]> git.proxmox.com Git - mirror_qemu.git/blob - hw/rtl8139.c
rtl8139: remove unused marco
[mirror_qemu.git] / hw / rtl8139.c
1 /**
2 * QEMU RTL8139 emulation
3 *
4 * Copyright (c) 2006 Igor Kovalenko
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23
24 * Modifications:
25 * 2006-Jan-28 Mark Malakanov : TSAD and CSCR implementation (for Windows driver)
26 *
27 * 2006-Apr-28 Juergen Lock : EEPROM emulation changes for FreeBSD driver
28 * HW revision ID changes for FreeBSD driver
29 *
30 * 2006-Jul-01 Igor Kovalenko : Implemented loopback mode for FreeBSD driver
31 * Corrected packet transfer reassembly routine for 8139C+ mode
32 * Rearranged debugging print statements
33 * Implemented PCI timer interrupt (disabled by default)
34 * Implemented Tally Counters, increased VM load/save version
35 * Implemented IP/TCP/UDP checksum task offloading
36 *
37 * 2006-Jul-04 Igor Kovalenko : Implemented TCP segmentation offloading
38 * Fixed MTU=1500 for produced ethernet frames
39 *
40 * 2006-Jul-09 Igor Kovalenko : Fixed TCP header length calculation while processing
41 * segmentation offloading
42 * Removed slirp.h dependency
43 * Added rx/tx buffer reset when enabling rx/tx operation
44 *
45 * 2010-Feb-04 Frediano Ziglio: Rewrote timer support using QEMU timer only
46 * when strictly needed (required for for
47 * Darwin)
48 * 2011-Mar-22 Benjamin Poirier: Implemented VLAN offloading
49 */
50
51 /* For crc32 */
52 #include <zlib.h>
53
54 #include "hw.h"
55 #include "pci.h"
56 #include "dma.h"
57 #include "qemu-timer.h"
58 #include "net.h"
59 #include "loader.h"
60 #include "sysemu.h"
61 #include "iov.h"
62
63 /* debug RTL8139 card */
64 //#define DEBUG_RTL8139 1
65
66 #define PCI_FREQUENCY 33000000L
67
68 #define SET_MASKED(input, mask, curr) \
69 ( ( (input) & ~(mask) ) | ( (curr) & (mask) ) )
70
71 /* arg % size for size which is a power of 2 */
72 #define MOD2(input, size) \
73 ( ( input ) & ( size - 1 ) )
74
75 #define ETHER_ADDR_LEN 6
76 #define ETHER_TYPE_LEN 2
77 #define ETH_HLEN (ETHER_ADDR_LEN * 2 + ETHER_TYPE_LEN)
78 #define ETH_P_IP 0x0800 /* Internet Protocol packet */
79 #define ETH_P_8021Q 0x8100 /* 802.1Q VLAN Extended Header */
80 #define ETH_MTU 1500
81
82 #define VLAN_TCI_LEN 2
83 #define VLAN_HLEN (ETHER_TYPE_LEN + VLAN_TCI_LEN)
84
85 #if defined (DEBUG_RTL8139)
86 # define DPRINTF(fmt, ...) \
87 do { fprintf(stderr, "RTL8139: " fmt, ## __VA_ARGS__); } while (0)
88 #else
89 static inline GCC_FMT_ATTR(1, 2) int DPRINTF(const char *fmt, ...)
90 {
91 return 0;
92 }
93 #endif
94
95 /* Symbolic offsets to registers. */
96 enum RTL8139_registers {
97 MAC0 = 0, /* Ethernet hardware address. */
98 MAR0 = 8, /* Multicast filter. */
99 TxStatus0 = 0x10,/* Transmit status (Four 32bit registers). C mode only */
100 /* Dump Tally Conter control register(64bit). C+ mode only */
101 TxAddr0 = 0x20, /* Tx descriptors (also four 32bit). */
102 RxBuf = 0x30,
103 ChipCmd = 0x37,
104 RxBufPtr = 0x38,
105 RxBufAddr = 0x3A,
106 IntrMask = 0x3C,
107 IntrStatus = 0x3E,
108 TxConfig = 0x40,
109 RxConfig = 0x44,
110 Timer = 0x48, /* A general-purpose counter. */
111 RxMissed = 0x4C, /* 24 bits valid, write clears. */
112 Cfg9346 = 0x50,
113 Config0 = 0x51,
114 Config1 = 0x52,
115 FlashReg = 0x54,
116 MediaStatus = 0x58,
117 Config3 = 0x59,
118 Config4 = 0x5A, /* absent on RTL-8139A */
119 HltClk = 0x5B,
120 MultiIntr = 0x5C,
121 PCIRevisionID = 0x5E,
122 TxSummary = 0x60, /* TSAD register. Transmit Status of All Descriptors*/
123 BasicModeCtrl = 0x62,
124 BasicModeStatus = 0x64,
125 NWayAdvert = 0x66,
126 NWayLPAR = 0x68,
127 NWayExpansion = 0x6A,
128 /* Undocumented registers, but required for proper operation. */
129 FIFOTMS = 0x70, /* FIFO Control and test. */
130 CSCR = 0x74, /* Chip Status and Configuration Register. */
131 PARA78 = 0x78,
132 PARA7c = 0x7c, /* Magic transceiver parameter register. */
133 Config5 = 0xD8, /* absent on RTL-8139A */
134 /* C+ mode */
135 TxPoll = 0xD9, /* Tell chip to check Tx descriptors for work */
136 RxMaxSize = 0xDA, /* Max size of an Rx packet (8169 only) */
137 CpCmd = 0xE0, /* C+ Command register (C+ mode only) */
138 IntrMitigate = 0xE2, /* rx/tx interrupt mitigation control */
139 RxRingAddrLO = 0xE4, /* 64-bit start addr of Rx ring */
140 RxRingAddrHI = 0xE8, /* 64-bit start addr of Rx ring */
141 TxThresh = 0xEC, /* Early Tx threshold */
142 };
143
144 enum ClearBitMasks {
145 MultiIntrClear = 0xF000,
146 ChipCmdClear = 0xE2,
147 Config1Clear = (1<<7)|(1<<6)|(1<<3)|(1<<2)|(1<<1),
148 };
149
150 enum ChipCmdBits {
151 CmdReset = 0x10,
152 CmdRxEnb = 0x08,
153 CmdTxEnb = 0x04,
154 RxBufEmpty = 0x01,
155 };
156
157 /* C+ mode */
158 enum CplusCmdBits {
159 CPlusRxVLAN = 0x0040, /* enable receive VLAN detagging */
160 CPlusRxChkSum = 0x0020, /* enable receive checksum offloading */
161 CPlusRxEnb = 0x0002,
162 CPlusTxEnb = 0x0001,
163 };
164
165 /* Interrupt register bits, using my own meaningful names. */
166 enum IntrStatusBits {
167 PCIErr = 0x8000,
168 PCSTimeout = 0x4000,
169 RxFIFOOver = 0x40,
170 RxUnderrun = 0x20,
171 RxOverflow = 0x10,
172 TxErr = 0x08,
173 TxOK = 0x04,
174 RxErr = 0x02,
175 RxOK = 0x01,
176
177 RxAckBits = RxFIFOOver | RxOverflow | RxOK,
178 };
179
180 enum TxStatusBits {
181 TxHostOwns = 0x2000,
182 TxUnderrun = 0x4000,
183 TxStatOK = 0x8000,
184 TxOutOfWindow = 0x20000000,
185 TxAborted = 0x40000000,
186 TxCarrierLost = 0x80000000,
187 };
188 enum RxStatusBits {
189 RxMulticast = 0x8000,
190 RxPhysical = 0x4000,
191 RxBroadcast = 0x2000,
192 RxBadSymbol = 0x0020,
193 RxRunt = 0x0010,
194 RxTooLong = 0x0008,
195 RxCRCErr = 0x0004,
196 RxBadAlign = 0x0002,
197 RxStatusOK = 0x0001,
198 };
199
200 /* Bits in RxConfig. */
201 enum rx_mode_bits {
202 AcceptErr = 0x20,
203 AcceptRunt = 0x10,
204 AcceptBroadcast = 0x08,
205 AcceptMulticast = 0x04,
206 AcceptMyPhys = 0x02,
207 AcceptAllPhys = 0x01,
208 };
209
210 /* Bits in TxConfig. */
211 enum tx_config_bits {
212
213 /* Interframe Gap Time. Only TxIFG96 doesn't violate IEEE 802.3 */
214 TxIFGShift = 24,
215 TxIFG84 = (0 << TxIFGShift), /* 8.4us / 840ns (10 / 100Mbps) */
216 TxIFG88 = (1 << TxIFGShift), /* 8.8us / 880ns (10 / 100Mbps) */
217 TxIFG92 = (2 << TxIFGShift), /* 9.2us / 920ns (10 / 100Mbps) */
218 TxIFG96 = (3 << TxIFGShift), /* 9.6us / 960ns (10 / 100Mbps) */
219
220 TxLoopBack = (1 << 18) | (1 << 17), /* enable loopback test mode */
221 TxCRC = (1 << 16), /* DISABLE appending CRC to end of Tx packets */
222 TxClearAbt = (1 << 0), /* Clear abort (WO) */
223 TxDMAShift = 8, /* DMA burst value (0-7) is shifted this many bits */
224 TxRetryShift = 4, /* TXRR value (0-15) is shifted this many bits */
225
226 TxVersionMask = 0x7C800000, /* mask out version bits 30-26, 23 */
227 };
228
229
230 /* Transmit Status of All Descriptors (TSAD) Register */
231 enum TSAD_bits {
232 TSAD_TOK3 = 1<<15, // TOK bit of Descriptor 3
233 TSAD_TOK2 = 1<<14, // TOK bit of Descriptor 2
234 TSAD_TOK1 = 1<<13, // TOK bit of Descriptor 1
235 TSAD_TOK0 = 1<<12, // TOK bit of Descriptor 0
236 TSAD_TUN3 = 1<<11, // TUN bit of Descriptor 3
237 TSAD_TUN2 = 1<<10, // TUN bit of Descriptor 2
238 TSAD_TUN1 = 1<<9, // TUN bit of Descriptor 1
239 TSAD_TUN0 = 1<<8, // TUN bit of Descriptor 0
240 TSAD_TABT3 = 1<<07, // TABT bit of Descriptor 3
241 TSAD_TABT2 = 1<<06, // TABT bit of Descriptor 2
242 TSAD_TABT1 = 1<<05, // TABT bit of Descriptor 1
243 TSAD_TABT0 = 1<<04, // TABT bit of Descriptor 0
244 TSAD_OWN3 = 1<<03, // OWN bit of Descriptor 3
245 TSAD_OWN2 = 1<<02, // OWN bit of Descriptor 2
246 TSAD_OWN1 = 1<<01, // OWN bit of Descriptor 1
247 TSAD_OWN0 = 1<<00, // OWN bit of Descriptor 0
248 };
249
250
251 /* Bits in Config1 */
252 enum Config1Bits {
253 Cfg1_PM_Enable = 0x01,
254 Cfg1_VPD_Enable = 0x02,
255 Cfg1_PIO = 0x04,
256 Cfg1_MMIO = 0x08,
257 LWAKE = 0x10, /* not on 8139, 8139A */
258 Cfg1_Driver_Load = 0x20,
259 Cfg1_LED0 = 0x40,
260 Cfg1_LED1 = 0x80,
261 SLEEP = (1 << 1), /* only on 8139, 8139A */
262 PWRDN = (1 << 0), /* only on 8139, 8139A */
263 };
264
265 /* Bits in Config3 */
266 enum Config3Bits {
267 Cfg3_FBtBEn = (1 << 0), /* 1 = Fast Back to Back */
268 Cfg3_FuncRegEn = (1 << 1), /* 1 = enable CardBus Function registers */
269 Cfg3_CLKRUN_En = (1 << 2), /* 1 = enable CLKRUN */
270 Cfg3_CardB_En = (1 << 3), /* 1 = enable CardBus registers */
271 Cfg3_LinkUp = (1 << 4), /* 1 = wake up on link up */
272 Cfg3_Magic = (1 << 5), /* 1 = wake up on Magic Packet (tm) */
273 Cfg3_PARM_En = (1 << 6), /* 0 = software can set twister parameters */
274 Cfg3_GNTSel = (1 << 7), /* 1 = delay 1 clock from PCI GNT signal */
275 };
276
277 /* Bits in Config4 */
278 enum Config4Bits {
279 LWPTN = (1 << 2), /* not on 8139, 8139A */
280 };
281
282 /* Bits in Config5 */
283 enum Config5Bits {
284 Cfg5_PME_STS = (1 << 0), /* 1 = PCI reset resets PME_Status */
285 Cfg5_LANWake = (1 << 1), /* 1 = enable LANWake signal */
286 Cfg5_LDPS = (1 << 2), /* 0 = save power when link is down */
287 Cfg5_FIFOAddrPtr = (1 << 3), /* Realtek internal SRAM testing */
288 Cfg5_UWF = (1 << 4), /* 1 = accept unicast wakeup frame */
289 Cfg5_MWF = (1 << 5), /* 1 = accept multicast wakeup frame */
290 Cfg5_BWF = (1 << 6), /* 1 = accept broadcast wakeup frame */
291 };
292
293 enum RxConfigBits {
294 /* rx fifo threshold */
295 RxCfgFIFOShift = 13,
296 RxCfgFIFONone = (7 << RxCfgFIFOShift),
297
298 /* Max DMA burst */
299 RxCfgDMAShift = 8,
300 RxCfgDMAUnlimited = (7 << RxCfgDMAShift),
301
302 /* rx ring buffer length */
303 RxCfgRcv8K = 0,
304 RxCfgRcv16K = (1 << 11),
305 RxCfgRcv32K = (1 << 12),
306 RxCfgRcv64K = (1 << 11) | (1 << 12),
307
308 /* Disable packet wrap at end of Rx buffer. (not possible with 64k) */
309 RxNoWrap = (1 << 7),
310 };
311
312 /* Twister tuning parameters from RealTek.
