]> git.proxmox.com Git - mirror_qemu.git/blob - hw/rtc/mc146818rtc.c
tests/tcg/tricore: Add test for ld.h
[mirror_qemu.git] / hw / rtc / mc146818rtc.c
1 /*
2 * QEMU MC146818 RTC emulation
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qemu/cutils.h"
27 #include "qemu/module.h"
28 #include "qemu/bcd.h"
29 #include "hw/acpi/acpi_aml_interface.h"
30 #include "hw/intc/kvm_irqcount.h"
31 #include "hw/irq.h"
32 #include "hw/qdev-properties.h"
33 #include "hw/qdev-properties-system.h"
34 #include "qemu/timer.h"
35 #include "sysemu/sysemu.h"
36 #include "sysemu/replay.h"
37 #include "sysemu/reset.h"
38 #include "sysemu/runstate.h"
39 #include "sysemu/rtc.h"
40 #include "hw/rtc/mc146818rtc.h"
41 #include "hw/rtc/mc146818rtc_regs.h"
42 #include "migration/vmstate.h"
43 #include "qapi/error.h"
44 #include "qapi/qapi-events-misc.h"
45 #include "qapi/visitor.h"
46 #include "hw/rtc/mc146818rtc_regs.h"
47
48 //#define DEBUG_CMOS
49 //#define DEBUG_COALESCED
50
51 #ifdef DEBUG_CMOS
52 # define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
53 #else
54 # define CMOS_DPRINTF(format, ...) do { } while (0)
55 #endif
56
57 #ifdef DEBUG_COALESCED
58 # define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__)
59 #else
60 # define DPRINTF_C(format, ...) do { } while (0)
61 #endif
62
63 #define SEC_PER_MIN 60
64 #define MIN_PER_HOUR 60
65 #define SEC_PER_HOUR 3600
66 #define HOUR_PER_DAY 24
67 #define SEC_PER_DAY 86400
68
69 #define RTC_REINJECT_ON_ACK_COUNT 20
70 #define RTC_CLOCK_RATE 32768
71 #define UIP_HOLD_LENGTH (8 * NANOSECONDS_PER_SECOND / 32768)
72
73 #define RTC_ISA_BASE 0x70
74
75 static void rtc_set_time(RTCState *s);
76 static void rtc_update_time(RTCState *s);
77 static void rtc_set_cmos(RTCState *s, const struct tm *tm);
78 static inline int rtc_from_bcd(RTCState *s, int a);
79 static uint64_t get_next_alarm(RTCState *s);
80
81 static inline bool rtc_running(RTCState *s)
82 {
83 return (!(s->cmos_data[RTC_REG_B] & REG_B_SET) &&
84 (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20);
85 }
86
87 static uint64_t get_guest_rtc_ns(RTCState *s)
88 {
89 uint64_t guest_clock = qemu_clock_get_ns(rtc_clock);
90
91 return s->base_rtc * NANOSECONDS_PER_SECOND +
92 guest_clock - s->last_update + s->offset;
93 }
94
95 static void rtc_coalesced_timer_update(RTCState *s)
96 {
97 if (s->irq_coalesced == 0) {
98 timer_del(s->coalesced_timer);
99 } else {
100 /* divide each RTC interval to 2 - 8 smaller intervals */
101 int c = MIN(s->irq_coalesced, 7) + 1;
102 int64_t next_clock = qemu_clock_get_ns(rtc_clock) +
103 periodic_clock_to_ns(s->period / c);
104 timer_mod(s->coalesced_timer, next_clock);
105 }
106 }
107
108 static QLIST_HEAD(, RTCState) rtc_devices =
109 QLIST_HEAD_INITIALIZER(rtc_devices);
110
111 void qmp_rtc_reset_reinjection(Error **errp)
112 {
113 RTCState *s;
114
115 QLIST_FOREACH(s, &rtc_devices, link) {
116 s->irq_coalesced = 0;
117 }
118 }
119
120 static bool rtc_policy_slew_deliver_irq(RTCState *s)
121 {
122 kvm_reset_irq_delivered();
123 qemu_irq_raise(s->irq);
124 return kvm_get_irq_delivered();
125 }
126
127 static void rtc_coalesced_timer(void *opaque)
128 {
129 RTCState *s = opaque;
130
131 if (s->irq_coalesced != 0) {
132 s->cmos_data[RTC_REG_C] |= 0xc0;
133 DPRINTF_C("cmos: injecting from timer\n");
134 if (rtc_policy_slew_deliver_irq(s)) {
135 s->irq_coalesced--;
136 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
137 s->irq_coalesced);
138 }
139 }
140
141 rtc_coalesced_timer_update(s);
142 }
143
144 static uint32_t rtc_periodic_clock_ticks(RTCState *s)
145 {
146 int period_code;
147
148 if (!(s->cmos_data[RTC_REG_B] & REG_B_PIE)) {
149 return 0;
150 }
151
152 period_code = s->cmos_data[RTC_REG_A] & 0x0f;
153
154 return periodic_period_to_clock(period_code);
155 }
156
157 /*
158 * handle periodic timer. @old_period indicates the periodic timer update
159 * is just due to period adjustment.
