]> git.proxmox.com Git - mirror_qemu.git/blob - hw/rtc/mc146818rtc.c
Drop duplicate #include
[mirror_qemu.git] / hw / rtc / mc146818rtc.c
1 /*
2 * QEMU MC146818 RTC emulation
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qemu/cutils.h"
27 #include "qemu/module.h"
28 #include "qemu/bcd.h"
29 #include "hw/acpi/acpi_aml_interface.h"
30 #include "hw/intc/kvm_irqcount.h"
31 #include "hw/irq.h"
32 #include "hw/qdev-properties.h"
33 #include "hw/qdev-properties-system.h"
34 #include "qemu/timer.h"
35 #include "sysemu/sysemu.h"
36 #include "sysemu/replay.h"
37 #include "sysemu/reset.h"
38 #include "sysemu/runstate.h"
39 #include "sysemu/rtc.h"
40 #include "hw/rtc/mc146818rtc.h"
41 #include "hw/rtc/mc146818rtc_regs.h"
42 #include "migration/vmstate.h"
43 #include "qapi/error.h"
44 #include "qapi/qapi-events-misc.h"
45 #include "qapi/visitor.h"
46
47 //#define DEBUG_CMOS
48 //#define DEBUG_COALESCED
49
50 #ifdef DEBUG_CMOS
51 # define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
52 #else
53 # define CMOS_DPRINTF(format, ...) do { } while (0)
54 #endif
55
56 #ifdef DEBUG_COALESCED
57 # define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__)
58 #else
59 # define DPRINTF_C(format, ...) do { } while (0)
60 #endif
61
62 #define SEC_PER_MIN 60
63 #define MIN_PER_HOUR 60
64 #define SEC_PER_HOUR 3600
65 #define HOUR_PER_DAY 24
66 #define SEC_PER_DAY 86400
67
68 #define RTC_REINJECT_ON_ACK_COUNT 20
69 #define RTC_CLOCK_RATE 32768
70 #define UIP_HOLD_LENGTH (8 * NANOSECONDS_PER_SECOND / 32768)
71
72 #define RTC_ISA_BASE 0x70
73
74 static void rtc_set_time(RTCState *s);
75 static void rtc_update_time(RTCState *s);
76 static void rtc_set_cmos(RTCState *s, const struct tm *tm);
77 static inline int rtc_from_bcd(RTCState *s, int a);
78 static uint64_t get_next_alarm(RTCState *s);
79
80 static inline bool rtc_running(RTCState *s)
81 {
82 return (!(s->cmos_data[RTC_REG_B] & REG_B_SET) &&
83 (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20);
84 }
85
86 static uint64_t get_guest_rtc_ns(RTCState *s)
87 {
88 uint64_t guest_clock = qemu_clock_get_ns(rtc_clock);
89
90 return s->base_rtc * NANOSECONDS_PER_SECOND +
91 guest_clock - s->last_update + s->offset;
92 }
93
94 static void rtc_coalesced_timer_update(RTCState *s)
95 {
96 if (s->irq_coalesced == 0) {
97 timer_del(s->coalesced_timer);
98 } else {
99 /* divide each RTC interval to 2 - 8 smaller intervals */
100 int c = MIN(s->irq_coalesced, 7) + 1;
101 int64_t next_clock = qemu_clock_get_ns(rtc_clock) +
102 periodic_clock_to_ns(s->period / c);
103 timer_mod(s->coalesced_timer, next_clock);
104 }
105 }
106
107 static QLIST_HEAD(, RTCState) rtc_devices =
108 QLIST_HEAD_INITIALIZER(rtc_devices);
109
110 void qmp_rtc_reset_reinjection(Error **errp)
111 {
112 RTCState *s;
113
114 QLIST_FOREACH(s, &rtc_devices, link) {
115 s->irq_coalesced = 0;
116 }
117 }
118
119 static bool rtc_policy_slew_deliver_irq(RTCState *s)
120 {
121 kvm_reset_irq_delivered();
122 qemu_irq_raise(s->irq);
123 return kvm_get_irq_delivered();
124 }
125
126 static void rtc_coalesced_timer(void *opaque)
127 {
128 RTCState *s = opaque;
129
130 if (s->irq_coalesced != 0) {
131 s->cmos_data[RTC_REG_C] |= 0xc0;
132 DPRINTF_C("cmos: injecting from timer\n");
133 if (rtc_policy_slew_deliver_irq(s)) {
134 s->irq_coalesced--;
135 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
136 s->irq_coalesced);
137 }
138 }
139
140 rtc_coalesced_timer_update(s);
141 }
142
143 static uint32_t rtc_periodic_clock_ticks(RTCState *s)
144 {
145 int period_code;
146
147 if (!(s->cmos_data[RTC_REG_B] & REG_B_PIE)) {
148 return 0;
149 }
150
151 period_code = s->cmos_data[RTC_REG_A] & 0x0f;
152
153 return periodic_period_to_clock(period_code);
154 }
155
156 /*
157 * handle periodic timer. @old_period indicates the periodic timer update
158 * is just due to period adjustment.
