]> git.proxmox.com Git - mirror_qemu.git/blob - hw/sd/sdhci.c
sdhci: implement CMD/DAT[] fields in the Present State register
[mirror_qemu.git] / hw / sd / sdhci.c
1 /*
2 * SD Association Host Standard Specification v2.0 controller emulation
3 *
4 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
5 * Mitsyanko Igor <i.mitsyanko@samsung.com>
6 * Peter A.G. Crosthwaite <peter.crosthwaite@petalogix.com>
7 *
8 * Based on MMC controller for Samsung S5PC1xx-based board emulation
9 * by Alexey Merkulov and Vladimir Monakhov.
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
19 * See the GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with this program; if not, see <http://www.gnu.org/licenses/>.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qemu/error-report.h"
27 #include "qapi/error.h"
28 #include "hw/hw.h"
29 #include "sysemu/block-backend.h"
30 #include "sysemu/blockdev.h"
31 #include "sysemu/dma.h"
32 #include "qemu/timer.h"
33 #include "qemu/bitops.h"
34 #include "hw/sd/sdhci.h"
35 #include "sdhci-internal.h"
36 #include "qemu/log.h"
37 #include "qemu/cutils.h"
38 #include "trace.h"
39
40 #define TYPE_SDHCI_BUS "sdhci-bus"
41 #define SDHCI_BUS(obj) OBJECT_CHECK(SDBus, (obj), TYPE_SDHCI_BUS)
42
43 #define MASKED_WRITE(reg, mask, val) (reg = (reg & (mask)) | (val))
44
45 /* Default SD/MMC host controller features information, which will be
46 * presented in CAPABILITIES register of generic SD host controller at reset.
47 *
48 * support:
49 * - 3.3v and 1.8v voltages
50 * - SDMA/ADMA1/ADMA2
51 * - high-speed
52 * max host controller R/W buffers size: 512B
53 * max clock frequency for SDclock: 52 MHz
54 * timeout clock frequency: 52 MHz
55 *
56 * does not support:
57 * - 3.0v voltage
58 * - 64-bit system bus
59 * - suspend/resume
60 */
61 #define SDHC_CAPAB_REG_DEFAULT 0x057834b4
62
63 static inline unsigned int sdhci_get_fifolen(SDHCIState *s)
64 {
65 return 1 << (9 + FIELD_EX32(s->capareg, SDHC_CAPAB, MAXBLOCKLENGTH));
66 }
67
68 /* return true on error */
69 static bool sdhci_check_capab_freq_range(SDHCIState *s, const char *desc,
70 uint8_t freq, Error **errp)
71 {
72 if (s->sd_spec_version >= 3) {
73 return false;
74 }
75 switch (freq) {
76 case 0:
77 case 10 ... 63:
78 break;
79 default:
80 error_setg(errp, "SD %s clock frequency can have value"
81 "in range 0-63 only", desc);
82 return true;
83 }
84 return false;
85 }
86
87 static void sdhci_check_capareg(SDHCIState *s, Error **errp)
88 {
89 uint64_t msk = s->capareg;
90 uint32_t val;
91 bool y;
92
93 switch (s->sd_spec_version) {
94 case 3:
95 val = FIELD_EX64(s->capareg, SDHC_CAPAB, ASYNC_INT);
96 trace_sdhci_capareg("async interrupt", val);
97 msk = FIELD_DP64(msk, SDHC_CAPAB, ASYNC_INT, 0);
98
99 val = FIELD_EX64(s->capareg, SDHC_CAPAB, SLOT_TYPE);
100 if (val) {
101 error_setg(errp, "slot-type not supported");
102 return;
103 }
104 trace_sdhci_capareg("slot type", val);
105 msk = FIELD_DP64(msk, SDHC_CAPAB, SLOT_TYPE, 0);
106
107 if (val != 2) {
108 val = FIELD_EX64(s->capareg, SDHC_CAPAB, EMBEDDED_8BIT);
109 trace_sdhci_capareg("8-bit bus", val);
110 }
111 msk = FIELD_DP64(msk, SDHC_CAPAB, EMBEDDED_8BIT, 0);
112
113 val = FIELD_EX64(s->capareg, SDHC_CAPAB, BUS_SPEED);
114 trace_sdhci_capareg("bus speed mask", val);
115 msk = FIELD_DP64(msk, SDHC_CAPAB, BUS_SPEED, 0);
116
117 val = FIELD_EX64(s->capareg, SDHC_CAPAB, DRIVER_STRENGTH);
118 trace_sdhci_capareg("driver strength mask", val);
119 msk = FIELD_DP64(msk, SDHC_CAPAB, DRIVER_STRENGTH, 0);
120
121 val = FIELD_EX64(s->capareg, SDHC_CAPAB, TIMER_RETUNING);
122 trace_sdhci_capareg("timer re-tuning", val);
123 msk = FIELD_DP64(msk, SDHC_CAPAB, TIMER_RETUNING, 0);
124
125 val = FIELD_EX64(s->capareg, SDHC_CAPAB, SDR50_TUNING);
126 trace_sdhci_capareg("use SDR50 tuning", val);
127 msk = FIELD_DP64(msk, SDHC_CAPAB, SDR50_TUNING, 0);
128
129 val = FIELD_EX64(s->capareg, SDHC_CAPAB, RETUNING_MODE);
130 trace_sdhci_capareg("re-tuning mode", val);
131 msk = FIELD_DP64(msk, SDHC_CAPAB, RETUNING_MODE, 0);
132
133 val = FIELD_EX64(s->capareg, SDHC_CAPAB, CLOCK_MULT);
134 trace_sdhci_capareg("clock multiplier", val);
135 msk = FIELD_DP64(msk, SDHC_CAPAB, CLOCK_MULT, 0);
136
137 /* fallthrough */
138 case 2: /* default version */
139 val = FIELD_EX64(s->capareg, SDHC_CAPAB, ADMA2);
140 trace_sdhci_capareg("ADMA2", val);
141 msk = FIELD_DP64(msk, SDHC_CAPAB, ADMA2, 0);
142
143 val = FIELD_EX64(s->capareg, SDHC_CAPAB, ADMA1);
144 trace_sdhci_capareg("ADMA1", val);
145 msk = FIELD_DP64(msk, SDHC_CAPAB, ADMA1, 0);
146
147 val = FIELD_EX64(s->capareg, SDHC_CAPAB, BUS64BIT);
148 trace_sdhci_capareg("64-bit system bus", val);
149 msk = FIELD_DP64(msk, SDHC_CAPAB, BUS64BIT, 0);
150
151 /* fallthrough */
152 case 1:
153 y = FIELD_EX64(s->capareg, SDHC_CAPAB, TOUNIT);
154 msk = FIELD_DP64(msk, SDHC_CAPAB, TOUNIT, 0);
155
156 val = FIELD_EX64(s->capareg, SDHC_CAPAB, TOCLKFREQ);
157 trace_sdhci_capareg(y ? "timeout (MHz)" : "Timeout (KHz)", val);
158 if (sdhci_check_capab_freq_range(s, "timeout", val, errp)) {
159 return;
160 }
161 msk = FIELD_DP64(msk, SDHC_CAPAB, TOCLKFREQ, 0);
162
163 val = FIELD_EX64(s->capareg, SDHC_CAPAB, BASECLKFREQ);
164 trace_sdhci_capareg(y ? "base (MHz)" : "Base (KHz)", val);
165 if (sdhci_check_capab_freq_range(s, "base", val, errp)) {
166 return;
167 }
168 msk = FIELD_DP64(msk, SDHC_CAPAB, BASECLKFREQ, 0);
169
170 val = FIELD_EX64(s->capareg, SDHC_CAPAB, MAXBLOCKLENGTH);
171 if (val >= 3) {
172 error_setg(errp, "block size can be 512, 1024 or 2048 only");
173 return;
174 }
175 trace_sdhci_capareg("max block length", sdhci_get_fifolen(s));
176 msk = FIELD_DP64(msk, SDHC_CAPAB, MAXBLOCKLENGTH, 0);
177
178 val = FIELD_EX64(s->capareg, SDHC_CAPAB, HIGHSPEED);
179 trace_sdhci_capareg("high speed", val);
180 msk = FIELD_DP64(msk, SDHC_CAPAB, HIGHSPEED, 0);
181
182 val = FIELD_EX64(s->capareg, SDHC_CAPAB, SDMA);
183 trace_sdhci_capareg("SDMA", val);
184 msk = FIELD_DP64(msk, SDHC_CAPAB, SDMA, 0);
185
186 val = FIELD_EX64(s->capareg, SDHC_CAPAB, SUSPRESUME);
187 trace_sdhci_capareg("suspend/resume", val);
188 msk = FIELD_DP64(msk, SDHC_CAPAB, SUSPRESUME, 0);
189
190 val = FIELD_EX64(s->capareg, SDHC_CAPAB, V33);
191 trace_sdhci_capareg("3.3v", val);
192 msk = FIELD_DP64(msk, SDHC_CAPAB, V33, 0);
193
194 val = FIELD_EX64(s->capareg, SDHC_CAPAB, V30);
195 trace_sdhci_capareg("3.0v", val);
196 msk = FIELD_DP64(msk, SDHC_CAPAB, V30, 0);
197
198 val = FIELD_EX64(s->capareg, SDHC_CAPAB, V18);
199 trace_sdhci_capareg("1.8v", val);
200 msk = FIELD_DP64(msk, SDHC_CAPAB, V18, 0);
201 break;
202
203 default:
204 error_setg(errp, "Unsupported spec version: %u", s->sd_spec_version);
205 }
206 if (msk) {
207 qemu_log_mask(LOG_UNIMP,
208 "SDHCI: unknown CAPAB mask: 0x%016" PRIx64 "\n", msk);
209 }
210 }
211
212 static uint8_t sdhci_slotint(SDHCIState *s)
213 {
214 return (s->norintsts & s->norintsigen) || (s->errintsts & s->errintsigen) ||
215 ((s->norintsts & SDHC_NIS_INSERT) && (s->wakcon & SDHC_WKUP_ON_INS)) ||
216 ((s->norintsts & SDHC_NIS_REMOVE) && (s->wakcon & SDHC_WKUP_ON_RMV));
217 }
218
219 static inline void sdhci_update_irq(SDHCIState *s)
220 {
221 qemu_set_irq(s->irq, sdhci_slotint(s));
222 }
223
224 static void sdhci_raise_insertion_irq(void *opaque)
225 {
226 SDHCIState *s = (SDHCIState *)opaque;
227
228 if (s->norintsts & SDHC_NIS_REMOVE) {
