]> git.proxmox.com Git - mirror_qemu.git/blob - hw/serial.c
serial: use post_load version_id field and remove pre_load function
[mirror_qemu.git] / hw / serial.c
1 /*
2 * QEMU 16550A UART emulation
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 * Copyright (c) 2008 Citrix Systems, Inc.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
24 */
25 #include "hw.h"
26 #include "qemu-char.h"
27 #include "isa.h"
28 #include "pc.h"
29 #include "qemu-timer.h"
30
31 //#define DEBUG_SERIAL
32
33 #define UART_LCR_DLAB 0x80 /* Divisor latch access bit */
34
35 #define UART_IER_MSI 0x08 /* Enable Modem status interrupt */
36 #define UART_IER_RLSI 0x04 /* Enable receiver line status interrupt */
37 #define UART_IER_THRI 0x02 /* Enable Transmitter holding register int. */
38 #define UART_IER_RDI 0x01 /* Enable receiver data interrupt */
39
40 #define UART_IIR_NO_INT 0x01 /* No interrupts pending */
41 #define UART_IIR_ID 0x06 /* Mask for the interrupt ID */
42
43 #define UART_IIR_MSI 0x00 /* Modem status interrupt */
44 #define UART_IIR_THRI 0x02 /* Transmitter holding register empty */
45 #define UART_IIR_RDI 0x04 /* Receiver data interrupt */
46 #define UART_IIR_RLSI 0x06 /* Receiver line status interrupt */
47 #define UART_IIR_CTI 0x0C /* Character Timeout Indication */
48
49 #define UART_IIR_FENF 0x80 /* Fifo enabled, but not functionning */
50 #define UART_IIR_FE 0xC0 /* Fifo enabled */
51
52 /*
53 * These are the definitions for the Modem Control Register
54 */
55 #define UART_MCR_LOOP 0x10 /* Enable loopback test mode */
56 #define UART_MCR_OUT2 0x08 /* Out2 complement */
57 #define UART_MCR_OUT1 0x04 /* Out1 complement */
58 #define UART_MCR_RTS 0x02 /* RTS complement */
59 #define UART_MCR_DTR 0x01 /* DTR complement */
60
61 /*
62 * These are the definitions for the Modem Status Register
63 */
64 #define UART_MSR_DCD 0x80 /* Data Carrier Detect */
65 #define UART_MSR_RI 0x40 /* Ring Indicator */
66 #define UART_MSR_DSR 0x20 /* Data Set Ready */
67 #define UART_MSR_CTS 0x10 /* Clear to Send */
68 #define UART_MSR_DDCD 0x08 /* Delta DCD */
69 #define UART_MSR_TERI 0x04 /* Trailing edge ring indicator */
70 #define UART_MSR_DDSR 0x02 /* Delta DSR */
71 #define UART_MSR_DCTS 0x01 /* Delta CTS */
72 #define UART_MSR_ANY_DELTA 0x0F /* Any of the delta bits! */
73
74 #define UART_LSR_TEMT 0x40 /* Transmitter empty */
75 #define UART_LSR_THRE 0x20 /* Transmit-hold-register empty */
76 #define UART_LSR_BI 0x10 /* Break interrupt indicator */
77 #define UART_LSR_FE 0x08 /* Frame error indicator */
78 #define UART_LSR_PE 0x04 /* Parity error indicator */
79 #define UART_LSR_OE 0x02 /* Overrun error indicator */
80 #define UART_LSR_DR 0x01 /* Receiver data ready */
81 #define UART_LSR_INT_ANY 0x1E /* Any of the lsr-interrupt-triggering status bits */
82
83 /* Interrupt trigger levels. The byte-counts are for 16550A - in newer UARTs the byte-count for each ITL is higher. */
84
85 #define UART_FCR_ITL_1 0x00 /* 1 byte ITL */
86 #define UART_FCR_ITL_2 0x40 /* 4 bytes ITL */
87 #define UART_FCR_ITL_3 0x80 /* 8 bytes ITL */
88 #define UART_FCR_ITL_4 0xC0 /* 14 bytes ITL */
89
90 #define UART_FCR_DMS 0x08 /* DMA Mode Select */
91 #define UART_FCR_XFR 0x04 /* XMIT Fifo Reset */
92 #define UART_FCR_RFR 0x02 /* RCVR Fifo Reset */
93 #define UART_FCR_FE 0x01 /* FIFO Enable */