159 */
160 static void
161 periodic_timer_update(RTCState *s, int64_t current_time, uint32_t old_period, bool period_change)
162 {
163 uint32_t period;
164 int64_t cur_clock, next_irq_clock, lost_clock = 0;
165
166 period = rtc_periodic_clock_ticks(s);
167 s->period = period;
168
169 if (!period) {
170 s->irq_coalesced = 0;
171 timer_del(s->periodic_timer);
172 return;
173 }
174
175 /* compute 32 khz clock */
176 cur_clock =
177 muldiv64(current_time, RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND);
178
179 /*
180 * if the periodic timer's update is due to period re-configuration,
181 * we should count the clock since last interrupt.
182 */
183 if (old_period && period_change) {
184 int64_t last_periodic_clock, next_periodic_clock;
185
186 next_periodic_clock = muldiv64(s->next_periodic_time,
187 RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND);
188 last_periodic_clock = next_periodic_clock - old_period;
189 lost_clock = cur_clock - last_periodic_clock;
190 assert(lost_clock >= 0);
191 }
192
193 /*
194 * s->irq_coalesced can change for two reasons:
195 *
196 * a) if one or more periodic timer interrupts have been lost,
197 * lost_clock will be more that a period.
198 *
199 * b) when the period may be reconfigured, we expect the OS to
200 * treat delayed tick as the new period. So, when switching
201 * from a shorter to a longer period, scale down the missing,
202 * because the OS will treat past delayed ticks as longer
203 * (leftovers are put back into lost_clock). When switching
204 * to a shorter period, scale up the missing ticks since the
205 * OS handler will treat past delayed ticks as shorter.
206 */
207 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
208 uint32_t old_irq_coalesced = s->irq_coalesced;
209
210 lost_clock += old_irq_coalesced * old_period;
211 s->irq_coalesced = lost_clock / s->period;
212 lost_clock %= s->period;
213 if (old_irq_coalesced != s->irq_coalesced ||
214 old_period != s->period) {
215 DPRINTF_C("cmos: coalesced irqs scaled from %d to %d, "
216 "period scaled from %d to %d\n", old_irq_coalesced,
217 s->irq_coalesced, old_period, s->period);
218 rtc_coalesced_timer_update(s);
219 }
220 } else {
221 /*
222 * no way to compensate the interrupt if LOST_TICK_POLICY_SLEW
223 * is not used, we should make the time progress anyway.
224 */
225 lost_clock = MIN(lost_clock, period);
226 }
227
228 assert(lost_clock >= 0 && lost_clock <= period);
229
230 next_irq_clock = cur_clock + period - lost_clock;
231 s->next_periodic_time = periodic_clock_to_ns(next_irq_clock) + 1;
232 timer_mod(s->periodic_timer, s->next_periodic_time);
233 }
234
235 static void rtc_periodic_timer(void *opaque)
236 {
237 RTCState *s = opaque;
238
239 periodic_timer_update(s, s->next_periodic_time, s->period, false);
240 s->cmos_data[RTC_REG_C] |= REG_C_PF;
241 if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
242 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
243 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
244 if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT)
245 s->irq_reinject_on_ack_count = 0;
246 if (!rtc_policy_slew_deliver_irq(s)) {
247 s->irq_coalesced++;
248 rtc_coalesced_timer_update(s);
249 DPRINTF_C("cmos: coalesced irqs increased to %d\n",
250 s->irq_coalesced);
251 }
252 } else
253 qemu_irq_raise(s->irq);
254 }
255 }
256
257 /* handle update-ended timer */
258 static void check_update_timer(RTCState *s)
259 {
260 uint64_t next_update_time;
261 uint64_t guest_nsec;
262 int next_alarm_sec;
263
264 /* From the data sheet: "Holding the dividers in reset prevents
265 * interrupts from operating, while setting the SET bit allows"
266 * them to occur.
267 */
268 if ((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) {
269 assert((s->cmos_data[RTC_REG_A] & REG_A_UIP) == 0);
270 timer_del(s->update_timer);
271 return;
272 }
273
274 guest_nsec = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND;
275 next_update_time = qemu_clock_get_ns(rtc_clock)
276 + NANOSECONDS_PER_SECOND - guest_nsec;
277
278 /* Compute time of next alarm. One second is already accounted
279 * for in next_update_time.