160 */
161 static void
162 periodic_timer_update(RTCState *s, int64_t current_time, uint32_t old_period, bool period_change)
163 {
164 uint32_t period;
165 int64_t cur_clock, next_irq_clock, lost_clock = 0;
166
167 period = rtc_periodic_clock_ticks(s);
168 s->period = period;
169
170 if (!period) {
171 s->irq_coalesced = 0;
172 timer_del(s->periodic_timer);
173 return;
174 }
175
176 /* compute 32 khz clock */
177 cur_clock =
178 muldiv64(current_time, RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND);
179
180 /*
181 * if the periodic timer's update is due to period re-configuration,
182 * we should count the clock since last interrupt.
183 */
184 if (old_period && period_change) {
185 int64_t last_periodic_clock, next_periodic_clock;
186
187 next_periodic_clock = muldiv64(s->next_periodic_time,
188 RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND);
189 last_periodic_clock = next_periodic_clock - old_period;
190 lost_clock = cur_clock - last_periodic_clock;
191 assert(lost_clock >= 0);
192 }
193
194 /*
195 * s->irq_coalesced can change for two reasons:
196 *
197 * a) if one or more periodic timer interrupts have been lost,
198 * lost_clock will be more that a period.
199 *
200 * b) when the period may be reconfigured, we expect the OS to
201 * treat delayed tick as the new period. So, when switching
202 * from a shorter to a longer period, scale down the missing,
203 * because the OS will treat past delayed ticks as longer
204 * (leftovers are put back into lost_clock). When switching
205 * to a shorter period, scale up the missing ticks since the
206 * OS handler will treat past delayed ticks as shorter.
207 */
208 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
209 uint32_t old_irq_coalesced = s->irq_coalesced;
210
211 lost_clock += old_irq_coalesced * old_period;
212 s->irq_coalesced = lost_clock / s->period;
213 lost_clock %= s->period;
214 if (old_irq_coalesced != s->irq_coalesced ||
215 old_period != s->period) {
216 DPRINTF_C("cmos: coalesced irqs scaled from %d to %d, "
217 "period scaled from %d to %d\n", old_irq_coalesced,
218 s->irq_coalesced, old_period, s->period);
219 rtc_coalesced_timer_update(s);
220 }
221 } else {
222 /*
223 * no way to compensate the interrupt if LOST_TICK_POLICY_SLEW
224 * is not used, we should make the time progress anyway.
225 */
226 lost_clock = MIN(lost_clock, period);
227 }
228
229 assert(lost_clock >= 0 && lost_clock <= period);
230
231 next_irq_clock = cur_clock + period - lost_clock;
232 s->next_periodic_time = periodic_clock_to_ns(next_irq_clock) + 1;
233 timer_mod(s->periodic_timer, s->next_periodic_time);
234 }
235
236 static void rtc_periodic_timer(void *opaque)
237 {
238 RTCState *s = opaque;
239
240 periodic_timer_update(s, s->next_periodic_time, s->period, false);
241 s->cmos_data[RTC_REG_C] |= REG_C_PF;
242 if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
243 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
244 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
245 if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT)
246 s->irq_reinject_on_ack_count = 0;
247 if (!rtc_policy_slew_deliver_irq(s)) {
248 s->irq_coalesced++;
249 rtc_coalesced_timer_update(s);
250 DPRINTF_C("cmos: coalesced irqs increased to %d\n",
251 s->irq_coalesced);
252 }
253 } else
254 qemu_irq_raise(s->irq);
255 }
256 }
257
258 /* handle update-ended timer */
259 static void check_update_timer(RTCState *s)
260 {
261 uint64_t next_update_time;
262 uint64_t guest_nsec;
263 int next_alarm_sec;
264
265 /* From the data sheet: "Holding the dividers in reset prevents
266 * interrupts from operating, while setting the SET bit allows"
267 * them to occur.
268 */
269 if ((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) {
270 assert((s->cmos_data[RTC_REG_A] & REG_A_UIP) == 0);
271 timer_del(s->update_timer);
272 return;
273 }
274
275 guest_nsec = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND;
276 next_update_time = qemu_clock_get_ns(rtc_clock)
277 + NANOSECONDS_PER_SECOND - guest_nsec;
278
279 /* Compute time of next alarm. One second is already accounted
280 * for in next_update_time.
