]> git.proxmox.com Git - mirror_qemu.git/blob - hw/s390x/sclp.c
pci: Rename root bus initialization functions for clarity
[mirror_qemu.git] / hw / s390x / sclp.c
1 /*
2 * SCLP Support
3 *
4 * Copyright IBM, Corp. 2012
5 *
6 * Authors:
7 * Christian Borntraeger <borntraeger@de.ibm.com>
8 * Heinz Graalfs <graalfs@linux.vnet.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or (at your
11 * option) any later version. See the COPYING file in the top-level directory.
12 *
13 */
14
15 #include "qemu/osdep.h"
16 #include "qapi/error.h"
17 #include "cpu.h"
18 #include "exec/memory.h"
19 #include "sysemu/sysemu.h"
20 #include "exec/address-spaces.h"
21 #include "hw/boards.h"
22 #include "hw/s390x/sclp.h"
23 #include "hw/s390x/event-facility.h"
24 #include "hw/s390x/s390-pci-bus.h"
25 #include "hw/s390x/ipl.h"
26
27 static inline SCLPDevice *get_sclp_device(void)
28 {
29 static SCLPDevice *sclp;
30
31 if (!sclp) {
32 sclp = SCLP(object_resolve_path_type("", TYPE_SCLP, NULL));
33 }
34 return sclp;
35 }
36
37 static void prepare_cpu_entries(SCLPDevice *sclp, CPUEntry *entry, int *count)
38 {
39 MachineState *ms = MACHINE(qdev_get_machine());
40 uint8_t features[SCCB_CPU_FEATURE_LEN] = { 0 };
41 int i;
42
43 s390_get_feat_block(S390_FEAT_TYPE_SCLP_CPU, features);
44 for (i = 0, *count = 0; i < ms->possible_cpus->len; i++) {
45 if (!ms->possible_cpus->cpus[i].cpu) {
46 continue;
47 }
48 entry[*count].address = ms->possible_cpus->cpus[i].arch_id;
49 entry[*count].type = 0;
50 memcpy(entry[*count].features, features, sizeof(features));
51 (*count)++;
52 }
53 }
54
55 /* Provide information about the configuration, CPUs and storage */
56 static void read_SCP_info(SCLPDevice *sclp, SCCB *sccb)
57 {
58 ReadInfo *read_info = (ReadInfo *) sccb;
59 MachineState *machine = MACHINE(qdev_get_machine());
60 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
61 int cpu_count;
62 int rnsize, rnmax;
63 int slots = MIN(machine->ram_slots, s390_get_memslot_count());
64 IplParameterBlock *ipib = s390_ipl_get_iplb();
65
66 /* CPU information */
67 prepare_cpu_entries(sclp, read_info->entries, &cpu_count);
68 read_info->entries_cpu = cpu_to_be16(cpu_count);
69 read_info->offset_cpu = cpu_to_be16(offsetof(ReadInfo, entries));
70 read_info->highest_cpu = cpu_to_be16(max_cpus);
71
72 read_info->ibc_val = cpu_to_be32(s390_get_ibc_val());
73
74 /* Configuration Characteristic (Extension) */
75 s390_get_feat_block(S390_FEAT_TYPE_SCLP_CONF_CHAR,
76 read_info->conf_char);
77 s390_get_feat_block(S390_FEAT_TYPE_SCLP_CONF_CHAR_EXT,
78 read_info->conf_char_ext);
79
80 read_info->facilities = cpu_to_be64(SCLP_HAS_CPU_INFO |
81 SCLP_HAS_IOA_RECONFIG);
82
83 /* Memory Hotplug is only supported for the ccw machine type */
84 if (mhd) {
85 mhd->standby_subregion_size = MEM_SECTION_SIZE;
86 /* Deduct the memory slot already used for core */
87 if (slots > 0) {
88 while ((mhd->standby_subregion_size * (slots - 1)
89 < mhd->standby_mem_size)) {
90 mhd->standby_subregion_size = mhd->standby_subregion_size << 1;
91 }
92 }
93 /*
94 * Initialize mapping of guest standby memory sections indicating which
95 * are and are not online. Assume all standby memory begins offline.