280 */
281 next_alarm_sec = get_next_alarm(s);
282 s->next_alarm_time = next_update_time +
283 (next_alarm_sec - 1) * NANOSECONDS_PER_SECOND;
284
285 /* If update_in_progress latched the UIP bit, we must keep the timer
286 * programmed to the next second, so that UIP is cleared. Otherwise,
287 * if UF is already set, we might be able to optimize.
288 */
289 if (!(s->cmos_data[RTC_REG_A] & REG_A_UIP) &&
290 (s->cmos_data[RTC_REG_C] & REG_C_UF)) {
291 /* If AF cannot change (i.e. either it is set already, or
292 * SET=1 and then the time is not updated), nothing to do.
293 */
294 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) ||
295 (s->cmos_data[RTC_REG_C] & REG_C_AF)) {
296 timer_del(s->update_timer);
297 return;
298 }
299
300 /* UF is set, but AF is clear. Program the timer to target
301 * the alarm time. */
302 next_update_time = s->next_alarm_time;
303 }
304 if (next_update_time != timer_expire_time_ns(s->update_timer)) {
305 timer_mod(s->update_timer, next_update_time);
306 }
307 }
308
309 static inline uint8_t convert_hour(RTCState *s, uint8_t hour)
310 {
311 if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
312 hour %= 12;
313 if (s->cmos_data[RTC_HOURS] & 0x80) {
314 hour += 12;
315 }
316 }
317 return hour;
318 }
319
320 static uint64_t get_next_alarm(RTCState *s)
321 {
322 int32_t alarm_sec, alarm_min, alarm_hour, cur_hour, cur_min, cur_sec;
323 int32_t hour, min, sec;
324
325 rtc_update_time(s);
326
327 alarm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS_ALARM]);
328 alarm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES_ALARM]);
329 alarm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS_ALARM]);
330 alarm_hour = alarm_hour == -1 ? -1 : convert_hour(s, alarm_hour);
331
332 cur_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
333 cur_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
334 cur_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS]);
335 cur_hour = convert_hour(s, cur_hour);
336
337 if (alarm_hour == -1) {
338 alarm_hour = cur_hour;
339 if (alarm_min == -1) {
340 alarm_min = cur_min;
341 if (alarm_sec == -1) {
342 alarm_sec = cur_sec + 1;
343 } else if (cur_sec > alarm_sec) {
344 alarm_min++;
345 }
346 } else if (cur_min == alarm_min) {
347 if (alarm_sec == -1) {
348 alarm_sec = cur_sec + 1;
349 } else {
350 if (cur_sec > alarm_sec) {
351 alarm_hour++;
352 }
353 }
354 if (alarm_sec == SEC_PER_MIN) {
355 /* wrap to next hour, minutes is not in don't care mode */
356 alarm_sec = 0;
357 alarm_hour++;
358 }
359 } else if (cur_min > alarm_min) {
360 alarm_hour++;
361 }
362 } else if (cur_hour == alarm_hour) {
363 if (alarm_min == -1) {
364 alarm_min = cur_min;
365 if (alarm_sec == -1) {
366 alarm_sec = cur_sec + 1;
367 } else if (cur_sec > alarm_sec) {
368 alarm_min++;
369 }
370
371 if (alarm_sec == SEC_PER_MIN) {
372 alarm_sec = 0;
373 alarm_min++;
374 }
375 /* wrap to next day, hour is not in don't care mode */
376 alarm_min %= MIN_PER_HOUR;
377 } else if (cur_min == alarm_min) {
378 if (alarm_sec == -1) {
379 alarm_sec = cur_sec + 1;
380 }
381 /* wrap to next day, hours+minutes not in don't care mode */
382 alarm_sec %= SEC_PER_MIN;
383 }
384 }
385
386 /* values that are still don't care fire at the next min/sec */
387 if (alarm_min == -1) {
388 alarm_min = 0;
389 }
390 if (alarm_sec == -1) {
391 alarm_sec = 0;
392 }
393
394 /* keep values in range */
395 if (alarm_sec == SEC_PER_MIN) {
396 alarm_sec = 0;
397 alarm_min++;
398 }
399 if (alarm_min == MIN_PER_HOUR) {
400 alarm_min = 0;
401 alarm_hour++;
402 }
403 alarm_hour %= HOUR_PER_DAY;
404
405 hour = alarm_hour - cur_hour;
406 min = hour * MIN_PER_HOUR + alarm_min - cur_min;
407 sec = min * SEC_PER_MIN + alarm_sec - cur_sec;
408 return sec <= 0 ? sec + SEC_PER_DAY : sec;
409 }
410
411 static void rtc_update_timer(void *opaque)