281 */
282 next_alarm_sec = get_next_alarm(s);
283 s->next_alarm_time = next_update_time +
284 (next_alarm_sec - 1) * NANOSECONDS_PER_SECOND;
285
286 /* If update_in_progress latched the UIP bit, we must keep the timer
287 * programmed to the next second, so that UIP is cleared. Otherwise,
288 * if UF is already set, we might be able to optimize.
289 */
290 if (!(s->cmos_data[RTC_REG_A] & REG_A_UIP) &&
291 (s->cmos_data[RTC_REG_C] & REG_C_UF)) {
292 /* If AF cannot change (i.e. either it is set already, or
293 * SET=1 and then the time is not updated), nothing to do.
294 */
295 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) ||
296 (s->cmos_data[RTC_REG_C] & REG_C_AF)) {
297 timer_del(s->update_timer);
298 return;
299 }
300
301 /* UF is set, but AF is clear. Program the timer to target
302 * the alarm time. */
303 next_update_time = s->next_alarm_time;
304 }
305 if (next_update_time != timer_expire_time_ns(s->update_timer)) {
306 timer_mod(s->update_timer, next_update_time);
307 }
308 }
309
310 static inline uint8_t convert_hour(RTCState *s, uint8_t hour)
311 {
312 if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
313 hour %= 12;
314 if (s->cmos_data[RTC_HOURS] & 0x80) {
315 hour += 12;
316 }
317 }
318 return hour;
319 }
320
321 static uint64_t get_next_alarm(RTCState *s)
322 {
323 int32_t alarm_sec, alarm_min, alarm_hour, cur_hour, cur_min, cur_sec;
324 int32_t hour, min, sec;
325
326 rtc_update_time(s);
327
328 alarm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS_ALARM]);
329 alarm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES_ALARM]);
330 alarm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS_ALARM]);
331 alarm_hour = alarm_hour == -1 ? -1 : convert_hour(s, alarm_hour);
332
333 cur_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
334 cur_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
335 cur_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS]);
336 cur_hour = convert_hour(s, cur_hour);
337
338 if (alarm_hour == -1) {
339 alarm_hour = cur_hour;
340 if (alarm_min == -1) {
341 alarm_min = cur_min;
342 if (alarm_sec == -1) {
343 alarm_sec = cur_sec + 1;
344 } else if (cur_sec > alarm_sec) {
345 alarm_min++;
346 }
347 } else if (cur_min == alarm_min) {
348 if (alarm_sec == -1) {
349 alarm_sec = cur_sec + 1;
350 } else {
351 if (cur_sec > alarm_sec) {
352 alarm_hour++;
353 }
354 }
355 if (alarm_sec == SEC_PER_MIN) {
356 /* wrap to next hour, minutes is not in don't care mode */
357 alarm_sec = 0;
358 alarm_hour++;
359 }
360 } else if (cur_min > alarm_min) {
361 alarm_hour++;
362 }
363 } else if (cur_hour == alarm_hour) {
364 if (alarm_min == -1) {
365 alarm_min = cur_min;
366 if (alarm_sec == -1) {
367 alarm_sec = cur_sec + 1;
368 } else if (cur_sec > alarm_sec) {
369 alarm_min++;
370 }
371
372 if (alarm_sec == SEC_PER_MIN) {
373 alarm_sec = 0;
374 alarm_min++;
375 }
376 /* wrap to next day, hour is not in don't care mode */
377 alarm_min %= MIN_PER_HOUR;
378 } else if (cur_min == alarm_min) {
379 if (alarm_sec == -1) {
380 alarm_sec = cur_sec + 1;
381 }
382 /* wrap to next day, hours+minutes not in don't care mode */
383 alarm_sec %= SEC_PER_MIN;
384 }
385 }
386
387 /* values that are still don't care fire at the next min/sec */
388 if (alarm_min == -1) {
389 alarm_min = 0;
390 }
391 if (alarm_sec == -1) {
392 alarm_sec = 0;
393 }
394
395 /* keep values in range */
396 if (alarm_sec == SEC_PER_MIN) {
397 alarm_sec = 0;
398 alarm_min++;
399 }
400 if (alarm_min == MIN_PER_HOUR) {
401 alarm_min = 0;
402 alarm_hour++;
403 }
404 alarm_hour %= HOUR_PER_DAY;
405
406 hour = alarm_hour - cur_hour;
407 min = hour * MIN_PER_HOUR + alarm_min - cur_min;
408 sec = min * SEC_PER_MIN + alarm_sec - cur_sec;
409 return sec <= 0 ? sec + SEC_PER_DAY : sec;
410 }
411
412 static void rtc_update_timer(void *opaque)