94
95 #define UART_FIFO_LENGTH 16 /* 16550A Fifo Length */
96
97 #define XMIT_FIFO 0
98 #define RECV_FIFO 1
99 #define MAX_XMIT_RETRY 4
100
101 typedef struct SerialFIFO {
102 uint8_t data[UART_FIFO_LENGTH];
103 uint8_t count;
104 uint8_t itl; /* Interrupt Trigger Level */
105 uint8_t tail;
106 uint8_t head;
107 } SerialFIFO;
108
109 struct SerialState {
110 uint16_t divider;
111 uint8_t rbr; /* receive register */
112 uint8_t thr; /* transmit holding register */
113 uint8_t tsr; /* transmit shift register */
114 uint8_t ier;
115 uint8_t iir; /* read only */
116 uint8_t lcr;
117 uint8_t mcr;
118 uint8_t lsr; /* read only */
119 uint8_t msr; /* read only */
120 uint8_t scr;
121 uint8_t fcr;
122 uint8_t fcr_vmstate; /* we can't write directly this value
123 it has side effects */
124 /* NOTE: this hidden state is necessary for tx irq generation as
125 it can be reset while reading iir */
126 int thr_ipending;
127 qemu_irq irq;
128 CharDriverState *chr;
129 int last_break_enable;
130 int it_shift;
131 int baudbase;
132 int tsr_retry;
133
134 uint64_t last_xmit_ts; /* Time when the last byte was successfully sent out of the tsr */
135 SerialFIFO recv_fifo;
136 SerialFIFO xmit_fifo;
137
138 struct QEMUTimer *fifo_timeout_timer;
139 int timeout_ipending; /* timeout interrupt pending state */
140 struct QEMUTimer *transmit_timer;
141
142
143 uint64_t char_transmit_time; /* time to transmit a char in ticks*/
144 int poll_msl;
145
146 struct QEMUTimer *modem_status_poll;
147 };
148
149 typedef struct ISASerialState {
150 ISADevice dev;
151 uint32_t index;
152 uint32_t iobase;
153 uint32_t isairq;
154 SerialState state;
155 } ISASerialState;
156
157 static void serial_receive1(void *opaque, const uint8_t *buf, int size);
158
159 static void fifo_clear(SerialState *s, int fifo)
160 {
161 SerialFIFO *f = (fifo) ? &s->recv_fifo : &s->xmit_fifo;
162 memset(f->data, 0, UART_FIFO_LENGTH);
163 f->count = 0;
164 f->head = 0;
165 f->tail = 0;
166 }
167
168 static int fifo_put(SerialState *s, int fifo, uint8_t chr)
169 {
170 SerialFIFO *f = (fifo) ? &s->recv_fifo : &s->xmit_fifo;
171
172 f->data[f->head++] = chr;
173
174 if (f->head == UART_FIFO_LENGTH)
175 f->head = 0;
176 f->count++;
177
178 return 1;
179 }
180
181 static uint8_t fifo_get(SerialState *s, int fifo)
182 {
183 SerialFIFO *f = (fifo) ? &s->recv_fifo : &s->xmit_fifo;
184 uint8_t c;
185
186 if(f->count == 0)
187 return 0;
188
189 c = f->data[f->tail++];
190 if (f->tail == UART_FIFO_LENGTH)
191 f->tail = 0;
192 f->count--;
193
194 return c;
195 }
196
197 static void serial_update_irq(SerialState *s)
198 {
199 uint8_t tmp_iir = UART_IIR_NO_INT;
200
201 if ((s->ier & UART_IER_RLSI) && (s->lsr & UART_LSR_INT_ANY)) {
202 tmp_iir = UART_IIR_RLSI;
203 } else if ((s->ier & UART_IER_RDI) && s->timeout_ipending) {
204 /* Note that(s->ier & UART_IER_RDI) can mask this interrupt,
205 * this is not in the specification but is observed on existing
206 * hardware. */
207 tmp_iir = UART_IIR_CTI;
208 } else if ((s->ier & UART_IER_RDI) && (s->lsr & UART_LSR_DR) &&
209 (!(s->fcr & UART_FCR_FE) ||
210 s->recv_fifo.count >= s->recv_fifo.itl)) {
211 tmp_iir = UART_IIR_RDI;
212 } else if ((s->ier & UART_IER_THRI) && s->thr_ipending) {
213 tmp_iir = UART_IIR_THRI;
214 } else if ((s->ier & UART_IER_MSI) && (s->msr & UART_MSR_ANY_DELTA)) {