412 {
413 RTCState *s = opaque;
414 int32_t irqs = REG_C_UF;
415 int32_t new_irqs;
416
417 assert((s->cmos_data[RTC_REG_A] & 0x60) != 0x60);
418
419 /* UIP might have been latched, update time and clear it. */
420 rtc_update_time(s);
421 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
422
423 if (qemu_clock_get_ns(rtc_clock) >= s->next_alarm_time) {
424 irqs |= REG_C_AF;
425 if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
426 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC, NULL);
427 }
428 }
429
430 new_irqs = irqs & ~s->cmos_data[RTC_REG_C];
431 s->cmos_data[RTC_REG_C] |= irqs;
432 if ((new_irqs & s->cmos_data[RTC_REG_B]) != 0) {
433 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
434 qemu_irq_raise(s->irq);
435 }
436 check_update_timer(s);
437 }
438
439 static void cmos_ioport_write(void *opaque, hwaddr addr,
440 uint64_t data, unsigned size)
441 {
442 RTCState *s = opaque;
443 uint32_t old_period;
444 bool update_periodic_timer;
445
446 if ((addr & 1) == 0) {
447 s->cmos_index = data & 0x7f;
448 } else {
449 CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02" PRIx64 "\n",
450 s->cmos_index, data);
451 switch(s->cmos_index) {
452 case RTC_SECONDS_ALARM:
453 case RTC_MINUTES_ALARM:
454 case RTC_HOURS_ALARM:
455 s->cmos_data[s->cmos_index] = data;
456 check_update_timer(s);
457 break;
458 case RTC_IBM_PS2_CENTURY_BYTE:
459 s->cmos_index = RTC_CENTURY;
460 /* fall through */
461 case RTC_CENTURY:
462 case RTC_SECONDS:
463 case RTC_MINUTES:
464 case RTC_HOURS:
465 case RTC_DAY_OF_WEEK:
466 case RTC_DAY_OF_MONTH:
467 case RTC_MONTH:
468 case RTC_YEAR:
469 s->cmos_data[s->cmos_index] = data;
470 /* if in set mode, do not update the time */
471 if (rtc_running(s)) {
472 rtc_set_time(s);
473 check_update_timer(s);
474 }
475 break;
476 case RTC_REG_A:
477 update_periodic_timer = (s->cmos_data[RTC_REG_A] ^ data) & 0x0f;
478 old_period = rtc_periodic_clock_ticks(s);
479
480 if ((data & 0x60) == 0x60) {
481 if (rtc_running(s)) {
482 rtc_update_time(s);
483 }
484 /* What happens to UIP when divider reset is enabled is
485 * unclear from the datasheet. Shouldn't matter much
486 * though.
487 */
488 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
489 } else if (((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) &&
490 (data & 0x70) <= 0x20) {
491 /* when the divider reset is removed, the first update cycle
492 * begins one-half second later*/
493 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
494 s->offset = 500000000;
495 rtc_set_time(s);
496 }
497 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
498 }
499 /* UIP bit is read only */
500 s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
501 (s->cmos_data[RTC_REG_A] & REG_A_UIP);
502
503 if (update_periodic_timer) {
504 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock),
505 old_period, true);
506 }
507
508 check_update_timer(s);
509 break;
510 case RTC_REG_B:
511 update_periodic_timer = (s->cmos_data[RTC_REG_B] ^ data)
512 & REG_B_PIE;
513 old_period = rtc_periodic_clock_ticks(s);
514
515 if (data & REG_B_SET) {
516 /* update cmos to when the rtc was stopping */
517 if (rtc_running(s)) {
518 rtc_update_time(s);
519 }
520 /* set mode: reset UIP mode */
521 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
522 data &= ~REG_B_UIE;
523 } else {
524 /* if disabling set mode, update the time */
525 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) &&
526 (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20) {
527 s->offset = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND;
528 rtc_set_time(s);
529 }
530 }
531 /* if an interrupt flag is already set when the interrupt
532 * becomes enabled, raise an interrupt immediately. */
533 if (data & s->cmos_data[RTC_REG_C] & REG_C_MASK) {