413 {
414 RTCState *s = opaque;
415 int32_t irqs = REG_C_UF;
416 int32_t new_irqs;
417
418 assert((s->cmos_data[RTC_REG_A] & 0x60) != 0x60);
419
420 /* UIP might have been latched, update time and clear it. */
421 rtc_update_time(s);
422 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
423
424 if (qemu_clock_get_ns(rtc_clock) >= s->next_alarm_time) {
425 irqs |= REG_C_AF;
426 if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
427 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC, NULL);
428 }
429 }
430
431 new_irqs = irqs & ~s->cmos_data[RTC_REG_C];
432 s->cmos_data[RTC_REG_C] |= irqs;
433 if ((new_irqs & s->cmos_data[RTC_REG_B]) != 0) {
434 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
435 qemu_irq_raise(s->irq);
436 }
437 check_update_timer(s);
438 }
439
440 static void cmos_ioport_write(void *opaque, hwaddr addr,
441 uint64_t data, unsigned size)
442 {
443 RTCState *s = opaque;
444 uint32_t old_period;
445 bool update_periodic_timer;
446
447 if ((addr & 1) == 0) {
448 s->cmos_index = data & 0x7f;
449 } else {
450 CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02" PRIx64 "\n",
451 s->cmos_index, data);
452 switch(s->cmos_index) {
453 case RTC_SECONDS_ALARM:
454 case RTC_MINUTES_ALARM:
455 case RTC_HOURS_ALARM:
456 s->cmos_data[s->cmos_index] = data;
457 check_update_timer(s);
458 break;
459 case RTC_IBM_PS2_CENTURY_BYTE:
460 s->cmos_index = RTC_CENTURY;
461 /* fall through */
462 case RTC_CENTURY:
463 case RTC_SECONDS:
464 case RTC_MINUTES:
465 case RTC_HOURS:
466 case RTC_DAY_OF_WEEK:
467 case RTC_DAY_OF_MONTH:
468 case RTC_MONTH:
469 case RTC_YEAR:
470 s->cmos_data[s->cmos_index] = data;
471 /* if in set mode, do not update the time */
472 if (rtc_running(s)) {
473 rtc_set_time(s);
474 check_update_timer(s);
475 }
476 break;
477 case RTC_REG_A:
478 update_periodic_timer = (s->cmos_data[RTC_REG_A] ^ data) & 0x0f;
479 old_period = rtc_periodic_clock_ticks(s);
480
481 if ((data & 0x60) == 0x60) {
482 if (rtc_running(s)) {
483 rtc_update_time(s);
484 }
485 /* What happens to UIP when divider reset is enabled is
486 * unclear from the datasheet. Shouldn't matter much
487 * though.
488 */
489 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
490 } else if (((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) &&
491 (data & 0x70) <= 0x20) {
492 /* when the divider reset is removed, the first update cycle
493 * begins one-half second later*/
494 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
495 s->offset = 500000000;
496 rtc_set_time(s);
497 }
498 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
499 }
500 /* UIP bit is read only */
501 s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
502 (s->cmos_data[RTC_REG_A] & REG_A_UIP);
503
504 if (update_periodic_timer) {
505 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock),
506 old_period, true);
507 }
508
509 check_update_timer(s);
510 break;
511 case RTC_REG_B:
512 update_periodic_timer = (s->cmos_data[RTC_REG_B] ^ data)
513 & REG_B_PIE;
514 old_period = rtc_periodic_clock_ticks(s);
515
516 if (data & REG_B_SET) {
517 /* update cmos to when the rtc was stopping */
518 if (rtc_running(s)) {
519 rtc_update_time(s);
520 }
521 /* set mode: reset UIP mode */
522 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
523 data &= ~REG_B_UIE;
524 } else {
525 /* if disabling set mode, update the time */
526 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) &&
527 (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20) {
528 s->offset = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND;
529 rtc_set_time(s);
530 }
531 }
532 /* if an interrupt flag is already set when the interrupt
533 * becomes enabled, raise an interrupt immediately. */
534 if (data & s->cmos_data[RTC_REG_C] & REG_C_MASK) {