313 Completely undocumented, but required to tune bad links on some boards. */
314 /*
315 enum CSCRBits {
316 CSCR_LinkOKBit = 0x0400,
317 CSCR_LinkChangeBit = 0x0800,
318 CSCR_LinkStatusBits = 0x0f000,
319 CSCR_LinkDownOffCmd = 0x003c0,
320 CSCR_LinkDownCmd = 0x0f3c0,
321 */
322 enum CSCRBits {
323 CSCR_Testfun = 1<<15, /* 1 = Auto-neg speeds up internal timer, WO, def 0 */
324 CSCR_LD = 1<<9, /* Active low TPI link disable signal. When low, TPI still transmits link pulses and TPI stays in good link state. def 1*/
325 CSCR_HEART_BIT = 1<<8, /* 1 = HEART BEAT enable, 0 = HEART BEAT disable. HEART BEAT function is only valid in 10Mbps mode. def 1*/
326 CSCR_JBEN = 1<<7, /* 1 = enable jabber function. 0 = disable jabber function, def 1*/
327 CSCR_F_LINK_100 = 1<<6, /* Used to login force good link in 100Mbps for diagnostic purposes. 1 = DISABLE, 0 = ENABLE. def 1*/
328 CSCR_F_Connect = 1<<5, /* Assertion of this bit forces the disconnect function to be bypassed. def 0*/
329 CSCR_Con_status = 1<<3, /* This bit indicates the status of the connection. 1 = valid connected link detected; 0 = disconnected link detected. RO def 0*/
330 CSCR_Con_status_En = 1<<2, /* Assertion of this bit configures LED1 pin to indicate connection status. def 0*/
331 CSCR_PASS_SCR = 1<<0, /* Bypass Scramble, def 0*/
332 };
333
334 enum Cfg9346Bits {
335 Cfg9346_Lock = 0x00,
336 Cfg9346_Unlock = 0xC0,
337 };
338
339 typedef enum {
340 CH_8139 = 0,
341 CH_8139_K,
342 CH_8139A,
343 CH_8139A_G,
344 CH_8139B,
345 CH_8130,
346 CH_8139C,
347 CH_8100,
348 CH_8100B_8139D,
349 CH_8101,
350 } chip_t;
351
352 enum chip_flags {
353 HasHltClk = (1 << 0),
354 HasLWake = (1 << 1),
355 };
356
357 #define HW_REVID(b30, b29, b28, b27, b26, b23, b22) \
358 (b30<<30 | b29<<29 | b28<<28 | b27<<27 | b26<<26 | b23<<23 | b22<<22)
359 #define HW_REVID_MASK HW_REVID(1, 1, 1, 1, 1, 1, 1)
360
361 #define RTL8139_PCI_REVID_8139 0x10
362 #define RTL8139_PCI_REVID_8139CPLUS 0x20
363
364 #define RTL8139_PCI_REVID RTL8139_PCI_REVID_8139CPLUS
365
366 /* Size is 64 * 16bit words */
367 #define EEPROM_9346_ADDR_BITS 6
368 #define EEPROM_9346_SIZE (1 << EEPROM_9346_ADDR_BITS)
369 #define EEPROM_9346_ADDR_MASK (EEPROM_9346_SIZE - 1)
370
371 enum Chip9346Operation
372 {
373 Chip9346_op_mask = 0xc0, /* 10 zzzzzz */
374 Chip9346_op_read = 0x80, /* 10 AAAAAA */
375 Chip9346_op_write = 0x40, /* 01 AAAAAA D(15)..D(0) */
376 Chip9346_op_ext_mask = 0xf0, /* 11 zzzzzz */
377 Chip9346_op_write_enable = 0x30, /* 00 11zzzz */
378 Chip9346_op_write_all = 0x10, /* 00 01zzzz */
379 Chip9346_op_write_disable = 0x00, /* 00 00zzzz */
380 };
381
382 enum Chip9346Mode
383 {
384 Chip9346_none = 0,
385 Chip9346_enter_command_mode,
386 Chip9346_read_command,
387 Chip9346_data_read, /* from output register */
388 Chip9346_data_write, /* to input register, then to contents at specified address */
389 Chip9346_data_write_all, /* to input register, then filling contents */
390 };
391
392 typedef struct EEprom9346
393 {
394 uint16_t contents[EEPROM_9346_SIZE];
395 int mode;
396 uint32_t tick;
397 uint8_t address;
398 uint16_t input;
399 uint16_t output;
400
401 uint8_t eecs;
402 uint8_t eesk;
403 uint8_t eedi;
404 uint8_t eedo;
405 } EEprom9346;
406
407 typedef struct RTL8139TallyCounters
408 {
409 /* Tally counters */
410 uint64_t TxOk;
411 uint64_t RxOk;
412 uint64_t TxERR;
413 uint32_t RxERR;
414 uint16_t MissPkt;
415 uint16_t FAE;
416 uint32_t Tx1Col;
417 uint32_t TxMCol;
418 uint64_t RxOkPhy;
419 uint64_t RxOkBrd;
420 uint32_t RxOkMul;
421 uint16_t TxAbt;
422 uint16_t TxUndrn;
423 } RTL8139TallyCounters;
424
425 /* Clears all tally counters */
426 static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters);
427
428 typedef struct RTL8139State {
429 PCIDevice dev;
430 uint8_t phys[8]; /* mac address */
431 uint8_t mult[8]; /* multicast mask array */
432
433 uint32_t TxStatus[4]; /* TxStatus0 in C mode*/ /* also DTCCR[0] and DTCCR[1] in C+ mode */
434 uint32_t TxAddr[4]; /* TxAddr0 */
435 uint32_t RxBuf; /* Receive buffer */
436 uint32_t RxBufferSize;/* internal variable, receive ring buffer size in C mode */
437 uint32_t RxBufPtr;
438 uint32_t RxBufAddr;
439
440 uint16_t IntrStatus;
441 uint16_t IntrMask;
442
443 uint32_t TxConfig;
444 uint32_t RxConfig;
445 uint32_t RxMissed;
446
447 uint16_t CSCR;
448
449 uint8_t Cfg9346;
450 uint8_t Config0;
451 uint8_t Config1;
452 uint8_t Config3;
453 uint8_t Config4;
454 uint8_t Config5;
455
456 uint8_t clock_enabled;
457 uint8_t bChipCmdState;
458
459 uint16_t MultiIntr;
460
461 uint16_t BasicModeCtrl;
462 uint16_t BasicModeStatus;
463 uint16_t NWayAdvert;
464 uint16_t NWayLPAR;
465 uint16_t NWayExpansion;
466
467 uint16_t CpCmd;
468 uint8_t TxThresh;
469
470 NICState *nic;
471 NICConf conf;
472
473 /* C ring mode */
474 uint32_t currTxDesc;
475
476 /* C+ mode */
477 uint32_t cplus_enabled;
478
479 uint32_t currCPlusRxDesc;
480 uint32_t currCPlusTxDesc;
481
482 uint32_t RxRingAddrLO;
483 uint32_t RxRingAddrHI;
484
485 EEprom9346 eeprom;
486
487 uint32_t TCTR;
488 uint32_t TimerInt;
489 int64_t TCTR_base;
490
491 /* Tally counters */
492 RTL8139TallyCounters tally_counters;
493
494 /* Non-persistent data */
495 uint8_t *cplus_txbuffer;
496 int cplus_txbuffer_len;
497 int cplus_txbuffer_offset;
498
499 /* PCI interrupt timer */
500 QEMUTimer *timer;
501 int64_t TimerExpire;
502
503 MemoryRegion bar_io;
504 MemoryRegion bar_mem;
505
506 /* Support migration to/from old versions */
507 int rtl8139_mmio_io_addr_dummy;
508 } RTL8139State;
509
510 /* Writes tally counters to memory via DMA */
511 static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr);
512
513 static void rtl8139_set_next_tctr_time(RTL8139State *s, int64_t current_time);
514
515 static void prom9346_decode_command(EEprom9346 *eeprom, uint8_t command)
516 {
517 DPRINTF("eeprom command 0x%02x\n", command);
518
519 switch (command & Chip9346_op_mask)
520 {
521 case Chip9346_op_read:
522 {
523 eeprom->address = command & EEPROM_9346_ADDR_MASK;
524 eeprom->output = eeprom->contents[eeprom->address];
525 eeprom->eedo = 0;
526 eeprom->tick = 0;
527 eeprom->mode = Chip9346_data_read;
528 DPRINTF("eeprom read from address 0x%02x data=0x%04x\n",
529 eeprom->address, eeprom->output);
530 }
531 break;
532
533 case Chip9346_op_write:
534 {
535 eeprom->address = command & EEPROM_9346_ADDR_MASK;
536 eeprom->input = 0;
537 eeprom->tick = 0;
538 eeprom->mode = Chip9346_none; /* Chip9346_data_write */
539 DPRINTF("eeprom begin write to address 0x%02x\n",
540 eeprom->address);
541 }
542 break;
543 default:
544 eeprom->mode = Chip9346_none;
545 switch (command & Chip9346_op_ext_mask)
546 {
547 case Chip9346_op_write_enable:
548 DPRINTF("eeprom write enabled\n");
549 break;
550 case Chip9346_op_write_all:
551 DPRINTF("eeprom begin write all\n");
552 break;
553 case Chip9346_op_write_disable:
554 DPRINTF("eeprom write disabled\n");
555 break;
556 }
557 break;
558 }
559 }
560
561 static void prom9346_shift_clock(EEprom9346 *eeprom)
562 {
563 int bit = eeprom->eedi?1:0;
564
565 ++ eeprom->tick;
566
567 DPRINTF("eeprom: tick %d eedi=%d eedo=%d\n", eeprom->tick, eeprom->eedi,
568 eeprom->eedo);
569
570 switch (eeprom->mode)
571 {
572 case Chip9346_enter_command_mode:
573 if (bit)
574 {
575 eeprom->mode = Chip9346_read_command;
576 eeprom->tick = 0;
577 eeprom->input = 0;
578 DPRINTF("eeprom: +++ synchronized, begin command read\n");
579 }
580 break;
581
582 case Chip9346_read_command:
583 eeprom->input = (eeprom->input << 1) | (bit & 1);
584 if (eeprom->tick == 8)
585 {
586 prom9346_decode_command(eeprom, eeprom->input & 0xff);
587 }
588 break;
589
590 case Chip9346_data_read:
591 eeprom->eedo = (eeprom->output & 0x8000)?1:0;
592 eeprom->output <<= 1;
593 if (eeprom->tick == 16)
594 {
595 #if 1
596 // the FreeBSD drivers (rl and re) don't explicitly toggle
597 // CS between reads (or does setting Cfg9346 to 0 count too?),
598 // so we need to enter wait-for-command state here
599 eeprom->mode = Chip9346_enter_command_mode;
600 eeprom->input = 0;
601 eeprom->tick = 0;
602
603 DPRINTF("eeprom: +++ end of read, awaiting next command\n");
604 #else
605 // original behaviour
606 ++eeprom->address;
607 eeprom->address &= EEPROM_9346_ADDR_MASK;
608 eeprom->output = eeprom->contents[eeprom->address];
609 eeprom->tick = 0;
610
611 DPRINTF("eeprom: +++ read next address 0x%02x data=0x%04x\n",
612 eeprom->address, eeprom->output);
613 #endif
614 }
615 break;
616
617 case Chip9346_data_write:
618 eeprom->input = (eeprom->input << 1) | (bit & 1);
619 if (eeprom->tick == 16)
620 {
621 DPRINTF("eeprom write to address 0x%02x data=0x%04x\n",
622 eeprom->address, eeprom->input);
623
624 eeprom->contents[eeprom->address] = eeprom->input;
625 eeprom->mode = Chip9346_none; /* waiting for next command after CS cycle */
626 eeprom->tick = 0;
627 eeprom->input = 0;
628 }
629 break;
630
631 case Chip9346_data_write_all:
632 eeprom->input = (eeprom->input << 1) | (bit & 1);
633 if (eeprom->tick == 16)
634 {
635 int i;
636 for (i = 0; i < EEPROM_9346_SIZE; i++)
637 {
638 eeprom->contents[i] = eeprom->input;
639 }
640 DPRINTF("eeprom filled with data=0x%04x\n", eeprom->input);
641
642 eeprom->mode = Chip9346_enter_command_mode;
643 eeprom->tick = 0;
644 eeprom->input = 0;
645 }
646 break;
647
648 default:
649 break;
650 }
651 }
652
653 static int prom9346_get_wire(RTL8139State *s)
654 {
655 EEprom9346 *eeprom = &s->eeprom;
656 if (!eeprom->eecs)
657 return 0;
658
659 return eeprom->eedo;
660 }
661
662 /* FIXME: This should be merged into/replaced by eeprom93xx.c. */
663 static void prom9346_set_wire(RTL8139State *s, int eecs, int eesk, int eedi)
664 {
665 EEprom9346 *eeprom = &s->eeprom;
666 uint8_t old_eecs = eeprom->eecs;
667 uint8_t old_eesk = eeprom->eesk;
668
669 eeprom->eecs = eecs;
670 eeprom->eesk = eesk;
671 eeprom->eedi = eedi;
672
673 DPRINTF("eeprom: +++ wires CS=%d SK=%d DI=%d DO=%d\n", eeprom->eecs,
674 eeprom->eesk, eeprom->eedi, eeprom->eedo);
675
676 if (!old_eecs && eecs)
677 {
678 /* Synchronize start */
679 eeprom->tick = 0;
680 eeprom->input = 0;
681 eeprom->output = 0;
682 eeprom->mode = Chip9346_enter_command_mode;
683
684 DPRINTF("=== eeprom: begin access, enter command mode\n");
685 }
686
687 if (!eecs)
688 {
689 DPRINTF("=== eeprom: end access\n");
690 return;
691 }
692
693 if (!old_eesk && eesk)
694 {
695 /* SK front rules */
696 prom9346_shift_clock(eeprom);
697 }
698 }
699
700 static void rtl8139_update_irq(RTL8139State *s)
701 {
702 int isr;
703 isr = (s->IntrStatus & s->IntrMask) & 0xffff;
704
705 DPRINTF("Set IRQ to %d (%04x %04x)\n", isr ? 1 : 0, s->IntrStatus,
706 s->IntrMask);
707
708 qemu_set_irq(s->dev.irq[0], (isr != 0));
709 }
710
711 #define POLYNOMIAL 0x04c11db6
712
713 /* From FreeBSD */
714 /* XXX: optimize */
715 static int compute_mcast_idx(const uint8_t *ep)
716 {
717 uint32_t crc;
718 int carry, i, j;
719 uint8_t b;
720
721 crc = 0xffffffff;
722 for (i = 0; i < 6; i++) {
723 b = *ep++;
724 for (j = 0; j < 8; j++) {
725 carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
726 crc <<= 1;
727 b >>= 1;
728 if (carry)
729 crc = ((crc ^ POLYNOMIAL) | carry);
730 }
731 }
732 return (crc >> 26);
733 }
734
735 static int rtl8139_RxWrap(RTL8139State *s)
736 {
737 /* wrapping enabled; assume 1.5k more buffer space if size < 65536 */
738 return (s->RxConfig & (1 << 7));
739 }
740
741 static int rtl8139_receiver_enabled(RTL8139State *s)
742 {
743 return s->bChipCmdState & CmdRxEnb;
744 }
745
746 static int rtl8139_transmitter_enabled(RTL8139State *s)
747 {
748 return s->bChipCmdState & CmdTxEnb;
749 }
750
751 static int rtl8139_cp_receiver_enabled(RTL8139State *s)
752 {
753 return s->CpCmd & CPlusRxEnb;
754 }
755
756 static int rtl8139_cp_transmitter_enabled(RTL8139State *s)
757 {
758 return s->CpCmd & CPlusTxEnb;
759 }
760
761 static void rtl8139_write_buffer(RTL8139State *s, const void *buf, int size)
762 {
763 if (s->RxBufAddr + size > s->RxBufferSize)
764 {
765 int wrapped = MOD2(s->RxBufAddr + size, s->RxBufferSize);
766
767 /* write packet data */
768 if (wrapped && !(s->RxBufferSize < 65536 && rtl8139_RxWrap(s)))
769 {
770 DPRINTF(">>> rx packet wrapped in buffer at %d\n", size - wrapped);
771
772 if (size > wrapped)
773 {
774 pci_dma_write(&s->dev, s->RxBuf + s->RxBufAddr,
775 buf, size-wrapped);
776 }
777
778 /* reset buffer pointer */
779 s->RxBufAddr = 0;
780
781 pci_dma_write(&s->dev, s->RxBuf + s->RxBufAddr,
782 buf + (size-wrapped), wrapped);
783
784 s->RxBufAddr = wrapped;
785
786 return;
787 }
788 }
789
790 /* non-wrapping path or overwrapping enabled */
791 pci_dma_write(&s->dev, s->RxBuf + s->RxBufAddr, buf, size);
792
793 s->RxBufAddr += size;
794 }
795
796 #define MIN_BUF_SIZE 60
797 static inline dma_addr_t rtl8139_addr64(uint32_t low, uint32_t high)
798 {
799 #if TARGET_PHYS_ADDR_BITS > 32
800 return low | ((target_phys_addr_t)high << 32);
801 #else
802 return low;
803 #endif
804 }
805
806 static int rtl8139_can_receive(VLANClientState *nc)
807 {
808 RTL8139State *s = DO_UPCAST(NICState, nc, nc)->opaque;
809 int avail;
810
811 /* Receive (drop) packets if card is disabled. */
812 if (!s->clock_enabled)
813 return 1;
814 if (!rtl8139_receiver_enabled(s))
815 return 1;
816
817 if (rtl8139_cp_receiver_enabled(s)) {
818 /* ??? Flow control not implemented in c+ mode.