534 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
535 qemu_irq_raise(s->irq);
536 } else {
537 s->cmos_data[RTC_REG_C] &= ~REG_C_IRQF;
538 qemu_irq_lower(s->irq);
539 }
540 s->cmos_data[RTC_REG_B] = data;
541
542 if (update_periodic_timer) {
543 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock),
544 old_period, true);
545 }
546
547 check_update_timer(s);
548 break;
549 case RTC_REG_C:
550 case RTC_REG_D:
551 /* cannot write to them */
552 break;
553 default:
554 s->cmos_data[s->cmos_index] = data;
555 break;
556 }
557 }
558 }
559
560 static inline int rtc_to_bcd(RTCState *s, int a)
561 {
562 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
563 return a;
564 } else {
565 return ((a / 10) << 4) | (a % 10);
566 }
567 }
568
569 static inline int rtc_from_bcd(RTCState *s, int a)
570 {
571 if ((a & 0xc0) == 0xc0) {
572 return -1;
573 }
574 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
575 return a;
576 } else {
577 return ((a >> 4) * 10) + (a & 0x0f);
578 }
579 }
580
581 static void rtc_get_time(RTCState *s, struct tm *tm)
582 {
583 tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
584 tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
585 tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
586 if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
587 tm->tm_hour %= 12;
588 if (s->cmos_data[RTC_HOURS] & 0x80) {
589 tm->tm_hour += 12;
590 }
591 }
592 tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
593 tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
594 tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
595 tm->tm_year =
596 rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year +
597 rtc_from_bcd(s, s->cmos_data[RTC_CENTURY]) * 100 - 1900;
598 }
599
600 static void rtc_set_time(RTCState *s)
601 {
602 struct tm tm;
603 g_autofree const char *qom_path = object_get_canonical_path(OBJECT(s));
604
605 rtc_get_time(s, &tm);
606 s->base_rtc = mktimegm(&tm);
607 s->last_update = qemu_clock_get_ns(rtc_clock);
608
609 qapi_event_send_rtc_change(qemu_timedate_diff(&tm), qom_path);
610 }
611
612 static void rtc_set_cmos(RTCState *s, const struct tm *tm)
613 {
614 int year;
615
616 s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec);
617 s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min);
618 if (s->cmos_data[RTC_REG_B] & REG_B_24H) {
619 /* 24 hour format */
620 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour);
621 } else {
622 /* 12 hour format */
623 int h = (tm->tm_hour % 12) ? tm->tm_hour % 12 : 12;
624 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, h);
625 if (tm->tm_hour >= 12)
626 s->cmos_data[RTC_HOURS] |= 0x80;
627 }
628 s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1);
629 s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday);
630 s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1);
631 year = tm->tm_year + 1900 - s->base_year;
632 s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year % 100);
633 s->cmos_data[RTC_CENTURY] = rtc_to_bcd(s, year / 100);
634 }
635
636 static void rtc_update_time(RTCState *s)
637 {
638 struct tm ret;
639 time_t guest_sec;
640 int64_t guest_nsec;
641
642 guest_nsec = get_guest_rtc_ns(s);
643 guest_sec = guest_nsec / NANOSECONDS_PER_SECOND;
644 gmtime_r(&guest_sec, &ret);
645
646 /* Is SET flag of Register B disabled? */
647 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) == 0) {
648 rtc_set_cmos(s, &ret);
649 }
650 }
651
652 static int update_in_progress(RTCState *s)
653 {
654 int64_t guest_nsec;
655
656 if (!rtc_running(s)) {
657 return 0;
658 }
659 if (timer_pending(s->update_timer)) {
660 int64_t next_update_time = timer_expire_time_ns(s->update_timer);
661 /* Latch UIP until the timer expires. */
662 if (qemu_clock_get_ns(rtc_clock) >=
663 (next_update_time - UIP_HOLD_LENGTH)) {