535 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
536 qemu_irq_raise(s->irq);
537 } else {
538 s->cmos_data[RTC_REG_C] &= ~REG_C_IRQF;
539 qemu_irq_lower(s->irq);
540 }
541 s->cmos_data[RTC_REG_B] = data;
542
543 if (update_periodic_timer) {
544 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock),
545 old_period, true);
546 }
547
548 check_update_timer(s);
549 break;
550 case RTC_REG_C:
551 case RTC_REG_D:
552 /* cannot write to them */
553 break;
554 default:
555 s->cmos_data[s->cmos_index] = data;
556 break;
557 }
558 }
559 }
560
561 static inline int rtc_to_bcd(RTCState *s, int a)
562 {
563 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
564 return a;
565 } else {
566 return ((a / 10) << 4) | (a % 10);
567 }
568 }
569
570 static inline int rtc_from_bcd(RTCState *s, int a)
571 {
572 if ((a & 0xc0) == 0xc0) {
573 return -1;
574 }
575 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
576 return a;
577 } else {
578 return ((a >> 4) * 10) + (a & 0x0f);
579 }
580 }
581
582 static void rtc_get_time(RTCState *s, struct tm *tm)
583 {
584 tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
585 tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
586 tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
587 if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
588 tm->tm_hour %= 12;
589 if (s->cmos_data[RTC_HOURS] & 0x80) {
590 tm->tm_hour += 12;
591 }
592 }
593 tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
594 tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
595 tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
596 tm->tm_year =
597 rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year +
598 rtc_from_bcd(s, s->cmos_data[RTC_CENTURY]) * 100 - 1900;
599 }
600
601 static void rtc_set_time(RTCState *s)
602 {
603 struct tm tm;
604 g_autofree const char *qom_path = object_get_canonical_path(OBJECT(s));
605
606 rtc_get_time(s, &tm);
607 s->base_rtc = mktimegm(&tm);
608 s->last_update = qemu_clock_get_ns(rtc_clock);
609
610 qapi_event_send_rtc_change(qemu_timedate_diff(&tm), qom_path);
611 }
612
613 static void rtc_set_cmos(RTCState *s, const struct tm *tm)
614 {
615 int year;
616
617 s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec);
618 s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min);
619 if (s->cmos_data[RTC_REG_B] & REG_B_24H) {
620 /* 24 hour format */
621 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour);
622 } else {
623 /* 12 hour format */
624 int h = (tm->tm_hour % 12) ? tm->tm_hour % 12 : 12;
625 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, h);
626 if (tm->tm_hour >= 12)
627 s->cmos_data[RTC_HOURS] |= 0x80;
628 }
629 s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1);
630 s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday);
631 s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1);
632 year = tm->tm_year + 1900 - s->base_year;
633 s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year % 100);
634 s->cmos_data[RTC_CENTURY] = rtc_to_bcd(s, year / 100);
635 }
636
637 static void rtc_update_time(RTCState *s)
638 {
639 struct tm ret;
640 time_t guest_sec;
641 int64_t guest_nsec;
642
643 guest_nsec = get_guest_rtc_ns(s);
644 guest_sec = guest_nsec / NANOSECONDS_PER_SECOND;
645 gmtime_r(&guest_sec, &ret);
646
647 /* Is SET flag of Register B disabled? */
648 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) == 0) {
649 rtc_set_cmos(s, &ret);
650 }
651 }
652
653 static int update_in_progress(RTCState *s)
654 {
655 int64_t guest_nsec;
656
657 if (!rtc_running(s)) {
658 return 0;
659 }
660 if (timer_pending(s->update_timer)) {
661 int64_t next_update_time = timer_expire_time_ns(s->update_timer);
662 /* Latch UIP until the timer expires. */
663 if (qemu_clock_get_ns(rtc_clock) >=
664 (next_update_time - UIP_HOLD_LENGTH)) {