819 This is a hack to work around slirp deficiencies anyway. */
820 return 1;
821 } else {
822 avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr,
823 s->RxBufferSize);
824 return (avail == 0 || avail >= 1514);
825 }
826 }
827
828 static ssize_t rtl8139_do_receive(VLANClientState *nc, const uint8_t *buf, size_t size_, int do_interrupt)
829 {
830 RTL8139State *s = DO_UPCAST(NICState, nc, nc)->opaque;
831 /* size is the length of the buffer passed to the driver */
832 int size = size_;
833 const uint8_t *dot1q_buf = NULL;
834
835 uint32_t packet_header = 0;
836
837 uint8_t buf1[MIN_BUF_SIZE + VLAN_HLEN];
838 static const uint8_t broadcast_macaddr[6] =
839 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
840
841 DPRINTF(">>> received len=%d\n", size);
842
843 /* test if board clock is stopped */
844 if (!s->clock_enabled)
845 {
846 DPRINTF("stopped ==========================\n");
847 return -1;
848 }
849
850 /* first check if receiver is enabled */
851
852 if (!rtl8139_receiver_enabled(s))
853 {
854 DPRINTF("receiver disabled ================\n");
855 return -1;
856 }
857
858 /* XXX: check this */
859 if (s->RxConfig & AcceptAllPhys) {
860 /* promiscuous: receive all */
861 DPRINTF(">>> packet received in promiscuous mode\n");
862
863 } else {
864 if (!memcmp(buf, broadcast_macaddr, 6)) {
865 /* broadcast address */
866 if (!(s->RxConfig & AcceptBroadcast))
867 {
868 DPRINTF(">>> broadcast packet rejected\n");
869
870 /* update tally counter */
871 ++s->tally_counters.RxERR;
872
873 return size;
874 }
875
876 packet_header |= RxBroadcast;
877
878 DPRINTF(">>> broadcast packet received\n");
879
880 /* update tally counter */
881 ++s->tally_counters.RxOkBrd;
882
883 } else if (buf[0] & 0x01) {
884 /* multicast */
885 if (!(s->RxConfig & AcceptMulticast))
886 {
887 DPRINTF(">>> multicast packet rejected\n");
888
889 /* update tally counter */
890 ++s->tally_counters.RxERR;
891
892 return size;
893 }
894
895 int mcast_idx = compute_mcast_idx(buf);
896
897 if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
898 {
899 DPRINTF(">>> multicast address mismatch\n");
900
901 /* update tally counter */
902 ++s->tally_counters.RxERR;
903
904 return size;
905 }
906
907 packet_header |= RxMulticast;
908
909 DPRINTF(">>> multicast packet received\n");
910
911 /* update tally counter */
912 ++s->tally_counters.RxOkMul;
913
914 } else if (s->phys[0] == buf[0] &&
915 s->phys[1] == buf[1] &&
916 s->phys[2] == buf[2] &&
917 s->phys[3] == buf[3] &&
918 s->phys[4] == buf[4] &&
919 s->phys[5] == buf[5]) {
920 /* match */
921 if (!(s->RxConfig & AcceptMyPhys))
922 {
923 DPRINTF(">>> rejecting physical address matching packet\n");
924
925 /* update tally counter */
926 ++s->tally_counters.RxERR;
927
928 return size;
929 }
930
931 packet_header |= RxPhysical;
932
933 DPRINTF(">>> physical address matching packet received\n");
934
935 /* update tally counter */
936 ++s->tally_counters.RxOkPhy;
937
938 } else {
939
940 DPRINTF(">>> unknown packet\n");
941
942 /* update tally counter */
943 ++s->tally_counters.RxERR;
944
945 return size;
946 }
947 }
948
949 /* if too small buffer, then expand it
950 * Include some tailroom in case a vlan tag is later removed. */
951 if (size < MIN_BUF_SIZE + VLAN_HLEN) {
952 memcpy(buf1, buf, size);
953 memset(buf1 + size, 0, MIN_BUF_SIZE + VLAN_HLEN - size);
954 buf = buf1;
955 if (size < MIN_BUF_SIZE) {
956 size = MIN_BUF_SIZE;
957 }
958 }
959
960 if (rtl8139_cp_receiver_enabled(s))
961 {
962 DPRINTF("in C+ Rx mode ================\n");
963
964 /* begin C+ receiver mode */
965
966 /* w0 ownership flag */
967 #define CP_RX_OWN (1<<31)
968 /* w0 end of ring flag */
969 #define CP_RX_EOR (1<<30)
970 /* w0 bits 0...12 : buffer size */
971 #define CP_RX_BUFFER_SIZE_MASK ((1<<13) - 1)
972 /* w1 tag available flag */
973 #define CP_RX_TAVA (1<<16)
974 /* w1 bits 0...15 : VLAN tag */
975 #define CP_RX_VLAN_TAG_MASK ((1<<16) - 1)
976 /* w2 low 32bit of Rx buffer ptr */
977 /* w3 high 32bit of Rx buffer ptr */
978
979 int descriptor = s->currCPlusRxDesc;
980 dma_addr_t cplus_rx_ring_desc;
981
982 cplus_rx_ring_desc = rtl8139_addr64(s->RxRingAddrLO, s->RxRingAddrHI);
983 cplus_rx_ring_desc += 16 * descriptor;
984
985 DPRINTF("+++ C+ mode reading RX descriptor %d from host memory at "
986 "%08x %08x = "DMA_ADDR_FMT"\n", descriptor, s->RxRingAddrHI,
987 s->RxRingAddrLO, cplus_rx_ring_desc);
988
989 uint32_t val, rxdw0,rxdw1,rxbufLO,rxbufHI;
990
991 pci_dma_read(&s->dev, cplus_rx_ring_desc, &val, 4);
992 rxdw0 = le32_to_cpu(val);
993 pci_dma_read(&s->dev, cplus_rx_ring_desc+4, &val, 4);
994 rxdw1 = le32_to_cpu(val);
995 pci_dma_read(&s->dev, cplus_rx_ring_desc+8, &val, 4);
996 rxbufLO = le32_to_cpu(val);
997 pci_dma_read(&s->dev, cplus_rx_ring_desc+12, &val, 4);
998 rxbufHI = le32_to_cpu(val);
999
1000 DPRINTF("+++ C+ mode RX descriptor %d %08x %08x %08x %08x\n",
1001 descriptor, rxdw0, rxdw1, rxbufLO, rxbufHI);
1002
1003 if (!(rxdw0 & CP_RX_OWN))
1004 {
1005 DPRINTF("C+ Rx mode : descriptor %d is owned by host\n",
1006 descriptor);
1007
1008 s->IntrStatus |= RxOverflow;
1009 ++s->RxMissed;
1010
1011 /* update tally counter */
1012 ++s->tally_counters.RxERR;
1013 ++s->tally_counters.MissPkt;
1014
1015 rtl8139_update_irq(s);
1016 return size_;
1017 }
1018
1019 uint32_t rx_space = rxdw0 & CP_RX_BUFFER_SIZE_MASK;
1020
1021 /* write VLAN info to descriptor variables. */
1022 if (s->CpCmd & CPlusRxVLAN && be16_to_cpup((uint16_t *)
1023 &buf[ETHER_ADDR_LEN * 2]) == ETH_P_8021Q) {
1024 dot1q_buf = &buf[ETHER_ADDR_LEN * 2];
1025 size -= VLAN_HLEN;
1026 /* if too small buffer, use the tailroom added duing expansion */
1027 if (size < MIN_BUF_SIZE) {
1028 size = MIN_BUF_SIZE;
1029 }
1030
1031 rxdw1 &= ~CP_RX_VLAN_TAG_MASK;
1032 /* BE + ~le_to_cpu()~ + cpu_to_le() = BE */
1033 rxdw1 |= CP_RX_TAVA | le16_to_cpup((uint16_t *)
1034 &dot1q_buf[ETHER_TYPE_LEN]);
1035
1036 DPRINTF("C+ Rx mode : extracted vlan tag with tci: ""%u\n",
1037 be16_to_cpup((uint16_t *)&dot1q_buf[ETHER_TYPE_LEN]));
1038 } else {
1039 /* reset VLAN tag flag */
1040 rxdw1 &= ~CP_RX_TAVA;
1041 }
1042
1043 /* TODO: scatter the packet over available receive ring descriptors space */
1044
1045 if (size+4 > rx_space)
1046 {
1047 DPRINTF("C+ Rx mode : descriptor %d size %d received %d + 4\n",
1048 descriptor, rx_space, size);
1049
1050 s->IntrStatus |= RxOverflow;
1051 ++s->RxMissed;
1052
1053 /* update tally counter */
1054 ++s->tally_counters.RxERR;
1055 ++s->tally_counters.MissPkt;
1056
1057 rtl8139_update_irq(s);
1058 return size_;
1059 }
1060
1061 dma_addr_t rx_addr = rtl8139_addr64(rxbufLO, rxbufHI);
1062
1063 /* receive/copy to target memory */
1064 if (dot1q_buf) {
1065 pci_dma_write(&s->dev, rx_addr, buf, 2 * ETHER_ADDR_LEN);
1066 pci_dma_write(&s->dev, rx_addr + 2 * ETHER_ADDR_LEN,
1067 buf + 2 * ETHER_ADDR_LEN + VLAN_HLEN,
1068 size - 2 * ETHER_ADDR_LEN);
1069 } else {
1070 pci_dma_write(&s->dev, rx_addr, buf, size);
1071 }
1072
1073 if (s->CpCmd & CPlusRxChkSum)
1074 {
1075 /* do some packet checksumming */
1076 }
1077
1078 /* write checksum */
1079 val = cpu_to_le32(crc32(0, buf, size_));
1080 pci_dma_write(&s->dev, rx_addr+size, (uint8_t *)&val, 4);
1081
1082 /* first segment of received packet flag */
1083 #define CP_RX_STATUS_FS (1<<29)
1084 /* last segment of received packet flag */
1085 #define CP_RX_STATUS_LS (1<<28)
1086 /* multicast packet flag */
1087 #define CP_RX_STATUS_MAR (1<<26)
1088 /* physical-matching packet flag */
1089 #define CP_RX_STATUS_PAM (1<<25)
1090 /* broadcast packet flag */
1091 #define CP_RX_STATUS_BAR (1<<24)
1092 /* runt packet flag */
1093 #define CP_RX_STATUS_RUNT (1<<19)
1094 /* crc error flag */
1095 #define CP_RX_STATUS_CRC (1<<18)
1096 /* IP checksum error flag */
1097 #define CP_RX_STATUS_IPF (1<<15)
1098 /* UDP checksum error flag */
1099 #define CP_RX_STATUS_UDPF (1<<14)
1100 /* TCP checksum error flag */
1101 #define CP_RX_STATUS_TCPF (1<<13)
1102
1103 /* transfer ownership to target */
1104 rxdw0 &= ~CP_RX_OWN;
1105
1106 /* set first segment bit */
1107 rxdw0 |= CP_RX_STATUS_FS;
1108
1109 /* set last segment bit */
1110 rxdw0 |= CP_RX_STATUS_LS;
1111
1112 /* set received packet type flags */
1113 if (packet_header & RxBroadcast)
1114 rxdw0 |= CP_RX_STATUS_BAR;
1115 if (packet_header & RxMulticast)
1116 rxdw0 |= CP_RX_STATUS_MAR;
1117 if (packet_header & RxPhysical)
1118 rxdw0 |= CP_RX_STATUS_PAM;
1119
1120 /* set received size */
1121 rxdw0 &= ~CP_RX_BUFFER_SIZE_MASK;
1122 rxdw0 |= (size+4);
1123
1124 /* update ring data */
1125 val = cpu_to_le32(rxdw0);
1126 pci_dma_write(&s->dev, cplus_rx_ring_desc, (uint8_t *)&val, 4);
1127 val = cpu_to_le32(rxdw1);
1128 pci_dma_write(&s->dev, cplus_rx_ring_desc+4, (uint8_t *)&val, 4);
1129
1130 /* update tally counter */
1131 ++s->tally_counters.RxOk;
1132
1133 /* seek to next Rx descriptor */
1134 if (rxdw0 & CP_RX_EOR)
1135 {
1136 s->currCPlusRxDesc = 0;
1137 }
1138 else
1139 {
1140 ++s->currCPlusRxDesc;
1141 }
1142
1143 DPRINTF("done C+ Rx mode ----------------\n");
1144
1145 }
1146 else
1147 {
1148 DPRINTF("in ring Rx mode ================\n");
1149
1150 /* begin ring receiver mode */
1151 int avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr, s->RxBufferSize);
1152
1153 /* if receiver buffer is empty then avail == 0 */
1154
1155 if (avail != 0 && size + 8 >= avail)
1156 {
1157 DPRINTF("rx overflow: rx buffer length %d head 0x%04x "
1158 "read 0x%04x === available 0x%04x need 0x%04x\n",
1159 s->RxBufferSize, s->RxBufAddr, s->RxBufPtr, avail, size + 8);
1160
1161 s->IntrStatus |= RxOverflow;
1162 ++s->RxMissed;
1163 rtl8139_update_irq(s);
1164 return size_;
1165 }
1166
1167 packet_header |= RxStatusOK;
1168
1169 packet_header |= (((size+4) << 16) & 0xffff0000);
1170
1171 /* write header */
1172 uint32_t val = cpu_to_le32(packet_header);
1173
1174 rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1175
1176 rtl8139_write_buffer(s, buf, size);
1177
1178 /* write checksum */
1179 val = cpu_to_le32(crc32(0, buf, size));
1180 rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1181
1182 /* correct buffer write pointer */
1183 s->RxBufAddr = MOD2((s->RxBufAddr + 3) & ~0x3, s->RxBufferSize);
1184
1185 /* now we can signal we have received something */
1186
1187 DPRINTF("received: rx buffer length %d head 0x%04x read 0x%04x\n",
1188 s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
1189 }
1190
1191 s->IntrStatus |= RxOK;
1192
1193 if (do_interrupt)
1194 {
1195 rtl8139_update_irq(s);
1196 }
1197
1198 return size_;
1199 }
1200
1201 static ssize_t rtl8139_receive(VLANClientState *nc, const uint8_t *buf, size_t size)
1202 {
1203 return rtl8139_do_receive(nc, buf, size, 1);
1204 }
1205
1206 static void rtl8139_reset_rxring(RTL8139State *s, uint32_t bufferSize)
1207 {
1208 s->RxBufferSize = bufferSize;
1209 s->RxBufPtr = 0;
1210 s->RxBufAddr = 0;
1211 }
1212
1213 static void rtl8139_reset(DeviceState *d)
1214 {
1215 RTL8139State *s = container_of(d, RTL8139State, dev.qdev);
1216 int i;
1217
1218 /* restore MAC address */
1219 memcpy(s->phys, s->conf.macaddr.a, 6);
1220
1221 /* reset interrupt mask */
1222 s->IntrStatus = 0;
1223 s->IntrMask = 0;
1224
1225 rtl8139_update_irq(s);
1226
1227 /* mark all status registers as owned by host */
1228 for (i = 0; i < 4; ++i)
1229 {
1230 s->TxStatus[i] = TxHostOwns;
1231 }
1232
1233 s->currTxDesc = 0;
1234 s->currCPlusRxDesc = 0;
1235 s->currCPlusTxDesc = 0;
1236
1237 s->RxRingAddrLO = 0;
1238 s->RxRingAddrHI = 0;
1239
1240 s->RxBuf = 0;
1241
1242 rtl8139_reset_rxring(s, 8192);
1243
1244 /* ACK the reset */
1245 s->TxConfig = 0;
1246
1247 #if 0
1248 // s->TxConfig |= HW_REVID(1, 0, 0, 0, 0, 0, 0); // RTL-8139 HasHltClk
1249 s->clock_enabled = 0;
1250 #else
1251 s->TxConfig |= HW_REVID(1, 1, 1, 0, 1, 1, 0); // RTL-8139C+ HasLWake
1252 s->clock_enabled = 1;
1253 #endif
1254
1255 s->bChipCmdState = CmdReset; /* RxBufEmpty bit is calculated on read from ChipCmd */;
1256
1257 /* set initial state data */
1258 s->Config0 = 0x0; /* No boot ROM */
1259 s->Config1 = 0xC; /* IO mapped and MEM mapped registers available */
1260 s->Config3 = 0x1; /* fast back-to-back compatible */
1261 s->Config5 = 0x0;
1262
1263 s->CSCR = CSCR_F_LINK_100 | CSCR_HEART_BIT | CSCR_LD;
1264
1265 s->CpCmd = 0x0; /* reset C+ mode */
1266 s->cplus_enabled = 0;
1267
1268
1269 // s->BasicModeCtrl = 0x3100; // 100Mbps, full duplex, autonegotiation
1270 // s->BasicModeCtrl = 0x2100; // 100Mbps, full duplex
1271 s->BasicModeCtrl = 0x1000; // autonegotiation
1272