96 */
97 if (mhd->standby_state_map == 0) {
98 if (mhd->standby_mem_size % mhd->standby_subregion_size) {
99 mhd->standby_state_map = g_malloc0((mhd->standby_mem_size /
100 mhd->standby_subregion_size + 1) *
101 (mhd->standby_subregion_size /
102 MEM_SECTION_SIZE));
103 } else {
104 mhd->standby_state_map = g_malloc0(mhd->standby_mem_size /
105 MEM_SECTION_SIZE);
106 }
107 }
108 mhd->padded_ram_size = ram_size + mhd->pad_size;
109 mhd->rzm = 1 << mhd->increment_size;
110
111 read_info->facilities |= cpu_to_be64(SCLP_FC_ASSIGN_ATTACH_READ_STOR);
112 }
113 read_info->mha_pow = s390_get_mha_pow();
114 read_info->hmfai = cpu_to_be32(s390_get_hmfai());
115
116 rnsize = 1 << (sclp->increment_size - 20);
117 if (rnsize <= 128) {
118 read_info->rnsize = rnsize;
119 } else {
120 read_info->rnsize = 0;
121 read_info->rnsize2 = cpu_to_be32(rnsize);
122 }
123
124 rnmax = machine->maxram_size >> sclp->increment_size;
125 if (rnmax < 0x10000) {
126 read_info->rnmax = cpu_to_be16(rnmax);
127 } else {
128 read_info->rnmax = cpu_to_be16(0);
129 read_info->rnmax2 = cpu_to_be64(rnmax);
130 }
131
132 if (ipib && ipib->flags & DIAG308_FLAGS_LP_VALID) {
133 memcpy(&read_info->loadparm, &ipib->loadparm,
134 sizeof(read_info->loadparm));
135 } else {
136 s390_ipl_set_loadparm(read_info->loadparm);
137 }
138
139 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION);
140 }
141
142 static void read_storage_element0_info(SCLPDevice *sclp, SCCB *sccb)
143 {
144 int i, assigned;
145 int subincrement_id = SCLP_STARTING_SUBINCREMENT_ID;
146 ReadStorageElementInfo *storage_info = (ReadStorageElementInfo *) sccb;
147 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
148
149 if (!mhd) {
150 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
151 return;
152 }
153
154 if ((ram_size >> mhd->increment_size) >= 0x10000) {
155 sccb->h.response_code = cpu_to_be16(SCLP_RC_SCCB_BOUNDARY_VIOLATION);
156 return;
157 }
158
159 /* Return information regarding core memory */
160 storage_info->max_id = cpu_to_be16(mhd->standby_mem_size ? 1 : 0);
161 assigned = ram_size >> mhd->increment_size;
162 storage_info->assigned = cpu_to_be16(assigned);
163
164 for (i = 0; i < assigned; i++) {
165 storage_info->entries[i] = cpu_to_be32(subincrement_id);
166 subincrement_id += SCLP_INCREMENT_UNIT;
167 }
168 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION);
169 }
170
171 static void read_storage_element1_info(SCLPDevice *sclp, SCCB *sccb)
172 {
173 ReadStorageElementInfo *storage_info = (ReadStorageElementInfo *) sccb;
174 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
175
176 if (!mhd) {
177 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
178 return;
179 }
180
181 if ((mhd->standby_mem_size >> mhd->increment_size) >= 0x10000) {
182 sccb->h.response_code = cpu_to_be16(SCLP_RC_SCCB_BOUNDARY_VIOLATION);
183 return;
184 }
185
186 /* Return information regarding standby memory */
187 storage_info->max_id = cpu_to_be16(mhd->standby_mem_size ? 1 : 0);
188 storage_info->assigned = cpu_to_be16(mhd->standby_mem_size >>
189 mhd->increment_size);