665 s->cmos_data[RTC_REG_A] |= REG_A_UIP;
666 return 1;
667 }
668 }
669
670 guest_nsec = get_guest_rtc_ns(s);
671 /* UIP bit will be set at last 244us of every second. */
672 if ((guest_nsec % NANOSECONDS_PER_SECOND) >=
673 (NANOSECONDS_PER_SECOND - UIP_HOLD_LENGTH)) {
674 return 1;
675 }
676 return 0;
677 }
678
679 static uint64_t cmos_ioport_read(void *opaque, hwaddr addr,
680 unsigned size)
681 {
682 RTCState *s = opaque;
683 int ret;
684 if ((addr & 1) == 0) {
685 return 0xff;
686 } else {
687 switch(s->cmos_index) {
688 case RTC_IBM_PS2_CENTURY_BYTE:
689 s->cmos_index = RTC_CENTURY;
690 /* fall through */
691 case RTC_CENTURY:
692 case RTC_SECONDS:
693 case RTC_MINUTES:
694 case RTC_HOURS:
695 case RTC_DAY_OF_WEEK:
696 case RTC_DAY_OF_MONTH:
697 case RTC_MONTH:
698 case RTC_YEAR:
699 /* if not in set mode, calibrate cmos before
700 * reading*/
701 if (rtc_running(s)) {
702 rtc_update_time(s);
703 }
704 ret = s->cmos_data[s->cmos_index];
705 break;
706 case RTC_REG_A:
707 ret = s->cmos_data[s->cmos_index];
708 if (update_in_progress(s)) {
709 ret |= REG_A_UIP;
710 }
711 break;
712 case RTC_REG_C:
713 ret = s->cmos_data[s->cmos_index];
714 qemu_irq_lower(s->irq);
715 s->cmos_data[RTC_REG_C] = 0x00;
716 if (ret & (REG_C_UF | REG_C_AF)) {
717 check_update_timer(s);
718 }
719
720 if(s->irq_coalesced &&
721 (s->cmos_data[RTC_REG_B] & REG_B_PIE) &&
722 s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) {
723 s->irq_reinject_on_ack_count++;
724 s->cmos_data[RTC_REG_C] |= REG_C_IRQF | REG_C_PF;
725 DPRINTF_C("cmos: injecting on ack\n");
726 if (rtc_policy_slew_deliver_irq(s)) {
727 s->irq_coalesced--;
728 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
729 s->irq_coalesced);
730 }
731 }
732 break;
733 default:
734 ret = s->cmos_data[s->cmos_index];
735 break;
736 }
737 CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
738 s->cmos_index, ret);
739 return ret;
740 }
741 }
742
743 void rtc_set_memory(ISADevice *dev, int addr, int val)
744 {
745 RTCState *s = MC146818_RTC(dev);
746 if (addr >= 0 && addr <= 127)
747 s->cmos_data[addr] = val;
748 }
749
750 int rtc_get_memory(ISADevice *dev, int addr)
751 {
752 RTCState *s = MC146818_RTC(dev);
753 assert(addr >= 0 && addr <= 127);
754 return s->cmos_data[addr];
755 }
756
757 static void rtc_set_date_from_host(ISADevice *dev)
758 {
759 RTCState *s = MC146818_RTC(dev);
760 struct tm tm;
761
762 qemu_get_timedate(&tm, 0);
763
764 s->base_rtc = mktimegm(&tm);
765 s->last_update = qemu_clock_get_ns(rtc_clock);
766 s->offset = 0;
767
768 /* set the CMOS date */
769 rtc_set_cmos(s, &tm);
770 }
771
772 static int rtc_pre_save(void *opaque)
773 {
774 RTCState *s = opaque;
775
776 rtc_update_time(s);
777
778 return 0;
779 }
780
781 static int rtc_post_load(void *opaque, int version_id)
782 {
783 RTCState *s = opaque;
784
785 if (version_id <= 2 || rtc_clock == QEMU_CLOCK_REALTIME) {
786 rtc_set_time(s);
787 s->offset = 0;
788 check_update_timer(s);
789 }
790 s->period = rtc_periodic_clock_ticks(s);
791
792 /* The periodic timer is deterministic in record/replay mode,
793 * so there is no need to update it after loading the vmstate.
794 * Reading RTC here would misalign record and replay.
795 */
796 if (replay_mode == REPLAY_MODE_NONE) {
797 uint64_t now = qemu_clock_get_ns(rtc_clock);
798 if (now < s->next_periodic_time ||
799 now > (s->next_periodic_time + get_max_clock_jump())) {
800 periodic_timer_update(s, qemu_clock_get_ns(rtc_clock), s->period, false);
801 }
802 }
803
804 if (version_id >= 2) {
805 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
806 rtc_coalesced_timer_update(s);
807 }
808 }
809 return 0;
810 }
811
812 static bool rtc_irq_reinject_on_ack_count_needed(void *opaque)
813 {
814 RTCState *s = (RTCState *)opaque;
815 return s->irq_reinject_on_ack_count != 0;
816 }
817