1273 s->BasicModeStatus = 0x7809;
1274 //s->BasicModeStatus |= 0x0040; /* UTP medium */
1275 s->BasicModeStatus |= 0x0020; /* autonegotiation completed */
1276 s->BasicModeStatus |= 0x0004; /* link is up */
1277
1278 s->NWayAdvert = 0x05e1; /* all modes, full duplex */
1279 s->NWayLPAR = 0x05e1; /* all modes, full duplex */
1280 s->NWayExpansion = 0x0001; /* autonegotiation supported */
1281
1282 /* also reset timer and disable timer interrupt */
1283 s->TCTR = 0;
1284 s->TimerInt = 0;
1285 s->TCTR_base = 0;
1286
1287 /* reset tally counters */
1288 RTL8139TallyCounters_clear(&s->tally_counters);
1289 }
1290
1291 static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters)
1292 {
1293 counters->TxOk = 0;
1294 counters->RxOk = 0;
1295 counters->TxERR = 0;
1296 counters->RxERR = 0;
1297 counters->MissPkt = 0;
1298 counters->FAE = 0;
1299 counters->Tx1Col = 0;
1300 counters->TxMCol = 0;
1301 counters->RxOkPhy = 0;
1302 counters->RxOkBrd = 0;
1303 counters->RxOkMul = 0;
1304 counters->TxAbt = 0;
1305 counters->TxUndrn = 0;
1306 }
1307
1308 static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr)
1309 {
1310 RTL8139TallyCounters *tally_counters = &s->tally_counters;
1311 uint16_t val16;
1312 uint32_t val32;
1313 uint64_t val64;
1314
1315 val64 = cpu_to_le64(tally_counters->TxOk);
1316 pci_dma_write(&s->dev, tc_addr + 0, (uint8_t *)&val64, 8);
1317
1318 val64 = cpu_to_le64(tally_counters->RxOk);
1319 pci_dma_write(&s->dev, tc_addr + 8, (uint8_t *)&val64, 8);
1320
1321 val64 = cpu_to_le64(tally_counters->TxERR);
1322 pci_dma_write(&s->dev, tc_addr + 16, (uint8_t *)&val64, 8);
1323
1324 val32 = cpu_to_le32(tally_counters->RxERR);
1325 pci_dma_write(&s->dev, tc_addr + 24, (uint8_t *)&val32, 4);
1326
1327 val16 = cpu_to_le16(tally_counters->MissPkt);
1328 pci_dma_write(&s->dev, tc_addr + 28, (uint8_t *)&val16, 2);
1329
1330 val16 = cpu_to_le16(tally_counters->FAE);
1331 pci_dma_write(&s->dev, tc_addr + 30, (uint8_t *)&val16, 2);
1332
1333 val32 = cpu_to_le32(tally_counters->Tx1Col);
1334 pci_dma_write(&s->dev, tc_addr + 32, (uint8_t *)&val32, 4);
1335
1336 val32 = cpu_to_le32(tally_counters->TxMCol);
1337 pci_dma_write(&s->dev, tc_addr + 36, (uint8_t *)&val32, 4);
1338
1339 val64 = cpu_to_le64(tally_counters->RxOkPhy);
1340 pci_dma_write(&s->dev, tc_addr + 40, (uint8_t *)&val64, 8);
1341
1342 val64 = cpu_to_le64(tally_counters->RxOkBrd);
1343 pci_dma_write(&s->dev, tc_addr + 48, (uint8_t *)&val64, 8);
1344
1345 val32 = cpu_to_le32(tally_counters->RxOkMul);
1346 pci_dma_write(&s->dev, tc_addr + 56, (uint8_t *)&val32, 4);
1347
1348 val16 = cpu_to_le16(tally_counters->TxAbt);
1349 pci_dma_write(&s->dev, tc_addr + 60, (uint8_t *)&val16, 2);
1350
1351 val16 = cpu_to_le16(tally_counters->TxUndrn);
1352 pci_dma_write(&s->dev, tc_addr + 62, (uint8_t *)&val16, 2);
1353 }
1354
1355 /* Loads values of tally counters from VM state file */
1356
1357 static const VMStateDescription vmstate_tally_counters = {
1358 .name = "tally_counters",
1359 .version_id = 1,
1360 .minimum_version_id = 1,
1361 .minimum_version_id_old = 1,
1362 .fields = (VMStateField []) {
1363 VMSTATE_UINT64(TxOk, RTL8139TallyCounters),
1364 VMSTATE_UINT64(RxOk, RTL8139TallyCounters),
1365 VMSTATE_UINT64(TxERR, RTL8139TallyCounters),
1366 VMSTATE_UINT32(RxERR, RTL8139TallyCounters),
1367 VMSTATE_UINT16(MissPkt, RTL8139TallyCounters),
1368 VMSTATE_UINT16(FAE, RTL8139TallyCounters),
1369 VMSTATE_UINT32(Tx1Col, RTL8139TallyCounters),
1370 VMSTATE_UINT32(TxMCol, RTL8139TallyCounters),
1371 VMSTATE_UINT64(RxOkPhy, RTL8139TallyCounters),
1372 VMSTATE_UINT64(RxOkBrd, RTL8139TallyCounters),
1373 VMSTATE_UINT16(TxAbt, RTL8139TallyCounters),
1374 VMSTATE_UINT16(TxUndrn, RTL8139TallyCounters),
1375 VMSTATE_END_OF_LIST()
1376 }
1377 };
1378
1379 static void rtl8139_ChipCmd_write(RTL8139State *s, uint32_t val)
1380 {
1381 val &= 0xff;
1382
1383 DPRINTF("ChipCmd write val=0x%08x\n", val);
1384
1385 if (val & CmdReset)
1386 {
1387 DPRINTF("ChipCmd reset\n");
1388 rtl8139_reset(&s->dev.qdev);
1389 }
1390 if (val & CmdRxEnb)
1391 {
1392 DPRINTF("ChipCmd enable receiver\n");
1393
1394 s->currCPlusRxDesc = 0;
1395 }
1396 if (val & CmdTxEnb)
1397 {
1398 DPRINTF("ChipCmd enable transmitter\n");
1399
1400 s->currCPlusTxDesc = 0;
1401 }
1402
1403 /* mask unwritable bits */
1404 val = SET_MASKED(val, 0xe3, s->bChipCmdState);
1405
1406 /* Deassert reset pin before next read */
1407 val &= ~CmdReset;
1408
1409 s->bChipCmdState = val;
1410 }
1411
1412 static int rtl8139_RxBufferEmpty(RTL8139State *s)
1413 {
1414 int unread = MOD2(s->RxBufferSize + s->RxBufAddr - s->RxBufPtr, s->RxBufferSize);
1415
1416 if (unread != 0)
1417 {
1418 DPRINTF("receiver buffer data available 0x%04x\n", unread);
1419 return 0;
1420 }
1421
1422 DPRINTF("receiver buffer is empty\n");
1423
1424 return 1;
1425 }
1426
1427 static uint32_t rtl8139_ChipCmd_read(RTL8139State *s)
1428 {
1429 uint32_t ret = s->bChipCmdState;
1430
1431 if (rtl8139_RxBufferEmpty(s))
1432 ret |= RxBufEmpty;
1433
1434 DPRINTF("ChipCmd read val=0x%04x\n", ret);
1435
1436 return ret;
1437 }
1438
1439 static void rtl8139_CpCmd_write(RTL8139State *s, uint32_t val)
1440 {
1441 val &= 0xffff;
1442
1443 DPRINTF("C+ command register write(w) val=0x%04x\n", val);
1444
1445 s->cplus_enabled = 1;
1446
1447 /* mask unwritable bits */
1448 val = SET_MASKED(val, 0xff84, s->CpCmd);
1449
1450 s->CpCmd = val;
1451 }
1452
1453 static uint32_t rtl8139_CpCmd_read(RTL8139State *s)
1454 {
1455 uint32_t ret = s->CpCmd;
1456
1457 DPRINTF("C+ command register read(w) val=0x%04x\n", ret);
1458
1459 return ret;
1460 }
1461
1462 static void rtl8139_IntrMitigate_write(RTL8139State *s, uint32_t val)
1463 {
1464 DPRINTF("C+ IntrMitigate register write(w) val=0x%04x\n", val);
1465 }
1466
1467 static uint32_t rtl8139_IntrMitigate_read(RTL8139State *s)
1468 {
1469 uint32_t ret = 0;
1470
1471 DPRINTF("C+ IntrMitigate register read(w) val=0x%04x\n", ret);
1472
1473 return ret;
1474 }
1475
1476 static int rtl8139_config_writable(RTL8139State *s)
1477 {
1478 if (s->Cfg9346 & Cfg9346_Unlock)
1479 {
1480 return 1;
1481 }
1482
1483 DPRINTF("Configuration registers are write-protected\n");
1484
1485 return 0;
1486 }
1487
1488 static void rtl8139_BasicModeCtrl_write(RTL8139State *s, uint32_t val)
1489 {
1490 val &= 0xffff;
1491
1492 DPRINTF("BasicModeCtrl register write(w) val=0x%04x\n", val);
1493
1494 /* mask unwritable bits */
1495 uint32_t mask = 0x4cff;
1496
1497 if (1 || !rtl8139_config_writable(s))
1498 {
1499 /* Speed setting and autonegotiation enable bits are read-only */
1500 mask |= 0x3000;
1501 /* Duplex mode setting is read-only */
1502 mask |= 0x0100;
1503 }
1504
1505 val = SET_MASKED(val, mask, s->BasicModeCtrl);
1506
1507 s->BasicModeCtrl = val;
1508 }
1509
1510 static uint32_t rtl8139_BasicModeCtrl_read(RTL8139State *s)
1511 {
1512 uint32_t ret = s->BasicModeCtrl;
1513
1514 DPRINTF("BasicModeCtrl register read(w) val=0x%04x\n", ret);
1515
1516 return ret;
1517 }
1518
1519 static void rtl8139_BasicModeStatus_write(RTL8139State *s, uint32_t val)
1520 {
1521 val &= 0xffff;
1522
1523 DPRINTF("BasicModeStatus register write(w) val=0x%04x\n", val);
1524
1525 /* mask unwritable bits */
1526 val = SET_MASKED(val, 0xff3f, s->BasicModeStatus);
1527
1528 s->BasicModeStatus = val;
1529 }
1530
1531 static uint32_t rtl8139_BasicModeStatus_read(RTL8139State *s)
1532 {
1533 uint32_t ret = s->BasicModeStatus;
1534
1535 DPRINTF("BasicModeStatus register read(w) val=0x%04x\n", ret);
1536
1537 return ret;
1538 }
1539
1540 static void rtl8139_Cfg9346_write(RTL8139State *s, uint32_t val)
1541 {
1542 val &= 0xff;
1543
1544 DPRINTF("Cfg9346 write val=0x%02x\n", val);
1545
1546 /* mask unwritable bits */
1547 val = SET_MASKED(val, 0x31, s->Cfg9346);
1548
1549 uint32_t opmode = val & 0xc0;
1550 uint32_t eeprom_val = val & 0xf;
1551
1552 if (opmode == 0x80) {
1553 /* eeprom access */
1554 int eecs = (eeprom_val & 0x08)?1:0;
1555 int eesk = (eeprom_val & 0x04)?1:0;
1556 int eedi = (eeprom_val & 0x02)?1:0;
1557 prom9346_set_wire(s, eecs, eesk, eedi);
1558 } else if (opmode == 0x40) {
1559 /* Reset. */
1560 val = 0;
1561 rtl8139_reset(&s->dev.qdev);
1562 }
1563
1564 s->Cfg9346 = val;
1565 }
1566
1567 static uint32_t rtl8139_Cfg9346_read(RTL8139State *s)
1568 {
1569 uint32_t ret = s->Cfg9346;
1570
1571 uint32_t opmode = ret & 0xc0;
1572
1573 if (opmode == 0x80)
1574 {
1575 /* eeprom access */
1576 int eedo = prom9346_get_wire(s);
1577 if (eedo)
1578 {
1579 ret |= 0x01;
1580 }
1581 else
1582 {
1583 ret &= ~0x01;
1584 }
1585 }
1586
1587 DPRINTF("Cfg9346 read val=0x%02x\n", ret);
1588
1589 return ret;
1590 }
1591
1592 static void rtl8139_Config0_write(RTL8139State *s, uint32_t val)
1593 {
1594 val &= 0xff;
1595
1596 DPRINTF("Config0 write val=0x%02x\n", val);
1597
1598 if (!rtl8139_config_writable(s)) {
1599 return;
1600 }
1601
1602 /* mask unwritable bits */
1603 val = SET_MASKED(val, 0xf8, s->Config0);
1604
1605 s->Config0 = val;
1606 }
1607
1608 static uint32_t rtl8139_Config0_read(RTL8139State *s)
1609 {
1610 uint32_t ret = s->Config0;
1611
1612 DPRINTF("Config0 read val=0x%02x\n", ret);
1613
1614 return ret;
1615 }
1616
1617 static void rtl8139_Config1_write(RTL8139State *s, uint32_t val)
1618 {
1619 val &= 0xff;
1620
1621 DPRINTF("Config1 write val=0x%02x\n", val);
1622
1623 if (!rtl8139_config_writable(s)) {
1624 return;
1625 }
1626
1627 /* mask unwritable bits */
1628 val = SET_MASKED(val, 0xC, s->Config1);
1629
1630 s->Config1 = val;
1631 }
1632
1633 static uint32_t rtl8139_Config1_read(RTL8139State *s)
1634 {
1635 uint32_t ret = s->Config1;
1636
1637 DPRINTF("Config1 read val=0x%02x\n", ret);
1638
1639 return ret;
1640 }
1641
1642 static void rtl8139_Config3_write(RTL8139State *s, uint32_t val)
1643 {
1644 val &= 0xff;
1645
1646 DPRINTF("Config3 write val=0x%02x\n", val);
1647
1648 if (!rtl8139_config_writable(s)) {
1649 return;
1650 }
1651
1652 /* mask unwritable bits */
1653 val = SET_MASKED(val, 0x8F, s->Config3);
1654
1655 s->Config3 = val;
1656 }
1657
1658 static uint32_t rtl8139_Config3_read(RTL8139State *s)
1659 {
1660 uint32_t ret = s->Config3;
1661
1662 DPRINTF("Config3 read val=0x%02x\n", ret);
1663
1664 return ret;
1665 }
1666
1667 static void rtl8139_Config4_write(RTL8139State *s, uint32_t val)
1668 {
1669 val &= 0xff;
1670
1671 DPRINTF("Config4 write val=0x%02x\n", val);
1672
1673 if (!rtl8139_config_writable(s)) {
1674 return;
1675 }
1676
1677 /* mask unwritable bits */
1678 val = SET_MASKED(val, 0x0a, s->Config4);
1679
1680 s->Config4 = val;
1681 }
1682
1683 static uint32_t rtl8139_Config4_read(RTL8139State *s)
1684 {
1685 uint32_t ret = s->Config4;
1686
1687 DPRINTF("Config4 read val=0x%02x\n", ret);
1688
1689 return ret;
1690 }
1691
1692 static void rtl8139_Config5_write(RTL8139State *s, uint32_t val)
1693 {
1694 val &= 0xff;
1695
1696 DPRINTF("Config5 write val=0x%02x\n", val);
1697
1698 /* mask unwritable bits */
1699 val = SET_MASKED(val, 0x80, s->Config5);
1700
1701 s->Config5 = val;
1702 }
1703
1704 static uint32_t rtl8139_Config5_read(RTL8139State *s)
1705 {
1706 uint32_t ret = s->Config5;
1707
1708 DPRINTF("Config5 read val=0x%02x\n", ret);
1709
1710 return ret;
1711 }
1712
1713 static void rtl8139_TxConfig_write(RTL8139State *s, uint32_t val)
1714 {
1715 if (!rtl8139_transmitter_enabled(s))
1716 {
1717 DPRINTF("transmitter disabled; no TxConfig write val=0x%08x\n", val);
1718 return;
1719 }
1720
1721 DPRINTF("TxConfig write val=0x%08x\n", val);
1722
1723 val = SET_MASKED(val, TxVersionMask | 0x8070f80f, s->TxConfig);
1724
1725 s->TxConfig = val;
1726 }
1727
1728 static void rtl8139_TxConfig_writeb(RTL8139State *s, uint32_t val)
1729 {
1730 DPRINTF("RTL8139C TxConfig via write(b) val=0x%02x\n", val);
1731
1732 uint32_t tc = s->TxConfig;
1733 tc &= 0xFFFFFF00;
1734 tc |= (val & 0x000000FF);
1735 rtl8139_TxConfig_write(s, tc);
1736 }
1737
1738 static uint32_t rtl8139_TxConfig_read(RTL8139State *s)
1739 {
1740 uint32_t ret = s->TxConfig;
1741
1742 DPRINTF("TxConfig read val=0x%04x\n", ret);
1743
1744 return ret;
1745 }
1746
1747 static void rtl8139_RxConfig_write(RTL8139State *s, uint32_t val)
1748 {
1749 DPRINTF("RxConfig write val=0x%08x\n", val);
1750
1751 /* mask unwritable bits */
1752 val = SET_MASKED(val, 0xf0fc0040, s->RxConfig);
1753
1754 s->RxConfig = val;
1755
1756 /* reset buffer size and read/write pointers */
1757 rtl8139_reset_rxring(s, 8192 << ((s->RxConfig >> 11) & 0x3));
1758
1759 DPRINTF("RxConfig write reset buffer size to %d\n", s->RxBufferSize);
1760 }
1761