215 tmp_iir = UART_IIR_MSI;
216 }
217
218 s->iir = tmp_iir | (s->iir & 0xF0);
219
220 if (tmp_iir != UART_IIR_NO_INT) {
221 qemu_irq_raise(s->irq);
222 } else {
223 qemu_irq_lower(s->irq);
224 }
225 }
226
227 static void serial_update_parameters(SerialState *s)
228 {
229 int speed, parity, data_bits, stop_bits, frame_size;
230 QEMUSerialSetParams ssp;
231
232 if (s->divider == 0)
233 return;
234
235 frame_size = 1;
236 if (s->lcr & 0x08) {
237 if (s->lcr & 0x10)
238 parity = 'E';
239 else
240 parity = 'O';
241 } else {
242 parity = 'N';
243 frame_size = 0;
244 }
245 if (s->lcr & 0x04)
246 stop_bits = 2;
247 else
248 stop_bits = 1;
249
250 data_bits = (s->lcr & 0x03) + 5;
251 frame_size += data_bits + stop_bits;
252 speed = s->baudbase / s->divider;
253 ssp.speed = speed;
254 ssp.parity = parity;
255 ssp.data_bits = data_bits;
256 ssp.stop_bits = stop_bits;
257 s->char_transmit_time = (get_ticks_per_sec() / speed) * frame_size;
258 qemu_chr_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
259 #if 0
260 printf("speed=%d parity=%c data=%d stop=%d\n",
261 speed, parity, data_bits, stop_bits);
262 #endif
263 }
264
265 static void serial_update_msl(SerialState *s)
266 {
267 uint8_t omsr;
268 int flags;
269
270 qemu_del_timer(s->modem_status_poll);
271
272 if (qemu_chr_ioctl(s->chr,CHR_IOCTL_SERIAL_GET_TIOCM, &flags) == -ENOTSUP) {
273 s->poll_msl = -1;
274 return;
275 }
276
277 omsr = s->msr;
278
279 s->msr = (flags & CHR_TIOCM_CTS) ? s->msr | UART_MSR_CTS : s->msr & ~UART_MSR_CTS;
280 s->msr = (flags & CHR_TIOCM_DSR) ? s->msr | UART_MSR_DSR : s->msr & ~UART_MSR_DSR;
281 s->msr = (flags & CHR_TIOCM_CAR) ? s->msr | UART_MSR_DCD : s->msr & ~UART_MSR_DCD;
282 s->msr = (flags & CHR_TIOCM_RI) ? s->msr | UART_MSR_RI : s->msr & ~UART_MSR_RI;
283
284 if (s->msr != omsr) {
285 /* Set delta bits */
286 s->msr = s->msr | ((s->msr >> 4) ^ (omsr >> 4));
287 /* UART_MSR_TERI only if change was from 1 -> 0 */
288 if ((s->msr & UART_MSR_TERI) && !(omsr & UART_MSR_RI))
289 s->msr &= ~UART_MSR_TERI;
290 serial_update_irq(s);
291 }
292
293 /* The real 16550A apparently has a 250ns response latency to line status changes.
294 We'll be lazy and poll only every 10ms, and only poll it at all if MSI interrupts are turned on */
295
296 if (s->poll_msl)
297 qemu_mod_timer(s->modem_status_poll, qemu_get_clock(vm_clock) + get_ticks_per_sec() / 100);
298 }
299
300 static void serial_xmit(void *opaque)
301 {
302 SerialState *s = opaque;
303 uint64_t new_xmit_ts = qemu_get_clock(vm_clock);
304
305 if (s->tsr_retry <= 0) {
306 if (s->fcr & UART_FCR_FE) {
307 s->tsr = fifo_get(s,XMIT_FIFO);
308 if (!s->xmit_fifo.count)
309 s->lsr |= UART_LSR_THRE;
310 } else {
311 s->tsr = s->thr;
312 s->lsr |= UART_LSR_THRE;
313 }
314 }
315
316 if (s->mcr & UART_MCR_LOOP) {
317 /* in loopback mode, say that we just received a char */
318 serial_receive1(s, &s->tsr, 1);
319 } else if (qemu_chr_write(s->chr, &s->tsr, 1) != 1) {
320 if ((s->tsr_retry > 0) && (s->tsr_retry <= MAX_XMIT_RETRY)) {
321 s->tsr_retry++;
322 qemu_mod_timer(s->transmit_timer, new_xmit_ts + s->char_transmit_time);
323 return;
324 } else if (s->poll_msl < 0) {
325 /* If we exceed MAX_XMIT_RETRY and the backend is not a real serial port, then
326 drop any further failed writes instantly, until we get one that goes through.