190 storage_info->standby = cpu_to_be16(mhd->standby_mem_size >>
191 mhd->increment_size);
192 sccb->h.response_code = cpu_to_be16(SCLP_RC_STANDBY_READ_COMPLETION);
193 }
194
195 static void attach_storage_element(SCLPDevice *sclp, SCCB *sccb,
196 uint16_t element)
197 {
198 int i, assigned, subincrement_id;
199 AttachStorageElement *attach_info = (AttachStorageElement *) sccb;
200 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
201
202 if (!mhd) {
203 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
204 return;
205 }
206
207 if (element != 1) {
208 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
209 return;
210 }
211
212 assigned = mhd->standby_mem_size >> mhd->increment_size;
213 attach_info->assigned = cpu_to_be16(assigned);
214 subincrement_id = ((ram_size >> mhd->increment_size) << 16)
215 + SCLP_STARTING_SUBINCREMENT_ID;
216 for (i = 0; i < assigned; i++) {
217 attach_info->entries[i] = cpu_to_be32(subincrement_id);
218 subincrement_id += SCLP_INCREMENT_UNIT;
219 }
220 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION);
221 }
222
223 static void assign_storage(SCLPDevice *sclp, SCCB *sccb)
224 {
225 MemoryRegion *mr = NULL;
226 uint64_t this_subregion_size;
227 AssignStorage *assign_info = (AssignStorage *) sccb;
228 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
229 ram_addr_t assign_addr;
230 MemoryRegion *sysmem = get_system_memory();
231
232 if (!mhd) {
233 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
234 return;
235 }
236 assign_addr = (assign_info->rn - 1) * mhd->rzm;
237
238 if ((assign_addr % MEM_SECTION_SIZE == 0) &&
239 (assign_addr >= mhd->padded_ram_size)) {
240 /* Re-use existing memory region if found */
241 mr = memory_region_find(sysmem, assign_addr, 1).mr;
242 memory_region_unref(mr);
243 if (!mr) {
244
245 MemoryRegion *standby_ram = g_new(MemoryRegion, 1);
246
247 /* offset to align to standby_subregion_size for allocation */
248 ram_addr_t offset = assign_addr -
249 (assign_addr - mhd->padded_ram_size)
250 % mhd->standby_subregion_size;
251
252 /* strlen("standby.ram") + 4 (Max of KVM_MEMORY_SLOTS) + NULL */
253 char id[16];
254 snprintf(id, 16, "standby.ram%d",
255 (int)((offset - mhd->padded_ram_size) /
256 mhd->standby_subregion_size) + 1);
257
258 /* Allocate a subregion of the calculated standby_subregion_size */
259 if (offset + mhd->standby_subregion_size >
260 mhd->padded_ram_size + mhd->standby_mem_size) {
261 this_subregion_size = mhd->padded_ram_size +
262 mhd->standby_mem_size - offset;
263 } else {
264 this_subregion_size = mhd->standby_subregion_size;
265 }
266
267 memory_region_init_ram(standby_ram, NULL, id, this_subregion_size,
268 &error_fatal);
269 /* This is a hack to make memory hotunplug work again. Once we have
270 * subdevices, we have to unparent them when unassigning memory,
271 * instead of doing it via the ref count of the MemoryRegion. */
272 object_ref(OBJECT(standby_ram));
273 object_unparent(OBJECT(standby_ram));
274 memory_region_add_subregion(sysmem, offset, standby_ram);
275 }