229 timer_mod(s->insert_timer,
230 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
231 } else {
232 s->prnsts = 0x1ff0000;
233 if (s->norintstsen & SDHC_NISEN_INSERT) {
234 s->norintsts |= SDHC_NIS_INSERT;
235 }
236 sdhci_update_irq(s);
237 }
238 }
239
240 static void sdhci_set_inserted(DeviceState *dev, bool level)
241 {
242 SDHCIState *s = (SDHCIState *)dev;
243
244 trace_sdhci_set_inserted(level ? "insert" : "eject");
245 if ((s->norintsts & SDHC_NIS_REMOVE) && level) {
246 /* Give target some time to notice card ejection */
247 timer_mod(s->insert_timer,
248 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
249 } else {
250 if (level) {
251 s->prnsts = 0x1ff0000;
252 if (s->norintstsen & SDHC_NISEN_INSERT) {
253 s->norintsts |= SDHC_NIS_INSERT;
254 }
255 } else {
256 s->prnsts = 0x1fa0000;
257 s->pwrcon &= ~SDHC_POWER_ON;
258 s->clkcon &= ~SDHC_CLOCK_SDCLK_EN;
259 if (s->norintstsen & SDHC_NISEN_REMOVE) {
260 s->norintsts |= SDHC_NIS_REMOVE;
261 }
262 }
263 sdhci_update_irq(s);
264 }
265 }
266
267 static void sdhci_set_readonly(DeviceState *dev, bool level)
268 {
269 SDHCIState *s = (SDHCIState *)dev;
270
271 if (level) {
272 s->prnsts &= ~SDHC_WRITE_PROTECT;
273 } else {
274 /* Write enabled */
275 s->prnsts |= SDHC_WRITE_PROTECT;
276 }
277 }
278
279 static void sdhci_reset(SDHCIState *s)
280 {
281 DeviceState *dev = DEVICE(s);
282
283 timer_del(s->insert_timer);
284 timer_del(s->transfer_timer);
285
286 /* Set all registers to 0. Capabilities/Version registers are not cleared
287 * and assumed to always preserve their value, given to them during
288 * initialization */
289 memset(&s->sdmasysad, 0, (uintptr_t)&s->capareg - (uintptr_t)&s->sdmasysad);
290
291 /* Reset other state based on current card insertion/readonly status */
292 sdhci_set_inserted(dev, sdbus_get_inserted(&s->sdbus));
293 sdhci_set_readonly(dev, sdbus_get_readonly(&s->sdbus));
294
295 s->data_count = 0;
296 s->stopped_state = sdhc_not_stopped;
297 s->pending_insert_state = false;
298 }
299
300 static void sdhci_poweron_reset(DeviceState *dev)
301 {
302 /* QOM (ie power-on) reset. This is identical to reset
303 * commanded via device register apart from handling of the
304 * 'pending insert on powerup' quirk.
305 */
306 SDHCIState *s = (SDHCIState *)dev;
307
308 sdhci_reset(s);
309
310 if (s->pending_insert_quirk) {
311 s->pending_insert_state = true;
312 }
313 }
314
315 static void sdhci_data_transfer(void *opaque);
316
317 static void sdhci_send_command(SDHCIState *s)
318 {
319 SDRequest request;
320 uint8_t response[16];
321 int rlen;
322
323 s->errintsts = 0;
324 s->acmd12errsts = 0;
325 request.cmd = s->cmdreg >> 8;
326 request.arg = s->argument;
327
328 trace_sdhci_send_command(request.cmd, request.arg);
329 rlen = sdbus_do_command(&s->sdbus, &request, response);
330
331 if (s->cmdreg & SDHC_CMD_RESPONSE) {
332 if (rlen == 4) {
333 s->rspreg[0] = (response[0] << 24) | (response[1] << 16) |
334 (response[2] << 8) | response[3];
335 s->rspreg[1] = s->rspreg[2] = s->rspreg[3] = 0;
336 trace_sdhci_response4(s->rspreg[0]);
337 } else if (rlen == 16) {
338 s->rspreg[0] = (response[11] << 24) | (response[12] << 16) |
339 (response[13] << 8) | response[14];
340 s->rspreg[1] = (response[7] << 24) | (response[8] << 16) |
341 (response[9] << 8) | response[10];
342 s->rspreg[2] = (response[3] << 24) | (response[4] << 16) |
343 (response[5] << 8) | response[6];
344 s->rspreg[3] = (response[0] << 16) | (response[1] << 8) |
345 response[2];
346 trace_sdhci_response16(s->rspreg[3], s->rspreg[2],
347 s->rspreg[1], s->rspreg[0]);
348 } else {
349 trace_sdhci_error("timeout waiting for command response");
350 if (s->errintstsen & SDHC_EISEN_CMDTIMEOUT) {
351 s->errintsts |= SDHC_EIS_CMDTIMEOUT;
352 s->norintsts |= SDHC_NIS_ERR;
353 }
354 }
355
356 if (!(s->quirks & SDHCI_QUIRK_NO_BUSY_IRQ) &&
357 (s->norintstsen & SDHC_NISEN_TRSCMP) &&
358 (s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY) {
359 s->norintsts |= SDHC_NIS_TRSCMP;
360 }
361 }
362
363 if (s->norintstsen & SDHC_NISEN_CMDCMP) {
364 s->norintsts |= SDHC_NIS_CMDCMP;
365 }
366
367 sdhci_update_irq(s);
368
369 if (s->blksize && (s->cmdreg & SDHC_CMD_DATA_PRESENT)) {
370 s->data_count = 0;
371 sdhci_data_transfer(s);
372 }
373 }
374
375 static void sdhci_end_transfer(SDHCIState *s)
376 {
377 /* Automatically send CMD12 to stop transfer if AutoCMD12 enabled */
378 if ((s->trnmod & SDHC_TRNS_ACMD12) != 0) {
379 SDRequest request;
380 uint8_t response[16];
381
382 request.cmd = 0x0C;
383 request.arg = 0;
384 trace_sdhci_end_transfer(request.cmd, request.arg);
385 sdbus_do_command(&s->sdbus, &request, response);
386 /* Auto CMD12 response goes to the upper Response register */
387 s->rspreg[3] = (response[0] << 24) | (response[1] << 16) |
388 (response[2] << 8) | response[3];
389 }
390
391 s->prnsts &= ~(SDHC_DOING_READ | SDHC_DOING_WRITE |
392 SDHC_DAT_LINE_ACTIVE | SDHC_DATA_INHIBIT |
393 SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE);
394
395 if (s->norintstsen & SDHC_NISEN_TRSCMP) {
396 s->norintsts |= SDHC_NIS_TRSCMP;
397 }
398
399 sdhci_update_irq(s);
400 }
401
402 /*
403 * Programmed i/o data transfer
404 */
405 #define BLOCK_SIZE_MASK (4 * K_BYTE - 1)
406
407 /* Fill host controller's read buffer with BLKSIZE bytes of data from card */
408 static void sdhci_read_block_from_card(SDHCIState *s)
409 {
410 int index = 0;
411 uint8_t data;
412 const uint16_t blk_size = s->blksize & BLOCK_SIZE_MASK;
413
414 if ((s->trnmod & SDHC_TRNS_MULTI) &&
415 (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) {
416 return;
417 }
418
419 for (index = 0; index < blk_size; index++) {
420 data = sdbus_read_data(&s->sdbus);
421 if (!FIELD_EX32(s->hostctl2, SDHC_HOSTCTL2, EXECUTE_TUNING)) {
422 /* Device is not in tunning */
423 s->fifo_buffer[index] = data;
424 }
425 }
426
427 if (FIELD_EX32(s->hostctl2, SDHC_HOSTCTL2, EXECUTE_TUNING)) {
428 /* Device is in tunning */
429 s->hostctl2 &= ~R_SDHC_HOSTCTL2_EXECUTE_TUNING_MASK;
430 s->hostctl2 |= R_SDHC_HOSTCTL2_SAMPLING_CLKSEL_MASK;
431 s->prnsts &= ~(SDHC_DAT_LINE_ACTIVE | SDHC_DOING_READ |
432 SDHC_DATA_INHIBIT);
433 goto read_done;
434 }
435
436 /* New data now available for READ through Buffer Port Register */
437 s->prnsts |= SDHC_DATA_AVAILABLE;
438 if (s->norintstsen & SDHC_NISEN_RBUFRDY) {
439 s->norintsts |= SDHC_NIS_RBUFRDY;
440 }
441
442 /* Clear DAT line active status if that was the last block */
443 if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
444 ((s->trnmod & SDHC_TRNS_MULTI) && s->blkcnt == 1)) {
445 s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
446 }
447
448 /* If stop at block gap request was set and it's not the last block of
449 * data - generate Block Event interrupt */
450 if (s->stopped_state == sdhc_gap_read && (s->trnmod & SDHC_TRNS_MULTI) &&
451 s->blkcnt != 1) {
452 s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
453 if (s->norintstsen & SDHC_EISEN_BLKGAP) {
454 s->norintsts |= SDHC_EIS_BLKGAP;
455 }
456 }
457
458 read_done:
459 sdhci_update_irq(s);
460 }
461
462 /* Read @size byte of data from host controller @s BUFFER DATA PORT register */
463 static uint32_t sdhci_read_dataport(SDHCIState *s, unsigned size)
464 {
465 uint32_t value = 0;
466 int i;
467
468 /* first check that a valid data exists in host controller input buffer */
