;
1024 }
1025
1026 static void virt_set_aclint(Object *obj, bool value, Error **errp)
1027 {
1028 MachineState *ms = MACHINE(obj);
1029 RISCVVirtState *s = RISCV_VIRT_MACHINE(ms);
1030
1031 s->have_aclint = value;
1032 }
1033
1034 static void virt_machine_class_init(ObjectClass *oc, void *data)
1035 {
1036 MachineClass *mc = MACHINE_CLASS(oc);
1037
1038 mc->desc = "RISC-V VirtIO board";
1039 mc->init = virt_machine_init;
1040 mc->max_cpus = VIRT_CPUS_MAX;
1041 mc->default_cpu_type = TYPE_RISCV_CPU_BASE;
1042 mc->pci_allow_0_address = true;
1043 mc->possible_cpu_arch_ids = riscv_numa_possible_cpu_arch_ids;
1044 mc->cpu_index_to_instance_props = riscv_numa_cpu_index_to_props;
1045 mc->get_default_cpu_node_id = riscv_numa_get_default_cpu_node_id;
1046 mc->numa_mem_supported = true;
1047 mc->default_ram_id = "riscv_virt_board.ram";
1048
1049 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
1050
1051 object_class_property_add_bool(oc, "aclint", virt_get_aclint,
1052 virt_set_aclint);
1053 object_class_property_set_description(oc, "aclint",
1054 "Set on/off to enable/disable "
1055 "emulating ACLINT devices");
1056 }
1057
1058 static const TypeInfo virt_machine_typeinfo = {
1059 .name = MACHINE_TYPE_NAME("virt"),
1060 .parent = TYPE_MACHINE,
1061 .class_init = virt_machine_class_init,
1062 .instance_init = virt_machine_instance_init,
1063 .instance_size = sizeof(RISCVVirtState),
1064 };
1065
1066 static void virt_machine_init_register_types(void)
1067 {
1068 type_register_static(&virt_machine_typeinfo);
1069 }
1070
1071 type_init(virt_machine_init_register_types)