818 static const VMStateDescription vmstate_rtc_irq_reinject_on_ack_count = {
819 .name = "mc146818rtc/irq_reinject_on_ack_count",
820 .version_id = 1,
821 .minimum_version_id = 1,
822 .needed = rtc_irq_reinject_on_ack_count_needed,
823 .fields = (VMStateField[]) {
824 VMSTATE_UINT16(irq_reinject_on_ack_count, RTCState),
825 VMSTATE_END_OF_LIST()
826 }
827 };
828
829 static const VMStateDescription vmstate_rtc = {
830 .name = "mc146818rtc",
831 .version_id = 3,
832 .minimum_version_id = 1,
833 .pre_save = rtc_pre_save,
834 .post_load = rtc_post_load,
835 .fields = (VMStateField[]) {
836 VMSTATE_BUFFER(cmos_data, RTCState),
837 VMSTATE_UINT8(cmos_index, RTCState),
838 VMSTATE_UNUSED(7*4),
839 VMSTATE_TIMER_PTR(periodic_timer, RTCState),
840 VMSTATE_INT64(next_periodic_time, RTCState),
841 VMSTATE_UNUSED(3*8),
842 VMSTATE_UINT32_V(irq_coalesced, RTCState, 2),
843 VMSTATE_UINT32_V(period, RTCState, 2),
844 VMSTATE_UINT64_V(base_rtc, RTCState, 3),
845 VMSTATE_UINT64_V(last_update, RTCState, 3),
846 VMSTATE_INT64_V(offset, RTCState, 3),
847 VMSTATE_TIMER_PTR_V(update_timer, RTCState, 3),
848 VMSTATE_UINT64_V(next_alarm_time, RTCState, 3),
849 VMSTATE_END_OF_LIST()
850 },
851 .subsections = (const VMStateDescription*[]) {
852 &vmstate_rtc_irq_reinject_on_ack_count,
853 NULL
854 }
855 };
856
857 /* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
858 BIOS will read it and start S3 resume at POST Entry */
859 static void rtc_notify_suspend(Notifier *notifier, void *data)
860 {
861 RTCState *s = container_of(notifier, RTCState, suspend_notifier);
862 rtc_set_memory(ISA_DEVICE(s), 0xF, 0xFE);
863 }
864
865 static const MemoryRegionOps cmos_ops = {
866 .read = cmos_ioport_read,
867 .write = cmos_ioport_write,
868 .impl = {
869 .min_access_size = 1,
870 .max_access_size = 1,
871 },
872 .endianness = DEVICE_LITTLE_ENDIAN,
873 };
874
875 static void rtc_get_date(Object *obj, struct tm *current_tm, Error **errp)
876 {
877 RTCState *s = MC146818_RTC(obj);
878
879 rtc_update_time(s);
880 rtc_get_time(s, current_tm);
881 }
882
883 static void rtc_realizefn(DeviceState *dev, Error **errp)
884 {
885 ISADevice *isadev = ISA_DEVICE(dev);
886 RTCState *s = MC146818_RTC(dev);
887
888 s->cmos_data[RTC_REG_A] = 0x26;
889 s->cmos_data[RTC_REG_B] = 0x02;
890 s->cmos_data[RTC_REG_C] = 0x00;
891 s->cmos_data[RTC_REG_D] = 0x80;
892
893 /* This is for historical reasons. The default base year qdev property
894 * was set to 2000 for most machine types before the century byte was
895 * implemented.
896 *
897 * This if statement means that the century byte will be always 0
898 * (at least until 2079...) for base_year = 1980, but will be set
899 * correctly for base_year = 2000.
900 */
901 if (s->base_year == 2000) {
902 s->base_year = 0;
903 }
904
905 if (s->isairq >= ISA_NUM_IRQS) {
906 error_setg(errp, "Maximum value for \"irq\" is: %u", ISA_NUM_IRQS - 1);
907 return;
908 }
909
910 rtc_set_date_from_host(isadev);
911
912 switch (s->lost_tick_policy) {
913 case LOST_TICK_POLICY_SLEW:
914 s->coalesced_timer =
915 timer_new_ns(rtc_clock, rtc_coalesced_timer, s);
916 break;
917 case LOST_TICK_POLICY_DISCARD:
918 break;
919 default:
920 error_setg(errp, "Invalid lost tick policy.");
921 return;
922 }
923
924 s->periodic_timer = timer_new_ns(rtc_clock, rtc_periodic_timer, s);
925 s->update_timer = timer_new_ns(rtc_clock, rtc_update_timer, s);
926 check_update_timer(s);
927
928 s->suspend_notifier.notify = rtc_notify_suspend;
929 qemu_register_suspend_notifier(&s->suspend_notifier);
930
931 memory_region_init_io(&s->io, OBJECT(s), &cmos_ops, s, "rtc", 2);
932 isa_register_ioport(isadev, &s->io, s->io_base);
933
934 /* register rtc 0x70 port for coalesced_pio */
935 memory_region_set_flush_coalesced(&s->io);
936 memory_region_init_io(&s->coalesced_io, OBJECT(s), &cmos_ops,