469 if ((s->prnsts & SDHC_DATA_AVAILABLE) == 0) {
470 trace_sdhci_error("read from empty buffer");
471 return 0;
472 }
473
474 for (i = 0; i < size; i++) {
475 value |= s->fifo_buffer[s->data_count] << i * 8;
476 s->data_count++;
477 /* check if we've read all valid data (blksize bytes) from buffer */
478 if ((s->data_count) >= (s->blksize & BLOCK_SIZE_MASK)) {
479 trace_sdhci_read_dataport(s->data_count);
480 s->prnsts &= ~SDHC_DATA_AVAILABLE; /* no more data in a buffer */
481 s->data_count = 0; /* next buff read must start at position [0] */
482
483 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
484 s->blkcnt--;
485 }
486
487 /* if that was the last block of data */
488 if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
489 ((s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) ||
490 /* stop at gap request */
491 (s->stopped_state == sdhc_gap_read &&
492 !(s->prnsts & SDHC_DAT_LINE_ACTIVE))) {
493 sdhci_end_transfer(s);
494 } else { /* if there are more data, read next block from card */
495 sdhci_read_block_from_card(s);
496 }
497 break;
498 }
499 }
500
501 return value;
502 }
503
504 /* Write data from host controller FIFO to card */
505 static void sdhci_write_block_to_card(SDHCIState *s)
506 {
507 int index = 0;
508
509 if (s->prnsts & SDHC_SPACE_AVAILABLE) {
510 if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
511 s->norintsts |= SDHC_NIS_WBUFRDY;
512 }
513 sdhci_update_irq(s);
514 return;
515 }
516
517 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
518 if (s->blkcnt == 0) {
519 return;
520 } else {
521 s->blkcnt--;
522 }
523 }
524
525 for (index = 0; index < (s->blksize & BLOCK_SIZE_MASK); index++) {
526 sdbus_write_data(&s->sdbus, s->fifo_buffer[index]);
527 }
528
529 /* Next data can be written through BUFFER DATORT register */
530 s->prnsts |= SDHC_SPACE_AVAILABLE;
531
532 /* Finish transfer if that was the last block of data */
533 if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
534 ((s->trnmod & SDHC_TRNS_MULTI) &&
535 (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0))) {
536 sdhci_end_transfer(s);
537 } else if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
538 s->norintsts |= SDHC_NIS_WBUFRDY;
539 }
540
541 /* Generate Block Gap Event if requested and if not the last block */
542 if (s->stopped_state == sdhc_gap_write && (s->trnmod & SDHC_TRNS_MULTI) &&
543 s->blkcnt > 0) {
544 s->prnsts &= ~SDHC_DOING_WRITE;
545 if (s->norintstsen & SDHC_EISEN_BLKGAP) {
546 s->norintsts |= SDHC_EIS_BLKGAP;
547 }
548 sdhci_end_transfer(s);
549 }
550
551 sdhci_update_irq(s);
552 }
553
554 /* Write @size bytes of @value data to host controller @s Buffer Data Port
555 * register */
556 static void sdhci_write_dataport(SDHCIState *s, uint32_t value, unsigned size)
557 {
558 unsigned i;
559
560 /* Check that there is free space left in a buffer */
561 if (!(s->prnsts & SDHC_SPACE_AVAILABLE)) {
562 trace_sdhci_error("Can't write to data buffer: buffer full");
563 return;
564 }
565
566 for (i = 0; i < size; i++) {
567 s->fifo_buffer[s->data_count] = value & 0xFF;
568 s->data_count++;
569 value >>= 8;
570 if (s->data_count >= (s->blksize & BLOCK_SIZE_MASK)) {
571 trace_sdhci_write_dataport(s->data_count);
572 s->data_count = 0;
573 s->prnsts &= ~SDHC_SPACE_AVAILABLE;
574 if (s->prnsts & SDHC_DOING_WRITE) {
575 sdhci_write_block_to_card(s);
576 }
577 }
578 }
579 }
580
581 /*
582 * Single DMA data transfer
583 */
584
585 /* Multi block SDMA transfer */
586 static void sdhci_sdma_transfer_multi_blocks(SDHCIState *s)
587 {
588 bool page_aligned = false;
589 unsigned int n, begin;
590 const uint16_t block_size = s->blksize & BLOCK_SIZE_MASK;
591 uint32_t boundary_chk = 1 << (((s->blksize & ~BLOCK_SIZE_MASK) >> 12) + 12);
592 uint32_t boundary_count = boundary_chk - (s->sdmasysad % boundary_chk);
593
594 if (!(s->trnmod & SDHC_TRNS_BLK_CNT_EN) || !s->blkcnt) {
595 qemu_log_mask(LOG_UNIMP, "infinite transfer is not supported\n");
596 return;
597 }
598
599 /* XXX: Some sd/mmc drivers (for example, u-boot-slp) do not account for
600 * possible stop at page boundary if initial address is not page aligned,
601 * allow them to work properly */
602 if ((s->sdmasysad % boundary_chk) == 0) {
603 page_aligned = true;
604 }
605
606 if (s->trnmod & SDHC_TRNS_READ) {
607 s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT |
608 SDHC_DAT_LINE_ACTIVE;
609 while (s->blkcnt) {
610 if (s->data_count == 0) {
611 for (n = 0; n < block_size; n++) {
612 s->fifo_buffer[n] = sdbus_read_data(&s->sdbus);
613 }
614 }
615 begin = s->data_count;
616 if (((boundary_count + begin) < block_size) && page_aligned) {
617 s->data_count = boundary_count + begin;
618 boundary_count = 0;
619 } else {
620 s->data_count = block_size;
621 boundary_count -= block_size - begin;
622 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
623 s->blkcnt--;
624 }
625 }
626 dma_memory_write(s->dma_as, s->sdmasysad,
627 &s->fifo_buffer[begin], s->data_count - begin);
628 s->sdmasysad += s->data_count - begin;
629 if (s->data_count == block_size) {
630 s->data_count = 0;
631 }
632 if (page_aligned && boundary_count == 0) {
633 break;
634 }
635 }
636 } else {
637 s->prnsts |= SDHC_DOING_WRITE | SDHC_DATA_INHIBIT |
638 SDHC_DAT_LINE_ACTIVE;
639 while (s->blkcnt) {
640 begin = s->data_count;
641 if (((boundary_count + begin) < block_size) && page_aligned) {
642 s->data_count = boundary_count + begin;
643 boundary_count = 0;
644 } else {
645 s->data_count = block_size;
646 boundary_count -= block_size - begin;
647 }
648 dma_memory_read(s->dma_as, s->sdmasysad,
649 &s->fifo_buffer[begin], s->data_count - begin);
650 s->sdmasysad += s->data_count - begin;
651 if (s->data_count == block_size) {
652 for (n = 0; n < block_size; n++) {
653 sdbus_write_data(&s->sdbus, s->fifo_buffer[n]);
654 }
655 s->data_count = 0;
656 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
657 s->blkcnt--;
658 }
659 }
660 if (page_aligned && boundary_count == 0) {
661 break;
662 }
663 }
664 }
665
666 if (s->blkcnt == 0) {
667 sdhci_end_transfer(s);
668 } else {
669 if (s->norintstsen & SDHC_NISEN_DMA) {
670 s->norintsts |= SDHC_NIS_DMA;
671 }
672 sdhci_update_irq(s);
673 }
674 }
675
676 /* single block SDMA transfer */
677 static void sdhci_sdma_transfer_single_block(SDHCIState *s)
678 {
679 int n;
680 uint32_t datacnt = s->blksize & BLOCK_SIZE_MASK;
681
682 if (s->trnmod & SDHC_TRNS_READ) {
683 for (n = 0; n < datacnt; n++) {
684 s->fifo_buffer[n] = sdbus_read_data(&s->sdbus);
685 }
686 dma_memory_write(s->dma_as, s->sdmasysad, s->fifo_buffer, datacnt);
687 } else {
688 dma_memory_read(s->dma_as, s->sdmasysad, s->fifo_buffer, datacnt);
689 for (n = 0; n < datacnt; n++) {
690 sdbus_write_data(&s->sdbus, s->fifo_buffer[n]);
691 }
692 }
693 s->blkcnt--;
694
695 sdhci_end_transfer(s);
696 }
697
698 typedef struct ADMADescr {
699 hwaddr addr;
700 uint16_t length;
701 uint8_t attr;
702 uint8_t incr;
703 } ADMADescr;
704
705 static void get_adma_description(SDHCIState *s, ADMADescr *dscr)
706 {
707 uint32_t adma1 = 0;
708 uint64_t adma2 = 0;
709 hwaddr entry_addr = (hwaddr)s->admasysaddr;
710 switch (SDHC_DMA_TYPE(s->hostctl1)) {
711 case SDHC_CTRL_ADMA2_32:
712 dma_memory_read(s->dma_as, entry_addr, (uint8_t *)&adma2,
713 sizeof(adma2));
714 adma2 = le64_to_cpu(adma2);
715 /* The spec does not specify endianness of descriptor table.