327 This is to prevent guests that log to unconnected pipes or pty's from stalling. */
328 s->tsr_retry = -1;
329 }
330 }
331 else {
332 s->tsr_retry = 0;
333 }
334
335 s->last_xmit_ts = qemu_get_clock(vm_clock);
336 if (!(s->lsr & UART_LSR_THRE))
337 qemu_mod_timer(s->transmit_timer, s->last_xmit_ts + s->char_transmit_time);
338
339 if (s->lsr & UART_LSR_THRE) {
340 s->lsr |= UART_LSR_TEMT;
341 s->thr_ipending = 1;
342 serial_update_irq(s);
343 }
344 }
345
346
347 static void serial_ioport_write(void *opaque, uint32_t addr, uint32_t val)
348 {
349 SerialState *s = opaque;
350
351 addr &= 7;
352 #ifdef DEBUG_SERIAL
353 printf("serial: write addr=0x%02x val=0x%02x\n", addr, val);
354 #endif
355 switch(addr) {
356 default:
357 case 0:
358 if (s->lcr & UART_LCR_DLAB) {
359 s->divider = (s->divider & 0xff00) | val;
360 serial_update_parameters(s);
361 } else {
362 s->thr = (uint8_t) val;
363 if(s->fcr & UART_FCR_FE) {
364 fifo_put(s, XMIT_FIFO, s->thr);
365 s->thr_ipending = 0;
366 s->lsr &= ~UART_LSR_TEMT;
367 s->lsr &= ~UART_LSR_THRE;
368 serial_update_irq(s);
369 } else {
370 s->thr_ipending = 0;
371 s->lsr &= ~UART_LSR_THRE;
372 serial_update_irq(s);
373 }
374 serial_xmit(s);
375 }
376 break;
377 case 1:
378 if (s->lcr & UART_LCR_DLAB) {
379 s->divider = (s->divider & 0x00ff) | (val << 8);
380 serial_update_parameters(s);
381 } else {
382 s->ier = val & 0x0f;
383 /* If the backend device is a real serial port, turn polling of the modem
384 status lines on physical port on or off depending on UART_IER_MSI state */
385 if (s->poll_msl >= 0) {
386 if (s->ier & UART_IER_MSI) {
387 s->poll_msl = 1;
388 serial_update_msl(s);
389 } else {
390 qemu_del_timer(s->modem_status_poll);
391 s->poll_msl = 0;
392 }
393 }
394 if (s->lsr & UART_LSR_THRE) {
395 s->thr_ipending = 1;
396 serial_update_irq(s);
397 }
398 }
399 break;
400 case 2:
401 val = val & 0xFF;
402
403 if (s->fcr == val)
404 break;
405
406 /* Did the enable/disable flag change? If so, make sure FIFOs get flushed */
407 if ((val ^ s->fcr) & UART_FCR_FE)
408 val |= UART_FCR_XFR | UART_FCR_RFR;
409
410 /* FIFO clear */
411
412 if (val & UART_FCR_RFR) {
413 qemu_del_timer(s->fifo_timeout_timer);
414 s->timeout_ipending=0;
415 fifo_clear(s,RECV_FIFO);
416 }
417
418 if (val & UART_FCR_XFR) {
419 fifo_clear(s,XMIT_FIFO);
420 }
421
422 if (val & UART_FCR_FE) {
423 s->iir |= UART_IIR_FE;
424 /* Set RECV_FIFO trigger Level */
425 switch (val & 0xC0) {
426 case UART_FCR_ITL_1:
427 s->recv_fifo.itl = 1;
428 break;
429 case UART_FCR_ITL_2:
430 s->recv_fifo.itl = 4;
431 break;
432 case UART_FCR_ITL_3:
433 s->recv_fifo.itl = 8;
434 break;
435 case UART_FCR_ITL_4:
436 s->recv_fifo.itl = 14;
437 break;
438 }
439 } else
440 s->iir &= ~UART_IIR_FE;
441
442 /* Set fcr - or at least the bits in it that are supposed to "stick" */
443 s->fcr = val & 0xC9;
444 serial_update_irq(s);
445 break;
446 case 3:
447 {
448 int break_enable;
449 s->lcr = val;
450 serial_update_parameters(s);
451 break_enable = (val >> 6) & 1;
452 if (break_enable != s->last_break_enable) {