1762 static uint32_t rtl8139_RxConfig_read(RTL8139State *s)
1763 {
1764 uint32_t ret = s->RxConfig;
1765
1766 DPRINTF("RxConfig read val=0x%08x\n", ret);
1767
1768 return ret;
1769 }
1770
1771 static void rtl8139_transfer_frame(RTL8139State *s, uint8_t *buf, int size,
1772 int do_interrupt, const uint8_t *dot1q_buf)
1773 {
1774 struct iovec *iov = NULL;
1775
1776 if (!size)
1777 {
1778 DPRINTF("+++ empty ethernet frame\n");
1779 return;
1780 }
1781
1782 if (dot1q_buf && size >= ETHER_ADDR_LEN * 2) {
1783 iov = (struct iovec[3]) {
1784 { .iov_base = buf, .iov_len = ETHER_ADDR_LEN * 2 },
1785 { .iov_base = (void *) dot1q_buf, .iov_len = VLAN_HLEN },
1786 { .iov_base = buf + ETHER_ADDR_LEN * 2,
1787 .iov_len = size - ETHER_ADDR_LEN * 2 },
1788 };
1789 }
1790
1791 if (TxLoopBack == (s->TxConfig & TxLoopBack))
1792 {
1793 size_t buf2_size;
1794 uint8_t *buf2;
1795
1796 if (iov) {
1797 buf2_size = iov_size(iov, 3);
1798 buf2 = g_malloc(buf2_size);
1799 iov_to_buf(iov, 3, buf2, 0, buf2_size);
1800 buf = buf2;
1801 }
1802
1803 DPRINTF("+++ transmit loopback mode\n");
1804 rtl8139_do_receive(&s->nic->nc, buf, size, do_interrupt);
1805
1806 if (iov) {
1807 g_free(buf2);
1808 }
1809 }
1810 else
1811 {
1812 if (iov) {
1813 qemu_sendv_packet(&s->nic->nc, iov, 3);
1814 } else {
1815 qemu_send_packet(&s->nic->nc, buf, size);
1816 }
1817 }
1818 }
1819
1820 static int rtl8139_transmit_one(RTL8139State *s, int descriptor)
1821 {
1822 if (!rtl8139_transmitter_enabled(s))
1823 {
1824 DPRINTF("+++ cannot transmit from descriptor %d: transmitter "
1825 "disabled\n", descriptor);
1826 return 0;
1827 }
1828
1829 if (s->TxStatus[descriptor] & TxHostOwns)
1830 {
1831 DPRINTF("+++ cannot transmit from descriptor %d: owned by host "
1832 "(%08x)\n", descriptor, s->TxStatus[descriptor]);
1833 return 0;
1834 }
1835
1836 DPRINTF("+++ transmitting from descriptor %d\n", descriptor);
1837
1838 int txsize = s->TxStatus[descriptor] & 0x1fff;
1839 uint8_t txbuffer[0x2000];
1840
1841 DPRINTF("+++ transmit reading %d bytes from host memory at 0x%08x\n",
1842 txsize, s->TxAddr[descriptor]);
1843
1844 pci_dma_read(&s->dev, s->TxAddr[descriptor], txbuffer, txsize);
1845
1846 /* Mark descriptor as transferred */
1847 s->TxStatus[descriptor] |= TxHostOwns;
1848 s->TxStatus[descriptor] |= TxStatOK;
1849
1850 rtl8139_transfer_frame(s, txbuffer, txsize, 0, NULL);
1851
1852 DPRINTF("+++ transmitted %d bytes from descriptor %d\n", txsize,
1853 descriptor);
1854
1855 /* update interrupt */
1856 s->IntrStatus |= TxOK;
1857 rtl8139_update_irq(s);
1858
1859 return 1;
1860 }
1861
1862 /* structures and macros for task offloading */
1863 typedef struct ip_header
1864 {
1865 uint8_t ip_ver_len; /* version and header length */
1866 uint8_t ip_tos; /* type of service */
1867 uint16_t ip_len; /* total length */
1868 uint16_t ip_id; /* identification */
1869 uint16_t ip_off; /* fragment offset field */
1870 uint8_t ip_ttl; /* time to live */
1871 uint8_t ip_p; /* protocol */
1872 uint16_t ip_sum; /* checksum */
1873 uint32_t ip_src,ip_dst; /* source and dest address */
1874 } ip_header;
1875
1876 #define IP_HEADER_VERSION_4 4
1877 #define IP_HEADER_VERSION(ip) ((ip->ip_ver_len >> 4)&0xf)
1878 #define IP_HEADER_LENGTH(ip) (((ip->ip_ver_len)&0xf) << 2)
1879
1880 typedef struct tcp_header
1881 {
1882 uint16_t th_sport; /* source port */
1883 uint16_t th_dport; /* destination port */
1884 uint32_t th_seq; /* sequence number */
1885 uint32_t th_ack; /* acknowledgement number */
1886 uint16_t th_offset_flags; /* data offset, reserved 6 bits, TCP protocol flags */
1887 uint16_t th_win; /* window */
1888 uint16_t th_sum; /* checksum */
1889 uint16_t th_urp; /* urgent pointer */
1890 } tcp_header;
1891
1892 typedef struct udp_header
1893 {
1894 uint16_t uh_sport; /* source port */
1895 uint16_t uh_dport; /* destination port */
1896 uint16_t uh_ulen; /* udp length */
1897 uint16_t uh_sum; /* udp checksum */
1898 } udp_header;
1899
1900 typedef struct ip_pseudo_header
1901 {
1902 uint32_t ip_src;
1903 uint32_t ip_dst;
1904 uint8_t zeros;
1905 uint8_t ip_proto;
1906 uint16_t ip_payload;
1907 } ip_pseudo_header;
1908
1909 #define IP_PROTO_TCP 6
1910 #define IP_PROTO_UDP 17
1911
1912 #define TCP_HEADER_DATA_OFFSET(tcp) (((be16_to_cpu(tcp->th_offset_flags) >> 12)&0xf) << 2)
1913 #define TCP_FLAGS_ONLY(flags) ((flags)&0x3f)
1914 #define TCP_HEADER_FLAGS(tcp) TCP_FLAGS_ONLY(be16_to_cpu(tcp->th_offset_flags))
1915
1916 #define TCP_HEADER_CLEAR_FLAGS(tcp, off) ((tcp)->th_offset_flags &= cpu_to_be16(~TCP_FLAGS_ONLY(off)))
1917
1918 #define TCP_FLAG_FIN 0x01
1919 #define TCP_FLAG_PUSH 0x08
1920
1921 /* produces ones' complement sum of data */
1922 static uint16_t ones_complement_sum(uint8_t *data, size_t len)
1923 {
1924 uint32_t result = 0;
1925
1926 for (; len > 1; data+=2, len-=2)
1927 {
1928 result += *(uint16_t*)data;
1929 }
1930
1931 /* add the remainder byte */
1932 if (len)
1933 {
1934 uint8_t odd[2] = {*data, 0};
1935 result += *(uint16_t*)odd;
1936 }
1937
1938 while (result>>16)
1939 result = (result & 0xffff) + (result >> 16);
1940
1941 return result;
1942 }
1943
1944 static uint16_t ip_checksum(void *data, size_t len)
1945 {
1946 return ~ones_complement_sum((uint8_t*)data, len);
1947 }
1948
1949 static int rtl8139_cplus_transmit_one(RTL8139State *s)
1950 {
1951 if (!rtl8139_transmitter_enabled(s))
1952 {
1953 DPRINTF("+++ C+ mode: transmitter disabled\n");
1954 return 0;
1955 }
1956
1957 if (!rtl8139_cp_transmitter_enabled(s))
1958 {
1959 DPRINTF("+++ C+ mode: C+ transmitter disabled\n");
1960 return 0 ;
1961 }
1962
1963 int descriptor = s->currCPlusTxDesc;
1964
1965 dma_addr_t cplus_tx_ring_desc = rtl8139_addr64(s->TxAddr[0], s->TxAddr[1]);
1966
1967 /* Normal priority ring */
1968 cplus_tx_ring_desc += 16 * descriptor;
1969
1970 DPRINTF("+++ C+ mode reading TX descriptor %d from host memory at "
1971 "%08x %08x = 0x"DMA_ADDR_FMT"\n", descriptor, s->TxAddr[1],
1972 s->TxAddr[0], cplus_tx_ring_desc);
1973
1974 uint32_t val, txdw0,txdw1,txbufLO,txbufHI;
1975
1976 pci_dma_read(&s->dev, cplus_tx_ring_desc, (uint8_t *)&val, 4);
1977 txdw0 = le32_to_cpu(val);
1978 pci_dma_read(&s->dev, cplus_tx_ring_desc+4, (uint8_t *)&val, 4);
1979 txdw1 = le32_to_cpu(val);
1980 pci_dma_read(&s->dev, cplus_tx_ring_desc+8, (uint8_t *)&val, 4);
1981 txbufLO = le32_to_cpu(val);
1982 pci_dma_read(&s->dev, cplus_tx_ring_desc+12, (uint8_t *)&val, 4);
1983 txbufHI = le32_to_cpu(val);
1984
1985 DPRINTF("+++ C+ mode TX descriptor %d %08x %08x %08x %08x\n", descriptor,
1986 txdw0, txdw1, txbufLO, txbufHI);
1987
1988 /* w0 ownership flag */
1989 #define CP_TX_OWN (1<<31)
1990 /* w0 end of ring flag */
1991 #define CP_TX_EOR (1<<30)
1992 /* first segment of received packet flag */
1993 #define CP_TX_FS (1<<29)
1994 /* last segment of received packet flag */
1995 #define CP_TX_LS (1<<28)
1996 /* large send packet flag */
1997 #define CP_TX_LGSEN (1<<27)
1998 /* large send MSS mask, bits 16...25 */
1999 #define CP_TC_LGSEN_MSS_MASK ((1 << 12) - 1)
2000
2001 /* IP checksum offload flag */
2002 #define CP_TX_IPCS (1<<18)
2003 /* UDP checksum offload flag */
2004 #define CP_TX_UDPCS (1<<17)
2005 /* TCP checksum offload flag */
2006 #define CP_TX_TCPCS (1<<16)
2007
2008 /* w0 bits 0...15 : buffer size */
2009 #define CP_TX_BUFFER_SIZE (1<<16)
2010 #define CP_TX_BUFFER_SIZE_MASK (CP_TX_BUFFER_SIZE - 1)
2011 /* w1 add tag flag */
2012 #define CP_TX_TAGC (1<<17)
2013 /* w1 bits 0...15 : VLAN tag (big endian) */
2014 #define CP_TX_VLAN_TAG_MASK ((1<<16) - 1)
2015 /* w2 low 32bit of Rx buffer ptr */
2016 /* w3 high 32bit of Rx buffer ptr */
2017
2018 /* set after transmission */
2019 /* FIFO underrun flag */
2020 #define CP_TX_STATUS_UNF (1<<25)
2021 /* transmit error summary flag, valid if set any of three below */
2022 #define CP_TX_STATUS_TES (1<<23)
2023 /* out-of-window collision flag */
2024 #define CP_TX_STATUS_OWC (1<<22)
2025 /* link failure flag */
2026 #define CP_TX_STATUS_LNKF (1<<21)
2027 /* excessive collisions flag */
2028 #define CP_TX_STATUS_EXC (1<<20)
2029
2030 if (!(txdw0 & CP_TX_OWN))
2031 {
2032 DPRINTF("C+ Tx mode : descriptor %d is owned by host\n", descriptor);
2033 return 0 ;
2034 }
2035
2036 DPRINTF("+++ C+ Tx mode : transmitting from descriptor %d\n", descriptor);
2037
2038 if (txdw0 & CP_TX_FS)
2039 {
2040 DPRINTF("+++ C+ Tx mode : descriptor %d is first segment "
2041 "descriptor\n", descriptor);
2042
2043 /* reset internal buffer offset */
2044 s->cplus_txbuffer_offset = 0;
2045 }
2046
2047 int txsize = txdw0 & CP_TX_BUFFER_SIZE_MASK;
2048 dma_addr_t tx_addr = rtl8139_addr64(txbufLO, txbufHI);
2049
2050 /* make sure we have enough space to assemble the packet */
2051 if (!s->cplus_txbuffer)
2052 {
2053 s->cplus_txbuffer_len = CP_TX_BUFFER_SIZE;
2054 s->cplus_txbuffer = g_malloc(s->cplus_txbuffer_len);
2055 s->cplus_txbuffer_offset = 0;
2056
2057 DPRINTF("+++ C+ mode transmission buffer allocated space %d\n",
2058 s->cplus_txbuffer_len);
2059 }
2060
2061 if (s->cplus_txbuffer_offset + txsize >= s->cplus_txbuffer_len)
2062 {
2063 /* The spec didn't tell the maximum size, stick to CP_TX_BUFFER_SIZE */
2064 txsize = s->cplus_txbuffer_len - s->cplus_txbuffer_offset;
2065 DPRINTF("+++ C+ mode transmission buffer overrun, truncated descriptor"
2066 "length to %d\n", txsize);
2067 }
2068
2069 if (!s->cplus_txbuffer)
2070 {
2071 /* out of memory */
2072
2073 DPRINTF("+++ C+ mode transmiter failed to reallocate %d bytes\n",
2074 s->cplus_txbuffer_len);
2075
2076 /* update tally counter */
2077 ++s->tally_counters.TxERR;
2078 ++s->tally_counters.TxAbt;
2079
2080 return 0;
2081 }
2082
2083 /* append more data to the packet */
2084
2085 DPRINTF("+++ C+ mode transmit reading %d bytes from host memory at "
2086 DMA_ADDR_FMT" to offset %d\n", txsize, tx_addr,
2087 s->cplus_txbuffer_offset);
2088
2089 pci_dma_read(&s->dev, tx_addr,
2090 s->cplus_txbuffer + s->cplus_txbuffer_offset, txsize);
2091 s->cplus_txbuffer_offset += txsize;
2092
2093 /* seek to next Rx descriptor */
2094 if (txdw0 & CP_TX_EOR)
2095 {
2096 s->currCPlusTxDesc = 0;
2097 }
2098 else
2099 {
2100 ++s->currCPlusTxDesc;
2101 if (s->currCPlusTxDesc >= 64)
2102 s->currCPlusTxDesc = 0;
2103 }
2104
2105 /* transfer ownership to target */
2106 txdw0 &= ~CP_RX_OWN;
2107
2108 /* reset error indicator bits */
2109 txdw0 &= ~CP_TX_STATUS_UNF;
2110 txdw0 &= ~CP_TX_STATUS_TES;
2111 txdw0 &= ~CP_TX_STATUS_OWC;
2112 txdw0 &= ~CP_TX_STATUS_LNKF;
2113 txdw0 &= ~CP_TX_STATUS_EXC;
2114
2115 /* update ring data */
2116 val = cpu_to_le32(txdw0);
2117 pci_dma_write(&s->dev, cplus_tx_ring_desc, (uint8_t *)&val, 4);
2118
2119 /* Now decide if descriptor being processed is holding the last segment of packet */
2120 if (txdw0 & CP_TX_LS)
2121 {
2122 uint8_t dot1q_buffer_space[VLAN_HLEN];
2123 uint16_t *dot1q_buffer;
2124
2125 DPRINTF("+++ C+ Tx mode : descriptor %d is last segment descriptor\n",
2126 descriptor);
2127
2128 /* can transfer fully assembled packet */
2129
2130 uint8_t *saved_buffer = s->cplus_txbuffer;
2131 int saved_size = s->cplus_txbuffer_offset;
2132 int saved_buffer_len = s->cplus_txbuffer_len;
2133
2134 /* create vlan tag */
2135 if (txdw1 & CP_TX_TAGC) {
2136 /* the vlan tag is in BE byte order in the descriptor
2137 * BE + le_to_cpu() + ~swap()~ = cpu */
2138 DPRINTF("+++ C+ Tx mode : inserting vlan tag with ""tci: %u\n",
2139 bswap16(txdw1 & CP_TX_VLAN_TAG_MASK));
2140
2141 dot1q_buffer = (uint16_t *) dot1q_buffer_space;
2142 dot1q_buffer[0] = cpu_to_be16(ETH_P_8021Q);
2143 /* BE + le_to_cpu() + ~cpu_to_le()~ = BE */
2144 dot1q_buffer[1] = cpu_to_le16(txdw1 & CP_TX_VLAN_TAG_MASK);
2145 } else {
2146 dot1q_buffer = NULL;
2147 }
2148
2149 /* reset the card space to protect from recursive call */
2150 s->cplus_txbuffer = NULL;
2151 s->cplus_txbuffer_offset = 0;
2152 s->cplus_txbuffer_len = 0;
2153
2154 if (txdw0 & (CP_TX_IPCS | CP_TX_UDPCS | CP_TX_TCPCS | CP_TX_LGSEN))
2155 {
2156 DPRINTF("+++ C+ mode offloaded task checksum\n");
2157
2158 /* ip packet header */
2159 ip_header *ip = NULL;
2160 int hlen = 0;
2161 uint8_t ip_protocol = 0;
2162 uint16_t ip_data_len = 0;
2163
2164 uint8_t *eth_payload_data = NULL;
2165 size_t eth_payload_len = 0;
2166
2167 int proto = be16_to_cpu(*(uint16_t *)(saved_buffer + 12));
2168 if (proto == ETH_P_IP)
2169 {
2170 DPRINTF("+++ C+ mode has IP packet\n");
2171
2172 /* not aligned */
2173 eth_payload_data = saved_buffer + ETH_HLEN;
2174 eth_payload_len = saved_size - ETH_HLEN;
2175
2176 ip = (ip_header*)eth_payload_data;
2177