716 * We currently assume that it is LE.
717 */
718 dscr->addr = (hwaddr)extract64(adma2, 32, 32) & ~0x3ull;
719 dscr->length = (uint16_t)extract64(adma2, 16, 16);
720 dscr->attr = (uint8_t)extract64(adma2, 0, 7);
721 dscr->incr = 8;
722 break;
723 case SDHC_CTRL_ADMA1_32:
724 dma_memory_read(s->dma_as, entry_addr, (uint8_t *)&adma1,
725 sizeof(adma1));
726 adma1 = le32_to_cpu(adma1);
727 dscr->addr = (hwaddr)(adma1 & 0xFFFFF000);
728 dscr->attr = (uint8_t)extract32(adma1, 0, 7);
729 dscr->incr = 4;
730 if ((dscr->attr & SDHC_ADMA_ATTR_ACT_MASK) == SDHC_ADMA_ATTR_SET_LEN) {
731 dscr->length = (uint16_t)extract32(adma1, 12, 16);
732 } else {
733 dscr->length = 4096;
734 }
735 break;
736 case SDHC_CTRL_ADMA2_64:
737 dma_memory_read(s->dma_as, entry_addr,
738 (uint8_t *)(&dscr->attr), 1);
739 dma_memory_read(s->dma_as, entry_addr + 2,
740 (uint8_t *)(&dscr->length), 2);
741 dscr->length = le16_to_cpu(dscr->length);
742 dma_memory_read(s->dma_as, entry_addr + 4,
743 (uint8_t *)(&dscr->addr), 8);
744 dscr->addr = le64_to_cpu(dscr->addr);
745 dscr->attr &= (uint8_t) ~0xC0;
746 dscr->incr = 12;
747 break;
748 }
749 }
750
751 /* Advanced DMA data transfer */
752
753 static void sdhci_do_adma(SDHCIState *s)
754 {
755 unsigned int n, begin, length;
756 const uint16_t block_size = s->blksize & BLOCK_SIZE_MASK;
757 ADMADescr dscr = {};
758 int i;
759
760 for (i = 0; i < SDHC_ADMA_DESCS_PER_DELAY; ++i) {
761 s->admaerr &= ~SDHC_ADMAERR_LENGTH_MISMATCH;
762
763 get_adma_description(s, &dscr);
764 trace_sdhci_adma_loop(dscr.addr, dscr.length, dscr.attr);
765
766 if ((dscr.attr & SDHC_ADMA_ATTR_VALID) == 0) {
767 /* Indicate that error occurred in ST_FDS state */
768 s->admaerr &= ~SDHC_ADMAERR_STATE_MASK;
769 s->admaerr |= SDHC_ADMAERR_STATE_ST_FDS;
770
771 /* Generate ADMA error interrupt */
772 if (s->errintstsen & SDHC_EISEN_ADMAERR) {
773 s->errintsts |= SDHC_EIS_ADMAERR;
774 s->norintsts |= SDHC_NIS_ERR;
775 }
776
777 sdhci_update_irq(s);
778 return;
779 }
780
781 length = dscr.length ? dscr.length : 65536;
782
783 switch (dscr.attr & SDHC_ADMA_ATTR_ACT_MASK) {
784 case SDHC_ADMA_ATTR_ACT_TRAN: /* data transfer */
785
786 if (s->trnmod & SDHC_TRNS_READ) {
787 while (length) {
788 if (s->data_count == 0) {
789 for (n = 0; n < block_size; n++) {
790 s->fifo_buffer[n] = sdbus_read_data(&s->sdbus);
791 }
792 }
793 begin = s->data_count;
794 if ((length + begin) < block_size) {
795 s->data_count = length + begin;
796 length = 0;
797 } else {
798 s->data_count = block_size;
799 length -= block_size - begin;
800 }
801 dma_memory_write(s->dma_as, dscr.addr,
802 &s->fifo_buffer[begin],
803 s->data_count - begin);
804 dscr.addr += s->data_count - begin;
805 if (s->data_count == block_size) {
806 s->data_count = 0;
807 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
808 s->blkcnt--;
809 if (s->blkcnt == 0) {
810 break;
811 }
812 }
813 }
814 }
815 } else {
816 while (length) {
817 begin = s->data_count;
818 if ((length + begin) < block_size) {
819 s->data_count = length + begin;
820 length = 0;
821 } else {
822 s->data_count = block_size;
823 length -= block_size - begin;
824 }
825 dma_memory_read(s->dma_as, dscr.addr,
826 &s->fifo_buffer[begin],
827 s->data_count - begin);
828 dscr.addr += s->data_count - begin;
829 if (s->data_count == block_size) {
830 for (n = 0; n < block_size; n++) {
831 sdbus_write_data(&s->sdbus, s->fifo_buffer[n]);
832 }
833 s->data_count = 0;
834 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
835 s->blkcnt--;
836 if (s->blkcnt == 0) {
837 break;
838 }
839 }
840 }
841 }
842 }
843 s->admasysaddr += dscr.incr;
844 break;
845 case SDHC_ADMA_ATTR_ACT_LINK: /* link to next descriptor table */
846 s->admasysaddr = dscr.addr;
847 trace_sdhci_adma("link", s->admasysaddr);
848 break;
849 default:
850 s->admasysaddr += dscr.incr;
851 break;
852 }
853
854 if (dscr.attr & SDHC_ADMA_ATTR_INT) {
855 trace_sdhci_adma("interrupt", s->admasysaddr);
856 if (s->norintstsen & SDHC_NISEN_DMA) {
857 s->norintsts |= SDHC_NIS_DMA;
858 }
859
860 sdhci_update_irq(s);
861 }
862
863 /* ADMA transfer terminates if blkcnt == 0 or by END attribute */
864 if (((s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
865 (s->blkcnt == 0)) || (dscr.attr & SDHC_ADMA_ATTR_END)) {
866 trace_sdhci_adma_transfer_completed();
867 if (length || ((dscr.attr & SDHC_ADMA_ATTR_END) &&
868 (s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
869 s->blkcnt != 0)) {
870 trace_sdhci_error("SD/MMC host ADMA length mismatch");
871 s->admaerr |= SDHC_ADMAERR_LENGTH_MISMATCH |
872 SDHC_ADMAERR_STATE_ST_TFR;
873 if (s->errintstsen & SDHC_EISEN_ADMAERR) {
874 trace_sdhci_error("Set ADMA error flag");
875 s->errintsts |= SDHC_EIS_ADMAERR;
876 s->norintsts |= SDHC_NIS_ERR;
877 }
878
879 sdhci_update_irq(s);
880 }
881 sdhci_end_transfer(s);
882 return;
883 }
884
885 }
886
887 /* we have unfinished business - reschedule to continue ADMA */
888 timer_mod(s->transfer_timer,
889 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_TRANSFER_DELAY);
890 }
891
892 /* Perform data transfer according to controller configuration */
893
894 static void sdhci_data_transfer(void *opaque)
895 {
896 SDHCIState *s = (SDHCIState *)opaque;
897
898 if (s->trnmod & SDHC_TRNS_DMA) {
899 switch (SDHC_DMA_TYPE(s->hostctl1)) {
900 case SDHC_CTRL_SDMA:
901 if ((s->blkcnt == 1) || !(s->trnmod & SDHC_TRNS_MULTI)) {
902 sdhci_sdma_transfer_single_block(s);
903 } else {
904 sdhci_sdma_transfer_multi_blocks(s);
905 }
906
907 break;
908 case SDHC_CTRL_ADMA1_32:
909 if (!(s->capareg & R_SDHC_CAPAB_ADMA1_MASK)) {
910 trace_sdhci_error("ADMA1 not supported");
911 break;
912 }
913
914 sdhci_do_adma(s);
915 break;
916 case SDHC_CTRL_ADMA2_32:
917 if (!(s->capareg & R_SDHC_CAPAB_ADMA2_MASK)) {
918 trace_sdhci_error("ADMA2 not supported");
919 break;
920 }
921
922 sdhci_do_adma(s);
923 break;
924 case SDHC_CTRL_ADMA2_64:
925 if (!(s->capareg & R_SDHC_CAPAB_ADMA2_MASK) ||
926 !(s->capareg & R_SDHC_CAPAB_BUS64BIT_MASK)) {
927 trace_sdhci_error("64 bit ADMA not supported");
928 break;
929 }
930
931 sdhci_do_adma(s);
932 break;
933 default:
934 trace_sdhci_error("Unsupported DMA type");
935 break;
936 }
937 } else {
938 if ((s->trnmod & SDHC_TRNS_READ) && sdbus_data_ready(&s->sdbus)) {
939 s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT |
940 SDHC_DAT_LINE_ACTIVE;
941 sdhci_read_block_from_card(s);
942 } else {
943 s->prnsts |= SDHC_DOING_WRITE | SDHC_DAT_LINE_ACTIVE |
944 SDHC_SPACE_AVAILABLE | SDHC_DATA_INHIBIT;
945 sdhci_write_block_to_card(s);
946 }
947 }
948 }
949
950 static bool sdhci_can_issue_command(SDHCIState *s)
951 {