664 s->cmos_data[RTC_REG_A] |= REG_A_UIP;
665 return 1;
666 }
667 }
668
669 guest_nsec = get_guest_rtc_ns(s);
670 /* UIP bit will be set at last 244us of every second. */
671 if ((guest_nsec % NANOSECONDS_PER_SECOND) >=
672 (NANOSECONDS_PER_SECOND - UIP_HOLD_LENGTH)) {
673 return 1;
674 }
675 return 0;
676 }
677
678 static uint64_t cmos_ioport_read(void *opaque, hwaddr addr,
679 unsigned size)
680 {
681 RTCState *s = opaque;
682 int ret;
683 if ((addr & 1) == 0) {
684 return 0xff;
685 } else {
686 switch(s->cmos_index) {
687 case RTC_IBM_PS2_CENTURY_BYTE:
688 s->cmos_index = RTC_CENTURY;
689 /* fall through */
690 case RTC_CENTURY:
691 case RTC_SECONDS:
692 case RTC_MINUTES:
693 case RTC_HOURS:
694 case RTC_DAY_OF_WEEK:
695 case RTC_DAY_OF_MONTH:
696 case RTC_MONTH:
697 case RTC_YEAR:
698 /* if not in set mode, calibrate cmos before
699 * reading*/
700 if (rtc_running(s)) {
701 rtc_update_time(s);
702 }
703 ret = s->cmos_data[s->cmos_index];
704 break;
705 case RTC_REG_A:
706 ret = s->cmos_data[s->cmos_index];
707 if (update_in_progress(s)) {
708 ret |= REG_A_UIP;
709 }
710 break;
711 case RTC_REG_C:
712 ret = s->cmos_data[s->cmos_index];
713 qemu_irq_lower(s->irq);
714 s->cmos_data[RTC_REG_C] = 0x00;
715 if (ret & (REG_C_UF | REG_C_AF)) {
716 check_update_timer(s);
717 }
718
719 if(s->irq_coalesced &&
720 (s->cmos_data[RTC_REG_B] & REG_B_PIE) &&
721 s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) {
722 s->irq_reinject_on_ack_count++;
723 s->cmos_data[RTC_REG_C] |= REG_C_IRQF | REG_C_PF;
724 DPRINTF_C("cmos: injecting on ack\n");
725 if (rtc_policy_slew_deliver_irq(s)) {
726 s->irq_coalesced--;
727 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
728 s->irq_coalesced);
729 }
730 }
731 break;
732 default:
733 ret = s->cmos_data[s->cmos_index];
734 break;
735 }
736 CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
737 s->cmos_index, ret);
738 return ret;
739 }
740 }
741
742 void rtc_set_memory(ISADevice *dev, int addr, int val)
743 {
744 RTCState *s = MC146818_RTC(dev);
745 if (addr >= 0 && addr <= 127)
746 s->cmos_data[addr] = val;
747 }
748
749 int rtc_get_memory(ISADevice *dev, int addr)
750 {
751 RTCState *s = MC146818_RTC(dev);
752 assert(addr >= 0 && addr <= 127);
753 return s->cmos_data[addr];
754 }
755
756 static void rtc_set_date_from_host(ISADevice *dev)
757 {
758 RTCState *s = MC146818_RTC(dev);
759 struct tm tm;
760
761 qemu_get_timedate(&tm, 0);
762
763 s->base_rtc = mktimegm(&tm);
764 s->last_update = qemu_clock_get_ns(rtc_clock);
765 s->offset = 0;
766
767 /* set the CMOS date */
768 rtc_set_cmos(s, &tm);
769 }
770
771 static int rtc_pre_save(void *opaque)
772 {
773 RTCState *s = opaque;
774
775 rtc_update_time(s);
776
777 return 0;
778 }
779
780 static int rtc_post_load(void *opaque, int version_id)
781 {
782 RTCState *s = opaque;
783
784 if (version_id <= 2 || rtc_clock == QEMU_CLOCK_REALTIME) {
785 rtc_set_time(s);
786 s->offset = 0;
787 check_update_timer(s);
788 }
789 s->period = rtc_periodic_clock_ticks(s);
790
791 /* The periodic timer is deterministic in record/replay mode,
792 * so there is no need to update it after loading the vmstate.
793 * Reading RTC here would misalign record and replay.
794 */
795 if (replay_mode == REPLAY_MODE_NONE) {
796 uint64_t now = qemu_clock_get_ns(rtc_clock);
797 if (now < s->next_periodic_time ||
798 now > (s->next_periodic_time + get_max_clock_jump())) {
799 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock), s->period, false);
800 }
801 }
802
803 if (version_id >= 2) {
804 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
805 rtc_coalesced_timer_update(s);
806 }
807 }
808 return 0;
809 }
810
811 static bool rtc_irq_reinject_on_ack_count_needed(void *opaque)
812 {
813 RTCState *s = (RTCState *)opaque;
814 return s->irq_reinject_on_ack_count != 0;
815 }
816