453 s->last_break_enable = break_enable;
454 qemu_chr_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
455 &break_enable);
456 }
457 }
458 break;
459 case 4:
460 {
461 int flags;
462 int old_mcr = s->mcr;
463 s->mcr = val & 0x1f;
464 if (val & UART_MCR_LOOP)
465 break;
466
467 if (s->poll_msl >= 0 && old_mcr != s->mcr) {
468
469 qemu_chr_ioctl(s->chr,CHR_IOCTL_SERIAL_GET_TIOCM, &flags);
470
471 flags &= ~(CHR_TIOCM_RTS | CHR_TIOCM_DTR);
472
473 if (val & UART_MCR_RTS)
474 flags |= CHR_TIOCM_RTS;
475 if (val & UART_MCR_DTR)
476 flags |= CHR_TIOCM_DTR;
477
478 qemu_chr_ioctl(s->chr,CHR_IOCTL_SERIAL_SET_TIOCM, &flags);
479 /* Update the modem status after a one-character-send wait-time, since there may be a response
480 from the device/computer at the other end of the serial line */
481 qemu_mod_timer(s->modem_status_poll, qemu_get_clock(vm_clock) + s->char_transmit_time);
482 }
483 }
484 break;
485 case 5:
486 break;
487 case 6:
488 break;
489 case 7:
490 s->scr = val;
491 break;
492 }
493 }
494
495 static uint32_t serial_ioport_read(void *opaque, uint32_t addr)
496 {
497 SerialState *s = opaque;
498 uint32_t ret;
499
500 addr &= 7;
501 switch(addr) {
502 default:
503 case 0:
504 if (s->lcr & UART_LCR_DLAB) {
505 ret = s->divider & 0xff;
506 } else {
507 if(s->fcr & UART_FCR_FE) {
508 ret = fifo_get(s,RECV_FIFO);
509 if (s->recv_fifo.count == 0)
510 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
511 else
512 qemu_mod_timer(s->fifo_timeout_timer, qemu_get_clock (vm_clock) + s->char_transmit_time * 4);
513 s->timeout_ipending = 0;
514 } else {
515 ret = s->rbr;
516 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
517 }
518 serial_update_irq(s);
519 if (!(s->mcr & UART_MCR_LOOP)) {
520 /* in loopback mode, don't receive any data */
521 qemu_chr_accept_input(s->chr);
522 }
523 }
524 break;
525 case 1:
526 if (s->lcr & UART_LCR_DLAB) {
527 ret = (s->divider >> 8) & 0xff;
528 } else {
529 ret = s->ier;
530 }
531 break;
532 case 2:
533 ret = s->iir;
534 s->thr_ipending = 0;
535 serial_update_irq(s);
536 break;
537 case 3:
538 ret = s->lcr;
539 break;
540 case 4:
541 ret = s->mcr;
542 break;
543 case 5:
544 ret = s->lsr;
545 /* Clear break interrupt */
546 if (s->lsr & UART_LSR_BI) {
547 s->lsr &= ~UART_LSR_BI;
548 serial_update_irq(s);
549 }
550 break;
551 case 6:
552 if (s->mcr & UART_MCR_LOOP) {
553 /* in loopback, the modem output pins are connected to the
554 inputs */
555 ret = (s->mcr & 0x0c) << 4;
556 ret |= (s->mcr & 0x02) << 3;
557 ret |= (s->mcr & 0x01) << 5;
558 } else {
559 if (s->poll_msl >= 0)
560 serial_update_msl(s);
561 ret = s->msr;
562 /* Clear delta bits & msr int after read, if they were set */
563 if (s->msr & UART_MSR_ANY_DELTA) {
564 s->msr &= 0xF0;
565 serial_update_irq(s);
566 }
567 }
568 break;
569 case 7:
570 ret = s->scr;
571 break;
572 }
573 #ifdef DEBUG_SERIAL
574 printf("serial: read addr=0x%02x val=0x%02x\n", addr, ret);
575 #endif
576 return ret;
577 }
578
579 static int serial_can_receive(SerialState *s)
580 {
581 if(s->fcr & UART_FCR_FE) {