952 if (!SDHC_CLOCK_IS_ON(s->clkcon) ||
953 (((s->prnsts & SDHC_DATA_INHIBIT) || s->stopped_state) &&
954 ((s->cmdreg & SDHC_CMD_DATA_PRESENT) ||
955 ((s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY &&
956 !(SDHC_COMMAND_TYPE(s->cmdreg) == SDHC_CMD_ABORT))))) {
957 return false;
958 }
959
960 return true;
961 }
962
963 /* The Buffer Data Port register must be accessed in sequential and
964 * continuous manner */
965 static inline bool
966 sdhci_buff_access_is_sequential(SDHCIState *s, unsigned byte_num)
967 {
968 if ((s->data_count & 0x3) != byte_num) {
969 trace_sdhci_error("Non-sequential access to Buffer Data Port register"
970 "is prohibited\n");
971 return false;
972 }
973 return true;
974 }
975
976 static uint64_t sdhci_read(void *opaque, hwaddr offset, unsigned size)
977 {
978 SDHCIState *s = (SDHCIState *)opaque;
979 uint32_t ret = 0;
980
981 switch (offset & ~0x3) {
982 case SDHC_SYSAD:
983 ret = s->sdmasysad;
984 break;
985 case SDHC_BLKSIZE:
986 ret = s->blksize | (s->blkcnt << 16);
987 break;
988 case SDHC_ARGUMENT:
989 ret = s->argument;
990 break;
991 case SDHC_TRNMOD:
992 ret = s->trnmod | (s->cmdreg << 16);
993 break;
994 case SDHC_RSPREG0 ... SDHC_RSPREG3:
995 ret = s->rspreg[((offset & ~0x3) - SDHC_RSPREG0) >> 2];
996 break;
997 case SDHC_BDATA:
998 if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
999 ret = sdhci_read_dataport(s, size);
1000 trace_sdhci_access("rd", size << 3, offset, "->", ret, ret);
1001 return ret;
1002 }
1003 break;
1004 case SDHC_PRNSTS:
1005 ret = s->prnsts;
1006 ret = FIELD_DP32(ret, SDHC_PRNSTS, DAT_LVL,
1007 sdbus_get_dat_lines(&s->sdbus));
1008 ret = FIELD_DP32(ret, SDHC_PRNSTS, CMD_LVL,
1009 sdbus_get_cmd_line(&s->sdbus));
1010 break;
1011 case SDHC_HOSTCTL:
1012 ret = s->hostctl1 | (s->pwrcon << 8) | (s->blkgap << 16) |
1013 (s->wakcon << 24);
1014 break;
1015 case SDHC_CLKCON:
1016 ret = s->clkcon | (s->timeoutcon << 16);
1017 break;
1018 case SDHC_NORINTSTS:
1019 ret = s->norintsts | (s->errintsts << 16);
1020 break;
1021 case SDHC_NORINTSTSEN:
1022 ret = s->norintstsen | (s->errintstsen << 16);
1023 break;
1024 case SDHC_NORINTSIGEN:
1025 ret = s->norintsigen | (s->errintsigen << 16);
1026 break;
1027 case SDHC_ACMD12ERRSTS:
1028 ret = s->acmd12errsts | (s->hostctl2 << 16);
1029 break;
1030 case SDHC_CAPAB:
1031 ret = (uint32_t)s->capareg;
1032 break;
1033 case SDHC_CAPAB + 4:
1034 ret = (uint32_t)(s->capareg >> 32);
1035 break;
1036 case SDHC_MAXCURR:
1037 ret = (uint32_t)s->maxcurr;
1038 break;
1039 case SDHC_MAXCURR + 4:
1040 ret = (uint32_t)(s->maxcurr >> 32);
1041 break;
1042 case SDHC_ADMAERR:
1043 ret = s->admaerr;
1044 break;
1045 case SDHC_ADMASYSADDR:
1046 ret = (uint32_t)s->admasysaddr;
1047 break;
1048 case SDHC_ADMASYSADDR + 4:
1049 ret = (uint32_t)(s->admasysaddr >> 32);
1050 break;
1051 case SDHC_SLOT_INT_STATUS:
1052 ret = (s->version << 16) | sdhci_slotint(s);
1053 break;
1054 default:
1055 qemu_log_mask(LOG_UNIMP, "SDHC rd_%ub @0x%02" HWADDR_PRIx " "
1056 "not implemented\n", size, offset);
1057 break;
1058 }
1059
1060 ret >>= (offset & 0x3) * 8;
1061 ret &= (1ULL << (size * 8)) - 1;
1062 trace_sdhci_access("rd", size << 3, offset, "->", ret, ret);
1063 return ret;
1064 }
1065
1066 static inline void sdhci_blkgap_write(SDHCIState *s, uint8_t value)
1067 {
1068 if ((value & SDHC_STOP_AT_GAP_REQ) && (s->blkgap & SDHC_STOP_AT_GAP_REQ)) {
1069 return;
1070 }
1071 s->blkgap = value & SDHC_STOP_AT_GAP_REQ;
1072
1073 if ((value & SDHC_CONTINUE_REQ) && s->stopped_state &&
1074 (s->blkgap & SDHC_STOP_AT_GAP_REQ) == 0) {
1075 if (s->stopped_state == sdhc_gap_read) {
1076 s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_READ;
1077 sdhci_read_block_from_card(s);
1078 } else {
1079 s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_WRITE;
1080 sdhci_write_block_to_card(s);
1081 }
1082 s->stopped_state = sdhc_not_stopped;
1083 } else if (!s->stopped_state && (value & SDHC_STOP_AT_GAP_REQ)) {
1084 if (s->prnsts & SDHC_DOING_READ) {
1085 s->stopped_state = sdhc_gap_read;
1086 } else if (s->prnsts & SDHC_DOING_WRITE) {
1087 s->stopped_state = sdhc_gap_write;
1088 }
1089 }
1090 }
1091
1092 static inline void sdhci_reset_write(SDHCIState *s, uint8_t value)
1093 {
1094 switch (value) {
1095 case SDHC_RESET_ALL:
1096 sdhci_reset(s);
1097 break;
1098 case SDHC_RESET_CMD:
1099 s->prnsts &= ~SDHC_CMD_INHIBIT;
1100 s->norintsts &= ~SDHC_NIS_CMDCMP;
1101 break;
1102 case SDHC_RESET_DATA:
1103 s->data_count = 0;
1104 s->prnsts &= ~(SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE |
1105 SDHC_DOING_READ | SDHC_DOING_WRITE |
1106 SDHC_DATA_INHIBIT | SDHC_DAT_LINE_ACTIVE);
1107 s->blkgap &= ~(SDHC_STOP_AT_GAP_REQ | SDHC_CONTINUE_REQ);
1108 s->stopped_state = sdhc_not_stopped;
1109 s->norintsts &= ~(SDHC_NIS_WBUFRDY | SDHC_NIS_RBUFRDY |
1110 SDHC_NIS_DMA | SDHC_NIS_TRSCMP | SDHC_NIS_BLKGAP);
1111 break;
1112 }
1113 }
1114
1115 static void
1116 sdhci_write(void *opaque, hwaddr offset, uint64_t val, unsigned size)
1117 {
1118 SDHCIState *s = (SDHCIState *)opaque;
1119 unsigned shift = 8 * (offset & 0x3);
1120 uint32_t mask = ~(((1ULL << (size * 8)) - 1) << shift);
1121 uint32_t value = val;
1122 value <<= shift;
1123
1124 switch (offset & ~0x3) {
1125 case SDHC_SYSAD:
1126 s->sdmasysad = (s->sdmasysad & mask) | value;
1127 MASKED_WRITE(s->sdmasysad, mask, value);
1128 /* Writing to last byte of sdmasysad might trigger transfer */
1129 if (!(mask & 0xFF000000) && TRANSFERRING_DATA(s->prnsts) && s->blkcnt &&
1130 s->blksize && SDHC_DMA_TYPE(s->hostctl1) == SDHC_CTRL_SDMA) {
1131 if (s->trnmod & SDHC_TRNS_MULTI) {
1132 sdhci_sdma_transfer_multi_blocks(s);
1133 } else {
1134 sdhci_sdma_transfer_single_block(s);
1135 }
1136 }
1137 break;
1138 case SDHC_BLKSIZE:
1139 if (!TRANSFERRING_DATA(s->prnsts)) {
1140 MASKED_WRITE(s->blksize, mask, value);
1141 MASKED_WRITE(s->blkcnt, mask >> 16, value >> 16);
1142 }
1143
1144 /* Limit block size to the maximum buffer size */
1145 if (extract32(s->blksize, 0, 12) > s->buf_maxsz) {
1146 qemu_log_mask(LOG_GUEST_ERROR, "%s: Size 0x%x is larger than " \
1147 "the maximum buffer 0x%x", __func__, s->blksize,
1148 s->buf_maxsz);
1149
1150 s->blksize = deposit32(s->blksize, 0, 12, s->buf_maxsz);
1151 }
1152
1153 break;
1154 case SDHC_ARGUMENT:
1155 MASKED_WRITE(s->argument, mask, value);
1156 break;
1157 case SDHC_TRNMOD:
1158 /* DMA can be enabled only if it is supported as indicated by
1159 * capabilities register */
1160 if (!(s->capareg & R_SDHC_CAPAB_SDMA_MASK)) {
1161 value &= ~SDHC_TRNS_DMA;
1162 }
1163 MASKED_WRITE(s->trnmod, mask, value & SDHC_TRNMOD_MASK);
1164 MASKED_WRITE(s->cmdreg, mask >> 16, value >> 16);