2178 if (IP_HEADER_VERSION(ip) != IP_HEADER_VERSION_4) {
2179 DPRINTF("+++ C+ mode packet has bad IP version %d "
2180 "expected %d\n", IP_HEADER_VERSION(ip),
2181 IP_HEADER_VERSION_4);
2182 ip = NULL;
2183 } else {
2184 hlen = IP_HEADER_LENGTH(ip);
2185 ip_protocol = ip->ip_p;
2186 ip_data_len = be16_to_cpu(ip->ip_len) - hlen;
2187 }
2188 }
2189
2190 if (ip)
2191 {
2192 if (txdw0 & CP_TX_IPCS)
2193 {
2194 DPRINTF("+++ C+ mode need IP checksum\n");
2195
2196 if (hlen<sizeof(ip_header) || hlen>eth_payload_len) {/* min header length */
2197 /* bad packet header len */
2198 /* or packet too short */
2199 }
2200 else
2201 {
2202 ip->ip_sum = 0;
2203 ip->ip_sum = ip_checksum(ip, hlen);
2204 DPRINTF("+++ C+ mode IP header len=%d checksum=%04x\n",
2205 hlen, ip->ip_sum);
2206 }
2207 }
2208
2209 if ((txdw0 & CP_TX_LGSEN) && ip_protocol == IP_PROTO_TCP)
2210 {
2211 int large_send_mss = (txdw0 >> 16) & CP_TC_LGSEN_MSS_MASK;
2212
2213 DPRINTF("+++ C+ mode offloaded task TSO MTU=%d IP data %d "
2214 "frame data %d specified MSS=%d\n", ETH_MTU,
2215 ip_data_len, saved_size - ETH_HLEN, large_send_mss);
2216
2217 int tcp_send_offset = 0;
2218 int send_count = 0;
2219
2220 /* maximum IP header length is 60 bytes */
2221 uint8_t saved_ip_header[60];
2222
2223 /* save IP header template; data area is used in tcp checksum calculation */
2224 memcpy(saved_ip_header, eth_payload_data, hlen);
2225
2226 /* a placeholder for checksum calculation routine in tcp case */
2227 uint8_t *data_to_checksum = eth_payload_data + hlen - 12;
2228 // size_t data_to_checksum_len = eth_payload_len - hlen + 12;
2229
2230 /* pointer to TCP header */
2231 tcp_header *p_tcp_hdr = (tcp_header*)(eth_payload_data + hlen);
2232
2233 int tcp_hlen = TCP_HEADER_DATA_OFFSET(p_tcp_hdr);
2234
2235 /* ETH_MTU = ip header len + tcp header len + payload */
2236 int tcp_data_len = ip_data_len - tcp_hlen;
2237 int tcp_chunk_size = ETH_MTU - hlen - tcp_hlen;
2238
2239 DPRINTF("+++ C+ mode TSO IP data len %d TCP hlen %d TCP "
2240 "data len %d TCP chunk size %d\n", ip_data_len,
2241 tcp_hlen, tcp_data_len, tcp_chunk_size);
2242
2243 /* note the cycle below overwrites IP header data,
2244 but restores it from saved_ip_header before sending packet */
2245
2246 int is_last_frame = 0;
2247
2248 for (tcp_send_offset = 0; tcp_send_offset < tcp_data_len; tcp_send_offset += tcp_chunk_size)
2249 {
2250 uint16_t chunk_size = tcp_chunk_size;
2251
2252 /* check if this is the last frame */
2253 if (tcp_send_offset + tcp_chunk_size >= tcp_data_len)
2254 {
2255 is_last_frame = 1;
2256 chunk_size = tcp_data_len - tcp_send_offset;
2257 }
2258
2259 DPRINTF("+++ C+ mode TSO TCP seqno %08x\n",
2260 be32_to_cpu(p_tcp_hdr->th_seq));
2261
2262 /* add 4 TCP pseudoheader fields */
2263 /* copy IP source and destination fields */
2264 memcpy(data_to_checksum, saved_ip_header + 12, 8);
2265
2266 DPRINTF("+++ C+ mode TSO calculating TCP checksum for "
2267 "packet with %d bytes data\n", tcp_hlen +
2268 chunk_size);
2269
2270 if (tcp_send_offset)
2271 {
2272 memcpy((uint8_t*)p_tcp_hdr + tcp_hlen, (uint8_t*)p_tcp_hdr + tcp_hlen + tcp_send_offset, chunk_size);
2273 }
2274
2275 /* keep PUSH and FIN flags only for the last frame */
2276 if (!is_last_frame)
2277 {
2278 TCP_HEADER_CLEAR_FLAGS(p_tcp_hdr, TCP_FLAG_PUSH|TCP_FLAG_FIN);
2279 }
2280
2281 /* recalculate TCP checksum */
2282 ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2283 p_tcpip_hdr->zeros = 0;
2284 p_tcpip_hdr->ip_proto = IP_PROTO_TCP;
2285 p_tcpip_hdr->ip_payload = cpu_to_be16(tcp_hlen + chunk_size);
2286
2287 p_tcp_hdr->th_sum = 0;
2288
2289 int tcp_checksum = ip_checksum(data_to_checksum, tcp_hlen + chunk_size + 12);
2290 DPRINTF("+++ C+ mode TSO TCP checksum %04x\n",
2291 tcp_checksum);
2292
2293 p_tcp_hdr->th_sum = tcp_checksum;
2294
2295 /* restore IP header */
2296 memcpy(eth_payload_data, saved_ip_header, hlen);
2297
2298 /* set IP data length and recalculate IP checksum */
2299 ip->ip_len = cpu_to_be16(hlen + tcp_hlen + chunk_size);
2300
2301 /* increment IP id for subsequent frames */
2302 ip->ip_id = cpu_to_be16(tcp_send_offset/tcp_chunk_size + be16_to_cpu(ip->ip_id));
2303
2304 ip->ip_sum = 0;
2305 ip->ip_sum = ip_checksum(eth_payload_data, hlen);
2306 DPRINTF("+++ C+ mode TSO IP header len=%d "
2307 "checksum=%04x\n", hlen, ip->ip_sum);
2308
2309 int tso_send_size = ETH_HLEN + hlen + tcp_hlen + chunk_size;
2310 DPRINTF("+++ C+ mode TSO transferring packet size "
2311 "%d\n", tso_send_size);
2312 rtl8139_transfer_frame(s, saved_buffer, tso_send_size,
2313 0, (uint8_t *) dot1q_buffer);
2314
2315 /* add transferred count to TCP sequence number */
2316 p_tcp_hdr->th_seq = cpu_to_be32(chunk_size + be32_to_cpu(p_tcp_hdr->th_seq));
2317 ++send_count;
2318 }
2319
2320 /* Stop sending this frame */
2321 saved_size = 0;
2322 }
2323 else if (txdw0 & (CP_TX_TCPCS|CP_TX_UDPCS))
2324 {
2325 DPRINTF("+++ C+ mode need TCP or UDP checksum\n");
2326
2327 /* maximum IP header length is 60 bytes */
2328 uint8_t saved_ip_header[60];
2329 memcpy(saved_ip_header, eth_payload_data, hlen);
2330
2331 uint8_t *data_to_checksum = eth_payload_data + hlen - 12;
2332 // size_t data_to_checksum_len = eth_payload_len - hlen + 12;
2333
2334 /* add 4 TCP pseudoheader fields */
2335 /* copy IP source and destination fields */
2336 memcpy(data_to_checksum, saved_ip_header + 12, 8);
2337
2338 if ((txdw0 & CP_TX_TCPCS) && ip_protocol == IP_PROTO_TCP)
2339 {
2340 DPRINTF("+++ C+ mode calculating TCP checksum for "
2341 "packet with %d bytes data\n", ip_data_len);
2342
2343 ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2344 p_tcpip_hdr->zeros = 0;
2345 p_tcpip_hdr->ip_proto = IP_PROTO_TCP;
2346 p_tcpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2347
2348 tcp_header* p_tcp_hdr = (tcp_header *) (data_to_checksum+12);
2349
2350 p_tcp_hdr->th_sum = 0;
2351
2352 int tcp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2353 DPRINTF("+++ C+ mode TCP checksum %04x\n",
2354 tcp_checksum);
2355
2356 p_tcp_hdr->th_sum = tcp_checksum;
2357 }
2358 else if ((txdw0 & CP_TX_UDPCS) && ip_protocol == IP_PROTO_UDP)
2359 {
2360 DPRINTF("+++ C+ mode calculating UDP checksum for "
2361 "packet with %d bytes data\n", ip_data_len);
2362
2363 ip_pseudo_header *p_udpip_hdr = (ip_pseudo_header *)data_to_checksum;
2364 p_udpip_hdr->zeros = 0;
2365 p_udpip_hdr->ip_proto = IP_PROTO_UDP;
2366 p_udpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2367
2368 udp_header *p_udp_hdr = (udp_header *) (data_to_checksum+12);
2369
2370 p_udp_hdr->uh_sum = 0;
2371
2372 int udp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2373 DPRINTF("+++ C+ mode UDP checksum %04x\n",
2374 udp_checksum);
2375
2376 p_udp_hdr->uh_sum = udp_checksum;
2377 }
2378
2379 /* restore IP header */
2380 memcpy(eth_payload_data, saved_ip_header, hlen);
2381 }
2382 }
2383 }
2384
2385 /* update tally counter */
2386 ++s->tally_counters.TxOk;
2387
2388 DPRINTF("+++ C+ mode transmitting %d bytes packet\n", saved_size);
2389
2390 rtl8139_transfer_frame(s, saved_buffer, saved_size, 1,
2391 (uint8_t *) dot1q_buffer);
2392
2393 /* restore card space if there was no recursion and reset offset */
2394 if (!s->cplus_txbuffer)
2395 {
2396 s->cplus_txbuffer = saved_buffer;
2397 s->cplus_txbuffer_len = saved_buffer_len;
2398 s->cplus_txbuffer_offset = 0;
2399 }
2400 else
2401 {
2402 g_free(saved_buffer);
2403 }
2404 }
2405 else
2406 {
2407 DPRINTF("+++ C+ mode transmission continue to next descriptor\n");
2408 }
2409
2410 return 1;
2411 }
2412
2413 static void rtl8139_cplus_transmit(RTL8139State *s)
2414 {
2415 int txcount = 0;
2416
2417 while (rtl8139_cplus_transmit_one(s))
2418 {
2419 ++txcount;
2420 }
2421
2422 /* Mark transfer completed */
2423 if (!txcount)
2424 {
2425 DPRINTF("C+ mode : transmitter queue stalled, current TxDesc = %d\n",
2426 s->currCPlusTxDesc);
2427 }
2428 else
2429 {
2430 /* update interrupt status */
2431 s->IntrStatus |= TxOK;
2432 rtl8139_update_irq(s);
2433 }
2434 }
2435
2436 static void rtl8139_transmit(RTL8139State *s)
2437 {
2438 int descriptor = s->currTxDesc, txcount = 0;
2439
2440 /*while*/
2441 if (rtl8139_transmit_one(s, descriptor))
2442 {
2443 ++s->currTxDesc;
2444 s->currTxDesc %= 4;
2445 ++txcount;
2446 }
2447
2448 /* Mark transfer completed */
2449 if (!txcount)
2450 {
2451 DPRINTF("transmitter queue stalled, current TxDesc = %d\n",
2452 s->currTxDesc);
2453 }
2454 }
2455
2456 static void rtl8139_TxStatus_write(RTL8139State *s, uint32_t txRegOffset, uint32_t val)
2457 {
2458
2459 int descriptor = txRegOffset/4;
2460
2461 /* handle C+ transmit mode register configuration */
2462
2463 if (s->cplus_enabled)
2464 {
2465 DPRINTF("RTL8139C+ DTCCR write offset=0x%x val=0x%08x "
2466 "descriptor=%d\n", txRegOffset, val, descriptor);
2467
2468 /* handle Dump Tally Counters command */
2469 s->TxStatus[descriptor] = val;
2470
2471 if (descriptor == 0 && (val & 0x8))
2472 {
2473 target_phys_addr_t tc_addr = rtl8139_addr64(s->TxStatus[0] & ~0x3f, s->TxStatus[1]);
2474
2475 /* dump tally counters to specified memory location */
2476 RTL8139TallyCounters_dma_write(s, tc_addr);
2477
2478 /* mark dump completed */
2479 s->TxStatus[0] &= ~0x8;
2480 }
2481
2482 return;
2483 }
2484
2485 DPRINTF("TxStatus write offset=0x%x val=0x%08x descriptor=%d\n",
2486 txRegOffset, val, descriptor);
2487
2488 /* mask only reserved bits */
2489 val &= ~0xff00c000; /* these bits are reset on write */
2490 val = SET_MASKED(val, 0x00c00000, s->TxStatus[descriptor]);
2491
2492 s->TxStatus[descriptor] = val;
2493
2494 /* attempt to start transmission */
2495 rtl8139_transmit(s);
2496 }
2497
2498 static uint32_t rtl8139_TxStatus_read(RTL8139State *s, uint32_t txRegOffset)
2499 {
2500 uint32_t ret = s->TxStatus[txRegOffset/4];
2501
2502 DPRINTF("TxStatus read offset=0x%x val=0x%08x\n", txRegOffset, ret);
2503
2504 return ret;
2505 }
2506
2507 static uint16_t rtl8139_TSAD_read(RTL8139State *s)
2508 {
2509 uint16_t ret = 0;
2510
2511 /* Simulate TSAD, it is read only anyway */
2512
2513 ret = ((s->TxStatus[3] & TxStatOK )?TSAD_TOK3:0)
2514 |((s->TxStatus[2] & TxStatOK )?TSAD_TOK2:0)
2515 |((s->TxStatus[1] & TxStatOK )?TSAD_TOK1:0)
2516 |((s->TxStatus[0] & TxStatOK )?TSAD_TOK0:0)
2517
2518 |((s->TxStatus[3] & TxUnderrun)?TSAD_TUN3:0)
2519 |((s->TxStatus[2] & TxUnderrun)?TSAD_TUN2:0)
2520 |((s->TxStatus[1] & TxUnderrun)?TSAD_TUN1:0)
2521 |((s->TxStatus[0] & TxUnderrun)?TSAD_TUN0:0)
2522
2523 |((s->TxStatus[3] & TxAborted )?TSAD_TABT3:0)
2524 |((s->TxStatus[2] & TxAborted )?TSAD_TABT2:0)
2525 |((s->TxStatus[1] & TxAborted )?TSAD_TABT1:0)
2526 |((s->TxStatus[0] & TxAborted )?TSAD_TABT0:0)
2527
2528 |((s->TxStatus[3] & TxHostOwns )?TSAD_OWN3:0)
2529 |((s->TxStatus[2] & TxHostOwns )?TSAD_OWN2:0)
2530 |((s->TxStatus[1] & TxHostOwns )?TSAD_OWN1:0)
2531 |((s->TxStatus[0] & TxHostOwns )?TSAD_OWN0:0) ;
2532
2533
2534 DPRINTF("TSAD read val=0x%04x\n", ret);
2535
2536 return ret;
2537 }
2538
2539 static uint16_t rtl8139_CSCR_read(RTL8139State *s)
2540 {
2541 uint16_t ret = s->CSCR;
2542
2543 DPRINTF("CSCR read val=0x%04x\n", ret);
2544
2545 return ret;
2546 }
2547
2548 static void rtl8139_TxAddr_write(RTL8139State *s, uint32_t txAddrOffset, uint32_t val)
2549 {
2550 DPRINTF("TxAddr write offset=0x%x val=0x%08x\n", txAddrOffset, val);
2551
2552 s->TxAddr[txAddrOffset/4] = val;
2553 }
2554
2555 static uint32_t rtl8139_TxAddr_read(RTL8139State *s, uint32_t txAddrOffset)
2556 {
2557 uint32_t ret = s->TxAddr[txAddrOffset/4];
2558
2559 DPRINTF("TxAddr read offset=0x%x val=0x%08x\n", txAddrOffset, ret);
2560
2561 return ret;
2562 }
2563
2564 static void rtl8139_RxBufPtr_write(RTL8139State *s, uint32_t val)
2565 {
2566 DPRINTF("RxBufPtr write val=0x%04x\n", val);
2567
2568 /* this value is off by 16 */
2569 s->RxBufPtr = MOD2(val + 0x10, s->RxBufferSize);
2570
2571 DPRINTF(" CAPR write: rx buffer length %d head 0x%04x read 0x%04x\n",
2572 s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
2573 }
2574
2575 static uint32_t rtl8139_RxBufPtr_read(RTL8139State *s)
2576 {
2577 /* this value is off by 16 */
2578 uint32_t ret = s->RxBufPtr - 0x10;
2579
2580 DPRINTF("RxBufPtr read val=0x%04x\n", ret);
2581
2582 return ret;
2583 }
2584
2585 static uint32_t rtl8139_RxBufAddr_read(RTL8139State *s)
2586 {
2587 /* this value is NOT off by 16 */
2588 uint32_t ret = s->RxBufAddr;
2589
2590 DPRINTF("RxBufAddr read val=0x%04x\n", ret);
2591
2592 return ret;
2593 }
2594
2595 static void rtl8139_RxBuf_write(RTL8139State *s, uint32_t val)
2596 {
2597 DPRINTF("RxBuf write val=0x%08x\n", val);
2598