937 s, "rtc-index", 1);
938 memory_region_add_subregion(&s->io, 0, &s->coalesced_io);
939 memory_region_add_coalescing(&s->coalesced_io, 0, 1);
940
941 qdev_set_legacy_instance_id(dev, s->io_base, 3);
942
943 object_property_add_tm(OBJECT(s), "date", rtc_get_date);
944
945 qdev_init_gpio_out(dev, &s->irq, 1);
946 QLIST_INSERT_HEAD(&rtc_devices, s, link);
947 }
948
949 ISADevice *mc146818_rtc_init(ISABus *bus, int base_year, qemu_irq intercept_irq)
950 {
951 DeviceState *dev;
952 ISADevice *isadev;
953 RTCState *s;
954
955 isadev = isa_new(TYPE_MC146818_RTC);
956 dev = DEVICE(isadev);
957 s = MC146818_RTC(isadev);
958 qdev_prop_set_int32(dev, "base_year", base_year);
959 isa_realize_and_unref(isadev, bus, &error_fatal);
960 if (intercept_irq) {
961 qdev_connect_gpio_out(dev, 0, intercept_irq);
962 } else {
963 isa_connect_gpio_out(isadev, 0, s->isairq);
964 }
965
966 object_property_add_alias(qdev_get_machine(), "rtc-time", OBJECT(isadev),
967 "date");
968
969 return isadev;
970 }
971
972 static Property mc146818rtc_properties[] = {
973 DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980),
974 DEFINE_PROP_UINT16("iobase", RTCState, io_base, RTC_ISA_BASE),
975 DEFINE_PROP_UINT8("irq", RTCState, isairq, RTC_ISA_IRQ),
976 DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState,
977 lost_tick_policy, LOST_TICK_POLICY_DISCARD),
978 DEFINE_PROP_END_OF_LIST(),
979 };
980
981 static void rtc_reset_enter(Object *obj, ResetType type)
982 {
983 RTCState *s = MC146818_RTC(obj);
984
985 /* Reason: VM do suspend self will set 0xfe
986 * Reset any values other than 0xfe(Guest suspend case) */
987 if (s->cmos_data[0x0f] != 0xfe) {
988 s->cmos_data[0x0f] = 0x00;
989 }
990
991 s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE);
992 s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF);
993 check_update_timer(s);
994
995
996 if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
997 s->irq_coalesced = 0;
998 s->irq_reinject_on_ack_count = 0;
999 }
1000 }
1001
1002 static void rtc_reset_hold(Object *obj)
1003 {
1004 RTCState *s = MC146818_RTC(obj);
1005
1006 qemu_irq_lower(s->irq);
1007 }
1008
1009 static void rtc_build_aml(AcpiDevAmlIf *adev, Aml *scope)
1010 {
1011 RTCState *s = MC146818_RTC(adev);
1012 Aml *dev;
1013 Aml *crs;
1014
1015 /*
1016 * Reserving 8 io ports here, following what physical hardware
1017 * does, even though qemu only responds to the first two ports.
1018 */
1019 crs = aml_resource_template();
1020 aml_append(crs, aml_io(AML_DECODE16, s->io_base, s->io_base,
1021 0x01, 0x08));
1022 aml_append(crs, aml_irq_no_flags(s->isairq));
1023
1024 dev = aml_device("RTC");
1025 aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0B00")));
1026 aml_append(dev, aml_name_decl("_CRS", crs));
1027
1028 aml_append(scope, dev);
1029 }
1030
1031 static void rtc_class_initfn(ObjectClass *klass, void *data)
1032 {
1033 DeviceClass *dc = DEVICE_CLASS(klass);
1034 ResettableClass *rc = RESETTABLE_CLASS(klass);
1035 AcpiDevAmlIfClass *adevc = ACPI_DEV_AML_IF_CLASS(klass);
1036
1037 dc->realize = rtc_realizefn;
1038 dc->vmsd = &vmstate_rtc;
1039 rc->phases.enter = rtc_reset_enter;
1040 rc->phases.hold = rtc_reset_hold;
1041 adevc->build_dev_aml = rtc_build_aml;
1042 device_class_set_props(dc, mc146818rtc_properties);
1043 set_bit(DEVICE_CATEGORY_MISC, dc->categories);
1044 }
1045
1046 static const TypeInfo mc146818rtc_info = {
1047 .name = TYPE_MC146818_RTC,
1048 .parent = TYPE_ISA_DEVICE,
1049 .instance_size = sizeof(RTCState),
1050 .class_init = rtc_class_initfn,
1051 .interfaces = (InterfaceInfo[]) {
1052 { TYPE_ACPI_DEV_AML_IF },
1053 { },
1054 },
1055 };
1056
1057 static void mc146818rtc_register_types(void)
1058 {
1059 type_register_static(&mc146818rtc_info);
1060 }
1061
1062 type_init(mc146818rtc_register_types)