1165
1166 /* Writing to the upper byte of CMDREG triggers SD command generation */
1167 if ((mask & 0xFF000000) || !sdhci_can_issue_command(s)) {
1168 break;
1169 }
1170
1171 sdhci_send_command(s);
1172 break;
1173 case SDHC_BDATA:
1174 if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
1175 sdhci_write_dataport(s, value >> shift, size);
1176 }
1177 break;
1178 case SDHC_HOSTCTL:
1179 if (!(mask & 0xFF0000)) {
1180 sdhci_blkgap_write(s, value >> 16);
1181 }
1182 MASKED_WRITE(s->hostctl1, mask, value);
1183 MASKED_WRITE(s->pwrcon, mask >> 8, value >> 8);
1184 MASKED_WRITE(s->wakcon, mask >> 24, value >> 24);
1185 if (!(s->prnsts & SDHC_CARD_PRESENT) || ((s->pwrcon >> 1) & 0x7) < 5 ||
1186 !(s->capareg & (1 << (31 - ((s->pwrcon >> 1) & 0x7))))) {
1187 s->pwrcon &= ~SDHC_POWER_ON;
1188 }
1189 break;
1190 case SDHC_CLKCON:
1191 if (!(mask & 0xFF000000)) {
1192 sdhci_reset_write(s, value >> 24);
1193 }
1194 MASKED_WRITE(s->clkcon, mask, value);
1195 MASKED_WRITE(s->timeoutcon, mask >> 16, value >> 16);
1196 if (s->clkcon & SDHC_CLOCK_INT_EN) {
1197 s->clkcon |= SDHC_CLOCK_INT_STABLE;
1198 } else {
1199 s->clkcon &= ~SDHC_CLOCK_INT_STABLE;
1200 }
1201 break;
1202 case SDHC_NORINTSTS:
1203 if (s->norintstsen & SDHC_NISEN_CARDINT) {
1204 value &= ~SDHC_NIS_CARDINT;
1205 }
1206 s->norintsts &= mask | ~value;
1207 s->errintsts &= (mask >> 16) | ~(value >> 16);
1208 if (s->errintsts) {
1209 s->norintsts |= SDHC_NIS_ERR;
1210 } else {
1211 s->norintsts &= ~SDHC_NIS_ERR;
1212 }
1213 sdhci_update_irq(s);
1214 break;
1215 case SDHC_NORINTSTSEN:
1216 MASKED_WRITE(s->norintstsen, mask, value);
1217 MASKED_WRITE(s->errintstsen, mask >> 16, value >> 16);
1218 s->norintsts &= s->norintstsen;
1219 s->errintsts &= s->errintstsen;
1220 if (s->errintsts) {
1221 s->norintsts |= SDHC_NIS_ERR;
1222 } else {
1223 s->norintsts &= ~SDHC_NIS_ERR;
1224 }
1225 /* Quirk for Raspberry Pi: pending card insert interrupt
1226 * appears when first enabled after power on */
1227 if ((s->norintstsen & SDHC_NISEN_INSERT) && s->pending_insert_state) {
1228 assert(s->pending_insert_quirk);
1229 s->norintsts |= SDHC_NIS_INSERT;
1230 s->pending_insert_state = false;
1231 }
1232 sdhci_update_irq(s);
1233 break;
1234 case SDHC_NORINTSIGEN:
1235 MASKED_WRITE(s->norintsigen, mask, value);
1236 MASKED_WRITE(s->errintsigen, mask >> 16, value >> 16);
1237 sdhci_update_irq(s);
1238 break;
1239 case SDHC_ADMAERR:
1240 MASKED_WRITE(s->admaerr, mask, value);
1241 break;
1242 case SDHC_ADMASYSADDR:
1243 s->admasysaddr = (s->admasysaddr & (0xFFFFFFFF00000000ULL |
1244 (uint64_t)mask)) | (uint64_t)value;
1245 break;
1246 case SDHC_ADMASYSADDR + 4:
1247 s->admasysaddr = (s->admasysaddr & (0x00000000FFFFFFFFULL |
1248 ((uint64_t)mask << 32))) | ((uint64_t)value << 32);
1249 break;
1250 case SDHC_FEAER:
1251 s->acmd12errsts |= value;
1252 s->errintsts |= (value >> 16) & s->errintstsen;
1253 if (s->acmd12errsts) {
1254 s->errintsts |= SDHC_EIS_CMD12ERR;
1255 }
1256 if (s->errintsts) {
1257 s->norintsts |= SDHC_NIS_ERR;
1258 }
1259 sdhci_update_irq(s);
1260 break;
1261 case SDHC_ACMD12ERRSTS:
1262 MASKED_WRITE(s->acmd12errsts, mask, value & UINT16_MAX);
1263 if (s->uhs_mode >= UHS_I) {
1264 MASKED_WRITE(s->hostctl2, mask >> 16, value >> 16);
1265
1266 if (FIELD_EX32(s->hostctl2, SDHC_HOSTCTL2, V18_ENA)) {
1267 sdbus_set_voltage(&s->sdbus, SD_VOLTAGE_1_8V);
1268 } else {
1269 sdbus_set_voltage(&s->sdbus, SD_VOLTAGE_3_3V);
1270 }
1271 }
1272 break;
1273
1274 case SDHC_CAPAB:
1275 case SDHC_CAPAB + 4:
1276 case SDHC_MAXCURR:
1277 case SDHC_MAXCURR + 4:
1278 qemu_log_mask(LOG_GUEST_ERROR, "SDHC wr_%ub @0x%02" HWADDR_PRIx
1279 " <- 0x%08x read-only\n", size, offset, value >> shift);
1280 break;
1281
1282 default:
1283 qemu_log_mask(LOG_UNIMP, "SDHC wr_%ub @0x%02" HWADDR_PRIx " <- 0x%08x "
1284 "not implemented\n", size, offset, value >> shift);
1285 break;
1286 }
1287 trace_sdhci_access("wr", size << 3, offset, "<-",
1288 value >> shift, value >> shift);
1289 }
1290
1291 static const MemoryRegionOps sdhci_mmio_ops = {
1292 .read = sdhci_read,
1293 .write = sdhci_write,
1294 .valid = {
1295 .min_access_size = 1,
1296 .max_access_size = 4,
1297 .unaligned = false
1298 },
1299 .endianness = DEVICE_LITTLE_ENDIAN,
1300 };
1301
1302 static void sdhci_init_readonly_registers(SDHCIState *s, Error **errp)
1303 {
1304 Error *local_err = NULL;
1305
1306 switch (s->sd_spec_version) {
1307 case 2 ... 3:
1308 break;
1309 default:
1310 error_setg(errp, "Only Spec v2/v3 are supported");
1311 return;
1312 }
1313 s->version = (SDHC_HCVER_VENDOR << 8) | (s->sd_spec_version - 1);
1314
1315 sdhci_check_capareg(s, &local_err);
1316 if (local_err) {
1317 error_propagate(errp, local_err);
1318 return;
1319 }
1320 }
1321
1322 /* --- qdev common --- */
1323
1324 #define DEFINE_SDHCI_COMMON_PROPERTIES(_state) \
1325 DEFINE_PROP_UINT8("sd-spec-version", _state, sd_spec_version, 2), \
1326 DEFINE_PROP_UINT8("uhs", _state, uhs_mode, UHS_NOT_SUPPORTED), \
1327 \
1328 /* Capabilities registers provide information on supported
1329 * features of this specific host controller implementation */ \
1330 DEFINE_PROP_UINT64("capareg", _state, capareg, SDHC_CAPAB_REG_DEFAULT), \
1331 DEFINE_PROP_UINT64("maxcurr", _state, maxcurr, 0)
1332
1333 static void sdhci_initfn(SDHCIState *s)
1334 {
1335 qbus_create_inplace(&s->sdbus, sizeof(s->sdbus),
1336 TYPE_SDHCI_BUS, DEVICE(s), "sd-bus");
1337
1338 s->insert_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_raise_insertion_irq, s);
1339 s->transfer_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_data_transfer, s);
1340
1341 s->io_ops = &sdhci_mmio_ops;
1342 }
1343
1344 static void sdhci_uninitfn(SDHCIState *s)
1345 {
1346 timer_del(s->insert_timer);
1347 timer_free(s->insert_timer);
1348 timer_del(s->transfer_timer);
1349 timer_free(s->transfer_timer);
1350
1351 g_free(s->fifo_buffer);
1352 s->fifo_buffer = NULL;
1353 }
1354
1355 static void sdhci_common_realize(SDHCIState *s, Error **errp)
1356 {
1357 Error *local_err = NULL;
1358
1359 sdhci_init_readonly_registers(s, &local_err);
1360 if (local_err) {
1361 error_propagate(errp, local_err);
1362 return;
1363 }
1364 s->buf_maxsz = sdhci_get_fifolen(s);
1365 s->fifo_buffer = g_malloc0(s->buf_maxsz);
1366
1367 memory_region_init_io(&s->iomem, OBJECT(s), &sdhci_mmio_ops, s, "sdhci",
1368 SDHC_REGISTERS_MAP_SIZE);
1369 }
1370
1371 static void sdhci_common_unrealize(SDHCIState *s, Error **errp)
1372 {
1373 /* This function is expected to be called only once for each class:
1374 * - SysBus: via DeviceClass->unrealize(),
1375 * - PCI: via PCIDeviceClass->exit().