276 /* The specified subregion is no longer in standby */
277 mhd->standby_state_map[(assign_addr - mhd->padded_ram_size)
278 / MEM_SECTION_SIZE] = 1;
279 }
280 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION);
281 }
282
283 static void unassign_storage(SCLPDevice *sclp, SCCB *sccb)
284 {
285 MemoryRegion *mr = NULL;
286 AssignStorage *assign_info = (AssignStorage *) sccb;
287 sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
288 ram_addr_t unassign_addr;
289 MemoryRegion *sysmem = get_system_memory();
290
291 if (!mhd) {
292 sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
293 return;
294 }
295 unassign_addr = (assign_info->rn - 1) * mhd->rzm;
296
297 /* if the addr is a multiple of 256 MB */
298 if ((unassign_addr % MEM_SECTION_SIZE == 0) &&
299 (unassign_addr >= mhd->padded_ram_size)) {
300 mhd->standby_state_map[(unassign_addr -
301 mhd->padded_ram_size) / MEM_SECTION_SIZE] = 0;
302
303 /* find the specified memory region and destroy it */
304 mr = memory_region_find(sysmem, unassign_addr, 1).mr;
305 memory_region_unref(mr);
306 if (mr) {
307 int i;
308 int is_removable = 1;
309 ram_addr_t map_offset = (unassign_addr - mhd->padded_ram_size -
310 (unassign_addr - mhd->padded_ram_size)
311 % mhd->standby_subregion_size);
312 /* Mark all affected subregions as 'standby' once again */
313 for (i = 0;
314 i < (mhd->standby_subregion_size / MEM_SECTION_SIZE);
315 i++) {
316
317 if (mhd->standby_state_map[i + map_offset / MEM_SECTION_SIZE]) {
318 is_removable = 0;
319 break;
320 }
321 }
322 if (is_removable) {
323 memory_region_del_subregion(sysmem, mr);
324 object_unref(OBJECT(mr));
325 }
326 }
327 }
328 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION);
329 }
330
331 /* Provide information about the CPU */
332 static void sclp_read_cpu_info(SCLPDevice *sclp, SCCB *sccb)
333 {
334 ReadCpuInfo *cpu_info = (ReadCpuInfo *) sccb;
335 int cpu_count;
336
337 prepare_cpu_entries(sclp, cpu_info->entries, &cpu_count);
338 cpu_info->nr_configured = cpu_to_be16(cpu_count);
339 cpu_info->offset_configured = cpu_to_be16(offsetof(ReadCpuInfo, entries));
340 cpu_info->nr_standby = cpu_to_be16(0);
341
342 /* The standby offset is 16-byte for each CPU */
343 cpu_info->offset_standby = cpu_to_be16(cpu_info->offset_configured
344 + cpu_info->nr_configured*sizeof(CPUEntry));
345
346
347 sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION);
348 }
349
350 static void sclp_configure_io_adapter(SCLPDevice *sclp, SCCB *sccb,
351 bool configure)
352 {
353 int rc;
354
355 if (be16_to_cpu(sccb->h.length) < 16) {
356 rc = SCLP_RC_INSUFFICIENT_SCCB_LENGTH;
357 goto out_err;
358 }
359
360 switch (((IoaCfgSccb *)sccb)->atype) {
361 case SCLP_RECONFIG_PCI_ATYPE:
362 if (s390_has_feat(S390_FEAT_ZPCI)) {
363 if (configure) {
364 s390_pci_sclp_configure(sccb);
365 } else {
366 s390_pci_sclp_deconfigure(sccb);
367 }
368 return;
369 }
370 /* fallthrough */
371 default:
372 rc = SCLP_RC_ADAPTER_TYPE_NOT_RECOGNIZED;
373 }
374
375 out_err:
376 sccb->h.response_code = cpu_to_be16(rc);
377 }
378