582 if(s->recv_fifo.count < UART_FIFO_LENGTH)
583 /* Advertise (fifo.itl - fifo.count) bytes when count < ITL, and 1 if above. If UART_FIFO_LENGTH - fifo.count is
584 advertised the effect will be to almost always fill the fifo completely before the guest has a chance to respond,
585 effectively overriding the ITL that the guest has set. */
586 return (s->recv_fifo.count <= s->recv_fifo.itl) ? s->recv_fifo.itl - s->recv_fifo.count : 1;
587 else
588 return 0;
589 } else {
590 return !(s->lsr & UART_LSR_DR);
591 }
592 }
593
594 static void serial_receive_break(SerialState *s)
595 {
596 s->rbr = 0;
597 /* When the LSR_DR is set a null byte is pushed into the fifo */
598 fifo_put(s, RECV_FIFO, '\0');
599 s->lsr |= UART_LSR_BI | UART_LSR_DR;
600 serial_update_irq(s);
601 }
602
603 /* There's data in recv_fifo and s->rbr has not been read for 4 char transmit times */
604 static void fifo_timeout_int (void *opaque) {
605 SerialState *s = opaque;
606 if (s->recv_fifo.count) {
607 s->timeout_ipending = 1;
608 serial_update_irq(s);
609 }
610 }
611
612 static int serial_can_receive1(void *opaque)
613 {
614 SerialState *s = opaque;
615 return serial_can_receive(s);
616 }
617
618 static void serial_receive1(void *opaque, const uint8_t *buf, int size)
619 {
620 SerialState *s = opaque;
621 if(s->fcr & UART_FCR_FE) {
622 int i;
623 for (i = 0; i < size; i++) {
624 fifo_put(s, RECV_FIFO, buf[i]);
625 }
626 s->lsr |= UART_LSR_DR;
627 /* call the timeout receive callback in 4 char transmit time */
628 qemu_mod_timer(s->fifo_timeout_timer, qemu_get_clock (vm_clock) + s->char_transmit_time * 4);
629 } else {
630 s->rbr = buf[0];
631 s->lsr |= UART_LSR_DR;
632 }
633 serial_update_irq(s);
634 }
635
636 static void serial_event(void *opaque, int event)
637 {
638 SerialState *s = opaque;
639 #ifdef DEBUG_SERIAL
640 printf("serial: event %x\n", event);
641 #endif
642 if (event == CHR_EVENT_BREAK)
643 serial_receive_break(s);
644 }
645
646 static void serial_pre_save(void *opaque)
647 {
648 SerialState *s = opaque;
649 s->fcr_vmstate = s->fcr;
650 }
651
652 static int serial_post_load(void *opaque, int version_id)
653 {
654 SerialState *s = opaque;
655
656 if (version_id < 3) {
657 s->fcr_vmstate = 0;
658 }
659 /* Initialize fcr via setter to perform essential side-effects */
660 serial_ioport_write(s, 0x02, s->fcr_vmstate);
661 return 0;
662 }
663
664 static const VMStateDescription vmstate_serial = {
665 .name = "serial",
666 .version_id = 3,
667 .minimum_version_id = 2,
668 .pre_save = serial_pre_save,
669 .post_load = serial_post_load,
670 .fields = (VMStateField []) {
671 VMSTATE_UINT16_V(divider, SerialState, 2),
672 VMSTATE_UINT8(rbr, SerialState),
673 VMSTATE_UINT8(ier, SerialState),
674 VMSTATE_UINT8(iir, SerialState),
675 VMSTATE_UINT8(lcr, SerialState),
676 VMSTATE_UINT8(mcr, SerialState),
677 VMSTATE_UINT8(lsr, SerialState),
678 VMSTATE_UINT8(msr, SerialState),
679 VMSTATE_UINT8(scr, SerialState),
680 VMSTATE_UINT8_V(fcr_vmstate, SerialState, 3),
681 VMSTATE_END_OF_LIST()
682 }
683 };
684
685 static void serial_reset(void *opaque)