1376 * However to avoid double-free and/or use-after-free we still nullify
1377 * this variable (better safe than sorry!). */
1378 g_free(s->fifo_buffer);
1379 s->fifo_buffer = NULL;
1380 }
1381
1382 static bool sdhci_pending_insert_vmstate_needed(void *opaque)
1383 {
1384 SDHCIState *s = opaque;
1385
1386 return s->pending_insert_state;
1387 }
1388
1389 static const VMStateDescription sdhci_pending_insert_vmstate = {
1390 .name = "sdhci/pending-insert",
1391 .version_id = 1,
1392 .minimum_version_id = 1,
1393 .needed = sdhci_pending_insert_vmstate_needed,
1394 .fields = (VMStateField[]) {
1395 VMSTATE_BOOL(pending_insert_state, SDHCIState),
1396 VMSTATE_END_OF_LIST()
1397 },
1398 };
1399
1400 const VMStateDescription sdhci_vmstate = {
1401 .name = "sdhci",
1402 .version_id = 1,
1403 .minimum_version_id = 1,
1404 .fields = (VMStateField[]) {
1405 VMSTATE_UINT32(sdmasysad, SDHCIState),
1406 VMSTATE_UINT16(blksize, SDHCIState),
1407 VMSTATE_UINT16(blkcnt, SDHCIState),
1408 VMSTATE_UINT32(argument, SDHCIState),
1409 VMSTATE_UINT16(trnmod, SDHCIState),
1410 VMSTATE_UINT16(cmdreg, SDHCIState),
1411 VMSTATE_UINT32_ARRAY(rspreg, SDHCIState, 4),
1412 VMSTATE_UINT32(prnsts, SDHCIState),
1413 VMSTATE_UINT8(hostctl1, SDHCIState),
1414 VMSTATE_UINT8(pwrcon, SDHCIState),
1415 VMSTATE_UINT8(blkgap, SDHCIState),
1416 VMSTATE_UINT8(wakcon, SDHCIState),
1417 VMSTATE_UINT16(clkcon, SDHCIState),
1418 VMSTATE_UINT8(timeoutcon, SDHCIState),
1419 VMSTATE_UINT8(admaerr, SDHCIState),
1420 VMSTATE_UINT16(norintsts, SDHCIState),
1421 VMSTATE_UINT16(errintsts, SDHCIState),
1422 VMSTATE_UINT16(norintstsen, SDHCIState),
1423 VMSTATE_UINT16(errintstsen, SDHCIState),
1424 VMSTATE_UINT16(norintsigen, SDHCIState),
1425 VMSTATE_UINT16(errintsigen, SDHCIState),
1426 VMSTATE_UINT16(acmd12errsts, SDHCIState),
1427 VMSTATE_UINT16(data_count, SDHCIState),
1428 VMSTATE_UINT64(admasysaddr, SDHCIState),
1429 VMSTATE_UINT8(stopped_state, SDHCIState),
1430 VMSTATE_VBUFFER_UINT32(fifo_buffer, SDHCIState, 1, NULL, buf_maxsz),
1431 VMSTATE_TIMER_PTR(insert_timer, SDHCIState),
1432 VMSTATE_TIMER_PTR(transfer_timer, SDHCIState),
1433 VMSTATE_END_OF_LIST()
1434 },
1435 .subsections = (const VMStateDescription*[]) {
1436 &sdhci_pending_insert_vmstate,
1437 NULL
1438 },
1439 };
1440
1441 static void sdhci_common_class_init(ObjectClass *klass, void *data)
1442 {
1443 DeviceClass *dc = DEVICE_CLASS(klass);
1444
1445 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
1446 dc->vmsd = &sdhci_vmstate;
1447 dc->reset = sdhci_poweron_reset;
1448 }
1449
1450 /* --- qdev PCI --- */
1451
1452 static Property sdhci_pci_properties[] = {
1453 DEFINE_SDHCI_COMMON_PROPERTIES(SDHCIState),
1454 DEFINE_PROP_END_OF_LIST(),
1455 };
1456
1457 static void sdhci_pci_realize(PCIDevice *dev, Error **errp)
1458 {
1459 SDHCIState *s = PCI_SDHCI(dev);
1460 Error *local_err = NULL;
1461
1462 sdhci_initfn(s);
1463 sdhci_common_realize(s, errp);
1464 if (local_err) {
1465 error_propagate(errp, local_err);
1466 return;
1467 }
1468
1469 dev->config[PCI_CLASS_PROG] = 0x01; /* Standard Host supported DMA */
1470 dev->config[PCI_INTERRUPT_PIN] = 0x01; /* interrupt pin A */
1471 s->irq = pci_allocate_irq(dev);
1472 s->dma_as = pci_get_address_space(dev);
1473 pci_register_bar(dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->iomem);
1474 }
1475
1476 static void sdhci_pci_exit(PCIDevice *dev)
1477 {
1478 SDHCIState *s = PCI_SDHCI(dev);
1479
1480 sdhci_common_unrealize(s, &error_abort);
1481 sdhci_uninitfn(s);
1482 }
1483
1484 static void sdhci_pci_class_init(ObjectClass *klass, void *data)
1485 {
1486 DeviceClass *dc = DEVICE_CLASS(klass);
1487 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
1488
1489 k->realize = sdhci_pci_realize;
1490 k->exit = sdhci_pci_exit;
1491 k->vendor_id = PCI_VENDOR_ID_REDHAT;
1492 k->device_id = PCI_DEVICE_ID_REDHAT_SDHCI;
1493 k->class_id = PCI_CLASS_SYSTEM_SDHCI;
1494 dc->props = sdhci_pci_properties;
1495
1496 sdhci_common_class_init(klass, data);
1497 }
1498
1499 static const TypeInfo sdhci_pci_info = {
1500 .name = TYPE_PCI_SDHCI,
1501 .parent = TYPE_PCI_DEVICE,
1502 .instance_size = sizeof(SDHCIState),
1503 .class_init = sdhci_pci_class_init,
1504 .interfaces = (InterfaceInfo[]) {
1505 { INTERFACE_CONVENTIONAL_PCI_DEVICE },
1506 { },
1507 },
1508 };
1509
1510 /* --- qdev SysBus --- */
1511
1512 static Property sdhci_sysbus_properties[] = {
1513 DEFINE_SDHCI_COMMON_PROPERTIES(SDHCIState),
1514 DEFINE_PROP_BOOL("pending-insert-quirk", SDHCIState, pending_insert_quirk,
1515 false),
1516 DEFINE_PROP_LINK("dma", SDHCIState,
1517 dma_mr, TYPE_MEMORY_REGION, MemoryRegion *),
1518 DEFINE_PROP_END_OF_LIST(),
1519 };
1520
1521 static void sdhci_sysbus_init(Object *obj)
1522 {
1523 SDHCIState *s = SYSBUS_SDHCI(obj);
1524
1525 sdhci_initfn(s);
1526 }
1527
1528 static void sdhci_sysbus_finalize(Object *obj)
1529 {
1530 SDHCIState *s = SYSBUS_SDHCI(obj);
1531
1532 if (s->dma_mr) {
1533 object_unparent(OBJECT(s->dma_mr));
1534 }
1535
1536 sdhci_uninitfn(s);
1537 }
1538
1539 static void sdhci_sysbus_realize(DeviceState *dev, Error ** errp)
1540 {
1541 SDHCIState *s = SYSBUS_SDHCI(dev);
1542 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1543 Error *local_err = NULL;
1544
1545 sdhci_common_realize(s, errp);
1546 if (local_err) {
1547 error_propagate(errp, local_err);
1548 return;
1549 }
1550
1551 if (s->dma_mr) {
1552 s->dma_as = &s->sysbus_dma_as;
1553 address_space_init(s->dma_as, s->dma_mr, "sdhci-dma");
1554 } else {
1555 /* use system_memory() if property "dma" not set */
1556 s->dma_as = &address_space_memory;
1557 }
1558
1559 sysbus_init_irq(sbd, &s->irq);
1560
1561 memory_region_init_io(&s->iomem, OBJECT(s), s->io_ops, s, "sdhci",
1562 SDHC_REGISTERS_MAP_SIZE);
1563
1564 sysbus_init_mmio(sbd, &s->iomem);
1565 }
1566
1567 static void sdhci_sysbus_unrealize(DeviceState *dev, Error **errp)
1568 {
1569 SDHCIState *s = SYSBUS_SDHCI(dev);
1570
1571 sdhci_common_unrealize(s, &error_abort);
1572
1573 if (s->dma_mr) {
1574 address_space_destroy(s->dma_as);
1575 }
1576 }
1577
1578 static void sdhci_sysbus_class_init(ObjectClass *klass, void *data)
1579 {
1580 DeviceClass *dc = DEVICE_CLASS(klass);
1581
1582 dc->props = sdhci_sysbus_properties;
1583 dc->realize = sdhci_sysbus_realize;
1584 dc->unrealize = sdhci_sysbus_unrealize;
1585
1586 sdhci_common_class_init(klass, data);
1587 }
1588
1589 static const TypeInfo sdhci_sysbus_info = {
1590 .name = TYPE_SYSBUS_SDHCI,
1591 .parent = TYPE_SYS_BUS_DEVICE,
1592 .instance_size = sizeof(SDHCIState),
1593 .instance_init = sdhci_sysbus_init,
1594 .instance_finalize = sdhci_sysbus_finalize,
1595 .class_init = sdhci_sysbus_class_init,
1596 };
1597
1598 /* --- qdev bus master --- */
1599
1600 static void sdhci_bus_class_init(ObjectClass *klass, void *data)
1601 {
1602 SDBusClass *sbc = SD_BUS_CLASS(klass);
1603
1604 sbc->set_inserted = sdhci_set_inserted;