817 static const VMStateDescription vmstate_rtc_irq_reinject_on_ack_count = {
818 .name = "mc146818rtc/irq_reinject_on_ack_count",
819 .version_id = 1,
820 .minimum_version_id = 1,
821 .needed = rtc_irq_reinject_on_ack_count_needed,
822 .fields = (VMStateField[]) {
823 VMSTATE_UINT16(irq_reinject_on_ack_count, RTCState),
824 VMSTATE_END_OF_LIST()
825 }
826 };
827
828 static const VMStateDescription vmstate_rtc = {
829 .name = "mc146818rtc",
830 .version_id = 3,
831 .minimum_version_id = 1,
832 .pre_save = rtc_pre_save,
833 .post_load = rtc_post_load,
834 .fields = (VMStateField[]) {
835 VMSTATE_BUFFER(cmos_data, RTCState),
836 VMSTATE_UINT8(cmos_index, RTCState),
837 VMSTATE_UNUSED(7*4),
838 VMSTATE_TIMER_PTR(periodic_timer, RTCState),
839 VMSTATE_INT64(next_periodic_time, RTCState),
840 VMSTATE_UNUSED(3*8),
841 VMSTATE_UINT32_V(irq_coalesced, RTCState, 2),
842 VMSTATE_UINT32_V(period, RTCState, 2),
843 VMSTATE_UINT64_V(base_rtc, RTCState, 3),
844 VMSTATE_UINT64_V(last_update, RTCState, 3),
845 VMSTATE_INT64_V(offset, RTCState, 3),
846 VMSTATE_TIMER_PTR_V(update_timer, RTCState, 3),
847 VMSTATE_UINT64_V(next_alarm_time, RTCState, 3),
848 VMSTATE_END_OF_LIST()
849 },
850 .subsections = (const VMStateDescription*[]) {
851 &vmstate_rtc_irq_reinject_on_ack_count,
852 NULL
853 }
854 };
855
856 /* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
857 BIOS will read it and start S3 resume at POST Entry */
858 static void rtc_notify_suspend(Notifier *notifier, void *data)
859 {
860 RTCState *s = container_of(notifier, RTCState, suspend_notifier);
861 rtc_set_memory(ISA_DEVICE(s), 0xF, 0xFE);
862 }
863
864 static const MemoryRegionOps cmos_ops = {
865 .read = cmos_ioport_read,
866 .write = cmos_ioport_write,
867 .impl = {
868 .min_access_size = 1,
869 .max_access_size = 1,
870 },
871 .endianness = DEVICE_LITTLE_ENDIAN,
872 };
873
874 static void rtc_get_date(Object *obj, struct tm *current_tm, Error **errp)
875 {
876 RTCState *s = MC146818_RTC(obj);
877
878 rtc_update_time(s);
879 rtc_get_time(s, current_tm);
880 }
881
882 static void rtc_realizefn(DeviceState *dev, Error **errp)
883 {
884 ISADevice *isadev = ISA_DEVICE(dev);
885 RTCState *s = MC146818_RTC(dev);
886
887 s->cmos_data[RTC_REG_A] = 0x26;
888 s->cmos_data[RTC_REG_B] = 0x02;
889 s->cmos_data[RTC_REG_C] = 0x00;
890 s->cmos_data[RTC_REG_D] = 0x80;
891
892 /* This is for historical reasons. The default base year qdev property
893 * was set to 2000 for most machine types before the century byte was
894 * implemented.
895 *
896 * This if statement means that the century byte will be always 0
897 * (at least until 2079...) for base_year = 1980, but will be set
898 * correctly for base_year = 2000.
899 */
900 if (s->base_year == 2000) {
901 s->base_year = 0;
902 }
903
904 if (s->isairq >= ISA_NUM_IRQS) {
905 error_setg(errp, "Maximum value for \"irq\" is: %u", ISA_NUM_IRQS - 1);
906 return;
907 }
908
909 rtc_set_date_from_host(isadev);
910
911 switch (s->lost_tick_policy) {
912 case LOST_TICK_POLICY_SLEW:
913 s->coalesced_timer =
914 timer_new_ns(rtc_clock, rtc_coalesced_timer, s);
915 break;
916 case LOST_TICK_POLICY_DISCARD:
917 break;
918 default:
919 error_setg(errp, "Invalid lost tick policy.");
920 return;
921 }
922
923 s->periodic_timer = timer_new_ns(rtc_clock, rtc_periodic_timer, s);
924 s->update_timer = timer_new_ns(rtc_clock, rtc_update_timer, s);
925 check_update_timer(s);
926
927 s->suspend_notifier.notify = rtc_notify_suspend;
928 qemu_register_suspend_notifier(&s->suspend_notifier);
929
930 memory_region_init_io(&s->io, OBJECT(s), &cmos_ops, s, "rtc", 2);
931 isa_register_ioport(isadev, &s->io, s->io_base);
932
933 /* register rtc 0x70 port for coalesced_pio */
934 memory_region_set_flush_coalesced(&s->io);
935 memory_region_init_io(&s->coalesced_io, OBJECT(s), &cmos_ops,