686 {
687 SerialState *s = opaque;
688
689 s->rbr = 0;
690 s->ier = 0;
691 s->iir = UART_IIR_NO_INT;
692 s->lcr = 0;
693 s->lsr = UART_LSR_TEMT | UART_LSR_THRE;
694 s->msr = UART_MSR_DCD | UART_MSR_DSR | UART_MSR_CTS;
695 /* Default to 9600 baud, no parity, one stop bit */
696 s->divider = 0x0C;
697 s->mcr = UART_MCR_OUT2;
698 s->scr = 0;
699 s->tsr_retry = 0;
700 s->char_transmit_time = (get_ticks_per_sec() / 9600) * 9;
701 s->poll_msl = 0;
702
703 fifo_clear(s,RECV_FIFO);
704 fifo_clear(s,XMIT_FIFO);
705
706 s->last_xmit_ts = qemu_get_clock(vm_clock);
707
708 s->thr_ipending = 0;
709 s->last_break_enable = 0;
710 qemu_irq_lower(s->irq);
711 }
712
713 static void serial_init_core(SerialState *s)
714 {
715 if (!s->chr) {
716 fprintf(stderr, "Can't create serial device, empty char device\n");
717 exit(1);
718 }
719
720 s->modem_status_poll = qemu_new_timer(vm_clock, (QEMUTimerCB *) serial_update_msl, s);
721
722 s->fifo_timeout_timer = qemu_new_timer(vm_clock, (QEMUTimerCB *) fifo_timeout_int, s);
723 s->transmit_timer = qemu_new_timer(vm_clock, (QEMUTimerCB *) serial_xmit, s);
724
725 qemu_register_reset(serial_reset, s);
726 serial_reset(s);
727
728 qemu_chr_add_handlers(s->chr, serial_can_receive1, serial_receive1,
729 serial_event, s);
730 }
731
732 static const int isa_serial_io[MAX_SERIAL_PORTS] = { 0x3f8, 0x2f8, 0x3e8, 0x2e8 };
733 static const int isa_serial_irq[MAX_SERIAL_PORTS] = { 4, 3, 4, 3 };
734
735 static int serial_isa_initfn(ISADevice *dev)
736 {
737 static int index;
738 ISASerialState *isa = DO_UPCAST(ISASerialState, dev, dev);
739 SerialState *s = &isa->state;
740
741 if (isa->index == -1)
742 isa->index = index;
743 if (isa->index >= MAX_SERIAL_PORTS)
744 return -1;
745 if (isa->iobase == -1)
746 isa->iobase = isa_serial_io[isa->index];
747 if (isa->isairq == -1)
748 isa->isairq = isa_serial_irq[isa->index];
749 index++;
750
751 s->baudbase = 115200;
752 isa_init_irq(dev, &s->irq, isa->isairq);
753 serial_init_core(s);
754 vmstate_register(isa->iobase, &vmstate_serial, s);
755
756 register_ioport_write(isa->iobase, 8, 1, serial_ioport_write, s);
757 register_ioport_read(isa->iobase, 8, 1, serial_ioport_read, s);
758 return 0;
759 }
760
761 SerialState *serial_isa_init(int index, CharDriverState *chr)
762 {
763 ISADevice *dev;
764
765 dev = isa_create("isa-serial");
766 qdev_prop_set_uint32(&dev->qdev, "index", index);
767 qdev_prop_set_chr(&dev->qdev, "chardev", chr);
768 if (qdev_init(&dev->qdev) < 0)
769 return NULL;
770 return &DO_UPCAST(ISASerialState, dev, dev)->state;
771 }
772
773 SerialState *serial_init(int base, qemu_irq irq, int baudbase,
774 CharDriverState *chr)
775 {
776 SerialState *s;
777
778 s = qemu_mallocz(sizeof(SerialState));
779
780 s->irq = irq;
781 s->baudbase = baudbase;
782 s->chr = chr;
783 serial_init_core(s);
784
785 vmstate_register(base, &vmstate_serial, s);
786
787 register_ioport_write(base, 8, 1, serial_ioport_write, s);
788 register_ioport_read(base, 8, 1, serial_ioport_read, s);
789 return s;
790 }
791
792 /* Memory mapped interface */