379 static void sclp_execute(SCLPDevice *sclp, SCCB *sccb, uint32_t code)
380 {
381 SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp);
382 SCLPEventFacility *ef = sclp->event_facility;
383 SCLPEventFacilityClass *efc = EVENT_FACILITY_GET_CLASS(ef);
384
385 switch (code & SCLP_CMD_CODE_MASK) {
386 case SCLP_CMDW_READ_SCP_INFO:
387 case SCLP_CMDW_READ_SCP_INFO_FORCED:
388 sclp_c->read_SCP_info(sclp, sccb);
389 break;
390 case SCLP_CMDW_READ_CPU_INFO:
391 sclp_c->read_cpu_info(sclp, sccb);
392 break;
393 case SCLP_READ_STORAGE_ELEMENT_INFO:
394 if (code & 0xff00) {
395 sclp_c->read_storage_element1_info(sclp, sccb);
396 } else {
397 sclp_c->read_storage_element0_info(sclp, sccb);
398 }
399 break;
400 case SCLP_ATTACH_STORAGE_ELEMENT:
401 sclp_c->attach_storage_element(sclp, sccb, (code & 0xff00) >> 8);
402 break;
403 case SCLP_ASSIGN_STORAGE:
404 sclp_c->assign_storage(sclp, sccb);
405 break;
406 case SCLP_UNASSIGN_STORAGE:
407 sclp_c->unassign_storage(sclp, sccb);
408 break;
409 case SCLP_CMDW_CONFIGURE_IOA:
410 sclp_configure_io_adapter(sclp, sccb, true);
411 break;
412 case SCLP_CMDW_DECONFIGURE_IOA:
413 sclp_configure_io_adapter(sclp, sccb, false);
414 break;
415 default:
416 efc->command_handler(ef, sccb, code);
417 break;
418 }
419 }
420
421 int sclp_service_call(CPUS390XState *env, uint64_t sccb, uint32_t code)
422 {
423 SCLPDevice *sclp = get_sclp_device();
424 SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp);
425 int r = 0;
426 SCCB work_sccb;
427
428 hwaddr sccb_len = sizeof(SCCB);
429
430 /* first some basic checks on program checks */
431 if (env->psw.mask & PSW_MASK_PSTATE) {
432 r = -PGM_PRIVILEGED;
433 goto out;
434 }
435 if (cpu_physical_memory_is_io(sccb)) {
436 r = -PGM_ADDRESSING;
437 goto out;
438 }
439 if ((sccb & ~0x1fffUL) == 0 || (sccb & ~0x1fffUL) == env->psa
440 || (sccb & ~0x7ffffff8UL) != 0) {
441 r = -PGM_SPECIFICATION;
442 goto out;
443 }
444
445 /*
446 * we want to work on a private copy of the sccb, to prevent guests
447 * from playing dirty tricks by modifying the memory content after
448 * the host has checked the values
449 */
450 cpu_physical_memory_read(sccb, &work_sccb, sccb_len);
451
452 /* Valid sccb sizes */
453 if (be16_to_cpu(work_sccb.h.length) < sizeof(SCCBHeader) ||
454 be16_to_cpu(work_sccb.h.length) > SCCB_SIZE) {
455 r = -PGM_SPECIFICATION;
456 goto out;
457 }
458
459 sclp_c->execute(sclp, &work_sccb, code);
460
461 cpu_physical_memory_write(sccb, &work_sccb,
462 be16_to_cpu(work_sccb.h.length));
463
464 sclp_c->service_interrupt(sclp, sccb);
465
466 out:
467 return r;
468 }
469
470 static void service_interrupt(SCLPDevice *sclp, uint32_t sccb)
471 {
472 SCLPEventFacility *ef = sclp->event_facility;
473 SCLPEventFacilityClass *efc = EVENT_FACILITY_GET_CLASS(ef);
474
475 uint32_t param = sccb & ~3;
476
477 /* Indicate whether an event is still pending */
478 param |= efc->event_pending(ef) ? 1 : 0;
479
480 if (!param) {
481 /* No need to send an interrupt, there's nothing to be notified about */
482 return;
483 }
484 s390_sclp_extint(param);
485 }
486