936 s, "rtc-index", 1);
937 memory_region_add_subregion(&s->io, 0, &s->coalesced_io);
938 memory_region_add_coalescing(&s->coalesced_io, 0, 1);
939
940 qdev_set_legacy_instance_id(dev, s->io_base, 3);
941
942 object_property_add_tm(OBJECT(s), "date", rtc_get_date);
943
944 qdev_init_gpio_out(dev, &s->irq, 1);
945 QLIST_INSERT_HEAD(&rtc_devices, s, link);
946 }
947
948 ISADevice *mc146818_rtc_init(ISABus *bus, int base_year, qemu_irq intercept_irq)
949 {
950 DeviceState *dev;
951 ISADevice *isadev;
952 RTCState *s;
953
954 isadev = isa_new(TYPE_MC146818_RTC);
955 dev = DEVICE(isadev);
956 s = MC146818_RTC(isadev);
957 qdev_prop_set_int32(dev, "base_year", base_year);
958 isa_realize_and_unref(isadev, bus, &error_fatal);
959 if (intercept_irq) {
960 qdev_connect_gpio_out(dev, 0, intercept_irq);
961 } else {
962 isa_connect_gpio_out(isadev, 0, s->isairq);
963 }
964
965 object_property_add_alias(qdev_get_machine(), "rtc-time", OBJECT(isadev),
966 "date");
967
968 return isadev;
969 }
970
971 static Property mc146818rtc_properties[] = {
972 DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980),
973 DEFINE_PROP_UINT16("iobase", RTCState, io_base, RTC_ISA_BASE),
974 DEFINE_PROP_UINT8("irq", RTCState, isairq, RTC_ISA_IRQ),
975 DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState,
976 lost_tick_policy, LOST_TICK_POLICY_DISCARD),
977 DEFINE_PROP_END_OF_LIST(),
978 };
979
980 static void rtc_reset_enter(Object *obj, ResetType type)
981 {
982 RTCState *s = MC146818_RTC(obj);
983
984 /* Reason: VM do suspend self will set 0xfe
985 * Reset any values other than 0xfe(Guest suspend case) */
986 if (s->cmos_data[0x0f] != 0xfe) {
987 s->cmos_data[0x0f] = 0x00;
988 }
989
990 s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE);
991 s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF);
992 check_update_timer(s);
993
994
995 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
996 s->irq_coalesced = 0;
997 s->irq_reinject_on_ack_count = 0;
998 }
999 }
1000
1001 static void rtc_reset_hold(Object *obj)
1002 {
1003 RTCState *s = MC146818_RTC(obj);
1004
1005 qemu_irq_lower(s->irq);
1006 }
1007
1008 static void rtc_build_aml(AcpiDevAmlIf *adev, Aml *scope)
1009 {
1010 RTCState *s = MC146818_RTC(adev);
1011 Aml *dev;
1012 Aml *crs;
1013
1014 /*
1015 * Reserving 8 io ports here, following what physical hardware
1016 * does, even though qemu only responds to the first two ports.
1017 */
1018 crs = aml_resource_template();
1019 aml_append(crs, aml_io(AML_DECODE16, s->io_base, s->io_base,
1020 0x01, 0x08));
1021 aml_append(crs, aml_irq_no_flags(s->isairq));
1022
1023 dev = aml_device("RTC");
1024 aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0B00")));
1025 aml_append(dev, aml_name_decl("_CRS", crs));
1026
1027 aml_append(scope, dev);
1028 }
1029
1030 static void rtc_class_initfn(ObjectClass *klass, void *data)
1031 {
1032 DeviceClass *dc = DEVICE_CLASS(klass);
1033 ResettableClass *rc = RESETTABLE_CLASS(klass);
1034 AcpiDevAmlIfClass *adevc = ACPI_DEV_AML_IF_CLASS(klass);
1035
1036 dc->realize = rtc_realizefn;
1037 dc->vmsd = &vmstate_rtc;
1038 rc->phases.enter = rtc_reset_enter;
1039 rc->phases.hold = rtc_reset_hold;
1040 adevc->build_dev_aml = rtc_build_aml;
1041 device_class_set_props(dc, mc146818rtc_properties);
1042 set_bit(DEVICE_CATEGORY_MISC, dc->categories);
1043 }
1044
1045 static const TypeInfo mc146818rtc_info = {
1046 .name = TYPE_MC146818_RTC,
1047 .parent = TYPE_ISA_DEVICE,
1048 .instance_size = sizeof(RTCState),
1049 .class_init = rtc_class_initfn,
1050 .interfaces = (InterfaceInfo[]) {
1051 { TYPE_ACPI_DEV_AML_IF },
1052 { },
1053 },
1054 };
1055
1056 static void mc146818rtc_register_types(void)
1057 {
1058 type_register_static(&mc146818rtc_info);
1059 }
1060
1061 type_init(mc146818rtc_register_types)