1605 sbc->set_readonly = sdhci_set_readonly;
1606 }
1607
1608 static const TypeInfo sdhci_bus_info = {
1609 .name = TYPE_SDHCI_BUS,
1610 .parent = TYPE_SD_BUS,
1611 .instance_size = sizeof(SDBus),
1612 .class_init = sdhci_bus_class_init,
1613 };
1614
1615 static uint64_t usdhc_read(void *opaque, hwaddr offset, unsigned size)
1616 {
1617 SDHCIState *s = SYSBUS_SDHCI(opaque);
1618 uint32_t ret;
1619 uint16_t hostctl1;
1620
1621 switch (offset) {
1622 default:
1623 return sdhci_read(opaque, offset, size);
1624
1625 case SDHC_HOSTCTL:
1626 /*
1627 * For a detailed explanation on the following bit
1628 * manipulation code see comments in a similar part of
1629 * usdhc_write()
1630 */
1631 hostctl1 = SDHC_DMA_TYPE(s->hostctl1) << (8 - 3);
1632
1633 if (s->hostctl1 & SDHC_CTRL_8BITBUS) {
1634 hostctl1 |= ESDHC_CTRL_8BITBUS;
1635 }
1636
1637 if (s->hostctl1 & SDHC_CTRL_4BITBUS) {
1638 hostctl1 |= ESDHC_CTRL_4BITBUS;
1639 }
1640
1641 ret = hostctl1;
1642 ret |= (uint32_t)s->blkgap << 16;
1643 ret |= (uint32_t)s->wakcon << 24;
1644
1645 break;
1646
1647 case ESDHC_DLL_CTRL:
1648 case ESDHC_TUNE_CTRL_STATUS:
1649 case ESDHC_UNDOCUMENTED_REG27:
1650 case ESDHC_TUNING_CTRL:
1651 case ESDHC_VENDOR_SPEC:
1652 case ESDHC_MIX_CTRL:
1653 case ESDHC_WTMK_LVL:
1654 ret = 0;
1655 break;
1656 }
1657
1658 return ret;
1659 }
1660
1661 static void
1662 usdhc_write(void *opaque, hwaddr offset, uint64_t val, unsigned size)
1663 {
1664 SDHCIState *s = SYSBUS_SDHCI(opaque);
1665 uint8_t hostctl1;
1666 uint32_t value = (uint32_t)val;
1667
1668 switch (offset) {
1669 case ESDHC_DLL_CTRL:
1670 case ESDHC_TUNE_CTRL_STATUS:
1671 case ESDHC_UNDOCUMENTED_REG27:
1672 case ESDHC_TUNING_CTRL:
1673 case ESDHC_WTMK_LVL:
1674 case ESDHC_VENDOR_SPEC:
1675 break;
1676
1677 case SDHC_HOSTCTL:
1678 /*
1679 * Here's What ESDHCI has at offset 0x28 (SDHC_HOSTCTL)
1680 *
1681 * 7 6 5 4 3 2 1 0
1682 * |-----------+--------+--------+-----------+----------+---------|
1683 * | Card | Card | Endian | DATA3 | Data | Led |
1684 * | Detect | Detect | Mode | as Card | Transfer | Control |
1685 * | Signal | Test | | Detection | Width | |
1686 * | Selection | Level | | Pin | | |
1687 * |-----------+--------+--------+-----------+----------+---------|
1688 *
1689 * and 0x29
1690 *
1691 * 15 10 9 8
1692 * |----------+------|
1693 * | Reserved | DMA |
1694 * | | Sel. |
1695 * | | |
1696 * |----------+------|
1697 *
1698 * and here's what SDCHI spec expects those offsets to be:
1699 *
1700 * 0x28 (Host Control Register)
1701 *
1702 * 7 6 5 4 3 2 1 0
1703 * |--------+--------+----------+------+--------+----------+---------|
1704 * | Card | Card | Extended | DMA | High | Data | LED |
1705 * | Detect | Detect | Data | Sel. | Speed | Transfer | Control |
1706 * | Signal | Test | Transfer | | Enable | Width | |
1707 * | Sel. | Level | Width | | | | |
1708 * |--------+--------+----------+------+--------+----------+---------|
1709 *
1710 * and 0x29 (Power Control Register)
1711 *
1712 * |----------------------------------|
1713 * | Power Control Register |
1714 * | |
1715 * | Description omitted, |
1716 * | since it has no analog in ESDHCI |
1717 * | |
1718 * |----------------------------------|
1719 *
1720 * Since offsets 0x2A and 0x2B should be compatible between
1721 * both IP specs we only need to reconcile least 16-bit of the
1722 * word we've been given.
1723 */
1724
1725 /*
1726 * First, save bits 7 6 and 0 since they are identical
1727 */
1728 hostctl1 = value & (SDHC_CTRL_LED |
1729 SDHC_CTRL_CDTEST_INS |
1730 SDHC_CTRL_CDTEST_EN);
1731 /*
1732 * Second, split "Data Transfer Width" from bits 2 and 1 in to
1733 * bits 5 and 1
1734 */
1735 if (value & ESDHC_CTRL_8BITBUS) {
1736 hostctl1 |= SDHC_CTRL_8BITBUS;
1737 }
1738
1739 if (value & ESDHC_CTRL_4BITBUS) {
1740 hostctl1 |= ESDHC_CTRL_4BITBUS;
1741 }
1742
1743 /*
1744 * Third, move DMA select from bits 9 and 8 to bits 4 and 3
1745 */
1746 hostctl1 |= SDHC_DMA_TYPE(value >> (8 - 3));
1747
1748 /*
1749 * Now place the corrected value into low 16-bit of the value
1750 * we are going to give standard SDHCI write function
1751 *
1752 * NOTE: This transformation should be the inverse of what can
1753 * be found in drivers/mmc/host/sdhci-esdhc-imx.c in Linux
1754 * kernel
1755 */
1756 value &= ~UINT16_MAX;
1757 value |= hostctl1;
1758 value |= (uint16_t)s->pwrcon << 8;
1759
1760 sdhci_write(opaque, offset, value, size);
1761 break;
1762
1763 case ESDHC_MIX_CTRL:
1764 /*
1765 * So, when SD/MMC stack in Linux tries to write to "Transfer
1766 * Mode Register", ESDHC i.MX quirk code will translate it
1767 * into a write to ESDHC_MIX_CTRL, so we do the opposite in
1768 * order to get where we started
1769 *
1770 * Note that Auto CMD23 Enable bit is located in a wrong place
1771 * on i.MX, but since it is not used by QEMU we do not care.
1772 *
1773 * We don't want to call sdhci_write(.., SDHC_TRNMOD, ...)
1774 * here becuase it will result in a call to
1775 * sdhci_send_command(s) which we don't want.
1776 *
1777 */
1778 s->trnmod = value & UINT16_MAX;
1779 break;
1780 case SDHC_TRNMOD:
1781 /*
1782 * Similar to above, but this time a write to "Command
1783 * Register" will be translated into a 4-byte write to
1784 * "Transfer Mode register" where lower 16-bit of value would
1785 * be set to zero. So what we do is fill those bits with
1786 * cached value from s->trnmod and let the SDHCI
1787 * infrastructure handle the rest
1788 */
1789 sdhci_write(opaque, offset, val | s->trnmod, size);
1790 break;
1791 case SDHC_BLKSIZE:
1792 /*
1793 * ESDHCI does not implement "Host SDMA Buffer Boundary", and
1794 * Linux driver will try to zero this field out which will
1795 * break the rest of SDHCI emulation.
1796 *
1797 * Linux defaults to maximum possible setting (512K boundary)
1798 * and it seems to be the only option that i.MX IP implements,
1799 * so we artificially set it to that value.
1800 */
1801 val |= 0x7 << 12;
1802 /* FALLTHROUGH */
1803 default:
1804 sdhci_write(opaque, offset, val, size);
1805 break;
1806 }
1807 }
1808
1809
1810 static const MemoryRegionOps usdhc_mmio_ops = {
1811 .read = usdhc_read,
1812 .write = usdhc_write,
1813 .valid = {
1814 .min_access_size = 1,
1815 .max_access_size = 4,
1816 .unaligned = false
1817 },
1818 .endianness = DEVICE_LITTLE_ENDIAN,
1819 };
1820
1821 static void imx_usdhc_init(Object *obj)
1822 {
1823 SDHCIState *s = SYSBUS_SDHCI(obj);
1824
1825 s->io_ops = &usdhc_mmio_ops;
1826 s->quirks = SDHCI_QUIRK_NO_BUSY_IRQ;
1827 }
1828
1829 static const TypeInfo imx_usdhc_info = {
1830 .name = TYPE_IMX_USDHC,
1831 .parent = TYPE_SYSBUS_SDHCI,
1832 .instance_init = imx_usdhc_init,
1833 };
1834
1835 static void sdhci_register_types(void)
1836 {
1837 type_register_static(&sdhci_pci_info);
1838 type_register_static(&sdhci_sysbus_info);
1839 type_register_static(&sdhci_bus_info);
1840 type_register_static(&imx_usdhc_info);
1841 }
1842
1843 type_init(sdhci_register_types)