487 void sclp_service_interrupt(uint32_t sccb)
488 {
489 SCLPDevice *sclp = get_sclp_device();
490 SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp);
491
492 sclp_c->service_interrupt(sclp, sccb);
493 }
494
495 /* qemu object creation and initialization functions */
496
497 void s390_sclp_init(void)
498 {
499 Object *new = object_new(TYPE_SCLP);
500
501 object_property_add_child(qdev_get_machine(), TYPE_SCLP, new,
502 NULL);
503 object_unref(OBJECT(new));
504 qdev_init_nofail(DEVICE(new));
505 }
506
507 static void sclp_realize(DeviceState *dev, Error **errp)
508 {
509 MachineState *machine = MACHINE(qdev_get_machine());
510 SCLPDevice *sclp = SCLP(dev);
511 Error *err = NULL;
512 uint64_t hw_limit;
513 int ret;
514
515 object_property_set_bool(OBJECT(sclp->event_facility), true, "realized",
516 &err);
517 if (err) {
518 goto out;
519 }
520 /*
521 * qdev_device_add searches the sysbus for TYPE_SCLP_EVENTS_BUS. As long
522 * as we can't find a fitting bus via the qom tree, we have to add the
523 * event facility to the sysbus, so e.g. a sclp console can be created.
524 */
525 qdev_set_parent_bus(DEVICE(sclp->event_facility), sysbus_get_default());
526
527 ret = s390_set_memory_limit(machine->maxram_size, &hw_limit);
528 if (ret == -E2BIG) {
529 error_setg(&err, "host supports a maximum of %" PRIu64 " GB",
530 hw_limit >> 30);
531 } else if (ret) {
532 error_setg(&err, "setting the guest size failed");
533 }
534
535 out:
536 error_propagate(errp, err);
537 }
538
539 static void sclp_memory_init(SCLPDevice *sclp)
540 {
541 MachineState *machine = MACHINE(qdev_get_machine());
542 ram_addr_t initial_mem = machine->ram_size;
543 ram_addr_t max_mem = machine->maxram_size;
544 ram_addr_t standby_mem = max_mem - initial_mem;
545 ram_addr_t pad_mem = 0;
546 int increment_size = 20;
547
548 /* The storage increment size is a multiple of 1M and is a power of 2.
549 * The number of storage increments must be MAX_STORAGE_INCREMENTS or fewer.
550 * The variable 'increment_size' is an exponent of 2 that can be
551 * used to calculate the size (in bytes) of an increment. */
552 while ((initial_mem >> increment_size) > MAX_STORAGE_INCREMENTS) {
553 increment_size++;
554 }
555 if (machine->ram_slots) {
556 while ((standby_mem >> increment_size) > MAX_STORAGE_INCREMENTS) {
557 increment_size++;
558 }
559 }
560 sclp->increment_size = increment_size;
561
562 /* The core and standby memory areas need to be aligned with
563 * the increment size. In effect, this can cause the
564 * user-specified memory size to be rounded down to align
565 * with the nearest increment boundary. */
566 initial_mem = initial_mem >> increment_size << increment_size;
567 standby_mem = standby_mem >> increment_size << increment_size;
568
569 /* If the size of ram is not on a MEM_SECTION_SIZE boundary,
570 calculate the pad size necessary to force this boundary. */
571 if (machine->ram_slots && standby_mem) {
572 sclpMemoryHotplugDev *mhd = init_sclp_memory_hotplug_dev();
573
574 if (initial_mem % MEM_SECTION_SIZE) {
575 pad_mem = MEM_SECTION_SIZE - initial_mem % MEM_SECTION_SIZE;