2599 s->RxBuf = val;
2600
2601 /* may need to reset rxring here */
2602 }
2603
2604 static uint32_t rtl8139_RxBuf_read(RTL8139State *s)
2605 {
2606 uint32_t ret = s->RxBuf;
2607
2608 DPRINTF("RxBuf read val=0x%08x\n", ret);
2609
2610 return ret;
2611 }
2612
2613 static void rtl8139_IntrMask_write(RTL8139State *s, uint32_t val)
2614 {
2615 DPRINTF("IntrMask write(w) val=0x%04x\n", val);
2616
2617 /* mask unwritable bits */
2618 val = SET_MASKED(val, 0x1e00, s->IntrMask);
2619
2620 s->IntrMask = val;
2621
2622 rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
2623 rtl8139_update_irq(s);
2624
2625 }
2626
2627 static uint32_t rtl8139_IntrMask_read(RTL8139State *s)
2628 {
2629 uint32_t ret = s->IntrMask;
2630
2631 DPRINTF("IntrMask read(w) val=0x%04x\n", ret);
2632
2633 return ret;
2634 }
2635
2636 static void rtl8139_IntrStatus_write(RTL8139State *s, uint32_t val)
2637 {
2638 DPRINTF("IntrStatus write(w) val=0x%04x\n", val);
2639
2640 #if 0
2641
2642 /* writing to ISR has no effect */
2643
2644 return;
2645
2646 #else
2647 uint16_t newStatus = s->IntrStatus & ~val;
2648
2649 /* mask unwritable bits */
2650 newStatus = SET_MASKED(newStatus, 0x1e00, s->IntrStatus);
2651
2652 /* writing 1 to interrupt status register bit clears it */
2653 s->IntrStatus = 0;
2654 rtl8139_update_irq(s);
2655
2656 s->IntrStatus = newStatus;
2657 /*
2658 * Computing if we miss an interrupt here is not that correct but
2659 * considered that we should have had already an interrupt
2660 * and probably emulated is slower is better to assume this resetting was
2661 * done before testing on previous rtl8139_update_irq lead to IRQ losing
2662 */
2663 rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
2664 rtl8139_update_irq(s);
2665
2666 #endif
2667 }
2668
2669 static uint32_t rtl8139_IntrStatus_read(RTL8139State *s)
2670 {
2671 rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
2672
2673 uint32_t ret = s->IntrStatus;
2674
2675 DPRINTF("IntrStatus read(w) val=0x%04x\n", ret);
2676
2677 #if 0
2678
2679 /* reading ISR clears all interrupts */
2680 s->IntrStatus = 0;
2681
2682 rtl8139_update_irq(s);
2683
2684 #endif
2685
2686 return ret;
2687 }
2688
2689 static void rtl8139_MultiIntr_write(RTL8139State *s, uint32_t val)
2690 {
2691 DPRINTF("MultiIntr write(w) val=0x%04x\n", val);
2692
2693 /* mask unwritable bits */
2694 val = SET_MASKED(val, 0xf000, s->MultiIntr);
2695
2696 s->MultiIntr = val;
2697 }
2698
2699 static uint32_t rtl8139_MultiIntr_read(RTL8139State *s)
2700 {
2701 uint32_t ret = s->MultiIntr;
2702
2703 DPRINTF("MultiIntr read(w) val=0x%04x\n", ret);
2704
2705 return ret;
2706 }
2707
2708 static void rtl8139_io_writeb(void *opaque, uint8_t addr, uint32_t val)
2709 {
2710 RTL8139State *s = opaque;
2711
2712 switch (addr)
2713 {
2714 case MAC0 ... MAC0+5:
2715 s->phys[addr - MAC0] = val;
2716 break;
2717 case MAC0+6 ... MAC0+7:
2718 /* reserved */
2719 break;
2720 case MAR0 ... MAR0+7:
2721 s->mult[addr - MAR0] = val;
2722 break;
2723 case ChipCmd:
2724 rtl8139_ChipCmd_write(s, val);
2725 break;
2726 case Cfg9346:
2727 rtl8139_Cfg9346_write(s, val);
2728 break;
2729 case TxConfig: /* windows driver sometimes writes using byte-lenth call */
2730 rtl8139_TxConfig_writeb(s, val);
2731 break;
2732 case Config0:
2733 rtl8139_Config0_write(s, val);
2734 break;
2735 case Config1:
2736 rtl8139_Config1_write(s, val);
2737 break;
2738 case Config3:
2739 rtl8139_Config3_write(s, val);
2740 break;
2741 case Config4:
2742 rtl8139_Config4_write(s, val);
2743 break;
2744 case Config5:
2745 rtl8139_Config5_write(s, val);
2746 break;
2747 case MediaStatus:
2748 /* ignore */
2749 DPRINTF("not implemented write(b) to MediaStatus val=0x%02x\n",
2750 val);
2751 break;
2752
2753 case HltClk:
2754 DPRINTF("HltClk write val=0x%08x\n", val);
2755 if (val == 'R')
2756 {
2757 s->clock_enabled = 1;
2758 }
2759 else if (val == 'H')
2760 {
2761 s->clock_enabled = 0;
2762 }
2763 break;
2764
2765 case TxThresh:
2766 DPRINTF("C+ TxThresh write(b) val=0x%02x\n", val);
2767 s->TxThresh = val;
2768 break;
2769
2770 case TxPoll:
2771 DPRINTF("C+ TxPoll write(b) val=0x%02x\n", val);
2772 if (val & (1 << 7))
2773 {
2774 DPRINTF("C+ TxPoll high priority transmission (not "
2775 "implemented)\n");
2776 //rtl8139_cplus_transmit(s);
2777 }
2778 if (val & (1 << 6))
2779 {
2780 DPRINTF("C+ TxPoll normal priority transmission\n");
2781 rtl8139_cplus_transmit(s);
2782 }
2783
2784 break;
2785
2786 default:
2787 DPRINTF("not implemented write(b) addr=0x%x val=0x%02x\n", addr,
2788 val);
2789 break;
2790 }
2791 }
2792
2793 static void rtl8139_io_writew(void *opaque, uint8_t addr, uint32_t val)
2794 {
2795 RTL8139State *s = opaque;
2796
2797 switch (addr)
2798 {
2799 case IntrMask:
2800 rtl8139_IntrMask_write(s, val);
2801 break;
2802
2803 case IntrStatus:
2804 rtl8139_IntrStatus_write(s, val);
2805 break;
2806
2807 case MultiIntr:
2808 rtl8139_MultiIntr_write(s, val);
2809 break;
2810
2811 case RxBufPtr:
2812 rtl8139_RxBufPtr_write(s, val);
2813 break;
2814
2815 case BasicModeCtrl:
2816 rtl8139_BasicModeCtrl_write(s, val);
2817 break;
2818 case BasicModeStatus:
2819 rtl8139_BasicModeStatus_write(s, val);
2820 break;
2821 case NWayAdvert:
2822 DPRINTF("NWayAdvert write(w) val=0x%04x\n", val);
2823 s->NWayAdvert = val;
2824 break;
2825 case NWayLPAR:
2826 DPRINTF("forbidden NWayLPAR write(w) val=0x%04x\n", val);
2827 break;
2828 case NWayExpansion:
2829 DPRINTF("NWayExpansion write(w) val=0x%04x\n", val);
2830 s->NWayExpansion = val;
2831 break;
2832
2833 case CpCmd:
2834 rtl8139_CpCmd_write(s, val);
2835 break;
2836
2837 case IntrMitigate:
2838 rtl8139_IntrMitigate_write(s, val);
2839 break;
2840
2841 default:
2842 DPRINTF("ioport write(w) addr=0x%x val=0x%04x via write(b)\n",
2843 addr, val);
2844
2845 rtl8139_io_writeb(opaque, addr, val & 0xff);
2846 rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2847 break;
2848 }
2849 }
2850
2851 static void rtl8139_set_next_tctr_time(RTL8139State *s, int64_t current_time)
2852 {
2853 int64_t pci_time, next_time;
2854 uint32_t low_pci;
2855
2856 DPRINTF("entered rtl8139_set_next_tctr_time\n");
2857
2858 if (s->TimerExpire && current_time >= s->TimerExpire) {
2859 s->IntrStatus |= PCSTimeout;
2860 rtl8139_update_irq(s);
2861 }
2862
2863 /* Set QEMU timer only if needed that is
2864 * - TimerInt <> 0 (we have a timer)
2865 * - mask = 1 (we want an interrupt timer)
2866 * - irq = 0 (irq is not already active)
2867 * If any of above change we need to compute timer again
2868 * Also we must check if timer is passed without QEMU timer
2869 */
2870 s->TimerExpire = 0;
2871 if (!s->TimerInt) {
2872 return;
2873 }
2874
2875 pci_time = muldiv64(current_time - s->TCTR_base, PCI_FREQUENCY,
2876 get_ticks_per_sec());
2877 low_pci = pci_time & 0xffffffff;
2878 pci_time = pci_time - low_pci + s->TimerInt;
2879 if (low_pci >= s->TimerInt) {
2880 pci_time += 0x100000000LL;
2881 }
2882 next_time = s->TCTR_base + muldiv64(pci_time, get_ticks_per_sec(),
2883 PCI_FREQUENCY);
2884 s->TimerExpire = next_time;
2885
2886 if ((s->IntrMask & PCSTimeout) != 0 && (s->IntrStatus & PCSTimeout) == 0) {
2887 qemu_mod_timer(s->timer, next_time);
2888 }
2889 }
2890
2891 static void rtl8139_io_writel(void *opaque, uint8_t addr, uint32_t val)
2892 {
2893 RTL8139State *s = opaque;
2894
2895 switch (addr)
2896 {
2897 case RxMissed:
2898 DPRINTF("RxMissed clearing on write\n");
2899 s->RxMissed = 0;
2900 break;
2901
2902 case TxConfig:
2903 rtl8139_TxConfig_write(s, val);
2904 break;
2905
2906 case RxConfig:
2907 rtl8139_RxConfig_write(s, val);
2908 break;
2909
2910 case TxStatus0 ... TxStatus0+4*4-1:
2911 rtl8139_TxStatus_write(s, addr-TxStatus0, val);
2912 break;
2913
2914 case TxAddr0 ... TxAddr0+4*4-1:
2915 rtl8139_TxAddr_write(s, addr-TxAddr0, val);
2916 break;
2917
2918 case RxBuf:
2919 rtl8139_RxBuf_write(s, val);
2920 break;
2921
2922 case RxRingAddrLO:
2923 DPRINTF("C+ RxRing low bits write val=0x%08x\n", val);
2924 s->RxRingAddrLO = val;
2925 break;
2926
2927 case RxRingAddrHI:
2928 DPRINTF("C+ RxRing high bits write val=0x%08x\n", val);
2929 s->RxRingAddrHI = val;
2930 break;
2931
2932 case Timer:
2933 DPRINTF("TCTR Timer reset on write\n");
2934 s->TCTR_base = qemu_get_clock_ns(vm_clock);
2935 rtl8139_set_next_tctr_time(s, s->TCTR_base);
2936 break;
2937
2938 case FlashReg:
2939 DPRINTF("FlashReg TimerInt write val=0x%08x\n", val);
2940 if (s->TimerInt != val) {
2941 s->TimerInt = val;
2942 rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
2943 }
2944 break;
2945
2946 default:
2947 DPRINTF("ioport write(l) addr=0x%x val=0x%08x via write(b)\n",
2948 addr, val);
2949 rtl8139_io_writeb(opaque, addr, val & 0xff);
2950 rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2951 rtl8139_io_writeb(opaque, addr + 2, (val >> 16) & 0xff);
2952 rtl8139_io_writeb(opaque, addr + 3, (val >> 24) & 0xff);
2953 break;
2954 }
2955 }
2956
2957 static uint32_t rtl8139_io_readb(void *opaque, uint8_t addr)
2958 {
2959 RTL8139State *s = opaque;
2960 int ret;
2961
2962 switch (addr)
2963 {
2964 case MAC0 ... MAC0+5:
2965 ret = s->phys[addr - MAC0];
2966 break;
2967 case MAC0+6 ... MAC0+7:
2968 ret = 0;
2969 break;
2970 case MAR0 ... MAR0+7:
2971 ret = s->mult[addr - MAR0];
2972 break;
2973 case ChipCmd:
2974 ret = rtl8139_ChipCmd_read(s);
2975 break;
2976 case Cfg9346:
2977 ret = rtl8139_Cfg9346_read(s);
2978 break;
2979 case Config0:
2980 ret = rtl8139_Config0_read(s);
2981 break;
2982 case Config1:
2983 ret = rtl8139_Config1_read(s);
2984 break;
2985 case Config3:
2986 ret = rtl8139_Config3_read(s);
2987 break;
2988 case Config4:
2989 ret = rtl8139_Config4_read(s);
2990 break;
2991 case Config5:
2992 ret = rtl8139_Config5_read(s);
2993 break;
2994
2995 case MediaStatus:
2996 ret = 0xd0;
2997 DPRINTF("MediaStatus read 0x%x\n", ret);
2998 break;
2999
3000 case HltClk:
3001 ret = s->clock_enabled;
3002 DPRINTF("HltClk read 0x%x\n", ret);
3003 break;
3004
3005 case PCIRevisionID:
3006 ret = RTL8139_PCI_REVID;
3007 DPRINTF("PCI Revision ID read 0x%x\n", ret);
3008 break;
3009
3010 case TxThresh:
3011 ret = s->TxThresh;
3012 DPRINTF("C+ TxThresh read(b) val=0x%02x\n", ret);
3013 break;
3014
3015 case 0x43: /* Part of TxConfig register. Windows driver tries to read it */
3016 ret = s->TxConfig >> 24;
3017 DPRINTF("RTL8139C TxConfig at 0x43 read(b) val=0x%02x\n", ret);
3018 break;
3019
3020 default:
3021 DPRINTF("not implemented read(b) addr=0x%x\n", addr);
3022 ret = 0;
3023 break;
3024 }
3025
3026 return ret;
3027 }
3028
3029 static uint32_t rtl8139_io_readw(void *opaque, uint8_t addr)
3030 {
3031 RTL8139State *s = opaque;
3032 uint32_t ret;
3033
3034 switch (addr)
3035 {
3036 case IntrMask:
3037 ret = rtl8139_IntrMask_read(s);
3038 break;
3039
3040 case IntrStatus:
3041 ret = rtl8139_IntrStatus_read(s);
3042 break;
3043
3044 case MultiIntr:
3045 ret = rtl8139_MultiIntr_read(s);
3046 break;
3047
3048 case RxBufPtr:
3049 ret = rtl8139_RxBufPtr_read(s);
3050 break;
3051
3052 case RxBufAddr:
3053 ret = rtl8139_RxBufAddr_read(s);
3054 break;
3055
3056 case BasicModeCtrl:
3057 ret = rtl8139_BasicModeCtrl_read(s);
3058 break;
3059 case BasicModeStatus:
3060 ret = rtl8139_BasicModeStatus_read(s);
3061 break;
3062 case NWayAdvert:
3063 ret = s->NWayAdvert;
3064 DPRINTF("NWayAdvert read(w) val=0x%04x\n", ret);
3065 break;
3066 case NWayLPAR:
3067 ret = s->NWayLPAR;
3068 DPRINTF("NWayLPAR read(w) val=0x%04x\n", ret);
3069 break;
3070 case NWayExpansion:
3071 ret = s->NWayExpansion;
3072 DPRINTF("NWayExpansion read(w) val=0x%04x\n", ret);
3073 break;
3074
3075 case CpCmd:
3076 ret = rtl8139_CpCmd_read(s);
3077 break;
3078
3079 case IntrMitigate:
3080 ret = rtl8139_IntrMitigate_read(s);
3081 break;
3082
3083 case TxSummary:
3084 ret = rtl8139_TSAD_read(s);
3085 break;
3086
3087 case CSCR:
3088 ret = rtl8139_CSCR_read(s);
3089 break;
3090
3091 default:
3092 DPRINTF("ioport read(w) addr=0x%x via read(b)\n", addr);
3093
3094 ret = rtl8139_io_readb(opaque, addr);
3095 ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3096
3097 DPRINTF("ioport read(w) addr=0x%x val=0x%04x\n", addr, ret);
3098 break;
3099 }
3100
3101 return ret;
3102 }
3103
3104 static uint32_t rtl8139_io_readl(void *opaque, uint8_t addr)
3105 {
3106 RTL8139State *s = opaque;
3107 uint32_t ret;
3108
3109 switch (addr)
3110 {
3111 case RxMissed:
3112 ret = s->RxMissed;
3113
3114 DPRINTF("RxMissed read val=0x%08x\n", ret);
3115 break;
3116
3117 case TxConfig:
3118 ret = rtl8139_TxConfig_read(s);
3119 break;
3120
3121 case RxConfig:
3122 ret = rtl8139_RxConfig_read(s);
3123 break;
3124
3125 case TxStatus0 ... TxStatus0+4*4-1:
3126 ret = rtl8139_TxStatus_read(s, addr-TxStatus0);
3127 break;
3128
3129 case TxAddr0 ... TxAddr0+4*4-1:
3130 ret = rtl8139_TxAddr_read(s, addr-TxAddr0);
3131 break;
3132
3133 case RxBuf:
3134 ret = rtl8139_RxBuf_read(s);
3135 break;
3136
3137 case RxRingAddrLO:
3138 ret = s->RxRingAddrLO;
3139 DPRINTF("C+ RxRing low bits read val=0x%08x\n", ret);
3140 break;
3141
3142 case RxRingAddrHI:
3143 ret = s->RxRingAddrHI;
3144 DPRINTF("C+ RxRing high bits read val=0x%08x\n", ret);
3145 break;
3146
3147 case Timer:
3148 ret = muldiv64(qemu_get_clock_ns(vm_clock) - s->TCTR_base,
3149 PCI_FREQUENCY, get_ticks_per_sec());
3150 DPRINTF("TCTR Timer read val=0x%08x\n", ret);
3151 break;
3152
3153 case FlashReg:
3154 ret = s->TimerInt;
3155 DPRINTF("FlashReg TimerInt read val=0x%08x\n", ret);
3156 break;
3157
3158 default:
3159 DPRINTF("ioport read(l) addr=0x%x via read(b)\n", addr);
3160
3161 ret = rtl8139_io_readb(opaque, addr);
3162 ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3163 ret |= rtl8139_io_readb(opaque, addr + 2) << 16;
3164 ret |= rtl8139_io_readb(opaque, addr + 3) << 24;
3165
3166 DPRINTF("read(l) addr=0x%x val=%08x\n", addr, ret);
3167 break;
3168 }
3169
3170 return ret;
3171 }
3172
3173 /* */
3174
3175 static void rtl8139_ioport_writeb(void *opaque, uint32_t addr, uint32_t val)
3176 {
3177 rtl8139_io_writeb(opaque, addr & 0xFF, val);
3178 }
3179
3180 static void rtl8139_ioport_writew(void *opaque, uint32_t addr, uint32_t val)
3181 {
3182 rtl8139_io_writew(opaque, addr & 0xFF, val);
3183 }
3184
3185 static void rtl8139_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
3186 {
3187 rtl8139_io_writel(opaque, addr & 0xFF, val);
3188 }
3189
3190 static uint32_t rtl8139_ioport_readb(void *opaque, uint32_t addr)
3191 {
3192 return rtl8139_io_readb(opaque, addr & 0xFF);
3193 }
3194
3195 static uint32_t rtl8139_ioport_readw(void *opaque, uint32_t addr)
3196 {
3197 return rtl8139_io_readw(opaque, addr & 0xFF);
3198 }
3199
3200 static uint32_t rtl8139_ioport_readl(void *opaque, uint32_t addr)
3201 {
3202 return rtl8139_io_readl(opaque, addr & 0xFF);
3203 }
3204
3205 /* */
3206
3207 static void rtl8139_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
3208 {
3209 rtl8139_io_writeb(opaque, addr & 0xFF, val);
3210 }
3211
3212 static void rtl8139_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
3213 {
3214 rtl8139_io_writew(opaque, addr & 0xFF, val);
3215 }
3216
3217 static void rtl8139_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
3218 {
3219 rtl8139_io_writel(opaque, addr & 0xFF, val);
3220 }
3221
3222 static uint32_t rtl8139_mmio_readb(void *opaque, target_phys_addr_t addr)
3223 {
3224 return rtl8139_io_readb(opaque, addr & 0xFF);
3225 }
3226
3227 static uint32_t rtl8139_mmio_readw(void *opaque, target_phys_addr_t addr)
3228 {
3229 uint32_t val = rtl8139_io_readw(opaque, addr & 0xFF);
3230 return val;
3231 }
3232
3233 static uint32_t rtl8139_mmio_readl(void *opaque, target_phys_addr_t addr)
3234 {
3235 uint32_t val = rtl8139_io_readl(opaque, addr & 0xFF);
3236 return val;
3237 }
3238
3239 static int rtl8139_post_load(void *opaque, int version_id)
3240 {
3241 RTL8139State* s = opaque;
3242 rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
3243 if (version_id < 4) {
3244 s->cplus_enabled = s->CpCmd != 0;
3245 }
3246
3247 return 0;
3248 }
3249
3250 static bool rtl8139_hotplug_ready_needed(void *opaque)
3251 {
3252 return qdev_machine_modified();
3253 }
3254
3255 static const VMStateDescription vmstate_rtl8139_hotplug_ready ={
3256 .name = "rtl8139/hotplug_ready",
3257 .version_id = 1,
3258 .minimum_version_id = 1,
3259 .minimum_version_id_old = 1,
3260 .fields = (VMStateField []) {
3261 VMSTATE_END_OF_LIST()
3262 }
3263 };
3264
3265 static void rtl8139_pre_save(void *opaque)
3266 {
3267 RTL8139State* s = opaque;
3268 int64_t current_time = qemu_get_clock_ns(vm_clock);
3269
3270 /* set IntrStatus correctly */
3271 rtl8139_set_next_tctr_time(s, current_time);
3272 s->TCTR = muldiv64(current_time - s->TCTR_base, PCI_FREQUENCY,
3273 get_ticks_per_sec());
3274 s->rtl8139_mmio_io_addr_dummy = 0;
3275 }
3276
3277 static const VMStateDescription vmstate_rtl8139 = {
3278 .name = "rtl8139",
3279 .version_id = 4,
3280 .minimum_version_id = 3,
3281 .minimum_version_id_old = 3,
3282 .post_load = rtl8139_post_load,
3283 .pre_save = rtl8139_pre_save,
3284 .fields = (VMStateField []) {
3285 VMSTATE_PCI_DEVICE(dev, RTL8139State),
3286 VMSTATE_PARTIAL_BUFFER(phys, RTL8139State, 6),
3287 VMSTATE_BUFFER(mult, RTL8139State),
3288 VMSTATE_UINT32_ARRAY(TxStatus, RTL8139State, 4),
3289 VMSTATE_UINT32_ARRAY(TxAddr, RTL8139State, 4),
3290
3291 VMSTATE_UINT32(RxBuf, RTL8139State),
3292 VMSTATE_UINT32(RxBufferSize, RTL8139State),
3293 VMSTATE_UINT32(RxBufPtr, RTL8139State),
3294 VMSTATE_UINT32(RxBufAddr, RTL8139State),
3295
3296 VMSTATE_UINT16(IntrStatus, RTL8139State),
3297 VMSTATE_UINT16(IntrMask, RTL8139State),
3298
3299 VMSTATE_UINT32(TxConfig, RTL8139State),
3300 VMSTATE_UINT32(RxConfig, RTL8139State),
3301 VMSTATE_UINT32(RxMissed, RTL8139State),
3302 VMSTATE_UINT16(CSCR, RTL8139State),
3303
3304 VMSTATE_UINT8(Cfg9346, RTL8139State),
3305 VMSTATE_UINT8(Config0, RTL8139State),
3306 VMSTATE_UINT8(Config1, RTL8139State),
3307 VMSTATE_UINT8(Config3, RTL8139State),
3308 VMSTATE_UINT8(Config4, RTL8139State),
3309 VMSTATE_UINT8(Config5, RTL8139State),
3310
3311 VMSTATE_UINT8(clock_enabled, RTL8139State),
3312 VMSTATE_UINT8(bChipCmdState, RTL8139State),
3313
3314 VMSTATE_UINT16(MultiIntr, RTL8139State),
3315
3316 VMSTATE_UINT16(BasicModeCtrl, RTL8139State),
3317 VMSTATE_UINT16(BasicModeStatus, RTL8139State),
3318 VMSTATE_UINT16(NWayAdvert, RTL8139State),
3319 VMSTATE_UINT16(NWayLPAR, RTL8139State),
3320 VMSTATE_UINT16(NWayExpansion, RTL8139State),
3321
3322 VMSTATE_UINT16(CpCmd, RTL8139State),
3323 VMSTATE_UINT8(TxThresh, RTL8139State),
3324
3325 VMSTATE_UNUSED(4),
3326 VMSTATE_MACADDR(conf.macaddr, RTL8139State),
3327 VMSTATE_INT32(rtl8139_mmio_io_addr_dummy, RTL8139State),
3328
3329 VMSTATE_UINT32(currTxDesc, RTL8139State),
3330 VMSTATE_UINT32(currCPlusRxDesc, RTL8139State),
3331 VMSTATE_UINT32(currCPlusTxDesc, RTL8139State),
3332 VMSTATE_UINT32(RxRingAddrLO, RTL8139State),
3333 VMSTATE_UINT32(RxRingAddrHI, RTL8139State),
3334
3335 VMSTATE_UINT16_ARRAY(eeprom.contents, RTL8139State, EEPROM_9346_SIZE),
3336 VMSTATE_INT32(eeprom.mode, RTL8139State),
3337 VMSTATE_UINT32(eeprom.tick, RTL8139State),
3338 VMSTATE_UINT8(eeprom.address, RTL8139State),
3339 VMSTATE_UINT16(eeprom.input, RTL8139State),
3340 VMSTATE_UINT16(eeprom.output, RTL8139State),
3341
3342 VMSTATE_UINT8(eeprom.eecs, RTL8139State),
3343 VMSTATE_UINT8(eeprom.eesk, RTL8139State),
3344 VMSTATE_UINT8(eeprom.eedi, RTL8139State),
3345 VMSTATE_UINT8(eeprom.eedo, RTL8139State),
3346
3347 VMSTATE_UINT32(TCTR, RTL8139State),
3348 VMSTATE_UINT32(TimerInt, RTL8139State),
3349 VMSTATE_INT64(TCTR_base, RTL8139State),
3350
3351 VMSTATE_STRUCT(tally_counters, RTL8139State, 0,
3352 vmstate_tally_counters, RTL8139TallyCounters),
3353
3354 VMSTATE_UINT32_V(cplus_enabled, RTL8139State, 4),
3355 VMSTATE_END_OF_LIST()
3356 },
3357 .subsections = (VMStateSubsection []) {
3358 {
3359 .vmsd = &vmstate_rtl8139_hotplug_ready,
3360 .needed = rtl8139_hotplug_ready_needed,
3361 }, {
3362 /* empty */
3363 }
3364 }
3365 };
3366
3367 /***********************************************************/
3368 /* PCI RTL8139 definitions */
3369
3370 static const MemoryRegionPortio rtl8139_portio[] = {
3371 { 0, 0x100, 1, .read = rtl8139_ioport_readb, },
3372 { 0, 0x100, 1, .write = rtl8139_ioport_writeb, },
3373 { 0, 0x100, 2, .read = rtl8139_ioport_readw, },
3374 { 0, 0x100, 2, .write = rtl8139_ioport_writew, },
3375 { 0, 0x100, 4, .read = rtl8139_ioport_readl, },
3376 { 0, 0x100, 4, .write = rtl8139_ioport_writel, },
3377 PORTIO_END_OF_LIST()
3378 };
3379
3380 static const MemoryRegionOps rtl8139_io_ops = {
3381 .old_portio = rtl8139_portio,
3382 .endianness = DEVICE_LITTLE_ENDIAN,
3383 };
3384
3385 static const MemoryRegionOps rtl8139_mmio_ops = {
3386 .old_mmio = {
3387 .read = {
3388 rtl8139_mmio_readb,
3389 rtl8139_mmio_readw,
3390 rtl8139_mmio_readl,
3391 },
3392 .write = {
3393 rtl8139_mmio_writeb,
3394 rtl8139_mmio_writew,
3395 rtl8139_mmio_writel,
3396 },
3397 },
3398 .endianness = DEVICE_LITTLE_ENDIAN,
3399 };
3400
3401 static void rtl8139_timer(void *opaque)
3402 {
3403 RTL8139State *s = opaque;
3404
3405 if (!s->clock_enabled)
3406 {
3407 DPRINTF(">>> timer: clock is not running\n");
3408 return;
3409 }
3410
3411 s->IntrStatus |= PCSTimeout;
3412 rtl8139_update_irq(s);
3413 rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
3414 }
3415
3416 static void rtl8139_cleanup(VLANClientState *nc)
3417 {
3418 RTL8139State *s = DO_UPCAST(NICState, nc, nc)->opaque;
3419
3420 s->nic = NULL;
3421 }
3422
3423 static int pci_rtl8139_uninit(PCIDevice *dev)
3424 {
3425 RTL8139State *s = DO_UPCAST(RTL8139State, dev, dev);
3426
3427 memory_region_destroy(&s->bar_io);
3428 memory_region_destroy(&s->bar_mem);
3429 if (s->cplus_txbuffer) {
3430 g_free(s->cplus_txbuffer);
3431 s->cplus_txbuffer = NULL;
3432 }
3433 qemu_del_timer(s->timer);
3434 qemu_free_timer(s->timer);
3435 qemu_del_vlan_client(&s->nic->nc);
3436 return 0;
3437 }
3438
3439 static NetClientInfo net_rtl8139_info = {
3440 .type = NET_CLIENT_TYPE_NIC,
3441 .size = sizeof(NICState),
3442 .can_receive = rtl8139_can_receive,
3443 .receive = rtl8139_receive,
3444 .cleanup = rtl8139_cleanup,
3445 };
3446
3447 static int pci_rtl8139_init(PCIDevice *dev)
3448 {
3449 RTL8139State * s = DO_UPCAST(RTL8139State, dev, dev);
3450 uint8_t *pci_conf;
3451
3452 pci_conf = s->dev.config;
3453 pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */
3454 /* TODO: start of capability list, but no capability
3455 * list bit in status register, and offset 0xdc seems unused. */
3456 pci_conf[PCI_CAPABILITY_LIST] = 0xdc;
3457
3458 memory_region_init_io(&s->bar_io, &rtl8139_io_ops, s, "rtl8139", 0x100);
3459 memory_region_init_io(&s->bar_mem, &rtl8139_mmio_ops, s, "rtl8139", 0x100);
3460 pci_register_bar(&s->dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->bar_io);
3461 pci_register_bar(&s->dev, 1, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar_mem);
3462
3463 qemu_macaddr_default_if_unset(&s->conf.macaddr);
3464
3465 /* prepare eeprom */
3466 s->eeprom.contents[0] = 0x8129;
3467 #if 1
3468 /* PCI vendor and device ID should be mirrored here */
3469 s->eeprom.contents[1] = PCI_VENDOR_ID_REALTEK;
3470 s->eeprom.contents[2] = PCI_DEVICE_ID_REALTEK_8139;
3471 #endif
3472 s->eeprom.contents[7] = s->conf.macaddr.a[0] | s->conf.macaddr.a[1] << 8;
3473 s->eeprom.contents[8] = s->conf.macaddr.a[2] | s->conf.macaddr.a[3] << 8;
3474 s->eeprom.contents[9] = s->conf.macaddr.a[4] | s->conf.macaddr.a[5] << 8;
3475
3476 s->nic = qemu_new_nic(&net_rtl8139_info, &s->conf,
3477 object_get_typename(OBJECT(dev)), dev->qdev.id, s);
3478 qemu_format_nic_info_str(&s->nic->nc, s->conf.macaddr.a);
3479
3480 s->cplus_txbuffer = NULL;
3481 s->cplus_txbuffer_len = 0;
3482 s->cplus_txbuffer_offset = 0;
3483
3484 s->TimerExpire = 0;
3485 s->timer = qemu_new_timer_ns(vm_clock, rtl8139_timer, s);
3486 rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
3487
3488 add_boot_device_path(s->conf.bootindex, &dev->qdev, "/ethernet-phy@0");
3489
3490 return 0;
3491 }
3492
3493 static Property rtl8139_properties[] = {
3494 DEFINE_NIC_PROPERTIES(RTL8139State, conf),
3495 DEFINE_PROP_END_OF_LIST(),
3496 };
3497
3498 static void rtl8139_class_init(ObjectClass *klass, void *data)
3499 {
3500 DeviceClass *dc = DEVICE_CLASS(klass);
3501 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
3502
3503 k->init = pci_rtl8139_init;
3504 k->exit = pci_rtl8139_uninit;
3505 k->romfile = "pxe-rtl8139.rom";
3506 k->vendor_id = PCI_VENDOR_ID_REALTEK;
3507 k->device_id = PCI_DEVICE_ID_REALTEK_8139;
3508 k->revision = RTL8139_PCI_REVID; /* >=0x20 is for 8139C+ */
3509 k->class_id = PCI_CLASS_NETWORK_ETHERNET;
3510 dc->reset = rtl8139_reset;
3511 dc->vmsd = &vmstate_rtl8139;
3512 dc->props = rtl8139_properties;
3513 }
3514
3515 static TypeInfo rtl8139_info = {
3516 .name = "rtl8139",
3517 .parent = TYPE_PCI_DEVICE,
3518 .instance_size = sizeof(RTL8139State),
3519 .class_init = rtl8139_class_init,
3520 };
3521
3522 static void rtl8139_register_types(void)
3523 {
3524 type_register_static(&rtl8139_info);
3525 }
3526
3527 type_init(rtl8139_register_types)