793 static uint32_t serial_mm_readb(void *opaque, target_phys_addr_t addr)
794 {
795 SerialState *s = opaque;
796
797 return serial_ioport_read(s, addr >> s->it_shift) & 0xFF;
798 }
799
800 static void serial_mm_writeb(void *opaque, target_phys_addr_t addr,
801 uint32_t value)
802 {
803 SerialState *s = opaque;
804
805 serial_ioport_write(s, addr >> s->it_shift, value & 0xFF);
806 }
807
808 static uint32_t serial_mm_readw(void *opaque, target_phys_addr_t addr)
809 {
810 SerialState *s = opaque;
811 uint32_t val;
812
813 val = serial_ioport_read(s, addr >> s->it_shift) & 0xFFFF;
814 #ifdef TARGET_WORDS_BIGENDIAN
815 val = bswap16(val);
816 #endif
817 return val;
818 }
819
820 static void serial_mm_writew(void *opaque, target_phys_addr_t addr,
821 uint32_t value)
822 {
823 SerialState *s = opaque;
824 #ifdef TARGET_WORDS_BIGENDIAN
825 value = bswap16(value);
826 #endif
827 serial_ioport_write(s, addr >> s->it_shift, value & 0xFFFF);
828 }
829
830 static uint32_t serial_mm_readl(void *opaque, target_phys_addr_t addr)
831 {
832 SerialState *s = opaque;
833 uint32_t val;
834
835 val = serial_ioport_read(s, addr >> s->it_shift);
836 #ifdef TARGET_WORDS_BIGENDIAN
837 val = bswap32(val);
838 #endif
839 return val;
840 }
841
842 static void serial_mm_writel(void *opaque, target_phys_addr_t addr,
843 uint32_t value)
844 {
845 SerialState *s = opaque;
846 #ifdef TARGET_WORDS_BIGENDIAN
847 value = bswap32(value);
848 #endif
849 serial_ioport_write(s, addr >> s->it_shift, value);
850 }
851
852 static CPUReadMemoryFunc * const serial_mm_read[] = {
853 &serial_mm_readb,
854 &serial_mm_readw,
855 &serial_mm_readl,
856 };
857
858 static CPUWriteMemoryFunc * const serial_mm_write[] = {
859 &serial_mm_writeb,
860 &serial_mm_writew,
861 &serial_mm_writel,
862 };
863
864 SerialState *serial_mm_init (target_phys_addr_t base, int it_shift,
865 qemu_irq irq, int baudbase,
866 CharDriverState *chr, int ioregister)
867 {
868 SerialState *s;
869 int s_io_memory;
870
871 s = qemu_mallocz(sizeof(SerialState));
872
873 s->it_shift = it_shift;
874 s->irq = irq;
875 s->baudbase = baudbase;
876 s->chr = chr;
877
878 serial_init_core(s);
879 vmstate_register(base, &vmstate_serial, s);
880
881 if (ioregister) {
882 s_io_memory = cpu_register_io_memory(serial_mm_read,
883 serial_mm_write, s);
884 cpu_register_physical_memory(base, 8 << it_shift, s_io_memory);
885 }
886 serial_update_msl(s);
887 return s;
888 }
889
890 static ISADeviceInfo serial_isa_info = {
891 .qdev.name = "isa-serial",
892 .qdev.size = sizeof(ISASerialState),
893 .init = serial_isa_initfn,
894 .qdev.props = (Property[]) {
895 DEFINE_PROP_HEX32("index", ISASerialState, index, -1),
896 DEFINE_PROP_HEX32("iobase", ISASerialState, iobase, -1),
897 DEFINE_PROP_UINT32("irq", ISASerialState, isairq, -1),
898 DEFINE_PROP_CHR("chardev", ISASerialState, state.chr),
899 DEFINE_PROP_END_OF_LIST(),
900 },
901 };
902
903 static void serial_register_devices(void)
904 {
905 isa_qdev_register(&serial_isa_info);
906 }
907
908 device_init(serial_register_devices)