576 }
577 mhd->increment_size = increment_size;
578 mhd->pad_size = pad_mem;
579 mhd->standby_mem_size = standby_mem;
580 }
581 machine->ram_size = initial_mem;
582 machine->maxram_size = initial_mem + pad_mem + standby_mem;
583 /* let's propagate the changed ram size into the global variable. */
584 ram_size = initial_mem;
585 }
586
587 static void sclp_init(Object *obj)
588 {
589 SCLPDevice *sclp = SCLP(obj);
590 Object *new;
591
592 new = object_new(TYPE_SCLP_EVENT_FACILITY);
593 object_property_add_child(obj, TYPE_SCLP_EVENT_FACILITY, new, NULL);
594 object_unref(new);
595 sclp->event_facility = EVENT_FACILITY(new);
596
597 sclp_memory_init(sclp);
598 }
599
600 static void sclp_class_init(ObjectClass *oc, void *data)
601 {
602 SCLPDeviceClass *sc = SCLP_CLASS(oc);
603 DeviceClass *dc = DEVICE_CLASS(oc);
604
605 dc->desc = "SCLP (Service-Call Logical Processor)";
606 dc->realize = sclp_realize;
607 dc->hotpluggable = false;
608 set_bit(DEVICE_CATEGORY_MISC, dc->categories);
609 /*
610 * Reason: Creates TYPE_SCLP_EVENT_FACILITY in sclp_init
611 * which is a non-pluggable sysbus device
612 */
613 dc->user_creatable = false;
614
615 sc->read_SCP_info = read_SCP_info;
616 sc->read_storage_element0_info = read_storage_element0_info;
617 sc->read_storage_element1_info = read_storage_element1_info;
618 sc->attach_storage_element = attach_storage_element;
619 sc->assign_storage = assign_storage;
620 sc->unassign_storage = unassign_storage;
621 sc->read_cpu_info = sclp_read_cpu_info;
622 sc->execute = sclp_execute;
623 sc->service_interrupt = service_interrupt;
624 }
625
626 static TypeInfo sclp_info = {
627 .name = TYPE_SCLP,
628 .parent = TYPE_DEVICE,
629 .instance_init = sclp_init,
630 .instance_size = sizeof(SCLPDevice),
631 .class_init = sclp_class_init,
632 .class_size = sizeof(SCLPDeviceClass),
633 };
634
635 sclpMemoryHotplugDev *init_sclp_memory_hotplug_dev(void)
636 {
637 DeviceState *dev;
638 dev = qdev_create(NULL, TYPE_SCLP_MEMORY_HOTPLUG_DEV);
639 object_property_add_child(qdev_get_machine(),
640 TYPE_SCLP_MEMORY_HOTPLUG_DEV,
641 OBJECT(dev), NULL);
642 qdev_init_nofail(dev);
643 return SCLP_MEMORY_HOTPLUG_DEV(object_resolve_path(
644 TYPE_SCLP_MEMORY_HOTPLUG_DEV, NULL));
645 }
646
647 sclpMemoryHotplugDev *get_sclp_memory_hotplug_dev(void)
648 {
649 return SCLP_MEMORY_HOTPLUG_DEV(object_resolve_path(
650 TYPE_SCLP_MEMORY_HOTPLUG_DEV, NULL));
651 }
652
653 static void sclp_memory_hotplug_dev_class_init(ObjectClass *klass,
654 void *data)
655 {
656 DeviceClass *dc = DEVICE_CLASS(klass);
657
658 set_bit(DEVICE_CATEGORY_MISC, dc->categories);
659 }
660
661 static TypeInfo sclp_memory_hotplug_dev_info = {
662 .name = TYPE_SCLP_MEMORY_HOTPLUG_DEV,
663 .parent = TYPE_SYS_BUS_DEVICE,
664 .instance_size = sizeof(sclpMemoryHotplugDev),
665 .class_init = sclp_memory_hotplug_dev_class_init,
666 };
667
668 static void register_types(void)
669 {
670 type_register_static(&sclp_memory_hotplug_dev_info);
671 type_register_static(&sclp_info);
672 }
673 type_init(register_types);